
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Online MindReader Game Utilizing Weighted Hedging Trees

Permalink
https://escholarship.org/uc/item/5q37z8dt

Author
Elliott, Matthew

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5q37z8dt
https://escholarship.org
http://www.cdlib.org/

Online MindReader Game Utilizing Weighted Hedging Trees

A thesis submitted in partial satisfaction of the
requirements for the degree

Master of Science

in

Computer Science

by

Matthew Elliott

Committee in charge:

Professor Yoav Freund, Chair
Professor Sanjoy Dasgupta
Professor Kamalika Chaudhuri

2018

UNIVERSITY OF CALIFORNIA SAN DIEGO

Copyright

Matthew Elliott, 2018

All rights reserved.

The thesis of Matthew Elliott is approved, and it

is acceptable in quality and form for publication

on microfilm:

Chair

2018

iii

University of California San Diego

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vi

Acknowledgements . vii

Abstract . viii

Chapter 1 Introduction . 1
1.1 Matching Pennies . 1
1.2 Pre-Computer Implementations 2
1.3 Previous MindReader Work 4
1.4 The Modern MindReader 5

Chapter 2 Front End: Web Interface . 6
2.1 Main Menu . 6
2.2 Playing a Game . 8

2.2.1 Game Setup . 8
2.2.2 Competing Against the AI 9
2.2.3 Game Results and Scoreboard 11

2.3 Player Profile . 12

Chapter 3 Back End: Data Management 14
3.1 The gCloud Environment 14
3.2 Data Structures . 15
3.3 Data Analysis . 16

3.3.1 The Jupyter Framework 16
3.3.2 Simple Data Summary 17

3.4 Facebook API . 18

Chapter 4 AI Algorithm . 20
4.1 The JavaScript Files . 20
4.2 Algorithm Overview: AI.js 22
4.3 The Context Weighted Tree: TreeExperts.js 23
4.4 Updating the Context Tree: CtxTree.js 24

Chapter 5 Conclusion . 27
5.1 Future Work . 27
5.2 Contributing to MindReader 28

iv

Bibliography . 30

v

LIST OF FIGURES

Figure 1.1: Electrical Diagram of the first MindReader AI algorithm . . . 3
Figure 1.2: First Implementation of MindReader by Anup Doshi 4

Figure 2.1: Main Webpage of MindReader 7
Figure 2.2: Interface for Game Setup . 8
Figure 2.3: Interface when Playing Game 10
Figure 2.4: Scoreboard Showing Results for a Winning Game 11
Figure 2.5: Game Statistics from a Player’s Profile 12

Figure 3.1: The App Engine Local Host Admin Console 14
Figure 3.2: Example of Data Structure Written with NDB Library 16
Figure 3.3: Pie Chart of Game Results 17
Figure 3.4: Game Score vs. Average Time per Move 18
Figure 3.5: The Facebook for Developers Console 19

Figure 4.1: Summary of How each JavaScript File Relates to AI Algorithm 21
Figure 4.2: AI Iteratively Considers the Most Recent Last Move 22
Figure 4.3: Binary Tree, First Move is 1, Second Move is 0 23
Figure 4.4: The Hedge Algorithm used at Each Node 24
Figure 4.5: The Recursive Algorithm the AI uses to Predict a Move . . . 26
Figure 4.6: The Recursive Algorithm the AI uses to Update Itself 26

Figure 5.1: The Github page, “github/pupster90/mindreader”, for Min-
dReader . 28

vi

ACKNOWLEDGEMENTS

Thanks to Yoav Freund for his wisdom, guidance, and a thrilling few years. I

also thank Aaron Schurger and Robert Schapire for their thoughts on extending

the MindReader project.

vii

viii

Online MindReader Game Utilizing Weighted Hedging Trees

by

Matthew Elliott
Master of Science in Computer Science

University of California San Diego, 2018

Professor Yoav Freund, Chair

 The MindReader web app is an online freely accessible version of the
“matching pennies” game. Matching pennies is an old game mentioned in the
works of Edgar Allen Poe and analyzed by Claude Shannon, but our implementa-
tion is very modern. By visiting, “www.mindreaderpro2.appspot.com”, a user can
instantly play on their computer, tablet, or phone and can save their game results
by signing into Facebook. The website is part of the larger MindReader project,
which collects game data from the app and provides a data analysis platform. We
present the inner workings of the project so that academic researchers can easily
run and contribute to MindReader.

