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Abstract 

In this paper we present DevLex-II, a self-organizing neural 
network model of early word production. It consists of three 
self-organizing feature maps (a semantic layer, a phonological 
layer and a phonemic layer) that are connected via associative 
links trained by Hebbian learning. We use this model to 
simulate the early stages of lexical acquisition in children. 
The simulating results indicate a number of important effects 
in determining the timing and function of children’s word 
production, such as word frequency and word length effects. 
In addition, results from lesioned models indicate 
developmental plasticity in the network’s recovery from 
damage. Plasticity occurs at early stages, and changes with 
time in a non-monotonic and nonlinear fashion. These 
simulated patterns are due to the nonlinear dynamic properties 
of the network and match up with data from empirical studies 
of children.    

Introduction 
While many previous models of language acquisition 

have used back-propagation as the standard algorithm, in 
our work we have explored self-organizing neural network 
as a cognitively and neurally plausible model of language 
acquisition (Li, 2003; Li, Farkas, & MacWhinney, 2004). In 
this paper we present DevLex-II, an extension of the 
DevLex model as discussed in Li et al. (2004). The DevLex 
model has been applied to account for phenomena in early 
lexical development, including category formation, lexical 
confusion, and age of acquisition. The extended DevLex-II 
has been applied to simulate ‘vocabulary spurt’, a sudden 
and rapid increase in children’s early productive vocabulary 
around 18 months of age (Li, Zhao, & MacWhinney, 2005). 
We have been able to model the emergence of vocabulary 
spurt as a function of a number of parameters, including 
verbal short-term memory and associative capacity. In this 
paper, we follow up on the initial findings to further 
examine patterns of early word production, in three respects: 
(a) word-frequency and word-length effects, (b) children’s 
early pronunciation errors, and (c) the recovery from brain 
injury for early word learning. 

First, word frequency and word length are two important 
variables that have been extensively studied in 
psycholinguistic research. Empirical studies show that token 
frequency and length of words determine the latency of a 
variety of tasks such as naming and lexical decision in adult 

language (Jescheniak and Levelt, 1994). Recent research 
indicates that these lexical properties may also affect lexical 
development in early child language: in particular, the age 
of acquisition of words may be correlated with the 
frequency of words in parental input (Storkel, 2004). In this 
study, we attempt to identify through modeling how 
frequency and length of words affect the time course of 
lexical acquisition. 

Second, in the course of modeling early word production, 
we compare the performance of the model with empirical 
data in terms of word pronunciation. It is well known that, 
compared with the adult lexical forms, children’s early 
speech involves omission, substitution, addition or 
reduplication of certain sounds or syllables. These patterns 
often show great individual variations and reflect children’s 
lack of full mastery of articulatory programs at early stages 
of learning (Menn & Stoel-Gammon, 1993). Study of these 
errors at different ages can provide us with insights into the 
development of children’s phonological abilities.  One goal 
of the current study is to see if our model displays error 
patterns similar to those observed with children and to 
identify cognitive mechanisms underlying the errors. 

Third, significant progresses have been made in the 
understanding of language development and its neurological 
underpinnings through research with children who suffer 
from brain injuries that are different in size, location, onset 
age, and so on (Bates 1999; Bates & Roe, 2001; Vargha-
Khadem, Isaacs, & Muter 1994). Researchers have also 
attempted to simulate developmental language disorders 
using connectionist nets (Marchman 1993; Thomas & 
Karmiloff-Smith, 2002). Empirical studies show that, 
children with early brain injury can go on to acquire 
linguistic abilities within normal range, whereas similar 
lesions in adults produce dramatic patterns of aphasia (Bates 
& Roe, 2001).  These data provide evidence supporting a 
general view that great plasticity is an early privilege 
(Thomas, 2003). However, how plasticity changes with time 
is a complex problem and is still unclear. Bates and 
colleagues have argued that the shape of the function is not 
monotonic (Bates, 1999; Bates & Roe, 2001).  In this study, 
we hope to shed some light on the issue by observing 
network performance and its ability to recover under various 
lesion conditions. 
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The Model  

A Sketch of the Model 
The DevLex-II model is based on the DevLex (Li, Farkas, 
& MacWhinney, 2004) and the DISLEX model 
(Miikkulainen, 1997). Figure 1 presents a diagrammatic 
sketch of the model. The model has three basic levels for the 
representation and organization of linguistic information: 
Phonemic sequence, phonology, and semantics of the 
lexicon. At the core of the model is a self-organizing, 
topography-preserving, feature map (Kohonen, 2001), 
which processes semantic information of words (meaning). 
This feature map is connected to two other feature maps, 
one for the processing of the sound structure of words 
(phonology), and another for the phonemic sequences of 
words (phonemes). 

