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ABSTRACT OF THE DISSERTATION

Condensation, Thermalization and Quantum Macroscopicity in Ultra Cold
Quantum Gases

by

Shane P. Kelly

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, June 2020

Professor Shan-Wen Tsai, Co-Chairperson
Doctor Eddy Timmermans, Co-Chairperson

In this dissertation we proposed and modeled five ultra cold atoms experiments

that make use of quantum effects to produce novel macroscopic phenomena. The first of

these experiments is a proposal to produce a p-wave superfluid using two different atomic

species. The pairing species is trapped in two-dimensions and the other species is allowed

to move in three-dimensions and mediates the p-wave pairing interaction. We confirm our

predictions using the functional Renormalization Group method.

The next experiment studies how macroscopic cat states can be produced and

detected in bosonic interferometers. A bosonic interferometer is composed of ultra-cold

bosons that can condense in one of two modes. Tunneling and interactions are the primary

contributions to the dynamics and in cooperation can produce highly entangled states such

as Schrodinger cat states. We show how the quantum Fisher information, a tool in quantum

metrology, can be used to perform a partial state tomography to determine the nature of

the superposition in experimental cat states.
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In the last three proposals, we study the long time equilibration dynamics of three

different proposed experiments. The first proposed experiment takes place in the same

bosonic interferometer as discussed in the Schrödinger cat work, and we identify a novel

mechanism for the breakdown of thermalization with the slow dynamics of an unstable fixed

point in a semi-classical approximation. The second proposed experiment also takes place

in the same bosonic model, but involves a periodic kick to the interaction strength. We find

that these dynamics can produce a time-crystal-like state where discrete time-translation

symmetry is broken in the long time dynamics. Finally, we study the long time dynamics of

a clean fermionic chain and a disordered fermionic chain that are coupled by density density

interactions. In this proposal, we find that the effects of disorder can be transferred to the

clean chain and prevent thermalization.
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not reflect the true l-bit coupling but are displayed to depict how the MBL
proximity effect ansatz breaks down. The final clean-chain density-density
couplings ∆c

|i−j| depicted here are averaged over 256 disorder realizations.
In the top panel, we plot how the final density-density couplings depend
on W c = ∆I/2Jc (Jc fixed) while in the bottom panel we plot their de-
pendence on

〈
nd
〉
. In the top panel

〈
nd
〉

= 0.5 while in the bottom panel
W c = 225 (∆I = 45 and Jc = 0.1). The remaining Hamiltonian parameters
are W = 60, Jd = ∆d = 0.1, ∆c = Jc = 0.1, Θ = 0.3, and 〈nc〉 = 0.1. These
results are not affected by 〈nc〉 since they are uniformly distributed in the
reference state ρ and do not have an impact on the disorder of the effective
fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.3 Regions of parameter space where the MBL proximity effect is established.
We focus on an instance of a strongly localized dirty chain (W = 60, ∆d =
Jd = 0.1), and on a clean chain with ∆c = Jc = 0.1. The thin, dashed, black
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〉
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Proximity Effect is established is determined by the region where the second
invariant is below a specified threshold δI < δIc = 0.1. In the figure, we
draw three different thick, curved, dashed lines, corresponding to the values
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〈
nd
〉

where we expect the second invariant to
equal the threshold value δI(W c,

〈
nd
〉
,Θ) = δIc, and above which we expect

δI(W c,
〈
nd
〉
,Θ) < δIc. This analysis demonstrates that the MBL Proximity

Effect can be observed for the smaller 〈nd〉 and Θ when W c is larger. . . . 157
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〉

is varied across the
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7.5 Median change in the second invariant as a function of
〈
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〉
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W c(left). W c is plotted on a log scale since it varies over two orders of
magnitude. The remaining Hamiltonian parameters are ∆I = 45 (W c = 225),
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〉
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7.7 The flow of Jcij and ∆c
ij for the geometry depicted in Fig. 7.6. The left panel

shows the flow of couplings on the clean-chain sites that are not coupled to the
dirty chain. It shows an unsuppressed hopping and diverging density-density
coupling at long flow time l. The right panel shows the flow of couplings on
the clean chain sites that involve a site coupled to the dirty chain. It shows
that the hopping onto the coupled site, r = 0 (for any f), are suppressed
and the density-density coupling involving a coupled site, remains constant
instead. This calculation has been performed using an unmodified generator
η = [H0, V ]; in order to remove the divergences in ∆c

f,r,f ′,r′ , we modify the
generator to η = [H0, V

′], with V ′ given in Eq. 7.20. . . . . . . . . . . . . . 169

xviii



List of Tables

7.1 This table lists which terms in the commutator [η,H] contribute to the beta
function β(Γ) (highlighted in blue) and which are dropped by our ansatz (not
highlighted). The rows are labeled by the terms in the sum for the generator
η = ηh + η∆ + ηI , and the columns are labeled by the terms in the sum for
the Hamiltonian, Eq. 7.11. The notation for the dropped terms is as follows:
correlated hopping (C.H.) have a form nckc

†
icj , inter-chain correlated hopping

operators C.H.I. have a form ndkc
†
icj , full scattering terms F.S. have a form

c†ic
†
jckcl, and 3P terms describing three-body and higher particle scattering.

The justification for dropping the contributions to J
c(d)
ij in the third and forth

column is discussed in section 7.6.2. . . . . . . . . . . . . . . . . . . . . . . 163

xix



Chapter 1

Introduction

Microscopic theories of matter are the most precise theories created by scientists.

Scientists create these theories by identifying sources of uncertainties in measurements and

uncertainties in predictions and then finding ways to eliminate them. When scientists

pursue this process, they are making an implicit assumption about the nature of reality.

This assumption is that there are new measurements that could be made that would provide

more complete information about the world. Taking this assumption further, scientists like

to believe that if all the information in the world was obtained, then all uncertainty about

the performed measurements and predictions could be removed. While obtaining complete

information on the world is impossible, this belief is useful in applying microscopic theories

to idealized situations where information on the rest of the world is irrelevant. These

situations are also never perfectly realized in experiments, but the models can be confirmed

within the statistical error allowed by the unknown deviations from the ideal.
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Quantum mechanics disrupts this implicit assumption and the processes of identi-

fying and removing uncertainties ad infinitum. This is best highlighted with the double slit

experiment. In this experiment a beam of particles is allowed to pass through two slits and

are then detected as they hit a wall behind the slits. Letting the particles go through both

slits, they find “dark spots” on the wall where it does not appear possible for the particles

to land after passing through the slits. In an attempt to create a microscopic theory, they

block one of the slits to reduce uncertainty, but in doing so the dark spots go away, and

the particles are now allowed to land where they couldn’t when they where allowed to pass

through two slits. This situation appears bad for the ideal of microscopic theories: not only

can the experimenter not explain a phenomenon by obtaining more information about the

world, obtaining more information destroys the phenomenon. They are forced to conclude

that while that information can be “obtained” and given a definite value by measurement

it does not exists before it is measured. The value the property has before measurement

must then be considered indefinite.

Fortunately, it has appeared that indefiniteness is restricted to microscopic events

and we can assume macroscopic events either definitely occur or definitely don’t. We are

therefore justified in identifying and eliminating uncertainty when studying macroscopic

events like disease and economic collapse. This occurs due to the miracles of statistical

mechanics. Statistical mechanics takes confirmed models of microscopic objects and at-

tempts to construct statistical theories of macroscopic objects that are composed of the

microscopic ones. These statistical theories allow for missing information and often rely on

the assumption of an unknown environment that interacts with the system being modeled.
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By applying these theories to the issue of uncertainties, scientists find that the uncertainties

introduced by the environment are usually a lot larger than the uncertainties required by

quantum mechanics. Therefore, for macroscopic properties, we are safe in assuming any

uncertainty is overwhelmingly due to our lack of knowledge.

Starting in the late 20th century, scientists have started to produce experiments

in which the simple assumptions connecting microscopic to macroscopic theories no longer

hold, and the conclusions on macroscopic indefiniteness must be questioned. Two ingre-

dients go into producing such experiments: first is the ability to isolate matter from an

environment, and second is to cool that matter to close to zero temperature. The first

ingredient ensures that uncertainties about an environment can not effect the state or its

dynamics, while the second ingredient removes the uncertainty about what physical state

appears in the experiment. After cooling, the scientists will have a physical state in which

everything up to uncertainties required by quantum mechanics can be known. From this

pure state, precise and controlled operations can be done to manipulate it and create states

of matter that display new phenomenon made possible by the dominance of quantum me-

chanical uncertainty over statistical uncertainty.

In this dissertation, I will give five examples of such phenomenon that my advisers

and I have proposed could be produced in ultra cold quantum gases. Ultra cold quantum

gases are produced by slowing and trapping a beam of particles inside a ultra high vacuum

chamber[4]. The beam of particles are often first trapped in a Magneto Optical Trap[13].

In this special type of trap the gas particles only absorb light when approaching the edges

of the trap. The absorption of light then prevents their escape by kicking the particles back
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toward the center of the trap. Once in the trap, additional lasers can be used to further

slow the particles down, and once the majority of particles are slow enough, the remaining

hot particles are let free by slightly reducing the trap barrier[11]. This and other more

advanced mechanism can cool particles down to nano-kelvin temperature[12] and produce

quantum gases close to their ground state.

The nature of this macroscopic ground state depends on the type of quantum

statistics the cooled particles obey. For physical particles, there are two distinct possibilities

for the statistics: bosonic and fermionic. For weakly interacting bosonic gases, the ground

state has almost all of the particles behaving in the same way (i.e. occupying the same single-

particle quantum state). This state of matter is known and a Bose-Einstein condensate and

was first created in 1995 by two separate groups[2, 6]. For Fermi gases, the particles can

not occupy the same single particle quantum state and therefore are forced to occupy the

N lowest energy states (if N is the number of particles). For fermions to form a condensate,

they need to pair up into composite like particles which act like bosons and then condense.

This type of condensate was first observed in 2003 by [14].

Condensates are an exciting form of matter because the uncertainty due to quan-

tum mechanics is the overwhelming contribution to the uncertainty apparent in the macro-

scopic properties of the whole gas. For example, when the particles (the boson or paired

fermions) carry a magnetic moment[15] and the magnetic moments are polarized in one di-

rection, the components of the magnetic moment in the two other perpendicular directions

are, because of quantum mechanics, completely uncertain. Since the total magnetization is

the sum of the magnetization of each particle, and each particle is doing the same thing,
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any fluctuation in the total magnetization is due to the cumulative quantum uncertainty of

the individual particles.

Fermionic condensates are particularly exciting because depending on the type of

condensation, the spin of the composite particle can contain contributions from the orbital

momentum of the pairs. This extra degree of freedom can produce novel spin-textures

and allow the production of topologically protected states. P-wave fermionic condensates,

in which the orbital state of the paired fermions has p-wave spherical symmetry, are par-

ticularly sought after in condensed matter because, they might allow for the creation of

topologically protected qu-bits[1]. Chapter 2 is a publication[7] in which Shan-Wen Tsai

and myself demonstrate a method of creating p-wave fermionic condensates in a “mixed”-

dimensional gas. Mixed-dimensional gases contain two distinct species of particles that

are confined to move in different dimensions. We studied a situation where one species of

particle is confined to a 2D plane while the other is free to move in three dimensions.

While an impressive demonstration of control, the type of uncertainty displayed

by weakly interacting condensates is still only microscopic. The magnitude of the total

magnetization grows linearly, but the uncertainty
√

∆M2 =
√∑

i(∆mi)2 grows as the

square root in the number of particles. Therefore as you increase the number of particles,

the direction of the collective magnetization becomes more precise as 1/
√
N (see Chapter 3).

This is in contrast to the macroscopic uncertainty characteristic of Schrödinger’s cat state.

In the Schrödinger’s cat thought experiment, a cat ends up in a quantum superposition of

being dead and alive. Since the dead and alive states are macroscopically distinct, this is

an example of macroscopic quantum uncertainty
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While weakly interacting BECs don’t have this macroscopic uncertainty, states

similar to Schrödinger’s cat might be able to be created and observed. Chapter 3 is a

paper[9] in which Eddy Timmermans, Shan-Wen Tsai and my self discuss the possibilities

of producing and detect such a phenomenon using techniques from quantum interferometry.

In this paper, we imagine a Bose-Einstein condensate that condenses into one of the two

modes, and the single particle hilbert space is equivalent to that of a spin 1/2. When all N

particles are condensed into either of the two modes the effective dynamics can be described

by a spin-N/2. The hamiltonian that can create a schrödigner cat like state is given by:

H = −Jx +
Λ

2
J2
z (1.1)

where Jα are the components of the large macroscopic spin. The cat state produced is one

in which the macroscopic spin is in a superposition of a state with most of the particles

pointing up and a state with most of the particles pointing down. This spin-N/2 model

of Bose Einstein condensates is also used in modeling interferometric processes for sensing

magnetic fields[15] and rotational motion[3]. In the paper presented in chapter 3, we find

that one can use techniques from the sensitivity analysis of interferometers to detect and

quantify the quantum indefiniteness produced by the non linear dynamics of Hamiltonian

1.1

Another interesting possibility from ultra cold atom experiments is to test if quan-

tum uncertainty will mimic environmental uncertainty when the dynamics of closed quan-

tum systems come to equilibrium. In other words, can we model the long time dynamics of

an isolated pure quantum experiment by assuming the experiment has comes to equilibrium

with a fictitious random environment. Surprisingly, the answer is generically yes. In chapter
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4, I explain the reason this is generically expected and discuss briefly the differences be-

tween the quantum uncertainty of a thermalized closed quantum system and the statistical

uncertainty of system thermalized with a true environment.

In the final three chapters, I present 3 proposals for preventing thermalization in

closed quantum systems. The first two describe the dynamics of a large non-linear spin,

with the aim of predicting the dynamics of Bose-Einstein condensates that have condensed

into one of two modes. Chapter 5 is a paper[10] in which Shan-Wen Tsai, Eddy Timmer-

mans and I study the long time dynamics of the Hamiltonian 1.1. Previously, it was known

that this Hamiltonian is integrable and poses a set of conserved quantities that prevent

thermalization. This lack of thermalization shows up as a memory of the conserved quanti-

ties at long times. Surprisingly, we find that the model is also capable of remembering the

dynamical conjugate variable to the conserved quantity. This additional memory is found

to be due to a set of localized eigenstates. We explain the localization these eigenstates

using a semi-classical method that identifies the slow dynamics of an unstable fixed point

as the source of localization.

In the second proposal for preventing thermalization, we again study the dynamics

of the hamiltonian 1.1, but this time with the addition of a periodic kick. This model gener-

ically displays chaos, and with strong enough kicks, thermalizes to an infinite temperature

state. We find that when the period of the kicks is in resonance with the period of classical

trajectories of Eq 1.1, an alternating set of fixed and unstable fixed point emerges similar

to a phenomenon in standard map[5]. In between the kicks, the hamiltonian Eq.1.1 moves

the quantum state between the stable fixed points. Due to the stability of the fixed points,
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diffusion of quantum uncertainty is suppressed and thermalization is prevented. The quan-

tum state then, instead of equilibrating to a fictions infinite temperature bath, oscillates

forever by jumping around to each of the stable fixed points. This proposal is presented in

Chapter 6.

The final proposal is presented in Chapter 7 and discusses the robustness of the

most stable mechanism for preventing thermalization in closed quantum systems: many

body localization. In many body localization, a locally disordered interacting model of 1D

fermions develops a set of exponentially localized eigenstates and integrals of motion. These

localized integrals of motion are capable of remembering the initial density distribution for

long times. Chapter 7 is a paper[8] I published with Jamir Marino and Rahul Nandkishore,

which studies the ability of a chain of many body localized fermions to localize a neighboring

chain of clean fermions via density-density interactions. We find that this is possible and

identify mechanisms for which the two chains can be delocalized and thermalize. We also

identify the potential existence of a MBL like pre-thermal state that occurs when the dirty

chain is coupled every odd site to the clean chain.

I then conclude in Chapter 8 with a brief summary of results and an outline of

possible future directions. The appendices contain a set of standard notations and useful

results I found helpful in obtaining the results presented in the main chapters.
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Chapter 2

Weak Three Dimensional

Mediators of Two Dimensional

Triplet Pairing

2.1 Published Abstract

Recent experiments demonstrate the ability to construct cold atom mixtures where

a fermion species is confined to a two dimensional lattice and another species is confined to

a three dimensional lattice. We show that by using a arbitrary number of three dimensional

species, we can construct an arbitrary, rotationaly symmetric, density-density interaction

for the two dimensional particles. This possibility allows us to construct an effective in-

teraction for the two dimensional particles that favors SU(2) symmetric triplet pairing.

Using functional Renormalization Group on the two dimensional particles, we derive and
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numerically confirm that the critical temperature associated with triplet pairing depends

exponentially on the interaction strength. We then analyze how the stability of this phase is

affected by the variance in particle densities and the fine tuning of interaction parameters.

We conclude by briefly discussing the experimental difficulties and the potential to study

Triplet pairing physics, including Majorana fermions.

2.2 Introduction

One of the miracles of quantum mechanics is that many properties of low tem-

perature liquids can be described by a single wave function. This phenomenon, known as

superfluidity, can present its self in both fermionic and bosonic systems. In the simplest

bosonic system, this wave function has only one degree of freedom associated with the su-

perfluid phase. In fermionic systems where condensation occurs due to pairing, the wave

function can have additional degrees of freedom associated with the spin and angular mo-

mentum of the pairing state. In the most common case, the odd exchange symmetry for

the fermions is satisfied by the singlet spin state.In two dimensions, the remaining orbital

degree of freedom is then fixed perpendicular to the plane - again, the degrees of freedom

are reduced to one. More complex states are possible when the odd exchange symmetry

is satisfied by an odd orbital wave function and the wave function is degenerate in the

three triplet states. These states tend to be less common in spin half systems since they

carry higher angular momentum than the isotropic s-wave singlet state, and thus tend to

be energetically less favourable.
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Superfluid 3He, a fermionic superfluid with p-wave orbital pairing, avoids this

tendency by an anisotropic Van der Waals interaction. The spin degree of freedom then

gives rise to various interesting spin textures, vortices and other unusual properties[13]. A

particular interesting property occurs when breaking the degeneracy of the spin triplet state

by spin orbit coupling. In this case, the vortices that arrise as the temperature is increased

carry an angular momentum with half a flux quantum. These vortices are known to host

Majorana fermions that carry non Abelian statistics and have been used in proposals for

quantum computing. [22, 1]

These exotic phases and the possibility of quantum computing has lead to a large

search for p-wave superfluids and Majorana fermions. One of the earliest examples since

3He was in the superconducting phase of SrRuO3 [14]. Cold alkali atoms have a partic-

ular lure, because they are highly controllabe, and they offer the possibility of studying

condensation in a weak coupling limit, where perturbative results apply. Proposals for p-

wave superfluidity in cold alkali atoms range in mechanism, including taking advantage of

anisotropic effects due to a dipolar interaction [2, 4], using long range interactions due to a

bosonic mediator[6] and using p-wave Freshbach resonances.[7, 5, 25]

More recently, species-specific optical lattices [12] have been experimentally im-

plemented [11] and have allowed for systems where 1 species of atom is confined to a plane

or a wire, while the other particle is free to explore a 3D trap. This possibility led to the a

new set of proposals for p-wave pairing mechanisms in cold atoms systems. Nishida[17] and

Wu et. al.[23, 16] use a long range attraction, mediated by the 3D particles, to create pairs

of 2D particles. Since they are either only considering one species[17, 16] or an imbalance of
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spin species[23], the exchange symmetry can’t be satisfied by the singlet states in the l=0

orbital mode and is forced in to one of the spin triplet states of the l=1 orbital mode.

Okamoto[18] studied a system with an equal density of spin-half species in the 2D

plane, where the exchange repulsion doesn’t prevent s-wave pairing. Here, they went beyond

the mean field analysis of [17, 23, 16] and found a full range of orbital paring states from

s-wave to g-wave paring. Surprisingly, they found p-wave pairing occupied a negligible part

of the fermion mediated phase diagram. This suggests that either the exchange interaction

is required to stabilize the p-wave phase in mixed-dimensions or that fluctuations destabilize

the phase.

In fact, we find that this is not the case. By a directed investigation into the p-

wave phase, we demonstrate the stability of the triplet superfluid phase in a wide range of

parameter space and that it is stable to fluctuations. If realized, this system would provide

a highly controllable, weak coupling analogue of superfluid helium, where one could explore

the full range of spin textures and triplet superfluid properties.

We begin this article by reviewing the physics of mixed dimension mediation and

demonstrate the ability to construct an arbitrary potential given many mediator types.

In Section 2.4 we review functional Renormalizatin Group and analytically argue why the

p-wave phase is stable in this system. In Section 2.5 we present numerical results that

demonstrate the stability of the p-wave phase and highlight the nearby S-wave and D-wave

instabilities. Finally, we conclude with a discussion on experimental feasibility and the

various p-wave pairing states and vortices.
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2.3 2D Interactions via 3D Mediators

The full range of a pairing states proposed in [18] and the possibility of p-wave

pairing in mixed dimensional cold atom systems is a product of the tunability of a long

range interactions. This tunability comes from the ability to change the properties of

the higher dimension particle, which mediates the long range interaction. In this article

we, study 3D particles (φr) which can either be bosons (br) or fermions (fr). The 3D

particles mediate interactions between the 2D fermionic particles(ψr,σ) with spin σ. The

mediating interaction is computed in [18] and [17] for fermions and in [23, 16] for bosons.

The derivation is repeated here to demonstrate the control over the real space interaction

for the 2D fermions and to highlight the similarity between various types of 3D mediators.

The action can be broken into the parts for the two types of particles and a term

for their interaction:

S = S2(ψ) + S3(φ) + SI(φ, ψ) (2.1)

The interaction between the two particles is an s-wave contact interaction:

SI(φ, ψ) = g
∑

r

ψ†rψrφ
†
rφr (2.2)

The strength and sign of the coupling can be tuned by the scattering length via Freshbach

resonance. When Fourier transformed, momentum is only conserved in plane:

SI(φ, ψ) = (2.3)

g

V β

∑

~k′,~k,~q,~q′,qz ,q′z

ψ†~k′
ψ~kφ

†
~q′,q′z

φ~q,qzδ(
~k′ − ~k + ~q′ − ~q)

where we have assumed the 2D plane is located at the center of the 3D trap at z = 0 and

the sums over Matsubara frequencies and spins are implicit.
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In addition to the 2D and 3D traps, we study a system with an added 2D and 3D

periodic lattice potential. This allows us to slow the fermi-velocity of the lattice fermions so

the interactions mediated by the 3D particles can be approximated as instantaneous. The

action of the 2D fermions is written as:

S2(ψ) =
∑

k,ωn,σ

ψ†k,n,σ(εk − iωn)ψk,n,σ

+
U2

Aβ

∑

~q,k1,k2

ψ†k1+qψ
†
k2−qψk2ψk1 (2.4)

Where εk = 2t2(cos(kx) + cos(ky)) is the lattice dispersion, A is the area of the lattice and

ωn are fermionic Matsubara frequencies. The coupling U parameterizes another contact

interaction but also depends on the depth of the 2D lattice.

Integration of the 3D particles modifies the chemical potential of the 2D fermions

and generates an additional effective interaction. Thus, from now on the 2D chemical

potential, µ2 will be implicitly understood to contain the modification by the 3D particles.

We first integrate the 3D particles as fermions (φr = fr) in a 3D lattice with the action:

S3 =
∑

k,kz ,νn

f †~k,kz ,n,
f~k,kz ,nG

−1
3 (~k, kz, νn) (2.5)

G−1
3 (~k, kz, νn) = ε~k,kz − iνn

Where νn are the Matsubara frequencies for the 3D particles, G3 the propagator for the 3D

particles and ε~k,kz = 2t3 (cos(kx) + cos(ky) cos(kz))− µ3 the 3D lattice dispersion.

The integration is done perturbativly and yields a one loop particle hole diagram

for the effective interaction:

Vf (q, ωn) = −g2 A

V 2β

∑

~k,kz ,k′z ,νn

G3(~k, kz, νn)G3(~k + ~q, k′z, νn + ωn) (2.6)
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Converting to the continuum and integrating the Matsubara sum, we are left with:

−g2

(2π)4

∫
d~kdkzdkz′

nf (εq,qz)− nf (εq+k,q′z − iωn)

εq+k,q′z − εq,qz − iωn
(2.7)

To consider a instantaneous mediated interaction by fast 3D particles we insist that t2 � t3.

The strength of this interaction with respect to the bandwidth of the 2D particles is then

O( g2

2t22t3
) = O(αg

2

4t23
), with α� 1. We estimate that α can range from 3 to 190: where at the

lower end, we used two similar mass particles, such as Li and Na, in lattices with similar

depths; while at the upper end, we are considering two particles with significantly different

masses, such as Cs and Li, and that the lattice depth of the 2D particles decreases the

tunnelling rate by a factor 10[10]. Thus, at first glance, it appears we need g/2t3 < 1/
√
α

for pertubation theory to be valid when integrating the 2D fermions.

Despite the lattice dispersion preventing an analytic calculation, we can ignore

retardation effects by setting ωn = 0 and numerically integrate Eq. 2.7. The Fourier trans-

form for various distances is plotted in Fig. 2.1 as a function of 3D chemical potential. A

key thing to note are the Friedel oscillations, where the sign of the interaction changes sign

at different distances and the nearest neighbour interaction is exponentially smaller then

the on-site interaction. This means that, if the on-site contact interaction is strong enough

to cancel the on-site mediated interaction, an integration of the effective 2D fermionic ac-

tion will still be perturbative when g/2t3 > 1/
√
α. Thus, wile Fig. 2.1 depects a negligible

nearest neighbour interaction, it can still be formidable, scalling with α.

This calculation was done for a finite sized lattice in [18] and a similar calculation

was done by [17] where the lattice potential is not included. Without the lattice, there

is no natural ultraviolet cutoff and regularization is needed to to deal with an ultraviolet
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Figure 2.1: This is a plot of the Fourier transform at various distances for a 2D mediated
interaction mediated by 3D lattice fermions. U is the onsite interaction strength, NN is for
the nearest neighbour and NNN is for the next nearest neighbour. The y-axis is in units of
t2 and the x-axis is in units of t3.

divergence. The end result is effectively the same as when the lattice spacing is much

smaller than the inter-particle spacing, i.e. at low densities. The difference is at higher

densities, where, in the system without the lattice potential, there is no interplay between

the lattice spacing and the average particle spacing. For the lattice system, the interaction

strength will peak at half filling where the primary mediator switches to lattice hole and

the hole density decreases until the band is full and doesn’t mediate interactions. While for

the system without the lattice potential, the density of states of the scattering mediators is

always increasing with the area of the fermi-surface.

For bosonic mediators, we assume the 3D bosonic system has condensed to form

a superfluid and interactions are mediated by Bogoliubov particles with dispersion ω2
q =

ε0(q)(ε0(q)+∆). Where ε0 is the dispersion for the free bosons and ∆ is the superfluid gap.
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The interaction between the 2D fermions and the Bogoliubov quasi-particles is written:

SI(b, ψ) =
g

V β

∑

k,q,qz

ψ†k+qψk

√
Nbε0(q)

ωq
(a†−q + aq) (2.8)

Where a and a† are the creation and anihlation operators for the Boguliouv quasi-particles,

and Nb is number of condensed bosons. The action for the quasi particles is now quadratic

and can be integrated exactly yielding an effective interaction:

Vb(q, ν) = −g
2N0

2πV

∫
dqz

ε0(q)

ω2
q + ν2

(2.9)

Fourier Transforming to real space we get:

Vb(δ~r, ν) = − g
2n0

(2π)3

∫
dqzd~qe

i~q·δ~r ε0(q)

ω2
q + ν2

(2.10)

where δ~r is the distance the two particles and n0 is the boson density. This interaction is the

same as for 3D bosons mediating other 3D particles but with δrz = 0. Again we can assume

the 3D particles move much faster then the 2D particles and that the interaction potential

will be of the Yukawa form with a mass equal to the condensation gap ∆. Thus, with

regards to the sign and relative strength of the on-site and nearest neighbour interactions,

the bosonic system is the same as the fermi-systems at low density. This means that,

in terms of the phase diagram derived from this effective action, the low density lattice

fermions, free fermions and free bosons are effectively the same. Of course, this does not

mean there aren’t great physical differences between these systems. These differences can

have great importance related to the feasibility of an experiment. For example, bosonic

systems have been show to suffer losses from 3 body Effimov physics and free fermions can

have larger fermi-velocities then their low-density lattice counterparts.
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We reproduce these calculations here to demonstrate the ability to arbitrarily

control the effective on-site and nearest neighbour interaction. For a single mediator, the

knobs are the coupling strengths g and U , the mediator density via µ3 and the tunnelling

rate 1/t. For lattice fermions in 3D, µ3 allows one to choose the sign of the nearest neighbour.

The tunnelling rate controls the overall strength of the mediated interaction while the on-site

coupling U can adjust the overall on-site interaction strength to a desired value.

While experimentally infeasible, it is entertaining to note that this process could

theoretically be extended to arbitrary control of the effective interaction strength of nth

next nearest neighbour sites. In this generalization, there are have n free parameters from

the n 3D particle densities which can be use to tune the interaction at n different interaction

distances. Then, the on-site coupling strength, U , can correct what ever on-site interaction

is left over.

2.4 Renormalization Group Analysis of Triplet Pairing In-

stability

The versatility of this interaction gives a wide range of control over the pairing

instability. In this section, we demonstrate that the pairing instability is of the Triplet p-

wave type and dominates a significant region of parameter space. To this end, we will work

with an explicitly 2D action in the weak coupling limit and consider fluctuations directly

via the functional Renormalization Group (fRG)[15].

fRG is a broad class of RG schemes that specifies the dependence of some functional

on some parameter via the flow equations. When this functional is the effective action at
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a given length scale, one can obtain Wilsonian like RG equations for the various n-point

functions [15]. In this paper, we consider a 2D effective action which depends on spin. In a

perturbative expansion one can focus only on the small n n-point functions. We write the

effective action for the 2D fermions as:

ΓΛ(ψ) =
∑

i

ΓΛ
2 ψ
†
iψi +

∑

i,i′,j,j′

ΓΛ
4 (i, i′, j, j′)ψ†i′ψ

†
j′ψiψj (2.11)

where i, j, etc. are field variables that carry momentum, spin and Matsubara frequency:

(~ki, ωni , σi) For the initial conditions at Λ = 2t, the effective action is given as the bare 2D

action (Eq. 2.4) with a modified interaction, Γ2t2
4 =

U2+Vf (~q,0)
Aβ . Where Vf (~q, 0) and U2 are

defined in Eq. 2.4 and Eq. 2.6 correspondingly. We will discuss the generalization to other

3D mediators at the end of this section.

Our analysis on the relevant couplings focuses on the flow of two particle scattering

or the 4 point function, ΓΛ
4 . At one loop order, one can ignore the flow of the 2-point

function when considering the flow equations for the 4-point function. The flow of the 4-

point function, Γ4, obtains contributions from the three diagrams shown in Fig. 2.2. The

integral for βPP is written:

βPP (ΓΛ
4 (i, i′, j, j′)) = (2.12)

1

2

∑

q

ΓΛ
4 (i, q, j, i+ j − q)ΓΛ

4 (q, i′, i+ j − q, j′)∗

Θ(εq′ − Λ)δ(εq − Λ) + q ↔ q′

(εq − iq0)(εq′ − iq′0)

where q′ = i+ j − q and Θ is the step function.

All three beta functions have two internal legs. One internal leg is restricted to

an equal energy surface, while the other is restricted to the momentum above the cutoff
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Figure 2.2: 4 point beta functions. The PP diagram is responsible for pairing instabilities
while the PH and PH’ diagrams are responsible for desnity wave instabilities.

and determined by momentum conservation. The magnitudes of the beta functions are

inversely proportional to the energy of the two internal legs. This causes the diagrams,

where the momentum conserved leg is guaranteed to also be on the cutoff energy surface,

to flow the strongest. Furthermore, couplings on the fermi-surface will always be flowing,

while couplings above the cutoff won’t. Therefore the couplings on the fermi-surface that

satisfy the momentum conserving condition will be most relevant. In fact it can be shown

that all other couplings are irrelevant[21, 20]. The condition for a relevant coupling from

the PP diagram is then:

εi+j−q = Λ (2.13)

and the condition for the PH contribution is

εi−i′+q = Λ (2.14)

These conditions, along with momentum conservation and the restriction of relevant scat-

tering to the fermi-surface, reduce the parameterization of the relevant scatterings to two

angles, and the spin dependence: ΓΛ
PP (σ, θ1, θ1′) and ΓΛ

PH(σ, θ1, θ2). Given SU(2) symmetry

the spin dependence breaks down into singlet and triplet scattering, σ = S, T .
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When the effective chemical density of the 2D fermions, µ2, is away from half

filling, the relevant fermi-surface scatterings don’t satisfy Eq. 2.14. On the other hand, the

fermi-surface at all fillings obeys inversion symmetry and thus the PP condition Eq. 2.13 is

satisfied yielding relevant ΓΛ
PP (θ1, θ1′) couplings. When µ2 is close to the bandwidth, the

energy levels close to the fermi-surface are circular and the frequency integral in Eq. 2.15

can be evaluated at 0 temperature directly yielding[21]:

−2t2Λ
d

dΛ
ΓΛ
PP (θ1, θ1′) = − 1

8π2

∫
dθ

2π
ΓΛ
PP (θ1, θ)Γ

Λ
PP (θ, θ1′) (2.15)

This equation can be decomposed into angular momentum modes and the resulting set of

differential equations solved by:

ΓΛ
l =

Γ2t2
l

1 + ln( Λ
2t2

)
Γ

2t2
l
4π

(2.16)

Where, Γ2t2
l is the decomposition of the PP 4-point function, ΓΛ

PP , at the bandwidth scale

Λ = 2t. When Γ2t2
l is attractive, Eq. 2.16 has a divergence at a critical scale,

Λc = 2t2 exp (−| 1

Γ2t2
l

|) (2.17)

indicating that the system flowed to a new fixed point. For finite temperatures, the singu-

larity in Eq. 2.15 is smoothed and for temperatures above the critical scale, the couplings

stay near the free (Fermi liquid) fixed point. For temperatures below the critical scale, the

couplings diverge and the flow can not be continued to the new fixed point A guess with a

mean field analysis must be used to determine the properties of the new fixed point. For

the PP divergences, mean field suggests a pairing state describes the new fixed point, where

the angular momentum and the spin state of pairs are determined by leading ΓΛ
l .
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Figure 2.3: Phase diagram suggested by bare interaction. This is for fixed V 3 and for U
set to cancle onsigte interaction. This probably can be smaller.

