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Abstract

On stretch factors of pseudo-Anosov maps

by

Joshua Charles Pankau

In 1974, Thurston proved that, up to isotopy, every automorphism of closed orientable

surface is either periodic, reducible, or pseudo-Anosov. The latter case has lead to a rich

theory with applications ranging from dynamical systems to low dimensional topology.

Associated with every pseudo-Anosov map is a real number λ > 1 known as the stretch

factor. Thurston showed that every stretch factor is an algebraic unit but it is unknown

exactly which units can appear as stretch factors. Though this question remains open, we

provide a partial answer by showing a large class of units are obtainable as stretch factors

using a construction due to Thurston. We will show that every Salem number has a power

that is the stretch factor of a pseudo-Anosov map arising from Thurston’s construction,

and then we will use the techniques to generalize to a much larger class of units. We also

show that every totally real number field K is of the form K = Q(λ + λ−1), where λ is

the stretch factor of a pseudo-Anosov map arising from Thurston’s construction. Finally,

we develop a new method of constructing closed orientable surfaces from positive integer

matrices that will be crucial to proving the above results.
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Chapter 1

Introduction

The group of automorphisms of a surface modulo isotopy, also known as the mapping

class group of a surface, first appeared in the early parts of the 20th century. This was

a natural object to study as the burgeoning ideas of Topology were beginning to mix

with the rigid world of algebra. The mapping class group offered another algebraic tool

that could be used to study properties of surfaces. Some early contributors to this study

include German born mathematician Max Dehn, whose work will appear frequently in

the chapters to come, and Danish born mathematician Jakob Nielsen, who studied the

induced action of surface automorphisms on the boundary of hyperbolic space. Dehn

introduced the concept of the Dehn twist automorphisms and proved that the mapping

class group is finitely generated by these. Nielsen provided a classification of mapping

class group elements but supposedly due to lack of organization this result went unnoti-

ced for decades.

In the 1970’s, American mathematician William P. Thurston studied the mapping class

group from the theory of measured foliations, which he was developing. Thurston proved

that elements of the mapping class group fall into three categories: periodic, reducible,

and pseudo-Anosov. Upon announcing his findings it was discovered that Nielsen had

made similar discoveries, albeit from a different perspective. Now, this result is known
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as the celebrated Nielsen-Thurston classification. The work herein will be primarily con-

cerned with the pseudo-Anosov case.

A homeomorphism φ from a closed orientable surface Sg to itself is called pseudo-Anosov

if there is a pair of transverse measured folations Fs and Fu of Sg in which φ stretches

Fu by a real number λ > 1, and contracts Fs by a factor of λ−1. The number λ is known

as the stretch factor of φ. Thurston showed in [19] that the stretch factor of any pseudo-

Anosov map is an algebraic unit whose degree over Q is bounded above by 6g − 6. The

question as to exactly which algebraic units appear as stretch factors of pseudo-Anosov

maps has remained open for the last 40 years.

For the most part, the study of this question has been from the perspective of general

constructions of pseudo-Anosov maps. Thurston provided such a construction, known

unsurprisingly as Thurston’s construction, which describes pseudo-Anosov maps as pro-

ducts of Dehn twists around simple closed curve that divide the surface into disks. We

will give a detailed overview of this construction in Chapter 2 but similar discussions of

this construction can be found in either [8], Exposé 13, or [7]. In [15], Penner describes a

similar but different construction involving products of Dehn twists. These constructions

can produce a large class of pseudo-Anosov maps, and share some overlap but there are

pseudo-Anosov maps attainable by one construction and not the other. It is also known

that these constructions cannot attain every pseudo-Anosov map though. In a recent

paper [18], Shin and Strenner showed that if λ is a stretch factor of a pseudo-Anosov

map coming from Penner’s construction then λ does not have Galois conjugates on the

unit circle. Whereas, we will show that if λ is a stretch factor coming from Thurston’s

construction then Q(λ+ λ−1) is a totally real number field.

In this treatise we will focus on Thurston’s construction, and a certain type of algebraic

unit known as a Salem number. Salem numbers have complex conjugates on the unit cir-

cle so they cannot arise as stretch factors from Penner’s construction. On the other hand,
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there are Salem numbers that appear as stretch factors from Thurston’s construction,

and many of the smallest known stretch factors are Salem numbers. A natural question

to ask is if we can get every Salem number as a stretch factor, and we will show this is

true up to some power of the Salem number. The methods and tools we will develop to

prove this result about Salem numbers we will then generalize to prove the following.

Theorem A. Let λ > 1 be a real algebraic unit with [Q(λ) : Q] = n, λ + λ−1 totally

real, and every Galois conjugate of λ lies in between λ−1 and λ in absolute value. Then

there is a k such that λk is the stretch factor of a Thurston construction pseudo-Anosov

homeomorphism of the surface S(n+e)2−(n+e)+1, where e ∈ {0, 1, 2, 3}.

In other words, we will show that if λ > 1 is an algebraic unit satisfying the known

restrictions of Thurston’s construction then some power of λ is a stretch factor of a

pseudo-Anosov map coming from Thurston’s construction.

Since we know that Q(λ + λ−1) is a totally real number field when λ is a stretch factor

from Thurston’s construction, it is natural to ask which totally real number fields arise

this way. We also prove:

Theorem B. Every totally real number field is of the form K = Q(λ+ λ−1), where λ is

the stretch factor of a pseudo-Anosov map arising from Thurston’s construction.

Important to the proof of both of these theorems will be the idea of constructing a clo-

sed orientable surface from a nonsingular, positive, integer matrix. We describe such a

process and prove the following in chapter 3.

Theorem C. Given an n × n nonsingular, positive, integer matrix Q, there is a closed

orientable surface Sg containing two tight filling multicurves, A and B, whose intersection

matrix is Q. Furthermore, if all the entries of Q are greater than and equal to 2, then

the genus of this surface is g = n2 − n+ 1.
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The structure of the dissertation is as follows: In chapter 2 we will discuss curves on

surfaces, and define the mapping class group, then provide a description of Thurston’s

construction. In chapter 3 we describe a construction of a surface from a positive integer

matrix and prove Theorem C. In chapter 4 we define Salem numbers, develop the tools

necessary to show that every Salem number has a power that is a stretch factor, and

then generalize those results to prove Theorem A. We also introduce some ideas from

algebraic number theory and use them to prove Theorem B. In chapter 5 we talk about

possible future work that can be done with these results. We also provide an appendix

that contains various proofs and discussions that would otherwise bog down the flow of

this dissertation.
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Chapter 2

The Mapping Class Group

2.1 Curves on Surfaces

Simple closed curves on a surface play a critical role in studying the mapping class group,

as automorphisms of the surface send simple closed curves to simple closed curves. You

can cut a surface along a simple closed curve to obtain a simpler surface, and they can be

used to give the surface a cell structure. These notions, as well as the notion of counting

intersections between two simple closed curves, will be important to the presented work

so we now take some time to develop some of the theory about simple closed curves.

Throughout this dissertation, we will let Sg denote the closed orientable surface of genus

g.

2.1.1 Definitions

Definition 2.1.1. A simple closed curve on a surface is an embedding α : S1 → Sg.

We will blur the lines between the map α and its image, and simply refer to the curve

as α.

Definition 2.1.2. A simple closed curve is said to be essential if it is not homotopic

to a point.
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We will often be looking at collections of disjoint pairwise non-isotopic essential simple

closed curves, and call such a collection a multicurve . It is a well known fact that the

maximum number of disjoint pairwise non-isotopic essential simple closed curves on a

genus g surface is 3g − 3. This is often referred to as the pants decomposition.

An important feature of simple closed curves is that we can use them to cut the surface

into disks. For example cutting the torus along a longitudinal simple closed curve, and

then along the meridian gives us one disk.

Definition 2.1.3. A pair of multicurves A = {α1, ..., αn} and B = {β1, ...., βm} are said

to fill Sg if Sg − A ∪B is a union of topological disks.

Figure 2.1: A pair of filling mulitcurves on S2.

Figure 2.2: A pair of curves that fill S2.
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2.1.2 Intersection Number

We now discuss two natural ways of counting intersection of curves on a orientable surface.

Since we can always homotope any two curves so that they are transverse, we will assume

that every intersection of the two curves are transverse intersections. Let α and β be two

oriented curves on Sg. If we choose an orientation for the surface, then the basis vectors

for the tangent lines to α and β in the direction of their orientation give a basis for the

tangent plane at the point of intersection. If this basis lies in the orientation class of the

basis given by our choice of orientation for the surface, then we will assign a +1 to this

intersection. Otherwise we assign a −1 to the intersection. This choice of +1 or −1 will

be called the index of the intersection.

Definition 2.1.4. The algebraic intersection number between two simple closed

curves α and β on Sg, denoted by î(α, β) is the sum of the indices of each intersection.

The algebraic intersection number only depends on the homology class of the curves, so

we can talk about the algebraic intersection number of the free homotopy classes a and b

of α and β, respectively. Another way of counting intersection between two curves is to

count the minimal number of intersections between any two curves in the free homotopy

class of each curve.

Definition 2.1.5. The geometric intersection number between two simple closed

curves α and β, denoted by i(α, β) is the minimal number of intersections between any

two curves in the free homotopy classes a and b of α and β, respectively. That is

i(α, β) = min {|α′ ∩ β′| : α′ ∈ a, β′ ∈ b}

In general, the algebraic intersection is easier to calculate, but we will often calculate

the geometric intersection number by exhibiting two curves who already meet a minimal

number of times. We give a name to such curves:

7



Definition 2.1.6. Two curves α and β are said to be in minimal position if i(α, β) =

|α ∩ β|.

There is a combinatorial condition for deciding whether two curves are in minimal posi-

tion. This condition gives a procedure for taking curves α and β which are not in minimal

position, to homotopic curves α′ to β′ which are in minimal position. First a definition:

Definition 2.1.7. Two curves α and β are said to form a bigon if there is an embedded

disk whose boundary is the union an arc of α and an arc of β intersecting in exactly two

points.

Figure 2.3: A bigon formed by two curves α and β.

Proposition 2.1 (Bigon Criterion). Two curves are in minimal position if and only if

they do not form a bigon.

With this proposition in mind we can take two simple closed curves α and β and isotope

them to be in minimal position. We do this as follows: A bigon formed by an arc of α

and an arc of β bounds a disk, and we can either isotope α or β across that disk until we

have reduced the number of intersections by 2, provided there are no other arcs of α or

β within the bigon. If we are in such a situation, then since we are talking about simple

closed curves we know that any arc of α or β that enters the interior of the bigon must

also leave the bigon. So there will be an inner bigon formed by another arc of α and β.

These curves can only intersect a finite number of times so there must be an inner most
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bigon, see Figure 2.4 below. Now, we isotope across the inner most bigon to reduce the

number of intersections by 2, then repeat this process until α and β no longer form any

bigons. The resulting curves will now be in minimal position.

Figure 2.4: The curves α and β form several nested bigons. Isotoping β across the
inner most bigon, and then repeating this process will result with two curves that are in
minimal position.

We can extend this idea of minimal position to multicurves.

Definition 2.1.8. Two multicurves A = {α1, ..., αm} and B = {β1, ..., βn} are said to be

tight if each αi and βj are in minimal position.

For example the curves in Figure 2.1 are tight multicurves, as well as fill the surface.

Having a pair of multicurves on Sg that are tight and fill the surface is helpful because

this defines a cell structure on Sg. The 1-skeleton is formed by vertices that are the

intersection points of the multicurves, and the edges are the arcs of curves connecting

two vertices. Since the multicurves fill the surface, the complement of the 1-skeleton is

a collection of topological disks, hence we have given a cell structure to Sg. We will use

this cell structure during our discussion of Thurston’s construction in subsection 2.3.3.

