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University of California, San Diego and CESifo

March 18, 2005

Abstract

Adding a stage of signal acquisition to the expected utility model shows
that Bayesian updating results in a well defined law of demand for fi-
nancial information when asset return distributions are conjugate priors
to signals such as in the gamma-Poisson case. Signals have a positive
marginal utility value that falls in their number if and only if investors are
risk averse, asset markets large, and variance-mean ratios of asset returns
high in fully revealing rational expectations equilibrium. Expected asset
price increases in the number of signals so that expected excess return
drops. The diminishing excess return prevents Bayesian investors from
unbounded information demand even if signals are costless, unless the
riskfree asset is removed. Signals mutually benefit homogeneous investors
because revealing asset price permits updating so that a Pareto criterion
judges competitive equilibrium as not sufficiently informative. However,
asset price responses make incentives for signal acquisition dependent on
portfolios so that welfare and distributional consequences become intri-
cately linked when investors are heterogeneous. JEL D81, D83, G14
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The role and value of information in financial markets figures prominently in
theoretical and empirical research. Many approaches nevertheless treat financial
information as if it were exogenously available to investors. Literatures on learn-
ing and experimentation, on the other hand, analyze incentives for information
acquisition but frequently treat the asset or commodity markets on which in-
formation is obtained in abstract terms and tend to disregard equilibrium price
effects. This paper pays close attention to both rational incentives for informa-
tion acquisition in financial markets and to the effects of market conditions and
heterogeneous portfolio positions on incentives for information acquisition.

The approach pursues four main objectives. First, this paper aims to de-
rive a rational law of demand demand for financial information based on the
marginal utility benefit of signals in an expected utility framework. For this
purpose, the paper draws on Raiffa and Schlaifer’s (1961) decision model under
conjugate prior distributions, which provides a natural extension of the expected
utility model of portfolio choice. A second objective is to move beyond the
abstract experimentation view of information acquisition and tie the marginal
utility benefit of financial information to the specific asset market environment
and investors’ portfolio positions. A third objective is to account for the impact
of information acquisition on an asset’s expected excess return when evaluating
information in rational utility terms. A fourth goal is to apply a Pareto criterion
to the assessment of informational efficiency of rational expectations equilibrium
(REE).

Whereas Wald’s (1947) prominent experimentation paradigm gives rise to a
law of demand for information in a dynamic setting of repeated sampling with
risk neutral agents (Moscarini and Smith 2001), the Raiffa and Schlaifer (1961)
decision framework lends itself to a well defined demand function for financial
information in a standard Walrasian REE with risk averse investors. In contrast
to conjectures of non-convexities in the value of information (e.g. Chade and
Schlee 2002), the law of demand for financial information passes three intuitive
litmus tests in this natural extension of the expected utility model: signals have a
well defined and positive value in terms of marginal expected utility for risk averse
investors; when positive, the marginal expected utility benefit of signals falls
monotonically in the number of signals; information has no value for risk neutral
investors because they do not expect a change to their portfolio composition by
the Law of Iterated Expectations so that information is ex ante irrelevant for
their expected consumption path.

The present Bayesian model of information choice in financial markets estab-
lishes that the marginal utility benefit of a signal is low if relatively few risky
assets are in the market, or if investors are little risk averse, or if prior expec-
tations of the mean-variance ratio of the asset return are relatively high so that
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uncertainty matters little compared to expected returns. Information alters be-
liefs about the expected asset price. This changes the expected value of investors’
initial portfolios and intricately affects their individual marginal utility value of
information.

In REE, asset price serves a double role as asset allocator and information ag-
gregator. Rational investors only value signals ante notitias (before realizations
become known) if they anticipate to act on signal realizations post notitias (after
realizations are revealed to them). Otherwise information has no rational value.
However, by acting on information, investors leak information to all others since
an asset price that plays an allocative role at least partly reveals a statistic of
aggregate information. This makes other investors’ beliefs about asset return
less uncertain, raises demand and price of the risky asset, and diminishes the ex-
pected excess return—an effect known for both partially revealing REE (Easley
and O’Hara 2004, Veldkamp 2004) and fully revealing REE (Muendler 2004).
Easley, Hvidkjaer and O’Hara (2002) confirm the diminishing effect of public
information on the expected excess return empirically. They find for a set of
NYSE listed stocks between 1983 and 1998 that assets exhibit a lower excess
return if public information matters relatively more for their valuation (so that
trades are less frequently private-information based). The present paper shows
for the benchmark case of fully revealing REE that this price impact of pri-
vately obtained but publicly transmitted information prevents rational Bayesian
investors from unbounded information acquisition even when signals cost noth-
ing. Only if the riskless bond turns useless (destroys the principal with certainty)
does unbounded information acquisition become rational for costless signals and
investors turn a risky asset into the riskless bond by removing all uncertainty
with infinitely many signals.

Informational efficiency of REE is often defined as the expected deviation
of market price from the benchmark price that incorporates a statistic of all
investors’ beliefs (Fama 1970) or as the precision of price in that statistic (e.g.
Wang 1993). Endogenous information acquisition in the present framework gives
rise to a natural Pareto criterion based on individual ante notitias utilities, simi-
lar to the Samuelson (1954) condition for public goods. If information is valuable
under given market conditions, a social planner wants more information to be
allocated to homogeneous investors than markets provide, as is the case with
public goods in other economic contexts. Individual investors do not account for
the positive externality of their information acquisition on other investors who
can update their beliefs through revealing price. If, on the other hand, market
conditions are such that no investor acquires a signal in equilibrium then signals
must have zero or negative value and a benevolent social planner agrees with the
market outcome. However, the effect of signals on expected asset price has imme-
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diate distributional consequences when investors’ endowments are heterogeneous
which makes it difficult to separate purely allocative effects of information from
redistributive endowment revaluation effects.

In deriving a rational law of demand for financial information, the present
approach resorts to the benchmark case of fully revealing REE in which a suf-
ficient statistic of all investors’ information becomes publicly known through
price. Benchmark scenarios (such as perfect foresight, perfect competition, com-
plete markets or the conditions of the welfare theorems) have proven to be useful
tools for many fields of economics in elucidating key relationships between ratio-
nal behavior and market outcomes. The benchmark case of fully revealing asset
price serves this purpose. Some markets such as that for foreign exchange may
indeed come close to the fully revealing benchmark. As Federal Reserve chairman
Alan Greenspan remarked at the 21st Annual Monetary Conference in Washing-
ton D.C. on November 20, 2003: “My experience is that exchange markets have
become so efficient that virtually all relevant information is embedded almost
instantaneously in exchange rates to the point that anticipating movements in
major currencies is rarely possible.” Crucial benefits of the fully revealing REE
are its tractability in closed form and its clear-cut predictions of asset price re-
sponses. The key impact of information acquisition is its diminishing effect on
the asset’s expected excess return in fully revealing REE. A non-revealing price,
at the other extreme, would require an infinite variance of exogenous noise in
price and preclude any allocative role of price. So, unless price loses its entire
allocative function, the diminishing effect of information on the expected excess
return will carry over in mitigated form to less than fully revealing REE.

Financial information often comes in discrete levels such as Standard & Poor’s
or Moody’s investment grades, or on a three-level buy-hold-sell scale. It there-
fore not only seems convenient but realistic to consider discrete signals. Poisson
distributed signals in particular exhibit several useful statistical properties. For
many draws, Poisson probabilities approximate binomial signal distributions. In
other words, a single Poisson signal approximates many individual thumbs-up,
thumbs-down signals. A gamma distribution of the asset return is the unique
conjugate prior distribution to Poisson signals so that closed-form solutions of the
financial market equilibrium are guaranteed for all levels of information. Davis
(1993) presents an earlier model in finance that employs the gamma distribution.
Special cases of the gamma distribution are the chi-squared, the Erlang, and the
exponential distribution, for instance. The prominence and success of the Nelson
(1991) exponential ARCH model in empirical finance suggests that this is a par-
ticularly relevant family of return distributions. Realistically, gamma distributed
gross returns cannot be negative so that investors can never lose more than their
principal. Variants of the results with the Poisson-gamma signal-return distri-
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bution carry over to other conjugate prior distributions. Under a normal-normal
pair of signal-return distributions, for instance, asset price is fully revealing and
information acquisition occurs in the presence of an endowment revaluation effect
but unrealistically not in its absence (Muendler 2004, Theorem 4).

The joint equilibrium in signal and asset markets is called a rational informa-
tion choice equilibrium (RICE) and builds on common equilibrium definitions:
a Walrasian REE for assets and a Samuelson (1954) style public-goods equi-
librium for signals. A Walrasian asset market REE is standard in literatures
on information acquisition (Grossman and Stiglitz 1980), on delegated portfolio
management (Bhattacharya and Pfleiderer 1985), and currency attacks (Morris
and Shin 1998), for instance. When asset price fully reveals a sufficient statistic
of all investors’ signal realizations, as will be the case in this paper, signals are
pure public goods ante notitias. Such a fully revealing REE can be viewed as
the limit of a sequence of partially revealing auctions (Reny and Perry 2003).
The public-goods character of signals is also common in models of experimenta-
tion (Bolton and Harris 1999, Cripps, Keller and Rady 2005). A finite number
of investors assures that a RICE exists under fully revealing asset price—as it
does in the Grossman and Stiglitz (1980) model (Muendler 2004). So, despite its
intentional limitation to the fully-revealing benchmark equilibrium, the present
model shares key features with partially revealing REE models and gives rise to
empirically confirmed predictions.

The remainder of this paper is organized as follows. Section 1 presents a
Bayesian model of rational investors’ information and portfolio choice along with
general implications. Section 2 imposes constant absolute risk aversion and Pois-
son distributed (sufficient) signals for tractable, non-trivial solutions. Section 3
shows that a unique financial market equilibrium results. Every investor can
buy signals prior to portfolio choice. Section 4 analyzes this signal choice for
investors in the absence of wealth effects, shows that a unique equilibrium ex-
ists in the market for signals too, and discusses under what market conditions
information acquisition occurs in equilibrium. Section 5 discusses the implied
efficiency properties of asset price under a Pareto welfare criterion. Section 6
introduces heterogeneity in investors’ endowments of the risky assets. Section 7
relates the findings to the prior literature, and section 8 concludes. Some proofs
are relegated to the appendix.

1 Bayesian Information and Portfolio Choice

The rational Bayesian model of asset and financial information choice adds a
prior stage of signal acquisition to the standard expected utility model of portfolio
choice. There are two periods, today and tomorrow, and there are two assets:
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One riskless bond b and one risky stock x. Assets are perfectly divisible. The
riskless bond sells at a price of unity today and pays a real interest rate r ∈
(−1,∞) tomorrow so that the gross interest factor is R≡ 1+r ∈ (0,∞). The
risky asset sells at a price P today and pays a gross return θ ∈ Θ ⊆ R tomorrow,
where Θ denotes the range of possible values.

Investors hold prior beliefs about the distribution of the risky asset return and
can acquire signals to update their beliefs. To create an image for the abstract
concept of information, one can liken signals in this framework to private detec-
tives and signal realizations to detectives’ reports. In a strict general-equilibrium
sense, of course, there is only one class of agents in this model (investors) and a
signal is an investor’s costly effort to update beliefs.

Markets for private detectives (signals) Si
n open at 9am today. Detective n,

hired by investor i, reports back exclusively to investor i with a signal realization
si

n before 10am. How many different private detectives N i should investor i
hire? Each investor knows that she will base her portfolio decision, to be taken
at 10am today, on the information that she is about to receive from her N i private
detectives. She also knows the statistical distribution of the signals conditional
on the unobserved asset return. Naturally, she does not know the content of the
private detective’s report when she takes her decision on information acquisition
(she does not know signal realization si

n). Otherwise she would not pay for the
information (the signal Si

n).

Assumption 1 (Risk and conditionally independent signals). The risky asset
return θ distribution is non-degenerate. All signals {Si

1, ..., S
i
N i}I

i=1 are condi-

tionally independent given the realization of the asset return, Si
n|θ i.i.d.∼ f(si

n |θ ).