Eq. 2.16 indicates the leading divergence will correspond to the mode with largest

Γ2t2
l . Therefore, we will have triplet pairing when the largest Γ2t2

l has an odd l. On-site, local

interactions have a flat Fourier transform and thus only contribute to s-wave interaction.

Nearest neighbour interactions, on the other hand, have 4 sites to modify the rotational

symmetry and therefore can contribute to l = 1 (p-wave) or l = 2 (d-wave) modes. So given

the tunability of 3D mediators, triplet pairing can be induced by an attractive, long-range,

effective action. The condition for this in terms of Γ2t
l is: Γ2t2

1 < 0 and |Γ2t2
1 | > |Γ2t2

l |.

This requires that the nearest neighbour attraction be stronger than the on-site

attraction, otherwise s-wave pairing will dominate. In spin-less or spin-imbalanced systems,

the exchange repulsion guarantees that this is the case. For SU(2) symmetric systems, the

mediated on-site attraction, found in Fig. 2.1 and Eq. 2.10, needs to be compensated by a

repulsive contact interaction between the 2D particles.
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This compensation still leaves the possiblity of d-wave pairing and we check this

numerically. This calculation begins by breaking the two angles in the relevant couplings,

Γ2t2
PP (σ, θ1, θ1′), into 16 patches. We then compute the eigen-vectors and eigen-values of

the matrices Γ2t2
PP (σ, i, j). The number of 0s in the eigen-vector determine the angular

momentum, l, and the eigen-value gives us Vl(2t2). To satisfy the 2π boundry condition,

Γ2t2
PP (σ, i, j) must have eigen-vectors with 2n zeros. To satisfy exchange symetry, matrices

with σ = T will have odd n, while those with σ = S will have even n. For energy levels away

the circular fermi-surface, the decomposition of the beta functions for the relevant couplings

will depend on the shape of the fermi-surface, but the general feature that negative eigen-

values diverge at a given scale will remain. This is because there is still inversion symetry

and the PP graph is still relevant. This way we can still guess what fix point the RG

equations will flow to by decomposing the initial 4-point function Γ2t2
PP (σ, θ1, θ1′).

In search of the l = 1 Triplet mode, we consider the µ2, µ3 plane where we

have fixed the on-site contact interaction to compensate the mediated on-site interaction by

Ueff/t = 1. The overall strength of the mediated interaction will determine the critical scale

but won’t effect which pairing state appears. For this, we set the over all strength of the

contact interaction between the 3D and 2D gasses to be αg2/t23=100. The phases predicted

by the decomposition of the initial 4-point function is shown in Fig. 2.3. For µ3 < 2.2,

the nearest neighbour interaction is also repulsive, so the only potential relevant coupling

flows to 0. Thus, we predict that this part of the phase diagram will be a fermi-liquid at all

relevant energy scales. For µ3 > 2.2 the nearest neighbour interaction is attractive and we

expect pairing. For µ2 < −0.6 p-wave pairing dominates but for µ2 > −0.6, the symmetry
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of the fermi-surface favours D-wave pairing. For µ2 = 0 the Fermi surface is nested and we

expect the PH couplings to diverge first and the system to favour a CDW.

We suspect similar results for free fermion and bosonic mediators. Given that

the on-site contact interaction cancels the on-site mediated interaction, a higher angular

momentum pairing state will dominate at low temperatures. Which pairing state will then

depend on the geometry of the fermi-surface, and as the 2D fermions approach half filling,

a p-wave instability will become a d-wave one. The CDW will continue to persist at half

filling due to the nesting of the fermi-surface. The primary difference is that the bosons and

fermions don’t aquire a repulsive nearest neighbour interaction and destabilize the p-wave

phase at a specific doping.

Similar results are also expected to hold in the spinless systems studied with mean

field by Nishida and Wu [17, 23, 16]. In this system, the effective interaction, Γ2t
4 , is the same

as the triple component of the SU(2) symmetric system. The PP instability is still present,

but the exchange symmetry only allows odd l. Thus, the negative initial-eigen-value for

l = 1 will still be dominant, but it won’t have to compete with s or d-wave. Furthermore, in

the system with fermionc mediators on a lattice, the transition to a fermi-liquid at higher

densities will still occur as the l = 1 initial-eigen-value changes sign.

2.5 Numerical fRG Results

The results above give our analytic expectation for when the 2D effective action

flows to a triplet pairing fixed point. In this section, we numerically solve the RG flow

equations, with the intent to directly consider anisotropic effects of the fermi-surface and
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the interaction between different pairing instabilities. To this end, we use a different fRG

functional, the Wick ordered effective action, WΛ(ψ) which generates wick ordered n-point

functions [15, 20, 8]. This functional directly reproduces the effective action as Λ→ 0 and

has the numerically appealing feature that its flow equations are local in the cutoff.[8] Since

theWΛ only reproduces the effective interaction in the 0 cutoff off limit, we predict the low

energy phases by tracking how correlation functions diverge as the cutoff is lowered. This is

because above the critical temperature,WΛ doesn’t have any divergences and correctly gives

the correlation functions. As one approaches the critical temperature, critical fluctuations

lead to divergences in the correlation functions. This will again be captured by WΛ and

will continue to diverge in the same way as we reduce the temperature. This is because we

are still starting from the free fixed point.

Therefore, we can use which correlation diverges first to determine the low energy

phase.[8] We consider particle-particle correlations to identifying pairing phases:

XΛ
PP (f, s) =

〈
|
∫
dθf(θ)sσ,σ′ψσ(kf , θ)ψσ′(kf ,−θ)|2

〉Λ

(2.18)

where the expectations are computed at a cutoff Λ using WΛ, f(θ) determines the pairing

symmetry, and sσ,σ′ determines whether the system is in a singlet or triplet pairing state.

Similarly, particle-hole correlations are used to identify density wave phases:

XΛ
PH(s) =

〈
|
∫
dksσ,σ′ψ

†
σ(~k)ψσ′(~k + ~q)|2

〉Λ

(2.19)

Here sσ,σ′ determines if we are considering spin or charge density waves. At the beginning

of the flow these correlations are O(1). As we approach the critical scale, the correlations

will diverge, and we can approximate the critical scale for a given correlation as the scale

when that correlation is O(100).
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Figure 2.4: As we incrase the mediated interaction, the critical scale rizes exponentially
until we are in the strong coupling limit. The overall interaction strength depends on α
which we set to 150.

As is standard with numerical fRG calculations [8, 19, 24, 9, 3], we flow a finite

number of couplings by projecting the momentum to a finite number of patches on the

fermi-surface. These patches are identified by their angle, θi for i ∈ (1,m). Since the

4th momentum is specified by momentum conservation, there are m3 couplings and m3

coupled differential equations to be solved for each ΓΛ(i, j, k). Due to this computation

complexity we work with m = 16, and do not explore the full four dimensional parameter

space (µ2, µ3, U, g). Instead, we focus on specific cuts to confirm the above picture and

understand the stability of the triplet pairing phase.

First, we test the esimation given by Eq. 2.17, which gives critical temperatures

as a function of 1

Γ
2t2
l

|. To this end, we make the first cut deep within the expected triplet

pairing phase at µ2 = −1.4 and µ3 = 3.85. As before, we set the on-site contact interaction

such that the effective on-site interaction at Λ = 2t2 is Ueff/t2 = 1, and S-wave pairing is
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suppressed. We confirmed that the p-wave triplet XΛ
PP (p, T ) correlation diverged first, and

in Fig. 2.4, we plotted the dependence of the critical scale on the magnitude of the coupling

strength, g/2t3.

We then fit this to the prediction of Eq. 2.17. This fit has one free parameter, β

defined as Γ2t2
1 = βα( g

2t3
)2. β then gives the fraction of the interaction that is contained in

the l = 1 scattering mode. Despite the non trivial geometry of the fermi-surface and the

inclusion of the particle-hole beta functions, the scaling is well described by Eq. 2.17. We

find that β = 0.8 ∗ 10−3. This compares well with our expectation that the l = 1 mode is

comming from the effective nearest neighbour attraction, which is approximatly 2 ∗ 10−3 at

µ3 = 3.85. A possible source of error is the method we estimate the cut-off. Since we can

not numerically compute the location of the asymptote exactly, we have to estimate it by

a max correlation strength.

At large g/2t3, the pertubative integration of the effective interaction may be called

into question. This can be resolved by increasing α: allowing the effective nearest neighbour

strength to still be large, but g/2t3 to still be pertubative. There is still a question on the

validity of the one-loop fRG equations, because the effective nearest neighbour interaction

still needs to be close to the 2D bandwidth for the critical temperature to be 10% of the

bandwidth. This is resolved by an argument by Shankar[21], which states that the fRG

calcuations can be understood as a type of Large N expansion, where N grows as the cutoff

is lowered. This interplay between a high critical temperature and pertubative validity will

be discussed further in the Section 7.8.
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Figure 2.5: This plot depicts the instability of p-wave pairing to d-wave pairing upon varying
the 2D particle density. This cut is at µ3 = 3.85, Ueff/t2 = 1, α = 150 and g/t3 = .86

In the previous section, we predicted that as we decreased the doping of the 2D

fermions, we would transition from triplet pairing to d-wave singlet pairing. This transition

was confirmed numerically and is depicted in Fig. 2.5. This figure shows the transition to

d-wave at µ2 = −0.8. Away from the transition the difference between the two critical

scales is relatively the same. This is a failure of perturbative fRG equations: when the

scatterings responsible for the leading correlation function starts to diverge, it also drives

the divergence of non-leading correlation functions. It is worth pointing out that we don’t

see any exponential scaling in the p-wave interaction because the relative strength of the

l = 1 interaction doesn’t change as we vary µ2.

Next, we consider doping in the 3D lattice fermions with a cut at µ2 = −1.4.

Our results are plotted in Fig. 2.6 and confirm our expectations from the previous section.

At low 3D particle density, there are few particles to mediate interactions and the system
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Figure 2.6: This plot depicts the dependnece of the critical temperature of p-wave pairing
on the 3D particle density. This cut as the same interaction paramters as in Fig. 2.5:
Ueff/t2 = 1, α = 150 and g/t3 = .86

remains a fermi-liquid to lower temperatures. As the 3D particles approach half filling,

the nearest neighbour interaction becomes repulsive and the p-wave instability disappears.

While at intermediate doping µ3 = 3.85 the p-wave instability reaches its maximum value.

Finally, we consider the stability of the p-wave phase to the strength of the on-site

contact interaction. In Sec. 2.4, we pointed out that it is required to be strong enough to

cancel the on site attraction due to the mediated particles. In the previous cuts we always

set the contact interaction so the effective on-site interaction was Ueff/t = 1. In Fig. 2.7,we

plot a cut where all parameters are fixed at their optimal values for p-wave pairing, and

we vary the on-site contact interaction. Once the effective onsite interaction becomes more

attractive than the initial l = 1 pairing strength, the s-wave critical scale begins to grow

untill it over comes the p-wave pairing. The transition point happens below 0 because the
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Figure 2.7: As we reduce the onsite contact interaction, the effective onsite interaction
becomes negitive and s-wave pairing starts to dominate. This cut is at µ3 = 3.85, µ2 = −1.4,
α = 150 and g/t3 = .86

l = 1 component still dominates. As we decrease the l = 1 commponent, by changing µ3 or

reducing g/t3, the transition point will increase to 0.

2.6 Discussion

The main experimetnal barier to realizing this system is cooling. In the weak

coupling limit, fRG analysis clearly demonstrates that: at low enough temperatures, the

fermi-liquid phase is unstale to triplet pairing. Furthermore, if the next nearest neighbour

interaction is close to, but less than, the bandwidth, the critical temperature will be about

10% the bandwidth (an experimentally accesible temperature). The trouble is reaching this

interaction strength without invalidating the pertubation theory that derived the mediated

interaction. This is achieved by increasing α, i.e. using particles with significantly different

masses and increasing the lattice depth of the 2D particles. While this maybe infeasible,
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one can still push g/t3 beyond the perturbative limit. In this limit, one still expects inter-

species interactions to mediate some form of long range attraction and a mean field analysis

in similar systems has suggested a triplet instability[17, 23, 16]. Thus, despite possible

troubles with cooling, our results suggest that fluctuations are compatible with the mean

field analysis of previous studies and this system has a p-wave pairing instability.

This work goes beyond previuos studies of p-wave pairing in mixed dimension

by demonstrating a system with SU(2) spin symmetry is also unstable to triplet pairing.

Therefore, if implemented, this system could be used as a test bed for a wider range of

triplet pairing physics. In this system, the triplet pairing state is degenerate, and, unlike

the singlet counter part, the paramagnetic instability will be the same as the uncondensate

state [13]. With the addition of pertubations, such as spin orbit coupling or introucing a

imbalance in species, one can explore the full range of possible spin textures and vorticies.

Maybe most excitingly, if one adds spin orbit coupling, vortices with half a quantum flux

will appear and will host Majorana fermions[1].

In this work, we have studied 2D fermions that have a long range attraction which

can be mediated by three different types of 3D particles. Focusing on 3D fermions in

a lattice, we have shown that an SU(2) symmetric, triplet, p-wave pairing instability is

dominant in a wide range of parameter space. We then agrued that this phase will extend

to the two other types of mediators. We have also argued that the previous mean field

results hold for spinless systems in the weak coupling limit where fluctuations dominate

the physics. Finally, we have identified nearby s-wave and d-wave, singlet pairing phases

and identified the critical energy scale for the transition from the fermi-liquid phase to
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the pairing phases. This work demonstrates that systems that don’t rely on the exchange

repulsion to suppress s-wave pairing are capble of triplet superfluidity, and thus it opens the

posibility of exploring the full range of triplet-pairing physics observed in He3 and similar

systems.
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Chapter 3

Detecting Macroscopic

Indefiniteness of Cat States in

Bosonic Interferometers

3.1 Abstract

The paradigm of Schrödinger’s cat illustrates how quantum states preclude the

assignment of definite properties to a macroscopic object (realism). In this work we develop

a method to investigate the indefiniteness of cat states using currently available cold atom

technology. The method we propose uses the observation of a statistical distribution to

demonstrate the macroscopic distinction between dead and alive states, and uses the deter-

mination of the interferometric sensitivity (Fisher information) to detect the indefiniteness

of the cat’s vital status. We show how combining the two observations can provide infor-
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mation about the structure of the quantum state without the need for full quantum state

tomography, and propose a measure of the indefiniteness based on this structure. We test

this method using a cat state proposed by Gordon and Savage [Phys. Rev. A 59, 4623

(1999)] which is dynamically produced from a coherent state. As a control, we consider

a set of states produced using the same dynamical procedure acting on an initial thermal

distribution. Numerically simulating our proposed method, we show that as the tempera-

ture of this initial state is increased, the produced state undergoes a quantum to classical

crossover where the indefiniteness of the cat’s vital status is lost, while the macroscopic

distinction between dead and alive states of the cat is maintained.

3.2 Introduction

Superposition is at the heart of the many predictions made by quantum mechanics

that clash with everyday intuition. It allows for the possibility of an experiment in which

we must conclude that some property of an object can not be prescribed a definite value

before measurement. Instead, this indefiniteness of a property must be modelled by a

superposition of possible values and implies a statistical uncertainty that can not be reduced

by obtaining more knowledge about the universe. While plausible for microscopic properties,

this possibility directly conflicts with our everyday intuition for macroscopic objects. The

characteristic example is the Schrödinger’s cat thought experiment[55], where a cat ends

up in a superposition of alive and dead by entangling with the decayed or excited state of

a radioactive source.
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When investigating these macroscopic states in an experiment, we are naturally

led to two questions: 1) How do we know the cat’s life was an indefinite property before

measurement? 2) How do we quantify the macroscopicity of the cat and thus, the extent

to which it conflicts with our intuition about the macroscopic world? The first question is

answered by Leggett-Garg[38], who constructed a set of inequalities on a set of different-time

correlation functions that would only be violated if the cat was in an indefinite state at some

intermediate time. The second question has been answered by constructing measures of

macroscopicity in two general ways[18]: either by focusing on the structure of a macroscopic

cat state[36, 37, 14, 5, 29, 42, 56] or generalizing to any macroscopic quantum state[57, 10,

35, 16, 47, 62, 32, 31]. For many of these measures, a state is declared macroscopic based

on how the measures scale with the number, N , of constituent particles. The experimental

observation of these measures often leads to a way to answer the first question[17, 10, 31].

In this paper we will work with a measure that is a combination of the one proposed

by Leggett[36, 37] and the one proposed by Fröwis and Dür[16]. The measure proposed by

Leggett is quantified by two numbers: the extensive difference, Λ, which is the difference

of the expectation value for some observable A between the dead and alive states of the

cat, and the disconnectivity, a quantity based on the entanglement entropy. The extensive

difference describes how macroscopically different the dead and alive cats are, while the dis-

connectivity quantifies how indefinite the vital status of the cat is. The measure of Fröwis

and Dür[16], Neff , is applicable to general quantum states and is based on the experimen-

tally quantifiable, quantum Fisher information (QFI). The QFI has been interpreted as a

measure of entanglement[27], and has stimulated a variety of work studying this type of
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entanglement[49, 27, 16, 33, 24, 15, 58, 44]. The QFI has also been shown to be connected

with the resource theory of coherence[59] and to be the maximum quantifier for the resource

theory of quantum invasiveness[45]. Inspired by the measure of Fröwis and Dür, and by

recent insights relating the QFI to the convex-roof of uncertainty[61, 63](see Section II), we

replace the disconnectivity in Leggett’s measure by a function of the QFI and statistical

variance.

This choice is further motivated by the fact that the extensive difference and the

QFI are both experimentally accessible in bosonic interferometer experiments. The kind of

bosonic interferometer experiments discussed here[49, 46, 58, 65, 52, 1, 21, 28, 2, 4, 54, 13, 46,

4, 54, 13] can be understood as a way to estimate a phase encoded onto a macroscopic spin

by a projective measurement. The maximum sensitivity of the interferometer to the encoded

phase is given by the classical Fisher information (CFI) via the Cramer-Rao bound[11, 51]

and is restricted by the phase encoding method and the chosen projective measurement. The

QFI quantifies the sensitivity of the interferometer when the best projective measurement

is used and is bounded from below by the CFI. The CFI and other measures of sensitivity

can be measured by experiments[58, 40] and many proposals exist to optimize the bound

the CFI puts on the QFI[44, 20, 17]. The extensive difference can also be obtained in an

experiment from the counting statistics of a single-particle observable[40, 58].

Various types of macroscopic states have been produced in these systems, rang-

ing from squeezed states[24, 15] to non-Gaussian entangled states[58]. There also exists

many proposals to create macroscopic cat states in bosonic interferometers[33, 25, 41, 43,

34, 7, 26, 23, 19, 8]. In this article we work with a cat state first proposed by Gordon
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and Savage[23]. The method for creating this state can be understood from the classical

dynamics of the effective collective spin. As we explain in Section I, the classical dynamics

exhibit two different kinds of trajectories separated in phase space by the separatrix. As

pointed out by Micheli et al.[43], the cat state is prepared by creating an initial coherent

state with a Wigner distribution that spans the phase space region crossing the separatrix.

The quantum dynamics then separates the components from either side of the separatrix

into the macroscopically distinct alive (free oscillation) and dead (self-trapping) components

of the cat. They prove this by semi-classically evolving the Wigner function and finding it

produces a double peak distribution in the z-component of the macroscopic spin.

Similar arguments can be applied to mixed states, and we show that initial thermal

distributions also evolve into a double peak state. We show that the higher the temperature

the less indefiniteness the state displays, and we describe how an experimenter can observe

this transition. These high temperature states are particularly appealing because, despite

increasing the temperature, it is still possible to identify the dead and alive states of the

cat. Thus, as temperature increases, the vital status of the cat becomes definite before the

distinction between dead and alive is loss.

Previous work has suggested the detection of indefinite properties for similar states

by using generalized Leggett-Garg inequalities[53] or observation of many-body correlation

functions[48], but these methods rely on experimental tools that have yet to be imple-

mented. In this article, we study the possibility of currently available cold atom technology

to experimentally detect the macroscopic indefiniteness of these cat states, and distinguish

them from the classical uncertainty of the high temperature mixed states. The method we
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propose uses the observation of a statistical distribution to demonstrate the macroscopic

distinction (extensive difference) between dead and alive states and uses the interferomet-

ric sensitivity (QFI) to detect the indefinite vital status of the cat. We show how these

two types of observations provide information about the nature of the possible pure states

which make up the density matrix, and how this information is useful in observing the

crossover from a cat that is in a superposition of dead and alive to a cat that is either

dead or alive. Next, we numerically simulate the method for the Gordon and Savage cat

state and demonstrate the quantum to classical crossover. Inspired by the Schrödinger’s

cat thought experiment, we conclude by considering a cat state which is entangled with

an auxiliary qubit (representing the radioactive source) and show that such a quantum to

classical crossover is controlled by the strength of entanglement with the auxiliary qubit.

3.3 Interferometers, Cat States and Double Peak Mixed States

Interferometry in Bose Einstein condensates has led to new measurement tech-

niques for magnetic fields[46], gravitational fields[54, 13] and rotational motion[4]. In the

kind of interferometry that we are considering, the experiment consists of the following four

steps[44, 49]:

(1) State preparation: In the first step the state, described by a density matrix ρ,

is prepared. This step often involves condensing particles into a single wave function and

performing entangling operations to allow sensing at higher accuracy.
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(2) Phase encoding: The unitary evolution of the interferometer encodes a phase

onto the state prepared in the first step: ρ → ρψ = U †ψ,ΩρUψ,Ω. The Hamiltonian of this

unitary evolution is proportional to the parameter to be measured, such as the magnetic

field strength. ψ is the phase encoded, and Ω represents the additional parameters of the

unitary transform.

(3) Read-out: An additional unitary evolution Ur is applied to the state to prepare

for an effective measurement of an observable R.

(4) Projective measurement: A destructive measurement of an observable X is

modelled as a projection onto the eigenvector |x〉 with measurement value x: 〈x|U †rU †ψ,ΩρUψ,ΩUr |x〉.

Repeating this measurement multiple times produces a distribution:

p(r, ψ,Ω) = 〈r|U †ψ,ΩρUψ,Ω |r〉 (3.1)

with |r〉 = Ur |x〉.

For simple set-ups, the expectation value of R is directly proportional to the phase

encoded and Hamiltonian parameter being estimated. In this paper, instead of using the

last 3 steps to estimate the phase, they are used to verify the indefiniteness of some property

of the initial state ρ.

3.3.1 Phase Encoding, Read-out, Projective Measurement

A simple form of interferometry involves two quantization modes that can interfere.

These modes can be external kinetic modes in which bosons move in two different guides,

or the modes can be identified with the two sites of a double well potential[4, 54, 13, 1,

21, 28, 2, 30]. These modes could also be associated with two different internal states of
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the boson particles (e.g. hyperfine states of the bosonic atoms[46, 58, 65, 52] that can

be coupled by lasers). A highly successful approximation[50, 43, 39, 22] assumes that the

bosons only occupy these two modes. This limits the Hilbert space to that spanned by the

Fock-states of the two modes: |m1,m2〉, where m1 and m2 are the number of bosons in the

first and second modes. Counting the particles in the two modes constitutes the projective

measurement of step 4: |x〉 = |m1,m2〉

A single particle in two modes has a two dimensional Hilbert space and is described

by a spin half operator, J = σ/2. The single particle observable in 2 modes, for a system

with N particles are described by linear combination of SU(2) generators of a N/2 spin,

J =
∑N

i=1 σi/2:

J(θ, φ) = Jz cos θ + Jx sin θ cosφ+ Jy sin θ cosφ (3.2)

where these Cartesian components, Jz, Jx and Jy, satisfy the standard commutation rela-

tions: [Ji, Jj ] = iεi,j,kJk. By mapping the sum, m1+m2 = 2j, and difference, m1−m2 = 2jz,

onto the magnitude and z-projection of a collective spin, one can connect the Fock repre-

sentation with this well-known SU(2) algebra for describing rotations. The particle number

difference is then mapped to Jz and tunnelling between the two modes is described by

Jx(more generally J(π/2, φ)).

For internal modes, a Hamiltonian Jz can be created by applying a magnetic field to

split the hyperfine states and a Hamiltonian Jx can be created by applying a Rabi-coupling

laser field. For external kinetic modes, these Hamiltonians are controlled by shaping the

external potential.
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Figure 3.1: (Color online) Classical trajectories. The separatrix is shown in black (bold)
and separates the circular free-oscillation trajectories from the self-trapping ones. The green
dots mark the fixed point and the green arrows mark the unstable directions.

The phase encoding and read-out operations, Uψ,Ω and Ur discussed in this paper,

are all linear single-particle operations:

U(α, θ, φ) = e−iαJ(θ,φ) (3.3)

where Ur = U(Trεr/~, θr, φr) and Uψ,Ω = U(ψ, θΩ, φΩ) and ε is the energy scale of the

Hamiltonian. The collective spin picture maps a projective two-mode number difference

measurement, m1 −m2, to a measurement of the Jz observable. For single-particle read-

out, the combined steps 3 and 4 becomes equivalent to an effective measurement on the

spin in a new direction:Jz → Jz′ = U †rJzUr. For example, a read-out rotation around the

x-axis (Tr = π~
2εr

, θr = π/2, φr = 0. i.e. J(θr, φr) = Jx) produces an effective measurement

of Jy.
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3.3.2 State Preparation: Cat States and Mixed Double-Peak States

In this paper, the state prepared in the first step of interferometry is the Gordon

and Savage cat state[23] or a mixed state with a similar distinction between dead and alive

states. In this section, we describe these states and how they can be prepared. In the next

section we describe how the last 3 steps can be used to verify indefinite properties of this

state.

In bosonic interferometry, state preparation begins with condensation into the

ground state of some Hamiltonian ετJ(θ, φ). In this paper, we will describe partial conden-

sation using a thermal state:

ρ(β, z, φ) = eβετJ(cos−1(z),φ), (3.4)

where we have introduced the scaled difference: z = jz/j = [m1 −m2] /N = cos (θ). States

of this form have been produced for kinetic modes for the Hamiltonian Jx by Gross et

al.[21], and thermal states of any other Hamiltonian of the form J(cos−1(z), φ), can be

produced by rotations of the form in Eq. 3.3. For this paper, we will focus on the states

ρ(β, 0 = zc(π), π) and ρ(β, |zc(0)| , 0) which we refer to as the π and 0 state at temperature

β−1. The critical imbalance, zc(φ), is given by the solid black line in Fig. 5.1.

Following (partial) condensation, cat states can be prepared by the method men-

tioned above by Gordon and Savage. We will describe this method using the explanation

provided by Micheli et al.[43]. There they explain how the twist-and-turn[49] Hamiltonian:

H = tJx +
U

2
J2
z (3.5)
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produces cat states via a semi classical analysis. The classical analysis assumes a set of

variational states which are the ground state of the Hamiltonian J(cos−1(z), φ). The clas-

sical equations of motion describe the dynamics of imbalance of particles between the two

modes (projection onto the axis), z and its conjugate variable φ.

The classical equations of motion have been solved analytically[50] and have two

fixed points for all parameters, t and U . Dynamical creation of a cat state takes place at

larger coupling strength (U > 4t/N), where one of the classical fixed points is unstable.

The classical trajectories for 2J = N = 200, U = 0.1 and t = 1 are shown in Fig. 5.1 and

demonstrates a critical line, ±zc(φ), separating two distinct dynamical behaviours. Along

one set of trajectories the effective spin rotates around the x-axis so that the variation of the

azimuthal (φ)-angle is confined to a finite interval. These trajectories, confined to the middle

region in Fig. 5.1, correspond to the Josephson oscillations[64, 50, 1] observed in condensed

matter Josephson junctions and we refer to them as free oscillations. Along another set of

trajectories, the spin rotates around the z-axis so that the φ-variable increases indefinitely.

Along the latter type of trajectories the particle imbalance (z) does not change sign and

the corresponding dynamics is known as self-trapping dynamics. The phase-space (φ, z)-

regions of the two types of trajectories are separated by a critical line, zc(φ), called the

separatrix, indicated by the thick black line in Fig.(1). This line is the classical trajectory

of both the π and 0 states in the classical analysis. The π state starts on the unstable fixed

point, while the 0 starts at (zc(0), φ = 0). All numerical calculations presented in this paper

have been carried out for the parameters used in Fig. 5.1: 2J = N = 200, U = 0.1 and

t = 1.
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Focusing on pure states (β−1 = 0), the first quantum approximation in a semi-

classical analysis treats the initial pure state as a finite width Gaussian probability distribu-

tion. In the classical dynamics, the paths of the free oscillation and self-trapping trajectories

diverge near the unstable fixed point(φ = π, z = 0). In the quantum mechanical evolution

of the π and 0 states, the trajectories of the Wigner-distribution amplitudes part ways near

the same phase space coordinate. After a time interval during which the z-coordinates of

the classically evolving systems on either side of the separatrix have separated maximally

(a time Tπ = log(8N)~/[NU ] for the π-state and 1.4Tπ for the 0-state), the quantum state

evolves into a superposition of two macroscopically separated (specified below) states. The

corresponding self-trapping and free oscillation components are the dead and alive compo-

nents of the cat state. In the case of the pure state described above, we a priori know that

the vital status is indefinite.

For the case in which the initial state is at a high temperature, the classical dy-

namics are the same, but uncertainty in the evolved probability distribution reflects our

lack of knowledge about the classical phase-space position as opposed to the indefiniteness

of the quantum state. As we show below, the measure that we propose indicates that the

thermal states are definite.

We numerically compute both the thermal and pure states using exact diagonal-

ization of Eq. 3.5 followed by a time evolution of the states ρ(β, z, φ). The probability

distributions for the Jz observable are shown in Fig. 3.2 for the pure states and Fig. 3.3

for the high temperature states. Both the pure states and the thermal states demonstrate

a double peak suggestive of a dead and alive labelling. We make this labelling precise for a
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pure state |k〉 by decomposing it into a dead and alive state|k〉 = (|alive〉+ |dead〉)/
√

2:

|alive〉 =
1√
NL

∑

jz

|jz〉 〈jz|k〉Θ(〈Jz〉 − jz) (3.6)

|dead〉 =
1√
NR

∑

jz

|jz〉 〈jz|k〉Θ(jz − 〈Jz〉)

Where NR and NL, are defined so the alive and dead states are properly normalized. While

this decomposition is always possible, it only make sense to call the pure state |k〉 a cat

state if the dead and alive states are macroscopically distinct. In other words, the extensive

difference Λ(A) = 〈A〉alive − 〈A〉dead should scale with the number of particles. For the

decomposition above, the extensive difference for the observable Jz can then be computed

by:

Λ(Jz) =
∑

jz

(PL(jz)− PR(jz))jz (3.7)

where PL(jz) are the re-normalized distributions corresponding to the dead and alive states:

PL(jz) =
1

NL
P (jz)Θ(〈Jz〉 − jz) (3.8)

PR(jz) =
1

NR
P (jz)Θ(jz − 〈Jz〉)

where Θ(x) is the Heaviside-step function which is 1 for x > 0 and 0 for x < 0.

Thus, any double peak distribution where the peaks are macroscopically separated

will have an extensive difference scaling with the number of particles. This is true for the

pure states in Fig. 3.2, where the extensive difference is 65 ≈ 200/3 = N/3. Eq. 3.7 can

also be applied to the mixed states in Fig. 3.3 and gives a similar extensive difference ≈

N/3. Experimentally, counting statistics provide the distributions P (jz) and Eq. 3.7 can be

used to determine if the observed state can be meaningfully separated into macroscopically
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Figure 3.2: Distributions P (jz) for the state evolved from the π and 0 coherent states
(0 temperature) for a time Tπ and 1.4Tπ respectively. These states where computed for
N = 200 or for an SU(2) spin with size J = 100, and the x-axis, jz, are the eigenvalues of
the observable Jz.
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Figure 3.3: Distributions P (jz) for the state evolved from the π and 0 states at temperature
10ετ for the same time intervals as in Fig. 3.2. As in Fig. 3.2, these states where computed
for N = 200 or for an SU(2) spin with size J = 100.
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distinct dead and alive cats. The next section describes how to determine the vital status

of the cat.

3.4 Interferometer Sensitivity and Indefiniteness

To quantify how indefinite the vital status of the cat is, we use the interferometer

sensitivity quantified by the quantum and classical Fisher information (QFI and CFI). In

this section, we introduce the interferometer sensitivity, convex roof of the variance, and

explain how an experiment can quantify the indefiniteness and obtain information about

possible pure states which make up the density matrix.

In the interferometry experiment discussed above, a phase ψ = ε∆t
~ , is encoded

on to a state via time evolution by a Hamiltonian, HΩ = εJ (θΩ,ΦΩ), for a time ∆t. The

sensitivity to the phase ψ is given by the CFI:

Fc(R, ρψ,Ω) =
∑

r

p(r, ψ,Ω)[∂ψlog(p(r, ψ,Ω))]2 (3.9)

where p(r, ψ,Ω) = 〈r|U †ψ,ΩρUψ,Ω |r〉(Eq. 3.1). The primary use of the CFI, Fc, is that its

value provides an upper bound on the estimated phase ψ via the Cramer-Rao bound[11, 51]:

∆ψ ≥ 1√
Fc(R, ρψ,Ω)

(3.10)

The CFI, Fc(R, ρψ=0,Ω), can be measured in experiments[58]: repeating the four-

step process to obtain measurements of p(r, 0 + δ,Ω) for a range of small δ allows the

construction of the derivative with respect to ψ evaluated at ψ = 0 and a direct use of

Eq. 3.9. Other methods exist to get more accurate values [44, 20, 17].
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A pure state with larger uncertainty, ∆J(θΩ, φΩ), (implying, since the state is

pure, a larger indefiniteness in the observable J(θΩ, φΩ)), responds on a faster time scale,

ω−1 = ~(ε∆J(θΩ, φΩ))−1 and may have a larger CFI. Whether or not the CFI is larger

depends on the observable R in step 3 of the 4 step process: the dependence on the phase

(ψ) cancels out if the {|r〉} basis consists of eigenstates of J(θΩ, φΩ). To characterize the

sensitivity of the quantum state, independent of the choice of the observable R, one must

optimize over all Hermitian operators R. The result of this optimization procedure is the

QFI[6, 60, 16]:

Fq(ρψ,Ω) = max
R

Fc (R, ρψ,Ω) (3.11)

Since the Cramer-Rao uncertainty bound on ∆ψ of Eq.(10) is valid for every choice of the

measurement observable, R, the tightest bound on ∆ψ is obtainable from the QFI:

∆ψ =
ε∆t

~
≥ 1√

Fq (ρψ,Ω)
. (3.12)

For a pure state system, ρ = |k〉 〈k|, it was shown[6] that

Fq (ρψ = |k〉 〈k| ,Ω) = 4 〈k| (∆J (θΩ,ΦΩ))2 |k〉 (3.13)

where

〈k| (∆J)2 |k〉 = 〈k| J2 |k〉 − 〈k| J |k〉2 (3.14)

With ∆ψ = (ε∆t) /~, and ε∆J = ∆HΩ, the pure state Cramer-Rao bound on the phase

can be written as

∆t

√
〈k| (∆HΩ)2 |k〉 ≥ ~ (3.15)

in agreement with the Heisenberg energy-time inequality.
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Here we have chosen to consider the sensitivity of the state ρψ=0 with 0 phase

encoded because we are interested in properties of the state evolved after the first-step, not

a different state with phase encoded onto it.