Finally, we can use the cell structure of Sg defined by tight filling multicurves to compute

an important invariant of the surface known as the Euler characteristic, denoted

χ(Sg). For a closed orientable surface, χ(Sg) = 2 − 2g and given a cell structure on Sg

with V vertices, E edges, and F faces, then we have that V − E + F = 2 − 2g. This
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equation will allow us to compute the genus of surfaces that we construct from integer

matrices in chapter 3.

2.2 The Mapping Class Group

2.2.1 Definitions

Let Sg denote the closed orientable surface of genus g and define the set Homeo+(Sg) to

be the set of orientation preserving homeomorphisms of Sg. We can endow this set with

the following topology: For any compact subset K and open subset U of Sg define

V (K,U) =
{
φ ∈ Homeo+(Sg) | φ(K) ⊂ U

}
In general, it is not true that the intersection of two of these sets can be written as a

union of the V (K,U), so these sets do not form a base for a topology, but they do form a

subbase for a topology. We call this topology the Compact Open Topology . Now let

π0(Homeo+(Sg)) denote the set of path components of Homeo+(Sg). Now a path between

two homeomorphisms f0 and f1 defines a homotopy ft between the two maps, where ft ∈

Homeo+(Sg) for all t ∈ [0, 1]. Such a homotopy is called an isotopy .

Isotopy defines an equivalence relation on Homeo+(Sg) and the equivalence classes, also

called the isotopy classes, are precisely the elements of π0(Homeo+(Sg)). If we let [f ]

denote the isotopy class of f , then we can endow the set of isotopy classes with a group

structure where the operation is given by [f ] · [g] = [f ◦ g]. We are now ready to define

the mapping class group of a surface Sg.

Definition 2.2.1. The Mapping Class Group of Sg, denoted Mod(Sg), is equal to

π0(Homeo+(Sg)) endowed with the above group structure.

The mapping class in general is a very complicated object, but we will see in the next
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section that it is actually finitely generated. Though we are only defining the mapping

class group for closed orientable surfaces, this group can be defined for any surface, with

slight modifications to the definition. We now give some typical examples of mapping

class groups that also highlight the modifications to the definition.

Example 2.2.1. Let D2 denote the closed disk homeomorphic to the closed unit disk

in R2, then Mod(D2) is trivial. What we mean here is that every automorphism of D2

is isotopic to the identity map. The modification to the definition of mapping class here

is that we only consider orientation preserving homeomorphisms that fix the boundary

pointwise. The idea is that any f ∈ Homeo+(D2) can be isotoped so that action of ft

does the entirety of f ’s action on the disk of radius 1−t, and fixes every point outside this

disk, which gives an isotopy from f to the identity map. This is known as the Alexander

trick.

Figure 2.5: Visualization of the Alexander trick.

Example 2.2.2. Let D2
n denote the closed disks with n punctures. Then Mod(D2

n) is

isomorphic to the n-strand braid group, Bn. The modification to the definition here is

that each f ∈ Homeo+(D2
n) permutes the punctures. Now the idea is that if we forget

about the punctures being deleted points, and just think about the homeomorphisms of

D2 that must permute those points, then applying the Alexander trick gives an isotopy

where the permuted punctures move around the interior of the disk and eventually return
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to their starting position. This gives us a way of identifying an element of Mod(D2
n) with

an n-strand braid, and in fact, this identification gives an isomorphism between Mod(D2
n)

and Bn.

Figure 2.6: An element of B3 traced out by the punctures through the isotopy.

Example 2.2.3. The mapping class group of the Torus is of particular interest not only

because it is isomorphic to an easily understood group, but the structure of this group

gives insight into the structure of the mapping class group of higher genus surfaces. By

studying the action of an element of Mod(T 2) on H1(T
2;Z) ∼= Z2 it can be shown

Mod(T 2) ∼= SL(2,Z)

Since PSL(2,R) ∼= Isom+(H2), the group of orientation preserving isometries of H2, then

we can identify each element of Mod(T 2) with an isometry of H2, hence every element of

the mapping class group of the Torus is associated with either an elliptic, parabolic, or

hyperbolic element of Isom+(H2). This association gives a wealth of information about

element of the mapping class elements of the Torus, and without going too deep into the

theory, the upshot of this correspondence is as follows. Let f ∈ Mod(T 2), and let τ be

the corresponding element of PSL(2,R), then

1. If τ is an elliptic element, |tr(τ)| < 2, then f has finite order. We call such a

mapping class periodic.
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2. If τ is a parabolic element, |tr(τ)| = 2, then f fixes the isotopy class of an essential

simple closed curve on T 2. This type of mapping class is called reducible.

3. If τ is a hyperbolic element, |tr(τ)| > 2, then f stretches T 2 along one foliation (to

be discussed in the coming sections) and contracts T 2 along another foliation. We

call this type of mapping class Anosov, first introduced by D.V. Anosov in [1].

As we will see in the next subsection, the classification of mapping class elements on Sg

will be a similar list, with the notion of Anosov mapping classes being generalized to

higher genus surfaces. These generalized Anosov mapping classes will be called pseudo-

Anosov, a term coined by Thurston in [19].

2.2.2 Nielsen-Thurston Classification

In the previous subsection we saw that elements of Mod(T 2) fall into three types. In this

subsection we will define these mapping class elements for any genus surface Sg, and we

also state the Nielsen-Thurston classification. We begin by defining periodic elements of

Mod(Sg).

Definition 2.2.2. A mapping class f ∈ Mod(Sg) is called periodic if there is a repre-

sentative φ of f such that φn is isomorphic to the identity map for some n.

Example 2.2.4. An example of a periodic element is what as known as a hyperelliptic

involution, which is obtained by rotating the surface by π around an axis. See Figure 2.7

on the next page.

Example 2.2.5. Another example of a periodic element of Sg is obtained by arranging

the tori components of the surface to be centered on the vertices of a regular g-gon, and

then rotating the surface clockwise 2π/g. See Figure 2.8 on the next page for g = 3.

We now define reducible mapping classes of Sg.
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Figure 2.7: Rotating S2 by π around the given axis is an order two element of Mod(S2)
known as a hyperelliptic involution.

Figure 2.8: An order 3 element of Mod(S3) obtained by rotating the surface as shown.

Definition 2.2.3. A mapping class f is called reducible if there is a collection of disjoint

non-isotopic essential simple closed curves {γ1, ..., γn}, and a representative φ of f such

that {φ(γi)} = {γi}. That is, φ permutes the curves γi.

These are called reducible because we can cut the surface along the curves γi and φ will

induce homeomorphisms on the smaller pieces that do not fix any curves. It is worth

noting that there is overlap between periodic and reducible mapping classes.

Example 2.2.6. The hyperelliptic involution shown in Figure 2.7 is both a periodic and

reducible mapping class. Another example is an important mapping class is known as a

Dehn twist, which we will discuss in more detail in the next subsection. The basic idea

of a Dehn twist is that points in an annular neighborhood of a simple closed curve α are
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“twisted” around α, where every point outside of the annulus is left fixed. See Figures

2.9 and 2.10 below. The Dehn twist about α is denoted by Tα.

The final type of mapping class, known as a pseudo-Anosov mapping class, is also the

one that will be the main focus of this treatise. The definition will require several more

terms to be defined before we can state it, so we will hold off on the exact definition of

pseudo-Anosov mapping classes until subsection 2.3.2. Like the notion of Anosov map-

ping classes of Mod(T 2), the idea is that a pseudo-Anosov mapping class “stretches” Sg

along one foliation of the surface, while “contracting” the surface along another foliation.

Example 2.2.7. Let {α1, α2, α3} and {β1, β2} be the pair of tight, filling multicurves on

S2 as seen in figure 2.1. In Example 4.1.1 we will verify that the product of Dehn twists

T 2
α1
T 2
α2
Tα3T

2
β1
T 2
β2

is pseudo-Anosov.

With these three mapping classes in mind we are ready to state the classification theorem

for mapping class group elements known as the Nielsen-Thurston classification.

Theorem 2.2 (Nielsen-Thurston Classification). For g ≥ 0, every f ∈ Mod(Sg) is either

periodic, reducible, or pseudo-Anosov. Furthermore, a pseudo-Anosov mapping class is

neither periodic nor reducible.

The important content of this theorem is that every irreducible, infinite order mapping

class has a representative that is pseudo-Anosov. A proof for this theorem can be found

in [7]. The tools to prove this classification were discovered by Nielsen in the 1930’s,

but supposedly his work was lengthy and unorganized, so went unnoticed for decades. It

wasn’t until after Thurston announced a proof from the perspective of measured foliation

theory that mathematicians rediscovered Nielsen’s work.

2.2.3 Dehn Twists

Dehn twists are an important mapping class not just in terms of the work herein, but

because they also generate the mapping class group as we will see below.
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Before we state the definition of Dehn twist, we note that every simple closed curve on Sg

has a neighborhood N that is homeomorphic to S1 × I, where I is the unit interval. Let

φ : S1 × I → N be a homeomorphism, so we can assign coordinates of the form (e2πiθ, t)

to points of N .

Definition 2.2.4. Let α be a simple closed curve on Sg. The Dehn twist about α,

denoted by Tα, is the homeomorphism of the form

Tα(x) =

 (e2πi(θ−t), t) x = (e2πiθ, t) ∈ N

x x /∈ N

Our choice of twisting to the right is merely a preference. We could have chosen to twist

to the left in which case the θ − t in the definition would be replaced by θ + t. The

idea here is that any curve transverse to α is twisted to the right all the way around the

annular neighborhood of α, while leaving fixed every point outside of the annulus.

Figure 2.9: Dehn twist about α.

In the next figure we visualize a Dehn twist a genus 2 surface.
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Figure 2.10: The effect on β after Dehn twisting about α.

Dehn twists are infinite order elements of Mod(Sg), a proof for which can be found in

[7]. The idea is to compare the image of a simple closed curve β transverse to α with

its image Tα(β) and you see that the geometric intersection between β and Tα(β) has

increased. In fact,

i(β, T kα(β)) = k · i(α, β)2

Dehn twists are important in our work because certain products of Dehn twists turn out

to be pseudo-Anosov as we will see when we discuss Thurston’s construction. However,

products of Dehn twists giving pseudo-Anosov mapping classes is not a coincidence as

the next theorem shows.

Theorem 2.3 (Dehn-Lickorish theorem). For g ≥ 0 Mod(Sg) is generated by finitely

many Dehn twists about nonseparating simple closed curves.

We see that up to isotopy, every surface automorphism is a product of Dehn twists. This

result was first proved by Dehn in the 1920s, and was published in [5] in 1938. Dehn

initially proved that the mapping class group of Sg is generated by 2g(g−1) Dehn twists.
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In 1964 Lickorish independently discovered this result, but also improved upon it by

showing that Mod(Sg) is generated by Dehn twists about 3g − 1 nonseparating simple

closed curves [12]. Fifteen years later in 1979, Humphries [9] pushed this result to the

limit by showing the Dehn twists about 2g+ 1 nonseparating curves sufficed to generate

Mod(Sg) and that any set of Dehn twists that generate the mapping class group must

have at least 2g + 1 elements.

2.3 Pseudo-Anosov Maps

Pseudo-Anosov mapping classes are ‘generic’ in the sense that the probability of a random

word in the Dehn-Lickorish generators not being pseudo-Anosov decays exponentially as

the length of the word increases. This was proven by Rivin in [16]. In this section we will

give the full definition of a pseudo-Anosov mapping class, discuss some known properties,

and describe a general construction of pseudo-Anosov maps due to Thurston.

2.3.1 Measured Foliations

Before we give the full definition we need to discuss the concept of measured singular

foliations.