ABSTRACT OF THE THESIS

Chapter 1

Introduction

1.1 Matching Pennies

The MindReader website is a modern recreation of the very simple “matching

pennies” game. The matching pennies game can be thought of as a binary form

of “rock, paper, scissors” where one player guesses a number, either 1 or 0, and

then the other player tries to guess what number the first player chose. A point

is awarded to one of the players depending on if the second player could correctly

guess the first player’s choice. Two opponents can play this game over and over

again stopping when one of player reaches a a certain score, in our case 100 points.

From playing just one or two rounds of this game it seems like the ability to

guess a player’s move would be purely random chance. However, after playing

many rounds patterns almost certainly begin to appear in people’s moves even

when they try their best to be random. The fact that humans are not able to

make random moves has many interesting implications in behavioural psychology

research [5]. For our online video game, MindReader, this also allows us to create

an AI opponent (a bot) that can take advantage of the implicit patterns in people’s

moves. We find that when players compete against our AI algorithm the bot wins

the vast majority of the time.

1

1.2 Pre-Computer Implementations

The matching pennies game has an incredibly rich history dating back to nearly

200 years ago. The first mention of the game was in a short story written by Edgar

Allan Poe,“The Purloined Letter,” where 2 children use the matching pennies

game as a way to gamble coins between each other [17]. The first person to

try to build an AI algorithm for the game was D. W. Hagelbarger, who built

a deterministic logic based algorithm [11]. Hagelbarger’s algorithm was created

using electronic relays, as shown in the electrical diagram in Figure 1.1 on the

next page. The famous Claude Shannon took and interest in the matching pennies

game and Hagelbarger’s algorithm. Shannon built his own algorithm that used

randomness in its implementation [12]. It is said that Hagelbarger and Shannon

had their algorithms compete against each other where in the end, Shannon was

the victor.

2

Figure 1.1: Electrical Diagram of the first MindReader AI algorithm

3

1.3 Previous MindReader Work

Freund’s lab created MindReader, an online version of the matching pennies

game, allowing anyone in the world to play the game using their computer. Unlike

the AI algorithm created by Hagelbarger MindReader is probabilistic, utilizing a

context weighted hedging tree (see algorithm chapter). The first version of Min-

dReader was created by Anup Doshi. Figure 1.2 shows what the original Min-

dReader game looked like. This version of MindReader was created using Java

code embedded inside of a web browser (a Java applet). Later Andrea Biaggi ex-

tended the MindReader applet’s functionality while also doing research on different

variations of the AI algorithm [18].

Using Java within an applet made it possible to embed class based structures

within a website. At the time this made it possible to easily create an architecture

for the MindReader website (relative to JavaScript). Unfortunately on modern

web browsers it has been shown that Java applets contain critical security flaws

which made them all but disappear from web programming. For the safety of the

user web browsers prohibit the user’s computer from running a Java applet. Thus

it was necessary to create a new MindReader that used JavaScript.

Figure 1.2: First Implementation of MindReader by Anup Doshi

4

1.4 The Modern MindReader

Since the goal of this project was to create a modernized version of MindReader

we did not just stop at replacing the Java code with JavaScript. Instead we

decided to build a truly modern web application which uses things like Facebook to

manage players’ accounts and the power of Google’s cloud computing environment

to host the website. We also used the HTML framework, Bootstrap, to ensure

that MindReader can run on any device, even a phone.

These features create both a better experience for the player and make it much

easier to analyze data as it is collected. The ability to collect and analyze data on

the behaviour of people playing the MindReader game has attracted both computer

science researchers from Microsoft and Cognitive Science Professors. The rest

of this paper outlines the most important aspects of the MindReader project so

to make it easier for future scientists to understand and contribute their own

research. This is broken up into 4 major sections. First, we explain the various

web functionalities of the front end from the perspective of a player. Second, we

explain how the back end of the website is hosted and how its data is managed.

Third, we give a in depth description of the AI algorithm used within MindReader

as well as how it was coded. Finally, we explain how researchers can replicate the

complete MindReader project locally on their computer and how to contribute to

the project.