Since the state is pure, we know that any uncertainty in an observed property of

the state directly corresponds to a quantum phenomenon of indefinite properties. For a

mixed state ensemble, it is not immediately clear that the QFI generalizes the statistical

variance as a quantification of indefiniteness. To address this, S. Yu[63] and Toth et al.[61]

proved the following illuminating expression for the QFI:

Fq(ρψ=0,Ω) = min
e

∑

k

PkeFq(|ke〉 〈ke| ,Ω) (3.16)

where the optimization over e is over all decomposition of a density matrix, ρψ=0, into an

ensemble of pure states ρψ=0 =
∑

k Pke |ke〉 〈ke|, where the {|k〉}-states of this decomposition

are not necessarily orthogonal. This decomposition is not unique because in the vector space

of density matrices, the set of all pure state density matrices form an over-complete basis.

Thus, e represents one of these non-unique decompositions and ke labels the pure states

which make up that decomposition. The right hand side of Eq. 3.16 is known as the convex-

roof of the variance[3, 63, 61].

Cast as a generalization of the concept of statistical variance, the QFI, Fq, can

be seen to provide a valid measure of indefiniteness. Indeed, the minimization in the space

of density matrices implies that a portion of the sum,
∑

k Pke |ke〉 〈ke|, of significant Pke-

weight involves pure states, |ke〉, with a statistical variance 〈ke| (∆J(θΩ,ΦΩ))2 |ke〉 that is

comparable to the convex uncertainty:

∆qJ(θΩ, φΩ) =
1

2

√
Fq(ρψ=0,Ω) (3.17)
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This implies that, if we were given full knowledge of the universe, and were able to sort the

results based on which pure state, |ke〉, was produced by the experimental apparatus, the

majority of the distributions, Pke(j) = |〈j(θΩ, φΩ)|ke〉|2, would have a statistical uncertainty

larger than ∆qJ(θΩ, φΩ). Since this uncertainty can not be reduced by obtaining more

information, it must be due to the indefiniteness of the observed property J(θΩ, φΩ).

Thus a measurement of large sensitivity, Fq(ρψ=0,Ω), implies a large indefiniteness

of the phase encoding Hamiltonian εJ(θΩ, φΩ) in the initial state ρ. This was pointed out by

Fröwis and Dür[16], and was used to construct a measure of indefiniteness ‘Neff ’ (defined

below in Eq. 3.20) by the way maxΩ Fq(ρψ=0,Ω) scales with the number of particles. As

discussed in the Appendix 3.8.1, this optimization over observables Ω can lead to misleading

results when considering the indefiniteness associated with the superposition of two macro-

scopically distinct states. Instead, we use the extensive difference for an observable JΩ as a

measure of the size of the cat, and we introduce the comparison of the convex uncertainty

with the statistical uncertainty

rq(Ω) =
∆q (JΩ)

∆s (JΩ)
=

∆q (JΩ)√
Tr[J2

Ωρ]− Tr[JΩρ]2
(3.18)

as a measure of the quality of indefiniteness. Since the statistical uncertainty is always

greater than the convex uncertainty, r(Ω) ranges from 0 to 1. When rq(Ω) is 1, any observed

statistical uncertainty is due to indefiniteness, while for smaller rq, only a fraction of the

uncertainty is due to indefiniteness. The statistical uncertainty can be obtained as part

of the same interferometry experiment: if the interferometric procedure is repeated with

ψ = 0, and with the effective observable as R = JΩ, the statistical uncertainty follows from

counting the pr-distributions obtained after these steps.
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We use r(Ω) and Λ(JΩ) because, with the additional knowledge of a double

peak distribution in the observable JΩ, qualitative arguments can be made about the am-

plitudes of pure states which could make up a representative density matrix ensemble,

e = {Pke , |ke〉}. If the convex and statistical uncertainties are approximately equal to each

other, ∆s/∆q ≈ 1, we know the density-matrix ensemble is, on average, composed of pure

states with uncertainty similar to that of the observed statistical distribution. In addition,

since different pure states in the ensemble can not destructively interfere with each other,

we know that the pure states in the density matrix have small amplitude for the basis states

that have small probability of occurrence in the full statistical ensemble. Thus with the

additional observation of a double peak, we can conclude that any representation of the

density matrix is mostly composed of cat states with extensive difference similar to the

observed one.

What can be said when rq is not very close to 1, but still significant (e.g. rq >

0.1)? To answer this question we introduce the product Λrq as the “reduced extensive

difference”, where the extensive difference Λ is given by Eq. 3.7 . As long as the individual

peaks have narrow width (similar to the pure cat states, see Fig. 3.2) and the reduced

extensive difference is significantly larger than the peak width, we can again qualitatively

argue that there exists pure states in the density matrix ensemble with extensive difference

similar to that of the observed extensive difference Λ. If the reduced extensive difference

is significantly larger than the width of the peak, there must exist pure states, |ke〉 with

variance significantly larger than the width of the peaks and are realized with significant

probability Pke . Since the peaks are narrow and there is very low probability between the
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Figure 3.4: In this plot, the extensive difference (dashed lines, left axis) and quality of
indefiniteness (solid lines, right axis) are plotted versus the time spent during the non linear
evolution in step 1 of the interferometric process. The scale of the extensive difference is
set by the number of particles N = 200, or size of corresponding spin J = 100, in the
evolving state. These quantities are computed for the 0 state at temperature 0 and 10ετ .
An experimenter, testing these cat states shown, would compute the statistical variance
and extensive difference from the double peak distributions shown in Fig. 3.2. They would
perform the interferometry process discussed above to compute the bound on ∆q via the
CFI.

two peaks, the only form these states can take is one with double peak amplitudes similar

to the observed distribution. Thus, we know the density matrix contains a significant off

diagonal contribution 〈m|ke〉 〈ke|m′〉Pke for |m−m′| ≈ Λ(Jz), despite an imperfect quality

of indefiniteness, r1 < 1. This makes a connection with the work done by Opanchuk et

al.[48], who put bounds on 〈m| ρ |m′〉 using multi-particle correlation functions.

3.5 Results: Detection Of Indefiniteness via Interferometer

Sensitivity

In this section, we describe how an experiment would observe the measures dis-

cussed in the previous section and what they would observe for the Gordon-Savage cat
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state and the mixed states discussed in Section I. The simplest step in such an experiment

requires measuring the probability distributions in Fig. 3.2. This requires the state prepa-

ration described in Section I, followed by the projective measurement without any phase

encoding or read-out. Repeating this reconstructs the distributions for the observable Jz.

The extensive difference can then be computed by Eq. 3.7.

For completeness, we have plotted (Fig. 3.4) the dependence of the extensive dif-

ference for the 0 thermal state at β−1 = 0 and β−1 = 10ετ versus the time spent during

the non linear evolution that creates the cat. The extensive difference reaches a maximum

at a time 1.4 ∗ Tπ = 1.4 log(8N)~/NU (β−1 = 0) and 1.1Tπ(β−1 = 10ετ ). The probability

distributions P (jz) at these times are shown in Fig. 3.2. An experimenter interested in a

specific cat does not need to measure the extensive difference at all times. Rather, they can

do measurements at time 1.4Tπ for the 0 states or Tπ for the π states[43].

This calculation shows that, for the parameters considered (N = 200, U = 0.1t),

the extensive difference of the 0 state is expected to peak at 1.4Tπ, and thus suggests 1.4Tπ

as a good time to end state creation (step 1) and begin the statistical and interferometric

measurements (steps 2-4). Measuring the distribution P (jz) at this time, they will find an

extensive difference of 65 ≈ 200/3 = N/3 particles (Fig. 3.4). For an experiment performed

for a fixed particle number, the difference in expectation values between the dead and alive

cats (i.e. the extensive difference Λ) would be on the same order of magnitude as the number

of particles. An experiment could then be repeated for different number of particles, and
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would find the extensive difference scales with N1, suggesting that if the trends continue, a

macroscopic number of particles would yield a macroscopic cat state.

The second step is to verify the indefiniteness of the cat’s vital status. Here,

one should compare the statistical and convex uncertainty of the observable Jz, because

this was the observable which demonstrated the macroscopic difference (Λ(Jz)) between

the dead and alive cats. The statistical uncertainty can be computed directly from the

distributions in Fig. 3.2. The convex uncertainty (computed from the QFI using Eq. 3.17)

for Jz is bounded by measuring the sensitivity (CFI) of a probability distribution for some

observable Jr to a phase encoding operation JθΩ,φΩ
= Jz. The single-particle observables

that provide the best bounds will be the ones that respond most to rotations around the

z-axis: any spin pointing in the x-y plane. We use Jr = Jy, since rotations around the x-

axis are easily implemented, as described in Section I. Experimentally, the interferometric

process is repeated with Jr = Jy, JΩ = Jz and Tr = π~
2εr

for multiple small ψεΩ = 0 + δ,

such that the distribution p(jy, 0, Jz) and its derivative can be computed and used in the

expression for the CFI(Eq. 3.9). With a measurement of the CFI, one can bound the convex

uncertainty and quality of indefiniteness via Eq. 3.11:

rq(Jz) =
∆q(Jz)

∆s(Jz)
> rc(Jz) =

1
2

√
Fc(R = Jy, ρ, Jz)

∆s(Jz)
(3.19)

Using the statistical distribution for ∆s, and:

Fc(R, ρψ,Ω) = −
∑

r

1

p(r, ψ)
〈r| [ρψ, εJ(θΩ, φΩ)] |r〉2

1We directly confirmed this numerically by computing the π and 0 states for N = 200 . . . 800 and found a
linear scaling of the extensive difference with the number of particles as N/3.1. The semi-classical approach
also predicts a linear in N scaling[43]
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for the CFI2, we numerically compute (and plot in Fig. 3.4) rc(Jz) for the 0 thermal state at

β−1 = 0 and β−1 = 10ετ versus the time spent during the non linear evolution which creates

the cat. For the pure state (β−1 = 0), rq = 1, and rc < 1 reflects the imperfect bound the

choice of the observable R = Jy puts on the QFI. For the cat state produced after a non

linear evolution for t = 1.4Tπ, the quality of indefiniteness measured by an experiment is

about 0.75(see Fig. 3.4). Furthermore, the reduced extensive difference, Λrc ≈ N/4 = 50

is significantly larger than the width of the peaks (approximately N/20 = 10). Thus, in

good faith, an experimenter can believe that the density-matrix ensemble which they are

observing is mostly composed of pure states with double peak amplitudes. Furthermore,

since rq = 1, one can expect to be able to account for 100% of the quantum variance by

using a more optimal observable R [44, 20, 17, 40].

For the state evolved (at t = 1.1Tπ) from the high temperature distribution (β−1 =

10ετ ), the quality of indefiniteness is 5% and the reduced extensive difference is Λrq = 3 =

O(1). This is smaller than width of the peak. We must therefore conclude that there is no

indefiniteness and that the cat is not dead and alive at the same time. Even with the ideal

bound (see Fig. 3.5), the reduced extensive difference is still on the same size as the peak

width (Λrq = 10).

In the remainder of this section, we show how these experiments are capable of

detecting the crossover to a classical mixture as the temperature of the initial state is in-

creased. Fig. 3.5 demonstrates that the quality of indefiniteness, rq, and its experimental

bound rc decay to 0 as the temperature is increased. The quantum to classical crossover

2This expression can be obtained by expanding the unitaries in Eq. 3.1 around perturbations about ψ,
and substituting into Eq 3.9.
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Figure 3.5: Quality of indefiniteness, rq, its experimental bound rc, the extensive difference
Λ(Jz) and the reduced extensive difference Λ(Jz)r(Jz) are plotted versus the temperature
of the initial state. The solid lines are for the thermal states at π, while the dashed lines are
for the thermal states at 0. A quantum to classical crossover is shown between temperatures
ετ and 10ετ . As in Fig. 3.4, the scale of the extensive difference is set by the number of
particles N = 100 in the evolving state.

occurs slowly between β−1 = ετ and 10ετ , where ετ sets the energy-scale of the spin Hamil-

tonian as in Eq. 3.3. For β−1 << ετ , the initial state condenses into the pure state and the

quantum variance plateaus at its pure state value. This system is particularly interesting,

in that the live and dead cat are still macroscopically different (Λ = O(N)) even at high

temperature. Since the extensive difference remains constant, the difference between the

dead and alive states is still macroscopic, and there are still two macroscopically distinct

states which can be labelled dead and alive. We can then interpret the decay of the quality

of indefiniteness to 0 when temperature is increased as a crossover from a cat being dead

and alive at the same time to a cat being either dead or alive.
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The metric for quantum macroscopicity proposed by Fröwis and Dür[16], also

shows this quantum-classical crossover. This metric is given by:

Neff =
1

4N
max

Ω
Fq(ρ,Ω) (3.20)

In addition to other methods[44, 17, 20], this can be experimentally bounded from below

using the CFI as done above for rq (using rc). The bound provided by Fq(Jz) and its

experimental bound Fc(R = Jy, Jz) are plotted in Fig. 3.6. The crossover region is the

same for Fröwis and Dür’s as for the measures above (rq and Λrq) because the statistical

variance ∆s and extensive difference Λ is relatively constant through the crossover region.

Thus, the main difference is the size of the cat each quantify: both are macroscopic in that

they are O(N), but the extensive difference is roughly twice as large. The difference stems

from the difference in motivation of the two measures. The extensive difference attempts

to describe the difference between the dead and live cat, while the measure by Fröwis and

Dür aim to quantify a relative improvement in sensitivity from unentangled states (such as
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those in Eq. 3.4). Furthermore, by focusing on the indefiniteness in a specific observable Jz,

the extensive difference, Λ(Jz), and the quality of indefiniteness, r(Jz), provide additional

information about the stability of the dead and alive states as the temperature is increased.

Using this lower bound forNeff , a similar conclusion about quality of indefiniteness

is reached, but improving the bound on Neff could lead to different conclusions. In the

appendix we show that the dead and alive states of the cat have macroscopic indefiniteness

independent of their superposition. We can therefore imagine a situation where Neff is

large, but the superposition between the dead and alive states is decohered and the vital

status of the cat is definite. This complication was known to Fröwis and Dür[16], so they

constructed the relative Fisher information to identify macroscopic superposition. The

relative Fisher information involves finding Neff for the dead and alive states, and therefore

requires a complicated projective measurement that may not be experimentally feasible.

3.6 Exploring indefiniteness for a Cat State Entangled with

an Auxiliary Qubit

In the above sections, we proposed, motivated and tested a new measure for macro-

scopicity and indefiniteness on the Gordon-Savage cat state. The choice of the Gordon-

Savage cat was made due to its potential relevance for ultra-cold atom experiment. How-

ever, we note that the strategy of combining the extensive difference Λ with the quality

of indefiniteness rq is applicable to a broader class of cat states. We demonstrate this by

considering a cat state which is conceptually more similar to Schrödinger’s cat in which the
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dead and alive states are entangled with the decayed and excited states of a radioactive

source.

Here, we imagine a cat state entangled with an auxiliary qubit in which the en-

tanglement with the qubit is controlled by a parameter η in the following way:

1√
2
{|a〉 |↑〉+ |d〉 [|↑〉 cos(η) + |↓〉 sin(η)]} (3.21)

where |a〉 and |d〉 are the dead and alive states, and are assumed to be 1) symmetric such that

〈jz|a〉 = 〈−jz|d〉 and 2) orthogonal with respect to the identity and Jz: 〈a|d〉 = 〈a|Jz|d〉 = 0.

In the limit cos(η) = 1, tracing out the qubit results in an indefinite, pure, cat-state, while

in the opposite limit, cos(η) = 0, the trace results in a classical ensemble of definite alive

and dead states.

Performing the analysis of indefiniteness discussed in the previous section, we

compute the QFI. While the state in Eq. 3.21 is a pure state, we suppose we do not

have access to the qubit and can only perform measurements on the cat’s Hilbert space.

Therefore, we must trace out the qubit and use the general formula for the QFI of mixed

states[6, 60]:

Fq[ρ, εJz] = 2
∑

l,l′

(pl − pl′)2

pl + pl′

∣∣〈l| Jz
∣∣l′
〉∣∣2 (3.22)

where |l〉 and pl are the eigenvectors and eigenvalues of the reduced density matrix respec-

tively. Using this expression, one obtains the QFI (see Appendix 3.8.3) as:

Fq(ρψ=0, Jz) = Λ(Jz)
2 cos2(η) + PW 2 (3.23)

and a reduced extensive difference as:

Λrq = Λ

√
1 + α2 cos2(η)

1 + α2
(3.24)
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where PW is the peak width of the dead or alive(assumed to be the same) states: PW =

2
√
〈a| J2

z |a〉 − 〈a| Jz |a〉2, and α = Λ
PW > 1 is the ratio of the extensive difference to the

peak width.

Here we see that when the cat and qubit are not entangled, the quality of in-

definiteness, rq, quantifies a phenomenon of perfect indefiniteness, rq = 1, and when it is

partially entangled there is imperfect indefiniteness, rq < 1. In Section 3.4, we argued

that when rq < 1, and not too small, a state can be classified as indefinite if the reduced

extensive difference is greater than the peak width. For the state in Eq. 3.21, we find this

to be the case when cos(η) > cos(ηc) = α−2. If an experiment can provide a good bound

using the CFI and rq is “significant”, it will observe a quantum to classical crossover when

η ≈ ηc, in which the indefinite vital status of the cat becomes definite.

We may now consider the approximate location of the crossover, ηc = acos(α−2) in

two limits: 1) when α = O(1) and 2) when α >> 1. In the first limit, the crossover occurs

for arbitrarily small values of η as α → 1. Comparing with the Leggett-Garg experiment

discussed in Appendix 3.8.3, the Leggett-Garg inequality is violated for cos(η) > 2
3 . There-

fore, the Leggett-Garg experiment is better at detecting the indefiniteness of the partially

entangled state for α <
√

3
2 . This implies that, in this limit, the projective measurement

onto a dead or alive cat done in a Leggett-Garg experiment obtains more information about

the mixed cat state than the Fisher Information measurement does.

The opposite is true when α >> 1: by making α arbitrarily large, we can push

the approximate location of the crossover to an arbitrarily amount of entanglement with

the auxiliary qubit. To make sense of this result we consider a thought experiment where
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the auxiliary qubit is measured and the result ignored before performing the sensitivity

analysis. In the strongly entangled limit, cos(η) << 1, the result of this measurement is

to produce a dead state 50% of the time and a superposition state, |ψs〉 ≈ |a〉+ cos(η) |d〉,

in which the amplitude for the dead state is small with 〈d|ψs〉 ≈ cos(η), the other 50%

of the time. In this limit, a simple application of the indefiniteness condition Λrq > PW

suggest that this method is capable of detecting a phenomenon of indefiniteness even when

the superposition produced has very little amplitude in the dead state. A more careful

consideration would note that the quality of indefiniteness is unreasonably small (not O(0.1)

as discussed in Section 3.4) and its ability to restrict the possible state which could make

up a representative ensemble is severely limited.

Therefore, as noted above, we must set a bound on the quality of indefiniteness.

One way to get an intuition at what such a bound might be, is by analogy to this large

α cat state entangled with an auxiliary qubit. If we specify that we are only confident of

a phenomenon of indefiniteness when the amplitude of the dead cat in the superposition

state, 〈d|ψs〉 ≈ cos(η) ≈ rq, is greater than 0.1, then we can set the threshold as rq > 0.1.

One could also set a more conservative threshold on the quality of indefinites by comparison

with the Leggett-Garg experiment in Appendix 3.8.3. There, the Leggett-Garg experiment

would fail to witness indefiniteness when cos(η) = 2
3 and our analogous bound would be

rq >
2
3 .
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3.7 Conclusion and Discussion

We have examined how the standard interferometric process can be used to quan-

tify the indefiniteness of cats produced by the two-mode Hamiltonian Eq. 3.5. First, we

showed that states with a large extensive difference can be produced for high temperatures

initial states. This allows an experimenter to prepare a state which, similar to Schrödinger’s

cat, has uncertainty between two macroscopically different states without worrying about

coherence. We then described a possible experiment to determine the source of this un-

certainty and quantify the quality of indefiniteness. We showed how the results of this

experiment can be used to infer the possible form of the pure states which could make up

a possible density matrix ensemble. This turned out to be particularly useful when de-

scribing a quantum to classical crossover where the indefinite superposition of a cat, in two

macroscopically distinct states, undergoes a crossover to the definite occupation of either

dead or alive. We then finished by demonstrating the general applicability of the method

to a model for which the quantum to classical crossover is controlled by the amount of

entanglement with an auxiliary qubit.

The experiment described above involves bounding the QFI by the experimentally

observable CFI and is thus fallible to the same loopholes other Fisher Information based

methods are. In general, these loopholes can not be tightened in the same way loopholes in

Bell experiment can because there is no assumption of causally separated events: events in

an experiment that measure Fisher information could feasibly affect each other without vi-

olating special relativity. Instead one must make reasonable assumptions based on previous

experiments, a control experiment, or a comparison with simulation.
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For example, in the bosonic interferometer experiment described above, the mea-

surement of the CFI relies on the assumption that the Hamiltonian during the phase encod-

ing process (step 2) is proportional to the single particle Hamiltonian encoding the phase

(Jz in the example considered in this paper). If this assumption was violated and the dy-

namics during the phase encoding process were highly non-linear (e.g. J4
z , J

8
x), a stronger

response, mimicking the effects of an indefinite state, could be observed in the distribution

p(r, ψ,Ω). This assumption can not be checked by a causality type argument, but instead

must rely on comparison with simulation or the consistency of previous experiments using

bosonic interferometer. Without the assumption of linearity, the results of high precision

measurements[9, 12] that use the same interferometers could not be accepted. One could

also check the assumption of linearity by directly simulating, as done above, the predicted

change in distributions p(r, ψ,Ω) and comparing with the experimental distributions. The

tighter they match, the harder it would be to come up with a non-linear Hamiltonian that

reproduces the exact same p(r, ψ,Ω). These simulations would also verify the assumptions

made during the interferometry steps (3) and (4) after the phase has been encoded and in

which further loopholes may occur.

While simulations and references to previous experiments do not rule out peculiar

possibilities in the same way the assumption of causally separated events does for Bell

experiments, they do make it hard to imagine simple explanations alternative to the given

assumptions. Thus, the combined observation of a high quality of indefiniteness (rq ≈ 1)

and a double peak distribution provides reasonable evidence that a cat state, which could

violate a Leggett-Garg inequality, is produced by the apparatus. In addition, these measures
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can be acquired with current cold-atom technology and avoids the complications of the other

measures discussed above.

The interpretation of the reduced extensive difference Λ(Jz)rq(Jz) and the argu-

ments inferring the form of the pure states which could make up a representative density

matrix ensemble can also be questioned when rq is small. If rq is measured very close to

one, then the observation of the probability distributions in Fig. 3.2 can be interpreted as

observing the amplitudes of a pure state because rq is equal to 1 only for pure states. On the

other hand, when rq < 1, it is a qualitative judgement when comparing Λrq with the peak

width. In Section IV, we discussed one possible way to make such a qualitative judgement,

but it may be interesting for future work to more rigorously investigate to what extent the

combined observation of rq and the probability distribution P (jz) limit the possible states

in a density matrix ensemble. Such future work may find it useful to consider the relation-

ship between the QFI and the resource theory of quantum invasiveness[45] which is closely

connected to violations of the Leggett-Garg inequalities. Future work will also include a

study of the effects of a thermal bath and loss mechanism to identify requirements on loss,

tunnelling and interaction rates for producing a cat state.
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3.8 Appendix

3.8.1 Cat States and Measure by Fröwis and Dür

In this section we discuss the subtleties of using the measure by Fröwis and Dür,

Neff . As defined in Eq. 3.20, Neff is defined by maximizing the quantum Fisher information

over all single particle generators of the phase encoding step 2 (labelled by Ω in Eq. 3.20).

A naive application of this formula may lead to a wrong assessment of the indefiniteness of

cat’s vital status. This is because the indefiniteness of the cat’s vital status is in a specific

observable (Jz above), and the state of the system could have a larger QFI for a different

observable. If the conclusions where drawn directly from Neff one may mistakenly conclude

the vital status of the cat is indefinite, while, in fact, it is a different property of the cat

that is indefinite.

This possibility is manifested in the Gordon-Savage cat discussed in this paper. In

Fig. 3.7 we have plotted the QFI for all single particle observables labelled by Ω = (φ, θ).

Here we see that the QFI is maximum for spin pointing in the xy-plane. Fq(Jz) still

indicates that the cat is indefinite, but if one where to measure Neff they would observe

the sensitivity to rotations around a vector perpendicular to Jz (Jy for the π state), and it

would tell them nothing about the indefiniteness of the cat’s vital status. It would instead
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Figure 3.7: This is Fq(ρ, J(θ, φ))/4N for the 0(Left) and π (Right) cat states.

tell them they had a macroscopic quantum state, but the macroscopic indefiniteness would

not be in a property with clear dead and alive states distinguishable.

To see how this arises, we consider the Wigner distribution of the 0 and π cats., The

Wigner distribution, W (z, φ), is the quasi-probability distribution function representing a

quantum state, |ψ〉:

W (z, φ) =

N 1−z
4∑

n

eiφn 〈 N z + 1

2
+ 2n |ψ〉 〈ψ|N z + 1

2
〉 , (3.25)

where |N z+1
2 〉 are the Fock states |m1,m2〉 with m1 = N z+1

2 m2 = N −m1. The Wigner

distribution has the useful property that the partial integration of one variable gives the

probability distribution for the other (e.g. P (z) = 1
2π

∫ π
−pi dφW (z, φ)) . By considering

the Wigner distributions for the 0 and π states (see Fig. 3.8), we can understand the

structure of the quantum state and why Neff may give misleading results. The probability

distributions P (z) shown at the bottom of the figures indicate that the two bright red lines

highlight what might be called the dead and alive cats. The red lines individually have
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macroscopic uncertainty in φ and thus the xy-plane. This implies that the dead and alive

cat states are individually macroscopic quantum states.

One can now easily imagine a situation where the coherence between the dead

and alive states is lost, but the dead and alive states themselves still have a large value for

Neff . Thus if an experiment measured Fq(Jx), it would find the macroscopic indefiniteness

of the dead or alive cats. One might then wrongly conclude that the vital status of the

cat is indefinite when it is not. This complication was known to Fröwis and Dür[16], so

they constructed the relative Fisher information to identify macroscopic superposition. The

relative Fisher information involves finding Neff for the dead and alive states, and therefore

requires a complicated projective measurement that may not be experimentally feasible.
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3.8.2 Fisher Information for a Cat Entangled with a Qubit

In this section we derive the expressions for the QFI of a cat entangled with a

qubit discussed in the text. The cat state entangled with a qubit is written as:

1√
2

(|a〉 |↑〉+ |d〉 (|↑〉 cos(η) + |↓〉 sin(η))) (3.26)

the dead and alive states are assumed to be 1) symmetric such that 〈jz|a〉 = 〈−jz|d〉 and 2)

orthogonal with respect to the identity and Jz: 〈a|d〉 = 〈a|Jz|d〉 = 0. These two assumptions

imply 〈a|Jz|a〉 = −〈d|Jz|d〉 and
〈
a|J2

z |a
〉

=
〈
d|J2

z |d
〉
. From these assumptions we derive a

relationship between the variance of a (anti-)symmetric cat state, the extensive difference

and the peak width as:

PW 2 + Λ2 = 4 〈c±| J2
z |c±〉 (3.27)

and can also write the extensive difference as:

Λ2 = 4 |〈c±| Jz |c∓〉|2 . (3.28)

We can then derive the QFI from the following expression[6, 60]:

Fq[ρ, εJz] = 2
∑

l,l′

(pl − pl′)2

pl + pl′

∣∣〈l| Jz
∣∣l′
〉∣∣2 (3.29)

where |l〉 are the eigenvectors of the reduced density matrix and pl are the eigenvalues.

When tracing out the qubit we get two non-zero eigenvalues as 1
2(1 ± cos(η)) which we

will label l = ± for the symmetric and anti-symmetric cat states and N − 1 zero eigen-

values for the spin states orthogonal to the two cat states. If l = ± and l′ = ∓ the sum

yields cos2(η) |〈c±| Jz |c∓〉|2. If l = ± and l′ 6= ± we can insert an identity and obtain

1±cos(η)
2 (

〈
J2
z

〉
± − |〈c±| Jz |c∓〉|

2.
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Putting everything together with Eq. 3.28 and Eq. 3.27: we get

F (Jz) = Λ(Jz)
2 cos2(η) + PW 2 (3.30)

This gives us an rq:

r2
q =

Λ(Jz)
2 cos2(η) + PW 2

PW 2 + Λ2
(3.31)

3.8.3 Leggett-Garg violation of a Cat State Entangled with a Qubit

We imagine an Leggett-Garg experiment in which an initial state is evolved with

respect to a Hamiltonian H
~ = |a〉 〈a|−|d〉 〈d|, and a measurement of whether the cat is alive

or dead is made at t1 = 0, t2 = 2π
3 , and t3 = 4π

3 . From these measurements, correlation

functions of the form Kij = 〈HiHj〉 are calculated and if the inequality:

1 +K12 +K23 +K13 > 0 (3.32)

is violated then the state must have been indefinite at some time between t = t1 and t =

t3[38]. If the initial state is the symmetric cat, 1√
2
(|a〉+|d〉), then the violation is −0.5, while

if the initial state is the partially entangled state in Eq. 3.21, the violation is 1− 3
2 cos(η).

Thus the Leggett-Garg experiment is not capable of witnessing the indefiniteness of the

entangled state for cos(η) < 2/3.
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Chapter 4

Eigenstate Thermalization and

Quantum Fisher Information

To describe equilibrium matter, scientists make a few simple assumptions so they

can easily construct statistical ensembles that only depend on a few parameters such as

energy and volume. The most basic of these assumptions is ergodicty: once the system has

equilibrated, time averages equal phase space averages along equal energy contours. This

assumption relies on chaos to spread the initial state probability distribution evenly across

the energy contour and allows the construction of the micro-canonical ensemble. With

the additional assumption of an environment that the system can exchange energy with, a

macro-canonical ensemble can be constructed.

In closed quantum systems, such as ultra cold atomic gases, neither of these as-

sumptions hold. There is no environment which can thermalize the system, and the ergodic

hypothesis apparently fails due to the linearity of quantum mechanics. That is because,
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Figure 4.1: Quantum Chaos in Magnetic Hydrogen. Image from Wikipedia[4]

phase space in quantum mechanics is a Hilbert space and dynamics are linear instead of

chaotic. Despite this, both these ensembles can often be used to give accurate descriptions

of ultra cold atomic gases. In this chapter, I outline our current understanding of why.

My presentation of this will follow a condensed version of the presentation in[2]. I

will begin by discussing how, in a quantum model with a well defined chaotic classical limit,

chaos presents itself in the matrix elements of the hamiltonian, observables and entangle-

ment entropy. I will then use the results from this discussion to motivate the Eigenstate

Thermalization Hypothesis (ETH), which aims to explain why micro and macro canonical

ensembles described the long time dynamics of closed quantum systems. I will then show

how ETH reproduces the observables and response functions of canonical ensembles. I will

then conclude this chapter with a short discussion on the quantum Fisher information, and

entanglement for closed quantum systems.
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4.1 Quantum Chaos and Random Matrix Theory

To understand how classical chaos appears in the quantum limit, start by imag-

ing the hydrogen atom. Classically, this is a two body system in which space translation

symmetry and rotational symmetry sufficiently constrain the dynamics and produce a clas-

sically integrable model. This classical integrability allows for the simple identification of

the quantum numbers of the hydrogen atom. Upon applying a magnetic field, rotational

symmetry is broken and the model becomes chaotic. Classically, for weak magnetic fields,

the KAM theorem [1] identifies an approximate set of conserved quantities associated with

invariant tori. Quantum mechanically, this translates into the validity of perturbation the-

ory at weak magnetic fields. As the magnetic field strength is increased, the energy levels

continue to move away from there unperturbed values until two energy levels meet. Degen-

erate perturbation theory shows that when the two energy levels get close, hybridization

occurs and the two energy levels repel.

The energy levels of the hydrogen atom v.s. the magnetic field strength appears

in Fig. 4.1. Imagining each energy level as a particle with a position E and a time B, it

appears as if the energy levels act as a 1D classical gas of strongly repulsive particles. After

“time” has evolved for many “collisions”, the positions of the “particles“ appear random

and uncorrelated with there initial positions. This led Wigner [3] to hypothesize that the

energy levels at high magnetic fields are essentially random with a distribution determined

by a random matrix.

To check this, we can determine the level spacing of a random matrix, and compare

with the level spacing obtain from experimental spectra. Two do this, we will start with a
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two dimensional random matrix:


ε1 2V

2V ∗ ε2


 (4.1)

which gives eigenvalues:

ε1 + ε2
2

± 1

2

√
(ε1 − ε2)2 + 4 |V |2 (4.2)

If we assume the matrix elements εi and V are independent Gaussian random variables with

variance 1, we can compute the level spacing statistics as:

P (ω) = (
1√
2π

)β+2

∫
dε1dε2DVβe

− ε
2
1+ε22+|V |2

2 δ(ω − 1

2

√
(ε1 − ε2)2 + 4 |V |2) (4.3)

where DVβ = dV when β = 1 and V is assumed real while DVβ = dRV dIV when β = 2

and V is complex. Here the Dyson parameter, β, is introduced to capture the difference

when the off diagonal matrix element is complex v.s. real: at this point in the calculation,

it only changes the integration measure. Making the change of coordinates:

ε1 = x+ y (4.4)

ε2 = x− y (4.5)

makes the integral:

P (ω) = (
1√
2π

)β+2

∫
dxdyDVβe

−x
2+y2+|V |2

2 δ(ω −
√
y2 + |V |2) (4.6)

= (
1√
2π

)β+1

∫
dyDVβe

− y
2+|V |2

2 δ(ω −
√
y2 + |V |2)

= (
1√
2π

)β+1

∫
dV e−

r2

2 δ(ω − r)

= (
Sβ√
2π

)β+1ωβe−
ω2

2
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where Sβ=1 = π and Sβ=2 = 3
4π. The ωβ term captures the level repulsion and depends

on β because of the difference in the volume elements on the third line of Eq. 4.6 when

V is restricted to be real or allowed to be complex. The above calculation suggests the

following geometrical interpretation of level repulsion. First we see that a two dimensional

matrix lives in a 2 + β dimensional space. After the first coordinate transformations we

find that one of these dimensions, x, sets the average energy. The last coordinate transform

to spherical coordinates shows that fixing the level spacing to ω fixes the matrix to live on

a sphere of radius ω in the remaining 1 + β dimensions. Level repulsion therefore reflects

the fact that the surface area of this sphere shrinks to 0 at a rate ∼ ωβ determined by the

dimension the sphere lives in: 1 + β.