 
 

Figure 1:  The DevLex-II model of lexical development.  
 

Upon training of the network, the meaning, phonology, 
and phonemic sequence of a word are presented to and 
processed by the network. This process can be analogous to 
the child’s analysis of a word’s semantic, phonological, and 
phonemic information upon hearing a word. On the 
semantic and phonological levels, the network forms 
representational patterns of activation according to standard 
self-organizing map algorithms (Kohonen, 2001). Here, a 
SOM is a two-dimensional square lattice with a set of 
neurons, and each neuron k on the level has an input weight 
vector km  associate with it. Given a stimulus x, the 
localized output response of neuron k is computed as： 

 

 

Where Nc is the set of neighbors of winner c (ac = 
maxk{ak}), dmin and dmax are the smallest and the largest 
Euclidean distances of x to node’s weight vectors within Nc. 

The phonemic level works in a slightly different way 
from the other two levels. The addition of this level is 
inspired by models of word learning based on temporal 

sequence acquisition (e.g. Gupta & MacWhinney 1997). It 
is designed to simulate the challenge that children face 
during the second year when they need to develop better 
articulatory control of phonemic sequences of words. Just 
like the learning of auditory sequences requires the 
mediation of memory systems, the learning of articulatory 
sequences may involve support from the articulatory loop of 
the working memory (e.g. immediate serial recall; Gupta & 
MacWhinney, 1997). In our implementation of this idea, the 
activation pattern corresponding to the phonemic sequence 
of a word is formed according to the algorithms of 
SARDNET (James & Miikkulainen, 1995). At each training 
epoch, phonemes of a word are input into the map 
sequentially according to their order of occurrence in the 
word. The winner of each phoneme is found, and the 
responses of nodes in its neighborhood are adjusted. Once a 
node becomes the winner of an input, it is made ineligible to 
respond to the subsequent inputs in the sequence. This way, 
same phonemes in different locations of a word will be 
mapped to different nodes in the map. In addition, when the 
output status of the current winner and its neighbors is 
adjusted, the winners responding to previous phonemes 
before the current phoneme will be affected by a factor dγ , 
where d is the distance between the location of the current 
phoneme and the previous phoneme that occurred in the 
word. This process can be used to represent the effect of 
short-term verbal memory during the learning of articulatory 
sequences. The factor should be less than 1 (0.8 in our case), 
as the effect should decay with time. One can consider this 
decaying effect as reflecting the decay of strength in the 
phonological memory of phonemes in children’s word 
learning. So for a word with l phonemes, the output of the 
winner responding to the jth phoneme will be 1 + γ  + 2γ  
+……+ l jγ − , which is a geometric progression, and can be 
written as: 

 
According to this equation, when all phonemes’ 

representations of a word are sent to the phonemic map, the 
activation of some nodes (e.g., the first winner) will be 
larger than 1, so they need to be normalized between 0-1. 
With the identification of winners on each SOM level, 
weights of nodes around these winners are updated (self-
organized) as: 

 
Here, α(t) is learning rate, which changes with time. 
In DevLex-II, the activation of a word form can evoke the 

activation of word meaning via form-to-meaning links (to 
model word comprehension) and the activation of word 
meaning can cause the formation of phonemic sequence via 
meaning-to-phoneme links (to model word production). 
Simultaneously with input weight change, the weights of 
associative links between the features maps are trained by 
Hebbian Learning, and the associative weight vectors are 
then normalized. 
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Input Representations  
To model early lexical acquisition by children, we used as 
our basis the vocabulary from CDI, the MacArthur-Bates 
Communicative Development Inventories (Dale & Fenson, 
1996). From the Toddler’s List, we extracted 591 words (the 
original Toddler’s List contains 680 words; we excluded the 
homographs and homophones, word phrases, and 
onomatopoeias from our analysis). 