While assets are assumed to be perfectly divisible, signals have to be acquired in
discrete numbers.1

The asset price at 10am will contain information. The reason is that each in-
vestor chooses her portfolio given her observations of signal realizations ({si

n}N i

n=1),
and the Walrasian auctioneer at Wall Street clears the market by calling an equi-
librium price. In the benchmark case of a fully revealing equilibrium, the asset
price is invertible in a sufficient statistic of all investors’ posterior beliefs and
hence permits the rational extraction of all relevant market information. This is
the case of analysis in the present paper.

1An informative signal distribution is invertible in θ. So, a continuum of signals would a.s.
reveal the realization of θ to informed investor. For markets to clear, P must equal θ/R in
this case, otherwise informed investors want to reshuffle their portfolio. But then the price
fully reveals θ itself and removes all uncertainty—an unrealistic case of little interest. The
inadmissability of a continuum of signals also clarifies that there is a fundamental difference
between the precision of signals and their number.
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Figure 1: Timing of decisions and information revelation

The timing of decisions is illustrated in Figure 1. Every investor i is endowed
with initial wealth W i

0 ≡ bi
0 + Pxi

0. At 9am, investors choose the number of
signals (private detectives) N i. To do so, they maximize ante notitias expected
utility based on their prior beliefs before signal realizations become known (ante
notitias). Investors then receive the realizations {si

1, ..., s
i
N i} of these N i signals

(they get to know the content of the private detectives’ reports) and update their
beliefs. When Wall Street opens at 10am today, investors choose consumption
today and tomorrow, Ci

0 and Ci
1, and decide how much of the risky asset to

hold. At this stage, they maximize post notitias expected utility based on their
posterior beliefs.2 The Walrasian auctioneer in the financial market sets the price
P for the risky asset such that the stock market clears. The bond market clears
given the interest factor R.

Each signal has a cost of c. So, the intertemporal budget constraint of investor
i becomes

bi + Pxi = bi
0 + Pxi

0 − Ci
0 − cN i (1)

today, and
Ci

1 = Rbi + θxi (2)

will be available for consumption tomorrow.

2To clarify the timing of signal realizations, I distinguish between ante notitias and post
notitias expected utility. Ante notitias expected utility is different from prior expected utility
in that the arrival of N i signals is rationally incorporated in ante notitias expected utility.
Raiffa and Schlaifer (1961) favored the terms “prior analysis,” “pre-posterior analysis” and
“posterior analysis.”
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Assumption 2 (Expected utility). Investors i = 1, . . . , I evaluate consumption
with additively separable utility U i at constant individual discount rates ρi:

U i = E
[
u(Ci

0) + ρiu(Ci
1)

∣∣F i
]
, (3)

where u(C) is a strictly increasing and weakly concave function of C, and F i

denotes investor i’s information set.

Investor i maximizes expected utility (3) with respect to consumption Ci
0

today and Ci
1 tomorrow given (1) and (2). For ease of notation, abbreviate

investor i’s conditional expectations with Ei [·] ≡ E [· |F i ] when they are based
on post notitias beliefs, and with Ei

ante [·] ≡ E [· |F i
ante ] for ante notitias beliefs

in anticipation of N i signal receipts. Post notitias expectations coincide for all
investors under fully revealing price.

On the second stage, after having received the realizations of her N i signals
{si

j}N i

j=1 and updated beliefs to post notitias beliefs, each investor decides on asset
holdings and consumption given the asset price P . The two first-order conditions
at this stage can be summarized with the opportunity cost RP of holding the
risky asset in terms of holding the riskless asset (portfolio composition), and the
marginal rate of substitution between consumption today and tomorrow (port-
folio size):

RP =
Ei [θ u′(Ci∗

1 )]

Ei [u′(Ci∗
1 )]

, and
1

R
= ρiEi [u′(Ci∗

1 )]

u′(Ci∗
0 )

, (4)

where expectations Ei[·] are conditional on the realizations of the signals and the
asset price. The optimal choices C i∗

0 (R,P,
∑I

k=1 Nk,F i), bi∗(R,P,
∑I

k=1 Nk,F i)

and xi∗(R,P,
∑I

k=1 Nk,F i) (where any two choices determine the third) are de-
cision rules that depend on the opportunity cost RP , on the observed number
of signals

∑I
k=1 Nk that investors acquired, and on the information transmitted

through the signal realizations and price P given
∑I

k=1 Nk. The choices of Ci∗
0 ,

bi∗ and xi∗ imply a level of post notitias indirect utility, which I denote with
U i∗ = u(Ci∗

0 ) + ρiEi [u(Ci∗
1 )].

On the first stage, the investor chooses the number of signals she wants to
receive. She does this by maximizing ante notitias utility given her beliefs before
the realizations of the signals arrive. At this time she cannot know more than the
prior parameters of the respective distributions, but she builds her ante notitias
beliefs by taking into account how signals will likely change beliefs at 10am.
Ante notitias utility is Ei

ante [U i∗] = Ei
ante [u(Ci∗

0 )] + ρiEi
ante [u(Ci∗

1 )] by the Law
of Iterated Expectations. The optimal number of signals N i∗ ∈ N0 maximizes
ante notitias utility Ei

ante [U i∗].
In the spirit of competitive equilibrium, a rational expectations equilibrium

(REE) that clears both the asset market and the market for signals can be defined
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as a Walrasian equilibrium at Wall Street preceded by a Bayesian public-goods
equilibrium in the market for detective services. This extension of REE to a
sequence of a rational Bayesian public-goods equilibrium in the signal market and
a subsequent Walrasian asset market equilibrium is called a Rational Information
Choice Equilibrium, or RICE.

Definition 1 (RICE). A rational information choice equilibrium (RICE) is an
allocation of xi∗ risky assets, bi∗ riskless bonds, and N i∗ signals to investors
i = 1, ..., I and an asset price P along with consistent beliefs such that

• the portfolio (xi∗, bi∗) is optimal given RP and investors’ post notitias be-
liefs for i = 1, ..., I,

• the market for the risky asset clears,
∑I

i=1 xi∗ = Ix̄, and

• the choice of signals N i∗ is optimal for investors i = 1, ..., I given the sum
of all other investors’ signal choices

∑
k 6=i N

k,∗ and a marginal signal cost
c.

x̄ denotes the average risky asset supply per investor.
Rational Bayesian investors choose their demand for signals given the ex-

pected asset market REE at Wall Street under anticipated information revela-
tion. The equilibrium in the market for signals is the benchmark public-goods
equilibrium following Samuelson’s (1954) definition, where agents know other
agents’ total demand for the public good at the time of their decision.

This expected utility framework immediately implies that, irrespective of
whether asset price is fully revealing or not, demand for signals is strictly positive
only if investors care about risk and information affects risk in a broad sense.

Lemma 1 (Necessary conditions for utility benefit of signals). Suppose signals
are costly, c>0. Then an investor acquires a signal in a RICE only if she is not
risk neutral under assumptions 1 and 2.

Proof. Suppose the investor is risk neutral. Then ante notitias utility degen-
erates to Ci∗

0 + ρiEi
ante [Ci∗

1 ]. For a risk neutral investor to neither demand a
positively nor a negatively infinite number of assets, Ei [θ] = RP and R = 1/ρi

in a RICE. Thus, ante notitias utility becomes Ci∗
0 + ρiEi

ante [Ci∗
1 ] = W i

0 − cN i

by (1) and (2). Ex ante utility of a risk neutral investor is independent of the
portfolio composition. As a result, signals only cause costs, but do not have a
benefit, which proves the first statement.

A risk neutral investor is indifferent whether she holds a risky stock or a
riskless bond in her portfolio. Hence, she expects her actions upon signal real-
izations to yield the same return ex ante as yields no action at all, which makes
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signals useless to her. Lemma 1 casts doubt on the generality of information
acquisition models with risk neutral investors (e.g. Jackson 1991, Barlevy and
Veronesi 2000) and suggests that results in the literature on optimal experimen-
tation, where agents are risk neutral too, are limited to non-financial markets.
Lemma 1 also highlights that information is not a good or bad in its own right.
It has a utility benefit only if it affects decisions. This suggests that market
conditions will matter for the value of signals—a theme to be investigated in
detail.

2 Risk Aversion and Conjugate Updating

Constant absolute risk aversion relates utility closely to properties of the return
distribution.

Assumption 3 (CARA). Investors have constant absolute risk aversion.

Under CARA, period utility becomes u(C) = − exp{−AC} < 0, where A > 0 is
the Pratt-Arrow measure of absolute risk aversion. For expected CARA utility to
exist, the return distribution must have a moment generating function (MGF).
The MGF of a random variable Z is defined as MZ|Fi(t) ≡ E [exp{tZ}|F i] ∈
(0,∞). So, a CARA investor’s expected utility can be recast in terms of MGFs
where

Ei
[
U i

]
= − exp{−ACi

0} − ρiMθ|Fi(−ACi
1).

2.1 Common priors and risk aversion

To analyze the utility benefit of signals, given expected price responses to sig-
nal realizations in general equilibrium, it is instructive to consider the case of
investors who are identical in beliefs and risk aversion. This homogeneity will
make price fully revealing.

Assumption 4 (Common priors and risk aversion). Investors have identical
prior beliefs about the joint signal-return distribution and share identical param-
eters of risk aversion.

So, assumption 4 limits possible differences in F i across investors to post notitias
differences.

The first-order conditions (4) become

RP =
M ′

θ|Fi(−Axi∗)

Mθ|Fi(−Axi∗)
and

1

R
= ρiH i Mθ|Fi

(−Axi∗) , (5)
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where the prime in M ′
θ(t) denotes the first derivative of the MGF with respect

to its argument t and H i ≡ exp{−A[(1+R)bi + Pxi∗ − W i
0 − cN i]}. The first

relationship in (5) can also be viewed as the inverse demand function for the risky
asset xi∗. The inverse demand function intersects with the price axis at RP =
E [θ] for xi∗=0, strictly falls in xi∗ by the second-order conditions (appendix A),
and is independent of W i

0 by CARA. Bond demand bi ∈ R varies to satisfy the
wealth constraint.

Using (5) in utility (3) for CARA yields post notitias expected utility

Ei [U i] = −δi exp{−AR(bi
0 − cN i)} 1

1+R (6)

× exp

{
−AR

M ′
θ|Fi(−Axi∗)

Mθ|Fi(−Axi∗)
(xi

0 − xi∗)

} 1
1+R

Mθ|Fi

(−Axi∗) 1
1+R

after a round of simplifications, where δi ≡ 1+R
R

(ρiR)
1

1+R . For the choice of the
number of signals N i, investors evaluate ante notitias expected utility, which
becomes

Ei
ante [U i] = −δi exp{−AR(bi

0 − cN i)} 1
1+R (7)

×Ei
ante

[
exp

{
−AR

M ′
θ(−Ax∗)

Mθ(−Ax∗)
(xi

0 − x∗)
} 1

1+R

Mθ(−Ax∗)
1

1+R

]

for given R. For common priors and CARA by assumption 4, a symmetric
equilibrium implies that all investors expect an identical asset demand x∗ ante
notitias.

The second-order conditions (appendix A) and general properties of MGFs
impose little structure on (7). An instructive closed-form analysis of information
acquisition demands specific distributional assumptions.

2.2 Financial information and conjugate updating

Financial information often comes in discrete levels such as Standard & Poor’s or
Moody’s investment grades, or on a three-level buy-hold-sell scale.3 It therefore
appears not only convenient but realistic to consider discrete signals. Poisson
distributed signals in particular exhibit several useful statistical properties. The
sum of N i conditionally independent Poisson signals, for instance, is itself Poisson
distributed with mean and variance N iθ (appendix B). For a large number of
draws and small probabilities, Poisson probabilities approximate binomial signal
distributions (Casella and Berger 1990, Example 2.3.6).

3The amount of words to describe investment prospects is discrete and finite. Even quotes
of asset prices at Wall Street used to be reported as common fractions, and decimals continue
to make price quotes discrete in a strict sense.
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Assumption 5 (Poisson distributed signals and conjugate updating). Signals
are Poisson distributed and update the prior distribution of the asset return θ to
a posterior distribution from the same family.

