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ABSTRACT OF THE DISSERTATION

Essays on

Agriculture, Misallocation, and Economic Development

by

Jing Hang

Doctor of Philosophy in Economics

University of California, Los Angeles, 2018

Professor Lee Ohanian, Chair

This dissertation consists of three chapters. This first chapter studies ability sorting between

rural and urban regions induced by regional differences in prices and evaluates the importance

of this mechanism in explaining the large rural-urban (agriculture-non-agriculture) income

gap in developing countries. The second chapter studies how capital deepening might help

explain several development facts regarding agriculture when capital-labor substitution is

easier in agriculture than in non-agriculture. The third chapter explores resource misallo-

cation in production networks and studies how ignoring them might lead to mismeasured

efficiency loss from misallocation.
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CHAPTER 1

Introduction

This dissertation consists of three essays focusing on the role of agriculture and resource

misallocation in economic development.

Chapter 2 studies the “dual economy” in developing countries, namely the productivity

gap between the agricultural and the non-agricultural sector. I present a new explanation

for this phenomena which relies on the interaction between non-homothetic preferences and

costly domestic trade. In particular, food is a necessity which has an income elasticity less

than one. Food is produced in rural regions and shipped to cities incurring trade costs,

while non-agricultural good is produced in cities and shipped to rural regions. Combining

the preference and production structure, high ability workers sort into cities and work in

non-agriculture as they spend a larger fraction of expenditure on non-agricultural goods,

which are cheaper in cities. Low ability workers prefer to live in rural regions and work in

agriculture for easier access to food. The sorting mechanism has larger effects in developing

countries as these countries have higher trade costs and higher consumption shares of food.

I formalize the idea in a two-sector multi-region general equilibrium model. Quantitative

analysis of the model shows that the ability sorting mechanism can explain around 30% of

the rural-urban income gap in Malawi relative U.S. I also find empirical support of model

predictions using a detailed household survey from Malawi.

Chapter 3 explores the role of capital deepening on the productivity gap between agri-

culture and non-agriculture studied in Chapter 1, while also paying attention to two other

important development facts regarding agriculture: 1. the employment share of agricul-

ture declines in income levels; and 2. the international productivity gap is much larger in

agriculture than in non-agriculture. Empirical studies show that the elasticity of substi-
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tution is larger in agriculture than in non-agriculture. This means the agricultural sector

responds more strongly to the reduction in the relative price of capital. In response to this,

labor will move out of agriculture, and labor productivity in agriculture rise relative to non-

agriculture. I explore this capital-labor substitution mechanism quantitatively by comparing

a model with CES production functions and a model with Cobb-Douglas production func-

tions. I find that the model with CES production functions is successful in explaining the

sectoral gaps in productivity while does not help in explaining the other two development

facts. The reason is because agriculture is also more capital intensive than non-agriculture,

which counteracts the effect coming from a higher elasticity of substitution, consistent with

the findings of Herrendorf et al. (2015) in U.S. data.

The sectoral gaps in labor productivity has been deemed as a sign of severe misalloca-

tion of labor in developing countries (Gollin et al., 2014). Both the previous two chapters

present arguments that this is not necessary true. Chapter 4 on the other hand discusses

the measurement of the cost of resource misallocation across micro production units in more

detail. The burgeoning literature on misallocation following Hsieh and Klenow (2009) has

mainly used value-added production functions, which potentially could understate the cost

of misallocation because these studies ignore the magnification of the effect of misallocation

through intersectoral linkages (Jones, 2011, 2013). This chapter compares the efficiency loss

coming for resource misallocation measured in two models conditional on observing the same

data. One model has output production functions and allow for sectoral linkages and the

other model uses value-added production functions. I find that when there are no distor-

tions in intermediate input use, measured efficiency loss in the two models is identical. Both

models are correct representations of the underlying data. When there are distortions in in-

termediate input use, the value-added model produces incorrect measures of efficiency loss.

Empirical analysis using Chinese data however shows that the bias is small as the distortions

in intermediate input use are substantially smaller than that in primary input use. Existing

studies using the value-added model might actually have overstated the cost of misallocation

due to mis-specified parameter values.
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CHAPTER 2

Transportation Costs, Ability Sorting, and the Dual

Economy

2.1 Introduction

Many developing countries can be characterized as a “dual economy”, where the non-

agricultural sector is much more productive than the agricultural sector. Despite low agricul-

tural productivity, these countries have a large share of workers in agriculture (Gollin et al.

(2002); Caselli (2005), see Figure 2.1). A mirror image of the sectoral productivity gap is the

equally conspicuous rural-urban income gap (Young, 2013).1 The “dual economy” is such a

robust and salient feature of developing economies that reallocation of workers from agricul-

ture to non-agriculture (industrialization) or from rural to urban areas (urbanization) has

been viewed as synonymous to economic development. The traditional view of the sectoral

productivity gap is that there are barriers preventing workers from moving to urban areas.

Reallocation can bring the economy closer to the efficiency frontier. Given the large income

gaps and the large share of agricultural workers in developing countries, the efficiency gain

from reallocation can be huge.

This chapter proposes a new explanation for the “dual economy” which implies the gains

from reallocation are not warranted. I argue that high ability workers sort into cities due

to spatial price differences induced by transportation costs. As low ability (income) workers

spend a larger fraction of their income on food (Engel’s law), they prefer the rural areas

1To the extent that rural areas mostly engage in agricultural production while urban areas focus on
non-agricultural production. I use agriculture-non-agriculture and rural-urban interchangeably throughout
this chapter and only make clear the distinction when necessary. I do not distinguish between income and
productivity either.
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with cheaper food. On the other hand, high ability (income) workers prefer urban areas

because they value non-food consumption more and it is cheaper in cities. The ability

sorting mechanism is stronger in developing countries because 1) food consumption is more

important there, and 2) the spatial price differences are larger in developing countries due to

higher transportation costs. This explains why the income gap shrinks as a country develops.

I formalize the ability sorting mechanism in a two-sector multi-region general equilibrium

model. A non-agricultural sector locates in an urban center while all other regions are rural

and engage only in agricultural production. There is trade between the urban center and

the rural regions with varying iceberg trade costs, of which transportation costs are a main

component.2 The trade costs generate spatial price differences. Workers have Stone-Geary

utility with subsistence requirement in food. Each worker draws a pair of sector-specific

productivity and makes the location choice to maximize utility.

The introduction of sector-specific productivity draws follows Lagakos and Waugh (2013),

in which workers make the sector choice according to their comparative advantage in different

sectors, as in the classic Roy model. They find that agricultural labor productivity relative to

non-agriculture is lowered when unproductive agricultural workers select into the agricultural

sector as agricultural employment increases. My model reduces to that of Lagakos and

Waugh (2013) when trade costs are zero, which allows me to assess the importance of the

ability sorting mechanism on top of worker selection based on comparative advantage. On

the other hand, the multi-region setting follows Gollin and Rogerson (2014), which allows me

to zoom in on the rural regions as location choice across rural regions is only determined by

the ability sorting mechanism. I add worker heterogeneity to Gollin and Rogerson (2014) and

explore the role of ability sorting in explaining the spatial income differences in developing

countries.

The model predicts that income declines across rural regions in the trade costs with the

urban center. Using a detailed household survey from Malawi, I find that income declines

in the distance to the urban center, which is taken as a proxy for trade costs. This pat-

2I thus do not distinguish between trade costs and transportation costs in this chapter.
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Figure 2.1: The “Dual Economy”

(a) Agricultural Productivity Gap (b) Agriculture Employment

Note: The left panel plots the agricultural productivity gap, defined as the ra-
tio of agricultural labor productivity to non-agricultural labor productivity both
measured in nominal terms, against GDP per capita relative to U.S. The right
panel plots the employment share of agriculture against GDP per capita to U.S.
Data come from the Food and Agriculture Organization of the United Nations
(FAO,Rao (1993)) and the Penn World Table 8.1 (Feenstra et al., 2015).
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tern lends support to the ability sorting mechanism as it is not readily explained by worker

selection. I further test the ability sorting mechanism using detailed information on agricul-

tural production in the data. I construct a measure of farmer’s productivity by estimating

a plot level production. Consistent with the ability sorting mechanism, my measure of agri-

cultural productivity also declines in the distance to city. This finding could just reflect

genuine benefits of locating near to the city, such as cheaper intermediate inputs or better

access to agricultural technologies. I show that my findings are robust to these alternative

explanations.

I calibrate a zero transportation cost benchmark of the model to U.S. data using data

moments provided in Lagakos and Waugh (2013). I allow countries to differ in three ex-

ogenous factors: an economy wide efficiency measure that affecting productivity in both

sectors, transportation costs, and land endowment. I evaluate the model by varying these

factors to match aggregate labor productivity in Malawi, the spatial price differences in

the micro data, and arable land per capita. The ability sorting mechanism, namely adding

transportation costs in the model, significantly increases the model’s explanatory power of

the rural-urban income gap in Malawi. The explained share of the rural-urban income gap in

Malawi relative to U.S. goes down from 41.7% to 11.7% when the ability sorting mechanism

is shut down while holding aggregate labor productivity constant. Both aggregate efficiency

and transportation costs affect ability sorting. To explore their quantitative importance, I

perform several counterfactual experiments by varying them separately. These experiments

produce very different results. In particular, raising aggregate productivity have significantly

larger effects on productivity and welfare than reducing transportation costs, but similar ef-

fects on the rural-urban income differences. Transportation costs are more important in

understanding regional income differences.

If the government can focus its infrastructure investment on raising aggregate efficiency

or reducing transportation costs in different regions, these experiments provide useful infor-

mation for evaluating different investment projects. Of particular interest is that welfare

gains under these policy experiments are not equally distributed among workers. The bot-

tom workers gain less than average workers when transportation costs are reduced. In some

6



cases, the very poor even experience welfare loss. On the other hand, improvement in ag-

gregate efficiency benefits the bottom workers more than others. Dollar and Kraay (2002);

Dollar et al. (2016) find that the bottom workers tend to have similar income growth as

the average workers in many developing countries. This analysis suggests that this might

be due to different drivers of economic growth counteract each other. Governments should

be careful in selecting growth-promoting policies when poverty reduction is also a target.

Empirical studies such as Jacoby (2000); Jacoby and Minten (2009) find that improvement

in rural transportation infrastructure benefits the poor, my findings suggest that it might

not be the case if the improvement is at a large scale with general equilibrium effects taken

into account.3

The final piece of empirical support for the ability sorting mechanism comes from inter-

national data. Lagakos and Waugh (2013) argue that as women have lower physical strength

than men, they must have comparative disadvantage in strength intensive agricultural pro-

duction. The selection mechanism can thus explain why the share of women in agricultural

workers is increasing in agricultural employment. The same argument also implies women

should always be less likely to choose agriculture than men. Using data from International

Labor Organization (ILO) I find plenty of cases where women are more likely to choose

agriculture than men, and the probability of observing that is increasing in agricultural

employment. This can be explained by the ability sorting mechanism if women also have

absolute disadvantage to men. Women’s disadvantage can be explained by the model of Pitt

et al. (2012) where sector-specific worker productivity takes both physical strength and hu-

man capital as inputs. If women and men have similar human capital, women will have lower

productivity than men in both sectors due to their lower physical strength. The mechanism

should be stronger in developing countries as strength intensive technologies may be adopted

due to their lack of human capital (Caselli and Coleman, 2006), or because those countries

have a smaller services sector where women have comparative advantage (Ngai and Petron-

3The fact that perfectly mobile workers have unequal welfare gains from reductions in transportation
costs echos a recent trade literature studying the distributional effects of reduction in trade costs in the
presence of non-homothetic preferences and worker heterogeneity (Fajgelbaum and Khandelwal, 2016; Nigai,
2015).
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golo, 2017). The sorting mechanism is at work even when there is no difference between men

and women but women receive lower wages in both sectors due to discrimination.

The rest of the chapter is structured as follows. The next section presents a literature

review. Section 2.3 motivates the model in Section 2.4 using Malawi data. Section 2.5

studies the model quantitatively. Section 2.6 presents empirical support in the Malawi data

for model predictions, while Section 2.7 supports the model using ILO data. Section 2.8

concludes, which is followed by an appendix containing additional results and a detailed

description of data construction.