5

Chapter 2

Front End: Web Interface

The MindReader website started as a single HTML document, but as the com-

plexity and features of the game increased it has turned into a complex network

of interconnected HTML pages. Additionally there is also a Facebook group that

has it own page on Facebook.com . In this chapter we describe the functionalities

of the most important webpages: the site’s main menu, all the pages necessary for

a user to play a game, and the user’s profile page.

2.1 Main Menu

The main menu, or home page, is the first page that a player sees when they

go to the MindReader website at “www.mindreaderpro2.appspot.com.” From the

main menu, a player can access all the functionalities of the website. There are

two versions of the main menu, one for users who already have an account on the

website and another simplified web page for users who don’t have an account.

When a user visits the home page cookies are used to see whether or not the

user has already created a user profile with their Facebook ID. If the user does not

have an account the website displays the simplified version of the home page that

contains only two buttons. One button allows the player to instantly start playing

a game. A second smaller button allows the user to access the more complicated

main menu for signed in users. The simplified web page makes it so that when a

player first visits MindReader they are not overwhelmed by an overly confusing

6

Figure 2.1: Main Webpage of MindReader

interface. All they have to do is click one button and then they instantly start

playing a game.

After a player has created an account, the website presents the bigger, fully

functional, main menu. There are 7 buttons in total on this main menu. The most

important button, “play,” is what a user clicks to start playing a game. Next to

the “play” button is another button that brings up the player profile. From the

player’s profile a user can view statistics about their previously played games and

manage their account. Another button, the trophy icon, brings the user to a high

scoreboard. There is an “about” button which give a more thorough explanation

of the game as well as it’s history. Finally, there are 3 buttons that control the

Facebook features of the website, a “like” button, an account logout button, and

button that brings players to the game’s Facebook page.

7

Figure 2.2: Interface for Game Setup

2.2 Playing a Game

2.2.1 Game Setup

When a user creates an account they are given a certain amount of points which

they can use to play games. Before each game the player makes a bet against the

computer using their points. If the player wins the game they earn the amount of

points they bet, however if they lose the game they lose that amount of points. A

game’s difficulty is based on the amount that the player bets. The more points a

player bets, the harder it is to beat the AI (called bot). The reason why we increase

the difficulty for higher bets is because we want individuals who can consistently

win against bots with high difficulty to be given more points.

There are 2 different ways in which we make it more difficult to defeat a bot.

The first is by making the bot “smarter” through the use of a more complex

algorithm. This is done my making the tree depth of the algorithm larger (see

algorithm section). The second way to make the game harder is to force the player

to move faster. This is done through the use of ever decreasing “timer columns”

during the game (See “Competing Against the AI”). Empirically we have found

8

that forcing a player to move fast causes them to be less random and thus more

likely to loose.

All of the various game difficulties are expressed on the “game setup” screen

using a matrix (see Figure 2.2). The number inside of each box is the bet size,

where a large bet corresponds to a more difficult game. As we move across across

columns the game’s speed becomes perpetually faster. As we move down rows the

bot’s algorithm becomes smarter.

How much a player can bet depends on how many points they have. We don’t

want a player’s number of points to ever become negative. Thus we make it so

that a player can never bet more points than what they already have. This is

handled on the interface by “graying out” the bets that a player cannot make,

which means that these types of games cannot be played for money. A user can

play a game in one of two modes the “play” mode and the “practice” mode, which

are indicated by the green and orange buttons respectively. When the “play” mode

is selected that means that that results from the game are recorded and that the

player either gains or loses points depending on the game outcome. If a player

chooses a “practice” game the results from the game are not recorded. A player

can even play games which are “grayed out” in practice mode, because the game

outcome does not affect their final score. The practice mode allows any player to

see what it is like to play against a bot at harder difficulties.

2.2.2 Competing Against the AI

After a player chooses a game and clicks either “play” or “practice” the game

instantly starts. We subtract some points from a user’s profile when they start a

game so that players don’t simply restart the webpage when they think they might

lose. A countdown occurs so that the player has a little bit of time to get ready

and then the game starts. The game consists of a racetrack where the user is a

red dot and the bot is a blue dot. The two dots race around to track and whoever

makes it around the track first wins. As this interface is just an implementation

of the matching pennies game, the movement of the cars is dependent on whether

or not the bot can guess a player’s move. A player chooses a move in one of two

9

Figure 2.3: Interface when Playing Game

ways, by either using the ← and → keys on their computer, or if they are using

their tablet or phone, by using the ← and → buttons provided on the interface.