A gamma distribution of the asset return, θ ∼ G(αi, βi), uniquely satisfies as-
sumption 5 (Robert 1994, Proposition 3.3). The distribution parameters αi and
βi are specific to investors’ beliefs in principle. The parameter αi is sometimes
referred to as the shape parameter and 1/βi as the scale parameter.

Distributions that are closed under sampling so that prior and posterior dis-
tributions belong to the same family are called conjugate prior distributions.
The gamma distribution is a conjugate prior to the Poisson distribution.4 A
gamma distributed asset return exhibits the additional advantage that its sup-
port Θ ⊆ R+ is strictly positive so that, realistically, negative returns cannot
occur. In contrast, a normal asset return would imply that stock holders must
cover losses beyond the principal (θ <−P ) with a strictly positive probability.
Moreover, the gamma-Poisson pair of distributions does not have an additive
signal-return structure (Muendler 2004)—contrary to the normal-normal pair of
signal-return distributions—so that signals can raise utility even in the absence
of endowment revaluation effects of information (section 4).

Useful properties of the Poisson and gamma distributions are reported in
appendix B. The most important property relates to the updating of beliefs.

Fact 1 (Conjugate updating). Suppose the prior distribution of θ is a gamma
distribution with parameters ᾱ > 0 and β̄ > 0. Signals Si

1, ..., S
i
N i are indepen-

dently drawn from a Poisson distribution with the realization of θ as parameter.
Then the post notitias distribution of θ, given realizations si

1, ..., s
i
N i of the sig-

nals, is a gamma distribution with parameters αi = ᾱ+
∑N i

n=1 si
n and βi = β̄+N i.

Proof. See Robert (1994, Proposition 3.3).

The MGF of a gamma distributed return is Mθ|αi,βi(t) = [βi/(βi − t)]
αi

(ap-
pendix B). So, the mean of a gamma distributed return θ is αi/βi, and its
variance αi/(βi)2. The mean-variance ratio will play a key role in particular:
Ei [θ] /Vi (θ) = βi.

For risk averse investors to have an incentive for signal acquisition, it is im-
portant that the ante notitias variance falls in the number of signals N i. Indeed,

∂

∂N i
Ei

ante

[
V

[
θ
∣∣αi, βi

]]
=

∂

∂N i

(
ᾱ + ᾱ

β̄
N i

(β̄ + N i)2

)
= −

ᾱ + ᾱ
β̄
N i

(β̄ + N i)3
< 0

4The gamma distribution is also a conjugate prior distribution to itself and a normal dis-
tribution, for instance.
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(by fact 3, appendix B). Risk averse investors not only expect a lower variance of
the risky asset return but also look forward to making a more educated portfolio
choice at 10am post notitias. Anticipating this improved portfolio choice at 9am,
investors consider information acquisition a means of reducing the ante notitias
variance of tomorrow’s consumption.

Both the mean and the variance of a Poisson distributed signal Si with pa-
rameter θ are equal to θ. Thus, the precision of a signal Ei

ante [Vi (si|θ)]−1
=

Ei
ante [θ]−1 = βi

ante/α
i
ante = β̄/ᾱ depends solely on individual priors and is com-

mon to all investors as assumption 4 requires.
For a gamma distributed asset return, demand for the risky asset becomes

xi∗ =
βi

A

Ei [θ]−RP

RP
≡ βi

A
· ξi (8)

by first-order condition (5) and the MGF of the gamma distribution (fact 4 in
appendix B). Demand for the risky asset decreases in price and the riskless asset’s
return; demand is the higher the less risk averse investors become (lower A) or
the higher the expected mean-variance ratio βi of the asset is. Investors go short
in the risky asset whenever their return expectations fall short of opportunity
cost, Ei [θ] < RP , and go long otherwise. Under CARA, demand for the risky
asset is independent of wealth W i

0.
The term Ei [θ −RP ] /RP is an individual investor i’s expected relative excess

return over opportunity cost. Risk averse investors demand this premium.5 For
later reference, define the expected relative excess return as

ξi ≡ Ei [θ]−RP

RP
. (9)

The expected relative excess return ξi has important informational properties
that crucially affect incentives for information acquisition.

3 Financial Market Equilibrium

The utility benefit of signals depends on the expected equilibrium at Wall Street
and asset price responses to signal realizations in that equilibrium. To solve for a
RICE backwards, restrict attention to the partial REE at Wall Street first, given
any market equilibrium for private detectives. Investors i = 1, ..., I have received
the realizations of their conditionally independent N i ≥ 0 signals. It is 10am,

5The (absolute) expected relative excess return Ei [θ −RP ] is unrelated to the expected
relative excess market value Ei

[
RP − Ei [RP ]

]
in the sense of (Fama 1970). Financial markets

are strong-form efficient in this model so that Ei
[
RP − Ei [RP ]

]
= 0.
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and investors choose portfolios (xi∗, bi∗) given their post notitias information sets
F i.

In REE, rational investors not only consider their own signal realizations.

They extract information also from price so that F i = {∑N i

n=1 si
n, RP}. Since

RP and
∑N i

n=1 si
n are correlated in equilibrium, the post notitias distribution of

the asset return, based on this information set, can be complicated. If price P
is fully revealing, however, the information sets of all investors coincide: F i = F
for all i. This gives the rational beliefs in REE a closed and linear form analogous
to fact 1.

Investors are identical in their degree of risk aversion and in their prior be-
liefs by assumption 4. If they also know market size, asset price becomes fully
revealing.

Assumption 6 (Known market size). The total supply of the risky asset x̄ and
the total number of investors I are certain and known.

Under these assumptions and by definition 1 of RICE, financial market equilib-
rium takes the following closed form.

Proposition 1 (Unique asset market REE). Under assumptions 1 through 6,
the asset market REE in RICE is unique and symmetric with

αi = ᾱ +
I∑

k=1

Nk∑
n=1

sk
n ≡ α, (10)

βi = β̄ +
I∑

k=1

Nk ≡ β, (11)

RP =
α

β

1

1 + ξ
, (12)

where xi∗ = x̄ and ξi = ξ ≡ Ax̄/β.

Proof. By (8) and for beliefs (10) and (11), xi∗ = α/(ARP )−β/A for all i. So,
market clearing xi∗ = x̄ under definition 1 of RICE implies (12).

Uniqueness of beliefs (10) and (11) follows by construction. By (8) and

market clearing, RP can always be written as RP = T0 + T1(
∑I

k=1

∑Nk

n=1 sk
n)

for an appropriate choice of constants T0, T1 > 0 because risk aversion A is

common to all investors. But then, every investor i can infer
∑

k 6=i

∑Nk

n=1 sk
n =

(RP −T0)/T1−
∑N i

n=1 si
n from her knowledge of own signal realizations. Since the

random variables
∑

k 6=i

∑Nk

n=1 sk
n and

∑N i

n=1 si
n are Poisson distributed by fact 3

14



(appendix B) and conditionally independent given θ, a rational investor must ap-

ply Bayesian updating following fact 1. Hence, αi = ᾱ+
∑N i

n=1 si
n+

∑I
k 6=i

∑Nk

n=1 sk
n

and βi = β̄ + N i +
∑I

k 6=i N
k.

∑I
k 6=i N

k is known by definition 1 of RICE.

Finally, no less than
∑I

k=1

∑Nk

n=1 sk
n signals can get revealed in REE. Suppose

one signal si
n is received by some investor i but does not enter price. Then,

investor i cannot have based demand xi∗ on that signal since market clearing∑I
k=1 xk,∗ = Ix̄ would have transmitted si

n to price. However, if αi does not
include si

n, Bayesian updating following fact 1 is violated, which is ruled out in
an REE.

The equilibrium price P fully reveals aggregate information of all market
participants. Formally, aggregate information is the total of all signals received:∑I

i=1

∑N i

n=1 si
n. This is a sufficient statistic for every moment of θ given

∑I
i=1 N i

(which is known by definition 1 of RICE). In general, the equilibrium price is
fully revealing if and only if assumptions 1 through 6 are satisfied (corollary 1.1
in appendix C restates this formally).

In fully revealing REE, investors’ information sets F = {∑I
k=1

∑Nk

n=1 sk
n}

coincide by (10) and (11). Consequently, the expected relative excess return
ξi = ξ (9) coincides. It becomes

ξ =
E [θ]−RP

RP
=

Ax̄

β
=

Ax̄

β̄ +
∑I

k=1 Nk
∈ (0, ξ] where ξ ≡ Ax̄

β̄
. (13)

The expected relative excess return over opportunity cost Ei [θ−RP ] /RP is
crucial for individual incentives to acquire information. Information acquisition
diminishes the expected relative excess return. Equilibrium price P will reveal
signal realizations. So, private information will become publicly known to in-
vestors through informative price and risk averse investors will value the risky
asset more, thus bidding up price. Therefore, investors expect higher opportu-
nity cost of the risky asset Eante [RP ] in the face of reduced uncertainty. The
diminishing effect of public information on the expected relative excess return
also occurs in additive signal-return models for any distribution with a moment-
generating function (Muendler 2004) and when price is partially revealing (Easley
and O’Hara 2004, Veldkamp 2004).

Proposition 2 (Diminishing expected excess return). Under assumptions 1
through 6, the expected relative excess return ξ in asset market REE strictly
falls in the number of signals, while the expected opportunity cost of the risky
asset Eante [RP ] strictly increases in the number of signals ante notitiam.
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Proof. Note that ξ = Eante [ξ] by (13). The number of signals N̄ =
∑I

k=1 Nk

strictly diminishes ξ by (13). The number of signals strictly raises Eante [RP ] =
(ᾱ + ᾱN̄/β̄)/(Ax̄ + β) since ∂Eante [RP ] /∂N̄ = ξ/β2(1 + ξ)2 > 0.

4 Information Market Equilibrium in the Ab-

sence of Endowment Revaluation

Given the expected financial market equilibrium, how much information do in-
vestors acquire in RICE? Investors dislike the diminishing effect of information
on the expected relative excess return ξ but anticipate a more educated portfo-
lio choice if they can receive signal realizations. In their ante notitias choice of
the optimal number signals, risk averse investors weigh the diminishing excess
return and the marginal cost of a signal against the benefit of a more informed
intertemporal consumption allocation.

The acquisition of signals changes asset price ante notitias by proposition 2.
So, investors can affect the value of their endowments W i

0 = bi
0 + Pxi

0 by buying
signals. To investigate incentives for information acquisition in the absence of
the wealth effect, this section considers homogeneous investors with xi

0 = 0.
Section 6 will present the general case. For now, there is a sole (foreign) agent
who offers the risky asset (xI

0 = Ix̄) and is considered irrelevant for information
acquisition. Section 6 will show that the sole owner of the risky asset may indeed
not acquire any signal herself.

Investors evaluate ante notitias expected utility for their signal choice. How-
ever, ante notitias expected utility (7) has no closed form unless R is constant.
Assumption 7 assures this.

Assumption 7 (Single-price responses to signal realizations). The equilibrium
price of an asset only responds to signal realizations on its own return.

The assumption is equivalent to the limiting case where markets for single risky
assets are small relative to the overall market for riskless bonds so that single
signal realizations alter R negligibly little (see appendix D for a formal deriva-
tion). Economies with large safe forms of debt such as government debt and
small open economies are examples.

For Poisson-gamma signal-return distributions and homogeneous investors
with xi

0 = 0, ante notitias expected utility (7) becomes

Ei
ante

[
U i

]
= −δi exp

{−A R
1+R

(W i
0 − cN i)

}
(14)

×
[
1 +

([
(1 + ξ) exp

{
− ξ

1 + ξ

}] 1
1+R

− 1

)
ξ

ξ

]−ᾱ

16



(see appendix E). The cost of signals cN i enters (14) in the form of an initial
wealth reduction. The last factor in (14) captures the effect of the relative excess
return ξ ∈ (0, ξ] on utility. The term (1 + ξ) exp (−ξ/(1 + ξ)) strictly exceeds
unity since, by (13), ξ > 0 for arbitrarily large but finite numbers of signals∑I

k=1 Nk ≥ 0. Hence, the last factor in (14) is well defined.
Although the number of signals must be discrete, one can take the derivative

of ante notitias utility with respect to N i to describe the optimal signal choice.
Strict monotonicity of the first-order condition in the relevant range will prove
this to be admissible. Differentiating (14) with respect to the number of signals
yields the incentive to purchase information. As long as ∂Ei

ante [U i∗] /∂N i > 0,
investor i will generically purchase more signals. If ∂Ei

ante [U i∗] /∂N i ≤ 0 for
all N i, she purchases no information at all. Taking the derivative of (14) with
respect to N i, and dividing by −Ei

ante [U i∗] > 0 for clarity, yields

− 1

Ei
ante [U

i∗]
∂Ei

ante [U
i∗]

∂N i
= −A R

1+R
c (15)

+
ᾱ

β̄

[
(1 + ξ) exp

{
−ξ
1+ξ

}] 1
1+R

(
1− 1

1+R
ξ2

(1+ξ)2

)
−1

1 +

([
(1 + ξ) exp

{
−ξ
1+ξ

}] 1
1+R − 1

)
ξ
ξ

.