2.2 Related Literature

This chapter belongs to a recent literature on agriculture and development.4 Caselli (2005)

and Restuccia et al. (2008) single out agriculture as key to understand the huge international

income differences because 1) agricultural productivity in developing countries is extremely

low relative to non-agriculture, and 2) the low agricultural productivity induces large agri-

cultural employment in developing countries due to subsistence food requirement. Many

studies have since tried to explain why agricultural productivity is extremely low in poor

countries.5 This chapter relates to two sets of explanations and derives new implications

from them.6

4The idea that agriculture is important for understanding development is not new. It has long been at
the center stage of understanding economic development, see, e.g. Lewis (1954); Harris and Todaro (1970).
The new literature builds on the old literature and brings in better data and new perspectives.

5Related to that,Gollin et al. (2002, 2007) emphasize the pivotal role of agricultural productivity growth
in jump-starting modern economic growth.

6Another branch of the literature focus on the use of intermediate inputs in agriculture. Agricultural
production in poor countries use very little modern intermediate inputs than developed countries. This
could be due to distortions in the intermediate input markets (Restuccia et al., 2008), low productivity
in producing intermediate inputs (Yang and Zhu, 2013), or farmers not willing to use intermediate inputs
because of the associated risk when an insurance market is missing (Donovan, 2014). Land market misal-
location represents another reason for low agricultural productivity in developing countries (Adamopoulos
and Restuccia, 2014; Adamopoulos et al., 2015; Restuccia and Stantaeulàlia-Llopis, 2017). In particular,
Restuccia and Stantaeulàlia-Llopis (2017) use the same Malawi data that I use to find more severe misal-
location in agriculture than what Hsieh and Klenow (2009) have found in manufacturing. Other researches
have studied specific factors behind land misallocation, such as untitled land (Chen, 2016), the communal
land tenure arrangement in Sub-Sahara Africa (Gottlieb and Grobovšek, 2015), and a land reform in the
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First, this chapter is related to a literature that emphasizes the role of worker selection

in explaining productivity differences. Adopting a Roy model, Lagakos and Waugh (2013)

find that an increase in agricultural employment reduces average worker productivity in

agriculture but raises it in non-agriculture. This narrows the international productivity

differences in non-agriculture and widens that in agriculture. Young (2013) provides the

best empirical support to the self-selection argument. Using micro data from 65 countries,

he shows that workers born in the urban areas have a similar probability of moving to rural

areas as workers born in rural areas move to urban areas, despite a sizable rural-urban

income gap observed in data. Alvarez (2017) provides further evidence using Brazil panel

data, which allows him to track workers who actually move between sectors. He finds that

there is no significant wage growth for workers moving from agriculture to non-agriculture

when they don’t change their occupation.7 I contribute to this literature by proposing an

ability sorting mechanism based on absolute advantage of workers and the differences in

the consumption value of different regions. This literature relies on unobserved ability to

explain the productivity gap, which is not susceptible to econometric testing. The multi-

region setting in my model provides a way of testing the ability sorting mechanism.

The second literature traces the failure of agriculture in developing countries to high

transportation costs (Adamopoulos, 2011; Herrendorf et al., 2012; Gollin and Rogerson,

2014).8 High transportation costs distorts the spatial allocation of workers, which is particu-

larly detrimental to agriculture. This is because 1) more workers are allocated to agriculture,

a sector with decreasing returns due fixed land supply, and 2) agricultural production also

uses less intermediate inputs because transportation costs raise the price. While these studies

mainly assume homogeneous workers, I show that allowing for heterogeneous worker pro-

ductivity introduces a new channel for transportation costs to generate a “dual economy” in

Philippines (Adamopoulos and Restuccia, 2015).

7Other studies such as Adamopoulos et al. (2015) have combined the worker selection mechanism with
other distortions in the economy.

8It should be noted that trade literature has long been examining the effects of trade costs. Most of
them do not try to explain low agricultural productivity in developing countries. An exception is Tombe
(2015) who studies a multi-sector trade model with explicit reference to the problems of developing countries’
agricultural sector.
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developing countries.

The international comparison of sectoral productivity mirrors another finding previously

emphasized in Gollin et al. (2004), that is, agricultural labor productivity is significant lower

than non-agricultural labor productivity within a country when measured in nominal prices.

The gap in sectoral productivity is larger in developing countries. One explanation of the

productivity gap is measurement issues in the data. For example, Gollin et al. (2004) argue

that agricultural workers engage in more home production than non-agricultural workers.

Wingender (2015) interprets the gap as coming from sectoral differences in skill composition.

By carefully correcting measurement errors in the data, Gollin et al. (2014) find the gap is

still substantial after the adjustment.9 Another explanation is that regions differ in cost-of-

living or amenities such that welfare is equalized across regions. However, price differences

across regions are small relative to the income differences (Ravallion and van de Walle, 1991;

Brandt and Holz, 2006). Gollin et al. (2017) find that urban areas have better amenities

that rural areas in almost all the amenity measures they consider. These findings indicate

labor might be severely misallocated in developing countries (Gollin et al., 2014). Early

studies by Lewis (1954) and Harris and Todaro (1970) trace the source of misallocation to

institutional settings preventing the equalization of marginal product between the sectors.10

Caselli and Coleman (2001) argue that reduction in migration barriers lowered the sectoral

productivity gap in the U.S. The fact that many urban workers migrate to rural areas

(Young, 2013) suggests worker selection might be the reason behind the sectoral productivity

gap. Lagakos and Waugh (2013) though find self-selection cannot quantitatively explain the

sectoral productivity gap in developing countries very well. The ability sorting mechanism

on the other hand finds its biggest success in explaining the gap.

My multi-region model has features of the von Thünen model of ”dual economy” (Nerlove

9Herrendorf and Schoellman (2015) show that the agricultural productivity gap in U.S. can be explained
away by measurement errors in the data.

10Similar in that vein, Munshi and Rosenzweig (2016) show the gap can be explained by the rural insurance
networks which raises the benefits of locating in rural areas. Young (2013) however shows that the urban
workers migrating to rural areas fail to experience a reduction in the variance of consumption. Assuming
the income gaps reflecting labor misallocation, Vollrath (2009, 2014) estimates the efficiency loss from that.
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and Sadka, 1991). The original von Thünen model emphasizes the differential use of land in

rural areas according their distance to the urban center. Fafchamps and Shilpi (2003, 2005)

have examined those predictions of the von Thünen model using data from Nepal. They

find that the spatial specialization of economic activities and organization of labor do vary

systematically to the distance to the urban center. By adding worker heterogeneity to the

original model, my model generates spatial income differences across rural areas which I find

support in the Malawi data. My findings suggest that it might be fruitful to go beyond the

rural-urban dichotomy and study spatial inequality within each sector, in particular that

across the rural areas.

The sorting mechanism has been used to explain the spatial income gaps between cities

in the urban literature (Lee, 2010; Black et al., 2009; Handbury, 2013), which often model

spatial differences in housing prices as the source of ability sorting. I adopt the idea in a

rural-urban setting. In developing countries, the rural-urban income gap is a more salient

feature of spatial income inequality and food is a much more important consumption item

for the poor which has an income elasticity less than 1.

2.3 The Spatial Profile of Income and Prices in Malawi

This section presents some motivating evidence. I examine how income (consumption) and

prices vary geographically with respect to a region’s distance to an urban center using data

from Malawi. Malawi is a landlocked country in the Southern-Eastern part of Africa. It is

one of the least developed countries in the world. In 2005 it has a GDP per capita of only 580

dollars valued at PPP prices. Over 80% of its labor force work in agriculture. Transporta-

tion infrastructure is very poorly developed in Malawi. Due to the poor conditions of its

road, Malawi’s domestic transport costs are much higher than neighboring countries such as

Zimbabwe, which has similar income level to Malawi. Transport costs are the single largest

expenditure for Malawian farmers. In sugar production, which is one of Malawi’s major ex-

ports, regional and international transport costs add nearly 50 per cent to production costs

11



for Malawian sugar.11

The data I use is the Malawi 2010-2011 Integrated Survey on Agriculture (the Third

Integrated Household Survey, IHS3). It is part of the Living Standards Measurement Study

- Integrated Surveys on Agriculture (LSMS-ISA) project implemented by the LSMS team

of the World Bank. The ISA improves on previous LSMS surveys with a strong focus on

agriculture, which allows me to study the production and consumption decisions of farmers

in detail.

IHS3 has a sample size of 12,271 households and 56,397 individuals. The primary sam-

pling unit is the census enumeration areas (EAs). There are 768 EAs in total. The EAs differ

in the distance to urban markets, which is recorded in the community survey of IHS3.12 I use

two measures of distance: the physical distance to the nearest urban center and the cost of

total fare by regular motola to the nearest urban center.13 As the cost of fare doesn’t include

all the transportation costs to the urban center, I will focus on the physical distance.14 The

results using the cost of fare is similar but I do not report them in the text. IHS3 also asks

what the nearest urban center is. There are four urban centers to choose from: Mzuzu,

Lilongwe, Zomba, and Blantyre. These urban centers account for 11.9% of total population,

while the fraction of urban population is only 15.3% in total. The fact that the majority of

urban population live in the four urban centers allows me to treat all EAs except for those

in the urban centers as the rural area without worrying too much about the small cities.15

Figure 2.2 presents the geographic distribution of EAs according to the distance and cost

11The description above is based on OECD’s African Economic Outlook 2005-2006.

12A community identified in the community survey doesn’t corresponds to an EA exactly. It is represen-
tative of the EA as a whole.

13A motola is a pick-up truck that serves as an informal public transit.

14The question in the survey is: What is the cost of the total fare to go by regular matola from here or
the nearest matola stage to the nearest major urban centre, even if one has to change matola en route? It
thus might miss costs to the matola stage for some EAs. Changing matola might also incur additional time
cost that is not included in the total fare.

15Ideally, I would like to consider the distance to all cities, but the data is insufficient for that task.
Fafchamps and Shilpi (2003, 2005) use more detailed data on the geographic characteristics of regions in
Nepal. They focus on the examining the spatial specialization pattern instead of income.
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Figure 2.2: Geographic Distribution of EAs
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of fare to the nearest urban center. The distribution of EAs is relatively concentrated around

the urban centers. Most EAs locate within a 150km radius of one of the urban centers. Most

EAs have a cost of fare less than 1000 Malawian Kwacha.16 The two measures are highly

correlated with a correlation coefficient of 0.82. Given the scarcity of data for the remote

areas, it is not surprising that the spatial profile presented below has much larger confidence

interval for the farthest areas.

I construct measures of income and consumption at the household level from the data.

These measures are aggregates of income from different sources and consumption of different

categories. The procedure mainly follows De Magalhães and Stantaeulàlia-Llopis (2015)

who also use the data to document the cross-sectional facts of consumption, income and

wealth in Malawi. Section 2.9.2 gives a brief description of how I construct the income and

consumption measures.

16As of September 26, 2017, the exchange rate between Malawian Kwacha and U.S. dollar is 723.6
Kwacha/dollar.
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2.3.1 Income and Consumption

This subsection studies spatial inequality in Malawi. The fact that the urban-rural income

gap can be very large in developing countries is well known in the literature (Gollin et al.,

2014). Malawi is a good example of that. According to Malawi’s national statistics, agricul-

ture’s share of GDP in 2010 is 29.6% while its share of employment is 86.4%, which implies

an sectoral productivity gap over 15!17 This gap might be explained by measurement errors

in employment and GDP, and the gap might also reflect differences in observable character-

istics of agricultural and non-agricultural workers. Gollin et al. (2014) estimate that a half

of the raw agricultural productivity gap can be explained by these factors.18 Even with the

adjustment, the sectoral differences is still staggering, implying large potential gains from

labor reallocation. Looking at the rural-urban income differences, my calculation using the

Malawi data shows a gap of 3.01, which is a lot lower than the agricultural productivity gap

but still respectable.19

The rural-urban dichotomy obviously is an over-simplified description of regional inequal-

ity in developing countries. All people certainly do not have equal income within rural or

urban areas. Economists often consider economic isolation thus lack of trade as a source

of low income. In line of that, we might expect income to vary substantially across rural

regions, as the vast rural hinterland in developing countries hides large differences in the

access to the urban markets. I next examine how income varies with the distance to the

nearest urban center.20 For all the results presented below, I net out the differences across

17The data comes from Malawi’s Statistical Year Book 2012, which can be downloaded at http://www.

nsomalawi.mw/images/stories/data_on_line/general/yearbook/.