One can think of the← and→ keys as corresponding to 1 and 0 in the matching

pennies game. A point is rewarded to the player if the bot incorrectly guesses the

player’s move, otherwise a point is given to the bot. For the race to finish either

the player or bot must score 100 points. To give the game a sense of excitement

and increase its difficulty there is a timer that is perpetually loosing time. If the

times goes to zero the player loses. The timer is indicated by the two columns

on the interface. The columns change color depending on how much time is left:

green means plenty of time, yellow means caution, and red means the player is

about to run out of time and loose. The player’s car also starts to blink when they

are about to run out of time.

10

Figure 2.4: Scoreboard Showing Results for a Winning Game

2.2.3 Game Results and Scoreboard

When a game is finished the player is brought to a new page where they are

told the results of the game and are also shown the current high scores. This is the

scoreboard page. If someone wants to view high scores without playing a game,

there is also a button on the main menu that links to the scoreboard. We added

the scoreboard to give the game a competitive edge that incentivizes individuals

to keep playing the game. To the right of the high scores there is a news feed from

the MindReader Facebook group that displays the group’s latest messages.

If a player has just finished a game the scoreboard page tells them the results

from the game. Specifically it tells them whether or not they won or lost; if they

lost, then the reason why; the number of points that are subtracted/added to their

account; and finally whether or not they set any new high scores, and if so, how

many. If a user accesses the scoreboard from the main menu, these results are not

displayed.

Underneath the player’s results is all of the games high scores. The high scores

are updated in real-time and show the 10 highest scores for each month/day/hour

as well as the highest scores of all time. A player’s Facebook page is linked to the

11

high score board to deter cheating in the game. For each player on the scoreboard

it is possible to view the player’s game profile as well as visit their Facebook page.

If a player is uncomfortable with having this information publicly available on the

“player profile” page they the can delete their profile to remove themselves from

the scoreboard.

2.3 Player Profile

Figure 2.5: Game Statistics from a Player’s Profile

The player profile is where people can view game statistics about themselves.

It is also where a user can delete their player profile. To delete their account a

player need only to click the “delete account” button and then confirm that they

truly want to remove their profile and all data.

Information about a player’s previous games is currently displayed in 4 different

12

sections of the player profile. Key statistics is a table that provides the player with

basic information like their current number of points or how many games they

have played. Game outcomes has a pie chart that shows the percentages of various

game outcomes, like “won”, “lost”, or “ran out of time”. Current scores displays

the user’s total points for each hour/day/month and all time. Points over time is

an interactive time series graph of the players points. All of the graphical displays

were created using google’s “charts” api for websites.

13

Chapter 3

Back End: Data Management

In the previous chapter we saw how game data is used to provide many features

that enhance the user’s experience through the use of a scoreboard and a personal

player profile. In this chapter we describe how data is stored, managed, and

analyzed on the back end.

3.1 The gCloud Environment

Figure 3.1: The App Engine Local Host Admin Console

The MindReader website was built using Google’s cloud computing environ-

14

ment called App Engine. App Engine has a very user friendly environment that

makes it possible to rapidly build, test, and deploy web based apps. A key fea-

ture of App Engine is that the computational resources of your application can

grow or shrink in real time demanding on how many people use the website. This

“automatic scaling” feature occurs by default and is never something that has to

be managed by the developer. Another benefit is the amount of money you pay

each month depends only on the computational resources that are used. For this

reason the website can be hosted for free during the development phase since this

requires minimal computational resources.

Another key feature of App Engine is that you can run the MindReader website

locally on your computer for testing and development. When running MindReader

locally there is also an admin website that is automatically created by App Engine

which is used to view, create, and edit data structures (see Figure 3.1). Using a

single command in the terminal, the MindReader app is pushed to the cloud and

available publicly at “www.mindreaderpro2.appspot.com”. Google provides an

administrative website called the developer console which is used to monitor and

edit various aspects of the the publicly available MindReader site. The developer

console is where data can be viewed or downloaded, where different versions of the

website can be launched, and where things like payment settings are handled.