The first term on the right hand side of (15) is negative and represents the
marginal cost of a signal (MC ). The second term expresses the potential marginal
benefit of a signal (MB) and can be positive or negative. The incentive for
information acquisition does not depend on an investor’s patience.

Rational investors view the choice of the total number of signals
∑I

k=1 Nk as
the converse of a choice of the expected relative excess return ξ because ξ strictly
monotonically falls in the number of signals by proposition 2. This constitutes
a fundamental trade-off behind the potential marginal benefit MB of a signal.
In fact, an additional signal can diminish the expected relative excess return ξ
so strongly that this negative effect more than outweighs the benefits of infor-
mation. In the case of a normal-normal pair of signal-return distributions, the
diminishing effect of information on the expected excess return can be shown to
always outweigh the benefit unless there is an endowment revaluation effect (a
corollary of Muendler 2004, Theorem 4). For a Poisson-gamma pair of distribu-
tions, however, the numerator of the MB term in (15) can take either a negative
or a positive sign while the denominator is always positive.

The potential marginal benefit MB of a signal turns negative when the ex-
pected relative excess return ξ ≡ (E [θ]−RP )/RP drops too low. The potential
benefit MB does not constitute a benefit but a cost in this range. Note that a
low ξ means that investors currently hold relatively many signals given market
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size and the expected mean-variance ratio of the asset. The negative MB for low
ξ reflects that, given a relatively large number of available signals, the negative
effect of an additional signal on the expected relative excess return ξ outweighs
the benefit from a more informed expected portfolio choice ante notitias. The
diminishing effect of an additional signal on the expected relative excess return
is particularly strong for investors with no endowment of the risky asset (xi

0 = 0)
since the increase in the opportunity cost RP is not mitigated by any positive
wealth effect of asset price on their endowments. As a consequence, every addi-
tional signal lowers an investor’s ante notitias utility once the available amount
of information has driven ξ below a certain level (ξ).

Proposition 3 (Potential marginal signal benefit in the absence of endowment
revaluation). Under assumptions 1 through 7 and in the absence of endowment
revaluation, the following is true for the potential marginal benefit MB(ξ) of a
signal.

• The potential marginal benefit MB(ξ) attains strictly positive values if and
only if ξ > ξ, where ξ ∈ (0,∞) is independent of ξ and uniquely solves
MB(ξ) = 0 given R∈(0,∞).

• If ξ < ξ then, in the range ξ ∈ [ξ, ξ], the marginal signal benefit MB(ξ)
strictly monotonically increases in ξ and is unbounded for arbitrarily large
ξ.

Proof. See appendix F for the general case and set xi
0 = 0.

Figures 2 through 4 depict the marginal signal cost (MC ) and potential marginal
benefit of a signal (MB) under varying parameters.6

For a strictly positive interest factor R, MB turns positive at one unique
point ξ > 0 and subsequently increases unboundedly in ξ. The unique zero

point ξ solves MB(ξ) = 0 and is independent of ξ (and ᾱ, β̄). In contrast to
examples of non-convexities (Chade and Schlee 2002), the value of information is
well behaved in the rational Bayesian model of financial information acquisition.
In the range where signals have positive utility value, the marginal benefit MB
of an additional signal strictly monotonically falls. Ante notitias expected utility
is thus strictly concave in signals in the relevant range.

Under what conditions do investors acquire information? Figure 2 shows a
case. As investors acquire signals, ξ moves away from ξ and to the west. The

6Parameters underlying the benefit curves in Figures 2 through 5 are A = 2, ᾱ = 1.3, β̄ = 1,
and R = 1.1. The level of ξ depends on average asset supply, which is x̄ = 7 in Figures 2, 6, 7
and 5; x̄ = 3 in Figure 3; and x̄ = 1 in Figure 4. Marginal cost is given by c = .1, A, and R in
Figures 2, 3 and 7.
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The expected relative excess return ξ strictly decreases in the number of signals
∑

i N i.
Parameters: A = 2, ᾱ = 1.3, β̄ = 1, R = 1.1, x̄ = 7, c = .1.

ξ=
ξ̄

1 +
∑

i N
i/β̄

Figure 2: Information acquisition in equilibrium

potential marginal benefit MB curve has a long arm in the positive range that
slopes strictly upward by proposition 3. So, as long as ξ is large enough, there
is a strictly positive expected relative excess return ξ∗ at which the marginal
benefit MB of a signal equals marginal cost MC. Although the relative excess
return could attain any real value in principle, signals are not perfectly divisible.
As a consequence, the precise optimal number of signals will yield an expected
relative excess return in an open interval around ξ∗.

Since the expected relative excess return ξ cannot exceed ξ, such an interior
equilibrium can only occur if ξ is sufficiently large. Hence, investors will acquire
a strictly positive amount of information only if the financial market meets the
following two conditions. First, supply of the risky assets needs to be strong
so that x̄ is high. Then investors anticipate that they will invest a relatively
large portion of their savings in the risky asset, and information about the risky
asset return becomes relatively important to them. Second, investors need to
be sufficiently risk averse relative to their prior beliefs about the mean-variance
ratio of the risky asset so that A/β̄ is high. Since the benefit of information stems
from lowering the prior variance of the portfolio, information matters more for
investors who are more risk averse.

So, the market environment determines whether information is valuable to
investors indeed. Information is not a good in itself. When ξ drops too low, the
potential marginal benefit MB of a signal cannot reach the point where it would
meet or exceed marginal cost, and nobody will acquire a signal so that ξ∗ = ξ.
This case is depicted in Figure 3 (risky asset supply is reduced by more than
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i N i.
Parameters: A = 2, ᾱ = 1.3, β̄ = 1, R = 1.1, x̄ = 3, c = .1.
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∑
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i/β̄

Figure 3: No information in equilibrium due to high signal cost

half as compared to Figure 2). ξ is low if relatively few risky assets are supplied
to the market (low x̄), or if investors are little risk averse (low A), or when the
prior mean-variance ratio of the asset return is relatively high (high β̄) so that
risk matters little compared to payoff. Then investors do not value information
enough to acquire it.

What if signal cost drops to zero? Even then, there are market conditions in
which information has zero or negative value. Figure 4 depicts a case in which
the price of a signal c is zero but information would not be acquired (risky asset
supply is reduced to a seventh of the level in Figure 2). When the amount
of available information is large already, the price externality that diminishes
expected relative excess return ξ weighs more heavily than any positive effects
of more information on higher moments of the return distribution. The potential
marginal signal benefit MB is strictly negative and investors find information
undesirable even at zero cost.

The potential benefit MB vanishes as ξ goes to zero. In this limit, no investor
wants to purchase a costly signal. But every investor would accept signals for
free. The limiting level of ξ = 0 is reached when no risky assets are supplied
to the market (x̄ → 0). Similarly, when investors become risk neutral (A → 0),
or when the prior variance tends to zero (β̄ → ∞), then there is no benefit
of holding information but also no harm done. Finally, if investors were given
infinitely many signals for free, ξ would reach zero but the return realization θ
would become known with certainty and the previously risky asset would turn
into a perfect substitute to the bond. The common cause for information to lose
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ξ=
ξ̄

1 +
∑

i N
i/β̄

Figure 4: No information in equilibrium due to market environment

its value in all these cases is that the relative excess return ξ is driven down to zero
so that no investor chooses to hold any risky asset. In this limit, information does
not have a negative value either. Investors are simply unaffected. If investors
don’t think at 9am that they will be holding a risky asset at 10am, they know
they will never need to act upon information. An infinite amount of information
makes investors indifferent to it in the presence of a riskless alternative asset.

Proposition 4 (RICE in the absence of endowment revaluation). Under as-
sumptions 1 through 7 and in the absence of endowment revaluation, a RICE
has the following properties for any R∈(0,∞).

• Investors acquire a strictly positive and finite number of signals in signal
market equilibrium if and only if the asset market environment satisfies
ξ > ξ, where ξ >

√
1 + 1/R solves MB(ξ) = 0.

• If the cost of a signal is strictly positive, then the market equilibrium for
signals is unique up to a permutation of the signal allocation.

• If the cost of a signal is nil but R > 0, then there are two signal mar-
ket equilibria, one of which involves an infinite amount of freely received
signals.

Proof. Under assumptions 1 through 7, investors acquire a strictly positive
amount of signals if and only if ξ falls in the range of ξ where marginal benefit
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MB is strictly positive (proposition 3). So, ξ > ξ >
√

1 + 1/R, where ξ solves
MB(ξ) = 0.

For c > 0, the equilibrium number of
∑I

k=1 Nk,∗ must be unique because the
positive arm of the marginal benefit MB in (15) strictly monotonically increases
in ξ by proposition 3. If ξ∗ ≥ ξ, the unique information equilibrium entails no
information acquisition and ξ∗ = ξ. As ξ increases, there will be a unique infor-
mation equilibrium with exactly one acquired signal since the marginal benefit
MB in (15) strictly monotonically increases in ξ (proposition 3). As ξ moves
further up, there will be a new and unique information equilibrium with exactly
two acquired signals for the same reason, and so forth. Only the sum

∑
k Nk is

unique but the equilibrium assignment of signals to investors is not.
If c = 0, there is a second equilibrium at ξ = 0, in which

∑I
k=1 Nk → ∞

while another equilibrium continues to exist for R>0.

The equilibrium does not determine how many signals a single investor holds.
In equilibrium, one investor may acquire all

∑
i N

i signals while nobody else
buys any signal, or all investors may hold the same number of signals. Signals
are public goods and therefore perfect strategic substitutes under fully revealing
price because any fellow investors’ signal is as useful (or detrimental) as an own
signal.

By propositions 3 and 4, there is always a market size x̄, or a degree of risk
aversion A, or a level of the prior mean-variance ratio of the risky asset β̄ behind
ξ so that a costly signal becomes worthwhile to acquire in equilibrium.

Corollary 4.1 points to the degenerate limiting case where the interest rate of
the bond becomes infinite R→∞ (and the potential benefit curve coincides with
the horizontal axis). Then investors are completely indifferent to free information
since they would never hold a risky asset but investors do not demand costly
signals. When, at the other extreme, the bond becomes entirely worthless and
eliminates the principal for sure (r =−1, R = 0), investors do not want to hold
the bond in their portfolio. In this extreme case, they would choose to acquire an
infinite amount of information about the risky asset as signal costs fall to zero.
So, if there is no riskless asset in the economy yet, investors desire to create
the riskless asset by acquiring infinitely much information about a risky asset in
RICE. In this sense, the riskless bond is the basic asset in financial markets.

Corollary 4.1 (RICE responses to riskless returns in the absence of endowment
revaluation). Under the conditions of proposition 4, the following is true for a
RICE.

• In the limit when R →∞, an information market equilibrium involves no
information acquisition if signals are costly (c > 0).
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• For R → 0, the marginal benefit MB of a signal is strictly positive at any
ξ > 0 and zero at ξ = 0. Then, if c = 0, there is a unique information
market equilibrium which involves infinite information acquisition.

Proof. The numerator of the marginal benefit MB term in (15) vanishes for
R →∞, which proves the first statement. For R → 0, the marginal information
benefit cannot drop below zero by claim 2 in appendix F. So, there is only one
equilibrium if c = 0, proving the second statement.