The phonological input representations of the 591 words 
were generated by PatPho, a generic phonological pattern 
generator for neural networks (Li & MacWhinney, 2002). A 
left-justified template with 114 dimensional binary encoding 
was adopted. The semantic representations of these same 
words were generated by WCD, a word co-occurrence 
detector that learns the lexical co-occurrence constraints of 
words. It reads through a stream of input sentences (one 
word at a time) and learns the transitional probabilities 
between words which it represents as a matrix of weights. 
The input sentences were from the parental input of the 
CHILDES corpus, which contains the speech transcripts 
from child-directed adult speech in CHILDES 
(MacWhinney, 2000). Finally, like in PatPho, we 
represented the 38 phonemes by vectors based on 
articulatory features of the phonemes.  

Simulation parameters 
In DevLex-II, the phonological map or the semantic map 

each consists of 60 x 50 nodes, and the phonemic map 
consists of 15 x10 nodes. These numbers were chosen to be 
large enough to discriminate among the words and 
phonemes in lexicon, while keeping the computation of the 
network tractable. The same learning rate α(t) and the same 
radius of winner’s neighborhood were used for all feature 
maps, and they change with time. The training process had 
two phases: the ordering phase and the convergence phase. 
Learning rate α(t) was initially set as 0.4, then linearly 
decreased to 0.05 during the first 50 epochs (ordering phase). 
In the next 50 epochs (convergence phase), it remained at 
0.05. At the same time, the neighborhood radius reduced 
from 3 to 0 and then remained at 0 until the end of training. 
Learning rate β for associative links between levels was kept 
constant at 0.1 during the whole training process.   

At each epoch, words from the training lexicon were 
presented to the network one by one. To simulate the effect 
of word frequency in early child language, the network 
chose a word each time according to its frequency of 
occurrence in the parental CHILDES corpus. Since word 
frequency distributions follow Zipf’s law, we calculated the 
logarithms of the frequencies to force a more even 
distribution of words in the input. 

An additional parameter ‘connection probability’ was 
introduced to the model to simulate individual differences in 
the development of associative abilities. Here, initially, two 
feature maps are not fully but only partially connected by 
associative links. The ratio of the number of connected links 
to the number of all possible links between two maps is 
defined as connection probability. The connection 

probability was set to linearly increase with time from a low 
threshold θ (<1.0) to full connectivity (1.0), as opposed to 
full connectivity throughout in the unmodified model. 

Results and Discussion 

Word-frequency and Word-length effects  
In our model, word frequency of the training vocabulary is 
determined by how frequently the words occur in the 
CHILDES transcripts. Word length is determined by the 
number of phonemes a word has. We divided frequency into 
three ranges, low (<10 times in the 2.7 million word corpus), 
medium (10-10000 times), and high (>10000 times), and 
word length into short (<=3 phonemes), medium (4-5 
phonemes), and long (>7 phonemes). The short words 
include mainly monosyllables, while the medium and long 
words are made up of two to three syllables.  

First we recorded the AoA of each word. AoA is defined 
in the model as the time (training epoch) at which a word is 
learned. We say that a word is learned in production, when a 
node in the semantic map can consistently activate a set of 
phonemes in sequence as winners of the input word in the 
phonemic map via the meaning-to-phoneme associative 
links. Then, we calculated the percentage of words acquired 
for each frequency or length level at each given epoch of 
training. The results are shown in Fig. 2. Clearly, acquired 
words of all frequency and length types show a rapid 
increase in vocabulary size around epoch 40. This 
vocabulary spurt phenomenon has been captured by the 
DevLex-II model and has been discussed by Li, Zhao & 
MacWhinney (2005). In Figure 2, we can see that the spurt 
curve is significantly dampened for low-frequency and long-
phoneme words, especially toward the mid-to-late stages of 
training. This shows that in our network short and high-
frequency words were learned more easily than long and 
low-frequency words.  