18Gollin et al. (2014) use data for 2005. The raw and adjusted productivity gap between agriculture and
non-agriculture for Malawi are respectively 12.54 and 6.23.

19The difference between agricultural productivity gap and rural-urban income gap indicates that even
within the same area there is an income gap between agriculture and non-agriculture. This could be due to
labor market frictions such as a rationed non-agricultural labor market, or ability sorting between the two
sectors, or some insurance role provided by agriculture (Munshi and Rosenzweig, 2016). It could also be due
to ability sorting caused by transaction costs within an area, such as the cost of going to the market. I am
not examining this aspect of the data. The model studied below have agriculture and non-agriculture take
place in different areas.

20As mentioned above, I also use the cost of fare to the nearest urban center as a measure of access to
urban market. The results are similar but I do not report them in the text.
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urban centers by regressing the variables of interest on a set of city dummies. Through out

this chapter, I examine the relationship between a variable of interest and the distance to

the nearest urban center using the non-parametric kernel-weighted local linear smoothing

method. Unless otherwise noted, I choose an Epanechnikov kernel and a bandwidth of 50

for the local regressions.

Figure 2.3: Spatial Income Profile

-.
5

0
.5

1
Lo

g 
In

co
m

e 
pe

r 
C

ap
ita

, N
or

m
al

iz
ed

0 100 200 300 400
Distance to the City

 95% Confidence Interval 

Note: Income comes from author’s calculation based on IHS3 data. Log income per
capita is smoothed using the kernel-weighted local linear regressions with Epanech-
nikov kernel and bandwidth equal to 50.

Figure 2.3 plots log income per capita against the distance to the nearest urban cen-

ter.21 Income initially declines in the distance to the city, then slightly increases and finally

decreases in the end. This suggests that geographic isolation reduces income near the city

but its effect tappers off as we go further away from the city. As discussed above, most

EAs locate within 150 kilometers from a urban center, this suggests that the results for the

far away areas should carry less weight given the paucity of data for those areas. This is

21I also use income per worker instead of income per capita, where a worker is defined as someone aged
between 15 and 64. The results are similar.
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reflected in the much larger confidence interval for the distant areas. Another reason to

put less weight on the results for the far away areas is that these areas are less likely to be

economically influenced by the urban center than some other nearby small cities. Taking

these into consideration, the spatial income profile in Figure 2.3 suggests that there is not

only a large income gap between urban and rural areas, but income also tends to decline in

the distance to the city within rural areas.

Since I only have a cross-section of data. The income measures I calculated contains a

permanent income component and a random shock. We are interested in the permanent

income component, which is better captured by consumption instead of income (Battistin

et al., 2009). In the data, consumption shows much less variation than income. Consumption

might also be more reliable if survey respondents are more reluctant to report income than

consumption or if income is hard to measured, which is particularly the case when most

people produce agricultural products not sold in the markets. In line of these considerations,

Figure 2.4 presents the spatial profile of consumption per capita.22 The rise in the middle

range is much less significant. Overall, there is a declining trend extended to the farthest

areas. This confirms that income might be systematically related to the location of a place.

The spatial variation is also economically significant: both the income and consumption gaps

between the poorest and richest regions can be as large as one log point.

The spatial income profile might not only reflect the productivity differences between

agriculture and non-agriculture. Fafchamps and Shilpi (2003) find that regions closer to the

city also engage more in non-agricultural production, which should lead to higher income

in those regions if non-agriculture has higher productivity. If these differences in regional

production structure can fully explain the spatial income profile, we should try to understand

why the production structure differs across regions. To examine whether it is the case in

data, I include the share of income coming from agriculture as a determinant of household

income.23 Even though the agricultural share of income is an economically and statistically

22The results are similar if I use consumption per adult equivalent. Following Meyer and Sullivan (2009),
I use the equivalence scale (A+PK)F , where A is the number of adults in the family, and K is the number
of children, with the child proportion of an adult P = 0.7 and economies of scale factor F = 0.7.

23Income shares are easily available as I construct total income from different income sources. It is hard
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Figure 2.4: Spatial Consumption Profile
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Note: Consumption comes from author’s calculation based on IHS3 data. Log con-
sumption per capita is smoothed using the kernel-weighted local linear regressions
with Epanechnikov kernel and bandwidth equal to 50.

significant determinant of household income, the spatial income profile documented above is

robust to the inclusion of the share.24

Regional differences in nominal income don’t translate into real income differences if

higher nominal income is offset by higher prices or worse amenities. If real income is equalized

across regions for these reasons, the rural-urban difference in nominal income might not be

a sign of resource misallocation. A recent study by Gollin et al. (2017) however shows that

a spatial equilibrium due to differences in amenities is very unlikely in a developing country

like Malawi. Using detailed data from 20 African countries including Malawi, they find that

amenities are constant or increasing in population density for almost all aspects of amenities

to construct employment shares because there is no detailed data on labor supply for all activities.

24A one percent increase of the share leads to a decline of log consumption per capita by 0.07, with a
p-value less than 0.001.
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they consider, such as housing quality and health, pollution and crime.25

If not amenities, can the differences in cost-of-living equalize real income across regions?26

Many casual observations suggest that there is a big difference in cost of living between rural

and urban areas in developing countries. Quantitative measures of that however are lacking,

to some extent due to the lack of good price data. Most studies constructing spatial cost-

of-living indexes do find that urban areas have larger cost-of-living, but the differences are

far from explaining all the differences in nominal income (eg., Ravallion and van de Walle

(1991); Brandt and Holz (2006)). I next turn to the evidence on prices from the Malawi

data.

2.3.2 Food Prices

The rest of the section analyses the spatial profile of prices. The analysis of prices is to

show that 1) spatial differences in nominal income can not be offset by differences in cost-

of-living, and 2) rural areas have lower relative price of food. I first look at food prices in

this subsection. Like many expenditure surveys, IHS3 asks both the value and quantity of

purchases for over 100 food items. This allows me to calculate unit values as proxy of prices.

To reduce the noise in unit value reported by individual households, I take the medium

unit value in a region to be the the price prevailing in that region. Combined with average

consumption shares of food items in each region, the prices are then used to construct a

spatial food price index. I classify the rural EAs into four regions according their distance

to the urban center and the urban EAs form a separate region. For each of the four urban

centers, a separate Paassche price index is constructed for the city and the surrounding rural

areas. Prices are normalized to 1 in the city. I report the average over the four cities in

Table 2.1. The differences in food prices between rural and areas are broadly consistent with

the findings of Deaton and Dupriez (2011) for Brazil and India. Within rural regions, there

25Housing quality and health are not amenity per se, but they use them as proxies for public good
provision in the household’s location.

26Gollin et al. (2017) look at real amenities. That is, they measure quantities which already take into
account the effect of price differences. Since they don’t consider all consumption goods, prices for other
goods might still differ across regions to equalize welfare.
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is also a decline in prices farther away from the city. Between the city and farthest rural

area, there is an economically significant 17% price gap. Keeping nominal income constant,

this means moving from the farthest area to the city could reduce real income by 8.5% given

food’s expenditure share of 0.5 in Malawi.27

Table 2.1: Spatial Price Differences

Regions 0 1 2 3 4

Distance to city city < 50 [50, 100] [100, 150] > 150

Price 1 0.91 0.87 0.86 0.83

Own-production 10.4 44.9 46.4 46.3 46.3

Note: Region 0 is the city, the rest are rural regions arranged in increasing distance
from the city. The first row shows the distance to the city measured in kilometers.
The second row is the Paasche price index for food. The third row is the percentage
of food not purchased.

Two caveats regarding the use of unit value are worth mentioning. First, I use unit value

to evaluate own-produced food. Table 2.1 reports that close to a half of food consumption in

rural areas come from own production while that number is only 10% in cities. This could

lead to an underestimation of the regional price differences if own-produced food is valued

at lower prices by the family than purchased food. For example, Deaton and Dupriez (2011)

find that the rural food price is substantially overestimated in Brazil and India when only

using unit values from cash purchases. Second, unit values are known to be contaminated

by quality differencesDeaton (1988). If high price goods also have high quality goods, this

however leads to an over-estimation the regional price gap.

To construct the price index, I need to balance the number of item prices available

and the number of regions, as smaller regions are more likely to recording zero purchase.

Having a few regions probably misses the price differences within an aggregated region. I

next look at the spatial profile of prices for individual food items. I make use of all unit

values reported by regressing prices at household-item level on distance to the nearest urban

27Of course, this rough calculation doesn’t consider the changes in other prices and the possibility of
substitution.
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center with a set of controls. The set of controls include the city dummies and the month

when the household were visited by survey teams, which is supposed to capture the effect of

seasonality. I experiment with two specifications, one includes the log of total expenditure

and one does not. The inclusion of total expenditure is to correct for the quality differences

in unit values.

Figure 2.5 plots the distance estimates against average expenditure shares. Most food

prices decline with distance from the city. It is especially so for those items with large ex-

penditure shares. Adding total expenditure increases the estimates, indicating the existence

of quality bias. However, the qualitative conclusion still holds. Looking at the individual

items closely, items less likely to be locally produced such as “Tinned meat or fish”, “Pow-

ered milk”, “butter”, “Sugar”, “Cooking oil” all have positive estimates. Interestingly, while

“Sugar” has a significant negative estimate, “Sugarcane” which is used to produce sugar has

a significant positive estimate. This says rural areas tends to have lower prices for locally

produced goods but higher prices for goods more likely to be exported from outside. As

descried in the introduction, I emphasize the effect of regional price differences coming from

the combination of regional specialization in production and costly trade. These findings

support my presumption.

My focus is on the aggregate cost-of-living and the relative price of food. While the

discussion of food prices is interesting, it is still only part of the story. As price is not

recorded for non-food items in IHS3, I next turn to a more structural estimation of both the

aggregate price index and relative price of food using information from Engel curves.

2.3.3 Price Estimates from Engel Curves

A recent literature pioneered by Hamilton (2001) and Costa (2001) uses information on

shifts in Engel curves to estimate differences in cost-of-living over time or across space. The

method relies on Engel’s law, which states that food’s budget share is inversely related to

household real income, conditional on relative prices and other household characteristics.

Movements in food’s budget share then provides an estimate of real income, ceteris paribus.
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Figure 2.5: Distance Slope of Prices and Expenditure Share
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What’s plotted is the estimated coefficient against the item’s expenditure share.
Both the results with total expenditure as a control and without are reported.

My method of estimating the aggregate price index and relative price of food builds on this

literature.

I estimate two demand systems, one for food and one for individual food items. The

demand system for food is assumed to be the Almost Ideal Demand System (AIDS): food’s

budget share is given by

ωij = φ+ β(lnYij − lnPj) + γ(lnP F
j − lnPN

j ) +X ′ijθ + uij,

where i and j indicates household and EA respectively, ω is food’s budget share, Y is

nominal income, P is the price index and subscripts F and N refer to food and non-food

respectively, X is a set of household characteristics controlling for differences in preference

between households, and u is a random error. Without information on prices, the model can
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be estimated as,

ωij = φ+ β lnYij +X ′ijθ +
∑
j

δjDj + uij, (2.1)

where Dj is an EA dummy and δj = −β lnPj + γ(lnP F
j − lnPN

j ) contains information on

both the cost of living and the relative price of food. Given the estimates for β and γ, I

should be able to decompose δj into the two components if I have either the cost of living

or the relative price.

The second demand system I estimate provides an estimate for lnPj. Following Nakamura

et al. (2016), the item-level Engel curve is specified as,

ωkij = φk + βk(lnYij − lnPj) + γk(lnP k
j − lnPj) +X ′ijθ

k + ukij,

where k indexes item. For each item k, I construct at the EA level item price P k
j as the

medium unit value reported by households in that EA. Without variation in item prices

within the EAs, this precludes the estimation of Pj from a single item. Nakamura et al.