A finite number of investors has well defined incentives to acquire signals in
a rational Bayesian model under fully revealing price, as does a finite number of
investors in additive signal-return frameworks such as the Grossman and Stiglitz
(1980) model (Muendler 2004). However, information need not be desirable.
Proposition 4 and corollary 4.1 clarify that signals can turn from a public good
into a public bad as market conditions change. These market conditions are
captured by ξ and can be affected through R. In financial markets, informa-
tion is a tertiary commodity. Investors are concerned about consumption, the
primary good. Assets are mere means to the end of consumption, or secondary
commodities. Information, finally, has value only if it helps investors make bet-
ter portfolio decisions with regard to these assets. In this sense, information is
a tertiary commodity. Consequently, the utility benefit of signals changes with
market conditions.

5 Informational Efficiency in Absence of En-

dowment Revaluation

The rational Bayesian framework permits the application of a Pareto criterion
to judge information allocation in financial markets. To investigate the informa-
tional efficiency of RICE in its pure form, this section continues to consider the
absence of wealth effects of information and homogeneous investors with xi

0 = 0.
Put differently, the social planner of the present section ignores in the welfare
judgement of RICE the single investor who is the sole owner of the risky project
with xi

0 = Ix̄.

Definition 2 (Informational Pareto efficiency) An allocation of xi∗∗ risky assets,
bi∗∗ riskless bonds, and N i∗∗ signals to investors i = 1, ..., I is called information-
ally Pareto efficient in a given market environment (ξ, R) if there is no other
allocation such that all investors are at least as well off and at least one investor
is strictly better off.
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Figure 5: Socially desirable information choice

It does not matter for this Pareto criterion that information can change from
a public good into a public bad. The criterion is conditional on a given market
environment. To investigate whether the RICE in section 4 is Pareto efficient,
imagine a benevolent social planner who can dictate every consumer j to buy
exactly N j∗∗ signals. This social planner maximizes

∑I
j=1 Ei

ante [U j] with respect

to {N1, ..., N I}. Thus, similar to Samuelson’s (1954) condition for public good
provision, a benevolent social planner’s first-order conditions for information
allocation are not (15) but instead

− 1

Ej
ante [U

j∗∗]

∂
∑I

k=1 Ek∗∗
ante

[
Uk∗∗]

∂Nk
= −A R

1+R
c (16)

+
ᾱ

β̄

[
(1 + ξ) exp

{
−ξ
1+ξ

}] 1
1+R

(
1− 1

1+R
ξ2

(1+ξ)2

)
−1

1 +

([
(1 + ξ) exp

{
−ξ
1+ξ

}] 1
1+R − 1

)
ξ
ξ

(
1 +

I∑

k 6=j

Ek
ante

[
Uk∗∗]

Ej
ante [U j∗∗]

)

for any j ∈ 1, ..., I, written in terms of that investor j’s utility. Thus, com-
pared to the privately perceived benefits, the potential social benefits SB that
a social planner considers scale up the private benefits MB by a factor of 1 +
(1/Ej

ante [U j∗∗]) ·∑I
k 6=j Ek

ante

[
Uk∗∗] > 1. Therefore, if information is a public bad,

a benevolent social planner wants to implement an even smaller amount of in-
formation than the private market. However, since no information is acquired in
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private markets in that case, the market equilibrium is informationally efficient
when information is a public bad.

On the other hand, if information is a public good under given market con-
ditions, a social planner wants (weakly) more information to be allocated than
markets provide. Individual investors do not take into account that their sig-
nal acquisition also benefits other investors through fully revealing price. In this
case, markets allocate (weakly) less information than desirable. However, signals
are not divisible and one cannot infer from condition (16) that a social planner
wants to implement strictly more information. It can happen that an additional
signal diminishes relative excess return ξ so strongly that all investors are worse
and not better off. So, discreteness of the number of signals only permits a
conditional efficiency statement up to discrete tolerance. In Figure 5, a social
planner wants to allocate information so that relative excess return is brought
down from around ξ∗ to around ξ∗∗. However, if an additional signal makes the
implementable level of ξ drop far below ξ∗∗, investors are better off if relative
excess return ξ remains at the market equilibrium level around ξ∗.

Proposition 5 Under assumptions 1 through 7 and in the absence of endowment
revaluation, the following is true in a RICE.

• If ξ ≤ ξ, then the equilibrium is informationally Pareto efficient.

• If c > 0 and at least one signal is acquired in equilibrium, then the equilib-
rium is not informationally Pareto efficient up to discrete tolerance.

• If c = 0, then the equilibrium with finite information is informationally
Pareto efficient for R > 0, whereas the equilibrium with infinitely much
information is not Pareto efficient.

Proof. To prove the first statement note that, if ξ ≤ ξ, information benefits are
weakly negative by proposition 3 and a social planner would not allocate any
signal. For the second statement, if c > 0 and at least one signal is acquired in
equilibrium, then the equilibrium level of ξ (around ξ∗) must be strictly lower
than ξ, and the marginal benefit term in (15) must be strictly positive. Then
the augmented marginal benefit term of the social planner in (16) must strictly
exceed marginal cost at the equilibrium level of ξ∗. Up to discrete tolerance,
increasing the number of signals by one augments the sum of investors’ ante
notitias utilities.

For the third statement note that, if c = 0, the marginal benefit term in (15)
must be as close to zero in equilibrium as possible because investors must have
chosen a discrete number of signals such that ξ is as close to zero or ξ as discretely
possible. The equilibrium with finite information always yields higher utility for
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all investors than the equilibrium with infinite information since utility losses are
incurred as ξ falls from ξ to zero by proposition 3.

Even if signals are free with c = 0, only the market outcome with finite
information is efficient but not the one with infinite information. In other words,
as long as the bond is valuable (R > 0), neither markets nor the social planner
want to remove uncertainty. The reason is that investors in incomplete markets
prefer having a second asset around that is not a perfect substitute to the bond.
Risk-averse investors want to hold risky assets that yield a positive excess return
ξ over opportunity cost. Only if the bond becomes useless and R → 0 (r→−1),
unbounded information is Pareto efficient.

Most commonly, the informational efficiency of financial markets is judged
with criteria that do not relate to welfare but to the degree of information trans-
mission through asset price. Fama (1970) discerns three degrees of market effi-
ciency in this welfare-independent sense: Strong, semi-strong, and weak. Prices
are fully revealing in RICE under assumptions 1, 4 and 6 (corollary 1.1). So,
Ei [RP − Ei [RP ]] = 0 and RICE satisfies strong-form efficiency. An alternative
statistically well defined measure of the informativeness of a signal is its preci-
sion, the inverse of the ante notitias variance. Informational efficiency in this
non-welfare sense relates to price as a source of information.

The precision of price, a Poisson variable by (8) and fact 3 (appendix B), is

1

Ei
ante [Vi (P |θ)] =

β̄2

ᾱ

(
(1 + ξ) +

∑I
i=1 N i∗/β̄

)2

∑I
i=1 N i∗/β̄

.

So, the precision of price can fall with the number of signals purchased. For

∂

∂N i

(
1

Ei
ante [Vi (P |θ)]

)
=

β̄

ᾱ

(
∑I

i=1 N i∗/β̄)2 − (1 + ξ)2

(
∑I

i=1 N i∗/β̄)2
,

each additional signal reduces the precision of the market clearing price if the
amount of pre-existing information

∑I
k=1 Nk,∗ is small.

Proposition 6 (Precision loss of the price system). In asset market REE under
assumptions 1 through 6, the ante notitias precision of the price system decreases
with every additional signal if and only if

∑I
k=1 Nk,∗/β̄ < 1 + ξ.

The fact that precision of price can fall with the number of signals purchased
may seem surprising at first. However, each investor anticipates that she and
all others will respond to signals in their portfolio choice. From an ante notitias
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perspective, asset demand (8) can become more volatile with the anticipated
arrival of information. The expected variance of asset demand is

Ei
ante

[
Vi

(
xi∗|θ) |RP

]
=

ᾱ

β̄A2(RP )2

(
I∑

k=1

Nk

)

by fact 3. Financial markets need to clear. So, every investor ends up hold-
ing x̄ risky assets in equilibrium by proposition 4, irrespective of information.
Hence, market price has to fully absorb any demand moves that stem from in-
formation revelation. As a consequence, the variance of price can increase with
more information acquisition. When there is relatively little pre-existing infor-
mation

∑I
k=1 Nk,∗, an additional signal will affect individual demands strongly

and thus add to the price’s variance. If, on the other hand, a lot of information is
available already, an additional signal that gets fully revealed through price will
move investors’ demands little. If investors receive many signals, an additional
piece of information is likely to confirm previous observations and tends to sta-
bilize demand. So, equilibrium price is expected to become less volatile with an
additional signal if the pre-existing information level

∑I
k=1 Nk,∗ is high.

Rational investors completely internalize this change in price volatility when
they maximize their ante notitias utility. In that sense, the precision of price is
irrelevant for the Pareto efficiency of RICE.

6 Information Market Equilibrium with Het-

erogeneous Investors

Signals raise asset price Ei
ante [P ] ante notitias by proposition 2. So, investors who

are endowed with the risky asset xi
0 experience a positive endowment revaluation

effect of signal acquisition ante notitias. To distinguish between the diminishing
effect of information on the expected relative excess return ξ and the positive
endowment revaluation effect of information, it is instructive to define the relative
risky asset endowment of investor i as

ωi ≡ xi
0

x̄
∈ [0, I].

In the extreme that sections 4 and 5 considered, one investor j owned all assets
ωj = I in the risky project, while all other investors i 6= j did not own any asset
initially (ωi = 0).

For heterogeneous investors with arbitrary endowments xi
0 = ωix̄ and Poisson-
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Figure 6: Information benefits for investors with heterogeneous endow-
ments

gamma signal-return distributions, ante notitias expected utility (7) becomes

Ei
ante

[
U i

]
= −δi exp

{−A R
1+R

(W i
0 − cN i)

}
(17)

×
[
1 +

([
(1 + ξ) exp

{
ξ

1+ξ
(ωi−1)

}] 1
1+R − 1

)
ξ
ξ

]−ᾱ

(see appendix E). Differentiating (17) with respect to the number of signals
yields

− 1

Ei
ante [U

i∗]
∂Ei

ante [U
i∗]

∂N i
= −A R

1+R
c (18)

+
ᾱ

β̄

[
(1 + ξ) exp

{
ξ(ωi−1)

1+ξ

}] 1
1+R

(
1− 1

1+R
ξ(ξ+ωi)
(1+ξ)2

)
−1

1 +

([
(1 + ξ) exp

{
ξ(ωi−1)

1+ξ

}] 1
1+R − 1

)
ξ
ξ

.

So, the potential marginal benefit MBi of a signal depends on ωi and is investor
specific.

Figure 6 depicts the range of individual marginal benefit schedules MBi by
relative risky asset endowment ωi ∈ [0, I]. The schedule in the ωi = 0 plane
is identical to that in Figure 2 (section 4). As the graph in Figure 6 shows for
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varying levels of ωi, the basic monotinicity properties of the individual marginal
benefit schedules MBi resemble those of Figure 2 when investors had zero en-
dowments of the risky asset (proposition 3). For every investor, there is an
endowment-specific cutoff level of the expected relative excess return ξi beyond
which the individual marginal benefit schedule MBi turns strictly positive and
increases in ξ unboundedly.

Proposition 7 (Potential marginal signal benefit). Under assumptions 1 to 7,
the following is true for the potential marginal benefit MB(ξ, ωi).

• The potential marginal benefit MB(ξ, ωi) of a signal attains strictly positive
values if and only if ξ > ξi, where ξi∈ (0,∞) is investor specific in ωi but

independent of ξ and uniquely solves MB(ξi, ωi) = 0 given R∈(0,∞).

• If ξi < ξ then, in the range ξ∈ [ξi, ξ], the marginal benefit MB(ξ, ωi) strictly
monotonically increases in ξ and is unbounded for arbitrarily large ξ.

Proof. See appendix F.

Similar to proposition 3, proposition 7 shows that there is always a market size
x̄, or a degree of risk aversion A, or a level of the prior mean-variance ratio of the
risky asset β̄ behind ξ so that, for any investor i with endowment ωi, at least one
costly signal becomes worthwhile to acquire in equilibrium. However, incentives
for information acquisition vary with risky asset endowments.