3.2 Data Structures

Since we are are using Google’s App Engine framework, all the data is stored

within Google’s Cloud Datastore which is accessed by using Google’s “new database

library” (ndb). After importing the ndb package into our python code we can

write and retrieve data from Cloud Datastore. The ndb framework can basically

be thought of as Google’s version of MongoDB. It is a NoSQL framework that

stores data as JSON objects and, when retrieved, returns python objects with the

same structure as the JSON object. The python object that is retrieved from

the JSON object can also have prespecified functions that utilize the data. The

process of coding an ndb object in python is almost identical to the steps used in

15

MongoDB. In a python file you import the ndb library and then to create a new

data structure you extend the ndb.Model class with the data features that you

would like to have. An example of this is shown below in Figure 3.2 .

Figure 3.2: Example of Data Structure Written with NDB Library

3.3 Data Analysis

3.3.1 The Jupyter Framework

In MindReader’s current form data analysis was done offline by downloading

data to a local computer from Google’s Cloud environment. The data was for-

matted into a CSV file and then analyzed using Jupyter Notebooks. The benefit

of using Jupyter notebooks for data analysis is that we can use markdown text

cells to clearly describe what the code does and then have cells that run code and

display it’s output.

The steps for downloading data from Google’s cloud platform and then format-

ting the data offline is rather involved. Luckily Google now provides a much easier

way to access data, through Jupyer’s PyLab live on Google Cloud. The latest ver-

sion of Google Cloud allows you to create a Jupyter environment inside the project

of the MindReader app. From the online Jupyter environment the website’s data

can be accessed using the exact same commands as those used on the back end of

the website itself. Another benefit of the online environment is that since we are

accessing the cloud’s live database, it is possible to instantly retrieve and analyze

data from the most recently played games.

16

3.3.2 Simple Data Summary

After completing our first version of the MindReader website. We marketed it

out the public using UCSD’s CSE mailing list as well as YouTube. From this we

collected data on 7925 games that people played. We use the analysis from these

games for the following basic summary analysis of the MindReader app. From

the pie chart below we see that the vast majority of people were not able to beat

MindReader’s AI algorithm. Players were able to beat the AI in only 10% of the

games. While MindReader’s AI defeated players in roughly 45% of the games, it is

safe to assume that most of the games where the player ran out of time or decided

to restart (likely gave up) are also instances where the AI defeated the player.

Figure 3.3: Pie Chart of Game Results

Another interesting observation from the data is that people tend to play better

against the AI when they choose to move more slowly. This is seen in Figure 3.4

on the next page, where we see an upward trend between game score and average

time per move. This has interesting implications in cognitive psychology in that

people are able to play more randomly when they give their mind time to forget

the previous moves they have played [10].

17

Figure 3.4: Game Score vs. Average Time per Move

3.4 Facebook API

In order for the Facebook functionality to work on the front end of the Min-

dReader website it is important to register the website on Facebook’s interface for

developers, which is aptly called, “Facebook for Developers.” By registering Min-

dReader’s domain name on Facebook for Developers, we satisfy the requirements

necessary to use the Facebook api. The Facebook api is what allows people to

“like” the MindReader site and also allows MindReader to collect data from peo-

ple’s Facebook accounts. MindReader uses this information to enhance the user’s

experience through things like the high scoreboard. We also use each player’s

unique identifier from Facebook when performing data analysis for research pur-

poses. The MindReader website has a consent waiver where we clearly explain to

players that their data is being using for academic purposes and that is not being

used for marketing.

To register the MindReader site as a Facebook app go to the Facebook for De-

velopers website and create an account, then create a new app within the account.

Inside the settings section of the app you can then enter the domain name of the

MindReader site in order to have it officially recognized by Facebook. On the

18

Facebook for Developers site it is also possible to manage settings and permissions

for the MindReader app, however, for the version of MindReader that we create

the default Facebook app settings was all that was needed. Figure 3.5 below shows

what it looks like to be be logged into the Facebook for Developers interface.

Figure 3.5: The Facebook for Developers Console

19

Chapter 4

AI Algorithm

In this chapter we give an in depth description of the AI algorithm that is used

to predict players’ moves and the code that was used to implement it. The goal

of this chapter is not just to give a theoretical overview of the model, but also to

provide the knowledge needed to edit the algorithm for personal research. All of

the code for the AI algorithm is written in JavaScript and runs on the front end

of the MindReader website during the game. The algorithm has a complicated

structure so it’s code was broken up across multiple JavaScript files. Each files

represents a distinct class, when combined together these files create the complete

MindReader game. For this reason a natural approach for understanding both

the code and theory is to explain each JavaScript class one file at a time. Each

following section represents (mostly) a JavaScript class that is a piece of the larger

MindReader game. Together they are MindReader’s AI.