(2016) estimate the model non-linearly, pooling all items together. Since there are 768

EAs and many items, a non-linear estimation like theirs is computationally not feasible.28

Another concern is the large amount of zero expenditures for each item in the data.29 Not

considering the zeros will lead to biased estimates. In line of these considerations, I propose

the following three-step procedure to estimate Pj. The first two steps adopts the censored

regression approach of Heien and Wesseils (1990) to correct for the zero expenditures. The

demand system to be estimated is

ωkij = φk + βk lnYij +X ′ijθ
k +

∑
j

δkjDj + ukij, (2.2)

where δkj = γk lnP k
j − (βk + γk) lnPj. In the first step, a probit model of whether or not

zero expenditure is observed is estimated on the regressors of the demand equation for each

28Their study of Chinese inflation rate only considers 30 provinces.

29This could be due to household not consuming the good or misreporting. As the households only report
food consumption during the last week, this could be also due to irregular purchasing.
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item. The estimates are used to calculate the inverse Mills ratios.30. In the second stage,

the item level demand equation 2.2 is estimated with the inverse Mills ratio as an additional

control. In the last stage, the estimated δkj are regressed on lnP k
j without a constant term.

The residuals can be viewed as estimates of lnPj. I average the residuals over item to form

my estimates of aggregate price lnPj.
31 Finally, the relative price lnP F

j − lnPN
j up to a

constant γ is retrieved as δj + β lnPj, where δj and β come from the Engel curve estimation

for food.

Figure 2.6: Spatial Profile of Log of Cost-of-Living Index
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Note: The price index comes from the Engel curve estimation described in the
text. Log price is smoothed using the kernel-weighted local linear regressions with
Epanechnikov kernel and bandwidth equal to 50.

I select ten food items according to their expenditure share and prices available.32 The

30The inverse Mills ratio is φ(·)
Φ(·) if expenditure is positive, and φ(·)

1−Φ(·) if otherwise. φ(·) and Φ(·) are the

predicted probability density and accumulative density for each observation

31This procedure leads to biased estimates of γ as lnPj and lnP kj might be correlated. I note that my
estimates of γ reported in the appendix are similar in magnitude compared to those of Nakamura et al.
(2016). I am working on improve the estimation procedure.

32They are maize ufa mgaiwa (normal flour), maize ufa refined (fine flour), dried fish, Sugar, tomato, rice,
nkhwani, brown bean, goat, and salt.
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controls used in the estimation are household size and composition, and household head’s

characteristics.33 Figure 2.6 plots the non-parametric fit of lnPj against distance to the city.

Surprisingly, price increases in distance. Cost-of-living do not offset the rural-urban income

differences but makes the gap in real income wider. In view of the food price differences

presented above, This could be the case if remote areas face really high prices for non-food

goods. For example, most services are not traded across regions. As most studies find urban

areas have slightly higher cost of living, this also points to the importance of accounting

for quality differences in measuring prices, especially for the non-food items.34,35 Another

possibility is urban areas provide more varieties which lowers aggregate price. The rural-

urban price difference is 0.11 log points, which is also economically significant. I freely admit

that the magnitude should not be taken too seriously given the complexity in the estimation

and measurement errors in data. The evidence does cast doubt on the role of cost of living

in explaining the spatial income differences found above.

Figure 2.7 shows that γ(lnP F
j −lnPN

j ) declines in distance except the inaccurate estimates

in the farthest areas. As most studies estimate γ to be positive (e.g., Hamilton (2001); Costa

(2001)), this also implies relative price declines in distance as expected. For individual items,

my estimates are also positive as shown in Section 2.9.1. If we take γ to be 0.05, which is

roughly the middle point of the values found in the literature, this implies the biggest gap

in relative price is around 1 log point. The measure of relative price is mechanically related

to that of aggregate price with my estimation procedure. However, given the spatial profile

of food price, aggregate price must be much higher in urban areas to reverse the pattern

of relative price, which contradicts most estimates of rural-rural price differences in the

literature.

33Household composition is described as the ratio of children less than 15 years of age in the household.
Household head’s characteristics include sex, education, age, religion, marital status, language spoken, and
a dummy indicating whether the household head is a farmer.

34Deaton and Dupriez (2011) find that quality differences explain some of the rural-urban food price
differences in Brazil and India.

35A theoretical possibility is that rural areas export high quality goods to urban areas while import low
quality goods given the income differences and quality is a luxury. Since transportation costs don’t depends
on quality, transportation costs can have a larger share in traded non-agricultural goods due to the differences
in the value of goods.
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Figure 2.7: Spatial Profile of Relative Price
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Note: The relative price comes from the Engel curve estimation described in the
text. Log relative price is smoothed using the kernel-weighted local linear regres-
sions with Epanechnikov kernel and bandwidth equal to 50.

2.3.4 Taking Stock

Taking all the evidence together, there are two main points to take away. First, rural areas

have much lower income per capita than urban areas, which also declines in the distance

to the city. Spatial differences in cost of living is less likely to offset the differences in

nominal income. Since the majority of Malawi’s population lives in the rural areas, this

spatial variation within rural areas is not a trivial issue. This is a new though not surprising

finding. It might be explained by increasing migration costs for workers farther away from

the city. Worker selection as in Lagakos and Waugh (2013) and Young (2013) however

cannot easily explain the differences within rural areas. In the next section I show that

workers might sort within rural areas due to the spatial differences in relative price, which

is the second main point from this section.

My finding of higher relative price of food in urban areas echos a recent literature em-
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phasizing the role of transportation costs in distorting the spatial allocation of workers in

developing countries (Adamopoulos, 2011; Herrendorf et al., 2012; Gollin and Rogerson,

2014). For example, Adamopoulos (2011) find that transportation costs in the 5% poorest

countires are 2.74 times higher than those of the 5% richest countries. From this point of

view, my price estimates from Engel curve estimation might not seem so surprising. In re-

ality, price determination depends much more than an aggregate measure of transportation

costs. The measured price differences probably are more relevant in determining the spatial

allocation of workers than rough measures of transportation costs.

2.4 A Model of Transportation Costs and Ability Sorting

This section presents a model to explain the spatial distribution of income discussed above.

The income inequality within rural areas motivates a multi-region model, which also helps

me to test the model implications using the Malawi Data in Section 2.6. The main idea

of the model is that spatial prices differences due to transport costs can lead to sorting

of workers across regions when food consumption is a necessity. Remote rural regions will

have relatively cheaper foods, which makes them more attractive to low ability/low income

workers with large expenditure share of food. Higher ability workers choose regions closer

to the city because they focus more on the consumption of non-food good. The model has

a similar geographic structure to Gollin and Rogerson (2014) who study the allocation of

workers between an urban center and several rural regions in presence of transportation costs.

It also follows a long tradition of von Thünen’s model of agricultural land use (e.g., Nerlove

and Sadka (1991)). In the model workers have sector-specific productivities as Lagakos and

Waugh (2013), such that comparative advantage is also a determinant of the sectoral choice

of workers.36

The economy features an urban center surrounded by a group of rural regions. I index

36Sector-specific productivity is not essential in inducing ability sorting due to spatial price differences.
However, if individual productivity is homogeneous across ectors, there will be perfect sorting across all
regions, as long as transport costs are not zero. With heterogeneous productivity, transportation costs play
a role in determining the sectoral choice of workers.
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the regions by j = 0, 1, 2...J , such that region 0 is the urban center, and the rest are rural

regions. The urban center produces a non-agricultural good. All rural regions produce a

homogeneous agricultural good. There will be trade between the urban center and the rural

regions, but not among the rural regions. Trade is costly. For a unit of agricultural good

transported from rural region j, only τ ja units reach the urban center. Similarly, for a unit

of non-agricultural good transported to region j, τ jn units arrive. Goods prices in region j

thus are given as

P j
a = τ jaP

0
a , and τ jnP

j
n = P 0

n . (2.3)

The rural regions are arranged such that trade costs are increase in j. That is, τ ja and τ jn are

decreasing in j. The relative price of agricultural good P ja
P jn

= τ jaτ
j
n
P 0
a

P 0
n

is hence decreasing in

j. Remote regions provide cheaper food. Finally, each rural region is endowed with Tj units

of land which is used in agricultural production.

There is a continuum of workers. Each is endowed with a pair of individual productivity

{za, zn}, representing the efficiency of the worker in agriculture and non-agriculture. The

pair of productivity is draw from a joint distribution G(za, zn) with za > 0 and zn > 0. The

production of the non-agricultural good uses only labor according to,

Y 0
n = AL0

n, (2.4)

where A is productivity, L0
n =

∫
i∈Ω0 z

i
ndG(i) is the labor input measured in efficiency units.

Profit maximization leads to

w0 = P 0
nA. (2.5)

Agricultural production uses both labor and land. All regions have access to the same

technology, such that production in region j > 0 is given by

Y j
a = A(Lja)

α(Tj)
1−α, (2.6)
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where Lja =
∫
i∈Ωj

ziadG(i) is the labor input in region j. Profit maximization leads to,

wj = αP j
aA

(
Tj

Lja

)1−α

, (2.7)

qj = (1− α)P j
aA

(
Lja
Tj

)α
, (2.8)

where qj is the rental rate of land in region j.

Worker’s preference over the agricultural goods Ca and non-agricultural good Cn is de-

fined as follows,

U =

(
Ca − ā
µ

)µ(
Cn

1− µ

)1−µ

, (2.9)

where ā > 0 is the subsistence requirement, and µ is the weight on agricultural consump-

tion. While the Stone-Geary preference or its extension (Herrendorf et al., 2013) have been

wildly used in the structural transformation literature, it has the unsatisfying property of

being homothetic asymptotically.37 My analysis however is not driven by the Stone-Geary

assumption. In Section 2.9.3 I show that ability sorting holds under any non-homothetic

preference that treat agricultural good as a necessity.38 I choose the Stone-Geary preference

for its analytical tractability.

A worker chooses a region to maximize utility, based on her productivity and local wage

and prices. Given the location choice, the budget constraint reads,

P j
aCa + P j

nCn = Ij, (2.10)

where Ij is the worker’s income in region j. In the urban center, workers only receive wage

income. In rural regions, workers receive wage income and a share of land rents. The land

rents are distributed across workers within a rural region. Each worker receives a share

proportional to her wage income. This amounts to workers receive all agricultural output

37The income effect is important in understanding structural transformation even in rich countries (Bop-
part, 2014), which is not possible with the Stone-Geary preference.

38The proof assumes homogeneous ability, so it corresponds to the within rural area ability sorting. Sector
choice under general preference is much harder to analyze when workers have sector-specific productivity.
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they produce. This assumption in essence mimics that of the classical dual economy model

of Lewis (1954): workers receive their average product. It is not so unrealistic. In developing

countries, rental markets for land are often missing, and most of the land is owned by the

family but without land titles (Chen, 2016).39 In this model, it results in worker income

proportional to their productivity, which simplifies the analysis below. But it does not drive

the results.40 Income in region j hence is summarized as,

Ij =


wjzn, if j = 0,

1
α
wjza = P j

ay
j
aza, otherwise,

(2.11)

where yja = Y ja
Lja

is the agricultural output per efficiency unit in region j.

Given the location choice and assuming Ij > P j
a ā,41 optimal consumption decision is

simply given as,

P j
aCa = µIj + (1− µ)P j

a ā (2.12)

P j
nCn = (1− µ)(Ij − P j

a ā) (2.13)

39In the Malawi data, only 7% of land plots are rented. Most land plots are either inherited (73.6%) or
granted by local leaders (11.6%).

40We can otherwise assume land rents are accrued to land owners who consume locally. Ability sorting
among workers still holds. If all workers receive an equal share of land rents irrespective of their location, a
sufficient condition for the results to hold is R < P ja ā where R is the total land rents. This condition is likely
to hold given I calibrate land rents to be only 18% of agricultural output while subsistence consumption
is 79% of agricultural output in the United States. The ability sorting results will be reversed if only the
distribution of land rents favors the near regions over remote regions and land rents are large relative to food
consumption. This is because lower ability farmers will value the fixed rental income more than high ability
farmers. This however is highly unrealistic.