Figure 7 depicts four sections of the graph in Figure 6, along individual
marginal benefit schedules MBi, for four relative risky asset endowments ωi.
These sections could represent an economy with eleven investors, for instance,
where eight investors hold ωi = 1/8 and one investor each holds ωi = 0, ωi = 1
and ωi = 8.

Information demand is intricately tied to investors’ risky asset endowments in
RICE. As proposition 8 below will confirm formally, there is a single dominant
investor with an above-average endowment of the risky asset. This dominant
investor’s marginal valuation of signals dominates everyone else’s valuation so
that she single-handedly determines the information market outcome. In the
sample economy of Figure 7, the average investor κ with ωκ =1 has the strongest
incentive for information acquisition among eleven investors and continues to
acquire signals until the expected relative excess return ξ is diminished into a
neighborhood around ξ∗κ. All other investors would stop acquiring signals earlier:
at some expected relative excess returns ξ∗ω > ξ∗κ. The dominant investor κ’s
endowment revaluation effect is so strong that the individual marginal signal
benefit MBκ never turns negative for any level of the expected relative excess
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Figure 7: Information equilibrium for investors with heterogeneous en-
dowments

return ξ. Proposition 8 will show that the dominant investor is to be found in
an open set of investors with endowments of ωκ =1 and above.

However, for investors outside the open set of endowments of ωκ = 1 and
above, the individual marginal signal benefit MBi can turn strictly negative even
in the presence of the endowment revaluation effect. Figure 7 shows for ωi =1/8
and ωi = 8, for instance, that the individual marginal benefit schedules MBi

dip into the strictly negative range below some minimal expected relative excess
return ξi. For these investors, the endowment revaluation effect of information
does not generally outweigh the utility loss from a diminishing excess return. So,
when the distribution of risky asset endowments is very unequal so that many
investors hold risky asset endowments far from average, the dominant investor’s
information choice may inflict a strict negative externality on a majority of in-
vestors. If, on the other hand, investors’ risky asset endowments are distributed
closely around the market average, the endowment revaluation effect makes sig-
nals similarly valuable to all investors.
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The preceding sections 4 and 5 considered a sole owner j of the risky project
with ωj = I but ignored her incentives for information acquisition. The upper
left and lower right graphs in figure 2 exemplify (for a sample economy with
I = 8 investors, seven of whom hold ωi = 0 while one owns ωj = I = 8 ) that a
sole owner may not value signals. In fact, the marginal signal benefit approaches
negative infinity for the sole owner of a risky project as her relative risky asset
endowment ωj (the project size Ix̄) increases for a given average endowment x̄
(claim 4 in appendix G).

The individual marginal benefit of a signal in equation (18) involves the ex-
pected relative excess return ξ and investor i’s relative risky asset endowment ωi

in non-algebraic ways. Accordingly, proposition 8 can only state results for inter-
vals of endowments. Characteristics of the individual marginal benefit MB(ξ, ωκ)
in these intervals determine key properties of RICE when risky asset endowments
are heterogeneous.

Proposition 8 (Dominant Investor Valuation of Signals). Under assumptions 1
through 7, a RICE has the following properties for any R∈(0,∞).

• For any investor i with relative risky asset endowment ωi ∈ [0, I], there
exists a market environment ξ > ξi so that investor i acquires at least one

costly signal in equilibrium (c>0), where ξi > |ωi−1|
√

1 + 1/R−ωi solves

MB(ξi, ωi) = 0.

• The individual marginal signal benefit MB(ξ∗, ωκ) is maximal in equilib-
rium for a unique dominant investor κ with relative risky asset endowment
ωκ

max MB ∈ (1, 1 + R(1 + ξ)). This investor determines the total number
of signals

∑I
k=1 Nk,∗ in equilibrium and diminishes expected relative excess

return to ξ∗.

• The individual marginal benefit MB(ξ∗, ωi) at expected relative excess re-
turn ξ∗ is strictly positive in an open interval Ω+ of risky asset endowments
that includes [1, ωκ] ⊂ Ω+.

• If the cost of a signal is strictly positive, then the market equilibrium for
signals is unique up to a permutation of the signal allocation.

• If the cost of a signal is nil but R>0, and if there is at least one investor
with a risky asset endowment ωi ∈ [1, ωκ], then the unique signal market
equilibrium involves an infinite amount of freely received signals.

Proof. See appendix G.
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There is a unique investor, with relative risky asset endowment ωκ
max MB ∈

(1, 1 + R(1 + ξ)) for whom the incentives to acquire information strictly exceed
those of any other investor. For investors with relative risky asset endowments
below or above ωκ

max MB, the diminishing effect of signals on the expected excess
return ξ weighs more heavily and the endowment revaluation effect does not
provide as strong an incentive for information acquisition. So, the investor with
relative risky asset endowment ωκ

max MB determines the information market out-
come. This investor κ will continue acquiring signals and diminish the expected
relative excess return ξ until the total number of signals

∑I
k=1 Nk,∗ satisfies her

first-order condition (18) for signal demand.
Investors with endowments in an open interval around [1, ωκ] strictly benefit

from investor κ’s additional information choice since their marginal utility benefit
of signals is strictly positive and they do not have to pay for the public good.
However, information acquisition creates a two-group society of investors. The
endowment revaluation effect of more signals strictly outweighs the diminishing
effect on the expected excess return ξ for a first group of investors in an open set
Ω+ of relative risky asset endowments (which includes [1, ωκ] ⊂ Ω+). Given the
choice of free signals, they would remove all uncertainty from the market—just to
enjoy the endowment revaluation. It remains a question for further research how
the cost of information acquisition would have to relate to endowment effects to
prevent unbounded information acquisition. For the second group of investors,
endowments are either too small or too large so that the diminishing effect on
the expected excess return starts to outweigh the endowment revaluation effect
at some small enough ξ. This second group suffers a strict negative externality
on their ante notitias utility from the rush to information of the first group of
investors.

7 Related Literature

Radner (1979) and Allen (1981) lay the grounds for REE under fully or partly re-
vealing prices. These papers and a series of further contributions establish that a
fully revealing rational expectations equilibrium at Wall Street generically exists
for real assets (Jordan 1982, Citanna and Villanacci 2000a) in the absence of in-
formation acquisition (but not necessarily for nominal assets, Rahi 1995). Wang
(1993) and several other authors (e.g. Einy, Moreno and Shitovitz 2000, Citanna
and Villanacci 2000b) investigate the informational properties of REE—that is,
how partly or fully revealing prices aggregate exogenously available informa-
tion. Easley and O’Hara (2004) analyze how differential information affects asset
prices. However, these papers stop short of investigating the resulting incentives
for investors to acquire information in the first place.
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Grossman and Stiglitz (1980) introduce the acquisition of financial informa-
tion into Walrasian REE. While they refute the existence of a joint equilibrium in
signal and asset markets when there is a continuum of investors, a well defined
joint signal and asset market equilibrium does exist in their model, as in any
model with additive signal-return distributions under CARA, for an arbitrar-
ily large but finite number of investors (Muendler 2004). Similarly, the present
model of rational Bayesian information choice under conjugate prior updating
has a well defined fully revealing equilibrium for a finite number of investors.

In a setting of market makers, rather than in Walrasian REE, Foster and
Viswanathan (1993) and Holden and Subrahmanyam (1996) give investors a
choice of information. Their equilibrium concept resembles the one of Gross-
man and Stiglitz (1980) in that investors have only a binary choice of becoming
informed or remaining uninformed. While disregarding the market making pro-
cess and returning to REE for tractability, the present model gives investors the
choice of a number of signals and thus allows for the derivation of a well defined
law of demand for financial information based on the marginal utility benefit of
signals.

Closely related recent papers of information acquisition in financial market
REE are Calvo and Mendoza (2000), who show that larger markets diminish gains
from information acquisition in the presence of short-selling constraints, Popper
and Montgomery (2001), who derive utility benefits from information sharing
among investors, and Veldkamp (2004), who shows that fixed costs of information
acquisition can cause alternating low-price equilibria with little information and
high-price equilibria with much information. Related also are earlier models by
Jackson (1991) with risk neutral investors who set price, by Jackson and Peck
(1999) with risk neutral investors who submit demand functions, and by Barlevy
and Veronesi (2000) with risk neutral investors in a Walrasian REE. However,
the marginal utility benefit of signals is zero for risk neutral Bayesian investors
by the Law of Iterated Expectations. This casts some doubt on the generality of
results in models with risk neutral investors.

The present expected utility model of financial information choice under con-
jugate prior signal-return distributions lends itself to revisiting four issues that
were the subject of prior approaches: Conditions for unbounded information
acquisition, the strategic complementarity of signals, the relationship between
information acquisition and market size, and the response of price precision to
information acquisition.

• Contrary to the Burguet and Vives (2000) result for risk neutral investors
that unbounded information acquisition is prevented if and only if the
marginal cost of information is positive, the present model yields an equi-
librium with a finite amount of information even if signals cost nothing.
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So, unbounded information acquisition is prevented if the marginal cost of
information is positive, but not only in this case. Moreover, bounded in-
formation strictly Pareto dominates unbounded information in the present
rational Bayesian model with incomplete markets. Only once the riskfree
bond becomes useless, wiping out the principal with certainty, do investors
prefer to remove all risk from a risky asset by receiving infinitely much
costless information.

• Being public goods (or bads depending on market conditions), signals are
perfect strategic substitutes in the present rational Bayesian model of in-
formation choice. This is in accordance with the Grossman and Stiglitz
(1980) and the Burguet and Vives (2000) frameworks. Considering values
of subsequent signals, rather than the strategic interaction of players, Ad-
mati and Pfleiderer (1987) call two signals complements (substitutes) if the
value of the second signal increases (decreases) after acquisition of the first
signal. Given partially revealing price Admati and Pfleiderer (1987) find
conditions for complementarity because more private signals improve the
precision of the posterior belief about a statistic of everyone else’s infor-
mation in asset price. Under fully revealing price as in the present paper,
acquired signals strictly reduce the marginal utility value of subsequent
signals.

• Grossman and Stiglitz (1980, conjecture 7) state that markets are thinner in
cases of very little or extremely much information. Foster and Viswanathan
(1993) consider a similar issue. In the present setup, one can turn the ques-
tion around and ask how the aggregate amount of information changes with
market size. The thinner markets are in the present rational information
choice model, that is the lower the average asset holdings per investor, the
less aggregate information is available in equilibrium.

• The response of the ante notitias precision of price to private information
varies in earlier models. Grossman and Stiglitz (1980) conjecture that
“the more individuals who are informed, the more informative is the price
system” but cannot confirm this conjecture because positive and negative
effects offset each other in their model, and informativeness of price remains
constant. Verrecchia (1982) confirms the conjecture in a competitive REE
under partially revealing price. The present rational information choice
model shows that the ante notitias precision of the price may rise or fall
with more information, depending on the amount of prior information.
From an ante notitias perspective, asset demand can become more volatile
with the anticipated arrival of information so that the expected allocative
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response of price may outweigh the expected informational role and a larger
volume of information may cause a loss of precision.

There is a large body of alternative approaches to investor behavior. Ben-
abou and Laroque (1992) and Avery and Zemsky (1998), to name but two con-
tributions, rationalize herding behavior in financial markets. Incentives for in-
formation acquisition have also been analyzed in abstract contexts of learning
and experimentation (Moscarini and Smith 2001, Bergemann and Välimäki 2002,
Cripps et al. 2005). However, none of those models can assign a rational marginal
utility value to signals in a market context since there is no anticipated REE re-
sponse of prices to signal realizations in these settings. Datta, Mirman and Schlee
(2002) consider a generalized optimal experimentation model in which signal re-
alizations are allowed to enter future payoffs directly, and not just through beliefs,
but do not explicitly account for equilibrium price responses to information. In
contrast, the present paper shows that both the asset market environment and
the distribution of risky asset endowments are intricately linked to the marginal
utility benefit of signals since signals alter ex ante expected equilibrium price
and thus change expected excess returns and endowment values.