Definition 2.3.1. A singular foliation F of Sg is a decomposition of Sg into a union

of disjoint subsets, called the leaves of F , and a finite set of points of Sg, called the

singular points of F , such that the following two conditions hold:

1. For each nonsingular point p ∈ Sg, there is a smooth chart from a neighborhood of

p to R2 that takes leaves to horizontal line segments. The transition maps between

any two of these charts are smooth maps of the form (x, y) 7→ (f(x, y), g(y)), in

other words, the transition maps take horizontal lines to horizontal lines.
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Figure 2.11: Leaves of a foliation around a nonsingular point.

2. For each singular point p ∈ Sg, there is a smooth chart from a neighborhood of p to

R2 that takes leaves to the level sets of a k-pronged saddle, k ≥ 3.

Figure 2.12: A neighborhood of a 3 prong and 4 prong singular point.

A singular foliation is said to be orientable if the leaves can be consistently oriented,

that is, if each leaf can be oriented so that nearby leaves can be similarly oriented. It is not

difficult to see that a foliation is locally orientable if and only if each of its singularities

has an even numbed of prongs. This can be see from Figure 2.12 as choosing orientations

for the three prongs in the left picture will lead to inconsistent choices for orientations

of the nearby leaves, while this inconsistency does not arise in the right picture. We will

use the word ‘foliation’ to mean singular foliation.
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Definition 2.3.2. Two foliations F1,F2 of Sg are said to be transverse if they have

the same singular set, and every intersection between leaves of F1 and F2 are transverse

intersections.

Figure 2.13: Leaves of the transverse foliations around a nonsingular point(left) and a
singular point(right).

Definition 2.3.3. A transverse measure µ on a foliation F is a function that assigns

a positive real number to each smooth arc transverse to F , so that µ is invariant under

leaf-preserving isotopy. A foliation equipped with a transverse measure µ, denoted

(F , µ), is called a measured foliation.

A leaf preserving isotopy between two curves α and β that are transverse to F , is an

isotopy H(s, t) between α and β where H(s0, t) is contained in a single leaf of F for each

s0 ∈ I. There is a natural action of Homeo(Sg) on the set of measured foliations of Sg,

that is, if φ ∈ Homeo(Sg) and if (F , µ) is a measured foliation of Sg, then the action of

φ on (F , µ) is given by

φ · (F , µ) = (φ(F), φ∗(µ)),

where φ∗(µ)(α) = µ(φ−1(α)). Hence, Mod(Sg) acts on the set of isotopy classes of

measured foliations (the quotient of the set of measured foliations by Homeo0(Sg)).
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2.3.2 Pseudo-Anosov Mapping Classes

We are now ready to give the full definition of a pseudo-Anosov mapping class.

Definition 2.3.4. A mapping class f ∈ Mod(Sg) is called pseudo-Anosov if there is

a representative φ ∈ f , a real number λ > 1, along with a pair of transverse measured

folations (Fs, µs) and (Fu, µu), called the stable and unstable foliations, such that

φ · (Fu, µu) = (Fu, λµu) φ · (Fs, µs) = (F2, λ
−1µs).

The number λ is known as the stretch factor of f .

In Thurston’s announcement of his proof of the classification of mapping class elements

[19], Thurston also proved the following.

Theorem 2.4. If λ is the stretch factor a pseudo-Anosov mapping class on Sg, then λ

is an algbraic unit such that [Q(λ) : Q] ≤ 6g − 6.

By algebraic unit we mean that both λ and λ−1 are algebraic integers, that is, that

there are monic integer polynomials p(x), q(x) such that λ is a root of p(x) and λ−1 is a

root of q(x). Thurston proved Theorem 2.4 by showing that λ is the largest eigenvalue,

in absolute value, of a Perron-Frobenius matrix (see Appendix A for a short discussion

of such matrices). If an eigenvalue of matrix A is the largest in absolute value, than

that eigenvalue is often called the dominating eigenvalue . A consequence of a stretch

factor λ being the dominating eigenvalue of a Perron-Frobenius matrix is that λ is what

is known as a Perron unit , which is a real algebraic integer greater than 1, and that

the absolute value of its Galois conjugates all lie in the interval (λ−1, λ).

We see that stretch factors of pseudo-Anosov maps fit into a very restricted class of

numbers, and according to [7] McMullen has conjectured that a real number λ > 1 is a

stretch factor of a pseudo-Anosov map if and only if λ is a Perron unit. There has not
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been much progress in proving or disproving this claim, but our work ahead (particularly

Theorem A) gives a partial answer towards the affirmative.

2.3.3 Thurston’s Construction

We now give an overview of Thurston’s construction of pseudo-Anosov maps. Our goal

is to provide the basic framework of the construction and establish some of the key ideas

that we will use in future chapters. For a more in depth discussion see [8]. We also

provide a proof that if λ is a stretch factor of a pseudo-Anosov map arising from this

construction then Q(λ+ λ−1) is a totally real number field. We now give an overview of

Thurston’s construction following the discussion given in [13].

Theorem 2.5 (Thurston’s Construction). Suppose that A = {α1, ..., αn}, B = {β1, ..., βm}

are tight, filling multicurves on Sg. To each αi ∈ A assign an integer ni > 0 and to each

βj ∈ B assign an integer mj > 0. Then the maps

TA =
∏
i

T ni
αi

and TB =
∏
j

T
mj

βj

can be represented by matrices in PSL(2;R) and any word θ = w(TA, TB) which corre-

sponds to a hyperbolic class [θ] ∈ SL(2;R) is pseudo-Anosov with stretch factor the larger

of the two eigenvalues.

The first step in this construction is to give a branched flat structure to Sg, that is,

a way to view the surface as a flat manifold except at a finite number of points. We

do this by describing a way of decomposing the surface into glued up rectangles. Let

A = {α1, ..., αn} and B = {β1, ..., βm} be tight, filling multicurves on Sg. A∪B defines a

cell structure on Sg since the complement of A∪B is a union of disks. We define a dual

cell structure of A ∪ B where we take a co-vertex for each cell, a co-edge for each edge,

and a co-cell for each vertex. In a neighborhood of each vertex, we see four segments

originating from the vertex so each co-cell will have four sides. We can think of the dual

22



cell structure as placing rectangles on each vertex and then identify sides of the rectangles

that have an arc of some αi or βj between them.

Figure 2.14: A pair of tight, filling multicurves on S2 with co-cells at each vertex.

Assigning lengths to sides of the rectangles allows us to identify each co-cell with a

rectangle in R2. So we can view Sg as a union of these metric rectangles, hence we have

given Sg a branched flat structure.

Figure 2.15: S2 as a union of rectangles.

There is quite a bit of choice for the length of the sides of each rectangle and this freedom

can be used to show the following:

Proposition 2.6. Assign a positive integer ni to each αi ∈ A and a positive integer mj
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to βj. Then there is a branched flat structure on Sg for which both the maps

TA =
∏
i

T ni
αi

and TB =
∏
j

T
mj

βj

are affine.

By affine we mean that lines in the branched flat structure are mapped to lines. The Dehn

twists about the αi and βj act on the branched flat structure by skewing the rectangles,

so we wish to find a choice for side lengths so that the slope of the sides after twisting

ni times about αi is constant in i. Similarly, twisting mj times about βj is constant in

j. We require that the height of each rectangle lying along αi to have constant height hi

and that each rectangle lying along βj has constant width `j.

Figure 2.16: Dehn twist about αj acting on the branched flat structure skew the rectan-
gular strips.
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If we let i(βr, αs) = Qrs then it can be shown that TA is affine if

tan(θ) =
hi

ni
∑
r

`rQri

for all i,

where θ is the angle between the image of the vertical edges along αi with the horizontal

edges along αi after skewing by TA. Similarly, the condition that TB is affine is

tan(φ) =
`j

mj

∑
s

hsQsj

for all j.

It can be shown that the choice of `j are from a Perron-Frobenius eigenvector with eigen-

value ν of the matrix MQNQT where Qij = i(βi, αj) and M and N are diagonal matrices

whose diagonal entries are mj and ni, respectively. The hi come from a Perron-Frobenius

eigenvector, also with eigenvalue ν, of the matrix QNQTM . These give dimensions of

the rectangles in which TA and TB are affine. With our chosen convention of twisting,

these lengths give the following representations (after some rescaling of the `i):

[TA] =

1 1

0 1

 and [TB] =

 1 0

−ν 1


which are matrices in PSL(2;R). Now any word φ = w(TA, TB) such that [φ] ∈ SL(2;R)

is hyperbolic (|tr([φ])| > 2) will be pseudo-Anosov. Since [φ] is hyperbolic it has two

real eigenvalues, λ and λ−1, the stretch factor of φ is |λ|, and all lines parallel to the

eigenspaces descend to transverse measured foliations on Sg. We end this section by

proving the following:

Theorem 2.7. If λ is the stretch factor of a pseudo-Anosov map arising from Thurston’s

construction then Q(λ+ λ−1) is a totally real number field.

Proof. Let A and B be tight, filling multicurves on a closed orientable surface, and let
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M , N and Q be nonnegative integer matrices defined as above. Consider the matrix

Λ =

 0 M1/2QN1/2

N1/2QTM1/2 0


Λ is symmetric so it has real eigenvalues which means

Λ2 =

M1/2QNQTM1/2 0

0 N1/2QTMQN1/2


has nonnegative eigenvalues, hence M1/2QNQTM1/2 has nonnegative eigenvalues. Con-

jugating this matrix by M1/2 gives MQNQT , thus MQNQT has nonnegative eigenvalues.

This tells us that ν is totally nonnegative, so Q(ν) is totally real. Now if λ is a stretch

factor arising from the above construction then λ is a root of degree 2 polynomial in

Q(ν)[x] of the form

x2 − (λ+ λ−1)x+ 1

so λ+ λ−1 ∈ Q(ν), and therefore Q(λ+ λ−1) is also totally real. �
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Chapter 3

Technical Results

3.1 Constructing Surfaces from Integer Matrices

In this chapter we describe a new construction in which we build a closed orientable

surface S from a nonsingular positive integer matrix Q, where on S are two tight, filling

multicurves A and B whose intersection matrix is Q. Our ability to transition from

an integer matrix to a closed surface not only serves as an important link between the

algebraic results of this dissertation and the topological ones, but the construction raises

interesting combinatorial questions as well. In the first section we will describe the

construction and prove its claimed properties, and in the next section we will discuss

combinatorial data, and determine the genus of the resulting surface.

3.1.1 The Construction

Theorem 3.1. Given an n× n nonsingular positive integer matrix Q, there is a closed

orientable surface S with tight, filling multicurves A = {α1, ..., αn} and B = {β1, ..., βn}

such that Qij = i(βi, αj).

Proof. We start by taking n rectangular strips where the jth strip is divided into
n∑
i=1

Qij

rectangles each oriented clockwise. Since the matrix QQT is positive then it has a positive
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eigenvector with entries `i. All vertical edges along the jth strip will have length `j, where

as `1 will be the width of the first Q1j rectangles, and `2 will be the width of the next Q2j

rectangles, etc. We now take the central curve of each strip and call it αj for j = 1, ..., n.

Now we construct curves βi as follows: For a fixed i ∈ {1, ..., n} there are Qij rectangles

of size `i × `j lying along the jth strip, and we imagine a curve that passes from the top

of the left most `i × `j rectangle through the bottom, then wraps back around the jth

strip and passes through the next `i× `j rectangle and continues this way until it reaches

the right most `i× `j rectangle. The curve then continues to the j + 1st strip and wraps

around each `i × `j+1 rectangle in similar fashion. After the curve wraps around each

strip it closes up, so we have a simple closed curve which we call βi. This gives us gluing

instructions where we glue two edges of distinct rectangles, matching orientation, if they

are connected by an arc of some βi. We also identify the two vertical ends of each strip.

Figure 3.1: A piece of the cell structure. Edges of different cells are identified if there is
an arc of some βi between them.