Surprisingly, these statistics hold for random matrices of higher dimensions. A

random orthogonal (real and symmetric) matrix has level statiscs given by Eq. 4.6 with

β = 1 and a random hermitian matrix (with off diagonals allowed to be complex) has

level statistics given by β = 2. Furthermore, exact diagonalization has confirmed that

hamiltonians with chaotic classical limits also demonstrate these statistics.

4.1.1 Random Matrix Elements of Observables

Since sufficient chaos in the classical limit leads to long time observables becoming

ergodic and obeying a micro-canonical ensemble, we expect the long time observables of a

quantum hamiltonian with a chaotic classical limit also to obey a micro-canonical ensemble.

Lets see if we can use the random matrix hypothesis to test this. Given an initial state

ρ, the eigenstates of the random matrix |n〉 and an observable O, we expect the long time
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expectation value to be:

O(t) =
∑

nm

ρnme
i(En−Em)tOnm (4.7)

Where the frequencies (En − Em)−1 are randomly distributed according to P (ω). Due to

the random frequencies, we expect that the random phases cancel out at long times and we

are left with:

lim
t→∞

O(t) =
∑

n

ρnnOnn (4.8)

To check if this approaches a micro-canonical ensemble, we need to compare with:

∑

n

δ(En − E)Onn (4.9)

Where E is the energy of the initial state. To check this we compute the properties of the

matrix elements of Onn for the eigenstates of a random matrix. If the eigenstates of O are

labeled by i, the matrix elements Onm are given as:

Onm =
∑

i

Oi 〈n|i〉 〈i|n〉 (4.10)

The eigenstate wave functions of a random matrix ψn(i) = 〈i|n〉 are given as independent

random variables with variance constrained by the normalization:

ψn(i) = 0 (4.11)

ψn(i)ψm(j) = δnmδij
1

N

where N is the dimension of the Hilbert space. The mean of the matrix elements Onm is

then given as:

Onm = Ōδnm (4.12)
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with Ō =
∑

nOnn
1
N the infinite temperature average of the observable O. The fluctuations

can also be calculated as

OnmOnm −Onm2
= Ō2 1

N
. (4.13)

Inserting this result into Eq. 4.8, we get:

lim
t→∞

O(t) = Ō (4.14)

Which, being the infinite temperature expectation value, is definitely not the micro-canonical

expectation. The issue is that the eigenstate wave functions do not capture any information

about energy conservation. The eigenstate thermalization hypothesis will fix this by hy-

pothesizing a statistics for matrix elements of O in the hamiltonian eigenstate basis. This is

partially captured by assuming Onm are random variables with mean Ō(E)δnm and variance

σ(E,n−m) 1
N both dependent on the energy of the initial state. Before doing this we need

to identify what N should be, as it is the generalization of the normalization of the wave

function.

4.1.2 Entanglement Entropy of random wave functions

To identify the generalizedN , we will show that it must be related to entanglement

entropy. To do so we will assume the random matrix under study is a tensor product of two

subsystems (A and B) and compute the second Rényi entropy. After tracing over subsystem

A to obtain the reduced density matrix: ρA = tr[|ψ〉 〈ψ|]A, one computes the second Rényi

entropy as:

R2 = −Log(tr[ρ2
A]B) (4.15)
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We write the wave functions with basis states a and b of subsystem A and B as ψ(a, b).

The reduced density matrix is then:

ρA =
∑

a

ψ(a, b)ψ∗(a, b′) (4.16)

and the second Rényi entropy is:

e−R2 =
∑

baa′c

ψ(a, b)ψ∗(a, c)ψ(a′, c)ψ∗(a′, b) (4.17)

If we assume ψ(a, b) is a random wave function with normalization
√
NaNb, then:

e−R2 =
∑

b,a,a′,c

ψ(a, b)ψ∗(a, c)ψ(a′, c)ψ∗(a′, b) (4.18)

which can be evaluated using Wicks theorem. The contractions restrict at least one of the

sums. Taking only the contributions where one sum is restricted, we find the second Rényi

entropy to be:

−ln(
1

NA
+

1

NB
) (4.19)

In the limit that one of subsystem acts like a bath and is much larger then the other we

get:

R2 = ln(NA) (4.20)

Similar approximation (picking the largest contraction assuming NA < NB) can lead to an

average nth Rényi entropy as:

(n− 1)ln(NA) (4.21)

which gives the Shannon entanglement entropy as:

ln(NA) = S (4.22)
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4.2 Eigenstate Thermalization

We are now in a position to generalize the results of the previous section, and

construct an ansatz for the energy eigenstate matrix elements for observables:

Onm = Ō(En)δnm +

√
σ(E,ω)

N Rnm (4.23)

where Rnm is a random variable with zero mean and unit variance, E = En+Em
2 , and

ω = En−Em. From the previous section, we showed that the log of N is the entanglement

entropy, so we will make a hypothesis that it is the log of the thermodynamic entropy.

Redefining
√
σ = f we can write the ansatz as:

Onm = Ō(En)δnm + f(E,ω)e−S(E)/2Rnm (4.24)

where the functions of E and ω must be smooth. This constraint becomes apparently

required when we evaluate long time observables. Inserting this result into Eq. 4.8, we get:

lim
t→∞
〈O(t)〉 =

∑

n

ρnnŌ(En) (4.25)

which we compare with,
∑

n δ(E − En)Ō(En) for the micro canonical or
∑

n
e−βEn
Z Ō(En)

for the macro canonical ensemble. Now if Ō(E) changes sufficiently slowly with E, and

the ensemble under consideration ρ is sufficiently narrow in E, all three expressions will be

approximately the same. This can be checked by expanding Ō(En) around 〈H〉 = Ē. Doing

so results

lim
t→∞
〈O(t)〉 =

∑

n

ρnn

[
O(Ē) + (En − Ē)

dO

dE
+

1

2
(En − Ē)2 d

2O

dE2

]
(4.26)

= O(Ē) +
1

2
(δE)2 d

2O

dE2

87



where δE is the variance of energy. Similar expressions can be obtained for the micro

and diagonal ensemble and the only difference will be in the differences in the variance of

energy. Since energy is extensive, and the uncertainty is sub extensive for the micro and

macro canonical ensemble, then all initial states with sub extensive energy uncertainty will

have long time observables well approximated by micro and macro canonical ensembles.

This expansion and argument will generically fail when Ō(En) is not analytic in En.

This occurs in integrable models, where local conserved charges can change discontinuously

from eigenstate to eigenstate.

4.2.1 Dynamical Fluctuations and KMS relation

The above showed, that if the observables with in an eigenstate are well behaved,

and the initial state has sub extensive energy uncertainty, then expectations for individual

eigenstates will reproduce expectations from canonical ensembles. We will now check this

for the long time dynamical fluctuations. The dynamical fluctuations of an observable in

an eigenstate are given as:

G(t) = 〈n|O(t)O |n〉 − 〈n|O(t) |n〉 〈n|O |n〉 =
∑

m 6=n
ei(En−Em)t |Onm|2 (4.27)

=
∑

m 6=n
eiωte−S(E) |f(E,ω)|2 |Rnm|2

where E = En+Em
2 and ω = En − Em. Rewriting in terms of Em the sum variable and

writing the sum as an integral:

∑

m

F (Em) =

∫
dωf(En − ω)

∑

m

δ(En − ω − Em) =

∫
dωf(En − ω)Ω(E − 2ω) (4.28)
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where Ω(x) counts the number of states at energy density x. This gives us:

G(t) =

∫
dωeiωte−S(En−ω/2) |f(En − ω/2, ω)|2

∑

m

δ(En − ω − Em) |Rnm|2 (4.29)

=

∫
dωeiωte−S(En−ω/2) |f(En − ω/2, ω)|2 Ω(En − ω) =

=

∫
dωeiωteS(En−ω)−S(En−ω/2) |f(En − ω/2, ω)|2

If O is a local operator, we suspect that it can only make transitions between eigenstates

with sub extensive energy differences. This means we can expand about a small omega:

G(t) =

∫
dωeiωte−βω/2 |f(En − ω/2, ω)|2 (4.30)

From which we can we can derive the KMS relationship as:

G>(t− iβ) =

∫
dωeiωteβω/2 |f(En − ω/2, ω)|2 (4.31)

=

∫
dωe−iωte−βω/2 |f(En + ω/2,−ω)|2

=

∫
dωe−iωte−βω/2 |f(En + ω/2, ω)|2

≈
∫
dωe−iωte−βω/2 |f(En − ω/2, ω)|2

= 〈n|OO(t) |n〉 − 〈n|O2 |n〉 = G<(t)

where in the second inequality we used the fact that the integral goes −∞ to ∞, in the

second we used the hermeticity of the observable O, and in the approximation we again

assume ω is small and that f varies smoothly in E.
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4.3 Eigenstate Thermalization and Quantum Fisher Infor-

mation

As discussed in chapter 3, the quantum Fisher information of observables of the

form O =
∑

iOi where Oi is local, is a measure of entanglement entropy. For a pure state

or the equilibrium state of a closed quantum system, the QFI, Fq is given the variance of

O.

F1(O) = 4(
〈
O2
〉
− 〈O〉2) (4.32)

while for a Gibs state, the quantum Fisher information is given by the spectral response

function:

F2(T,O) =
4

π

∫ ∞

0
tanh(ω/2T )X ′′(ω, T )dω (4.33)

where X ′′(ω, T ) = I
∫
dteiωt 〈[O(t), O]〉. Since a Gibbs state is not pure, we must have

F1 ≥ F2 given the expectation values, assuming the expectation values in both expressions

are taken with respect to the Gibbs ensemble. If F1 ≈ F2, then we have the interesting

possibility that a thermal state almost saturates the entanglement bound.

If F1 > F2, then the measurement of the QFI for the closed ETH-valid quantum

system will not match the corresponding measurement for a thermal state. This measure-

ment would then detect that the closed ETH-valid quantum system is not truly thermalized.

This is likely not to occur because ETH is valid near the middle of the spectrum

at reasonably high temperatures. Therefore, both F1 and F2 will be sub extensive and the

fact a Gibbs state saturates its entanglement bound F1 ≈ F2 is not surprising. In this

case, the thermalized closed quantum system has volume law entanglement, but all of this

90



entanglement does not effect the fluctuations of local observables. It is not a macroscopic

quantum state and can not be used for quantum enhanced interferometry.
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Chapter 5

Thermalization and its Breakdown

for a Large Nonlinear Spin

5.1 Abstract

By developing a semi-classical analysis based on the Eigenstate Thermalization

Hypothesis, we determine the long time behavior of a large spin evolving with a nonlinear

Hamiltonian. Despite integrable classical dynamics, we find the Eigenstate Thermalization

Hypothesis for the diagonal matrix elements of observables is satisfied in the majority of

eigenstates, and thermalization of long time averaged observables is generic. The exception

is a novel mechanism for the breakdown of thermalization based on an unstable fixed point

in the classical dynamics. Using the semi-classical analysis we derive how the equilibrium

values of observables encode properties of the initial state. We conclude with a discussion
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of relevant experiments and the potential generality of this mechanism for the breakdown

of thermalization.

5.2 Main Text

In recent years, experiments on ultra cold atoms and trapped ions[10, 28, 43, 47]

have succeeded in producing quantum systems that, on relevant time scales, are completely

isolated from an environment. Surprisingly, many of these experiments find long time behav-

ior that mimics a system coupled to an environment. These experiments prompt the ques-

tion of thermalization: Given an initial state |ψ(t = 0)〉, a Hamiltonian H =
∑

nEn |n〉 〈n|,

and an observable O, when and why does the long time average of O:

O(t, T ) =
1

T

∫ t+T

t
dτ 〈ψ(τ)|O |ψ(τ)〉 (5.1)

lose memory of its initial state? In other words, when does O(t, T ), at long time t, depend

only on the energy of the initial state?

The eigenstate thermalization hypothesis (ETH)[14, 44, 42, 13, 15, 20, 33] attempts

to answer this question. Briefly, it states that if A1) 〈n|O |n〉 changes very little between

eigenstates with similar energy; A2) the level spacings, En − En+1, are sufficiently small;

and A3) the energy uncertainty of the initial state is sufficiently small, then an eigenstate,

randomly selected from a micro-canonical ensemble at the energy of the initial state, will

describe the long time average observable (LTO): O(t, T ) ≈ 〈n|O |n〉 for large t and T .

ETH was originally discussed[14, 44] in classically chaotic systems where the eigen-

states behave similar to random matries and allows one to hypothesize additional structure

on the off diagonal matrix elements of observables, 〈n|O |m〉. While this stronger version
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of ETH allows one to predict relaxation times and response functions[13], we will focus on

the weaker version presented above and only focus on the long time memory apparent in

time averages.

In extended systems, the standard mechanism for the breakdown of thermalization

is the emergence of an extensive set of conserved charged due to underlying integrability[39,

7, 11] or a random disorder potential[19, 35, 1]. In few mode bosonic systems, thermalization

has been predicted from semi-classical chaos[46, 6, 23, 24, 3, 4, 5, 36], and it was recently

shown that thermalization could fail when an oscillatory drive produced a time crystal[37].

In this letter, we explore a similar phenomenon for the long time behavior of a

quantum evolution, but for a system which is not extended nor classically chaotic. The

model we study is that of an SU(2) spin with large fixed size |J | > 50 and evolving with

respect to the Hamiltonian H = −Jx + Λ
2|J |J

2
z , where Jx, Jz and Jy are the canonical SU(2)

spin operators, and we assume Λ > 1. We formulate the question of thermalization for this

system by asking: 1) for which initial states do LTOs thermalize and approach a micro-

canonical ensemble, and 2) for states that do not thermalize, what is the mechanism that

maintains information about the initial state. We focus our analysis on the time averages,

T >> 1, of observables O = Jx and O = Jz, and refer to the Supplemental Material (SM)

for other observables and for a discussion of T → 0.

This spin Hamiltonian is expected to describe boson tunneling experiments[47, 45],

and the theory community has explored its dynamics[41, 31, 29, 12, 18, 25, 22, 27, 30, 21].

Particularly relevant results are those relating to a semi-classical analysis[41, 31, 29, 38,

12, 22, 27, 30, 32, 17], and describe the classical trajectories shown in Fig. 5.1. These
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Figure 5.1: (Color online) Energy dependence of ensemble expectations values of Jx: The
orange line is for the Micro-canonical, while the green dots are for the diagonal ensembles
with initial phase φ′ = 0 and increasing 〈Jz〉 /J = z′(E). The energy dependence of
the eigenstate expectation values is also shown. These calculations where performed for
|J | = 1000 and Λ = 10. Notice the strong departure of the diagonal ensemble at E = 1
from the micro-canonical ensemble. Classical trajectories(inset): the separatrix is shown
in black (bold) and separates the circular free-oscillation trajectories (red) from the self-
trapping ones (blue). The red dots mark the unstable fixed point at (z = 0, φ = ±π) and
the green arrows mark the unstable directions.

trajectories, and corresponding eigenstates, have two distinct behaviors known as Joseph-

son oscillation and self trapping, and are separated by a separatrix at E = 1. Unlike the

few-mode boson models, these trajectories are not chaotic and relaxation occurs through

quantum effects[22]. Thus, to consider the question of thermalization, we use the correspon-

dence between periodic classical trajectories and eigenstates[16] to access the assumptions

required by ETH and answer the questions posed above. We find that 1) for initial states

with energy sufficiently different from the energy of the separatrix, E = 1, the assump-

tions of ETH are obeyed (similar to results in [32]) and observables come to an equilibrium

described by a micro-canonical ensemble; and 2) for initial states with energy on the sepa-

ratrix, the assumptions of ETH do not hold and LTO do not thermalize. We find that the

breakdown of thermalization is due to the E ≈ 1 eigenstates becoming localized in classical
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phase space. As first pointed out in [17], the semi-classical analysis finds that the local-

ization is due to the asymptotically slow classical dynamics near the unstable fixed point

shown in Fig. 5.1. The ubiquity of this semi-classical feature suggests that this mechanism

for the breakdown of thermalization is a general phenomenon present in other models.

Semi-Classical Picture and ETH: We first consider the case when the assumptions

of ETH are valid and the large spin thermalizes. To do so it will be useful to first consider

why assumptions of ETH generally imply thermalization. First consider the eigenstate

decomposition of the initial state density matrix,
∑

nm cncm |n〉 〈m|. At long times, t and

for sufficiently large T , we can expect that only the diagonal terms of the density matrix

contribute to observables[13, 22]:

O(t, T ) ≈
∑

m

|cm|2 〈m|O |m〉 . (5.2)

If A3) of ETH is true, then |cm|2 is non zero only in a small energy window. Further-

more, if A1) of ETH holds, then 〈m|O |m〉 is approximately constant over the eigenstates

with significant probability |cm|2. Finally A2) ensures there are multiple eigenstates in

the micro-canonical ensemble which can be sampled, and we can conclude that a represen-

tative eigenstate 〈n|O |n〉 can be chosen to factor out of the average in Eq. 5.2 yielding:

O(t, T ) ≈ 〈n|O |n〉.

We now use a semi-classical analysis to determine when these three assumptions

of ETH hold for the nonlinear spin Hamiltonian. The semi-classical analysis is based on

a Wigner-function formalism in which states and operators are represented as functions,

W (z, φ) and O(z, φ), of z, the eigenvalue of Jz/ |J |, and its conjugate momentum φ. In this

formalism, the observables Jz and Jx are given by |J |z and |J |
√

1− z2 cos(φ) respectively,
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and the Hamiltonian is written as[41]:

H(z, φ)

|J | =
Λ

2
z2 −

√
1− z2 cos(φ) (5.3)

The expectation values of a state W (z, φ) with an observable O(z, φ) is computed with:

〈ψ|O |ψ〉 =
1

4π

∫ 1

−1

∫ π

−π
dzdφW (z, φ)O(z, φ). (5.4)

We use the set of spin coherent states as our initial states because they are reg-

ularly created in experiments[47, 45]. In the Wigner-function formalism these states are

represented by Gaussian distributions that become more localized around a mean z′ and a

mean φ′ as the size of the spin, |J |, is increased . Since a state which is more local around a

specific z′ and φ′ has smaller energy uncertainty, assumption A3) of ETH is satisfied when

|J | is sufficiently large.

We now consider when assumptions A1) and A2) hold by constructing the Wigner

functions of the eigenstates via a semi-classical analysis. The zeroth order classical analysis

treats Eq. 5.3 as a classical Hamiltonian which yields the periodic trajectories depicted

in Fig. 5.1. Fig. 5.1 shows two distinct types of periodic trajectories depending on the

energy: for E < 1, the trajectories known as Josephson oscillation[41] occur in which

z and φ periodically oscillates around a stable fixed point at (z, φ) = (0, 0), while for

E > 1 trajectories called self trapping[2] occur in which z does not change sign, and φ

monotonically increases (z < 0) or decreases (z > 0) depending on the sign of z. At E = 1,

there is a separatrix separating the two dynamical behaviors.

Using the correspondence between classical periodic trajectories and eigenstates[16],

the eigenstate Wigner-functions (EWF) with energy E can be written as ρE(z, φ) = w(E)δ(H(z, φ)−
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E), where w(E) is the normalization of the eigenstate with energy E. The quantized en-

ergy levels, E = En, are then determined by the rule[12] stating that the area swept out by

the eigenstate trajectories is quantized to 2π/ |J |. Thus, the energy difference between the

eigenstate trajectories goes to 0 as |J | is increased, and assumption A2) of ETH holds true.

Considering assumption A1), we first identify that the Hamiltonian in Eq. 5.3 has

two distinct types of eigenstates corresponding to the Josephson oscillation and the self

trapping trajectories. The self trapping eigenstates are further structured because, for a

given energy E > 1, there are two disconnected trajectories depending on the initial sign

of z. These two trajectories will be identified with the sign of z and their associated EWFs

are calculated by selecting the correct trajectory when inverting H(z, φ):

ρE±(z, φ) = w(E)

∣∣∣∣
dH(z, φ)

dz

∣∣∣∣
−1

δ(z ±
∣∣H−1(E, φ)

∣∣ ) (5.5)

At lowest order in a semi-classical expansion, these two trajectories correspond to two

degenerate eigenstates, while at higher order the degeneracy is lifted[40] with splitting

exponentially decreasing with |J |. Since this splitting is exponentially small, we will ignore

it and assume all measurements occur before its dynamics are realized( t < Tt ≈ e|J |).

For E 6= 1, the eigenstate observables will be smooth in energy because, the

difference between two neighboring eigenstate trajectories decreases to 0 as |J | is increased.

While for E = 1, the self trapping trajectories meet the free oscillating ones, a discontinuity

emerges, and non analytic behavior of the eigenstate observables is expected. The behavior

of the eigenstate observables has been identified previously[41, 8] and we confirm for Jx in

Fig. 5.1.
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Thus, we find that away from E = 1 and for large enough |J |, the assumptions of

ETH hold, and we expect the LTOs to be described by a micro-canonical ensemble. While

for eigenstates with energy E ≈ 1, assumption A1) of ETH does not hold, and additional

consideration is required to understand the long time behavior.

Numerical Analysis of the Diagonal Ensemble: From the analysis of the previous

section we expect initial coherent states with z′ and φ′ away from the separatrix to show

thermal behavior at long times. Using exact diagonalization, we confirm that memory of

the initial state is lost for E 6= 1. This is shown in Fig. 5.2 for initial states in the free

oscillation limit (E = 0.5), and it is shown in the SM for initial states in the self trapping

limit. We also confirm that a micro-canonical ensemble, and a characteristic eigenstate

describe the LTOs. This is shown in Fig. 5.1 for Jx and in the SM for other observables.

Close the E = 1, the micro-canonical ensemble and the characteristic eigenstate

no longer match LTOs. Failure of the initial states at E = 1 to thermalize is further

demonstrated in the right column of Fig. 5.2, which shows a dramatic dependence of the

LTOs on the initial phase, φ′. This does not invalidate ETH because assumption A1) of

ETH does not hold for these eigenstates.

Semi-Classical Analysis of the Breakdown of Thermalization: To better under-

stand this breakdown of thermalization we investigate, using the semi-classical analysis,

how the E ≈ 1 eigenstates affect the LTO of the initial coherent states with E ≈ 1 . We

begin by calculating the diagonal ensemble and its expectation values for the initial coherent

states used above. Semi-classically[12] this diagonal ensemble is given as:

ρdiag =
1

4π

∫ 1

−1

∫ π

−π
dzdφWc(z, φ, z

′, φ′)ρE,s(z, φ) (5.6)
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Figure 5.2: (color online) Micro-canonical and Diagonal Ensemble Expectation Values as
a function of |J | and φ′ for E = 0.5(1st column) and E = 1 (second column). The color
indicates the initial phase φ′ where in the second column it ranges from 0(dark blue) to
π (bright pink). For E = 0.5: when |J | increases the energy level spacing decreases, the
assumptions A2) and A3) of ETH become more valid, and the dependence of the LTOs on
the initial phase is lost. While for E = 1, memory of the initial state is maintained. These
calculations where done with Λ = 10
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where Wc is the initial coherent state Gaussian distribution centered around z′ and φ′ with

variance ∼ 1
J , and the EWF, ρE,±, is given by Eq. 5.5. This integral can be computed when

(z′, φ′) 6= (0, π) since the Jacobian
∣∣∣dH(z,φ)

dz

∣∣∣
−1

is approximately constant in the vicinity of

z′ and φ′. Performing the Dirac delta and Gaussian integrations yields:

ρdiag (φ′, z′, E, s) ∼ e−
E−H(φ′,z′)
2σ2(φ′,z′)

+ln(w(E))
(5.7)

where w(E) is the eigenstate normalization, and the energy variance σ(φ′, z′) scales with

|J | as ∼ 1√
|J |

with proportionality dependent on φ′ and z′.

To calculate the LTOs, one must convolve the diagonal ensemble with the eigen-

state expectation values:

Odiag(φ
′, z′) =

∫ Λ/2

−1
dE
∑

s

ρdiag(φ
′, z′, E, s)O(E, s) (5.8)

where the sum over s is the sum over self trapping states when E > 1 and a fixed s = 0

for E < 1, and O(E, s) is the eigenstate expectation value calculated using Eq. 5.4 with

W (z, φ) = ρE,s(z, φ).

Understanding this integral, and consequently why the LTOs encode information

about the initial phase φ′, requires understanding the structure of the eigenstates and their

EWFs. While an EWF is constrained to an equal energy surface, the shape of the energy

surface affects how the EWF is distributed within the energy surface. This is captured by the

Jacobian,
∣∣∣dH(z,φ)

dz

∣∣∣, which appears in Eq. 5.5 due to the transformation of the energy delta

function to phase space coordinates. Take the s = 1 self trapping eigenstate for example. If

one integrates out z using the delta function, the Jacobian |dHdz |(E, φ) = |dφdt |(E, φ) weighs

the EWF. Therefore, the EWF will have more weight in regions where φ is changing slower

in time.
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On the separatrix, E = 1, the classical spin comes to a complete stop on the

unstable fixed point; the Jacobian limits to 0, limE→1limφ→π|dHdz |(E, φ) = 0; and the EWFs

with E → 1 become localized on the unstable fixed point:ρE→1(z, φ) ≈ δ(z)δ(φ − π).

The singularity of this localization result in the non-analytic behavior of the eigenstate

expectation values near E = 1 (see for example Jx in Fig. 5.1).

This singular localization also produces a non-analyticity in the eigenstate overlaps

for the set of initial coherent states with E ≈ 1, but φ′ 6= π. Since these initial states have

Wigner functions localized around φ′ and z′ = H−1(E = 1, φ′) and the EWFs for E ≈ 1 are

localized around φ = π 6= φ′ and z = 0 6= z′, their overlap integrals in Eq. 5.8 will vanish.

These two non-analyticities are integrated over in Eq. 5.8 and result in the memory

effects depicted in Fig. 5.2. In one limit, an initial coherent state with φ′ ≈ π will overlap the

unstable fixed point eigenstate at E = 1, and the LTOs will closely match the observables

of that same eigenstate(Jz = 0 and Jx = −1). In the other limit, when the initial φ′ is away

from π, the initial coherent state will have negligible overlap with the E = 1 eigenstate,

the LTOs will depart from the observables of the E = 1 eigenstate. This is depicted in

Fig. 5.2, in which the closer φ′ is to π, the closer jz = Jz/J and jx = Jx/J approach 0 and

−1 respectively.

To capture this behavior analytically, we perform a saddle point expansion for the

integral Eq. 5.8, and evaluate the integrand at the peaks of ρdiag, given in Eq. 5.7. To

calculate the integrands that give the eigenstate normalization, w(E), and the eigenstate

observables, O(E, s), we perform an expansion of the trajectories around the unstable fixed

point to second order in (z, φ). The phase, φ′, and size, |J |, dependence of diagonal ensemble
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Figure 5.3: (Color Online) Classical fit to exact numerical calculations of diagonal ensemble.
This plot shows the

√
|J | ln |J | scaling of jx = Jx/J for the diagonal ensemble of a set of

initial states with energy E = 1 and different φ′ and |J |. The dots are computed using
exact diagonalization and the color indicates the initial φ′ as in Fig. 5.2. Eq. 5.9 predicts√
|J | ln |J | and the linear dashed lines are given by Eq. 5.9 with F (φ′) fit to match the

exact calculations for |J | > 500.

observables are then derived as1:

jz,diag(|J | , E = 1, φ′) =
4π
√

(Λ− 1)

3Λln [F (φ′) |J | ln[|J |]] (5.9)

jx,diag(|J | , E = 1, φ′) = −1 +
1√

F (φ′) |J | ln[|J |]
3 + Λ

3(Λ− 1)

where the factor F (φ′) =
[
2σ(z′, φ′)2 |J |

]−1
, jx(z) = Jx(z)/J , and z′ is fixed by energy

z′ = H−1(E = 1, φ′). The factor F (φ′) is constant in |J | but has a non-trivial dependence

on the initial phase φ′ via σ(z′, φ′), the energy variance of the coherent state. This non-

trivial dependence in φ′ describes the memory effects shown in Fig. 5.2 for the initial states

with φ′ 6= π. For the initial states with φ′ ≈ π the approximation for ρdiag given in

Eq. 5.7 breaks down, and the results in Eq. 5.9 become invalid. For these states, a different

approximation is required and results in LTO closer to the unstable fixed point[12, 30].

While the exact diagonal ensemble for Jz becomes numerically unstable for large |J |, we

1See SM for full derivation
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can still compare exact results for Jx with Eq. 5.9. This comparison is shown in Fig. 5.3,

where the
√
|J | ln[|J |] scaling is confirmed.

Discussion and Possible Experimental Realizations: Above we discussed how, for

the large non-linear spin with energy E 6= 1, the assumptions of ETH hold and the spin

thermalizes, while for E = 1 the spin does not thermalize. This lack of thermalization is

particularly interesting because the remembered quantity, φ, is not a conserved quantity of

the integrable classical dynamics. It is therefore a novel form of quantum memory, which

is lost in the classical limit J →∞ (See Eq. 5.9).

The appearance of unstable fixed points in semi-classical dynamics is ubiquitous,

and we expect this mechanism for the breakdown of thermalization to be general. While

here we discussed a classically two-dimensional, integrable system, the Berry Conjecture[9,

13] suggests that the correspondence of eigenstates to trajectories, generalizes to a corre-

spondence to micro-canonical ensembles in higher dimensional chaotic systems. Since the

micro-canonical ensemble is also described by a delta function in energy, the Jacobian pro-

duced when transforming to the phase space coordinates would again reveal localization

due to slow classical dynamics. One might again expect singularities due to a localized

eigenstate and for them to produce memory effects following similar arguments as discussed

above. This time, rather than the phase along a separatrix, it would be the distance to

the unstable fixed point on the energy surface that is remembered. This is an exciting

possibility which requires further investigation.

This mechanism for the breakdown of thermalization may be observable in ultra

cold BECs[47, 34, 34] in which the bosons can be condensed into one of two modes such
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as two different hyperfine states. A spin boson mapping then yields the non-linear spin

Hamiltonian, where the parameter Λ is a ratio between the bosonic interaction energy and

the energy associated with the tunneling between the two modes. Previous work has

suggested that the other bosonic modes do not affect the dynamics on experimental time

scales[27, 22]. Future work may find it interesting to investigate the effect of additional

modes and may find connection with other forms of novel long time dynamics[26].
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5.3 Supplemental Material

5.3.1 Large-J Scalling At Different Energies and for Different Observables

Thermalization in the Self-Trapping Limit

In Fig. 5.4, we demonstrate the validity of the ETH for E=3.

Ensemble Averages v.s. Energy

In this section we repeat a similar analysis done in Fig.1 in the main text for

the observables Jz, J
2
x , J2

y and J2
z . The results are shown in Figure 5.5. Each observable
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Figure 5.4: (Color Online) These plots demonstrate the validity of ETH in the self trapping
limit for a fixed energy of E = 3. The different colors corresponds to different values of φ′:
blue (darker) φ = 0, pink (lighter) φ = π. The dashed line is the for the micro-canonical
ensemble.

shows a non analyticity in the eigenstate observable as a function of energy. Jz shows a

discontinuity while, the square observables show a cusp approaching the fixed point value.
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Figure 5.5: (Color Online) These plots demonstrate the validity of ETH in the self trapping
and free oscillating limit, but it fails on the separatrix (E=1).

5.3.2 Numerical Details of Exact Construction of Micro-Canonical En-

sembles

In the main text we discuss the use of exact diagonalization to construct the

diagonal ensemble and micro-canonical ensemble. We use standard algorithms BLAS and

LAPACK algorithms. The one subtlety is the identification of the two degenerate self

trapping trajectories. We find that these algorithms naturally find a basis in which there

is no tunneling between the two self trapping eigenstates. We then identify s = ±1 by the

sign of 〈Jz〉 of the produced eigenstate. To confirm a lack of tunneling in the produced

degenerate basis, we compute the overlap
∑

sjz>0 |〈s|jz〉|2 If the overlap is close to 1 then
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we know the there is very little tunneling between the two self trapping trajectories. Note

for the diagonal ensemble
∑

n ρn |n〉 〈n|, we use the non-tunneling degenerate basis, and

thus treat the sign of Jz as a quasi conserved integral of motion.

5.3.3 ETH for Off Diagonal Elements and Equal Time Observables With-

out Time Averaging

In the main text, we used the eigenstate hypothesis for the diagonal matrix el-

ements of the observables to argue about the thermalization of long time averaged ob-

servables. The full version of ETH hypothesizes a random structure for the off diagonal

elements, and, among other things, can be used to argue that time averaging is not required

to see thermalization. One check of this part of the hypothesis is by checking if the level

spacing follows Wigner-Dyson statics. For the non-linear spin model studied here, the level

spacing can be analytically expressed by a semi-classical analysis[22] and we do not expect

the hypothesis to hold for the off diagonal matrix elements of observables.