8 Conclusion

This paper has shown that a well defined rational information choice equilibrium
(RICE) in asset markets exists for an extension of the standard expected utility
model of portfolio choice to signal acquisition. While the equilibrium on the
signal acquisition stage that precedes the asset market equilibrium involves vari-
ables in non-algebraic ways, key properties of RICE can nevertheless be derived.
Most importantly, RICE establishes a law of demand for financial information
by which the marginal utility benefit of an additional signal is strictly positive
if and only if investors are risk averse, supply of the risky asset is sufficiently
large, and the prior mean-variance ratio of the risky asset is sufficiently low. The
positive marginal utility benefit strictly falls in the number of signals.

Financial information not only changes its utility benefit with market condi-
tions. In reducing uncertainty, financial information raises expected asset price
and thus also affects investors’ portfolio positions ante notitias. So, the value of
signals is intricately linked to the distribution of risky asset endowments across
heterogeneous investors.

The rational Bayesian model of this paper can easily be generalized to a
model with a finite number of assets and conditionally independent signals on
individual asset returns. The realism and convenience of the Poisson-gamma pair
of distributions notwithstanding, several results in this paper carry over to other
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signal-return distributions such as the normal-normal pair. Any distribution
in the exponential family possesses both a moment generating function and a
conjugate prior distribution so that the framework of this paper generally applies
to distributions in the exponential family. However, the marginal utility benefit
of signals will depend on symmetry properties and higher moments of the asset
and return distributions.

More substantive variations and extensions remain for future work. They
include an analysis of information values in complete markets, an investigation
of partially revealing equilibrium, and the consideration of investors who engage
in strategic demand decisions to partly conceal their information. However, the
key driving force behind results in the present benchmark with fully revealing
asset price is the diminishing effect of information on an asset’s excess return
because a statistic of private signals is publicly inferrable from price. Neither
complete markets nor partially revealing equilibrium nor strategic investors can
make asset price completely uninformative, or else price would lose its entire
allocative function, so that information will continue to diminish excess returns
in those settings albeit in a mitigated manner.

36



Appendix

A Optimality conditions and portfolio value

Define t ≡ −Axi ∈ (−∞, 0) for the moment generating function (MGF) Mθ|Fi(t).
Maximizing (3) over xi and bi for CARA (assumption 2 and 4) yields the first-
order conditions

P

ρi
= H i M ′

θ|Fi(t) and
1

ρiR
= H i Mθ|Fi(t), (A.1)

where H i ≡ exp{−A[(1+R)bi + Pxi −W i
0 − cN i]}. Dividing the latter by the

former equation implies equation (5) in the text as a necessary condition. Note
that H i, W i

0, Ci
1 and Ci

0 are functions of F i since RP depends on F i.
With the definition of H i, the optimal portfolio value can be written

bi + Pxi = 1
1+R

(
W i

0 − cN i + RP xi − 1
A

ln H i
)

(A.2)

= 1
1+R

[
bi
0 + RP (xi

0/R + xi) + 1
A

ln ρiRMθ|Fi(−Axi)− cN i
]
,

where the second line follows from the bond first-order condition in (A.1).
The matrix of cross-derivatives for the two assets bi and xi reflects the second-

order conditions:

B = −A2ρi exp{−ARbi}
∣∣∣∣
R(1+R)Mθ|Fi(t) ·
(1+R)M ′

θ|F i(t) PM ′
θ|Fi(t) + M ′′

θ|Fi(t)

∣∣∣∣ (A.3)

by (A.1). If B is negative definite, a unique global utility maximum results.
Equivalently, we require−B to be positive definite and all upper-left sub-matrices
must have positive determinants. Since the upper-left entry in B is strictly
positive, negative definiteness of B is equivalent to

det(−B) = A4(ρi)2 exp{−2ARbi}R(1+R)
[
M ′′

θ|Fi(t)Mθ|Fi(t)−M ′
θ|Fi(t)2

]
> 0,

which in turn is equivalent to

M ′′
θ|Fi(t)

Mθ|Fi(t)
−

(
M ′

θ|Fi(t)

Mθ|Fi(t)

)2

> 0 (A.4)

since Mθ|Fi(t) > 0. This condition implies that M ′
θ|Fi(t)/Mθ|Fi(t) strictly mono-

tonically increases in t, or strictly monotonically decreases in xi for t ≡ −Axi.
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B Properties of the Poisson and gamma distri-

butions

Fact 1 in the text states how Poisson signals update beliefs about gamma dis-
tributed returns. This appendix lists further useful properties of Poisson and
gamma distributions

B.1 Poisson signals

Poisson distributed signals Si
n|θ i.i.d.∼ P(θ) have a density

f
(
si

n |θ
)

=

{
exp{−θ} θsi

n/si
n! for si

n > 0
0 for si

n ≤ 0

Fact 2 (Poisson MGF). The MGF of a Poisson signal is

MS|θ(t) = exp{θ(exp{t} − 1)}.
Proof. Casella and Berger (1990).

Fact 3 (Sum of Poisson signals). The sum of N independently Poisson dis-
tributed signals with a common mean and variance θ, S1 + ...+SN , has a Poisson
distribution with parameter Nθ.

Proof. The distribution of the sum of N independent Poisson variables is the
product ΠN

n=1f (si
n |θ ) = exp{−Nθ} θ

∑N
n=1 si

n/
∑N

n=1 si
n!, a Poisson distribution

with parameter Nθ.

B.2 Gamma returns

Given an individual investor i’s information set {αi, βi}, the risky asset return
is distributed θ ∼ G(αi, βi) so that its density is

π
(
θ
∣∣αi, βi

)
=

{
(βi)αi

θαi−1 exp{−βiθ}/Γ(αi) for θ > 0
0 otherwise

where the gamma function is given by Γ(αi) ≡ ∫∞
0

zαi−1e−z dz. The two param-
eters αi and βi must be positive.

Fact 4 (Gamma MGF). The MGF of a gamma distributed return is

Mθ|αi,βi(t) =

(
βi

βi − t

)αi

.

Proof. Casella and Berger (1990).
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C Sufficient and necessary conditions for fully

revealing price

Corollary 1.1 Suppose expected utility is CARA (assumptions 2 and 3), sig-
nals are Poisson distributed and the asset return is gamma distributed (assump-
tion 5). Then equilibrium price P fully reveals all market participants’ informa-

tion
∑I

i=1

∑N i

n=1 si
n in RICE if and only if

• signals are conditionally independent (assumption 1),

• investors know average prior beliefs, share a common degree of risk aversion
(assumption 4), know market size (assumption 6), and

• investors know the total number of all other investors’ signals
∑I

k=1 Nk at
the time of portfolio choice.

Proof. Proposition 1 establishes sufficiency. Necessity of assumptions 4 and 6
follows by inspection of the general solution for market price given individual

beliefs, based on heterogeneous priors, αi = ᾱi +
∑N i

n=1 si
n and βi = β̄i + N i, and

arbitrary degrees of risk aversion Ai:

RP =
1
I

∑I
i=1

αi

Ai

x̄ +
∑I

i=1
βi

Ai

=

(
1
I

∑I
i=1

ᾱi

Ai

)
+ 1

I

∑I
i=1

1
Ai

∑N i

n=1 si
n

x̄ +
(

1
I

∑I
i=1

β̄i

Ai

)
+ 1

I

∑I
i=1

1
Ai N i

.

If investors have a common degree of risk aversion Ai = A, only knowledge of
the average prior beliefs 1

I

∑I
i=1 ᾱi and 1

I

∑I
i=1 β̄i is necessary to make price fully

revealing.
Assumption 1 is necessary since investor i would not know the correlation

between RP and her signals if perfect copies or correlated signals had been sent
to other investors. If

∑I
k=1 Nk were unknown to investor i, she would not be

able to extract the sufficient statistic
∑I

k=1

∑Nk

n=1 sk
n from price.

D Bond return response to stock return infor-

mation

Taking logs of both sides of the bond first-order condition in (A.1) yields

A(1+R)bi − Abi
0 + AP (xi − xi

0) = ln[ρiRMθ|Fi(−A xi)] + AcN i,
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a permissible operation since ρi, R,Mθ|Fi(·) > 0 by their definitions. Summing
up both sides over investors i and dividing by their total number yields

ARb̄− ln ρiR− ln Mθ|Fi(t)− Ac
∑I

k=1 Nk/I = 0 (D.1)

where b̄ ≡ ∑I
i=1 bi

0/I is the average initial bond endowment per investor and t ≡
−Ax. Equation (D.1) implicitly determines the gross bond return R. Post noti-

tias, Mθ|Fi(t) and R respond to the signal realization. Define s̄ ≡ ∑I
k=1

∑Nk

n=1 sk
n.

Applying the implicit function theorem to (D.1) for the MGF of the gamma
distribution Mθ|α,β(t) = [β/(β − t)]α yields

dR

ds̄
= − ln(1 + ξ)

Ab̄− 1/R

for α = ᾱ + s̄, β = β̄ +
∑I

k=1 Nk by (10) and ξ = Ax̄/β given
∑I

k=1 Nk. The
bond return falls in response to a favorable signal realization s̄ iff b̄ > 1/(AR).
So, in principle, R too is a function of the signal realization s̄. For large bond
endowments b̄, however,

lim
b→∞

dR/ds̄ = 0.

Similarly, dR/ds̄ = 0 for ξ = x̄ = 0.

E Ante notitias expected indirect utility

The following property of the Poisson-gamma signal-return distributions proves
useful for the derivation of ante notitias expected indirect utility.

Fact 5 (Expected signal effect on utility). For two arbitrary constants B and ξ,
N̄ Poisson distributed signals S1, ..., SN̄ and a conjugate prior gamma distribution
of their common mean θ, the following is true:

Eante


(1 + ξ)

−B·
N̄∑

n=1
sn · exp

{
− ξ(ωi−1)

1+ξ
B ·

N̄∑
n=1

sn

}


= (1 + ξ)ᾱB exp
{

ᾱ ξ(ωi−1)
1+ξ

B
}(

1 +
[
(1 + ξ)B exp

{
ξ(ωi−1)

1+ξ
B

}
− 1

]
β
β̄

)−ᾱ

,

where ᾱ and β̄ are the parameters of the prior gamma distribution of θ, and
β = β̄ + N̄ is the according parameter of the post notitias distribution.
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Proof. By the Law of Iterated Expectations Eante [·] = Eθ [E [· |θ ]]. The ‘inner’
expectation E [· |θ ] is equal to

E [· |θ ] =
∑∞

(
∑N̄

n=1sn)= 0
(1 + ξ)

−B
N̄∑

n=1
sn

exp

{
− ξ(ωi−1)

1+ξ
B

N̄∑
n=1

sn

}
f

(∑N̄
n=1 sn

)

= exp
{
−N̄θ

(
1− (1 + ξ)−B exp

{
− ξ(ωi−1)

1+ξ
B

})}
,

because the sum
∑N̄

n=1 sn is Poisson distributed with mean N̄θ (fact 3). Thus,
by the MGF of a gamma distribution (fact 4),

Eante [·] = Eθ

[
exp

{
−θ

(
1− (1 + ξ)−B exp

{
− ξ(ωi−1)

1+ξ
B

})
(β − β̄)

}]

= (β̄)ᾱ
(
β̄ +

(
1− (1 + ξ)−B exp

{
− ξ(ωi−1)

1+ξ
B

})
(β − β̄)

)−ᾱ

.

since N̄ = β − β̄ (fact 1). Simplifying the last term and factoring out (1 +

ξ)B exp{ ξ(ωi−1)
1+ξ

B} proves fact 5.

For a gamma distributed asset return, post notitias expected indirect utility
(6) becomes

Ei [U i∗] = −δi exp
{−A R

1+R
(W i

0 − cN i)
}

exp
{

ξ(ωi−1)
1+ξ

}− αi

1+R
(1 + ξ)−

αi

1+R (E.1)

where ωi ≡ xi
0/x̄ ∈ [0, I] is the relative endowment of investors with the risky

asset, and ξ ≡ Ax̄/β. With fact 5 at hand, one can set B ≡ 1/(1 + R) (by
assumption 7) and obtains ante notitias expected utility (14) for ωi = 0 and (17)
for arbitrary ωi ∈ [0, I].