Since we glue these strips together where each edge is identified with another, always
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matching orientation, then we get a closed orientable surface S. By construction, every

intersection of βi with αj has the same sign so the geometric and algebraic intersection

numbers of these curves are the same. This ensures that no βi forms a bigon with any

αj, hence the multicurves A = {α1, ..., αn} and B = {β1, ..., βn} are tight. The condition

that the matrix be nonsingular ensures that no two rows or columns are the same, which

means that none of the βi intersect an αj in exactly the same way, so no two components

of A or no two components of B are parallel. For if two components of A are parallel, say

αi and αj, then i(βk, αi) = i(βk, αj) for all k, which says that the ith column of Q is equal

to the jth column, which is not possible if Q is invertible. Finally, taking the dual cell

structure gives a cell structure of S whose vertices are the points of intersection between

each αi and βj, and whose edges are arcs of some αi or βj. Hence, the complement of

A ∪B are disks, so A and B fill S. �

Remark. We can do this construction more generally where you label each box along a

αj strip with some ordering of each of the βi’s, making sure that βi appears Qij-times.

Then you make some choice of how to connect the various βi boxes across each strip,

keeping in mind that the intersections must all have the same sign to ensure there are

no bigons. For example, you can have β1 wrap around α1 twice then hit α2 once, then

α3 twice, back up to α1 once, etc. until all the β1 boxes have been connected. This will

still give an orientable surface with A and B as tight filling multicurves that intersect the

correct number of times. For this more general construction, the genus of the surface is

difficult to ascertain as different choices in arranging the curves can change the surface

you obtain. For the construction given in the proof of Theorem 3.1 we can explicitly find

the genus, as we will see in the next subsection.

Question 3.2. For a given nonsingular positive integer matrix Q, what is the minimum

genus surface that can be constructed, using the general construction, having tight filling

multicurves A and B where Qij = i(βi, αj)?
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3.1.2 Proof of Theorem C

In this subsection we give a proof of Theorem C by computing the genus of the surface

resulting from the construction given in the previous subsection. In order for us to

compute the genus of the surface, we will determine the Euler characteristic of the surface

based on the cell structure given by the above construction. First we prove the following:

Proposition 3.3. Given a surface Sg constructed as in Theorem 3.1 from a nonsingular

positive integer matrix Q, let V be the number of vertices, and F the number of faces of

the cell structure endowed on Sg via the construction. Then χ(Sg) = V − F .

Proof. This is a simple counting argument: By construction the number of faces, F , is

the sum of the entries of Q. Now each edge of the F rectangles are identified to exactly

one other edge, so the 4F edges across the rectangles are reduced to 2F edges in the

cell structure, hence E = 2F . Now if V is the number of vertices then since the Euler

characteristic is χ(Sg) = V − E + F we immediately see that χ(Sg) = V − F �

Remarks. Since the Euler characteristic of a surface is always even, then we see that V

and F must have the same parity. We will use this calculation of the Euler characteristic

to compute the genus of the constructed surface and finish the proof of Theorem C, which

we now restate.

Theorem C. Given an n × n nonsingular, positive, integer matrix Q, there is a closed

orientable surface Sg containing two tight filling multicurves, A and B, whose intersection

matrix is Q. Furthermore, if all the entries of Q are greater than and equal to 2, then

the genus of this surface is g = n2 − n+ 1.

Before we prove this, we will consider the following example. It will not only verify the

conclusion of Theorem C, but the discussion included will serve as a guide for proving

the theorem in general.

Example 3.1.1. Consider the matrix

30




2 2 2

2 2 2

2 2 2


We claim that the genus of the surface constructed as above will be g = 7. We compute

the genus using the Euler characteristic of the resulting cell-structure given to Sg by this

construction. The number of faces is the sum of the entries of the matrix, so F = 18,

and now we just need to determine the number of vertices. We can count the number of

vertices by following the gluing instructions

Figure 3.2: Each vertex on the left of each strip corresponds to a unique gluing orbit.

Here we see that V = 6, so χ(Sg) = 2− 2g = −12 and we see that g = 7 as expected. In

the above image we can see that each of the 2 left most vertices of each strip correspond
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to distinct vertices of our cell structure when we follow them through the gluing. So we

see that the 42 vertices amongst the three strips are partitioned into 6 sets containing 7

elements, which we call the gluing orbits .

Now let us consider the matrix


3 2 2

2 3 2

2 2 2


Here we have increased two of the entries by 1, and we claim this has no effect on the

genus of the surface. The idea is that each time we increase an entry by 1 we are not

only adding one face, but also one vertex, a change that will cancel out when computing

the Euler characteristic.
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Here we can see that there are 46 vertices across all three strips, and there are still 6

gluing orbits of size 7, but now there are two additional gluing orbits of size 2. Therefore,

the number of vertices in our cell structure is V = 8, and then number of faces is F = 20

which shows χ(Sg) = −12. Hence, g = 7 again.

We are now ready to prove Theorem C:

Proof. We will start along the lines of the above example by looking at the matrix [2]n×n,

the n × n matrix whose entries are all 2. Now, we have n strips with central curve αi

where each strip is decomposed into 2n square rectangles whose width and height are

both 1 unit. Before identifying edges connected by an arc of some βj, there are 4n + 2

vertices along each strip, so in total there are 2n(2n + 1) vertices before gluing. Let ti,j

denote the jth vertex along the top of the ith strip, and bi,j denotes the jth vertex along

the bottom of the ith strip. With this notation in mind and by following the gluing

process we can write out the gluing orbits of the left most vertices of each strip. The left

most vertex across the top of the ith strip is ti,1 and has gluing orbit

{
ti,1, bi−1,2, ..., t1,(2i−1), bn,2i, ..., ti,2n+1

}
and the gluing orbit for bi,1 is

{bi,1, ti,2, ..., t1,2i, bn,2i+1, ..., bi,2n+1}

Note that the right most index always increase by 1, therefore each of the 2n vetrices

along the left sides of the strips have gluing orbits of length 2n + 1. This implies that

there are 2n vertices in the cell structure after gluing, hence V = 2n and we see that the

Euler characteristic of the constructed surface is χ(Sg) = V −F = 2n−2n2. On the other

hand χ(Sg) = 2− 2g so solving for g shows that the genus of the surface constructed by

the process of Theorem 3.1 is
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g = n2 − n+ 1

We must now show that if each Qij ≥ 2 then the genus of the constructed surface is still

n2 − n+ 1. We need only see that if we increase one entry of [2]n×n that the genus does

not change. Suppose that for a fixed k and ` we have that Qk` = 3, and the rest of the

entries are 2. Now we have introduced a gluing orbit of length two
{
bk,2`, tk,(2`+1)

}

Figure 3.3: The filled vertices bk,2` and tk,2`+1 form a gluing orbit of length 2.

But the gluing orbits of the left most vertices remain the same length, with the gluing

orbits containing vertices of the form bk,2`+s or tk,2`+1+s now contain vertices of the form

bk,2`+1+s or tk,2`+2+s. This means that there are 2n+1 gluing orbits, so the cell structure of

Sg has 2n+1 vertices, and there are 2n2+1 faces so again we have that χ(Sg) = 2n−2n2.

Therefore, g = n2 − n+ 1.

This argument shows that when the entries of Q are at least 2 then increasing an entry

by 1 has the effect of increasing the number of vertices of the cell structure by 1 but since

you are only adding 1 face then the Euler characteristic doesn’t change, and hence the

genus of the constructed surface does not change. Hence, if Q is an n× n integer matrix

with each entry at least 2, then the genus of the constructed surface is g = n2−n+1. �
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Chapter 4

Results

4.1 Stretch Factors Coming From Thurston’s Con-

struction

In this section we define Salem numbers, and look at two situations in which Salem

numbers can arise as stretch factors coming from Thurston’s construction. We will de-

velop some algebraic results as needed and ultimately show that every Salem number

has a power that is the stretch factor of a pseudo-Anosov map coming from Thurston’s

construction.

4.1.1 Salem Numbers and Initial Observations

We begin by first defining Salem numbers, and looking at two observations that relate

Salem numbers to Thurston’s construction.

Definition 4.1.1. A real algebraic unit λ > 1 is called a Salem number if λ−1 is a Galois

conjugate, and all other conjugates lie on the unit circle.

From this definition we can deduce the following properties of Salem numbers:
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Proposition 4.1. Let λ be a Salem number. Then,

1. λk is a Salem number for any positive integer k.

2. λ+ λ−1 is a totally real algebraic integer.

3. The Galois conjugates of λ+ λ−1 lie in the interval (−2, 2).

Since λ + λ−1 is totally real, it is at least plausible that there are Salem numbers that

are stretch factors arising from Thurston’s construction. In [11] Leininger finds Salem

numbers that are stretch factors of pseudo-Anosov maps coming from Thurston’s con-

struction and asks if it is possible to obtain every Salem number as a stretch factor. The

following observation gives a condition for when a Salem number arises as a stretch factor

from Thurston’s construction.

Observation 4.2. There are Salem numbers that arise as stretch factors of pseudo-

Anosov maps arising from Thurton’s construction.

Suppose you have two tight, filling multicurves A and B where |B| = 2 and |A| = k,

then MQNQT is a 2× 2 matrix. If m1 = m2, then M commutes with QNQT , and hence

MQNQT is symmetric. This matrix has two positive eigenvalues ν and µ, where ν > µ

and which are roots of an integer polynomial

x2 − ax+ b

where ν + µ = a and νµ = b. As in the discussion of Thurston’s contruction, the maps

TA and TB are represented by the matrices

[TA] =

1 1

0 1

 and [TB] =

 1 0

−ν 1


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and the product of these matrices gives

[TA][TB] =

1− ν 1

−ν 1


The characteristic polynomial is x2− (2− ν)x+ 1, and we also have that the polynomial

f(x) = (x2 − (2− ν)x+ 1)(x2 − (2− µ)x+ 1)

is an integer polynomial. Now, if we assume |2 − ν| > 2 and |2 − µ| < 2 then f(x) will

have two real roots, λ and λ−1, and two complex roots on the unit circle. This tells us

that λ is a Salem number of degree 4 over the rationals.

Though this is a specific condition, we at least have a scenario where we know the

resulting stretch factor will be a Salem number. We illustrate this observation with the

following example.

Example 4.1.1. Let A = {α1, α2, α3} and B = {β1, β2} be the tight, filling multicurves

on S2 as in figure 2.1. We will choose m1 = m2 = n1 = n2 = 2 and n3 = 1. Then

MQNQT =

8 4

4 6

 ,
where ν = 7 +

√
17 and µ = 7 −

√
17. We can see that |2 − ν| > 2 and |2 − µ| < 2, so

TATB is a pseudo-Anosov map whose stretch factor is the Salem number

λ =
5 +
√

17 +
√

38 + 10
√

17

2
.

As much as the above is meant to highlight that Salem numbers arise without much

effort from Thurston’s construction, we also see that Salem numbers can arise as stretch
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factors when MQNQT is symmetric. An obvious simplification then is if Q is symmetric

and M = N = I. We offer the following observation.

Observation 4.3. Salem numbers can arise as stretch factors when Q is symmetric and

M = N = I.

Suppose Sg is a surface with tight, filling multicurves A and B with |A| = |B| whose

intersection matrix Q (which is a square symmetric matrix) has λ+λ−1 as an eigenvalue

with positive eigenvector v. Let M = N = I, then we have

MQNQT = Q2.

So we get that

[TA] =

1 1

0 1

 and [TB] =

 1 0

−(λ+ λ−1)2 1


which gives

[TA][TB] =

1− (λ+ λ−1)2 1

−(λ+ λ−1)2 1


which has characteristic polynomial x2 + (λ2 +λ−2)x+ 1 whose roots are −λ2 and −λ−2.

Hence, up to projectivization, TATB has λ2 as its stretch factor.

With the above observations in mind, we wish to determine which Salem numbers can

arise as stretch factors of a pseudo-Anosov map coming from Thurston’s construction.