41Otherwise only the agricultural good is consumed, we have P jaC
j
a = Ij and Cjn = 0. How the utility is

defined under this case doesn’t affect the equilibrium outcome. It only matters for welfare analysis. I will
come back to this point below.
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which leads to the indirect utility function,

V (j, za, zn) =


wjzn

(P ja)
µ
(P jn)

1−µ − ā
(
P ja
P jn

)1−µ
, if j = 0,

wjza

α(P ja)
µ
(P jn)

1−µ − ā
(
P ja
P jn

)1−µ
, otherwise.

(2.14)

The indirect utility for a worker residing in region j is a linear function of her productivity

with the intercept being determined by the relative price and the slope being a real wage

measure. The simple form of the indirect utility function makes the worker’s location choice

easy to analyze. The problem can be broken down into two sub-problems: the location

choice among rural regions and the sector choice between rural regions and the urban center.

I analyze them in turn.

Location Choice between Rural Regions The linear indirect utility implies that remote

regions have an advantage in attracting workers due to lower relative price of the agricultural

good. It must be counteracted by a lower real wage (income) if all regions are populated.42

We thus have real wage wj

(P ja)
µ
(P jn)

1−µ decreasing in j for the rural regions.43 It is easy to

see that under this scenario, if worker i chooses a near region over a remote region, any

agent with a higher za will also prefer the near region. This means the choice between

rural regions can be described by a set of cutoffs {z̃ja}j=1,...J−1, where the worker with z̃ja is

indifferent between region j and j + 1.

wj z̃ja

α
(
P j
a

)µ (
P j
n

)1−µ − ā
(
P j
a

P j
n

)1−µ

=
wj+1z̃ja

α
(
P j+1
a

)µ (
P j+1
n

)1−µ − ā
(
P j+1
a

P j+1
n

)1−µ

,∀j > 0. (2.15)

The presence of non-homothetic preference and regional price differences leads to perfect

worker sorting: higher productivity workers sort into higher wage regions and pay higher

price for the agricultural good. Figure 2.8 illustrates this for three rural regions, where the

allocation of workers between rural regions is fully described by two cut-offs. I summarize

42All regions must be occupied due to the presence of a fixed factor.

43Technically, wj

(P ja)
µ
(P jn)

1−µ is not a satisfying real wage measure, as different workers have different price

indexes when preferences are non-homothetic. I call it real wage nevertheless for convenience.
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these results in the following proposition.

Proposition 1 Among rural regions, regions with lower relative price of the agricultural

good: 1) pay lower real wages, measured as nominal wage deflated by a price index with fixed

weights; 2) attract agricultural workers with lower productivity.

Figure 2.8: Location Choice Between Rural Areas
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Lee (2010) show that ability sorting can rise between cities when big cities provide more

product varieties but also have higher rents. Since the housing demand is fixed, big cities

attract more high ability (income) worker because they value the consumption variety more

than low ability (income) workers. Sorting is not perfect because high ability and low ability

workers complement each other in production in all cities. This results in lower return for

high ability workers in big cities as low ability workers must be compensated for the high

housing price. For similar logic, Black et al. (2009) also show that cities with higher housing

prices should have lower return to education, which they find support in U.S. data. They

however assume both types of workers live in all cities, without considering the location
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choice problem. In my model, the disadvantage of near regions in food price is compensated

by higher real income. In developing countries, food consumption is more important than

housing consumption, while housing consumption might still play a role. The Malawi data

shows that food accounts for over 50% of total expenditure while housing rent is negligible.

Engel’s law stating that the expenditure share of food is declining in income is also a robust

feature of data, see eg. Houthakker (1957). Spatial price differences induced by transport

costs then imply workers are sorted across regions, which should help explain the spatial

income profile document in Section 2.3.

From the profit maximization conditions of agricultural firms, the wage rate in rural

regions is closely related to average product, wj = αP j
ay

j
a. Plugging it back into the indirect

utility function, we have

V (j, za, zn) =

(
P j
a

P j
n

)1−µ (
yjaza − ā

)
, ∀j > 0.

Since the relative price of food is decreasing in j, we must have yja increasing in j, otherwise no

worker will choose the remote areas. As the production technology is the same everywhere,

it must be the case that remote areas have more land per unit of efficiency labor. Since

agricultural workers are sellers of the agricultural goods, they naturally prefer higher relative

price of food. For them to accept a lower relative price of food in remote areas, they must be

compensated by higher land intensity. The rental rate of land must be lower in remote areas

as land intensity is high while food price is low. I summarize these results in the following

proposition.

Proposition 2 More remote rural areas have higher land-labor (in efficiency units) ratios

and lower land rental rates.

The model however doesn’t have an unambiguous prediction regarding how nominal

wages vary between regions. In a von Thünen model with Cobb-Douglas preferences and

homogeneous workers, Nerlove and Sadka (1991) show that nominal wages can be declining

in the distance from the urban center, only if remote regions in general have a lower price
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index. My model also has a similar property. As wj

(P ja)
µ
(P jn)

1−µ is decreasing in j, nominal

wage can be declining in j, if the increase in the price of the non-agricultural good is small

enough compared to the reduction in the price of the agricultural good.44 If the condition

is not satisfied, the model allows nominal wage to be increasing in j or behave randomly as

long as real wage is declining in j. This indicates that for workers around the boundary z̃ja,

workers in nearer regions might have lower nominal income. Perfect ability sorting doesn’t

necessarily mean there is perfect separation in nominal income between regions, a prediction

which is counterfactual.

Another way to look at nominal wage is to use the fact that wj = αP j
ay

j
a. As P j

a is

decreasing in j and yja is increasing in j, nominal wage is also decreasing in j if output per

efficiency unit doesn’t increase fast enough. This again requires the price of non-agricultural

good doesn’t increase too fast as a small increase in output is enough to make the marginal

worker indifferent. The model doesn’t have an unambiguous prediction for output per worker

either. As we go farther away from the urban center, yja is increasing while worker’s pro-

ductivity is decreasing, output per worker in a region might decrease or increase. The same

result applies to land per worker. Income per worker also changes in an ambiguous way as

it is a product of P j
a , yja, and average worker efficiency. It is more likely to be decreasing

in j than nominal wage and output per worker, which explains the spatial income profile

documented in Section 2.3.

The expenditure share of food doesn’t have a clear spatial pattern. It is given by

food share = µ+ (1− µ)
ā

yjaza
(2.16)

It is lower for higher ability agricultural workers. But these workers choose nearer areas

where average agricultural output per efficiency unit is lower, which raises the expenditure

share. The fact that it is increasing in the distance to city again requires the difference in

ability to play a dominant role.

Sector Choice I next consider the choice between rural and urban regions. Let the optimal

44Notice that the Engel curve evidence in Section 3 points to the opposite.
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choice between rural regions be j∗, had the worker chosen agriculture. The non-agricultural

sector will be chosen if,

w0zn

(P 0
a )µ (P 0

n)1−µ − ā
(
P 0
a

P 0
n

)1−µ

>
wj
∗
za

α
(
P j∗
a

)µ (
P j∗
n

)1−µ − ā
(
P j∗
a

P j∗
n

)1−µ

The location choice can be rewritten as,

w̄0

w̄j∗
zn
za

>
1

α
+
ā
[
1− (τ j

∗
a τ

j∗
n )µ−1

] (P 0
a

P 0
n

)1−µ

w̄j∗za
, (2.17)

where τ j
∗
a and τ j

∗
n are trade costs of region j∗ as defined above, and w̄j = wj

(P ja)
µ
(P jn)

1−µ is the

real wage rate. This condition is different from the standard Roy model where sector choice

is made to maximize nominal wages (Lagakos and Waugh, 2013) for three reasons. First,

when prices differ between sectors, what matters is real wages instead of nominal wages.

This is reflected in the LHS of 2.17. Second, workers receive average product instead of

marginal product in agriculture, as seen in the first term on the RHS of 2.17. This raises the

bar for the workers to choose non-agriculture.45 Third, the second term on the RHS of Eq.

2.17 captures the interaction between subsistence consumption and spatial price differences.

This interaction induces the sorting of better agricultural workers to non-agriculture. For

each za, the sector choice 2.17 can be perfectly described by a cutoff of zn, denoted as z̃n(za).

The higher za is, the lower the ratio of z̃n(za) to za. It is thus harder to induce low ability

agricultural workers to choose non-agriculture. This is due to two effects. First, there is

a direct effect as low ability workers with low income value low price of agricultural good

more. Second, there is the indirect effect as low ability workers choose remote regions with

even lower prices of agricultural good. This is depicted in Figure 2.9 where there are three

rural regions. I summarize this result in the following proposition.

Proposition 3 The ratio zn(za)
za

which describes the rural-urban choice for a worker with

agricultural productivity za is decreasing in za.

45It can also be viewed as a source of labor market frictions that lowers agricultural wages relative to
non-agricultural wages.
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Figure 2.9: Rural-Urban Choice

Cutoff 1 Cutoff 2

Rural 3 Rural 2
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Given the description of the location choice, labor supply in the urban center is given as

follows.

L0
n =

∫ ∞
0

∫ ∞
z̃n(za)

zndG(za, zn). (2.18)

In rural region j, labor supply is given as

Lja =

∫ z̃ja

z̃j−1
a

∫ z̃n(za)

0

zadG(za, zn), (2.19)

where I assume z̃0
a = 0 and z̃Ja = ∞ to save on notation. The number of workers in each

regions are given as

N j =


∫∞

0

∫∞
z̃n(za)

dG(za, zn), if j = 0,∫ z̃ja
z̃j−1
a

∫ z̃n(za)

0
dG(za, zn), otherwise.

(2.20)

We are now ready to define a competitive equilibrium for this economy.

Definition 1 The competitive equilibrium is defined as as a set of good prices {P j
a , P

j
n}j=0...J ,
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wages {wj}j=0...J , and land rental rates {qj}j=1...J that: 1) clear all the markets given worker’s

and firm’s optimal decision take the prices as given, and 2) satisfy the relationship between

prices described by 2.3.

Factor market clearing is given by equating the factor demand 2.5, 2.7, and 2.8 to labor

supply 2.18 and 2.19, and land supply Tj. Given Walras’s law, I normalize P 0
n = 1 and

consider only the market clearing condition for agricultural good,

µ
P 0
n

P 0
a

Y 0
n + (1− µ)N0ā =

J∑
j=1

(1− µ)(Y j
a −N j ā)

τ ja
, (2.21)

where I have made use of the aggregation property of the linear demand system implied by

the Stone-Geary preference.

2.5 The Quantitative Analysis

2.5.1 Calibration and Model Performance

This section quantifies the model and evaluates the importance of ability sorting. The

purpose is to understand how adding spatial price differences reinforces the selection effect

of Lagakos and Waugh (2013). The preference and technology parameters are calibrated to

U.S. data. For the U.S., it is assumed that transport costs are zero such that all workers

face identical prices. The model reduces to the baseline model of Lagakos and Waugh (2013)

except that agricultural production uses land. Following them, the joint distribution of

individual productivity draw is assumed to be

G(za, zn) = C[F (za), H(zn)],

where F (za) = exp(za)−θa and H(zn) = exp(zn)−θn ,

and C[u, v] = −1

ρ
log

[
1 +

(exp−ρu−1)(exp−ρv−1)

exp−ρ−1

]
.
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The parameters θa and θn controls the dispersion of the productivity draws and ρ determines

the correlation of the productivity draw. Using U.S. data, Lagakos and Waugh (2013)

find θa = 5.3, θn = 2.7, and ρ = 3.5. These numbers are also used here. Compared to

Lagakos and Waugh (2013), I have land in my model. The land share 1 − α is set to be

0.18, according to the estimate of Valentinyi and Herrendorf (2008) for U.S. agriculture.

Land endowment is set to be 3.39 to match a land per agricultural worker of 169.3 acre

(Adamopoulos and Restuccia, 2014). The preference parameters are set to target a long-run

agricultural employment share of 0.5 percent and a current agricultural employment share

of 2 percent, which leads to µ = 0.0037 and ā = 5.54. Productivity A is normalized to 100.