Therefore, ETH can not argue that equal time observables will match their infinite

time average counterparts at long times. In other words, without further analysis we can

not show that an experiment will require time averaging to see thermalization. To find out

if this is the case, we compute Jz(t) and Jx(t) for the initial states discussed in the paper

with |J | = 1000. The results are presented in Fig. 5.6 and show that for E 6= 1, Jx(t) and

Jz(t) equilibrate to their micro-canonical expectation value. For E = 1, small temporal

fluctuations remain, but at any given time, the initial phase φ still determines how close Jx

and Jz are equal to the fixed point value (Jx = −1 and Jz = 0).
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Figure 5.6: (Color Online) Dynamics of Jx and Jz for different values of φ at energies
E = 3(top), E = 1(Middle) and E = 0.5 (Bottom).
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5.3.4 Semi-Classical Eigenstates and Eigenstate normalization

. In the main text we defined the semi-classical eigenstate Wigner function (EWF)

as:

ρE(z, φ) = ω(E)δ(H(z, φ)− E) (5.10)

where the Hamiltonian is given as:

H =
Λz2

2
−
√

1− z2 cos(φ), (5.11)

and the normalization ω(E) is given as:

ω(E)−1 =

∫ ∫
dzdφδ(E −H(z, φ)). (5.12)

To compute this integral, we focus on the energy close to the separatrix, E = 1 ± |δ|, and

expand the Hamiltonian around E = 1:

H − 1 =
Λ− 1

2
z2 − (φ− π)2

2
(5.13)

Close to the unstable fixed point the trajectories trace out a hyperbola:

z = ±
√

2

Λ− 1

√
φ2

2
+ (E − 1) (5.14)

φ =
√

2(1− E) + (Λ− 1)z2

The Jacobian for both these trajectories are:

∣∣∣∣
dH

dz

∣∣∣∣ = (Λ− 1)z =
√

(Λ− 1)
√

2(E − 1) + φ2 (5.15)

∣∣∣∣
dH

dφ

∣∣∣∣ = φ =
√

(Λ− 1)

√
2(1− E)

(Λ− 1)
+ z2.
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Since the the inverse Jacobians,
∣∣∣dHdφ

∣∣∣
−1

and
∣∣dH
dz

∣∣−1
, contribute the most near the unstable

fixed point and we can expand the integrand for ω(E)−1 near them and write:

ω(1 + |δ|)−1 =
∫ r+
−r+

∣∣dH
dz

∣∣−1
(φ, δ) + C+ (5.16)

ω(1− |δ|)−1 =
∫ r−
−r−

∣∣∣dHdφ
∣∣∣
−1

(z, δ) + C−

where r± denotes the limits where the hyperbolic expansion is valid and C± are small and

approximately constant for δ small. Defining a as:

a+ = 2(E − 1) (5.17)

a− =
2(1− E)

Λ− 1
,

these integrals can be expressed as:

1√
a(Λ− 1)

∫ r

−r

1√
1− a−1x2

dx =
1√

(Λ− 1)

[
sinh−1

(
r√
a

)]
(5.18)

and for E ≈ 1, this approximates to as:

ω(1 + |δ|)−1 = − Ln (|δ|)
2
√

(Λ− 1)
(5.19)

ω(1− |δ|)−1 = − Ln (|δ|)√
(Λ− 1)

5.3.5 Eigenstate Overlaps and Saddle Point Approximation

To approximate the eigenstate overlap for initial states on the separatrix but away

from the fixed points, we expand the energy to linear order in z and φ:

H = κ1φ+ γ1z + E0 (5.20)

We first write the coherent state with initial imbalance z′ and phase φ′ as:

ρ(N, z′, φ′, z, φ) =
αz(N, z

′)αφ(N, z′)

π
Exp

[
−αz(N, z′)(z − z′)2 − αφ(N, z′)(φ− φ′)2

]
(5.21)
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where the inverse variances are:

αφ(J, z′) =
1

2
J
(
1− z2

)
(5.22)

αz(J, z
′) =

2J

1− z2

The eigenstate overlap is then given as:

ρdiag(z
′, φ′, E, s) =

ω(E)

γ1

∫
dφρ

(
N, z′, φ′,

δ0 − κ1φ

γ
, φ

)
, (5.23)

where δ0 = E − E0. This integrates by parts as:

ω(E)

γ1

√
αz(N, z′)αφ(N, z′)

√
π

√
αφ +

κ2
1αz
γ2

1

exp

(
− δ2

0αφαz

γ2
1αφ + κ2

1αz

)
(5.24)

Here we note that the energy uncertainty depends on the coherent state via the uncertainties

αz and αφ. To find long term expectation values, we compute the diagonal ensemble average,

O =

∫
ρdiag(E)O(E), (5.25)

by performing a saddle point integration in the function ρdiag.

Saddles

Analytic solutions for the saddle point only exist if E0 = 1 so we focus on coherent

states on this line. To find the saddle points we rewrite ρdiag as:

ρdiag(E = 1± |δ|) =
K±

(1−G±Ln[δ])
Exp[−2JFδ2] (5.26)

where K± and G± are constants in δ, depend on C±, and with ± depending on the sign of

δ . This function has a saddle at:

|δ| = i√
(2JF )W−1(− e−2/G±

F2J )

(5.27)

113



Where the product log, W−1(X), is the inverse of exx: W−1(exx) = x and the −1 says to

take the negative branch. For small x we get:

lim
x→0−

W−1(x)

Ln(x)
= 1 (5.28)

and we know W−1(x) ≈ Ln(−x)− Ln(−Ln(−x)) + . . . We can then write this as:

|δ| = i√
2JFLn( e

−2/G±
F2J )

(5.29)

Which in the large-J limit goes as:

1√
2JFLn(J)

(5.30)

and

2JF =
αφαz

γ2
1αφ + κ2

1αz
(5.31)

Thus the difference in initial states on the separatrix again shows up in the scaling to the

large J limit. Also note G comes from W (E) which depends on which side of the separatrix

we are on (sign of δ). In the large-J limit the points become symmetric as indicated by the

lack of dependence on G.

Eigenstate observables close to the separatrix

Next we compute the eigenstate observables, O(E), which are given as

W (E)

∫
O(z, φ)δ[H(z, φ)− E]. (5.32)

Jz for Λ large has a amazingly simple solution. For E < 1, Jz(E) = 0 for E > 1 we

integrate:

∫
dzδ[H(z, φ)− E] =

∫ π

−π
dφz(φ)

∣∣∣∣
dH

dz

∣∣∣∣
−1

(5.33)
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and for Λ >> 1,
∣∣dH
dz

∣∣−1 ≈ Λz, the z’s cancel and we get

Jz(E) =
W (E)2π

Λ
. (5.34)

Jx is more involved. We will take the same approach as the integral for ω(E). We

assume the integral is dominated by the contribution near the unstable fixed point. Doing

so allows us to expand Jx near the unstable fixed point: Jx ≈ −1 + φ2/2. Solving for φ, we

find that it is written as: Jx ≈ Λ−1
2 z2 − E.

Jx(1 + |δ|)−1 = ω(E)(Λ− 1)

∫ r+

−r+

(
− E

Λ− 1
+ z2/2

) ∣∣∣∣
dH

dz

∣∣∣∣
−1

(φ, δ) +K+ (5.35)

Jx(1− |δ|)−1 = ω(E)

∫ r−

−r−
(−1 + φ2/2)

∣∣∣∣
dH

dφ

∣∣∣∣
−1

(z, δ) +K−

Similar to the integral for ω(E), these can be computed and in the limit of small δ we get:

Jx(1 + |δ|)−1 = −1 + ω(|δ|)
(
K+ −

|δ|Ln(|δ|)
(Λ− 1)3/2

)
(5.36)

Jx(1− |δ|)−1 = −1 + ω(|δ|)
(
K− −

|δ|Ln(|δ|)√
Λ− 1

)

ω(|δ|) goes to 0 faster than ω(|δ|) |δ|Ln(|δ|) and we get:

Jx(1 + |δ|)−1 = −1− ω(|δ|) |δ|Ln(|δ|)
(Λ− 1)3/2

(5.37)

Jx(1− |δ|)−1 = −1− ω(|δ|) |δ|Ln(|δ|)√
Λ− 1

Substituting ω:

Jx(1 + |δ|)−1 = −1 +
2 |δ|

Λ− 1
(5.38)

Jx(1− |δ|)−1 = −1 + |δ|

Jz(1 + |δ|) =
4π
√

(Λ− 1)

ΛLn (|δ|)

Jz(1− |δ|) = 0
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5.3.6 Semi-Classical Equilibrium Observables

Using the saddle point values to evaluate the diagonal ensemble observables we

get:

Odiag(z
′, φ′) =

∫
ρdiag(E, z

′, φ′)O(E) =
1

3
[2O(1 + |δ|) +O(1− |δ|)] (5.39)

There is a factor of 2 for +|δ| because ρdiag(E, z
′, φ′) in the small |δ| limit is twice as large

on the self trapping side (The integral in ω(E) only integrates over one of the hyperbole on

one side of the fixed point while it integrates both sides in the free oscillating limit). This

gives the diagonal ensemble observables as:

Jz(z
′, φ′) = − 8π

√
(Λ− 1)

3ΛLn [|δ|(z′, φ′)] (5.40)

Jx(z′, φ′) = −1 + |δ| 3 + Λ

3(Λ− 1)
.

By substituting the saddle point location, we get the expressions given in the main text:

Jz(z
′, φ′) =

4π
√

(Λ− 1)

3ΛLn [F (z0, φ0)JLn[J ]]
(5.41)

Jx(z′, φ′) = −1 +
1√

F (z0, φ0)JLn[J ]

3 + Λ

3(Λ− 1)
.
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Chapter 6

Period-n Persistent Oscillations in

the Kicked LMG Model

6.1 Abstract

In this chapter we study the quantum and classical dynamics of the LMG model

with a periodically kicked interaction strength. In this model classical chaos appears similar

to the standard map, in which chaos first appears near the separatrix and islands of stability

emerge and remain for large kick strengths. The islands of stability contain new periodic

trajectories not smoothly connected to the trajectories of the LMG hamiltonian. We find

that these trajectories occur when the kick period is an arbitrary integer fraction, 1/n, of

the period of some LMG trajectory. Studying the effect of these trajectories on the quantum

dynamics, we find that the islands of stability prevent dephasing and result in discrete time
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translation symmetry breaking at long times. The period of the persistent oscillations that

break discrete time translation symmetry is n times the kick period.

6.2 Introduction

Recently, the discovery of Many Body Localization[22, 1] has vitalized interest

in systems with avoid Thermalization. Less recently, scientists spent centuries trying to

create perpetual motion machines: a classical system which would avoid thermalization

by oscillating for long times without an energy source. These past failed efforts have now

morphed into the search for quantum time crystals, a quantum phase of matter which

breaks time translation symmetry and exhibits a stable oscillation for long times[11, 8,

30]. The most distinctive form of this phenomena occurs in a many body localized spin

chain in which all the spins are flipped at periodic intervals. After this system finds a

dynamical equilibrium, energy is no longer exchanged with the periodic drive, and the local

magnetization oscillates with a period twice the period of the flips. To call this long time

behaviour a crystal or an emergent phase of matter, it should be stable with respect to

small local perturbations. In this model, the stability is provided by the set of quasi-local

integrals of motion which are characteristic of MBL phases.

A similar phenomena occurs in the kicked LMG model[28], which recently has

found wide use in modeling boson tunneling experiments and as a mechanism for generating

metrological useful entanglement[23, 21, 29, 31, 26, 2, 12, 14, 3, 5, 27, 10, 21, 5, 27, 10]. It

has the following simple form:

H = −Jx +
Λ

2 |J |J
2
z (6.1)
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where Jα are spin operators of size |J |, and it has been a significant source of insight into

semi-classical methods[25, 19, 17, 24, 9, 15, 16, 18, 20, 13]. When Λ < −1, ferromagnetic

symmetry breaking occurs in the ground state, while when Λ > 1 symmetry breaking occurs

in the top of the spectrum. In the classical limit, these states are associated with “self

trapping” trajectories which oscillate without changing sign of Jz, while the paramagnetic

states are associated with “free oscillating” trajectories which oscillate around Jz = 0.

Russomanno et. al [28] found that, when the spins are initialized in a ferromagnetic ground

state and are flipped at periodic intervals, the spins would oscillate at a period twice the

period of the intervals. This discrete time symmetry breaking mimics that which occurs in

an MBL system, but now the ferromagnetic states stabilize the oscillations instead of the

MBL integrals of motion.

In both these systems, the periodic dynamics are split into two parts: one part

associated with the natural dynamics of the system and a spin flip part. The emergent

periodicity of the discrete time translation symmetry breaking occurs because the spin flip

part is completing half a period of a full spin rotation, while the stability emerges from the

natural dynamics. In this chapter we report a discrete time translation symmetry breaking

phenomena where the emergent periodicity is due to the natural dynamics completing an

integer fraction of its natural period, and the stability emerge due to the cooperative effects

of both parts of the dynamics.

We study dynamics similar to that done by Russomanno et. al.[28], but we replace

the π spin rotation around the x axis (spin flip) with an arbitrary rotation around the x axis

by a phase t2. We focus on the limit where t2 is much smaller than the duration, t1, the LMG
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hamiltonian is evolved for after each rotation. When both t2 and t1 are small, the Baker-

Campbell-Hausdorff formula is valid and we can easily derive an effective time-invariant

hamiltonian to model the kicked dynamics. In this limit, the model is classically integrable,

the quantum wave function spread out across the integrable tori at times later then the

Ehrenfest time, and similar to the model discussed in Chapter 5 long time observables

equilibrate to a value described by a micro-canonical ensemble. When t2 and t1 increases,

chaos and island of stability emerge similar to the standard map[7].

We find that the discrete time translation symmetry breaks due to the islands of

stability. When, t2 is small, these islands occur when t1 is an integer fraction 1/n of a

natural period of the LMG hamiltonian. At this resonance, n stable fixed points, and n

unstable fixed points emerge, with integrable tori wrapping around the stable fixed points.

Classically, the kicked dynamics hops between these n stable fixed points, moving with in

the integrable tori. Quantum mechanically, the stable fixed points prevent the spreading of

the wave function around the LMG tori and also hops between the stable fixed points. For

large enough spin sizes, the wave function can not spread between the stable fixed points

even at long times and the n-period oscillations from the hopping between stable fixed

points persists indefinitely.

We demonstrate the n-period oscillations using exact quantum dynamics and

present the results in Section 6.5. By analyzing the Floquet spectrum, we show that these

dynamics do not extract energy from the kicked unitary and present these results in the

same section. The classical analysis explaining why these islands of stability emerge is given

is Section 6.5, and the pertubative limit when t2 < t1 < 1/Λ is discussed in Section 6.4. We
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conclude in Section 6.6 with a discussion on the possibility of creating a true many body

time crystal out of these persistent oscillations and there relationship to recent proposals

for similar time crystal behavior.

6.3 Model and Classical Approximations

In this chapter we imagine an experiment where the interaction strength Λ of

the LMG hamiltonian can be periodically turned on or off. This can be accomplished by

pulsing the transverse field strength to much larger values or using Feshbach resonances

to turn off interactions between the spins. The dynamics after m kicks will then be

described by the following unitary:

Um = (U1U2)m (6.2)

Ui = e−iHiti

where

H1 = −Jx +
Λ

2J
J2
z (6.3)

H2 = −Jx,

t1 is the portion of time in which interactions are turned on and t2 is the portion of time

in which they are turned off. In the following sections we will systematically study the

dynamics of this unitary in the “kicked” limit when t2 > t1. The solution to this classical

dynamics is discussed both in Chapters 3 and 5. Through out this Chapter, we will work

with Λ = 10.
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6.3.1 Classical Dynamics

In the classical limit, a large spin is described by its z projection, z and azimuthal

angle φ. In this mapping the spin variables become

Jz → z (6.4)

Jx →
√

1− z2 cos(φ)

Jy →
√

1− z2 sin(φ)

|J | → 1,

the hamiltonian becomes

H1(z, φ) = −
√

1− z2 cos(φ) +
Λ

2
z2 (6.5)

H2(z, φ) = −
√

1− z2 cos(φ)

which has dynamics:

dz

dt
= −

√
1− z2 sin(φ) (6.6)

dφ

dt
=

z cos(φ)√
1− z2

+ Λz

The classical approximation of the unitary U = U1U2 is computed by the classical evolution

by these equations of motion for a time t1 followed by the classical equations of motion for

H2 (with Λ = 0) for a time t2.
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6.4 Perturbative Limit

In the perturbative limit, we work with t1 < 2/Λ and t2 < t1. In this limit, the

LMG dynamics still dominate, but the operator in the exponential is small and a BCH ap-

proximation can be applied. Defining, U1U2 ≈= e−iHeffT , and applying this approximation

to second order we find:

−iTHeff = −it1H1 − it2H2 + i t1t2Λ
4J {Jz, Jy}+ iH̃3 (6.7)

where

iH̃3 =
i

12

(
t21t2[H1, [H1, H2]]− t22t1[H2, [H1, H2]]

)
(6.8)

=
−Λ

24J

(
t21t2[H1, {Jy, Jz}]− t22t1[H2, {Jy, Jz}]

)

=
−Λ

24J

(
t21t2[

Λ

2J
J2
z , {Jy, Jz}]− (t21t2 − t22t1)[Jx, {Jy, Jz}]

)

=
−Λ

24J

(
t21t2

Λ

2J
(−i{Jz, {Jz, Jx}}) + (t21t2 − t22t1)

(
2i(J2

y − J2
z )
))

= i
Λ

24J

(
t21t2

Λ

2J
({Jz, {Jz, Jx}})− 2(t21t2 − t22t1)

(
J2
y − J2

z

))

At zeroth level in this approximation the effective hamiltonian is simply a shift

from H1 toward a Jx dominated LMG. Setting T = t1 + t2, the effective hamiltonian has

LMG form:

H
(0)
eff = −Jx +

Λ

2J(1 + t2/t1)
J2
z . (6.9)

This effective hamiltonian is equivalent to the LMG hamiltonian with rescaled Λ given as:

Λ→ Λ
′

=
Λ

1 + t2
t1

(6.10)
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Figure 6.1: Classical Poincaré plots for Λ = 10 and t1 = t2 = 0.01(left) and 0.25 (right).
The black lines in the background are the classical trajectories determined by hamiltonian

H
(1)
eff and the color corresponds to the initial z used to generate the Poincaré plot. The

initial φ was 0. The solid black line depicts the separatrix for the deformed models

The primary effect from this rescaling is to enlarge the free oscillating region of the phase

diagram. In this limit, the unstable fixed point remains unstable, and the self trapping

dynamics still exist as long as Λ

1+
t2
t1

> 1.

At the next level in the approximation, the effective hamiltonian picks up a new

term which more seriously deforms the LMG trajectories:

H
(1)
eff = H

(0)
eff +

t1t2Λ

4J(t1 + t2)
{Jz, Jy} (6.11)

The classical form of this operator is:

t2Λ
′

2
z
√

1− z2 sin(φ) (6.12)

which modifies the classical equations of motion with the following terms:

δ
dz

dt
= − t2Λ

′

2
z
√

1− z2 cos(φ) (6.13)

δ
dφ

dt
=

t2Λ
′

2

(√
1− z2 sin(φ)− z2 sin(φ)√

1− z2

)
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Figure 6.2: Long time Q functions of quantum dynamics for two different initial states z =
(left) and z = (right), and for Λ = 10 and t1 = t2 = 0.25. This demonstrates that at long
times, the dynamics of the kicked LMG model are constrained to the integrable tori defined
by the effective hamiltonian Heff

The qualitative picture of the LMG hamiltonian is not changed by these contributions, and

the integrable tori of the LMG hamiltonian are simply deformed. These deformed tori are

depicted in Fig 6.1.

Similarly, the quantum dynamics are not dramatically changed from what was

discussed in chapters 3 and 5: the long time dynamics still has the quantum wave function

spread across the now deformed tori; Cat states can still be created; and there will be long

time memory for initial states starting on the now deformed separatrix. As a quick example,

we plot in fig 6.2 the long time Q functions are shown to cover these tori.

The separatrix depicted in Fig 6.1 can be obtained by identifying the unstable fixed

point, and the separatrix still occurs at E = 1 Using this we can construct an equation for

the deformed separatrix:

Heff (z, φ) = 1 (6.14)

which can be solved by numerical inversion.
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Figure 6.3: These are the classical Poincaré sections for the dynamics given by: (t1, t2) =
(1.1, 0.05) Left, (0.35, 0.2) Middle, and (0.3, 0.1) Right. In all three cases t2 is sufficiently
large, ensuring that the non-trivial trajectories are large. The non trivial trajectories occur
when period of a near by trajectory is close to an integer multiple of t1: τLMG(z0, φ0) ≈ nt1
For the left figure, the non-trivial trajectory in the free oscillating region is an example of
an n = 2, and the one in the self trapping region is an n = 1. This trajectory is particularly
impressive, because the trivial trajectories surrounding have become chaotic while these
non-trivial trajectories remain integrable. The middle and right plots show n = 6 and
n = 3 non-trivial trajectories.

6.5 Islands of Stability and Persistent Oscillations

As we increase t1, or t2 the following departures from the deformed trajectories

occur: 1) new non-trivial “integrable tori” appear and 2) chaos emerges around the sepa-

ratrix. The non-trivial tori are parts of phase space where integrable trajectories appear

that are not topologically deformable into the LMG trajectories. A few examples of these

non-trivial tori are shown in Fig 6.3. These non-trivial tori also appear in the standard

map[7] and are often referred to as islands of stability because they can persist even in

the chaotic limit when the bare tori are destroyed. In this section we will focus on the

non-trivial integrable tori.

To explain these non-trivial integrable tori, we focus on the limit when t1 >

√
2/Λ >> t2. We work in this limit, because here the LMG dynamics serve as a good

reference point for discussing the dynamics of the kicked model. In fact, in Fig 6.3, the tra-
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jectories around the stable fixed points of the LMG hamiltonian are roughly unperturbed.

In this limit, we find the non-trivial tori occur when a period of the LMG hamiltonian, τ ,

is in resonance with t1: τ = nt1. This gives us a hint of why they occur more generally.

We therefore turn our attention to Fig. 6.4 where t2 < 0.01, and we have plot-

ted only a set of non-trivial tori in both the self trapping and self oscillating limit. There

we have also plotted the resonant (n = 1) LMG trajectory in black. In the classical ap-

proximation, the dynamics of U1, bring initial states on this trajectory back to themselves.

Semi-classically, we can approximate U1(t1) as the identity. Similarly, when initial states

start on an LMG trajectory with period slightly less then t1, they appear to move forward

along the trajectory by a time t1 − τ . If t1 is much less then the Ehrenfest time, then we

can approximate U1(t1) ≈ U1(t1 − τ) when U1 acts in this region of phase space. Similarly

when t1 < τ , the state appears to move backwards by a time τ − t1 and we can approximate

U1(t1) ≈ U †1(τ − t1). This inspires us to label the trajectories with τ < t1 as backward tra-

jectories and the trajectories with τ > t1 as forward trajectories. Note a similar phenomena

also occurs when video taping a propeller oscillating close to the frame rate of the camera.

By investigating the non-trivial trajectories in Fig. 6.4, we find that their dynamics

short cut the LMG trajectories by changing between the forward and backward trajectories.

This is occurring because the kick U2 is kicking the spin between the two types trajecto-

ries when the spin approaches the turning points (i.e. when the spin crosses the resonant

trajectory). This is explained visually in Fig. 6.4. For small t2, these non-trivial tori are

neighbored by the LMG tori. The boundary between the trivial and nontrivial tori is de-

termined by the kick strength t2. When t2 is increased, the number of forward (backward)
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Figure 6.4: The top to figures show two example of n = 1 non-trivial trajectories for
(t1, t2) = (2.1, 0.005) Left and (0.9, 0.004) Right. The black lines in each show the trivial
trajectory which exists when t2 = 0. The bottom two plots show τLMG(E) in blue for the
LMG model corresponding to the U1 dynamics in the top plots(Λ = 10). The orange line
is t1, when t1 > τ(E), U1 moves the spin forward along the trajectory by a time t1 − τ(E),
while if t1 < τ(E), U1 moves the spin backwards along the trajectory by a time τ(E)− t1.
U2 kicks connects the forward and backward trajectories by. This is done differently in the
two regions of phase space. For the left plot, U2 always kicks z in the positive direction
keeping φ constant. While in the right plot, U2 kicks z in the ±z direction depending on
whether sign(φ) = ±1
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trajectories that can be kicked into backward (forward) increases and the number of non-

trivial tori increases. The stable fixed point at the center of the non-trivial tori is a point

on the resonant trajectory where the action of U2 also acts like the identity. It is interesting

to note that these non-trivial tori often survive inside the chaotic limit of the model. One

example of this is clearly highlighted in Fig 6.3. In this way these non-trivial tori get the

name: islands of stability.

When the resonance condition occurs for n > 1 a similar description holds up to

a few subtleties. First, U1 only completes a fraction (1/n) of a trajectory. Therefore, we

should define the forward and backward trajectories based off the classical trajectories of the

unitary, U ′1 = (U1U2)n−1U1. In a perturbative limit, the classical periods and trajectories

of U ′1 will only be slightly shifted from the LMG trajectories, and we can follow similar

arguments as above. The dynamics defined by (U ′1U2)m will then have a similar fixed point

structure and trajectories as shown in Fig. 6.4, but will only capture the dynamics when

looking every n steps of U1U2. Looking every step, we see that U1U2 will shift the tori around

the fixed point defined by U ′1U2 to n different points in phase space. This shows that, at

the resonances, there must be n fixed points of the U ′1U2 dynamics, and this is confirmed

in Fig. 6.3. Since these are fixed points of the U ′1U2 dynamics, the U1U2 dynamics display

an period n oscillation due to U1 moving the spin between the different fixed points.

The fact the U ′1U2 dynamics has n fixed points around the U ′1 trajectories also

constrains the size of the non-trivial tori further then what is limited by the strength of the

kick. This is because the tori around each of the fixed points can not intersect each other.
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Figure 6.5: Period n = 3 (Left) and n = 6 (Right) Persistent Oscillations. The top panel
shows these oscillations last indefinitely, while the bottom shows the shape of the oscillation
in more detail.

Otherwise, the tori could not be defined. Therefore, the largest tori just barely meet at n

unstable fixed points of the U ′1U2 dynamics.

In the quantum dynamics of integrable classical systems, wave functions spread

out across integrable tori generically leading to long time equilibrium. This is also true for

the n = 1 resonances, but if n is greater than 1, then the wave function has no way of

spreading between the n islands of stability. It therefore spreads out within one island of

instability, and the period n oscillations persist at all times. This is shown in Fig. 6.5 where

the exact quantum dynamics where computed for a spin of size |J | = 500. The fact the
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wave function can only spread out with in each island is captured by the dynamics of the

observed magnitude |J |2 =
∑

α 〈Jα〉2. For classical states |J | = 1, while for states spread

out along a classical trajectory, |J | → 0. Thus, the non-trivial fixed points stabilize the

persistent oscillations by stabilizing the classicality of the states evolving. This is the same

mechanism for stabilizing persistent oscillations discussed in [28], but now the unstable fixed

points emerge from the interplay of the kick and the LMG dynamics, rather than the LMG

dynamics alone.

Systems displaying discrete time translation symmetry breaking have a portion

of the spectrum which has very uniform level spacing. This uniform level spacing is at

frequencies 1
T where T is the period of the oscillation which breaks discrete time translation

symmetry. We can identify these Floquet eigenstates by using the expectation value of

〈HLMG〉. This is because, following a WKB approximation procedure, one would expect the

set of oscillatory eigenstates to overlap the non-trivial trajectories. Since these trajectories

oscillate around a set of fixed points that emerge on the resonant LMG trajectory, phase

space averages over them should yield energies close the that of the resonant LMG trajectory.

Therefore the oscillatory Floquet eigenstates should all have 〈HLMG〉 close to the energy

of the resonant LMG trajectory. We have confirmed this in Fig. 6.6, in which the Floquet

eigenstate phase φn is plotted versus τ(〈HLMG〉)/t1 . This figure also confirms the 1
T level

spacing required to yield long time oscillations. Furthermore, since the the eigenstates

which are responsible for the persistent oscilation all have the same energy 〈HLMG〉, when

these oscilations equilibriate, they do not exchange energy with the drive (the U2 kicks).
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Figure 6.6: Floquet phases φn as a function of τ(E) where E = 〈n|HLMG |n〉. The left plot
corresponds to (t1, t2) = (0.9, 0.004) with classical trajectories shown in Fig. 6.4, the middle
plot is for (t1, t2) = (0.3, 0.1) and has trajectories shown in Fig. 6.3 and quantum dynamics
shown in Fig. 6.5, and the right plot is for (t1, t2) = (0.35, 0.2) and has trajectories shown in
Fig. 6.3 and quantum dynamics shown in Fig. 6.5. The middle and right plot corresponding
to n = 3 and n = 6 and show a level spacing = 2π/n. For the n = 3 case, the perturbed
trajectories for U ′1 are close to the those of the LMG trajectory so the they all have E close
to that the n = 3 trajectory. For the n = 6 case, U ′1 is much more deformed from the
LMG trajectoires and therefore these eigen states with 2π/n spacing are more spread out
in energy E and further from the τ(E) = 6t1 “bare” resonace.

6.6 Conclusion

In this chapter we have discussed how period-n oscillations emerge in the kicked

LMG model due to resonaces with the kick frequency, t1. By analyzing exact eigenstates

and dynamics, we showed that these oscillations will persist forever evading thermalization

akin to a time crystal. We have opted not to call this a time crystal because, while the

model is used for many body quantum gases, the two mode approximation reduces the

Hilbert space to that of a single large spin. Therefore, the persistent oscillations do not

have to compete with many body dephasing and these dynamics don’t yet deserve the label

of a phase of matter such as a crystal.

It will be interesting for future works to investigate the effects of the other spatial

modes in the BEC on these oscillations, and to find out if the stability of the fixed points

can stabilize many body dephasing and diffusion in addition to quantum diffusion. These
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possibility can also be investigated in long range spin models and there experimental re-

alizations. Two types of experiments can realize these types of models: Rydberg atoms

and cavity QED. For Rydberg atoms, long range dipolar interactions can, at first order

be aproximated as an all to all interaction [6]. This approximation yields the same model

we described above. It will be interesting to study corrections to this model due to the

finite range nature of the interactions. In cavity QED experiments, the long range nature

of the spin-spin interaction is not in question, but the coupling can display inhomogeneities

based on how the atoms in the cavity are organized[4]. These inhomogeneities are another

interesting way to introduce a many-body aspect to the dynamics discussed in this paper.
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Chapter 7

Exploring many-body localization

in quantum systems coupled to an

environment

via Wegner-Wilson flows

7.1 Abstract

Inspired by recent experiments on many-body localized systems coupled to an

environment, we apply a Flow Equation method to study the problem of a disorder chain of

spinless fermions, coupled via density-density interactions to a second clean chain of spinless

fermions. In particular, we focus on the conditions for the onset of a many-body localized

phase in the clean sector of our model by proximity to the dirty one. We find that a many-
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body localization proximity effect in the clean component is established when the density

of dirty fermions exceeds a threshold value. From the flow equation method we find that,

similar to many-body localization in a single chain, the many-body localization proximity

effect is also described by an extensive set of local integrals of motion. Furthermore, by

tuning the geometry of the inter-chain couplings, we show that the dynamics of the model is

ruled, on intermediate time scales, by an emergent set of quasi-conserved charges. mergent

integrals of motion.

7.2 Introduction

The advent of cold gas experiments [6] has revitalized interest in fundamental

questions of quantum thermodynamics in isolated many-body systems. One of the most

intriguing avenues of research is the quest for non-ergodic phases of quantum matter. Ex-

amples range from integrable models [13, 8] to quantum scars [57] and include the prominent

example of ergodicity breaking by strong disorder: many-body localization (MBL) [40, 1]

MBL has been the subject of intense research activity in the last ten years; sem-

inal works have studied the problem both in a perturbation treatment [2, 5, 21] and with

numerical methods [42, 65, 41], establishing that a localized phase, which exhibits absence

of diffusion on long time scales, can survive the presence of many body interactions. In-

terest in many-body localisation results from its rich phenomenology: unusual dynamical

responses [29, 18], a novel pattern of quantum entanglement [4, 17, 28, 63, 15], the pos-

sibility to host new types of order without equilibrium counterpart [23, 45, 60, 59], and

connections to the notion of quantum integrability [4, 53, 22, 49, 9, 16, 43]. MBL systems
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possess an extensive set of quasi-local integrals of motion, conserved by the unitary dy-

namics, and preventing full thermalization. Such local degrees of freedom (called localized

bits or l-bits) can be constructed via a sequence of local unitary transformations starting

from a free Anderson insulator, and represents a form of quantum integrability robust to

perturbations. This property is at the basis of a mathematical proof of the existence of the

MBL phase for one-dimensional spin lattice systems with short-range interactions [25].

MBL is nowadays investigated in experiments with cold gases [52, 7, 10, 48] and

superconducting qubits [50]. The advent of MBL in experimental platforms poses naturally

the question of its robustness to the coupling with an external environment [39, 38]. A

bath is expected to provide sufficient energy and phase-space to facilitate the hopping in

an otherwise localized system [19, 3, 14, 30, 35, 11, 32, 46, 31]. On the other hand, a recent

experiment [33] suggests that the clean ’environment’ needs to reach a comparatively large

density of particles with respect to the dirty MBL system in order to act as a thermodynamic

environment and induce ergodic behavior. In order to render the problem treatable, the

coupling between a quantum many body system and a bath is usually assumed weak. The

complementary regime, however, presents an even more interesting scenario: when the back-

action on the bath is strong, and the bath and system are of comparable size, the ’clean’

bath could localize by proximity to the dirty system – a phenomenon called ’MBL proximity

effect’ [37, 24, 34].

Previous work has substantiated the existence of the ’MBL’ proximity effect’ via

perturbative treatments [37, 34] and exact numerics on small system sizes [24], while to

the best of our knowledge there has been no attempt at constructing integrals-of-motion,
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or an l-bit Hamiltonian, for ’MBL proximity’ induced phases. Therefore, in this work we

investigate the possibility of such a construction by use of the Wegner-Wilson flow equation

method [26]. Similar to renormalization group approaches to the MBL problem[61, 47, 12,

55, 64, 20], the Wegner-Wilson flow equation method[26] constructs a set flow equations

implementing infinitesimal stepwise diagonalization of the many-body Hamiltonian. When

both the clean and dirty components of the system localize, these equations describe a

unitary transformation, in both clean and dirty components, to an l-bit Hamiltonian which

is diagonal in an extensive set of local conserved charges. By focusing on this regime, one

can make an ansatz of the l-bit Hamiltonian that only includes a few relevant many-body

terms. Thus, in addition to being able to study regimes of strong system-bath coupling, the

flow equation method is also able to access system’s sizes beyond those treatable in exact

diagonalization, when disorder is sufficiently strong.