4.1 The JavaScript Files

The JavaScript files for MindReader are located inside the website’s folder

called “script”. All of these files are used to control the MindReader game except

for “FB.js” (Facebook functionality), “drawStats.js” (player profile), and “Main.js”

(main webpage). Of the remaining 7 files, 3 of them are used to create the AI

algorithm and the other 4 are used to manage other aspects of the video game.

For the 4 files not related to the AI algorithm: “Bots.js” controls the game setup

20

page, “Racetrack.js” creates the visualization of the game, “Game.js” manages

game processes unrelated to the AI (player’s score, updating the timer, posting

results), and “fastClick.js” is a helper script that makes the game run efficiently

on mobile devices. Below is a figure that summarizes the functionality of each

JavaScript file. The rest of this chapter is devoted to the JavaScript files that

relate to the AI algorithm.

Figure 4.1: Summary of How each JavaScript File Relates to AI Algorithm

21

4.2 Algorithm Overview: AI.js

To better understand MindReader’s AI algorithm let’s start by considering

what the algorithm’s input is and what is its intended goal. The goal of the

algorithm is to return a number, 1 or 0, which is the AI’s best guess of the player’s

next move. In order to make a guess the algorithm can utilize all of the information

that is being collected by the game. Specifically the AI algorithm uses the player’s

previous moves to make its best guess for what the player will do. This is the input

to our algorithm.

The player’s previous moves are stored in a linked list, with the beginning of

the list being the player’s most recent move and the end of the list being their

last move. The algorithm first looks at the player’s most recent move as this is

intuitively most closely related to their next move. It then iteratively goes back in

time looking at the next most recent move. This procedure is shown in the Figure

4.2 below.

Figure 4.2: AI Iteratively Considers the Most Recent Last Move

A key aspect of this algorithm is that it is probabilistic. The algorithm return

a probability between [0, 1] of the player’s next move being 1. A higher probability

means the that the algorithm believes the player is more likely to guess one. We

could have the algorithm always return 0 or 1 depending on whichever element is

more likely, however, if a player finds just 1 sequence that beats the AI the player

could then play that exact same sequence to win over and over again. To avoid this

we make the algorithm nondeterministic by randomly selecting 0 or 1 based on

the Bernoulli probability that the algorithm outputs. This can be seen in the code

by looking at the AI.js class’s return output for its “predict” function (line 43).

When doing data analysis we remove the nondeterministic feature of the algorithm

to insure consistency in results.

22

4.3 The Context Weighted Tree: TreeExperts.js

In the previous section we said that the AI algorithm uses the list of a player’s

previous moves to predict the next move, but how is this done? In this section

we introduce the Context Weighted Tree, a data structure that intuitively leads to

a prediction algorithm for the next move [16]. Suppose a player’s last move was

0 and the move before that was 1, we write this as [0, 1] . First, we could ask

ourselves, “Given a player’s current move is 1, what is the probability that their

last move was 0”. Second, we could ask, “Given a player’s current move is 1, and

the move before that is 0, what’s the probability that the move before that is 1?”.

We can continue to ask this question going through all the player’s previous moves.

Notice that the probability in question, can easily be solved by considering the the

number of occurrences of the given statement.

There is an intuitive visual structure that we can use to represent the prob-

abilities from asking this question for each previous move. This structure is a

binary tree, where each node represents the probability of asking that question for

the path that leads to that node. For instance, the red path in the figure below

represents the case where the player’s most recent two moves were [0, 1] . The red

leaf node would then contain a probability value that would answer the second

question asked above.

Figure 4.3: Binary Tree, First Move is 1, Second Move is 0

23

One way to think about the probability of a given node is to give each child a

weight relative to its probability. As data is obtained we then update the weights

of that node’s children so that the more probable node is weighted higher. We then

have a weighted tree whose weight depend on the context of previous data, hence

a Context Weighted Tree. But as we are given new data, how do we update these

weights? The Hedge algorithm provides an intuitive system for both determining

the probability of nodes using weights and for updating these weights. The Hedge

algorithm is provided in the figure below.