These findings suggest that in children’s early productive 
vocabulary short and high-frequency words are more likely 
to be acquired or will occur earlier than long and low-
frequency words. Although there has not been much 
empirical work on word frequency, length, and AoA in 
young children (in contrast to adult psycholinguistics work), 
a recent analysis by Storkel (2004) confirms the patterns in 
our model. Storkel made a linear regression analysis of 
nouns obtained from two databases, CDI and adult self-
ratings of AoA. She found that AoA of words in children’s 
early vocabulary are negatively correlated with word-
frequency, but positively correlated with word-length, such 
that children’s early acquired words are “higher in word 
frequency, and shorter in length than late acquired words” 
(Storkel, 2004).  

It is worth noting here that, when encountering long and 
low-frequency words, our network tended to produce wrong 
sequences or omit phonemes. Such patterns parallel 
children’s early speech errors and reflect the system’s poor 
short-term memory or lack of full articulatory control, 
which brings us to the next section. 
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 Figure 2:  Effects of (A) word frequency and (B) word 
length, based on 10 simulation runs. 
 

Word Production: Error Analyses 
Table 1 presents a list of typical examples from our 

network’s word productions at different training times. 
These errors parallel children’s early word pronunciations, 
such as omission of consonants at the end of a word (e.g., 
output to ‘bib’ at epochs 50, 60); deletion of a consonant in 
consonant clusters (e.g., outputs to ‘smile’ and ‘glue’ at 
epochs 60, 80 and 100); substitution of consonants with 
similar phonemes (e.g., /d/ in ‘bird’ is pronounced as /b/). 
These errors were due to (a) incomplete meaning-to-
phoneme links, and (b) incomplete sequence learning of 
phonemes. The similarity of the errors between our model 
and real children suggests that incompletely developed 
associative links and poor working memory for phonemic 
sequence may explain children’s failure to produce the 
correct sounds of words. 

Table 1 also shows other interesting results. For example, 
in two different simulation trials, responding to the word 
‘sock’, the system gave two different patterns of production 
error, the deletion of consonant /k/, and the substitution of it 
with /t/. Given that the simulation trials had the same 
parameters, this difference reflects individual differences in 

phonological development within and across children 
(Menn & Stoel-Gammon, 1993).  We can also track the 
development of the sound patterns from Table 1. At early 
stage of learning, our net’s productions were simple and 
often very different from the words’ real pronunciations, 
similar to children’s simplified patterns. During the middle 
and late stages of learning, our model’s output becomes 
more like real language with correct pronunciations. The 
amount of correct productions gradually increased. 
Although there were still production errors, they were closer 
to the target pronunciations and had typical error patterns as 
discussed above. The coexistence of correct and incorrect 
word pronunciations correspond to empirical patterns in 
children’s phonological development from babbling to word 
production (Menn & Stoel-Gammon, 1993).  

To summarize, at the beginning, our model can only 
pronounce simple, blurry sounds. With the emergence of 
self-organized structure on every layer, especially the 
phonemic layer, and the developing associative links, the 
system’s output resembles real words. The transition from 
wrong sequence, substitution, and omission of phonemes to 
correct pronunciation indicates that our model is able to 
capture developmental patterns in phonological acquisition 
with simple self-organizing principles. 

Effect of lesion and developmental plasticity 
To model the role of lesion in early lexical production, we 
added noise to the input connections of a chosen layer at a 
given training epoch. In particular, each input link’s weight 
has a certain probability to be multiplied by a random 
number uniformly distributed between 0 and 1. The 
probability level determines the size and severity of the 
lesion. For example, if it is 0.6, then approximate 60 percent 
of the input connections of a layer are damaged by 
stochastic noises. To simplify discussion, here we show 
only the results with the probability value at 1.  