Our goal for the next couple of subsections will be to develop enough theory to ultimately

prove the following:

Theorem 4.4. Let λ > 1 be a Salem number with [Q(λ) : Q] = n. Then there is a

positive integer k such that λk is the stretch factor of a pseudo-Anosov homeomorphism

coming from Thurston’s construction on the surface S(n+e)2−(n+e)+1, where e ∈ {0, 1, 2}.
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4.1.2 Algebraic results

In this subsection we collect several algebraic results that will be important in the proofs

of both Theorem A and Theorem B. We begin with a theorem due to Estes which shows

that we can get any totally real algebraic integer as an eigenvalue of rational symmetric

matrix. A proof for this may be found in [6]

Theorem 4.5 (Estes). Let η be a totally real algebraic integer of degree n over Q with

minimal polyomial f(x). Then η is an eigenvalue of a rational symmetric matrix of size

(n+ e)× (n+ e) whose characteristic polynomial is f(x)(x− 1)e, and e ∈ {0, 1, 2}.

Since any stretch factor λ coming from Thurston’s construction must have λ+λ−1 totally

real, Theorem 4.5 will serve as an important starting point to linking algebraic units

with that property to Thurston’s construction. Note that if λ is a Salem number then

by Theorem 4.5 there is a rational symmetric matrix Q whose eigenvalues are λ + λ−1,

the Galois conjugates of λ + λ−1, and 1. Now, λ + λ−1 and its conjugates each have

multiplicity 1, whereas 1 may have multiplicity 0, 1 or 2. We are mostly concerned that

λ+ λ−1 has multiplicity 1 because then its eigenspace is one-dimensional, which will be

an important fact later when we describe an infinite family of matrices having the same

eigenspaces.

Now, what we really want is for the eigenspace of λ + λ−1 to be spanned by a positive

vector, the reason for this will become apparent later. Theorem 4.5 makes no claims

about the eigenvectors of Q but with the following proposition we can assume without

loss of generality that λ+ λ−1 has a positive eigenvector.

Proposition 4.6. The set O(n;Q), orthogonal matrices with rational entries, is a dense

subgroup of O(n). Consequently, SO(n;Q) is a dense subgroup of SO(n).

A proof for this can be found in [17] and we provide a proof in the Appendix. We use

Proposition 4.6 as follows: Since every U ∈ SO(n) has the property that U−1 = UT ,
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then conjugating a symmetric matrix by an SO(n) matrix remains symmetric. Q has

eigenvalue λ+ λ−1, so we conjugate Q by an SO(n) matrix so the resulting matrix has a

positive eigenvector corresponding to λ+ λ−1. We then perturb the entries of U so that

they are all rational and now the resulting matrix is still rational and symmetric having

a positive eigenvector v corresponding to λ+ λ−1.

We end this section with a proof the following theorem that gives us a condition for when

we can raise a rational matrix to a high enough power so that the entries are all integers.

This will allow us to use the construction described in Chapter 3 to build a surface from

this matrix and link our algebraic results back to topological information.

Proposition 4.7. Let M ∈ Mn(Q) such that det(M) = ±1 and the characteristic poly-

nomial of M has integer coefficients. Then some power of M is integral.

Proof. Since we can replace M with M2 then without loss of generality we can assume

det(M) = 1. Let Ω be the rational canonical form of M , which by assumption has integer

entries. Thus, there is a nonsingular rational matrix A such that A−1MA = Ω. Now

A = 1
c
P and A−1 = 1

d
P ′ where

PP ′ = cdI

c, d are nonzero integers and P, P ′ are integer matrices. Let Ω be the matrix obtained

from Ω by reducing its entries modulo cd. Since det(Ω) = 1 then det(Ω) = 1, so Ω ∈

SL(n;Z/cdZ). Since SL(n;Z/cdZ) is a finite group there is a positive integer k such that

Ωk ≡ I mod cd. That is, there an integer matrix B such that Ωk = I + cdB. Now

Mk = AΩkA−1

= I + cdABA−1

= I + PBP ′

where PBP ′ is an integer matrix, and thus Mk is an integer matrix. �
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4.1.3 Proof of Theorem 4.4

Throughout this subsection we will be assuming that λ > 1 is a Salem number. By

Proposition 4.1 we know that λk is a Salem number for all positive integers k, λ + λ−1

is a totally real, and that all Galois conjugates of λ+ λ−1 lie in the interval (−2, 2). We

now want a rational matrix having λ as an eigenvalue with the goal of finding a power

of that matrix that has integer entries. Consider the matrix

M =

Q −I

I 0

 ,
where I is the (n + e) × (n + e) identity matrix. We will use powers of this matrix to

find a positive symmetric integer matrix having λk + λ−k as an eigenvalue for some k.

We will now establish several important properties:

Proposition 4.8. The characteristic polynomial of M is p(x)(x2−x+ 1)e where p(x) is

the minimal polynomial of λ over Q. Therefore,M has integral characteristic polynomial,

and det(M) = 1.

Proof. We will first show that µ is an eigenvalue for M if and only if µ + µ−1 is an

eigenvalue for Q. If µ is an eigenvalue for M then there is a vector

x

y

 such that

M

x

y

 =

µx

µy


Qx− y

x

 =

µx

µy


so y = µ−1x, and thus we have Qx = (µ+µ−1)x, therefore µ+µ−1 must be an eigenvalue

of Q. Now, if µ + µ−1 is an eigenvalue of Q with corresponding eigenvector x, then we
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have

M

 x

µ−1x

 =

Qx− µ−1x

x


=

(µ+ µ−1)x− µ−1x

µ · µ−1x


= µ

 x

µ−1x


Hence, µ is an eigenvalue ofM. Therefore, since λ+λ−1 and its conjugates are eigenvalues

of Q then λ and its conjugates are eigenvalues of M. Also, since 1 is an eigenvalue with

multiplicity e then M must have an eigenvalue µ such that µ+ µ−1 = 1, in other words

µ2 − µ+ 1 = 0, hence

µ =
1 + i

√
3

2
and µ−1 =

1− i
√

3

2

(where µ is a primitive 6th root of unity) and if y is an eigenvector of Q corresponding to 1

then

 y

µ−1y

 and

 y

µy

 are eigenvectors ofM corresponding to µ and µ−1, respectively.

So if 1 has multiplicity e, then µ and µ−1 are eigenvalues ofM both with multiplicity e.

Therefore, we have shown that the characteristic polynomial ofM has the desired form.

Finally, since λ and µ are algebraic units then the characteristic polynomial of M is

integral, and the product of the eigenvalues is 1 so det(M) = 1. �

The fact that det(M) = 1 is true for any square matrix Q since I and 0 commute we

have

det(M) = det(Q · 0 + I2) = 1
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but most importantly this tells us that M−1 exists. It is easy to check that

M−1 =

 0 I

−I Q


and notice that

M+M−1 =

Q 0

0 Q


We will show that this behavior holds for all powers of M.

Proposition 4.9 (Skew Property). Mk +M−k is a block diagonal matrix of the formQk 0

0 Qk

 for any integer k. Here Qk is a rational symmetric matrix whose characte-

ristic polynomial is gk(x)(x − a)e, where gk(x) is the minimal polynomial of λk + λ−k,

and a ∈ {−2,−1, 1, 2}.

Proof. First we will show that for any k we have Mk =

 Qk −Qk−1

Qk−1 Qk −Q ·Qk−1

 where

Qk is an integral combination of powers of Q. We define Q0 = I and Q1 = A. We will

proceed by induction: For k = 2 we get

M2 =

Q2 − I −Q

Q −I


So Q2 = Q2 − I, and −I = Q2 −Q ·Q1. Now assume that this form holds for k, then

Mk =

 Qk −Qk−1

Qk−1 Qk −Q ·Qk−1


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in which case we have

Mk+1 =

Q −I

I 0


 Qk −Qk−1

Qk−1 Qk −Q ·Qk−1


=

Q ·Qk −Qk−1 −Qk

Qk −Qk−1


so if Qk+1 = Q ·Qk −Qk−1 then we have that

Qk+1 −Qk

Qk Qk+1 −Q ·Qk



A similar inductive argument shows that Q−k has the form

Qk −Q ·Qk−1 Qk−1

−Qk−1 Qk

 for

all k. Therefore, we have that

Mk +M−k =

2Qk −Q ·Qk−1 0

0 2Qk −Q ·Qk−1


soQk = 2Qk−Q·Qk−1, which is an integral combination of powers of Q soQk is a rational

symmetric matrix. Now that we have established the skew-property where Mk +M−k

is a block diagonal matrix where the (1, 1)-block and the (2, 2)-block are equal rational

symmetric matrices, then we can see that not only are the eigenvalues of Mk +M−k of

the form νk+ν−1k , where νk is an eigenvalue ofMk but also that νk+ν−1k is an eigenvalue

of Mk +M−k if and only if νk + ν−1k is an eigenvalue of each diagonal block.

We immediately get from this that λk + λ−k and its conjugates are eigenvalues of Qk.

Since Mk has µk and µ−k as eigenvalues then we need to determine the possibilities for

µk +µ−k. Since µ is a primitive 6th root of unity we have the following chart where gk(x)
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denotes the minimal polynomial of λk + λ−k:

k ≡ b mod 6 µk + µ−k Characteristic Polynomial of Qk

b = 0 2 gk(x)(x− 2)e

b = 1, 5 1 gk(x)(x− 1)e

b = 2, 4 −1 gk(x)(x+ 1)e

b = 3 −2 gk(x)(x+ 2)e

Therefore, we have proved Proposition 4.9. �

Since Qk is an integral combination of powers of Q, then it is clear that the eigenspaces

of Qk and Q are exactly the same for all k. Therefore, since Q has a positive eigenvector

v corresponding to λ + λ−1, then Qk also has eigenvector v corresponding to λk + λ−k.

The goal now is to use this, in conjunction with the next proposition, to show that there

is a k where Qk is a positive symmetric integral matrix.

Since M is a rational matrix with determinant 1 and integer characteristic polynomial,

then by Proposition 4.7 there is a k such that Mk is an integer matrix. This means

that Qk is a symmetric integer matrix having λk + λ−k as an eigenvalue. We have now

shown that every Salem number has a power k such that λk + λ−k is an eigenvalue of a

symmetric integral matrix. Now we want to show that we can raise k high enough to get

a positive matrix.

Qk is symmetric so we know there is an orthonormal basis of eigenvectors of Qk. Since

there is a positive eigenvector v corresponding to λk + λ−k then for any standard basis

vector ei

ei = civ + wi

where wi lies in the orthogonal complement of Span{v}, which is spanned by the other

eigenvectors of Qk. Thus, for each i we have ci = v · ei > 0. Applying Qk to both sides
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gives

Qkei = ci(λ
k + λ−k)ei +Qkwi

since λk is a Salem number, the conjugates of λk + λ−k are real numbers in the interval

(−2, 2). As we see above the vectors making up wi are each scaled by a number in the

interval [−2, 2], but λk+λ−k grows without bound, so eventually Qkei is a positive vector

for any i.

So, if we start with an integer k such that Mk is integral, then Mnk is integral for any

positive integer n, so choose n large enough so that Qnk is a positive symmetric integer

matrix. Therefore, we have shown that for any Salem number λ there is a positive integer

k such that λk + λ−k is an eigenvalue of a positive symmetric integral matrix.

With this we can finish the proof of Theorem 4.4 as follows: Since Qk is a nonsingu-

lar positive symmetric integer matrix having λk + λ−k as an eigenvalue with positive

eigenvector v, we can use Theorem 3.1 to find a surface with tight, filling multicurves A

and B whose intersection matrix is Qk. By Proposition 3.2, the genus of this surface is

g = (n + e)2 − (n + e) + 1, where n = [Q(λ) : Q]. Choosing M = N = I and following

discussion proceeding observation 2, we see that TATB is a pseudo-Anosov map coming

from Thurston’s construction with stretch factor λ2k.