This approach allows us to establish the existence of the MBL proximity effect,

and its consistency with a diagonal l-bit Hamiltonian of local conserved charges, in a wide

range of parameters. Of particular note, we identify a regime for the MBL proximity effect

complementary to the one explored in the experiment of Ref. [33]: above a certain critical

density the dirty system acts effectively as a source of disorder and induces an MBL phase

into the clean component. We also focus on novel physical regimes occurring when the

geometry of the system-bath coupling is modified. Specifically, we consider the case of

a dirty chain of fermions, coupled every δ > 1 sites, to the clean one (see Fig. 7.6); the

dirty chain acts as a distribution of impurities placed every δ sites, cutting the clean chain

into a sequence of emergent integrals of motions. These conserved charges lead to non-
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ergodic dynamics on intermediate time scales but are destroyed when interactions between

conserved charges becomes effective. At these longer time scales, instead, the dynamics

cross over from non-ergodic behavior to thermal behavior.

7.2.1 Structure of the paper

We begin in section 7.3 with a review of the Wegner-Wilson flow Equation tech-

nique for a single chain and discuss how such a technique provides access to local conserved

charges and an l-bit Hamiltonian. Then, in section 7.4, we generalize the approach for the

two-chain problem and detail how to identify the parameter space where the MBL prox-

imity effect is reliably described by an l-bit Hamiltonian. In section 7.5, we present the

numerical solution to the flow equations in the case of two chains of equal length. Here,

we demonstrate the stability of the MBL proximity effect, construct a qualitative phase

diagram and present the numerically computed l-bit couplings. In section 7.6, we describe

in greater detail the truncations made by the two-chain l-bit ansatz and sketch the deriva-

tion of the differential equations defining the FE unitary transformation. In section 7.7, we

apply the method developed in the first sections to a novel geometry for the system-bath

coupling, and discuss a novel relaxation process. We conclude with a quick overview on

relevant experiments and possible future directions in section 7.8.

7.3 Flow Equation Approach For a Single Chain

The key idea of the FE approach is to introduce a family of unitary transfor-

mations, U(l), parameterised by a ’renormalization group’ scale, l, and generated by the
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anti-hermitian operator, η(l), via the relation, U(l) = Tl exp
(∫
η(l)dl

)
. The fixed point of

the FE procedure in the l → ∞ limit, is a diagonal Hamiltonian with dressed couplings.

Operators, O(l), flow according to the equation dO
dl = [η(l), O(l)]. A customary proce-

dure for constructing η(l) is to first separate the Hamiltonian into its diagonal, H0(l), and

off-diagonal, V (l) parts. Then, the generator is constructed as η(l) ≡ [H0(l), V (l)] which

guarantees vanishing off-diagonal terms at the fixed point, l → ∞ [62]. Typically, the so-

lution of an interacting quantum many-body system via the FE approach would require a

broad set of variational parameters keeping track of the nested hierarchies of multi-particles

correlations.

However, in the case of MBL systems, a guiding insight in fixing the variational

ansatz for the flow equations comes from the l-bit picture [44, 56], which provides a method

to numerically solve the flow in an efficient way: only the first leading terms describing

pairwise interactions between the l-bits are retained, while higher order effects are truncated

and discarded. This represents an excellent description as long as the system is strongly

localized. Given this ansatz for H(l), the flow of the couplings is readily given by the

solution of dH
dl = [η(l), H(l)]. In other words, the flow brings the Hamiltonian of a single

disordered fermionic wire (for instance, Hd in Eq. (7.2)) into an effectively diagonal one at

the fixed point

H(∞) =
∑

i

hi(∞)ni +
∑

i,j

∆ij(∞)ninj . (7.1)

This, in turn, shows that the FE method effectively brings the Hamiltonian into an l-bit

basis, with couplings between the integrals-of-motion that decay in space as ∆ij(∞)ij ∝

exp(−|i−j|/ξ). The values of hi(∞) and ∆ij(∞) depend on the specific disorder realization.
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Therefore, to consider disorder averaged quantities, the flow equations must be computed

independently for each disorder realization.

In addition to extracting the conserved charges and l-bit Hamiltonian in Eq. 7.1,

the FE method can be used to approximate a crossover region from the MBL phase to a

delocalized phase [56]. This region is identified with the parameter space where truncation

error proliferates. These errors indicate the departure from an MBL phase because they in-

dicate that the true unitary transformation must contain correlations between local degrees

of freedom that are not captured by the ansatz. Since the growth of correlation between

local degrees of freedom is suggestive of delocalization, the proliferation of truncation error

is also indicative of a breakdown of the MBL phase. In order to measure the truncation

error, one calculates the so-called ’second invariant’ [56, 36], a quantity conserved by the

exact unitary transformation. Since the truncation breaks the unitarity of the flow, the

truncation error is controlled by changes in second invariant.

By setting a small threshold for the change in the second invariant, a tight bound

on the MBL phase region can be identified with the parameter space where the truncation

yields error within the threshold. Such analysis performed on the single chain led gives a

phase boundary consistent with exact diagonalization [56]. We discuss the second invariant

in detail as it pertains to the MBL proximity effect in section 7.4.3.
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Figure 7.1: Cartoon of the model described by the Hamiltonian (7.2). The MBL sector
(bottom wire) acts as a source of disorder to induce localization in the clean component
(green sites). The two systems are coupled site by site via inter-chain couplings (blue lines)
of strength ∆I .

7.4 Flow Equation Approach For Two Chains

7.4.1 The model

In this section we extend the flow equation method to the system depicted in

Fig. 7.1. We consider a system composed of two wires of interacting spinless fermions

coupled via an inter-chain density-density interaction of strength ∆I . The Hamiltonian of

the system reads (cf. Fig. 7.1)

H = Hc +Hd +HI (7.2)

Hc =
∑

ij

Jcijc
†
icj +

∑

ij

∆c
ijn

c
in
c
j

Hd =
∑

ij

Jdijd
†
idj +

∑

ij

∆d
ijn

d
i n

d
j +

∑

k

hin
d
i

HI =
∑

ij

∆I
ijn

c
in
d
j

where the sums run over Ns dirty sites in the Hamiltonian Hd and over δ × Ns clean

sites (with δ > 1) in the HamiltonianHc. The fields, hi, are drawn from a uniform box
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distribution of variance W , i.e. hi ∈ [−W,W ]; for sufficiently large W , the chain of fermions,

di, will be in the MBL phase, and will act on the clean fermionic component, ci, as a source

of disorder. Even though we study a microscopic model that contains inhomogeneities only

in the on-site fields, hi, we write couplings in Eq. (7.2) with a generic dependence on spatial

indices to emphasize that, already at the first steps of integration of the flow equations,

couplings can inherit an explicit spatial dependence from the disordered fields.

7.4.2 Two Chain Ansatz

Similar to the FE method for single chain MBL phase, the FE method for the

two-chain problem aims to construct a unitary transformation, U(l) = Tl exp
(∫
η(l)dl

)
,

that diagonalizes the Hamiltonian Eq. 7.2. In both cases, an exact calculation would require

keeping track of O(2Ns2) matrix elements and is therefore numerically unfeasible. As for the

MBL phase in the single chain problem, the local nature of the MBL proximity effect allows

one to circumvent this issue via an ansatz for the Hamiltonian, H(l) = U †(l)HU(l) at scale l

of the unitary transform. The ansatz we use for the two-chain problem isH(l) = H0(l)+V (l)

where

H0(l) = Hc(l) +Hd(l) +HI(l) (7.3)

Hc(l) =
∑

ij

∆c
ij(l) : ncin

c
j : +

∑

k

h̄ck(l) : nck :

Hd(l) =
∑

ij

∆d
ij(l) : ndi n

d
j : +

∑

k

h̄dk(l) : ndk :

HI(l) =
∑

ij

∆I
ij(l) : ncin

d
j :

V (l) =
∑

ij

Jcij(l) : c†icj : +
∑

ij

Jdij(l) : d†idj ,
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: A : denotes Wick Ordering [26], the fields h̄c(d) are given below in Eqs. (7.4), and we will

use the convention that the first index in ∆I
ij refers to the clean chain. In the limit l→∞,

V (l) → 0, the fixed-point Hamiltonian, H(l → ∞), is diagonal in an extensive set of l-bits

localized on both the clean and dirty sites.

As customary for flow equation methods [56, 26], we use Wick-ordered operators,

: A :, with respect to a reference state ρ. Wick ordering reduces errors in the truncated

Hamiltonian H(l) for the Hilbert space spanned by few particle excitations on top of the

reference state ρ [26]. As done by Thomson et al. in [56], we choose a reference state

with zero entanglement between local degrees of freedom. This extreme locality condition

serves a starting point for the FE unitary transformation to capture the entanglement of the

MBL proximity effect. The state ρ employed is a Boltzmann distribution, ρ = 1
Z e
−ΘHw ,

with inverse temperature Θ, chemical potentials fixing particle densities
〈
nd
〉

and 〈nc〉, and

Hamiltonian Hw =
∑

i(h
d
i − µd)ndi − µcnci . The choice of this state allows to easily control

energy density, Θ, and particle density distribution,
〈
nd
〉
.

By Wick-ordering the Hamiltonian at flow time l = 0, the clean and dirty chains

pick up effective fields, given by

h̄di = hdi + 2
∑

j

∆d
ij

〈
ndj

〉
+
∑

j

∆I
ji

〈
ncj
〉
, (7.4)

h̄ci = 2
∑

j

∆c
ij

〈
ncj
〉

+
∑

j

∆I
ij

〈
ndj

〉
;

where their distribution depends on the dirty chain density,
〈
nd
〉
, the inter-chain coupling

∆I , and the disorder, W , in the dirty chain. From the expressions of the fields in Eq. (7.4),

it is natural to observe that, if the dirty chain is sufficiently disordered and the inter-chain
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couplings are sizable, the clean chain will localize as result of the effective disordered field,

h̄ci .

Note, the ansatz in (7.3) has the notational symmetry

c ↔ d (7.5)

∆I
ij ↔ ∆I

ji.

By exploiting this symmetry, it is easy to derive flow equations for operators of the dirty

chain from those of the clean one, and vice-versa. We will refer to terms (or equations)

produced by such symmetry transformations using the notion C ↔ D in the following.

7.4.3 Second Invariant and Phase Boundary Analysis

From the ansatz in Eq. 7.3, we can derive the FE generator η(l) = [H0(l), V (l)].

Then, by matching the truncated terms in the Heisenberg equation of motion, dH(l)/dl =

[η(l), H(l)], the truncated flow equations, a set of first order differential equations for the

couplings,

Γ = {∆ij(l)
c(d,I), J

c(d)
ij (l), h̄

c(d)
k (l)}, (7.6)

can be derived

dΓ

dl
= β(Γ), (7.7)

where the β functions are order three polynomials in the couplings Γ and their forms dis-

cussed in detail in section 7.6. An l-bit Hamiltonian, H(l→∞), is retrieved by numerically

evolving Eq. 7.7 with initial conditions given by the bare physical couplings, evolved for

large l. Deep in the MBL proximity effect phase, these differential equations describe a
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unitary transform to a diagonal Hamiltonian H(l → ∞), and the unitary transformation

described by η(l), along with the Hamiltonian H(∞), can be used to predict dynamics of

relevant observables [56, 26, 58].

When either chain delocalizes, the l-bit Hamiltonian ansatz will be an insufficient

representation of the effective Hamiltonian, and the couplings η(l) and H(∞) cannot be

used to make predictions. To detect the breakdown of the MBL proximity effect ansatz,

we monitor the extent that the truncated flow equations, Eq. 7.7, break unitarity. For this

goal, we employ a quantity known as the second invariant, see, for instance, previous work

in Refs. [56, 36]. The second invariant is the p = 2 case of a class of many invariants of the

FE unitary transformation given by Tr[H(l)p]. It is particularly easy to calculate for the

spin systems and is given by:

Tr
[
H(l)2

]
=

∑

ij,r=c,d

(Jrij)
2 + (∆r

ij)
2 + ∆I

ij +
∑

k,r=c,d

(h̄rk)
2. (7.8)

We can then quantify the error made by a given ansatz by computing the change in the

second invariant:

δI = 2
Tr
[
H(l =∞)2

]
− Tr

[
H(l = 0)2

]

Tr [H(l =∞)2] + Tr [H(l = 0)2]
. (7.9)

If δI is small, then the MBL proximity effect ansatz in Eq. 7.3, and the approximations

discussed above, represent a reliable description and can be used to compute dynamics and

the local conserved l-bits. On the other hand, when δI is large, we have an indication that

the ansatz fails and that we cannot use the generator η(l) nor the l-bit Hamiltonian H(∞)

to make predictions.

By identifying a threshold for δI, we can find a tight bound on the phase boundary

for the MBL proximity effect. While the choice of threshold is arbitrary, by making it
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stringently small, one can ensure that below that threshold the MBL proximity effect is

properly captured. On the other hand, if it is above that threshold, we must conclude that

1) the system is delocalized or, 2) it is localized in an operator basis not captured by the

ansatz. If 2) is the case, then, the operator basis must contain either non-local operators

or operators capturing stronger correlations. In either case, a reasonably chosen threshold

should yield an approximate boundary for the MBL proximity effect.

7.5 Numerical Results For Equal Length Chains

7.5.1 MBL Proximity Effect

In this section, we present numerical results, for system sizes unattainable with

exact diagonalization, that establish the validity of using an l-bit Hamiltonian to describe

the MBL proximity effect. . We study the model introduced in section 7.4.1 for two equal

length chains of length Ns = 24 (48 total sites), and numerically solve the differential flow

equations, Eq. 7.7. For this model, the initial couplings are given as:

Γ(l = 0) = (7.10)

{
∆
c(d)
ij (l = 0) = ∆c(d)(δi,j+1 + δj,i+1),

∆I
ij(l = 0) = ∆Iδij ,

J
c(d)
ij (l = 0) = Jc(d)(δi,j+1 + δj,i+1),

h̄di (l = 0) = hdi + 2
∑

j

∆d
ij(l = 0)

〈
ndj

〉
+
∑

j

∆I
ji(l = 0)

〈
ncj
〉
,

h̄ci (l = 0) = 2
∑

j

∆c
ij(l = 0)

〈
ncj
〉

+
∑

j

∆I
ij(l = 0)

〈
ndj

〉}
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where hdi is drawn from a box distribution in the interval, [−W,W ], and clean and dirty

number densities are computed with respect to the Wick ordering reference state,
〈
n
c(d)
k

〉
=

Tr[ρn
c(d)
k ]. We focus on the limit in which the disordered system would be strongly local-

ized and vary the inter-chain coupling, clean chain hopping strength and reference state

parameters. Therefore, we set W = 60, ∆d = Jd = 0.1, and vary the parameters ∆I , Jc,

〈
nd
〉
(µd) and Θ. By setting ∆c = 0.1, we also focus our attention to the limit in which the

clean intra-chain coupling is weak.

The exact form of the truncated flow-equations are given in 7.9.3 and discussed in

section 7.6. For a fixed configuration of hdi , the truncated flow equations are numerically

evolved for a sufficiently long flow-time such that 1) the hoppings, J
c(d)
ij (l), have become

sufficiently small, and 2) there is no appreciable change in the flow of any other coupling.

The evolution is repeated for different random instances of hdi , and we present the disorder

average of the asymptotic (l→∞) couplings.

In analogy to a single disordered chain, we define an effective disorder parameter

as W c = ∆I/2Jc and work in a limit in which the clean chain is expected to be strongly

localized: ∆I = 45, Jc = 0.1, Θ = 0.3 and
〈
nd
〉

= 0.5 (i.e. W c = 225). We choose such

a strong effective disorder to benchmark the method and isolate the effects of varying dif-

ferent parameters. Solving the numerical flow equations (see 7.9.4 for details on numerical

implementation), we find that the density-density couplings, ∆
c(d)
ij , are exponentially sup-

pressed in |i − j|, as it occurs in the applications of the Wegner flow to single disordered

chains[44, 56]. In Fig. 7.2a, we show the decay in space of the disorder-averaged, asymp-

totic, density-density couplings, ∆c
ij(l→∞), on a logarithmic scale, and they illustrate the
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Figure 7.2: Instances of the MBL proximity effect: the plots show, in logarithmic scale, the
spatial decay of the couplings between integrals of motion in the clean sector of the system.
We display results for parameters which yield both a large and small change in the second
invariant, and distinguish them using triangle and circle makers respectively. The results
for parameters that yielded a large change in the second invariant (marked with triangles)
do not reflect the true l-bit coupling but are displayed to depict how the MBL proximity
effect ansatz breaks down. The final clean-chain density-density couplings ∆c

|i−j| depicted
here are averaged over 256 disorder realizations. In the top panel, we plot how the final
density-density couplings depend on W c = ∆I/2Jc (Jc fixed) while in the bottom panel
we plot their dependence on

〈
nd
〉
. In the top panel

〈
nd
〉

= 0.5 while in the bottom panel
W c = 225 (∆I = 45 and Jc = 0.1). The remaining Hamiltonian parameters are W = 60,
Jd = ∆d = 0.1, ∆c = Jc = 0.1, Θ = 0.3, and 〈nc〉 = 0.1. These results are not affected by
〈nc〉 since they are uniformly distributed in the reference state ρ and do not have an impact
on the disorder of the effective fields.

onset of an MBL phase in the clean chain. As discussed below, the change in the second

invariant for these parameters is small for the majority of disorder realizations and thus

confirms the validity of the MBL proximity effect ansatz employed in this ansatz.
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The top panel of Fig. 7.2 shows that by decreasing the inter-chain coupling, the

final density-density couplings between the l-bits present a slower decay in space suggesting a

departure from the MBL proximity phase. The effective disorder parameter, W c = ∆I/2Jc,

can be used to compare with the disordered Heisenberg chain (a prototype of MBL), which

shows a transition at W/J = 4. By considering the second-invariant, we find that the

truncation produces minimal error for W c & 10 and the MBL proximity is well-established.

Note that while we benchmark the method with W c = 225, we found the MBL proximity

effect to be consistent with a l-bit ansatz for a reasonable effective disorder strength of

W c > 10. While for W c . 10, the error grows with decreasing W c and suggests that

somewhere in the range W c . 10 the system undergoes a transition to a delocalized phase.

In this limit, we have found that the final density-density couplings for the dirty-chain, ∆̃d
ij ,

are still strongly localized while those for the clean-chain are not. This suggests that the

source of truncation error is due to the clean-chain becoming delocalized.

The bottom panel of Fig. 7.2b is one of the most interesting results of our analysis.

Here, different curves correspond to different fermionic densities of the dirty component

in Hamiltonian (7.2), with fixed total fermionic density, 〈ntot〉 ≡ 〈nd〉 + 〈nc〉 = 0.5. This

variation of 〈nd〉 follows a similar logic to the experiment in Ref. [51], where a complementary

situation has been considered (the melting of an MBL phase by coupling to a clean bath).

There, the delocalizing effect of the clean component on the dirty component has been

experimentally observed in a mixture of collisionally coupled ultra-cold bosons in a two-

dimensional optical lattice. Above a certain critical density of bosons, the clean component

acts as an ergodic bath and destroys the features of the MBL phase in the dirty sector.
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Figure 7.3: Regions of parameter space where the MBL proximity effect is established.
We focus on an instance of a strongly localized dirty chain (W = 60, ∆d = Jd = 0.1),
and on a clean chain with ∆c = Jc = 0.1. The thin, dashed, black lines delimit a square
where the parameters Θ and

〈
nd
〉

have been varied in our numerical trials. The region of
parameters space in which the MBL Proximity Effect is established is determined by the
region where the second invariant is below a specified threshold δI < δIc = 0.1. In the
figure, we draw three different thick, curved, dashed lines, corresponding to the values of
the parameter W c =10 (gray), 30 (dark green), 200 (bright green). These lines mark the
values of Θ and

〈
nd
〉

where we expect the second invariant to equal the threshold value
δI(W c,

〈
nd
〉
,Θ) = δIc, and above which we expect δI(W c,

〈
nd
〉
,Θ) < δIc. This analysis

demonstrates that the MBL Proximity Effect can be observed for the smaller 〈nd〉 and Θ
when W c is larger.

Complementary, we find that a critical density of dirty fermions is required in order for the

MBL systems to be sufficiently large to entail localization in the clean component. The

analysis of the second invariant identifies that the MBL proximity effect is well-established

for
〈
nd
〉
> 0.25, and suggests that for some value of

〈
nd
〉

less than 0.25, the clean chain goes

through a delocalization transition. It is important to note that we are unable to identify

with accuracy the point of transition since our ansatz fails close to it (see also Ref. [56]).

We have also studied the effect of increasing the clean-chain hopping, Jc and the

energy density parameterised by the inverse temperature, Θ of the reference state ρ. We

found that the l-bit ansatz, Eq. 7.3, becomes inefficient for large clean chain hopping, Jc >
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Figure 7.4: Histograms of the change in the second invariant as
〈
nd
〉

is varied across the
transition (W = 60, Jd = ∆d = 0.1, ∆c = Jc = 0.1, Θ = 0.3, and 〈nc〉 = 0.1).

0.5, and at large energy densities, Θ < 0.05. In these limits, the clean chain couplings, ∆c
ij ,

begin to delocalize while the dirty chain couplings, ∆d
ij , are unaffected. This dependence

of localization on the hopping strength is similar to a standard MBL system (the system

delocalizes at strong hopping), while the dependence on the energy density of the dirty chain

is novel. At low energy density, the dirty chain charge distribution in the reference state,

〈
ndk
〉
, and, correspondingly, the effective clean disorder fields, h̄ck, are strongly disordered,

and the clean chain localizes. While for high energy density, the reference state has no

disorder in the dirty chain densities, and the clean chain delocalizes. Extrapolating these

results, we expect that the localization of the clean chain depends on the disorder of the

dirty chain charge distribution.

We summarize our results in the portrait of Fig. 7.3, which shows the region of the

Θ-
〈
nd
〉

plane where the change in the second invariant is expected to be smaller than our

chosen threshold δIc = 0.1. In addition to depicting the trends just discussed, it shows that

the dirty chain densities of the reference state must be strongly disorder to compensate for

a weaker inter-chain coupling ∆I (W c), in order to induce MBL in the clean sector.
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7.5.2 Second Invariant

Above we used the second invariant, δI, to identify when the truncated flow

equations preserve the unitarity of the exact Wegner-Wilson flow and to justify the MBL-

proximity effect ansatz, Eq. 7.3. Because the flow equation transformation depends on the

disorder realization, δI varies from sample-to-sample. The left panel of Fig. 7.4 shows the

distribution of δI for a disorder strength where the MBL-proximity effect ansatz is valid

for the majority of disorder realizations, while the right panel shows the distribution for a

system where the same ansatz fails for the majority of disorder realizations. In order to dis-

tinguish between these two situations, we can compute the median of δI (we don’t use the

mean because it is artificially biased by the few trials with large second invariant weight).

As shown in Fig. 7.5, the median δI shows that the MBL proximity effect ansatz becomes

worse for decreasing ∆I and
〈
nD
〉
. Here we see that for W c > 10 and for

〈
nd
〉
> 0.25,

the median second invariant is small and relatively unaffected by changes in W c and
〈
nd
〉
,

demonstrating the validity of the MBL proximity effect ansatz. While for small W c < 10

and small
〈
nd
〉
< 0.25, the error made by truncation is large and suggestive of a transition

to delocalization somewhere below these values. The large sample-to-sample variation of

the second invariant suggests the presence of regions not captured by the MBL proximity

effect ansatz, and future work may attempt to reduce the second invariant for these disorder

realizations by improving the ansatz.
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Figure 7.5: Median change in the second invariant as a function of
〈
nd
〉
(right) and of

W c(left). W c is plotted on a log scale since it varies over two orders of magnitude. The
remaining Hamiltonian parameters are ∆I = 45 (W c = 225), Jd = ∆d = 0.1, ∆c = Jc = 0.1,
Θ = 0.3, and 〈nc〉 = 0.1. In the left panel

〈
nd
〉

= 0.5, while, on the right panel, W c = 225
(∆I = 45).

7.6 Truncated Flow Equations and Truncation Error

7.6.1 Truncation Error for the MBL Proximity Effect Ansatz

In the previous section we have shown that the l-bit ansatz, Eq. 7.3, accurately

describes the MBL proximity effect phase and that the truncated flow equations, Eq. 7.7,

imply a small error in approximating the exact flow equation unitary transformation, U(l).

In this section, we analyze the approximations made by the truncation in Eq. 7.3, and

we discuss, in section 7.6.2, the physics of the terms contributing to the truncated flow

equations. The first type of operators dropped are the n > 2 body terms such as the

three body scattering, : c†i′c
†
j′c
†
k′cicjck :. As long as the integrals of motion do not contain

n > 3 body operators with significant weight, then truncating these terms will not produce

significant error in the integrals of motion, FE unitary transformation, or l-bit Hamiltonian.

This is confirmed by the small second invariant presented in the previous section. It is

important to note that, despite dropping these n-body scattering operators, the ansatz
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does not ignore all n-body correlations: while at scale l the few body terms are not n > 3

body correlated in the transformed basis, they do contain n > 3 correlations in the physical

basis (i.e. U(l) : c†i (l)cj(l) : U †(l) contains n-body operators).

In addition to dropping n > 3 body scattering operators from the l-bit ansatz,

we drop the off-diagonal terms : nckc
†
icj : and : c†kclc

†
icj :, which we will call correlated

hopping and full two-body scattering (F.S) respectively. Including these terms requires

keeping track of O(N3
s ) (O(N4

s ) for F.S.) number of couplings and significantly increases

the computational resources required. To identify the error produced by dropping these

terms we highlight how they are produced as the flow evolves.

We identify 7 distinct operators by the 7 sums shown in Eq 7.3:

Hc(l) = ∆̂c + ĥc (7.11)

Hd(l) = ∆̂d + ĥd,

HI(l) = ∆̂I

V (l) = Ĵc + Ĵd

where, ĥc =
∑

k h̄
c
k : nck :, Ĵc =

∑
ij J

c
ij(l) : c†icj :, etc. (see 7.9.1 for explicit forms for

the remaining operators). We then classify contributions to the generator by the type of

off-diagonal operator appearing in the commutator: η = [H0, J ] = ηh + η∆ + ηI where:

ηh = [Ĵc, ĥc] + [Ĵd, ĥd] (7.12)

η∆ = [Ĵc, ∆̂c] + [Ĵd, ∆̂d]

ηI = [Ĵc + Ĵd, ∆̂I ].
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These commutators are computed using rules for Wick ordering [26] and yield:

ηh =
∑

ij

Fij : c†icj : + C ↔ D (7.13)

η∆ =
∑

ijk

Γcij|k : nckc
†
icj : +F∆

ij : c†icj : + C ↔ D

ηI =
∑

ijk

ΓIij|k : ndkc
†
icj : + C ↔ D

,

where the coefficients Γ and F are given in 7.9.2. The form of the generators are either a

hopping operator, : c†jci :, a correlated hopping (C.H) operator, : nckc
†
icj : or an inter-chain

correlated hopping (C.H.I) operator : nckc
†
icj :. It will be important for quantifying the error

implied by our truncation to notice that each of the generators is proportional to Jcij or Jdij .

In addition, the η∆ generator is also proportional to ∆
c(d)
ij .

Taking the commutator [η(l), H0(l) + V (l)] yields contributions contained both

inside and outside the ansatz, H(l), and are summarized in Table. 7.1. The operators

outside the ansatz are dropped and produce errors proportional to their coefficients. We

expect the majority of these coefficients to be small because we study the MBL proximity

effect in a limit that the couplings ∆
c(d)
ij and J

c(d)
ij are initialized as small. For example,

operators appearing in the second row and second and third column appear with coefficients

that are proportional to the square of these couplings, and since they are initialized with

∆c(d) = Jc(d) = 0.1 the error made is O(0.01).

Besides these operators, there are still a few that appear linear in a small coupling

and could produce larger error. For example, [ηI , ĥc] produces an inter-chain correlated

hopping operator, nkc
†
icj , which has a coefficient proportional to Jc(∆I)2. While this

off-diagonal operator is not small, it is initialized to zero and only affects the diagonal
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ĥc(d) Ĵc(d) ∆̂c(d) ∆̂I

ηh J
c(d)
ij J

c(d)
ij , h

c(d)
i C.H. C.H.I

J
c(d)
ij

η∆ C.H. ∆
c(d)
i,j ,C.H., F.S. 3P 3P

J
c(d)
ij , h

c(d)
i C.H. C.H.I

J
c(d)
ij

ηI C.H.I ∆I
i,j ,C.H.I., F.S.I 3P 3P

J
d(c)
ij , h

d(c)
i C.H. C.H.I

J
c(d)
ij

Table 7.1: This table lists which terms in the commutator [η,H] contribute to the beta
function β(Γ) (highlighted in blue) and which are dropped by our ansatz (not highlighted).
The rows are labeled by the terms in the sum for the generator η = ηh + η∆ + ηI , and the
columns are labeled by the terms in the sum for the Hamiltonian, Eq. 7.11. The notation
for the dropped terms is as follows: correlated hopping (C.H.) have a form nckc

†
icj , inter-

chain correlated hopping operators C.H.I. have a form ndkc
†
icj , full scattering terms F.S.

have a form c†ic
†
jckcl, and 3P terms describing three-body and higher particle scattering.

The justification for dropping the contributions to J
c(d)
ij in the third and forth column is

discussed in section 7.6.2.

Hamiltonian after commuting with a generator that is also proportional to Jc. Therefore,

its effect on the diagonal Hamiltonian will remain small as long as Jc remains small. This

is confirmed by the small change in the second invariant presented above.

This completes our analysis of the error produced by the truncation in the Ansatz,

Eq. 7.3. In summary, we have discussed how we expect that a small error will be produced

in our truncation scheme, as long as ∆c(d) and Jc(d) are initialized to small values. We

then referenced results in section 7.5, which demonstrate small truncation error via a small

change in the second invariant, to confirm such expectations.
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7.6.2 Truncated Flow Equations

In the previous section, we have sketched the derivation of the FE Heisenberg

equation of motion, dH
dl = [η(l), H(l)], and discussed the error produced by the truncation

of the ansatz. In this section we focus on operators in [η(l), H(l)] that contribute to the

ansatz and truncated flow equations (Eq. 7.7). We first focus on the contribution in first

row, first column of table 7.1. For the clean chain it produces a term:

[ηh, ĥ] =
[[
Ĵc, ĥc

]
, ĥc
]

+ · · · = (7.14)

−Jcij(h̄ci − h̄cj)2 : c†icj + . . .

and therefore contributes to the evolution of Jcij :

dJcij
dl

= −Jcij(h̄ci − h̄cj)2 + . . . (7.15)

This is the primary contribution evolving the off diagonal terms to 0, and is responsible for

the intuitive physics discussed above. If we ignore the other contributions to dJcij/dl then

the evolution of Jij is:

Jcij(l) = Jcij(l = 0)e−(h̄ci−h̄cj)2l. (7.16)

Thus, the stronger the disorder in the effective fields h̄ci , the faster the off diagonal terms

decay.

In addition to producing terms in the β functions that removes the off diagonal

couplings Jcij , the generator ηh renormalizes ĥc(d) and generates off diagonal hoppings J
c(d)
ij

at intermediate scales l of the FE evolution. These terms come from the first row, second

column of table. 7.1 and have a characteristic contribution, [ηh, Ĵ
c] =

[[
Ĵc, ĥc

]
, Ĵc
]

+ . . . ,
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which produces contributions to the truncated flow equations as:

dh̄ck
dl

=
∑

i

2(Jcik)
2(h̄ck − h̄ci ) + . . . (7.17)

dJcij
dl

= −
∑

k

JcikJ
c
kj(2h̄

c
k − h̄ci − h̄cj) + . . .

Together with Eq. 7.15, Eq. 7.17 highlights the physics contained in the unitary transforma-

tion generated by ηh: The generator ηh is constructed to remove hoppings J
c(d)
ij that change

the energy of the diagonal Hamiltonian, H0, due to the effective fields h̄
c(d)
k . Eq. 7.15 shows

that the contribution from the commutator [ηh, ĥ
c] removes off diagonal couplings, while

Eq. 7.17 captures new terms produced by the rotation by ηh.

Similar physics occurs for the generators η∆ and ηI , which are constructed to

remove hoppings that change energy via the density-density interaction. In a strong inter-

acting limit, the exact unitaries produced by these generators will generate a Hamiltonian

describing doublon and domain wall propagation[54]. If disorder is also strong, these quasi-

particle excitation may also localize, realizing a novel MBL of correlated quasi-particles.

Unfortunately, in order to capture these effects, one needs to keep track of computationally

demanding correlated hopping operators [54] dropped by our ansatz.

While such considerations offer promising prospects for future work, they also have

direct consequences for the contributions we include in the truncated flow equations. Since

the generators η∆ and ηI transform the hopping operators, Ĵc(d), into a set of correlated hop-

ping operators that commute with density-density interactions [54], the truncation above

yields a transformation which simply removes the hopping operators without producing the

correlated hopping operators they transform into. If these correlated hopping operators

are responsible for delocalization, then removing them would produce an artificial localiza-

165



tion. To avoid this false localization, we remove the contribution to d
dlJ

c(d)
ij coming from

[η∆,∆] and [ηI ,∆
I ] (respectively, second row, third column; and third row, forth column;

of table 7.1). Ignoring these contributions only produces small error for the same reason

dropping the correlated hopping operators produces small error: the error in Jij is propor-

tional to J
c(d)
ij but its contribution to the l-bit Hamiltonian is (J

c(d)
ij )2. The small error is

numerically confirmed by a small second invariant as discussed above.

The remaining contributions from η∆ and ηI are the ones in the second column of

table 7.1 and describe delocalization processes produced by density-density interactions. A

characteristic contribution is:

[[Ĵc, ∆̂c], Ĵc], (7.18)

which produce a contribution to the evolution of ∆c
ij as:

d∆c
ij

dl
= 2

∑

k 6=i,jl=i,j
J2
lk(∆

c
ij −∆c

kl′). (7.19)

This contribution captures how the truncated flow equations break the unitary

character of the FE transform in a delocalized limit. When disorder is small, Jij remains

finite longer during the flow equation evolution and ∆c
ij has a longer time to grow according

to the contribution in Eq. 7.19. This growth produces larger truncation error because, as

discussed in the previous section, truncation error is only small when ∆c
ij is small. This

concludes our analysis of the physical content of the contributions to the truncated flow

equations. The full set of truncated flow equations used in our numerics are reported in

7.9.3.
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Figure 7.6: The dirty chain couples to the clean chain every δ = 3 sites. The emergent
integrals of motion are illustrated with different colors: ndk (blue), ncf,r=0(red) and Nf

(green).

7.7 Engineering the geometry of the inter-chain couplings

We now discuss novel effects arising by tuning the coupling geometry. In the

geometry of Fig. 7.6 each fermion of the dirty chain is coupled, every δ sites, to a fermion of

the clean chain. This new geometry can still be studied using analogous flow equations to

those employed above. Since the clean chain is δ times longer than the dirty chain, we can

label the dirty chain with f = 0 . . . Ns− 1, and conveniently reference the sites of the clean

chain (k = 0 . . . Nsδ−1) with r, using k = fδ+r. f labels the dirty sites, and r = 0 . . . δ−1

is the number of sites away from the coupled site. We can now explicitly write the initial

inter-chain coupling as ∆f,r,f ′ = ∆Iδf,f ′δr,0. This leads to an initial clean-chain effective

field of h̄cf,r = ∆I〈ndf 〉δr,0.