Figure 3 presents vocabulary development at epoch 55 
(mid-stage). Both word comprehension and production rates 
decreased when lesion was introduced to the semantic layer. 
Some degree of recovery appeared in the model, but it was 
obvious that the network’s learning was delayed, as the final 
vocabulary size could not reach a normal level within the 
learning window. Similar results were obtained with other 
damaged layers, but only comprehension was affected when 
the phonological layer was lesioned, and only production 
was affected when the phonemic layer was lesioned. Our 
results are consistent with empirical studies that linguistic 
abilities may be delayed following brain injury (Bates & 
Roe, 2001). It also shows that the ability to organize 
semantic information is very important to the vocabulary 
development process. Without a well-structured semantic 
representation, the perceived phonological information of a 
word cannot be correctly projected to its semantic target; a 
jumbled semantic representation also cannot trigger proper 
word production.  

Young children with brain injury often recover well, but 
this plasticity changes with time. To investigate the develop- 
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Figure 3: Vocabulary development with semantic layer 
damaged.  
 
mental plasticity, we introduce lesions at different times to 
the network, and then calculate the final acquired 
vocabulary size. The results are shown in Figure 4. 

Generally, the final acquired vocabulary size of our 
network was larger when lesion occurred earlier than it was 
later. For both word comprehension and production the 
network recovered more easily from early damage than 
from late lesion. This pattern is consistent with the general 
pattern of developmental plasticity (Bates, 1999; Tomas, 
2003). However, our results suggest that it is not a simple 
monotonic decrease. The worst outcome for the final 
vocabulary size was not when damage occurred the latest 
(epoch=80), but when it occurred midway (epoch=40). This 
pattern resembles a kind of U-shaped change and is 
consistent with empirical evidence of children’s recovery 
from focal brain injury as discussed in Bates (1999). 
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Figure 4: Mean final size of productive vocabulary as a 
function of the onset time of lesion, based on five simulation 
runs.  

 
The developmental plasticity shown in our model is 

related to the nonlinear dynamic properties of the network. 
In particular, early on, on each layer, structures of different 
linguistic information have not been organized completely, 
and the associations between the layers are not strong 
enough to form fixed patterns. Thus, the whole system is in 
a dynamical unstable state. It is sensitive to small external 
changes and can adjust weights more easily, hence its ability 
to recover from damage. At later stages, the system reaches 
a dynamical stable state because clear patterns have formed 
on each layer and for associations between layers. The 
system is now robust to small external changes and becomes 
harder to adjust weights, and so if lesion occurs, complete 
recovery is more unlikely (see also Elman et al., 1996). 

With regard to the U-shaped pattern, the nonlinearity may 
reflect the complex dynamical competition of different 
factors in our neural network. In particular, when a large 
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lesion on semantic layer occurs, the structure on the layer is 
widely destroyed, but it is possible that at a later stage, some 
strong associations between semantic and phonemic layers 
are resilient to noise, leading to the pattern that a late-
occurring lesion (e.g., epoch 80) gives better recovery than 
lesions occurring midway (e.g., epoch 40). When lesion 
occurred mid-course, the recovery cannot take advantage of 
the cross layer associations because no strong associations 
have been formed, while at the same time the network’s 
sensitivity to large changes has dropped significantly. Thus, 
noise at epoch 40 has a more devastating effect as the 
network transitions from an unstable state to a stable state in 
the dynamical space.  

Conclusion 
There are three conclusions that we can draw from the 
simulated results of our self-organizing neural network. 

First, our model captures important empirical phenomena 
in children’s early word production. This ability is due to 
the simple computational principles of self-organization and 
associative learning built into DevLex-II. The simulations 
further attest to the utility of self-organizing neural nets as 
models of language acquisition. 

Second, our models shows that lexical acquisition 
depends on the interaction of many factors, including the 
self-organization of relevant linguistic information 
(phonological structure, phonemic sequence, and semantic 
organization), and the development of associations across 
the domains (form-to-meaning, meaning-to-form links). 
Word production errors may be due to poor structure in the 
representation, incomplete associations, or both.  

Third, our model shows that individual differences in 
lexical acquisition may be attributable to (a) input 
characteristics (such as frequency and length of words in the 
input), (b) associative capacity (see also Li, Zhao, & 
MacWhinney, 2005), and (c) delayed or damaged learning, 
which by itself is a joint function of the nonlinear dynamic 
interaction among timing, severity, and recoverability of 
lesion.  
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