The transportation costs are calibrated to the Malawi economy. Similar to Gollin and

Rogerson (2014) who also focus on the spatial misallocation induced by transportation costs,

I assume there are only two rural regions. Total land is set to match the gap in arable land

per worker between Malawi and U.S. in Restuccia et al. (2008), TMWI/TUS = 0.73/1.62.

In line with previous discussion on spatial price differences, I assume the first rural region

corresponds to the area within 50 kilometers from an urban center and the second rural

region includes all the rest rural areas. Transportation costs are assumed to be the same

for both goods. I set τ 1
a = τ 2

n = 1.1 and τ 2
a = τ 2

n = 1.5, which are broadly consistent with

the Engel curve evidence in Section 2.3 and in line with the numbers used by Gollin and

Rogerson (2014). In the data, total land cultivated by farmers in the remote region is slightly

larger, which leads to T1 = 0.45TMWI and T2 = 0.55TMWI . Aggregate productivity A is

then calibrated to match the aggregate income difference between Malawi and U.S., which

requires AMWI = 6.37.

Table 2.2 presents the simulation results for the aggregate economy. To emphasize the

role of ability sorting, the model is contrasted to the model of Lagakos and Waugh (2013).

Since the Lagakos and Waugh (2013) model doesn’t have land, I first introduce land to

their model then add transportation costs. Both sets of results are reported. Compared

to Lagakos and Waugh (2013), adding land differences significantly increase the explaining

power for sectoral productivity and the employment share of agriculture. However, it helps
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Table 2.2: Model Performance: Aggregates

Data
L&W
(2013)

+land +sorting

U.S./Malawi ratio

Aggregate productivity 28.8 28.8 28.8 28.8

Ag productivity 88.2 39.5 54.0 53.3

Non-ag productivity 7.9 17.2 8.8 8.0

Malawi

Ag employment 85.4% 58.6% 78.8% 80.8%

Rural-urban income gap 3.01 1.56 1.60 1.95

Note: The productivity data come from Restuccia et al. (2008). Rural-urban in-
come gap comes from my calculation using the Malawi data.

little in terms of explaining the rural-urban income gap.46 Adding land to Lagakos and

Waugh (2013) increases the explained percentage of APG relative to U.S. from 11.7% to

15.1%.47 Ability sorting increases that percentage to 42.7%, a significant improvement.

Ability sorting explains the productivity gap relative to U.S. in non-agriculture slightly

better, but becomes slightly worse in explaining that in agriculture. This is because I hold the

aggregate productivity gap constant. With the new model, aggregate efficiency A is higher

than without ability sorting. This raises productivity in both sectors. Average worker ability

decreases in agriculture and increases in non-agriculture due to ability sorting. Figure 2.10

plots the probability of choosing non-agriculture for workers. Low ability agricultural workers

are less likely to choose non-agriculture in my model compared to Lagakos and Waugh

(2013), while the opposite is true for high ability agricultural workers. Overall, workers

46The agricultural productivity gap (APG) is probably a more suitable measure for my model. Malawi
has an unusually high APG. According to raw national accounts data, the gap is 12.5 in 2005, which reduces
to 6.2 after adjusting for measurement errors and human capital (Gollin et al., 2014). This is high even
compared to countries of similar income levels. For example, according to Restuccia et al. (2008), Malawi’s
GDP per capita is 1171 in 2005 international dollars. Uganda’s GDP per capita is 1224 while its APG is
only 2.49 after adjustment. In the Gollin et al. (2014) sample, only one country (Lesotho) has an APG
higher than Malawi. In line of this, I believe the rural-urban income gap calculated in data probably gives
a better description of the actual rural-urban differences.

47The model is calibrated to explained the U.S. APG which is 1.43. The explained percentage is calculated

as log(predicted APG)−log(U.S. APG)
log(actual APG)−log(U.S. APG) .

38



Figure 2.10: Sector Choice in the Model
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Note: The probability is estimated from regressing actual sector choice on agricul-
tural ability using robust locally weighted scatter plot smoothing.

choose agricultural more, which leads to a 2 percentage points increase in the agriculture

employment share.

I next contrast the within rural area model predictions to data. This could be a test of the

model because my calibration doesn’t target these data moments. As seen in Table 2.3, the

model overestimates the employment share in the near rural region but underestimates the

employment share in the remote rural region. This is reasonable since the one city assumption

will overestimate the attractiveness of the near region when remote regions actually have

access to other cities as well. Even though the model overestimates the attractiveness of

the near region, it correctly predicts that the employment to land ratio in the near region is

smaller than in the remote region. This is in direct contrast to Gollin and Rogerson (2014)

who study a similar model without heterogeneous ability. If workers are homogeneous, the

near region will have a larger employment to land ratio to counteract the benefit of being

closer to the urban center. Otherwise, all workers will flow to the near region. In my model,

what matters is the efficiency labor unit instead of number of workers. Ability sorting allows
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Table 2.3: Model Performance: Within Rural Area

Data Model

Employment share

Urban region 14.8% 19.2%

Rural region 1 27.9% 39.2%

Rural region 2 57.3% 41.7%

Urban/Rural income ratio

Region 1 2.67 1.45

Region 2 3.24 2.74

the near region to have a lower employment to land ratio but higher labor (in efficient units)

to land ratio. The model correctly predicts a lower income gap in the near region, which is a

motivation for the model. The predicted within-rural area income gap is larger than that in

data, again reflecting the over-estimation of the attractiveness of the near region. Overall,

the model is more successful in explaining the income gap between the urban center and

the remote region than explaining that between the urban center and the near region. This

somehow suggests that transportation costs between the near region and the urban center

might be underestimated.

2.5.2 Counterfactual Experiments

I next run a set of counterfactual experiments with the model. I focus on how changes

in productivity and transportation costs affect the equilibrium and the associated welfare

effects. Since the ability sorting mechanism depends both on aggregate productivity and

transportation costs, the experiments also evaluates the relative importance of them. I

consider the following sets of changes: 1) reduce transportation costs in the near region by

10%; 2) reduce transportation costs in the near regions by 10%; 3) increase the land share

in the near region to 0.5, and 4) raise A by 10%. The first three can be considered as

infrastructure development targeted at different regions, while the last can be viewed as an

improvement in production efficiency coming from other sources.
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Since utility is not defined when food consumption is below subsistence, I adopt the

following transformation of the Stone-Geary preference used above,

U =


Ca, if Ca < ā

ā+

[
(Ca−āµ )

µ
( Cn

1−µ)
1−µ]σ

−1

σ
, if Ca ≥ ā

(2.22)

where 0 < σ < 1 ensures that utility is strictly concave when Ca ≥ ā and that it increases

when the consumption of the non-agricultural good goes from zero to positive. Following

Gollin et al. (2007), I choose σ = 0.0001 to approximate a log utility. Under the transfor-

mation, the positive results still hold as consumption behavior and location choice is not

affected. My welfare measure is the equivalent variation defined as the percentage change in

welfare that satisfies

V (I ′, P
′

a, P
′

n) = V ((1 + x)I, Pa, Pn), (2.23)

where prime indicates variables after the change. Given the non-homothetic preference,

welfare gains differ across workers even they are perfectly mobile. I document the average

welfare change for all workers and for workers in the bottom 20% and 40%. Focusing on

workers in the bottom is motivated by Dollar and Kraay (2002); Dollar et al. (2016) who

study whether growth is shared among the poor.

Table 2.4 presents the simulation results. For the first experiment, reducing transporta-

tion costs in the near region raises agricultural productivity but lowers non-agricultural

productivity. This is because workers migrate in response to their comparative advantage

due to lowering spatial price differences such that the non-agricultural sector on average has

worse workers. Consistent with that, rural-urban income gap has a 5.8% drop. The size of

the drop in non-agricultural productivity is larger than the increase in agricultural produc-

tivity, implying the reduction in transportation costs actually make the misallocation within

rural areas worse. Overall, this leads to an increase in aggregate productivity less than 2%.

The urban center and the near rural region both experience increase in employment at the

expense of the remote region. Welfare gains benefit the bottom workers less than others.

Since most bottom workers locate in the remote region, this reflects that the reduction in
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Table 2.4: Counterfactual Experiments

Baseline Ex 1 Ex 2 Ex 3 Ex 4

U.S./Malawi ratio

Aggregate productiv-
ity

28.8 28.3 28.5 28.7 23.6

Ag productivity 53.3 53.2 54.0 53.1 48.0

Non-ag productivity 8.0 8.3 8.8 8.1 8.2

Malawi

Urban Employment 19.2% 20.7% 19.7% 19.4% 25.7%

Rural 1 Employment 39.2% 40.8% 36.0% 42.2% 40.2%

Rural 2 Employment 41.7% 38.6% 44.3% 38.3% 34.1%

Rural-urban income
gap

1.95 1.84 1.88 1.93 1.86

Welfare gain

Overall 2.5% 0.6% 0.3% 11.4%

Bottom 20% 1.3% -0.1% 0.0% 13.5%

Bottom 40% 1.2% 0.6% 0.0% 13.4%

the relative price of the agricultural good hurts net suppliers in the remote region, they are

partly compensated by an increase in the land-labor (in efficiency unit) ratio. The bottom

20% workers fare slightly better than the bottom 40% workers as some of them are not

selling their output and are not affected by the price change.

Reducing transportation costs in the remote region reduces both agricultural and non-

agricultural productivity, though aggregate productivity only increases by around 1%. This

again is due to the reallocation of workers from the near region to the urban center and

the remote region. It reduces the average worker ability in the urban center as in the

first experiment. It also increases the share of employment in the low productivity remote

region. Aggregate productivity increases because the non-agricultural sector has a larger

share of employment. Rural-urban income gap is reduced by a little over 2%. The welfare

gains are much smaller than that in the first experiment. Bottom workers still benefit less

than the average workers. The bottom 20% workers even suffer a welfare loss due to the
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reduction. This reflects the reduction in land-labor ratio in the remote region, which hurts

the agricultural workers in subsistence. Net suppliers in the remote region are compensated

by a higher relative price of the agricultural good even though relative price has decreased

in the urban center.

The third experiment, raising the land share of the near region, has similar effects on

productivity as the first experiment, though with much smaller magnitude. Employment

in the urban center increases a little, while there is a large shift of employment from the

remote region to the near region. This is largely mechanical due to the increase in size of

the near region. Employment density actually decreases in the near region relative to the

remote region.48 Due to the increase in the price of the agricultural good, the remote region

becomes more attractive to low ability workers. The welfare gains are small, with the bottom

workers experience almost zero gains on average. This again is caused by the decrease in

land-labor ratio associated with the increase in employment density in the remote region.

The fourth experiment has the largest effects on the equilibrium outcome and welfare,

because it is an economy wide change affecting all regions. Productivity growth reduces

the importance of food consumption, which weakens the ability sorting channel. This again

leads to a slight decrease in non-agricultural productivity despite the increase in produc-

tion efficiency. Agricultural productivity increases by a little over 10% due the increase

in production efficiency and the increase in worker efficiency, while aggregate productivity

increases by almost 20%. The near region shows a small reduction in employment, while

employment in the urban center increases by 5.5 percentage points at the loss of the remote

region. Welfare gains are also large, with the average change being 11.4%. Different from

the first three experiments, the bottom workers benefit more from the increase in production

efficiency. Even though the price of the agricultural good decreases, they benefit from the

increase in the land-labor ratio. Due to the increase in production efficiency and the increase

in land-labor ratio, over 90% workers under subsistence are able to move out of subsistence.

The experiments I carry out do not consider the cost side at all. The results from these

48In the table, the employment share of the remote region has declined. But note that the land share has
also decline.
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experiments are thus not sufficient to guide infrastructure investment. Nevertheless, the

three experiments regarding transportation costs show very different effects on productivity

and welfare from the other experiment. Reductions in transportation costs are more effective

in reducing the regional income gap than raising sectoral productivity. They also benefit the

bottom workers less than the rest, contrary to the a universal productivity growth. These

findings echo the study of Gollin and Rogerson (2014) who also emphasize the geographic

factors within rural area. It shows that studying how limited resources for infrastructure

development should be allocated can be as important as simply promoting infrastructure

development.