Brief Summary. Let λ be a Salem number. Using Estes we find a rational symmetric

matrix Q having λ+λ−1, its conjugates, and 1 as eigenvalues. Without loss of generality

we can assume that Q has a positive eigenvector v corresponding to λ + λ−1 since we

can always conjugate Q by an SO(n;Q) matrix to rotate an eigenvector of λ+ λ−1 into

the first orthant. We define the matrixM =

Q −I

I 0

 which has λ, its conjugates, and

the 6th roots of unity µ and µ−1 as eigenvalues. Thus, M has determinant 1, integer

characteristic polynomial,M−1 exists and has the skew-property whereMk +M−k is a
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block diagonal matrix where the (1, 1) and (2, 2) blocks are equal; call these blocks Qk.

Qk has λk + λ−k as an eigenvalue, and all other eigenvalues lie in the interval [−2, 2] and

by above arguments we can power upM so that Qk is positive and integral. Using The-

orem 3.1, we know there is a surface with two tight filling multicurves A and B having

Qk as their intersection matrix. Applying Thurston’s construction with M = N = I we

get a pseudo-Anosov map TATB having λ2k as its stretch factor.

4.1.4 Proof of Theorem A

We have already done much of the heavy lifting required to prove Theorem A, as many

of the results and ideas used in the proof of theorem 4.4 can be repurposed as we will

explain below. First we will restate Theorem A.

Theorem A. Let λ > 1 be a real algebraic unit with [Q(λ) : Q] = n, λ + λ−1 totally

real, and every Galois conjugate of λ lies in between λ−1 and λ in absolute value. Then

there is a k such that λk is the stretch factor of a Thurston construction pseudo-Anosov

homeomorphism of the surface S(n+e)2−(n+e)+1, where e ∈ {0, 1, 2} .

For an algebraic integer such that λ + λ−1 is totally real, we can apply Theorem 4.5 to

obtain a rational, symmetric matrix Q whose characteristic polynomial is the minimal

polynomial of λ + λ−1 times (x − 1)e, where e ∈ {0, 1, 2}. Then, like before, we define

the matrix

M =

Q −I

I 0


This matrix has λ as an eigenvalue, and determinant 1. It also has an integer characte-

ristic polynomial so by Proposition 4.7 we know that there is a positive integer k such

that Mk is an integer matrix. Now,
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Mk +M−k =

Qk 0

0 Qk


has λk + λ−k as an eigenvalue. Note that this argument shows that λk + λ−k is totally

real for all k. Now, in order for us to be in a situation where we can apply Thurston’s

construction we need to know that λk+λ−k is the dominating eigenvalue for all sufficiently

large k.

Proposition 4.10. If λ is an algebraic unit as described above, then there is some ` such

that λk + λ−k is the dominating eigenvalue for Qk for all k > `.

Proof. Let σi(λ) denote the Galois conjugates of λ. By assumption we have that both of

the following inequalities hold

λ−1 < |σi(λ)| < λ and λ−1 < |σi(λ−1)| < λ

then certainly for all k we have

λ−k < |σi(λk)| < λk and λ−k < |σi(λ−k)| < λk.

Since λk is larger than both |σi(λk)|, and |σi(λ−k)|, then we have that

|σi(λk)|+ |σi(λ−k)|
λk

→ 0 as k →∞

So, there is an ` such that for all k > `, we have

|σi(λk)|+ |σi(λ−k)| < λk

and therefore,

|σi(λk) + σi(λ
−k)| < λk + λ−k
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holds for all k > `. �

We have shown that λk + λ−k is the dominating eigenvalue of Qk for all k > `. Since Qk

is symmetric for all k and all share the same eigenspaces. This means that there is an

orthonormal basis {v1,v2, ...,vn+e} for Rn+e where each vi is an eigenvector of Qk, for

all k. Let v1 be a positive eigenvector that spans the eigenspace of λk + λ−k, for all k.

We can write each standard basis vector in the form

ej = cjv1 + wj

where cj > 0 and wj is a linear combination of {v2, ...,vn+e}. Since we have that λk+λ−k

is the dominating eigenvalue for Qk, for large enough k, then for all k sufficiently large,

we have

Qkej ≈ cj(λ
k + λ−k)v1

So for all sufficiently large k we have that the entries of Qkej are positive, for all j. The-

refore, the entries of Qk are positive. So take k large enough so that Qk is a nonsingular,

positive, integer, symmetric matrix, and just like in the proof of Theorem 4.4 we can now

apply Theorem C to build a closed orientable surface of genus g = (n+e)2−(n+e)+1 with

a pair of tight, filling multicurves A and B whose intersection matrix is Qk. We can now

apply Thurston’s construction with M = N = I and obtain the following representations

for TA and TB:

[TA] =

1 1

0 1

 and [TB] =

 1 0

−(λk + λ−k) 1


Hence, TATB is a pseudo-Anosov map having λ2k as its stretch factor. Therefore, we have

shown that given a real algebraic unit λ satisfying the hypotheses of Theorem A, then

there is a positive integer k and a Thurston construction pseudo-Anosov homeomorphism
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of the surface of genus g = (n+ e)2− (n+ e) + 1 having λ2k as its stretch factor. Hence,

we have proven Theorem A.

4.2 Totally real number fields arising from Thur-

ston’s Construction

In this section we establish some final results, develop some background algebraic number

theory and prove Theorem B. We start this section by proving a condition for when a

real symmetric matrix will have a positive power and then conclude this section by

showing that any rational symmetric matrix with a dominating eigenvalue larger than 1

is conjugate to a rational symmetric matrix that has a positive power.

4.2.1 Algebraic Number Theory

Proposition 4.11. If Q is a real symmetric matrix with a unique dominating eigenvalue

λ > 1 and a positive eigenvector v, then there is some power of Q that is positive.

Proof. The proof of this is very similar to the proof that Qk is eventually positive. Every

standard basis vector can be written as

ei = civ + wi

with ci > 0 for each i, and applying Qk to both sides gives

Qkei = ciλ
kv +Qkwi

Since λ > µ for all other eigenvalues µ then the sum ciλ
kv+Qkwi is eventually a positive

vector. Hence, Qkei is eventually positive for all i. So there is a k such that Qk is a

positive matrix. �
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Proposition 4.12. If Q ∈Mn(Q) is symmetric, and has a unique dominating eigenvalue

λ > 1 with corresponding eigenvector v. Then there is a matrix U ∈ SO(n;Q) such that

UAkUT is a positive symmetric rational matrix for some positive integer k.

Proof. By Proposition 4.6 SO(n;Q) is dense in SO(n), so we can conjugate Q by an

SO(n,Q) matrix U so that λ now has a positive eigenvector. By Proposition 4.11 we

know there is some k such that UAkUT is a positive symmetric rational matrix. �

Before getting to the proof of Theorem B we will develop some algebraic number theory

that we will use to prove the following:

Theorem 4.13. Given a totally real number field K, there is an algebraic unit η ∈ K

such that η > 1, K = Q(η), K = Q(ηm) for all positive integers m, and all conjugates of

η are positive, less than 1.

First a couple definitions:

Definition 4.2.1. Given a basis e1, ..., en for Rn, then the ei form a basis for a free

Z-module L of rank n, namely,

L = Ze1 ⊕ ...⊕ Zen

A set L constructed this way is called a lattice in Rn.

It is a well known fact that every number field K of degree n over Q has exactly n embed-

dings into C. Since we are talking about totally real number fields, these embeddings will

be into R. Let σ1, ..., σn be these embeddings, where σ1 denotes the inclusion embedding.

Definition 4.2.2. Let K be a totally real number field of degree n. We define the loga-

rithmic embedding of K into Rn by

λ(x) = (log |σ1(x)|, ..., log |σn(x)|)
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for all nonzero x ∈ K. Note: that λ(xy) = λ(x) + λ(y), so λ is a homomorphism from

the multiplicative group K∗ to the additive group Rn.

The logarithmic embedding is used to prove the Dirichlet Unit Theorem, which gives a

complete description of the unit group of a number field. A proof for this theorem can

be found in [2], but we will just state it:

Theorem 4.14 (Dirichlet Unit Theorem). Let K be a number field, r1 is the number of

real embbedings, and r2 is the number of complex embeddings (up to conjugacy). Then

the unit group U of K is isomorphic to G × Zr1+r2−1, where G is a finite cyclic group

consisting of all the roots of unity in K.

Since we are considering number fields K that are totally real then if [K : Q] = n we

have r1 = n, r2 = 0 and G = {−1, 1}. Hence, the unit group of K is isomorphic to

{−1, 1} × Zn−1. That is, there are units u1, ..., un−1 such that every unit of K is of the

form

±um1
1 · · ·u

mn−1

n−1

where mi are integers.

The logarithmic embedding maps the unit group U of K to the hyperplane

H =

{
(x1, ..., xn)

∣∣∣∣∣
n∑
i=1

xi = 0

}
.

In fact, if u1, ..., un−1 are the generators for U then {λ(u1), ..., λ(un−1)} is a basis for H,

hence λ(U) is a lattice in H.

4.2.2 Proof of Theorem B

In this subsection we give the proof of Theorem B, but first we will prove Theorem 4.13.

Proof of Theorem 4.13. Step 1: We start by proving the following claim:
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Claim : Suppose η is a unit that generates the field, which is bigger than 1, and all its

Galois conjugates are less than 1 in absolute value. Then K = Q(ηm) for any positive

integer m.

Proof. Let {σ2(η), ..., σn(η)} be the Galois conjugates of η. If there is a positive integer m

such that Q(ηm) is a proper subfield of Q(η), then ηm has the following Galois conjugates

(reordering if necessary) {σ2(η)m, ..., σk(η)m}, where k < n. Since η and ηm are algebraic

units we have that

|ησ2(η) · · ·σn(η)| = 1

and

|ηmσ2(η)m · · ·σk(η)m| = 1.

This tells us that

|ησ2(η) · · ·σk(η)| = 1

therefore

|σk+1(η) · · ·σn(η)| = 1

which is impossible since |σi(η)| < 1 for i = 2, ..., n. Therefore, K = Q(ηm) for any

positive integer m. �

Step 2: Now we will find such a unit. Let u1, ..., un−1 be positive generators for the unit

group of K. Since {λ(u1), ..., λ(un−1)} is a basis for H then we can take rational numbers

a1, ..., an−1 such that

(1)
n−1∑
i=1

ai log |ui| > 1

(2)
n−1∑
i=1

ai log |σj(ui)| < 0, 2 ≤ j ≤ n− 1

(3) The entries of a1λ(u1) + ...+ an−1λ(un−1) sum to 0

(4) All entries of a1λ(u1) + ...+ an−1λ(un−1) are distinct.

53



Clearing denominators gives us an integer combination

b1λ(u1) + ...+ bn−1λ(un−1)

that also has the above properties. Now take u ∈ U to be the element

u = ub11 · · ·u
bn−1

n−1

By construction no two entries of λ(u) are identical, hence σi(u) 6= σj(u) for i 6= j, so

u has n distinct Galois conjugates, therefore the minimal polynomial of u over Q has

degree n. Hence, K = Q(u). Also, by construction, log |u| > 1 so |u| > 1 but |σi(u)| < 1

for all 2 ≤ i ≤ n, so by step 1 any power of u generates K. Let η = u2, then η > 1, all

its conjugates are positive less than 1, K = Q(η) and K = Q(ηm) for all positive integers

m. �

We now have all the pieces to prove the following:

Lemma 4.15. Let K be a totally real number field. Then there is an algebraic unit η

such that K = Q(η) and η is the dominant eigenvalue of a positive symmetric integral

matrix that is the intersection matrix of a pair of tight, filling multicurves on some closed

orientable surface.