Figure 4.4: The Hedge Algorithm used at Each Node

Hedging is a general ensemble algorithm for combining expert opinions. In

this case each node contains its own hedging algorithm, each of its children (and

their correspond paths) is considered an expert. The loss is determined by the

expert’s ability in determining the correct outcome (0 or 1) and then the weights

are adjusted according to the losses through exponential weighting. The new

weights are then used to calculate the new probability of each child path.

4.4 Updating the Context Tree: CtxTree.js

In the MindReader game a player can have up to 199 moves, expressing all

the node probabilities (or weights) of a tree of that depth would require too much

computation. However, for any given particular game only a tiny amount of that

24

tree is ever explored. Instead of expressing the entire tree we could start the tree

with just one root node. Each time a path that was never seen before is explored we

can create new children nodes from the last (previously explored) leaf. Creating

new child nodes means the algorithm is trailblazing along a new path that has

never been seen in the data. Since there is no data to suggest which of the two

new child nodes is more likely we initialize each of them with the same weight of

1. This efficiently creates a Context Weighted Tree of only the paths that have

been seen within the game.

We can develop a little more intuition about how this works using a Bayesian

perspective. In the Bayesian mindset we can imagine that we have an infinitely

large binary tree where each node contains probabilities as described in the previous

section. Initially when a path is untraveled the nodes have no data to update their

values and thus they are simply equal to their initially defined prior distribution.

If we use a diffuse prior where each child node has the same odds, say Beta(1, 1) ,

we know that leaves of any unexplored branch will have 50/50 probability. Since

we already know the probabilities of unexplored paths, we thus do not need to

waste data expanding out that (infinite) portion of the tree. Instead we focus on

the parts of the context tree where the priors have been updated by data. It can

actually be shown that by just changing a few constants in the algorithm we have

a consistent Bayesian framework for representing the context tree.

While the Bayesian framework yields an intuitive representation of the model,

the actual methodology used for updating nodes and making predictions is derived

from a loss based model across multiple decisions trees. In this framework we find

a tree which is “not much worse” than the best decision tree. One could do this

by applying a hedging algorithm across all possible prunings, however, such a

procedure is not computationally feasible [20]. Hembold and Schapire found an

efficient implementation of the procedure, which is what our algorithm uses [15].

In our implementation the JavaScript’s predict function, “get pred wt”, and the

update function, “update wt” are both implemented recursively. The recursion is

over the path of all the player’s previous moves, starting from the most recent (the

tree’s root). The next page has the prediction and updating algorithm.

25

Figure 4.5: The Recursive Algorithm the AI uses to Predict a Move

Figure 4.6: The Recursive Algorithm the AI uses to Update Itself

26

Chapter 5

Conclusion

In this paper we explained the inner workings of everything that went into

making our finished version of the MindReader project. The most prominent piece

of MindReader is the website that people use to play the game, however, it is

not the only piece. We described how the the data from MindReader is handled

and analyzed. We also showed how Google and Facebook’s cloud based developer

consoles are instrumental in running/managing the MindReader site. Now that

MindReader has been created it is up to future work to utilize the technology to

construct meaningful research.

5.1 Future Work

There is considerable interest in using the MindReader site to analyze cog-

nitive behaviour. Prof. Aaron Schurger at the French Institute of Health and

Medical Research believes MindReader could be used in neuroscience to research

the temporal uncertainty in perception and action [19]. Furthermore, Microsoft’s

Principal Researcher, Robert Schapire, is also interested in how MindReader’s

AI algorithm performs against human combatants. With the correct team of dedi-

cated researchers the MindReader project can lead to a publication with significant

impact across interdisciplinary fields.

27

5.2 Contributing to MindReader

We have created the MindReader project with the intention that it will later

be used by future researchers. For this reason we tried to make it as easy as

possible to start running and contributing to the MindReader project through the

use of Github and Docker. All the source code and supplementary material for Min-

dReader has been posted publicly on Github at the URL, “github.com/pupster90/mind-

reader”. The MindReader project can be downloaded from there and contributions

can be posted to the Github repository.