Dollar and Kraay (2002) and Dollar et al. (2016) argue that the poor benefit equally from

economic growth as others by showing that income growth of the bottom workers are similar

to that of all workers in data. My welfare analysis shows that there is more subtlety to the

story. I find that infrastructure investment aiming at reducing transportation costs benefits

the poor less or even hurt the poor, while that aiming at increasing aggregate production

efficiency benefits the poor more than the others. The results of Dollar and Kraay (2002)

and Dollar et al. (2016) then should be viewed as a combination of effects coming from

improvements in different aspects of the economy. It is however not very meaningful to just

asking whether growth is good or bad for the poor. Instead we need to ask what kind of

growth-promoting policies are good for the poor.

2.6 Empirical Support for the Sorting Mechanism

I test the model predictions in this section using the third Integrated Household Survey

(IHS3) of Malawi introduced in Section 2.3. Previous studies have provided evidence for

worker selection between rural and urban areas. Young (2013) show that despite an aver-

age rural-urban consumption gap of 1.52 in 65 developing countries, around a quarter of

individuals who lived in urban areas prior to the age of 12 migrate to rural areas as adults.

Using Brazilian panel data, Alvarez (2017) find that workers switching from agriculture to

non-agriculture don’t experience a wage increase if they don’t change their occupations,
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confirming the presence of sector-specific skills.

The Malawi data shows that 11% of workers originated from urban areas migrate to rural

areas. The number is smaller than what Young (2013) has found but the rural-urban income

gap of 3.01 in Malawi is also larger than that in the countries studied by him. Although

providing some support, this is not a test of the selection mechanism. Since individual

productivity is unobserved, such a test is challenging. Good panel data such as that used

by Alvarez (2017) is required. The Malawi data doesn’t qualify for this task. Given the

multi-region setting of my model, the data does provide a way to get around this problem.

Detailed data on agricultural production allows me to directly measure agricultural worker’s

ability by estimating agricultural production functions controlling for other inputs (Jacoby

and Minten, 2009; Shenoy, 2017). With the ability measures the model prediction of within

rural region ability sorting can be readily examined. This is the main objective of this

section. I also provide evidence for the spatial profile of land rental rate predict by the

model in next subsection. It however cannot be viewed as an piece of evidence of the ability

sorting mechanism as it is also implied in Gollin and Rogerson (2014) where the sorting

mechanism is missing.

2.6.1 Ability Sorting between Rural Areas

Ability sorting within rural regions can be tested if we have a measure of agricultural ability.

I construct such a measure from estimating a plot-level production function. I start with

decomposing total output on a plot into the contribution of inputs and a residual as follows,49

yij = β0 + βssij + βkkij + βllij + βmmij + aij,

49Output and inputs except for capital are constructed by aggregating over different items using a com-
mon set of market prices, following Restuccia and Stantaeulàlia-Llopis (2017). So the production function
is measured in physical units, devoid of the effect of local prices. Capital is measured using self-evaluation
of different agricultural instruments and structures owned by the household. The use of self-reported values
helps capture the quality differences in capital. See Section 2.9.2 for a detailed description of data construc-
tion. I also only study the rainy season as agricultural production in Malawi mainly happens during the
rainy season.
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where i and j indicate farmer and plot respectively, the four inputs are land (s), capital (k),

labor (l), intermediate input (m) all in logs, output(y) is also in logs, and a is the residual.

The residual combines all factors affecting the output on a plot besides the inputs, including

the quality of land, the weather shocks, measurement errors, and the managerial ability of

the farmer that is a very important determinant in agricultural production (Welch, 1970).

The purpose is to separate the managerial ability from other factors included in the residual

and take it as my measure of agricultural productivity.

The residual productivity of a plot can be decomposed into a farmer-plot-specific com-

ponent and a farmer-specific component,

aij = Φi + Ψij.

The farmer-specific component Φi affects all plots managed by the same farmer. It in-

cludes the farmer’s productivity, measurement errors at the farmer level, and local weather

conditions.50 The farmer-plot-specific component Ψij includes the quality of the land, mea-

surement errors at the farmer level, and other random shocks. The data provides detailed

information on land quality through a set of plot characteristics: the type of soil and soil

quality, the extent of erosion, and the type of irrigation system.51 Weather conditions are

also well documented, including information on the amount of rain during the last completed

rainy season and the timing of rain.52 Let Xij be the set of land quality and weather controls,

the production function can then be estimated as,

yij = β0 + βssij + βkkij + βllij + βmmij +Xijγ + ui + εij, (2.24)

50Local weather might affect different plots differently. The effect of the local weather conditions included
in the farmer-specific component then is the average effect over all plots, and the deviation from the average
enters the farmer-plot-specific component.

51All these measures are categorical such that I can control for the differences in land quality in a flexible
way.

52The survey asks whether the amount of rain is too much, the right amount, or too little. It also asks
whether the rain began (ended) too early, at the right time, or too late.
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where ui is a farmer-specific unobserved effect including the farmer’s productivity and mea-

surement errors at the farmer level, and εij includes all other random errors. Data quality

of IHS3 is very high. One example for that is the measurement of plot size. In surveys on

agricultural production, plot size is often self-reported which can deviate from true plot size

(Carletto et al., 2013). This problem is overcome by using GPS measured plot size provided

for almost 98% of all land plots.53 For this reason, I assume the effect of measurement errors

are small and take ui to be my measure of agricultural productivity.

Given the above discussion, land quality is well measured while weather conditions at

the plot level are not. εij then mainly include unmeasured weather effects. If input decisions

are mainly made before the realization of weather shocks, we have the exogeneity condition

E(εij|sij, kij, lij,mij, Xij) = 0. The inputs however are affected by ui as farmers make input

decisions knowing their own managerial talent. The fixed effects estimation then should

lead to consistent estimates of the parameters. However, a few variables are invariant at the

farmer level, including capital stock and weather conditions. Under fixed effects estimation,

the coefficients for these variables are not identified and ui will also contain the effects of

capital stock and weather conditions. In view of this, I use the correlated random effects

estimation proposed by Mundlak (1978). The Mundlak approach projects the unobserved

effects on the observed controls,

ui = Z̄iθ + ηi,

where Z̄i is the average of all controls at the farmer level, and ηi is the true random effect.

Plugging this into equation 2.24, the estimation equation now reads

yij = β0 + βssij + βkkij + βllij + βmmij +Xijγ + Z̄iθ + ηi + εij. (2.25)

The model is then estimated using random effects estimation. The parameters β and γ are

the same as those from the fixed effects estimation. θ equal to the difference between the

fixed effects and random effects estimators.

53For the rest, I use self-reported plot size.
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From the regression, my measure of agricultural ability is constructed as

âi = θssi + θlli + θmmi + ηi. (2.26)

The agricultural ability has two components. The first component is the projection of ui

on the inputs, which reflects how the input responds to agricultural productivity at the

farmer level. Since the true output elasticities are the fixed effects estimates, these should

be conceived as part of farmer’s agricultural productivity correlated with the average input

level. I don’t include capital because the output elasticity of capital is not identified under

fixed effects estimation, as capital is invariant at farmer level. To the extent that capital

declines in the distance to city and higher farmer managerial talent leads to higher capital

usage, I will underestimate the decline of farmer productivity in distance to the city. The

second component is the random effect ηi, which is the part of productivity orthogonal to

inputs. This could be due to distorted factor markets, which is prevalent in Malawi given

the allocation of land is mostly made by local chiefs and intermediate inputs are heavily

subsidized Restuccia and Stantaeulàlia-Llopis (2017).

Table 2.5: Production Function Estimates

Estimates Standard
error

Land 0.23 0.025

Intermediate 0.17 0.010

Labor 0.43 0.029

Mean land 0.10 0.040

Mean intermediate 0.070 0.016

Mean labor -0.35 0.033

Mean capital 0.14 0.014

No. of Obs 8791

No. of Groups 3651

Overall R-squard 0.33

Remark: Standard errors are clustered at EA level.
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I include in the regression only farmers managing at least 2 plots. I end up with 3651

farmers managing 8791 plots. Most farmers only manage 2 plots. Average number of plots

per farmer is 2.4. Table 2.5 presents the estimation results. All estimates are highly signifi-

cant. The output elasticities show that agricultural production in Malawi is relatively land-

and labor-intensive. The estimates for the average of land size and intermediate input are

positive, showing better farmers use more land and intermediate inputs. The estimates for

average labor however is negative, indicating better farmers also save on labor. If we take

the estimates on capital as the true output elasticity, we can not reject the hypothesis that

the production function exhibits constant returns to scale.54 If we believe the estimate for

capital is larger than the true output elasticity, the production function should have minor

decreasing returns to scale. This is in contrast with Shenoy (2017) who find significant de-

creasing returns in Thailand data. However, his estimation is at the farm level while my

estimation is at the plot level. The constraint due to farmer’s span of control should not

matter that much given the limited size of most plots in the data.

To check the validity of the estimated agricultural productivity, I examine whether two

proxies for human capital, age and years of schooling, are good predictors of the estimated

agricultural productivity. Regression shown that both are highly significant predictors. The

estimates for years of schooling is 0.01 and that with age is -0.002.55 This shows education

increases farming ability, while increase in age is associated with lower farming ability. This

makes sense if physical strength matters for farming or young people are better at adapting

to new technology. These results are also consistent with Shenoy (2017).

Figure 2.11 plots my measure of farmer’s ability against the distance to nearest urban

center. Farmer’s ability quickly decreases initially then the effect of distance levels off in the

more remote areas. It shows a declining trend in the farthest areas though the confidence

interval is very large. The spatial profile is consistent with the model prediction and the

spatial profile of income. The spatial gap of ability is much lower than that of income. The

large gap in income reflects the fact that more able farmers also employ more inputs. Given

54A Wald test of constant returns to scale has a p-value of 0.29.

55The standard errors are 0.002 and 0.0004 respectively.
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that I find relatively large returns to scale, we should expect the induced effect on inputs to

be large.56

Figure 2.11: Distance to City and Farmer Productivity
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Note: Farmer’s productivity comes from the production function estimation de-
scribed in the text. It is further smoothed using the kernel-weighted local linear
regressions with Epanechnikov kernel and bandwidth equal to 50.

The spatial profile of farmer’s ability might also reflect genuine benefits of being near

the cities. One of the benefits might be lower intermediate prices in the near region. The

production function estimation however already controls for input usage such that the effect

of input prices should not enter the measure of farmer productivity. I also include in the

production function estimation an intermediate input price index as control. To construct

the index, I regress household level input prices (in logs) on dummies for the type of the

input and dummies for EAs. The estimates for the EA dummies are then taken to be the

price index. Another benefit of being near the cities is that it allows farmers to learn better

farming practices that is not reflected in the use of intermediate inputs. To control for that,

56An estimation of the effects however is not possible because these farmers also face different prices.
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I also add the access to agricultural extension services in an EA to the regression.57 The

findings are similar without or without these controls.

Since I use a common set of prices to value physical output of different crops, this could

distort my finding as I also emphasize the spatial price differences. If the farmers in the

remote areas grow more crops that are undervalued with the common prices, it will also

generate a spatial profile as found above.58 To exclude the effect of prices, I estimate the

production function using plots growing only “local maize” or “hybrid maize”, two of the

most common crops in Malawi. The spatial profile of measured farmer’s ability is particularly

strong for hybrid maize, which is consistent with Schultz (1964) who argues that human

capital is particularly important when new technology is adopted. The labor measure I use

weighs the input of men, women, and children using their wages. In the baseline estimation

I include farmers who actually reside in urban centers. The spatial pattern is robust to the

use of a non-weighted labor measure or use observations only from the rural area. I also

estimate the model using only plots with GPS-measured land size. The results still hold.

I interpret my findings as providing support to the ability sorting mechanism. Alterna-

tively, farmer’s productivity can be higher in regions closer to the urban center along the

lines of Lagakos and Waugh (2013) if they are more selected as those regions might also

have a higher share of non-agricultural production (Fafchamps and Shilpi, 2003). To rule

out this possibility, I control for the share of income coming from agriculture in each EA

in my estimation. My findings again are robust to the additional control, lending further

support to the ability sorting mechanism.

57The survey asks about the distance to the office/residence of the nearest Assistant Agricultural Exten-
sion Development Officer.