Proof. Let K be a totally real number field, then by Theorem 4.13 we can find an

algebraic unit ζ so that ζ > 1, K = Q(ζm) for all positive integers m, and all conjugates

of ζ are positive less than 1. By Theorem 4.5 there is a rational symmetric matrix B

having ζ as its unique dominating eigenvalue greater than 1, and whose characteristic

polynomial is f(x)(x− 1)e, where f(x) is the minimal polynomial of ζ over Q. Note that

f(x) has integer coefficients and since ζ is a unit then the constant term of f(x) is 1, so

det(B) = ±1.

Now, by Proposition 4.12 we can conjugate B by an SO(n+ e;Q) matrix U where there
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is a positive integer k such that Q = UBkUT is a positive rational matrix, without loss

of generality assume k is even. Now, Q is a positive rational matrix whose eigenvalues

are ζk, its conjugates, and 1, hence the coefficients of the characteristic polynomial of Q

are integers, and det(Q) = (±1)k = 1.

Applying Proposition 4.7, we know there is some positive integer ` so that Q` is integral

and if we let η = ζk` then K = Q(η) where η is the dominating eigenvalue of Q`,

which is a positive symmetric integral matrix. Now apply Theorem C to find a closed

orientable surface with multicurves A =
{
α1, ..., α(n+e)

}
and B =

{
β1, ..., β(n+e)

}
such

that i(βi, αj) = Q`
ij. �

We end this chapter by proving Theorem B, which we restate here.

Theorem B. Every totally real number field is of the form K = Q(λ+ λ−1), where λ is

the stretch factor of a pseudo-Anosov map arising from Thurston’s construction.

Proof. Let K be a totally real number field. By Lemma 4.15 we can find a unit α such

that K = Q(η) and η is the dominating eigenvalue of a positive symmetric integral matrix

Q that is the intersection matrix of a pair of tight, filling multicurves, A and B, on a

closed orientable surface Sg. Without loss of generality we can assume η > 2. Applying

Thurston’s construction with M = N = I we have η2 as the dominating eigenvalue of

MQNQT = Q2, and the following representations of TA and TB:

[TA] =

1 1

0 1

 and [TB] =

 1 0

−η2 1


Multiplying these matrices gives

[TA][TB] =

1− η2 1

−η2 1


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Since η2 > 4 then we have that |tr([TA][TB])| = |2−η2| > 2. So TATB is a pseudo-Anosov

map with stretch factor

λ =
(η2 − 2) + η

√
η2 − 4

2

Hence, λ+ λ−1 = η2 − 2, and so Q(λ+ λ−1) = Q(η2 − 2) = Q(η2) = K. �
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Chapter 5

Future Direction

In this chapter we discuss potential future research directions

5.1 Refining Genus

As we saw in chapter 3, we can construct closed, orientable surfaces from positive integer

matrices. We described gluing instructions, and were able to determine the genus of the

resulting surface. We made no claim that the gluing instructions we used produced the

smallest genus surface possible. The gluing operations we chose were for convenience, as

it enabled us to keep track of the number of vertices, and compute the Euler characteristic

of the surface. As we saw in chapter 3, the construction can be done much more generally

with the only restriction we impose is that each the intersection of the curves βi and αj

all have the same sign. With this more general construction in mind, we can ask the

following question.

Question 5.1. Giving a positive symmetric matrix Q, what is the smallest genus surface

we can construct using the general construction described in chapter 3?

Here we offer a few examples that highlights the fact that the specific gluing instructions

we used to prove Theorem 3.1 does not necessarily give rise to the smallest possible genus
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surface.

Example 5.1.1. Consider

2 2

2 2

, which from the proof of Theorem C we know that

the gluing instructions from Theorem 3.1 will result in a genus 3 surface. Now we if

follow different gluing instructions we may be able to obtain a genus 2 surface. Instead

of the gluing instructions being that βi wraps around a strip two times, before moving

to the next strip or closing up, we will require that each βi meets each strip exactly once

before restarting at the top of the first strip and passing through the next rectangle in

each strip.

Figure 5.1: Illustration of the new gluing instructions. Each βi must pass through each
strip once before wrapping back around.

As we can see by the above illustration, these gluing instructions give rise to six gluing

orbits, which in turn gives 6 vertices in the resulting cell structure. Hence, we have 6

vertices and 8 faces so the Euler characteristic is −2, therefore, the genus of the resulting

surface is 2.
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These gluing instructions give a smaller genus surface, but this idea of passing through

each strip before wrapping back to the top does not always give the smallest possible

surface as the next example shows.

Example 5.1.2. This time consider the matrix

3 2

2 2

, which by our original gluing

operations would give rise to a surface of genus 3. Now if we follow the gluing instructions

given in example 5.1.1, each βi must pass through each strip once before returning to the

top, or closing up. We obtain the following diagram.

Figure 5.2

From here we can see that there are 5 vertices in the resulting cell structure as well as

9 faces. Thus, the Euler characteristic is −4, so the genus of the resulting surface is 3.

We see that increasing one of the entries of the matrix had the effect of decreasing the

number of vertices, which increased the genus. So then we ask is there gluing instructions

that would result in a genus 2 surface? Consider the gluing instructions given by the
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following diagram.

Figure 5.3: An alternate set of gluing instructions.

Here, β1 passes through the left most rectangle in each strip, but skips a rectangle during

each successive pass through each strip. Similarly for β2. With these gluing instructions

we see that there are 7 vertices and 9 faces, hence, the Euler characteristic is −2 and

again we have that the genus of the resulting surface is 2.

As we see from these low level examples that we can certainly find different gluing

instructions that can lower the genus of the resulting surface. It would be interesting

to know if there some systematic way of choosing the gluing instructions so that the

resulting genus is as small as possible.
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5.2 Removing Powers

The work done in Chapter 4 makes significant progress to toward classifying stretch fac-

tors of pseudo-Anosov maps, but the methods used therein have the drawback that they

produce powers of algebraic units that are stretch factors and not the units themselves.

More specifically, we showed that every real algebraic unit λ > 1 satisfying the assump-

tions of Theorem A admits a power that is a stretch factor of a pseudo-Anosov map. So

the question becomes

Question 5.2. If λ is algebraic unit satisfying the assumptions of theorem A, is λ the

stretch factor of some pseudo-Anosov map?

It is unclear how we can adapt the methods of Chapter 4 to avoiding the need to power

up λ. Even if we know that λ + λ−1 is the dominating eigenvalue of a positive integer

matrix, then our methods guarantee that λ2 is a stretch factor. At the moment it seems

unlikely that the methods of Chapter 4 are enough to obtain λ as a stretch factor.

There has been other recent work towards determining when a given algebraic unit is

the stretch factor of a pseudo-Anosov map. In [3], the authors show that if you have an

algebraic unit λ that is the dominating eigenvalue of an integer matrix satisfying certain

technical conditions then there is a pseudo-Anosov map having the λ as its stretch factor.

It may be worthwhile to explore any interplay between our results that can be used to

answer Question 5.2.

5.3 Minimal Stretch Factor Problem

Every closed orientable surface Sg has a minimal stretch factor δg among pseudo-Anosov

mapping classes of Sg. In [14] Penner showed that 2(1/12g−2) ≤ δg ≤ (2 +
√

3)1/g. Though

upper and lower bounds on δg are known, we only know the minimal stretch factor for

genus 1 and genus 2, with the genus 2 case proven in 2008 by Cho and Ham in [4]. If you
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restrict to pseudo-Anosov mapping classes with orientable foliations then the minimal

stretch factor amongst those mapping classes is known up to genus 5 and they are all

Salem numbers, see [10].

Finding minimal stretch factors is an interesting problem in its own right, and seeing

Salem numbers appearing as minimal stretch factors is intriguing, given the results of

this dissertation. It may be worth exploring ways we can expand our results to seek out

minimal stretch factors, and see if the trend of minimal stretch factor Salem numbers

continues.
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Appendix A

Miscellaneous Theory

In this appendix we discuss some topics that we did not spend time developing in the

earlier chapters of this dissertation, either because knowledge was assumed, or because

the discussion would have taken us too far afield of where we were heading.

A.1 Surfaces

We begin with a very brief review of terminology related to surfaces, as well as state the

classification of closed orientable surfaces.

A.1.1 Properties of Surfaces

A Surface is a two dimensional manifold, such as a sphere or a torus. Typically surfaces

are assumed to be connected, and often are assume to be compact, which rules out

planes or surfaces with deleted points, also known as punctured surfaces . Surfaces

have several important characteristic the first being what is known as the genus of the

surface which is defined as the number of cuts along non-intersecting simple closed curves

that leave the surface connected. For example the Torus has genus 1 since we can cut

along a longitudinal simple closed curve and the surface remains connected, but any
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further cut will result in a disconnected surface.

A surface S may have a boundary , denoted ∂(S), which is the set of points such that

every neighborhood of these points is homeomorphic to an open subset of the upper half

plane H = {(x, y) | y ≥ 0} (thought of as a subspace of R2) which intersection with the

set ∂H = {(x, 0) | x ∈ R} is nonempty. The boundary of a compact surface is a compact

one dimensional manifold, so it is homeomorphic to either a closed interval, or a circle

S1. A compact surface without boundary is said to be closed .

A final property of surfaces that we discuss is whether a surface is orientable or not. A

surface is said to be orientable if there is a choice of normal vectors at every point of the

surface that varies continuously. In essence, this means we can walk around the surface

pointing upwards and when we return to where we started we will still be pointing in the

same direction. For example, the torus is orientable but the Möbius strip is not. In fact,

a surface is nonorientable if and only if it contains an embedded Möbius strip.

A.1.2 Classification of Surfaces

The notion of the connect sum of surfaces gives us a way to construct new surfaces

out of old ones. The connect sum of two closed surfaces S and S ′ is the surface obtained

by deleting an open disk from each surface and then gluing the boundary of a cylinder

to the boundary circles of the deleted disks. The idea of connect sum is used in the

classification of surfaces, which is a famous result often attributed to Möbius. We state

the closed, orientable version.

Theorem A.1. Every closed, orientable surface is homeomorphic to the connect sum of

a 2-dimensional sphere with g ≥ 0 tori.

Now associated with each surface is a number which is an invariant of the homeomor-

phism class of the surface known as the Euler characteristic of the surface. The Euler

characteristic of a genus g surface Sg, denoted χ(Sg), is
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χ(Sg) = 2− 2g

Two surfaces are homeomorphic if and only if they have the same Euler characteristic.

Another way to calculate the Euler characteristic is to give a cell structure to Sg with V

vertices, E edges, and F faces and we have that

χ(S) = V − E + F

A.2 Perron-Frobenius Theorem

A key part of Thurston’s construction and crucial to the proof that stretch factors are

algebraic units is a particular type of matrix known as a Perron-Frobenius matrix, which

we now define.

Definition A.2.1. A square matrix Q is called Perron-Frobenius if it has nonnegative

real entries and there is some positive integer k such that Qk has positive entires. Such

a matrix is sometimes called primitive.

These matrices are so named Perron-Frobenius because they are the focus of the Perron-

Frobenius Theorem, which asserts the following.

Theorem A.2 (Perron-Frobenius Theorem). Let Q be a primitive matrix, then Q has a

unique positive real eigenvalue that is larger in absolute value than the other eigenvalues,

as well as a corresponding positive eigenvector. The unique positive real eigenvalue is

known as the Perron-Frobenius eigenvalue, and a corresponding positive eigenvector

is known as a Perron-Frobenius eigenvector.

This theorem was first proved for matrices with positive entries by German mathema-

tician Oskar Perron in the early 1900’s, and was extended to primitive matrices a few

years later by another German mathematician Georg Frobenius. This theorem has seen
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applications in many areas of mathematics, but for us it appears during our discussion

of Thurston’s construction when we define the primitive matrix MQNQT . This theorem

guarantees that MQNQT has a unique positive eigenvalue ν with a positive eigenvector,

which gives us the choice of side lengths for the rectangles in the branched flat structure

so that the products of Dehn twists act affinely.