Figure 5.1: The Github page, “github/pupster90/mindreader”, for MindReader

While MindReader’s source code is informative, running the project locally

on a computer requires downloading many different packages and frameworks like

Jupyter and Google’s gCloud. Rather than having people struggle for days trying

to setup their computer appropriately (if they figure it out at all), we have instead

built a virtual machine using docker that can be used to run MindReader. A link

to the docker image’s URL can be found in the README.md file on the Github

page. When we were working on MindReader we made sure to always use the exact

same docker image as the one that is provided on docker hub. This guarantees

28

that the virtual machine will run appropriately on anybody’s computer after it is

downloaded.

If Docker is already installed one can get the MindReader website and the

data analysis back end running on their computer within a matter of minutes by

typing just 3 lines of code in their computer terminal. The docker hub pages give

very straightforward step by step instructions of exactly which lines to type in the

terminal and explains what they mean. We are excited to see what new research

and contributions will spring from from the MindReader project!

29

Bibliography

[1] Nash, J.F., The Bargaining Problem. Econometrica, 1950. 19(2): p. 155-162.

[2] Wagenaar, W.A., Generation of Random Sequences by Human Subjects: A
Critical Survey of the Literature. Psychol Bull, 1972. 77(1): p. 65-72.

[3] Tune, G.S., A brief survey of variables that influence random generation.
Percept Mot Skills, 1964. 18: p. 705-710.

[4] Eliaz, K. and A. Rubinstein, Edgar Allan Poe’s riddle: Framing effects in re-
peated matching pennies games. Games and Economic Behavior, 2011. 71(1):
p. 88-99.

[5] Persaud, N., Humans can consciously generate random number sequences: A
possible test for artificial intelligence. Medical Hypotheses, 2005. 65(2): p.
211-214.

[6] Tervo, Dougal G.R., Behavioral Variability through Stochastic Choice and Its
Gating by Anterior Cingulate Cortex. Cell, 2014. 159(1): p. 21-32.

[7] Baddeley, A.D., The capacity for generating information by randomization.
Quarterly Journal of Experimental Psychology, 1966. 49A(1): p. 5-28.

[8] Jahanshahi, M., Random number generation as an index of controlled pro-
cessing. Neuropsychology, 2006. 20: p. 391-399.

[9] Baddeley, A.D., Random Generation and the Executive Control of Working
Memory. Quarterly Journal of Experimental Psychology, 1998. 51A(4): p.
819-852.

[10] Schurger, A., J. Sitt, and S. Dehaene, An accumulator model for spontaneous
neural activity prior to self-initiated movement. PNAS, 2012. 109(42): p.
E2904-E2913.

[11] Hagelbarger, D.W., SEER, A SEquence Extrapolating Robot. IRE Trans Elec
Comput, 1956. 5(1): p. 1-7.

30

[12] Shannon, C.E., A mind-reading (?) machine. Bell Laboratories technical re-
port, 1953.

[13] Freund, Y. and R. Schapire, A Decision-Theoretic Generalization of On-line
Learning and an Application to Boosting. Journal of Computer and System
Sciences, 1997. 55(1): p. 119-139.

[14] Littlestone, N. and M.K. Warmuth, The weighted majority algorithm. Infor-
mation and Computation, 1994. 108(2): p. 212-261.

[15] Helmbold, D.P. and R. Schapire, Predicting nearly as well as the best pruning
of a decision tree. Machine Learning, 1997. 27(1): p. 51-68.

[16] Willems, F.M.J., Y.M. Shtarkov, and T.J. Tjalkens, The context tree weight-
ing method: Basic properties. IEEE Trans Info Theory, 1995. 41(3): p. 653-
664.

[17] Edgar Allan Poe. The Purloined Letter (Tale Blazers). Perfection Learning,
1980.

[18] Biaggi, Andrea. Normal Hedge in weighted trees. University of California, San
Diego, MS Thesis. 2010.

[19] Schurger, Aaron, Neural Antecedents of Spontaneous Voluntary Movement:
A New Perspective. Trends in Cognitive Sciences , Volume 20 , Issue 2 , 77 -
79.

[20] Cesa-Bianchi, Nicol‘o , Freund, Yoav, Helmbold, David P., Haussler, David,
Schapire, Robert E., Warmuth, Manfred K. 1993. How to use expert advice.
In Proceedings of the Twenty-Fifth Annual ACM Symposium on the Theory
of Computing, pages 382391, 1993. To appear, Journal of the Association for
Computing Machinery.

31