With this important modifications, we can straightforwardly evolve the couplings

using the same truncated flow equations discussed in the previous sections. We show evo-

lution of few of them in Fig. 7.7. The right panel of Fig. 7.7 shows the suppression of the
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hopping between a coupled site f, r = 0 and an uncoupled site f, r = 1, while the left panel

of Fig. 7.7 shows the hopping between two uncoupled sites, f, r = 1 and f ′ = f, r = 2, re-

maining constant. This is consistent with the expectations given by Eq. 7.16: for a particle

to hop on to a coupled site its energy must change by (h̄ci − h̄cj) ≈ ∆I
〈
nd
〉
, while such a

change of energy is not required for a particle hopping between two uncoupled sites.

With the hopping between uncoupled sites remaining constant, Eq. 7.19 predicts

the divergence of the associated density-density couplings. This is depicted in the left panel

of Fig. 7.7 and explains the failure of the MBL proximity effect ansatz. Instead of modifying

the ansatz, we propose to modify the generator, η(l) of the unitary transformation. We

define a modified generator η′ = [H0, V
′], where we choose V ′ to only include hoppings to

coupled sites:

V ′(l) =
∑

f,f ′

Jdf,f ′d
†
fdf ′ +

∑

f

Jcf,0,f,1(c†f,0cf,1 + h.c.) + Jcf,0,f−1,δ−1(c†f,0cf−1,δ−1 + h.c.)(7.20)

Using such a generator, one can employ the same ansatz as above, but the trans-

formation now results in a novel fixed point Hamiltonian describing transport between

uncoupled sites and conserved charges on coupled and dirty sites (ncf,r=0 and ndf respec-

tively). In addition, the new generator produces a next-nearest neighbor hopping across

the coupled site (i.e Jf,r=δ−1,f ′=f+1,r=1). In the proceeding section we derive this hopping

rate as 1
τn

= [Jc(l = 0)]2/h̄c(l = 0), which in the limit of strong inter-chain coupling, ∆I ,

is smaller than the other timescales in the system. In this limit, relaxation occurs in two

steps: first, on times scales shorter then τn, transport is blocked by the coupled sites, and

second, on times scales longer then τn, charge is allowed to diffuse across the coupled sites.
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Figure 7.7: The flow of Jcij and ∆c
ij for the geometry depicted in Fig. 7.6. The left panel

shows the flow of couplings on the clean-chain sites that are not coupled to the dirty chain.
It shows an unsuppressed hopping and diverging density-density coupling at long flow time
l. The right panel shows the flow of couplings on the clean chain sites that involve a site
coupled to the dirty chain. It shows that the hopping onto the coupled site, r = 0 (for any f),
are suppressed and the density-density coupling involving a coupled site, remains constant
instead. This calculation has been performed using an unmodified generator η = [H0, V ];
in order to remove the divergences in ∆c

f,r,f ′,r′ , we modify the generator to η = [H0, V
′],

with V ′ given in Eq. 7.20.

In the first step, when τ . τn, the system relaxes to a state in which the charge on the

bunches of uncoupled sites, Nf =
∑δ

r=1 n
c
f,r, is conserved. While on longer times, charge

on the uncoupled sites can fully relax via unconstrained transport. In the following two

sections, we further investigate this novel behavior by first, in section 7.7.1, deriving the

time, τn, separating the two relaxation steps, and second, in section 7.7.2, investigating and

deriving the Hamiltonian that governs short time relaxation.

7.7.1 Separation of Time Scales

To derive an estimate of the next-nearest neighbor hopping rate, we first assume

∆ � W . This guarantees that the flow of the dirty chain reaches a steady state before
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there are significant changes in the clean one. We can then treat the clean chain as a single

chain with an effective field h̄f,r. We write the new generator as

η′ =
∑

f

ηf (7.21)

where

ηf = −Jh̄f,0(c†f−1,δ−1cf,0 − h.c) + Jh̄f,0(c†f,0cf,1 − h.c), (7.22)

with J the strength of the hopping on to the coupled site. The first term in ηf will suppress

hopping between the coupled site and its left neighbor, while the second term will enforce

the same on the right neighbor. Since [ηf , ηf ′ ] = 0 for δ > 2, we can focus on a single

coupled site and its neighbor.

We will label the coupled site with 0 and its left and right neighbor sites with −1

and +1. The hopping and effective field couplings will then flow as

dh̄±1

dl
= −2J2h̄0, (7.23)

dh̄0

dl
= 2J2h̄+1 + 2J2h̄−1,

dJ

dl
= −Jh̄2

0,

dJ2

dl
= 2J2h̄0,

where J2 is the magnitude of the next-nearest neighbor hopping, J2(l) = Jf,r=δ−1,f ′=f+1,r=1(l).

The flow of these couplings do not depend on the flow of the density-density

coupling and can thus be solved independently. We use the assumption that J � h̄ and

note that the flow of J is much faster than the flow of the other couplings. Thus, assuming

h̄ constant, we can approximate the flow of J(l) as

J(l) = J(l = 0)e−h̄
2
0l. (7.24)
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Approximating h̄0 as constant, we find

J2(l) = −J
2

h̄0
(1− e−2h̄2

0l). (7.25)

Thus, τn = h̄0
J2 is the characteristic time when relaxation crosses over to full transport

and eventually to thermalization. A meaningful separation of time scales therefore requires

h̄0 � J2. In the following section we will discuss the form of the effective Hamiltonian

describing the first stage of relaxation.

7.7.2 Effective Hamiltonian at intermediate times: τ . τn

As discussed above, relaxation in the novel geometry with large inter-chain cou-

pling, occurs in two stages: first, during intermediate times, the model relaxes to a state in

which the clean-charge distribution on the uncoupled clusters is approximately conserved,

while, on longer times, the clean-charge relaxes to a homogeneous distribution. The Hamil-

tonian describing the first relaxation process is obtained by dropping the next nearest

neighbor hoppings from the Hamiltonian, H(l → ∞). This Hamiltonian, has 3 types of

conserved charges as depicted in Fig. 7.6: the first type, ndk, are the conserved charges on

the dirty chain, the second type ncf,r=0 are the conserved charge on the coupled site and

Nf =
∑δ

r=1 n
c
f,r is the total conserved charge on an uncoupled cluster. For δ > 2 these

charges do not determine the dynamics of the charge distribution within an uncoupled clus-

ter, and we must consider the interplay between the intra-cluster tunneling and inter-cluster

density-density coupling.

There are two possibilities for such interplay: the density-density coupling between

two neighboring sets of uncoupled sites is smaller than J2, or it is larger:
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• In the first case, the density-density coupling can be accurately dropped from the

intermediate time effective Hamiltonian. This leads to each set of uncoupled sites,

labeled by f , evolving completely independently on intermediate times. The dynamics

can be described as the evolution of an effective spin, ~Lf = {Lx, Ly, Lz}, of size

∣∣∣~Lf
∣∣∣ =

1

2



δ − 1

Nf


+

1

2
. (7.26)

The local map between the Nf fermions on δ− 1 sites and the spin can be performed

by identifying the basis states labeled by the eigenvalues of ncf,r 6=0 with the basis states

labeled by the eigenvalues of Lzf . Operators that are polynomial in the densities will

then be mapped to operators that are polynomial in Lz. The remaining terms in

the Hamiltonian describe tunneling within a set of uncoupled sites with all the same

f . They describe transition between the Lzf basis states and are thus described by

polynomials in Lxf and Lyf .

• In the second case, when the density-density interaction between the uncoupled cluster

is relevant, the local emergent spins will be coupled. Since the hopping operators at

a site f commute with those at a site f ′, a Jordan-Wigner string is not required to

correctly reproduce spin statistics, and the coupled Hamiltonian can be written as:

H({n̄df}, {n̄cf,r=0}, {N̄f}) =
∑

ff ′

F (Lzf , L
z
f ′) + (7.27)

∑

f

Rf (Lxf , L
z
f , L

y
f ),

where the function F depends on the intra-chain coupling, ∆c, and the function R

depends on hck, J
c
ij ,∆

I
ij , and ∆c

ij . In general, if the dirty chain or coupled sites have
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a disordered distribution of charges, the local operators, Rf , in the Hamiltonian will

be disordered too. The issue of whether the system is fully localized on interme-

diate times, will then depend on any integrability present in this intermediate time

Hamiltonian, or on the impact of disorder on Rf .

In the first case, the intermediate time Hamiltonian can be diagonalized by independently

diagonalizing the Hamiltonian of effective spins Lf . In the second case, when the spins are

coupled, further analysis is required to explore the dynamics at intermediate times and will

be the subject of Sec. 7.7.4.

7.7.3 Density-Density interactions between uncoupled clusters

To determine if the effective spins ~Lf are coupled or not, we compute the magni-

tude of the density-density interaction between two uncoupled clusters. We focus again on

one coupled site, labeled by r = 0, and its neighboring sites, labeled by r = ±1 (for any f).

The flow equation equations for the density-density couplings then becomes

d∆c
−1,1

dl
= 2J2(∆c

−1,1 −∆c
0,1) + 2J2(∆c

−1,1 −∆c
0,−1), (7.28)

d∆c
0,1

dl
= −2J2(∆c

−1,1 −∆c
0,1),

d∆c
−1,0

dl
= −2J2(∆c

−1,1 −∆c
0,−1).

These coupled differential equations describe a rotation in a three-dimensional space at an

instantaneous rate 2J(l)2. Given that ∆c
−1,1(l = 0) = 0, the system (7.28) can be solved

and yields

∆c
−1,1(l) = ∆c

0,1(l = 0)
[
1− e

∫ l
0 dl
′2J2(l′)

]
, (7.29)
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where:

∫ l

0
dl′2J2(l′) =

J2(l = 0)

h̄2
0(l = 0)

(1− e−2h2
0l). (7.30)

Therefore, the amplitude of the rotation in such three-dimensional parameter space is small

in J2/h̄2
0.

We are now in place to discuss which of the two possibilities discussed in the

previous section is realized. If J2(l = ∞) � ∆−1,1(l = ∞), then an interacting Hamil-

tonian describes the intermediate time dynamics while, if the inequality is not satisfied, a

non-interacting spin chain will describes the intermediate time dynamics. Given the as-

sumption J � h, this inequality simplifies to h� ∆. Thus, for the approximation made in

ansatz Hamiltonian above, we must choose h > ∆ and conclude that the intermediate time

Hamiltonian describes a set of independently evolving spins.

Alternatively, we could assume the bare Hamiltonian has a next-nearest neighbor

coupling of the order ∆−1,1(l = 0) ≈ ∆0,1 < h. In this case the rotation in ∆c
ij space,

described by Eq. 7.28, would still be of a small angle, but away from an initial vector with

∆−1,1(l = 0) already greater than J2(l = ∞). Intermediate time dynamics would then be

described by a set of coupled emergent spins of size
∣∣∣~Lf
∣∣∣.

7.7.4 Explicit form of the Hamiltonian for δ = 3

As an example, we now can consider the δ = 3 case in which there are two un-

coupled sites for each dirty site f , and discuss the effective Hamiltonian governing the

intermediate time dynamics. The local Hilbert space for these two sites is 4 dimensional
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and the basis vectors can be labeled by the different ways in which 2 sites may be occupied

with particles (the label ′1′ indicates an occupied site)

{
|00〉 , |01〉 , |10〉 , |11〉 .

}
, (7.31)

The local Hamiltonian on these sites reflects the block diagonal structure enforced by the

conserved charges:




0 0 0 0

0 ∆̃L Jcf2,f1(l) 0

0 Jcf1,f2(l) ∆̃R 0

0 0 0 ∆̃R+L




, (7.32)

where ∆̃L,∆̃R, and ∆̃R+L are functions linear in the operators ndi and ncf ′ 6=f and depend

on the intra and inter-chain couplings, and fields hc, at the flow time l = ∞. For δ = 3

the conserved charge Nf has eigenvalues 0, 1, and 2 that correspond to the three blocks in

Eq. 7.32. This block structure can be represented by two trivial spin-zero subspaces and

one spin-half subspace.

We consider the case that Nf = 1 for each f , so that the local Hilbert space for

the block of interest will be spin-half. The mapping to spin-halves can be preformed via

Lzf =
n̂f,1 − n̂f,2

2
(7.33)

Lxf =
c†f,1cf,2 + h.c

2
,

and the constraint 1
2 =

n̂f,1+n̂f,2
2 .
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We write down the Hamiltonian at the flow time l =∞ as follows:

H =
∑

Hf +
∑

f,f ′

∑

r,r′=1,2

∆c
f,r,f ′,r′n

c
f,rn

c
f ′,r′ (7.34)

Hf =
∑

i

ξf,inf,i + Junf (l)[c†f,1cf,2 + c†f,2cf,1]

+∆c
f,1,f,2n

c
f,2n

c
f,1,

where ξf,i is an effective field that depends on the bare fields at flow time l, the couplings

∆c
ij and ∆I

ij , and the eigenvalues of the conserved charges, n̄df and n̄cf,r=0:

ξf,i = h̄cf,i(l) +
∑

f

∆I
f,i,f ′(l)n̄

d
f ′ +

∑

f

∆c
f,i,f ′,0(l)n̄cf ′,0.

Applying the mapping (7.33) we get the spin Hamiltonian:

H =
∑

f

hzfL
z
f + hxfL

x
f +

∑

ff ′

Ωf,f ′L
z
fL

z
f ′ + C (7.35)

with

hxf = 2Junf (l) (7.36)

hzf = ξf,1 − ξf,2

Ωf,f ′ = ∆C
f,1,f ′,1 + ∆C

f,2,f ′,2 −∆C
f,1,f ′,2 −∆C

f,2,f ′,1.

Here, we explicitly see how the spins are coupled by the next-nearest neighbor

density-density couplings. Thus, if the local spins are coupled at a strength less than

the next-nearest neighbor hopping, |Ωf,f ′ | < J2, the intermediate time dynamics describes

independent spins rotating around an axis in the x−z plane. While, if |Ωf,f ′ | > J2, we have

to consider the interacting spin problem to understand the intermediate time dynamics.
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If there is no disorder in the dirty and coupled site charge distributions, the z

component of the local field, hzf will be null and the translationally-invariant emergent

spin-model will be a transverse field Ising model. This Hamiltonian is integrable via the

Jordan-Wigner transformation:

Lxf → naf − 1/2 (7.37)

LzfL
z
f+1 → (a†f − af )(af+1 + a†f+1),

which produces an exactly solvable single particle Hamiltonian in Jordan-Wigner fermions.

Taking Ωf,f ′ = Ωδf ′,f+1, this single particle Hamiltonian is given as

∑

f

hxnaf + Ω(a†faf+1 + h.c) + Ω(a†fa
†
f+1 + h.c), (7.38)

which can be brought in diagonal form
∑

q ωqnq in momentum space via a Bogolyubov

rotation, where nq is the occupation of the mode q and ωq =
√

1 + 2Ω
h cos(q) + Ω2

h2 . We

therefore, in addition to the local conserved charges, ncf,0, ndf , NF , have the conserved

momentum space modes nq. The non ergodic behavior during intermediate times after the

initial relaxation period and before τn will display a mixture of local conserved charges, and

extended conserved charges, nq.

If there is disorder in the dirty and coupled site charge distributions, the z-

components of the local field, hz, given in Eq. 7.36 will be finite. The Jordan-Wigner

transformation of Lzf will introduce a many body operator via the Jordan-Wigner string,

Lzf = a†fe
iπ

∑
f Nf + h.c., and the new fermion Hamiltonian will no longer be diagonalizable

via a single particle transformation. In this case, nq will no longer be conserved and, if

hz is weak compared to the transverse field hxf , only the local conserved charges, ncf,0, ndf ,
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and NF , will survive after the first relaxation period. If the disorder field, hzf , dominates

over the transverse field, hxf , the effective Hamiltonian, Eq. 7.35, will many body localize

and develop a set of local conserved charges Lzf . We have confirmed these expectations

via exact diagonalization of the intermediate time Hamiltonian and by studying the level

spacing statistics for Ns = 8 and δNs = 24 (δ = 3).

7.8 Conclusions

A natural direction we are currently scrutinizing consists in extending the FE

method to capture physics akin to the one reported in the experiment of Ref. [51]. How-

ever, in order to have a quantitative understanding of the delocalizing impact of the clean

environment on the disordered chain, one should assume that the clean chain is delocalized,

and therefore extend the ansatz employed here to treat Hamiltonian diagonal in momentum

space. It could also be of interest to employ the FE method to study a broader variety of

MBL proximity effects. An appealing direction consists in studying a point-like, local cou-

pling, between an MBL segment of interacting, disordered fermions and a clean one. This

would pave way to understand the effect of the ’intrusion’ of the localized system into the

clean one, or viceversa, explore how an MBL system can act as an ’insulator’ with respect

to the clean segment. Analysis in this direction is ongoing [27].
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7.9 Appendix

7.9.1 Notation

We define the onsite fields before Wick ordering as h
c(d)
k , and after Wick ordering,

the effective fields are defined with a bar: h̄
c(d)
k . We define the couplings with unaccented

variables with subscripts indexing sites: ∆I
ij , ∆

c(d)
ij , J

c(d)
ij . The dependence on the scale l of

the flow equations is often made implicit in expressions:∆I
ij(l)→ ∆I

ij . For ∆I
ij the first index

i labels the clean chain sites and the second the dirty chain sites. The spatial dependence

of the couplings defines geometry and the magnitude is set by the parameters ∆I(c,d), Jc(d).

In addition to these parameters, the dirty chain fields are randomly selected from a box
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distribution, [−W,W ], and the Wick ordered reference state is set by:
〈
nd
〉

= 1
Ns

∑
k

〈
ndk
〉

and temperature Θ, where
〈
ndk
〉

= Tr[ρndk]

We work with a set of unaccented operators: U,H,H0, V,H
c, Hd, HI , ηh, η∆, ηI , ck, dk, n

c
k, n

d
k

and ~Lf = {Lxf , L
y
f , L

z
f}. We also define a set of operators accented with a hat as:

Ĵc =
∑

ij

Jcij : c†icj : (7.39)

Ĵd =
∑

ij

Jdij : d†idj :

∆̂c =
∑

ij

∆c
ij : ncin

c
j :

∆̂d =
∑

ij

∆d
ij : ndi n

d
j :

∆̂I =
∑

ij

∆I
ij : ncin

d
j :

ĥc =
∑

k

h̄ck : nck :

ĥd =
∑

k

h̄dk : nck : .

Finally, we also defined a symmetry operation, C ↔ D, that swaps the superscripts

c and d of the couplings and operators and swaps the site indices of the inter-chain coupling:

c↔ d (7.40)

∆I
ij ↔ ∆I

ji
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7.9.2 Flow Equation Generators

In the main text we defined 3 different generators the commutator: η = [H0, J ] =

ηh + η∆ + ηI where:

ηh = [Ĵc, ĥc] + [Ĵd, ĥd] (7.41)

η∆ = [Ĵc, ∆̂c] + [Ĵd, ∆̂d]

ηI = [Ĵc + Ĵd, ∆̂I ].

and presented their form as:

ηh =
∑

ij

F cij : c†icj : + C ↔ D (7.42)

η∆ =
∑

ijk

Γcij|k : nckc
†
icj : +F∆c

ij : c†icj : + C ↔ D

ηI =
∑

ijk

ΓIij|k : ndkc
†
icj : + C ↔ D.

The coefficients F and Γ are given as:

F cij = Jcij(h̄
c
i − h̄cj) (7.43)

F∆c

ij = 2Jcij∆
c
ij(ni − nj)

and

Γcijk = 2Jcij(∆
c
ik −∆c

jk) (7.44)

ΓIijk = Jcij(∆
I
ik −∆I

jk).
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While the coefficient for the dirty chain can be obtained from the symmetry operation

C ↔ D.

7.9.3 The Flow Equations.

The full set of flow equations used in the numerics discussed in the main text is

given as:

dh̄ck
dl

=
∑

i

2(Jcik)
2
[
(h̄ck − h̄ci ) + 2∆c

ik(n
c
k − nci )

]
(7.45)

+2
∑

ij

(Jcij)
2(∆c

kj −∆c
ki)(n

c
j − nci ) +

∑

ij

(Jdij)
2(∆I

kj −∆I
ki)(n

d
j − ndi )

dJcij
dl

= −Jcij(h̄ci − h̄cj)2 − 2Jcij∆
c
ij(n

c
i − ncj)(h̄ci − h̄cj)−

∑

k

JcikJ
c
kj(2h̄

c
k − h̄ci − h̄cj)

−2
∑

k

JcikJ
c
kj [∆

c
ij(n

c
i + ncj − 2nck) + 2∆c

ki(n
c
k − nci ) + 2∆c

kj(n
c
k − ncj)]

−Jcij(h̄ci − h̄cj)(nci − ncj)(∆c
ij + ∆c

ji)

d∆c
ij

dl
= 2

∑

k 6=i,jl=i,j
(Jclk)

2(∆c
ij −∆c

kl′)

d∆I
ij

dl
= 2

∑

k

(Jdjk)
2(∆I

ij −∆I
ik) + 2

∑

k

(Jcik)
2(∆I

ij −∆I
kj)

where n
c(d)
k =

〈
n
c(d)
k

〉
are the densities of the Wick ordered reference state, and the flow for

the dirty couplings can be found using the symmetry operation C ↔ D.

7.9.4 Numerical Details

The flow equations are numerically solved using an adaptive step 4th order Runge-

Kutta. We work with a clean chain length of 24 sites δNs = 24 for a total of 48 sites (32 sites

when δ = 3). We control the adaptive step by attempting around 800 discrete Runge-Kutta
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steps on a log scale from l = 10−3 to l = 102. The adaptive step usually requires additional

steps to reach the desired accuracy result in an average number of steps of around 3000.

Since our results requires an accuracy for the couplings on a scale absolute scale

10−15, we devoted careful attention to numerical errors. We found that numerical errors

were due to floating-point errors for numbers close to 0 during both the first step and at

latter steps. Numerical errors in the first step of a Runge-Kutta approximation are well-

known, while the ones at later steps are due to the form of the flow equations. These long

time error are due to contributions like
∑

k JikJkj(hi + hj − hk) that could easily flip sign

and cause numerical noise at longer times during the flow.

To manage these errors, we initialized the hoppings Jij for i 6= j ± 1 to ε1 and

treated a hopping with |Jij | < ε2 as exactly 0. Choosing ε2 > 10−15 and ε1 > ε2 was sufficient

to reduce floating-point errors to the desired accuracy 10−15. We tested the validity of these

numerical approximations by varying ε1 and ε2 and observing no change in the flow.

183



Bibliography

[1] D. Abanin, E. Altman, I. Bloch, and M. Serbyn. arXiv:1804.11065, 2018.

[2] Boris L. Altshuler, Yuval Gefen, Alex Kamenev, and Leonid S. Levitov. Quasiparticle
lifetime in a finite system: A non-perturbative approach. Phys. Rev. Lett., 78:2803–
2806, Apr 1997.

[3] Sumilan Banerjee and Ehud Altman. Variable-range hopping through marginally lo-
calized phonons. Phys. Rev. Lett., 116:116601, Mar 2016.

[4] Jens H. Bardarson, Frank Pollmann, and Joel E. Moore. Unbounded growth of en-
tanglement in models of many-body localization. Phys. Rev. Lett., 109:017202, Jul
2012.

[5] D.M. Basko, I.L. Aleiner, and B.L. Altshuler. Metal–insulator transition in a weakly in-
teracting many-electron system with localized single-particle states. Annals of Physics,
321(5):1126 – 1205, 2006.

[6] Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger. Many-body physics with ul-
tracold gases. Rev. Mod. Phys., 80:885–964, Jul 2008.
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Chapter 8

Conclusion

In this Dissertation, I have proposed five ultra cold atoms experiments that make

use of quantum effects to produce novel macroscopic phenomena. Chapter 2 investigated

the possibility to produce a p-wave fermionic condensate in a unique cold atom set up .

Chapters 3, 5 and 6, discussed 3 different novel phenomena that can occur when ultra cold

BECs are allowed to condense into one of two modes. The issue of thermalization and known

results where presented in Chapter 4, and Chapters 5, 6 and 7 discussed 3 mechanisms for

which thermalization can be avoided.

The primary result of chapter 2 was that p-wave superconductivity may be acces-

sible in ultra cold atom systems if low enough temperatures can be reached. P-wave pairing

requires p-wave attractive scattering to develop between the quasi-particles, and on a lattice

this requires at least interactions between neighboring sites. In this chapter we showed it is

possible to create such an effective interaction using a second lighter particle as a mediator

of the interaction. Inspired by novel trapping set up in ultra cold atom experiments, we
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assume the p-wave fermions live in two dimensions, while the meditating particles live in 3

dimensions. We showed first that by tuning the density and on site interaction strength, the

p-wave and s-wave scatterings can be tuned to give rise to p-wave pairing. We confirm this

prediction using a non-perturbative technique known as functional Renormalization Group.

In chapters 3, 5, and 6, we discussed a set of possible experiments that can take

place when a Bose-Einstein condensate is allowed to condense into one of two different

modes. These two modes can be two spatially separated modes, like the arms of a bosonic

interferometer or the wells of a double well. Or they can be the two hyperfine states of

the internal energy levels of the bosonic atoms. In these chapters we apply the two-mode

approximation which assumes the bosons occupy only these two modes, and the additional

spacial models are ignored. Doing so allows the dynamics of the atoms to be described by

a single large spin of size |J | = N/2 where N is the number of particles.

In all three chapters, interesting states are produced by a non-linear spin hamil-

tonian:

H = −Jx +
Λ

2
J2
z (8.1)

where Jx models the single particle tunneling between the two modes and J2
z models in-

teractions between the particles. When there are a macroscopic number of particles, the

dynamics of the spin can be described by a semi-classical approximation. The classical ap-

proximation of H is integrable and results in two types of topologically distinct trajectories:

free oscillating: where the spin oscillates around Jx = 1 and describes the particles oscil-

lating evenly between the two modes, and self trapping: where the spin oscillates around

one of two different fixed points close to Jz = ±1 and describes a situation where the par-
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ticles are stuck in one of the two modes, never fully completing an oscillation to the other.

Separating the two behaviors is a separatrix which passes through an unstable fixed point.

Chapter 3 is paper which studies the detection of cat states created by the dynamics

of the hamiltonian H evolving classical states initialized on the separatrix. In this work

we develop a method to investigate the indefiniteness of these cat states using currently

available cold atom technology. The method we propose uses the observation of a statistical

distribution to demonstrate the macroscopic distinction between dead and alive states,

and uses the determination of the interferometric sensitivity (Fisher information) to detect

the indefiniteness of the cats vital status. We show how combining the two observations

can provide information about the structure of the quantum state without the need for

full quantum state tomography, and propose a measure of the indefiniteness based on this

structure. Numerically simulating our proposed method, we show that as the temperature of

this initial state is increased, the produced state undergoes a quantum to classical crossover

where the indefiniteness of the cats vital status is lost, while the macroscopic distinction

between dead and alive states of the cat is maintained.

Chapter 5 is a paper which focuses on the long time dynamics of the Hamiltonian

H. In particular, we ask if the long time averages of observables equilibrate to values pre-

dicted by a micro-canonical ensemble. We find that states initialized on the self-trapping or

free oscillating trajectories do equilibrate to values predicted by a micro-canonical ensemble.

While for state initialized on the separatrix, the long time observables do not equilibrate

to values described by a micro-canonical ensemble. Instead, the long time values of observ-

ables retain information about where on the separatrix the dynamics of the spin began. We
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showed that this long time memory is due to the unstable fixed point producing a set of lo-

calized eigenstates. This then allowed us to derive how the equilibrium value of observables

encodes information about the initial state.

Then in chapter 6, we investigate the dynamics of bosons obeying the hamiltonian

H, but with a periodic kick of the form U = e−it2Jx applied periodically at intervals t1. We

first showed how, for small values of t1 and t2, classical integrability is still present and can

be computed via perturbation theory. We then focused our attention to a set of resonances

that occur before the onset of complete chaos. These resonance occur when t1 is a fractional

integer, 1/n, of a period of one of the trajectories of the hamiltonian, H. We show and

explain how these resonances produce n stable fixed points that the system hops between

before every kick. We find that since the stable fixed points prevent quantum diffusion, the

hopping between the different fixed points lasts forever. These persistent oscillations are

then compared to those in time crystals.

Then in the final chapter 7, I present a paper that studies another system in

which thermalization is avoided. This system, is of two chains of interacting fermions, one

of which contains strong disorder and the other which is clean. When the chains do not

interact, the clean chain thermalizes, while the dirty one ends up stuck in a many body

localized phase. We then study which physics wins when the chains are allowed to interact

via density-density interactions every δ sites (see Figure 7.6). When δ = 1, we find that the

many body localized phase can spread to the clean chain when 1) the density of fermions

in the dirty chain is sufficiently high, 2) interactions between the chain is sufficiently large

and 3) the energy density of the dirty chain fermions is sufficiently low. When δ > 1, and
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some of the clean chain sites are not coupled, we find novel behavior occurring in the clean

chain, where on short time scales transport is allowed within the clusters of uncoupled sites

but not between the clusters. Thus on short time scales, the clusters act as large spins

which can thermalize or not depending on the emergent interactions between them. Then

on longer times, transport is allowed between the cluster and the whole system comes to

thermal equilibrium.

Each of these projects leave room for new research. In chapter 2, we assumed the

mediating particles moved infinitely faster than the pairing particles. This approximation

leaves out the possibility that the mediating particles become entangled with the pairing

particles and produce novel states of matter. Similar “adiabatic” approximations occur in

cavity QED systems where the photon is assumed to be much faster. In both these systems

the non-adiabatic limit offers new possibilities for entanglement and phases of matter.

In chapter 3, we ignored the primary mechanism in which superpositions of dead

and alive cats decohere and the uncertainty becomes classical: environmental decoherence.

In this system there are two mechanism for decoherence: particle loss and excitation of

other spatial modes. Future projects could model these effects to identify the feasibility of

creating the cat states investigated in that chapter. Similarly the effect of the other spacial

modes may dramatically affect the results in chapters 5 and 6.

The variety in the projects I investigated during my PhD and the variety in the

possible future research directions reflects the breath of field which ultra-cold atom physics

and generically quantum many body physics covers. In addition to the topics covered in this

dissertation, the large fields of quantum computing and topological states of matter offer an
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even wider range of possibility for ultra-cold atom physics. I am excited for these possibilities

and grateful to my advisers Shan-Wen Tsai and Eddy Timmermans for providing me the

opportunity to study such a wonderful range of physics.
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Appendix A

Many Body Quantum Mechanics:

an Overview

A.1 General Quantum Mechanics

In quantum mechanics we model states with vectors, |ψ(t)〉 in a complex hilbert

space. Measurements are model with observables O, which are hermitian operators. They

are broken in to there eigenvalues and vectors: O =
∑

o o |o〉 〈o|. Expectation value of

an obserrvables is given by the inner product: 〈O〉. And the probability of an observable

taking a particular value is: |〈o|ψ(t)〉|2 If we are uncertain about the state we can use

density matricies ρ =
∑

i pi |i〉 〈i|, where i labels the states we are uncertain about and pi

are the probabilities associated to those states. Its important that multiple ensemlbes i can
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give the same density matrix ρ. Where expectation values and probabilities are given as:

〈O〉 = Tr[ρO] (A.1)

P (o) = 〈o| ρ |o〉

A.1.1 Unitary Dynamics

Dynamics are described by completly positive trace preserving maps which take

an initial state ρ0 to a evolved state L(ρ0, t). This map most keep the trace of the density

matrix tr[ρ] = 1 and all of its eigen values positive. This way we can continue to think of

that operator as a reperesentation of uncertinty about a set of states.

The simplest dynamics are unitary where L(ρ, t) = U(t)ρU(t)†. where U(t) is

defined by a hamiltonian H via:

U(t) = e−iHt/~ =
∑

n

eiEnt/~ |n〉 〈n| (A.2)

This unitary can be derived from the schrodinger equation:

i~∂t |ψ(t)〉 = H |ψ(t)〉 (A.3)

If the hamiltonian has time dependence, the unitary is given as:

U(t) = Te−
i
~
∫ t
0 H(t)dt = lim

N→∞

N∏

n=1

e
itn
N~H(tn/N) (A.4)

The T reminds us that the true expression is the time order products of a bunch of infinites-

imal unitaries.
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A.1.2 Heisenberg Picture, simple BCH

In the Heisenberg Picture, operatores evolve as:

O → O(t) = U †(t)OU(t) (A.5)

ρ → ρ

with a first order differnetial equation as:

∂tO(t) =
i

~
[H,O(t)] (A.6)

The solution of this equation can be written using the BCH formula:

exABe−xA =
∑

n

1

n!
AdnA(B)xn (A.7)

where

Ad0
A(B) = B (A.8)

Ad1
A(B) = [A,B]

AdnA = [Adn−1
A , B]

For unitary dynamics, B is some observalbe, A = H and x = it/~. Two common situations

are when [H,Oc] = ic and when [H,Ob] = bOb, and in these situations the sum can be

computed and yeilds:

Oc(t) = Oc + icx = Oc − tc/~ (A.9)

Ob(t) = Obe
xb = Obe

ibt/~
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A.1.3 Interaction Picture

The interaction picture breaks the unitary U(t) into two by using the identity:

U0U
†
0 = 1. There are in fact two interaction picutres depending on where you insert this

identiy in an expectation value. It will determine weather you preform pertubation theory

on the wave function or operators. The standard (state interaction):

〈O〉 (t) = 〈ψ(t)|U0U
†
0OU0U

†
0 |ψ(t)〉 (A.10)

In this picture one can derive:

OI(t) = U †0OU0 (A.11)

i~∂t |ψ(t)I〉 = VI(t) |ψ(t)I〉

In the operator interaction picture:

〈O〉 (t) = 〈ψ|U †0U0U
†OUU †0U0 |ψ〉 (A.12)

In this picture:

|ψI′(t)〉 = U0 |ψ〉 (A.13)

VĨ(t) = U0V U
†
0

∂tO(t) =
i

~
[VĨ(t), O(t)]

A.1.4 Correlations, Generating Functions, Greens Functions

In the scrodinger and heisenberg picture one studies either states or operators and

then takes averages at the end to obtain correlation functions. It can be convenient to track
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correlations directly and this can be done with generating functions. For unitary evolution

we construct express any unequal time correlation functions using the hisenberg picture:

〈∏

i

Oi(ti)

〉
=

〈∏

i

U(ti)
†OiU(ti)

〉

If I remove the observables from this expression, the set of unitaries describe evolution of a

set along a path in time, first evolving the state to t0, then t1 and so on. The path through

time can go forward and backward depending on the order of times in the operators and

the end of the evolution, the unitaries must bring the state back to the initial state. This

evolution can be condensed into a single operator:

UP (t) = Pe
−i
~

∮
dtH(t)

Now instaed of time ordering, P orders along the path required to visit all the times of the

operators in order. The
∮

intergral is then an integral along this path. If we add source

fields to the hamilonian:

∑

i

A(t)iOi

then we can define a correlation generating function via:

G(Ai(t)) = 〈UP (t)〉 =
〈
Pe

−i
~

∮
dt(H(t)+

∑
i A(t)iOi)

〉

Where t can take a value anywhere on the path P . By taking derivitives with respect to

Ai(t) we can reconstruct the correlation functions above:

(i~)N

[
N∏

i

∂Ai(ti)G({A(t)})
]

A=0

=

〈
P
∏

i

Oi(ti)

〉
(A.14)

This is the same as a correlation generating function for probability distributions:

〈
e
∑
i xiOi

〉
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except now we allow for time evolution. If we want a cumulant generating function, we take

the log:

W(Ai(t)) = ln [G(Ai(t))]

If we preform a Legendre transform, we get a function of the expectation values 〈Oi(t)〉.