F Monotone marginal signal benefit schedule

(proof of propositions 3 and 7)

Define the relative endowment of investors with the risky asset as ωi ≡ xi
0/x̄ ∈

[0, I]. The expected relative excess return ξ is bounded by ξ ∈ (0, ξ]. Under
assumptions 1 through 7, the potential marginal benefit MB(ξ, ωi) of a signal is
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MB(ξ, ωi) = g(ξ, ωi)/h(ξ, ωi) by (18) with

m(ξ, ωi) ≡
[
(1 + ξ) exp

{
ξ(ωi−1)

1 + ξ

}] 1
1+R

, (F.1)

h(ξ, ωi) ≡ 1 +
[
m(ξ, ωi)− 1

] ξ

ξ
, (F.2)

g(ξ, ωi) ≡ −ξ2

ξ

∂h(ξ, ωi)

∂ξ
= m(ξ, ωi)

(
1− 1

1+R

ξ(ξ+ωi)

(1 + ξ)2

)
−1. (F.3)

Proposition 3 is a special case of proposition 7 for ωi = 0. The proof of
proposition 7 proceeds in four steps.

First, claim 1 sates useful properties of m(ξ, ωi) for the discussion of g(ξ, ωi)
and h(ξ, ωi). Second, claim 2 establishes that the numerator g(ξ, ωi) strictly
increases in ξ for ξ > |ωi−1|

√
1 + 1/R − ωi and that it is not bounded above.

So, the numerator boosts the marginal benefit MB(ξ, ωi) higher and higher as
ξ rises. Third, claim 3 establishes that the denominator h(ξ, ωi) is bounded
below and above in the positive range, and that it strictly decreases in ξ iff the
numerator is strictly positive. So, the denominator cannot explode and boosts
the marginal benefit MB(ξ, ωi) higher where the potential benefit MB(ξ, ωi) is
positive. The latter two claims imply that MB(ξ, ωi) strictly increases in ξ for
ξ > |ωi−1|

√
1 + 1/R− ωi and that MB(ξ, ωi) is unbounded for arbitrarily large

ξ. So, fourth and last, MB(ξ, ωi) ultimately attains strictly positive values and
continues to strictly increase in that positive range.

Claim 1 m(ξ, ωi) strictly increases in ωi; m(0, ωi) = 1; and m(ξ, ωi) > 1 for
any ξ > 0, ωi ≥ 0 and R∈(0,∞).

Proof. By (F.1), ∂m(ξ, ωi)/∂ξ = m(ξ, ωi)ξ/(1 + ξ) > 0, which establishes the
first part of the claim.

Taking natural logs of both sides of (F.1) is permissible since m(ξ, ωi) > 0
and shows that m(ξ, ωi) ≥ 1 iff ln(1 + ξ) ≥ −ξ(ωi−1)/(1 + ξ). Since m(ξ, ωi)
strictly increases in ωi, consider ωi = 0. So, m(ξ, 0) ≥ 1 iff ln(1+ ξ) ≥ ξ/(1 + ξ).
Note that equality holds at ξ = 0 but ln(1 + ξ) increases strictly faster in ξ than
ξ/(1 + ξ) increases in ξ for any ξ > 0. So, m(ξ, 0) ≥ 1. Since m(ξ, ωi) strictly
increases in ωi, m(ξ, ωi) ≥ 1.

Claim 2 g(ξ, ωi) strictly increases in ξ iff ξ > |ωi−1|
√

1 + 1/R−ωi. In addition,
limξ→0 g(ξ, ωi) = 0 and limξ→∞ g(ξ, ωi) = +∞.
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Proof. The first derivative of g(ξ, ωi) with respect to ξ is

∂g(ξ, ωi)

∂ξ
=

ξ

(1+R)2(1+ξ)4
m(ξ, ωi)

[
R(ξ + ωi)2 − (1+R)(ωi − 1)2

]
.

So, ∂g(ξ, ωi)/∂ξ = 0 at ξ = 0 and at ξ = |ωi−1|
√

1 + 1/R − ωi (the negative
root is ruled out by ξ ≥ 0). Evaluating ∂g(ξ, ωi)/∂ξ = 0 around the zero points
shows that g(ξ, ωi) strictly decreases in ξ if ξ ∈ (0, |ωi−1|

√
1 + 1/R − ωi) and

strictly increases if ξ ∈ (|ωi−1|
√

1 + 1/R− ωi,∞).
limξ→0 g(ξ, ωi) = m(0, ωi) − 1 = 0 by claim 1. limξ→∞ g(ξ, ωi) = −1 +

limξ→∞ exp{ξ/(1 + R)} = +∞ since R∈(0,∞).

Claim 2 implies that there must be a ξi > |ωi− 1|
√

1 + 1/R − ωi that

uniquely solves g(ξi, ωi) = 0 because g(ξ, ωi) strictly decreases as long as ξ <

|ωi−1|
√

1 + 1/R− ωi) but subsequently strictly increases in ξ.

Claim 3 h(ξ, ωi) strictly decreases in ξ iff g(ξ, ωi) > 0. h(ξ, ωi) is bounded in
h(ξ, ωi) ∈ (1, h(ξi, ωi)] for ξ ∈ (0, ξ] and R ∈ (0,∞), where h(ξi, ωi) > 1, ξ is

given by (13) and ξi solves g(ξi, ωi) = 0.

Proof. By (F.3), ∂h(ξ, ωi)/∂ξ < 0 iff g(ξ, ωi) > 0. So, h(ξ, ωi) attains its
global maximum at ξi, which solves g(ξi, ωi) = 0, and h(ξ, ωi) attains its global
minimum either for ξ → 0 or for ξ →∞. By L’Hôpital’s rule, limξ→0 m(ξ, ωi)/ξ−
1/ξ = 0 so limξ→0 h(ξ, ωi) = 1. Similarly, for R ∈ (0,∞), limξ→∞ h(ξ, ωi) = 1
while limξ→∞ h(ξ, ωi) = 1 + ξ exp{ωi − 1} for R → 0. This establishes that
h(ξ, ωi) ∈ (1, h(ξi, ωi)] for ξ ∈ (0, ξ].

Claims 2 and 3 imply that MB(ξ, ωi) strictly increases in ξ for ξ > |ωi−
1|

√
1 + 1/R − ωi and that MB(ξ, ωi) is unbounded for arbitrarily large ξ. So,

MB(ξ, ωi) attains strictly positive values if and only if ξ > ξi, where ξi > |ωi−
1|

√
1 + 1/R − ωi solves g(ξi, ωi) = 0, and ξi ∈ (0,∞) is independent of ξ and

unique given R∈(0,∞).

G Dominant investor valuation of signals (proof

of proposition 8)

Define the relative endowment of investors with the risky asset as ωi ≡ xi
0/x̄ ∈

[0, I]. The expected relative excess return ξ is bounded by ξ ∈ (0, ξ]. Under
assumptions 1 through 7, the potential marginal benefit MB(ξ, ωi) of a signal is
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MB(ξ, ωi) = g(ξ, ωi)/h(ξ, ωi) by (18) with h(ξ, ωi) and g(ξ, ωi) given by (F.3)
and (F.2).

The first statement of proposition 7 follows immediately from appendix G
where a general proof of proposition 8 for any ωi is given. Uniqueness is an
implication of the second statement in proposition 7. The proof of the remainder
of proposition 7 draws on properties of g(ξ, ωi) and h(ξ, ωi), which claims 4 and 5
establish. Claim 6 evaluates the potential marginal benefit MB(ξ, ωi) of a signal
at ωi = 1. Together, these insights give rise to the remaining statements in
proposition 7.

Claim 4 g(ξ, ωi) strictly decreases in ωi iff ωi > 1 + R(1 + ξ). In addition,
limξ→∞ g(ξ, ωi) = −∞.

Proof. The first derivative of g(ξ, ωi) with respect to ωi is

∂g(ξ, ωi)

∂ωi
=

1

1+R

ξ2

(1+ξ)2
m(ξ, ωi)

[
R(1 + ξ)− (ωi − 1)

]
,

where m(ξ, ωi) is given by (F.1). So, ∂g(ξ, ωi)/∂ωi = 0 at ωi = 1 + R(1 + ξ).
Evaluating ∂g(ξ, ωi)/∂ξ = 0 around this unique zero point shows that g(ξ, ωi)
strictly increases in ωi if ωi ∈ [0, 1 + R(1 + ξ)) and strictly increases if ωi ∈
(1 + R(1 + ξ), I]. So, limωi→∞ g(ξ, ωi) = −∞ for R∈(0,∞) and ξ∈(, ξ].

Claim 5 h(ξ, ωi) strictly increases in ωi and is strictly convex in ωi at any ξ > 0.

Proof. The first and second derivatives of h(ξ, ωi) with respect to ωi are

∂h(ξ, ωi)

∂ωi
=

1

1+R

ξ

1+ξ
m(ξ, ωi) > 0

and
∂2h(ξ, ωi)

∂(ωi)2
=

1

1+R

ξ

1+ξ

∂h(ξ, ωi)

∂ωi
> 0.

Claim 6 The potential marginal benefit MB(ξ, 1) is strictly positive at ωi = 1 for
ξ >0,R>0. At ωi = 1, the potential marginal benefit MB(ξ, 1) strictly increases
in ωi.
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Proof. At ωi = 1, MB(ξ, 1) > 0 iff

1
1+R

ln(1 + ξ) > − ln
(
1− 1

1+R
ξ

1+ξ

)
.

Note that equality holds at ξ = 0 but the left-hand side increases strictly faster
in ξ (it increases by 1/(1+R)(1+ξ)) than the right-hand side increases (which
increases in ξ by 1/(1+ξ)2[1+R− ξ/(1+ξ)]) for any ξR > 0. So, MB(ξ, 1) > 0.

The first derivative of MB(ξ, ωi) with respect to ωi is

∂MB(ξ, ωi)

∂ωi
=

(
∂g(ξ, ωi)/∂ωi

g(ξ, ωi)
− ∂h(ξ, ωi)/∂ωi

h(ξ, ωi)

)
MB(ξ, ωi).

So, ∂MB(ξ, ωi)/∂ωi > 0 at ωi = 1 iff

(
∂g(ξ, ωi)/∂ωi

g(ξ, ωi)

/
∂h(ξ, ωi)/∂ωi

h(ξ, ωi)

)∣∣∣∣∣
ωi=1

> 1 (G.1)

since h(ξ, ωi) > 1 by claim 3 and ∂h(ξ, ωi)/∂ωi > 1 by claim 5 for ξ>0. A round
of simplifications shows that inequality (G.1) is equivalent to

ξ(ξ + ξR) > ξ(1+R)
[
(1+ξ)

1
1+R − 1

]
.

Note that this condition holds with equality at ξ = 0 but the left-hand side
increases strictly faster in ξ (it increases by ξ(1+2Rξ/ξ) > ξ) than the right-hand

side increases (which increases in ξ by ξ(1+ξ)−
1

1+R < ξ). So, ∂MB(ξ, 1)/∂ωi > 0.

These claims help establish the second and third statements of proposition 7.
g(ξ, ωi) attains its unique maximum in ωi at ωi = 1 + R(1 + ξ) by claim 4
while h(ξ, ωi) strictly increases in ωi but is convex. So, MB(ξ, ωi) must attain
its global maximum for some ωκ < 1 + R(1 + ξ) given ξ. At ωi = 1, MB(ξ, 1)
strictly increases. This proves the second statement that MB(ξ, ωi) must attain
its unique global maximum for some ωκ ∈ (1, 1+R(1+ ξ)). The third statement
that MB(ξ, ωi) > 0 in an open interval Ω+ that includes [1, ωκ] ⊂ Ω+ follows
because MB(ξ, ωi) is strictly positive and strictly increases at ωi = 1 for any
ξ > 0. So, MB(ξ, ωi) > 0 in an open interval around ωi = 1. MB(ξ, ωκ) is
maximal at ωκ so that the open interval Ω+ must in fact extend to [1, ωκ] ⊂ Ω+.
These facts at hand, the fourth and fifth statements of proposition 7 become
corollaries of proposition 3.
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