A.3 Orthogonal Matrices

An important step in several theorems was conjugating a rational matrix by a SO(n;Q)

matrix to obtain a positive eigenvector. We made claims about the density of SO(n;Q)

in SO(n), but we did not say much more. Since that step is pivotal to the proofs of

the main theorems, we will now take the time to fully justify it. We start by defining

orthogonal matrices.

Definition A.3.1. Let A be a real n×n matrix, then we say A is orthogonal if ATA = I.

Immediately from this definition we have the following:

1. AT = A−1, and thus the inverse of an orthogonal matrix is orthogonal.

2. The columns of A form an orthonormal basis for Rn

3. det(A) = ±1

4. If B is also another orthogonal matrix then AB is an orthogonal matrix.

5. If || · || denotes the Euclidean norm, then ||Av|| = ||v|| for every v ∈ Rn

Properties (1) and (4) tell us that the set of orthogonal matrices form a group under

matrix multiplication. We denote this group by O(n). An important subgroup is the

orthogonal matrices with determinant 1, denoted by SO(n). The goal of this section is

to prove the following two theorems:

66



Theorem A.3. O(n;Q) is dense in O(n), and consequently, SO(n;Q) is dense in SO(n).

Once we have proven Theorem A.3 we want to show that we can conjugate a rational

symmetric matrix so that a given eigenvalue has a positive eigenvector. More specifically

we prove:

Theorem A.4. If A ∈ Mn(Q) is symmetric, and has an eigenvalue λ > 1 with corre-

sponding eigenvector v. Then there is a matrix B ∈ SO(n;Q) such that B−1AkB is a

positive matrix for some positive integer k.

Before we can talk about dense subgroups we need to give a topology to O(n). The

topology we want is the one induced by the Frobenius Norm.

Definition A.3.2. If A is an n × n matrix, then the Frobenius Norm of A, denoted

by ||A||F , is

||A||F =

(∑
i,j

a2ij

)1/2

It is not hard to see that for any v ∈ Rn and any n× n matrix A

||Av|| ≤ ||A||F ||v||.

Now, the Frobenius norm induces a topology on O(n) which has the following sets as a

basis:

Bε(A) = {C ∈ O(n) | ε > 0, ||A− C||F < ε} .

The next step to proving Theorem A.3 is for us to show that every orthogonal matrix is

the product of some number of reflection matrices, which we now define:

Let u be a unit vector in Rn then the reflection matrix of u is

Hu = I − 2uuT
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A reflection matrix is its own inverse, and is symmetric, hence reflection matrices are

Orthogonal matrices. We now prove the following theorem:

Theorem A.5. Let A ∈ O(n) for n ≥ 2, then there are reflection matrices Hv1 , ..., Hvk

such that A = Hv1Hv2 · · ·Hvk
, for 1 ≤ k ≤ n. In other words, every orthogonal matrix

is the product of at most n reflections.

(Note: For n = 1 the only two Orthogonal matrices are [−1], [1] and the only reflection

matrix is [−1] but [1] = [−1][−1], hence [1] is a product of 2 reflections.)

Proof. We proceed by induction:

For n = 2, let

A =

a b

c d


be an orthogonal matrix, now pick a reflection matrix Hv such that

Hv

a
c

 =

1

0



which is possible since

a
c

 is a unit vector. Since the product of orthogonal matrices is

orthogonal then we know the columns of HvA are orthonormal. Since the first column

of HvA is

1

0

 then the second column must be

 0

±1

.

If the second column of HvA is

0

1

 then HvA = I and thus A = Hv and we are done.
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If the second column of HvA is

 0

−1

 then we have

HvA =

1 0

0 −1

 = He2

Thus, A = HvHe2 , and again we are done.

Now assume for some n that any (n − 1) × (n − 1) orthogonal matrix is the product of

at most n − 1 reflection matrices. Let A be in O(n), then Ae1 is the first column of A,

now pick a reflection matrix Hv1 such that

Hv1Ae1 = e1

Thus,

Hv1A =

1 ∗

0 B


Where B is an (n− 1)× (n− 1) orthogonal matrix. Now since the columns of Hv1A are

orthogonal then we know that the row vector ∗ must have all zero entries. Thus,

Hv1A =

1 0

0 B


If B = In−1 then A = Hv1 and we are done. Otherwise, by the induction hypothesis, we

know that there are unit vectors
∼
v2, ...,

∼
vk ∈ Rn−1, 2 ≤ k ≤ n, such that

B = H∼
v2
· · ·H∼

vk
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Let vi =

 0

∼
vi

, then define

Hvi
= I − 2viv

T
i =

1 0

0 H∼
vi


Then we have that

Hv1A =

1 0

0 B


=

1 0

0 H∼
v2
· · ·H∼

vk


=

1 0

0 H∼
v2

 · · ·
1 0

0 H∼
vk


= Hv2 · · ·Hvk

Therefore, A = Hv1Hv2 · · ·Hvk
, so A is the product of at most n reflection matrices. �

Once we have proven the next proposition then we will be ready to prove Theorem A.3:

Proposition A.6. Rational points on the unit n sphere, Sn, centered at the origin, are

dense in Sn.

Proof. Stereographic projection is the homeomorphism from Sn \{en+1} → Rn such that

(x1, ..., xn+1) 7→
(

x1
1− xn+1

, ...,
xn

1− xn+1

)

whose inverse is the map

a = (a1, ..., an) 7→
(

2a1
||a||2 + 1

, ...,
2an

||a||2 + 1
,
||a||2 − 1

||a||2 + 1

)
70



Now it should be clear that stereographic projection gives a bijection between rational

points of Sn \ {en+1} and Qn. Thus, since Qn is dense in Rn then the rational points of

Sn \{en+1} are dense in Sn \{en+1}, hence the rational points of Sn are dense in Sn. �

We are now ready to prove Theorem A.3:

Proof. Let A ∈ O(n), then by Theorem A.5

A =
k∏
i=1

Hvi

for some k ≤ n, and some unit vectors v1, ...,vk.

Let δ > 0 and for each i choose a unit vector ui such that ui has rational coordinates

and

‖vi − ui‖∞ ≤
δ

8n2

which is possible by Proposition A.6 since we can pick a ui close enough to vi such that

the absolute value of the difference of all the entries is as small as we want.

Now, Define

U =
k∏
i=1

Hui

Obviously U has rational entries. Now,

||U − A||F =

∥∥∥∥∥
k∏
i=1

Hui
−

k∏
i=1

Hvi

∥∥∥∥∥
F

=

∥∥∥∥∥
k∏
i=1

Hui
−Hv1

k∏
i=2

Hui
+Hv1

k∏
i=2

Hui
−

k∏
i=1

Hvi

∥∥∥∥∥
F

=

∥∥∥∥∥(Hu1 −Hv1)
k∏
i=2

Hui
+Hv1

(
k∏
i=2

Hui
−

k∏
i=2

Hvi

)∥∥∥∥∥
F

≤

∥∥∥∥∥(Hu1 −Hv1)
k∏
i=2

Hui

∥∥∥∥∥
F

+

∥∥∥∥∥Hv1

(
k∏
i=2

Hui
−

k∏
i=2

Hvi

)∥∥∥∥∥
F

= ‖Hu1 −Hv1‖F +

∥∥∥∥∥
k∏
i=2

Hui
−

k∏
i=2

Hvi

∥∥∥∥∥
F

.
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The last equality due to repeated uses of the fact that ‖AB‖F = ‖BA‖F = ‖A‖F for

any orthogonal matrix A and any n× n matrix B. Now, repeatedly applying the above

argument gives

‖U − A‖F ≤
k∑
i=1

‖Hui
−Hvi

‖F . (1)

Now we wish to bound each ‖Hui
− Hvi

‖F . We can do this by the following: Let am

denote the mth coordinate of a vector a, then

‖Hui
−Hvi

‖F = ‖(I − 2uiu
T
i )− (I − 2viv

T
i )‖F

=

(∑
m,`

(2uimui` − 2vimvi`)
2

)1/2

≤
(
n2 ·max

m,`

{
(2uimui` − 2vimvi`)

2
})1/2

= n ·max
m,`
{|2uimui` − 2vimvi`|}

where the term

max
m,`
{|2uimui` − 2vimvi`|}

is what is known as the infinity norm of a matrix or vector, that is, the infinity norm

of a matrix or vector is just the maximum among the absolute value of its entries, and

is denoted by ‖ · ‖∞. Hence, the above inequality becomes

‖Hui
−Hvi

‖ ≤ n‖Hui
−Hvi

‖∞ (2)

By above, the absolute value of the m`th entry of Hui
−Hvi

is

|2uimui` − 2vimvi`| = |2uimui` − 2vimui` + 2vimui` − 2vimvi`|

= |2ui`(uim − vim) + 2vim(ui` − vi`)|

≤ 2|ui`| · |uim − vim|+ 2|vim| · |ui` − vi`|
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≤ 4 max
m
{|uim − vim|}

= 4‖ui − vi‖∞

The second inequality comes from the fact that Hui
and Hvi

are orthogonal matrices

and hence each entry is less than or equal to 1 in absolute value. The above calculation

shows that

‖Hui
−Hvi

‖∞ ≤ 4‖ui − vi‖∞ (3)

Putting (1), (2), (3) and (4) together gives

‖U − A‖F ≤
k∑
i=1

4‖ui − vi‖∞

≤
k∑
i=1

δ

2n

=
k

2n
δ

≤ δ

2

< δ

Thus, O(n;Q) is dense in O(n). Note that det(U) = det(A) = ±1, and so if A is in

SO(n) then U is also in SO(n), hence SO(n;Q) is dense in SO(n). �

Now we are ready to prove Theorem A.4

Proof. It is not hard to see that SO(n) acts transitively on Sn−1, the unit sphere of Rn

centered at the origin. If x,y ∈ Sn−1 then xTx = yTy = 1. Now, we wish to find a

reflection matrix that sends x to y(it will also send y to x). We define the following unit

vector:

u =
1√

2(1− xTy)
(x− y)

73



and now show that Hu(x) = y: (Note: xTy = yTx)

Hu(x) = x− 2uuTx

= x− 2

2(1− xTy)
(x− y)(xT − yT )x

= x− 1

(1− xTy)
(x− y)(1− yTx)

=
x(1− xTy)− (x− y)(1− xTy)

1− xTy

=
x− xxTy − x + xxTy + y(1− xTy)

1− xTy

= y

Thus, any point of Sn−1 can be sent to any other point of Sn−1 via a reflection matrix.

Hence, there is a reflection matrix Hv that sends x to −y. Therefore, HyHv is an SO(n)

matrix that sends x to y. Thus, SO(n) acts transitively on Sn−1.

Now, given a symmetric matrix A ∈ Mn(Q) with a unique dominating eigenvalue λ > 1

with eigenvector v, if v has negative entries then by above we know we can find a

U ′ ∈ SO(n) matrix such that U ′v has positive entries. Also, U ′v is an eigenvector of

U ′AU ′−1 corresponding to λ. Chose ε > 0 so that Bε(Uv) is contained in the first orthant

and pick a U ∈ SO(n;Q) such that

‖U ′ − U‖F <
ε

‖v‖

Then,

‖U ′v − Uv‖ ≤ ‖U ′ − U‖F‖v‖

<
ε

‖v‖
‖v‖

= ε
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Hence, Uv ∈ B(U ′v) so Uv is positive. Note that UAU−1 is a rational matrix. Since

UAU−1 has a unique dominating eigenvalue λ > 1 and a positive eigenvector Uv then

by Proposition 4.11 we know that there is a positive integer k such that UAkU−1 is

positive. �
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