This new function Γ(Oi(t)), when minimized, yields the expectation values 〈Oi(t)〉 defined

by G(Ai(t)). Since these are equal time correlation functions, the minimization procedure

yields an evolution equation for the observables 〈Oi(t)〉. One can therefore think of this as

an effective action for the classical variables 〈Oi(t)〉.

A.1.5 Two time correlations

Lets focus on properties of two time correlations. In a guassian theory they deter-

mine every other correlation, and since we are often building off fluxutations of Gaussian

theory, then two time correlations will be the building blocks of the full theory. They

also play an important role in identifying quantum effects like Leggett Garg violation and

quantum fisher information.

For an observable A at time t1 and observable b at time t2 the correlators:

〈a(t1)b(t2)〉

〈b(t2)a(t1)〉

are non hermitian and therefore not necessarily real. In fact, if a and b are unitaries then

they represent an overlap between two states. Both of these amplitudes can be generated
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from the gennerating function: G(A(t)) when the path is a single closed path, with a forward

branch labeled by + and a backwards branch labled by −. With a forward and backward

branch, there are 4 posible ways to generate an amplitude with a and b and time t1 and t2:

G++ =
d2

A(t1,+)B(t2,+)
G(A(t)) = − 1

~2
〈Tb(t2)a(t1)〉

G+− =
d2

A(t1,+)B(t2,−)
G(A(t)) = − 1

~2
〈b(t2)a(t1)〉

G−+ =
d2

A(t1,−)B(t2,+)
G(A(t)) = − 1

~2
〈a(t1)b(t2)〉

G−− =
d2

A(t1,−)B(t2,−)
G(A(t)) = − 1

~2

〈
T̃ b(t2)a(t1)

〉

where T and T̃ are time ordering. The correlationgs G++ and G−− are both linearly

dependent on G+− and G−+. This redudancy in the generating function can be partialy

removed once we represent it with a path integral.

When [a(t1), b(t2)] don’t compute, the above correlations are non-hermitian. Their

real and imaginary parts produce two hermitian operators:

GA = − i
~
θ(t1 − t2) 〈[a(t1), b(t2)]〉

GR =
i

~
θ(t2 − t1) 〈[a(t1), b(t2)]〉

GK = 〈{a(t1), b(t2)}〉

where GR is the response of b at time t2 due to a pertubation by a at time t1. and Gk

described fluxtuations.
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A.1.6 The thermal state and the KMS relation

For a quantum system, which has equilibriated to a thermal bath, the equilibrium

state is determined by the gibbs state:

ρβ =
e−βH

Z
(A.15)

where Z ensure normalization of ρ. The correlation generating function for the dynamics

of this system is given by:

Gβ(Ai(t)) = 〈UP (t)〉 = Tr

〈
Pe

−i
~

∮
dt(H(t)+

∑
i A(t)iOi)

e−βH

Z

〉

Noting that −i~
∫ 0
iβ~ dt = −βH, we can extend the path P to start at an imaginary time iβ~

and move to the complex origin, before generating the full path. This gives us a generalized

“imaginary time correlation function”. When studying the thermal state, it is often easiest

to only consider a Path that moves in imaginary time:

GT (Ai(t)) = Tr
〈
Pe−

∫ β
0 dτ(H(τ)+

∑
i A(τ)iOi)

〉

this function generates the correlations:

(−1)N

[
N∏

i

∂Ai(τi)GT ({A(τ)})
]

A=0

= Tr

〈
T
∏

i

Oi(τi)

〉
(A.16)

with:

Oi(τi) = eτiHOie
−τiH (A.17)

These types of correlations show up in pertubative calculations of thermal states and there

free energies.
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KMS relation

The real time correlations of a thermal state satisfy a usefull relation called the

KMS relation. Writing explicity a two time correlation:

Tr
〈
O1(t1)O2(t2)e−βH

〉
= Tr

〈
eit
′
1HO1e

−it′1Heit
′
2HO2e

−it′2He−βH
〉

= (A.18)

Tr
〈
eit
′
2HO2e

−it′2He−βHeit
′
1HO1e

−it′1H
〉

=

Tr
〈
ei(t
′
2−iβ)HO2e

−i(t′2−iβ)Heit
′
1HO1e

−it′1He−βH
〉

=

Tr
〈
O2(t2 − iβ)O1(t1)e−βH

〉
= Tr

〈
O2(t2)O1(t1 + iβ)e−βH

〉

In the equilibrium state, there is time translation symetry and we can set t2 = 0 and

t1 = τ = t1 − t− 2 yielding:

Tr
〈
O1(τ)O2e

−βH
〉

= Tr
〈
O2O1(τ + iβ)e−βH

〉
(A.19)

or:

G+−(τ) = G−+(τ + iβ) (A.20)

Fourier transforming we get:

G−+(ω) = G+−(ω)eωβ (A.21)

Which gives the relationship:

GK = i~ coth(βω/2) (GR −GA) (A.22)
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A.2 Quantum Components

A.2.1 Spins: Operators

Spin observables are defined to have the following commutation relations:

[Si, Sj ] = iεijk~Sk (A.23)

and the ladder operators are defined as:

αS± = Sx ± iSy (A.24)

where α = 1 or α = ~ depending on convension. There commutation reltaions with σz are:

[Sz, S±] = ±~S± (A.25)

and with themselves:

[S+, S−] = 2~/α2Sz

there product is:

S+S− =
Sx2 + Sy2 + ~Sz

α2
(A.26)

Finally, the there evolution is given by:

e−iφS
z
S±eiφS

z
= S±e∓i~φ (A.27)
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spin-half

The spin half are writen interms of pali matricies: Which are diagonal in the Sz

basis, and corespond to ~S when ~ = 2

Sz =
~
2
σz =

~
2




1 0

0 −1


 (A.28)

Sx =
~
2
σx =

~
2




0 1

1 0




Sy =
~
2
σy =

~
2




0 −i

i 0




For spin half

S+S− =
~2/2 + ~Sz

α2
(A.29)

A.2.2 Spins: Wave Functions

A spin-half Hamiltonian has the form:

H = ~B · ~S (A.30)

The magnitude of B sets the overall energy scale. Since the vector ~B has 3 components,

~B/ |B| lives on the unit sphere. Therefore all spin-half Hamiltonian live on the sphere.

Furthermore, all spin-half states also live on the sphere. Thus, understanding the coordinate

systems of a sphere is very useful for describing spin-half states. Furthermore, since a

sphere is closed, there is no single map from the space of Hamiltonian to eigenstates which
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is continuous and differential everywhere. It is therefore important to know where the

singularities are in any coordinate system we use. For spherical coordinates, there are

two coordinate singularities: the north and south pole: Here the azimuthal angle becomes

undefined. Writing ~B in spherical coordinates:

~B = (cos(β), sin(β) cos(α), sin(β) sin(α)) (A.31)

The eigenstates, in the z basis are derived as:

|+〉 = cos(
β

2
) |0〉+ sin(

β

2
)eiα |1〉 (A.32)

|−〉 = sin(
β

2
) |0〉+ cos(

β

2
)e−iα |1〉

with ±1 eigen values. Thus the map between spheres is:

β′ = β/2 (A.33)

α′ = α

Notice that if I go around the state sphere once, I go around the Hamiltonian sphere twice.

This is because in this coordinate system, the overall phase of the wave function is undefined.

This can cause singularities in functions of the hamiltonian at the polesβ = 0, π.

Stereographic Projection

The stereographic coordinate system is another option. It maps the sphere to a

plane by projecting it through one of the poles. Given the unit spheres x, y, z coordinates,
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the projection through the north pole is given by:

X =
x

1− z (A.34)

Y =
y

1− z

and the projection through the south pole is given by:

X ′ =
x

1 + z
(A.35)

Y ′ =
−y

1 + z

It only has one coordinate singularity at the north pole: z = 1. One can map this to a

complex manifold using:

W = X + iY (A.36)

or

Z = X ′ + iY ′ (A.37)

with a map between them W = 1/Z In these coordinates the eigenvector equations can be

written as:

Wψu+ = ψd+ (A.38)

−ψu− = Wψd−
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or:

ψu+ = Zψd+ (A.39)

−Zψu− = ψd−

The phase of Z or W defines the phase difference of the eigenstates while its magnitude

determines the magnitude. Except when Z or W diverge at the south or north pole. The

eigenstates of linear higher-spins can be found using bosonic operators and is described

below.

A.2.3 Bosons: Operators

For bosonic systems the observables are x and p, and there commutation relation

is:

[x, p] = i~ (A.40)

It is natural to form the boson creation, annilation and number operators:

αb = (x+ ip) (A.41)

n = b†b =
1

α2
(x2 + p2 + ~)

which gives:

[b, b†] = (2~/α2) (A.42)

[n, b] = −(2~/α2)b

[n, b†] = (2~/α2)b†
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It is imporant that (2~/α2) = 1 so the number operator has integer eigen values, and this

fixes α =
√

2~. a simple chose is to take α = ~ = 2. There are two types of transformation

usefull to know for boson operators:

Un(t) = e−iωtn (A.43)

U∆(t) = e−i∆xp/~ei∆px/~

which gives:

Un(t)†bUn(t) = be−iωt
2~
α2 (A.44)

and

U∆(t)†xU∆(t) = x+ ∆x (A.45)

U∆(t)†pU∆(t) = p+ ∆p

I remember signs by the following:

• keep i with t

• schrodinger equation should have a sign so its i∂t

• unitary, U(t) is solution to the schrodinger equation so it has a −i∆t and shifts t by

∆t

• the boson creation operator is always in the ket state so it has a sign like U(t) e−it

• x gets shifted like t, so the unitary should be −∆xp so x→ x+ ∆x

• p gets oppocite sites from x
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• the signs in the commutator for x and p are natural because x is more important so

it comes first.

• the sign for the commutator of n and b comes from the fact that b has to decerase the

number of particles.

• alternatively, it should be [b, b†] = 1 because b is more natural then †

A.2.4 Bosons: Wave Functions

Basis States

Basis states are constructed from the eigen states of operators. For bosons, these

operators are x, p, b, n. and the basis states will be writen as |x(p, α, n)〉. What is usefull is

being able to transform between basis states. The transformation between x and p is given

by the fourier transform:

|p〉 =
1

β
√
~

∫ ∞

−∞
eipx/~ |x〉 dx (A.46)

|x〉 =
1

α
√
~

∫ ∞

−∞
e−ipx/~ |p〉 dp

with the constraint that αβ = 2π. It’s important to point out that, these are not states in

the hilber space, because they are not square integrable. Instead we treat them as place

holders to make meaning full the representation of any state |ψ〉 in the x(p) ’basis’:〈x(p)|ψ〉

From this we can derive the action of p in position space:

〈ψ| p |x〉 =
1

α
√
~
p

∫ ∞

−∞
e−ipx/~ 〈ψ|p〉 dp = i~∂x 〈ψ|x〉 (A.47)
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The eigenstates of b are given interms of n as the coherent states:

|α〉 = eψb
† |0〉 =

∑

n

ψn√
n!
|n〉 (A.48)

which can be proved from the action of the creation and anniliation operators on the number

eigen states:

〈
n′
∣∣ b |n〉 =

√
nδn,n′−1 (A.49)

Since a is not hermition, the coherent state is only its right eigen state, the eigen values, ψ

can be complex and the eigen states can be non orthonormal. In fact they arent:

〈φ|ψ〉 = eφ
∗ψ (A.50)

which can be proved from Wicks theorem. Regardless they can be used to form a complete

basis:

1 =
1

π

∫
dφdφ∗e−|φ|

2 |φ〉 〈φ| (A.51)

where the double integral over φ and φ∗ should be done over the real an imaginary parts.

A.2.5 Spin-Boson Mapping

Mapping spins to bosons can be done by:

Jz =
~
2

(n1 − n2) (A.52)

Jx =
~
2

(a†1a2 + h.c)

Jy =
~
2i

(a†1a2 − h.c)
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This will yield:

[Jx, Jy] = i~Jz (A.53)

and

J2 =
~2

4
N2 (A.54)

Using this representation, one can construct the eigen states of a linear spin:

H = − ~B · ~J (A.55)

using fock states. The bosonic H can be diagonalized using the spin-half eigenstates:

b+ = cos(
β

2
)a1 + sin(

β

2
)eiαa2 (A.56)

b− = sin(
β

2
)a1 + cos(

β

2
)e−iαa2

yielding:

H = − |B| ~
2

(n+ − n−) (A.57)

which has eigenstates:

bm+√
m!

bN−m+√
(N −m)!

|0, 0〉 (A.58)
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A.3 Composite Systems

A.3.1 Fermionic Systems

Fermions are inherently multi component systems because they arise from an

anti symmetry restriction between components. Fermion operators are defined by anti-

commutation:

{ci, c†j} = δij (A.59)

commutators with a quadradic operator behave the same as bosons though:

[c†ick, cj ] = −ckδij (A.60)

[c†kci, c
†
j ] = c†kδij

This implies the evolution of a creation operator is the same:

Un(t) = e−iωtn (A.61)

Un(t)†cUn(t) = ce−iωt

A.3.2 Majorana Fermions

One can construct hermition operators similar to the boson x and p:

αA2i = c†i + ciαA2i+1 = c†i + ci

They obey the following anti commutation relations:

Ai, Aj = δij
2

α2
(A.62)

Commutators with quadradic operators:

[AiAj , Ak] =
2

α2
(Aiδjk −Ajδik) (A.63)
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A.3.3 Representation Of Operators

Above we discussed the lie-algebra, group and representation structures which

define some of the standard smallest components of a quantum system. Large quantum

systems are constructed from the tensor products of the component vector spaces. If the

representation of the compnent lie-algebras are d dimensional, and there are N components,

then the composite space is dN . Generically the set of all hermitian operators of this

composite space form an SU(dN ) algebra. Taking simple products of the component lie

algebra elements does not produce all these operators if the d is larger then the minimal

represntation. Therefore, one needs to be careful with how the 2dN − 1 operators are

organized. In otherwords, one needs to be careful to construct a properper operator basis

for the SU(dN ) algebra which describes all hermitian observables. For spin-halves, d is

minimal, and this isn’t an issue and strings of the SU(2) operators form a proper basis. For

larger spins, or bosons, this is an issue and can be resolved by wick ordreing. In the next

sections we will discuss the wick ordering representation and how to take commutators for

it for bosons. Later we will do the same for fermions.

Wick Ordering

The trouble of creating a basis of operators is that order of the operators matter

and you may create an over complete basis if you are not careful. Therefore, a basis should
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specify a operator order. Wick ordering does this by three rules[26]:

〈: A1A2 · · ·An :〉 = 0 (A.64)

dAi : A1A2 · · ·An : = : A1 · · ·Ai−1Ai+1 · · ·An : (A.65)

: 1 : = 1 (A.66)

When the state used in the expectation value is gaussian, one can derive a nice recursion

relation:

Ak : O :=: AkO : +
∑

l

Ckl :
dO

dAl
(A.67)

where Ckl = 〈AkAL〉. From this there are two usefull expressions for finding the wick

ordered expression[26, 20]:

e
−

∑
kl Ckl∂Ak∂AlO = : O : (A.68)

: O1 :: O2 : = e
−

∑
kl Ckl∂Ak∂A′

l : O1(A)O2(A′) : (A.69)

From eq.A.69 we one can prove the orthogonality of the set of wick ordered operators[20].

For fermions, one has to treat the derivitives and operators as anti-commutiting

objects when evaluating the above:

∂AiAj = δij −Aj∂Ai (A.70)

From this one see that fermions anti-commute with in the wick ordered symbol:

: AiAj := − : AjAi : (A.71)

which differs from bosons which commute:

: AiAj :=: AjAi : (A.72)
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In this way, the operators with in the wick ordered symbol act as (anti-)commutiing num-

bers. This symmetry means that the basis operators must be specified with a fixed order

with in the wick ordered expression. To allow for all ordings one can also take the basis

states as equal superpositons of each ordering:

: aiaj : + : ajai : for bosons (A.73)

: aiaj : − : ajai : for fermions

This is usually my choice. This symmetry does not need to be taken between creation and

annilation operators since they are already distinguished and will be in the coefiencts of

the basis. If the basis only of hermition operators, then the symetric and imaginary anti

symetric combinations can be taken as the basis operators.

One can also wick order polynomials using the same rules. In this case the expec-

tation values should be taken with respect to a gaussian probability distribution.

Role of Symmetry in the Representation of Operators

As noted above, the symmetries play an important role in representing operators

in some operator basis. To do so, we will apply a super operator F to the single particle

operators A. And then assist the new multiparticle operator is equal to the orginal. As an

example lets take a 4-particle opperator:

V =
∑

ijkl

Vijkl : AiAjAkAl : (A.74)
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If we insist this opperator conservs number conservation, we apply the U(1) phase rotation:

F (φ) [ai] = eiφai (A.75)

Applying this operator to the single particle operators in V , we find that only operators

with equal number and creation operators conserved total number of particles. We can

therefore write V as:

V =
∑

ijkl

Vijkl : a†ia
†
jakal : (A.76)

We can also use the exchange symmetry to constraint V :

V =
∑

ijkl

Vijkl : a†ia
†
jakal := ±

∑

ijkl

Vijkl : a†ja
†
iakal := −

∑

ijkl

Vijkl : a†ia
†
jalak :=

∑

ijkl

Vijkl : a†ja
†
ialak :(A.77)

which yields:

Vijkl = ±Vijlk = ±Vjikl = Vjilk (A.78)

Similarly with Hermitian conjugation we get

Vijkl = Vklij (A.79)

If we add a spin index: Viσi,jσj ;kσk,lσl and insist invariance in a specified spin direction eiφσ
z

then we get conservation of spin-z quantum number:

∑

i

(a†iσ∂a†iσ
− aiσ∂aiσ)V (A.80)

which yields:

V =
∑

ijkl,σiσj

Uσiσj (i, j; k, l)a
†
iσi
a†jσjakσialσj +Wσiσj (i, j; k, l)a

†
iσi
a†jσjakσjalσi (A.81)
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Writing U = T + S and W = T − S then I can write:

Viσi,jσj ;kσk,lσl = Sσiσj (i, j; k, l)(δσiσkδσjσl − δσiσlδσjσj ) + Tσiσj (i, j; k, l)(δσiσkδσjσl + δσiσlδσjσj )(A.82)

Then from exchange symmetry I get the symmetry constrains:

Sσiσj (i, j; k, l) = ∓Sσiσj (i, j; l, k) (A.83)

Tσiσj (i, j; k, l) = ±Tσiσj (i, j; l, k)

Since the S forces the spins to have oppocite spin, we will considerate the singlet couping

while T the tripplet coupling.

These same type of symmetry arguments can apply to the vertex expansion of

functions[20].

Commutators for wick ordering

For a commutator [: O1(A) :, : O2(A′) :], we must apply wicks second theorem

twice:

[: O1(A) :, : O2(A′) :] = (A.84)

: exp(
∑

kl

Ck,l)
∂2

∂A′l∂Ak
O1(A)O2(A′) : − : exp(

∑
kl Ck,l)

∂2

∂Al∂A
′
k
O2(A′)O1(A) :

For a given contraction, the contractions swap creation and annihilation operators

between the first and second terms in the commutator: C ↔ CT The only other difference

between the first and second term is for fermions the sign might change. Two factors effect

the change in sign: the contraction and the number of exchanges required to make the

operators not contracted in the first and second term the same.
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For the first factor: This sign depends on the total number of creation and anni-

hilation operators in O1, n and the number in O2, m. For a single contraction , we first

assume the sign for the first term is (−1)r1 . In the second term, the r2 operators between

the two in the contraction end up on the outside of the two operators. Thus the number

of terms between the two operators for the second term is r2 = m + n − r1 − 2. Thus

the sign difference between the first and second term due to one contraction is (−1)m+n

Since subsequent contractions involve m+ n− 2l total operators, the sign different due to

a contraction only depends on m+ n If m+ n is even, there will be no sign change due to

the contractions. If m+n is odd, there will be a sign change for every contraction, with an

overall (−1)(m+n)l, where l is the number of contractions.

For the second factor: After l contractions one must commute m− l terms through

n − l terms to match the operator in the first term. This produces an additional sign of

(−1)(m−l)(n−l).

Overall, we are left with an additional sign of −1(n+m)l+(m−l)(n−l between the

first and second term of the commutator. For particle whole symmetric operators, n%2 =

m%2 = 0, thus the over all sign difference is (−1)l.

Thus we can commute commutators summing over all contractions like:

[: AaAb · · ·A1 :, : AiAj · · ·A2 : ] (A.85)

With the following rules,

• first compute the contraction for the first term in the commutator

• For bosons: subtract the same term with C ↔ CT
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• For fermions: subtract the same term with C ↔ CT with an additional (−1)l(n+m)+(m−l)(n−l)

sign in the second term.

In effect we are commuting the contractions with C ↔ CT for bosons. While for fermions

we are either anti commuting or commuting depending on the parity of l(n + m) + (m −

l)(n− l). For particle whole symmetric operators, we anitcommute if l is odd and commute

if l is even.
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Appendix B

Path Integrals and Classical

Approximations

B.1 Semi-Classical Analysis

A classical dynamical system of quantum model can be constructed in multiple

ways. A list of the ways are as follows:

1. Wigner Function Represetnation of state + 1/N or 1/~ approximation

2. Path integral minimization

3. inverse of cannonical quantization: [, ] 1
i~ → {, }

4. Variational method for state

5. Variational method for operator

6. Cumulants
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The frist and second ways can be equivlent as long as the resolution of the identiy in each

are nicely related. I’m not sure when they might fall apart. The third way is equivlent to

the first or second way as long as one is in the classical limit. Otherwise, the third way is

not unique. For the 4th-6th methods, one is not guaranteed to get a symplectic structure

As it is the simplest, we will start with the inverse of cannonical quantization.

B.1.1 Inverse of Cannonical Quantization

Bosons

In cannonical quantization one replaces the poison bracket with the commutator.

One can do the opposite map to produce a classical hamiltonian and dynamics from a

quantum Hamiltonian. For boson position and momentum:

[x, p]/(i~) = 1→ {x, p} = 1 (B.1)

For bosons creation and anilation operators the procedure is:

[b, b†]/(i~) =
1

i~
→ {b, b∗} =

1

i~
(B.2)

The factor of i is because b and b† are not hermition operators. To find the time derivitives

of b we use:

∂tb = {b,H} =
i

2~
dH

db∗
(B.3)
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We can also work with densiites and phases:

b =
√
ρeiφ (B.4)

b∗ =
√
ρe−iφ

ρ = b∗b

φ =
2

i
(log(b)− log(b∗))

We can show ρ and φ are conjugate cordinates by computing there variation and time

deritivies:

dρ = bdb∗ + b∗db (B.5)

dφ =
2

i

(
db

b
− db∗

b∗

)

dρ

dt
= − ib

2~
dH

db∗
+
ib∗

2~
dH

db∗
= −1

~
dH

dφ

dφ

dt
= =

(
1

~b
dH

db∗
+

1

~b∗
dH

db

)
=

1

~
dH

dρ

If we define φ′ = ~φ or ρ′ = ~ρ then we have:

{φ′, ρ} = 1 (B.6)

{φ, ρ′} = 1
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Spins

Using the spin to boson mapping, we can find a perscription to describe equations

of motion for spins.

Jz =
~
2

(n1 − n2) =
ρ′1 − ρ′2

2
(B.7)

Jx =
~
2

(a†1a2 + h.c) =

√
ρ′1ρ
′
2

2
cos(φ1 − φ2)

Jy =
~
2i

(a†1a2 − h.c) =

√
ρ′1ρ
′
2

2
sin(φ1 − φ2)

For fixed spins size is convient to choose ~ = 1/N and define

z =
ρ1 − ρ2

2N
(B.8)

φ = φ1 − φ2

such that the classical mapping is:

Jz = z (B.9)

Jx =
√

1− z2 cos(φ)

Jx =
√

1− z2 sin(φ)

|J | = 1

B.2 Path Integrals

A solutions for general quantum problems rely on obtaing the matrix elements of

an exponential operator. For thermal states the exponential operator is ρβ = e−βH , for

unitary evolution it is U(t), and for lindblad evolution it is e−tL which acts on the space of
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density matrisies (a tensor produce of two hilbert spaces). The path integral offers a way

of construting matrix elements of exponential operators from the knowledge of the matrix

elements of H without having to preform exact diagonalization. We will therefore focus on

exponential operators of the form:

e−xH (B.10)

This is done by noting that for small x the exponential can be expanded:

〈n| e−xH |m〉 ≈ 〈n| 1− xH |m〉 ≈ e−xHnm (B.11)

For which the matrix element are easily computed from those of H. Thus, for large x, we

can break the the exponential operator into N products of the operator with an effective

x̃ = x/N :

e−xH =
N∏

n=1

e−
x
N
H (B.12)

Next we insert n resolutions of the idenity in some basis ln:

〈LN | e−xH |L0〉 = 〈LN |
N∏

n=1

Ine
− x
N
H |L0〉 =

N∏

n=1

∑

ln

W (ln) 〈ln| e−
x
N
H |ln−1〉 δln,LN (B.13)

and with l0 = L0 and W (ln) is the normalization of the ln state. Different types of path

integrals can be created by using different resolutions of the idenity. These resolutions of

the identity are often chosen so they contain eigenstates of the operators which make up

H. In doing so the path integral becomes:

∑

ln

W (ln)e
∑N
n=1 ln(〈ln|ln−1〉)− x

N
H(ln−1,ln)δln,LN =

∑

ln

W (ln)eS(ln) (B.14)

There are multiple ways of evaluating this:
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• Numerical Sum ( monte carlo)

• Saddle point approximation (pick the best path): leads to classical solutions

• gaussian integration ontop of the saddle

• Controlled pertubation Series on top of gaussian fluxtuations

• resumation of pertubation series

• resumation recast as hubbard statonavich

• renormalization group

B.2.1 Bosonic Path integral

For bosons, the coherent state resolution of the identity in Eq.A.51 is the simplest

for constructing a path integral:

|ln〉 → |ψn〉 (B.15)

W (ln) → e−|ψn|
2

∑

ln

→
∫
dψ∗ndψn

π

To compute 〈ψn| e−
x
N
H |ψn−1〉 we assume H is expressed in creation and anniliation oper-

ators and normaled ordered so all creation operators are on the left. In this way, one can

replace b† with ψn∗ and b with ψn−1 leading to

〈ψn| e−
x
N
H |ψn−1〉 = eψ

∗
nψn−1− x

N
H(ψ∗n,ψn−1) (B.16)
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We now have the path integral representation of an exponential operator as:

e−|ψN |
2

U(ψN , ψ0) = (B.17)

e−|ψN |
2 〈ψN | e−xH |ψ0〉 = (

∏N−1
n=1

∫ dψ∗ndψn
π )e

∑N
n=1(ψ∗nψn−1−|ψn|2− x

N
H(ψ∗n,ψn−1))

The exponent, −S(ψ(n)) is a functional of the function from the descrete time index n to

the field ψ and has a form of a descrete action. If one takes the N infinite limit now then

one sees that exponent really is an action. But this is wrong. We must solve before taking a

limit, otherwise we risk missing the boundry conditions ψN and ψ0. This can only be solved

exactly if H is at most bilinear in the fields. The most general single boson hamiltonian of

this form is:

xH =

∫
dxω(x)b†b+ J(x)a† + J∗(x)a (B.18)

the integral form allows for the coeficents to depend on the field so that:

H(ψ∗n, ψn−1) = ω(n)ψ∗nψn−1 + J(n)ψ∗n + J∗(n)ψn−1 (B.19)

For this type of single particle hamiltonian, the path integral corresponds to a product of

gaussian integrals.

B.2.2 Fermionic Path Integrals

To construct a fermionic path integral, we need to find a resolution of the identity,

and if we want to make use of gaussian integration methods, we will need the resolution

of the identiy to look something like the bosonic coherent state. This is accomplished by

enlarging the hilbert space using a linear space over grassmann, anti-commuting numbers
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instead of complex numbers. In this space, the fermion creation operator has a eigenstate

given by:

e−ξic
†
i |0〉 . (B.20)

Using grassmann rules, one can compute an overlap between two fermionic coherent states:

〈
ξ|ξ′
〉

= eξ
∗ξ
′
, (B.21)

and we can write the resolution of the identity as:

1 =

∫ ∏

i

dξ∗i dξe
−

∑
i ξ
∗
i ξi |ξ〉 〈ξ| . (B.22)

Playing the same game as before with bosons, we get the same representatin of an exponen-

tial operator, but with grassman fields instead of bosonic fields, and a different integration

measure. These different have dramatic effects when preforming the integration over fields.

If a hamiltonian is given in terms of majorana fermions, the technical procedure

would first require a rotation to fermions, then use the coherent state identiy and then

rotate the complex fermionic grassmann fields back to real majorana grassmann fields.

Actually, this can usually be skipped and the majorana operators can be replaced by the

real grassmann fields. Trouble only arizes if this replacement is done to an A2
i = 1 before

this identiy is used, as the square of a grassmann number is 0 not 1.

B.2.3 Imaginary Time Correlations at the Gaussian Level

Now that we have a way of expressing exponential operators we can start solving

for correlation functions. We will do this for the imaginary time generating function, Eq.
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A.16, for a single mode non-interacting model and then discuss generalizations. Using

Eq.B.19 for a hamiltonian H = ωn, GT is written as:

GT (Ai(t)) = Tr
〈
Pe−

∫ β
0 dτ(H(τ)+η∗(τ)a+η(τ)a†)

〉
=

∫ dψ∗NdψN
π e−|ψN |

2 〈ψN | e−βH |±ψN 〉 = (
∏N
n=0

∫ dψ∗ndψn
π )e

∑N
n=1(ψ∗nψn−1−|ψn|2− β

N
H(ψ∗n,ψn−1))δ(ψ0 ∓ ψN )

Where the + is for bosons and − for fermions. To compute this we need to know how to

do guassian integrals. For bosons:

∏

i

∫
dReφidImφi

π
e−

∑
ij φ
∗
iHijφj+

∑
i η
∗
i φi+ηiφ

∗
i =

1

detH
e
∑
ij η
∗
iH
−1
ij ηj , (B.23)

for fermionic:

∏

i

∫
dξidξ

∗
i e
−

∑
ij ξ
∗
iHijξj+

∑
i η
∗
i ξi+ηiξ

∗
i = detHe

∑
ij η
∗
iH
−1
ij ηj , (B.24)

and for Majorana operaotrs:

∏

i

∫
dAie

−
∑
ij AiHijAj+

∑
i ηiAi =

√
detHe

∑
ij ηi

H−1
ij
2

ηj (B.25)

Therefore, we need to compute the determinant and inverse of the matrix in the exponent.

This matrix has −1 on the diagonals, 1 − β/Nω, and a ±(1 − β/N) on a corner from the

boundry condition. The determinant is easy to compute giving:

detS = 1∓ (1− β/Nω)N (B.26)

which in the large N limit gives: 1∓ eβω The inverse is harder, but can be solved by fourier

transform. Doing so, the action become:

S =
N∑

m=1

[eiωm(1− ωβ

N
)− 1] |ψωm |2 (B.27)
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where ωm = (2m+1∓1)π
N . We can can evaluate the fourier transforming of the inverse:

1

N

∑

m

e−iωm(n+1−m) 1

(1− ωβ/N)− e−iωm (B.28)

which has a pole at iωm = ω′ = ln(1 − ωβ/N). Preforming the sum using the matsubara

frequency integral (on wiki) one gets:

− 1

N
(1− ωβ/N)n+1−m N

1∓ (1− ωβ/N)N
(1− ωβ/N)−1for n−m > 0 (B.29)

1

N
(1− ωβ/N)n+1−m N

1∓ (1− ωβ/N)−N
(1− ωβ/N)−1for n−m < 0

where the last, (1−ωβ/N)−1, comes from the derivitive of the denominator for complex pole,

and the different cases depending on n and m are due to having to use different integration

functions to capture the convergence of either the left or right side of the complex plaine.

Defining m = τmN/β we can go to continous time by taking the large N limit. Doing so

we get:

H−1(τn − τm) = e−ω(τn−τm)(1± n±(ω))for n−m > 0 (B.30)

H−1(τn − τm) = e−ω(τn−τm)n±(ω)for n−m < 0

where n±(ω) is the boson or fermion density at inverse temperature β. Taking derivitves

of the generating function with respect to η∗m and ηn, we find the imaginary time two point

corrrelation as H−1(τn− τm). An alternative way to find the two point correlation function

is to use BCH for e−τωnae−τωn, and one finds the same things after imaginary time path

ordering.
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Generalizations

Two ways in which this calculation becomes more complex are 1) by working with

real time paths and 2) adding multiple modes. When adding multiple modes it easier to

first diagoanlize the single particle hamiltonian and then treat each mode independently. In

real time, the boundary conditions become more complicated, and for generic intial states

might not be gaussian. In this case, it is often easier to find H−1 by using BCH for the

correlation function. One can then construct a model action off of this continuous time

H−1, where the gaussian part is given by H. Since pertubative and renormalization group

techniques use products of the path integrals “covariance”, H−1, solving for H−1 in the

path integral formalism isn’t required, unless a classical approximation is first applied.
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