58The problem is similar to that in constructing real GDP: using prices of the rich countries tend to
underestimate the international income gap while using prices of the poor countries tend to overestimate the
gap because consumers spend more on cheaper goods. Since the data applies to the suppliers, the opposite is
true because they produce more of the expensive goods given the trading opportunity. Since medium prices
are used as the common prices, they tend to be closer to prices in regions near the cities due to the goods
are more likely to be available in the cities. This leads to lower prices for crops grown in remote regions.
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2.6.2 Testing the Model Prediction for Land Rental Rate

The model predicts that land rental rate should be lower in remote prices. I examine whether

the pattern exists in data in this subsection. For each plot, IHS3 asks the respondents to

estimate the selling price and the one-year rent of the plot if they were to sell or rent out

the land. Given that less than 10% of all plots are purchased or rented, it is not possible

to use actual rents.59 I use the self-estimated land price or rent divided by land size to be

my measure of land value. I net out the effect of land quality by regressing the log of the

value measures on the set of land quality measures discussed above. The regression residuals

are then plotted against the distance to the city in Figure 2.12. Both price and rent show a

clear declining trend in the distance to the city except a small bump for prices in the middle

range. This is consistent with the model. Jacoby (2000) also provides similar evidence for

Nepal. This pattern however is not unique to my model. It is also predicted by Gollin and

Rogerson (2014).

2.7 Other Supporting Evidence: Women in Agriculture

I provide the last piece of evidence regarding the employment of women in agriculture.

Lagakos and Waugh (2013) find ample evidence to show that women tend to have lower

agricultural productivity due to their lower physical strength and agricultural production

is strength intensive. The comparative disadvantage of women in agricultural production

makes them less likely to work in agriculture when the agricultural sector shrinks along

economic development. The share of women in agriculture will increase as the employment

share of agriculture increases. They show that this is borne out in data, supporting that

workers select into different sectors according to their comparative advantage.

Another implication of women’s comparative advantage in non-agriculture is that women

should always be more likely to choose non-agriculture than men. To see whether that is

also borne out in data, I use the International Labor Organization (ILO) database of labor

59Actual purchase price is not provided.
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Figure 2.12: Distance to City and Land Value
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Note: The one-year rental and selling price are self-estimated by survey respondents.
I divide them by land size after netting out the differences in land quality. The
unit measures are then smoothed using the kernel-weighted local linear regressions
with Epanechnikov kernel and bandwidth equal to 50.

statistics, which provides information on employment by sex and industry for 205 countries

or regions running from 1948 or 2008. In any given year the number of countries with data

available is very small, especially during the early years.60 The data also come from different

sources, including household survey, labor force survey, official estimates, and population

census. I pool all available data together to maximize the use of available information, but

the findings are robust to the use of data for a single year or data coming from a particular

source.

Figure 2.13 plots the log odds ratio of choosing agriculture for women versus men against

the employment share of agriculture. The odds ratio is defined as ratio of the probability of

choosing agriculture relative to non-agriculture for women to that for men. It depicts how

women have different tendencies to choose agriculture over non-agriculture than men. When

60In 1945, only one country (New Zealand) has data.
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Figure 2.13: Log Odds Ratio of Choosing Agriculture: Women VS. Men
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Note: Data come from International Labor Organization. The scatter plot pools
available data from different years.

plotted in logs, a dot above zero indicates a violation of the prediction that women are less

likely to choose agriculture. It can be seen that many countries have odds ratio above 1

and the chance of observing that is increasing in the employment share of agriculture. I run

a logit regression of the odds ratio above 1 on the employment share of agriculture. The

estimated coefficient is 0.045 and the p-value is less than 0.001. Predicted probability of the

odds ratio above 1 is 0.21 when agriculture accounts for 10% of total employment, it jumps

to 0.86 when the share increases to 80%.

It is hard to explain these findings if only comparative advantage is at work. My model

of spatial ability sorting provides an explanation for that. Instead of relying on comparative

advantage, the mechanism I emphasize relies on absolute advantage. When it is at work,

women are more likely to choose agriculture than men if they are less productive than men

in both sectors. What we see in data combines both the effects of comparative advantage

and absolute advantage. The impact of absolute advantage is stronger in countries with

large agricultural employment as 1) food consumption is more important in poor countries
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and 2) poor countries tend to have larger spatial differences in prices. This explains why the

probability of observing an odds ratio larger than 1 is increasing in the employment share

of agriculture.

For the comparative advantage mechanism to work, female workers need to be less pro-

ductive than men in agriculture. Lagakos and Waugh (2013) argue that this is true as women

has less physical strength than men and agricultural work is strength intensive. For the ab-

solute advantage mechanism to work, it suffices that women are also less effective workers

than men in non-agricultural work. This could be true if physical strength is also an input

in non-agricultural work, albeit less important an input than in agriculture. Consider the

framework of Pitt et al. (2012) where workers have two traits, skills (H) and brawn (B), the

sectoral productivity which is taken as primitives in my model is a function of the two traits,

zi = viH
αiB1−αi , i = a, n (2.27)

where αa < αn indicates agricultural production is more brawn intensive, and vi changes the

scale of the productivity measure. If women have similar skills but less brawn than men,

it would imply they have comparative advantage in non-agriculture. It also implies that

women are less productive than men in non-agriculture, although to a less extent than in

agriculture. This conclusion could hold even if women have more skills than men, as long as

the advantage is not large enough. Women are also more likely to have absolute disadvantage

in developing countries if the technology used in these countries are more brawn intensive.

This happens if developing countries choose brawn intensive technologies in response to the

lack of skills of their workers, as forcefully argued by Caselli and Coleman (2006). Since

the non-agriculture sector is a combination of manufacturing and service, if women have

comparative advantage in services as argued by Ngai and Petrongolo (2017), they will also

tend to have a disadvantage in the non-agricultural sector in developing countries where the

services sector is relatively small.

Absolute advantage of men is a sufficient but not necessary condition for the ability

sorting mechanism to work. If women are paid less in both agriculture and non-agriculture
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due to discrimination, the ability sorting mechanism is still at work. Given data on wages

only, we can not separate the gender wage gap due to ability differences or discrimination.

Both will induce ability sorting nevertheless. Using data from International Labor Organi-

zation, Oostendorp (2009) find that the average within occupation gender wage gap is 0.11

log points across 63 countries. Surprisingly, Oostendorp (2009) also find that the gender

wage gap tend to be lower in developing countries. Given that the data available are more

likely for non-agricultural occupations, this could be readily explained by the ability sorting

mechanism if women in non-agriculture is more selected in developing countries.

2.8 Summary

Why do the large rural-urban income gaps persist in developing countries? Young (2013)

find that around a quarter of urban workers migrate to rural areas despite the large rural-

urban income gaps in a sample of 65 countries.61 The voluntary urban-rural migration

suggests that the rural-urban income gaps might not be explained by labor market barriers

preventing rural workers from moving to urban areas. An alternative explanation proposed in

Lagakos and Waugh (2013) and Young (2013) is that workers self-select into different sectors

according to their comparative advantage. More productive workers prefer urban areas more

because the urban sector uses skilled labor more intensively. This chapter proposes a new

explanation complementing that of Lagakos and Waugh (2013) and Young (2013). Urban

areas are attractive to better workers due to their consumption value: high income workers

spend a large fraction of income on non-food items which are cheaper in urban areas. The

rural-urban income gaps do not reflect distortions in the allocation of workers, but come

from frictions in the good markets. Quantitatively, the new mechanism plays a larger role

in explaining the income gap than worker selection based on comparative advantage.

To distinguish my explanation from that of Lagakos and Waugh (2013) and Young (2013),

I look beyond the rural-urban dichotomy and examines the spatial income inequality within

61Going from urban to rural areas, there is no drop in the variance of consumption, so the urban-rural
migration can not be explained by risk factors.
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rural areas. Using Malawi data, I find that income declines as we go further away from the

urban center. While the rural-urban distinction is in the center stage of the study of economic

development, this finding suggests that examining spatial income inequality beyond that

simple dichotomy could be rewarding. A successful theory of the “dual economy” should

explain both the rural-urban income gaps and the income differences between near and

remote rural regions. While we can use labor market barriers to explain these spatial income

gaps, they are not easily explained by worker selection. This paper provides an explanation

of both the rural-urban income gap and the income profile within rural areas without relying

on labor market barriers.

My analysis provides further support for investment in transportation infrastructure in

developing countries (World Bank, 1994). I extend the analysis of Gollin and Rogerson (2014)

to a heterogeneous worker framework which allows me to discuss the distributional effects of

infrastructure development. Previous studies (Jacoby, 2000; Renkow et al., 2004; Jacoby and

Minten, 2009) find that improving market access of the remote rural areas generally benefit

the poor more. My general equilibrium analysis however shows that these investments might

benefit the poor less than average workers when endogenous price changes are taken into

account. The governments should have this in mind if poverty reduction is also a policy

target.

2.9 Appendix

This section provides additional results not reported in the main text. The first subsection

presents the results for the Engel curve estimation. The second subsection discusses the

construction of data. The last subsection provides a proof for ability sorting under general

non-homothetic preferences.

2.9.1 Engel Curve Estimates

Table 2.6 presents the results from the Engel curve estimation. For each food item, the first

column gives the average share of that item in total expenditure, the second item the income
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coefficient and the third column the price coefficient. Estimates for other control variables

are omitted.

Table 2.6: Engel Curve Estimates

Average
Share

Income(β) Price(γ)

Food 0.483 -0.115
(0.0028)

Maize ufa mgaiwa 0.070 -0.043 0.158
(Normal flour) (0.0015) (0.0009)

Maize ufa refined 0.052 -0.026 0.086
(Fine flour) (0.0014) (0.0007)

Dried fish 0.024 -0.009 0.024
(0.0005) (0.0001)

Sugar 0.020 -0.003 0.009
(0.0004) (0.0001)

Tomato 0.017 -0.009 0.031
(0.0004) (0.0001)

Rice 0.013 -0.002 0.004
(0.0005) (0.0001)

Nkhwani 0.014 -0.008 0.030
(0.0004) (0.0002)

Bean, brown 0.013 -0.006 0.011
(0.0004) (0.0001)

Goat 0.012 -0.011 0.018
(0.0006) (0.00004)

Salt 0.011 -0.008 0.023
(0.0002) (0.0001)

Remark: Standard errors in the parentheses. Reported standard er-
rors for β and γ come from the second and third stage of my estima-
tion approach, without considering the effect of generated variables
used in that stage.

2.9.2 Data Construction

The construction of data follows De Magalhães and Stantaeulàlia-Llopis (2015) who use the

Integrated Survey on Agriculture (ISA) to document the cross-sectional facts on income and
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consumption for several Sub-Sahara African countries including Malawi,62 and Restuccia

and Stantaeulàlia-Llopis (2017) who use the same Malawi data to study the misallocation

of land and capital in agriculture.

2.9.2.1 Consumption

Total consumption is the sum of durable and non-durable consumption. Non-durable con-

sumption includes food, clothing, services, utility, school, and medical expenditures. Durable

consumption includes housing services and furniture. The expenditures on different items

are for different time length. All of them are annualized to construct the total consumption.

Food consumption includes 135 items, which can be purchased, home produced, or received

as gifts. I evaluate the non-purchased food items at the medium reported price prevailed

within a region (defined as enumeration areas within a certain distance range from a cer-

tain urban center). The food items are reported in different units. I convert them all into

kilograms in two steps: 1. estimate the quantity of purchased items in modal unit using the

medium price in modal unit for a region; 2. construct household conversion rate using the

constructed quantity in modal unit and reported quantity in other units, use the medium

household conversion rate as the conversion rate for a region. House services includes the

self-reported renting value when the dwellings are owned by the households.

2.9.2.2 Income

Income consists of labor market income, agricultural net production, fishery net production,

business income, capital income, and net transfers.

The most important category in agricultural net production is non-permanent crops. As

not all output are sold, I evaluate the output not sold using the medium reported sales

prices prevailed in a region in a similar fashion as in the construction of total consumption.

Agricultural production is reported for two seasons: the rainy season and the dimba (dry)

season. Most agricultural production happens in the rainy season, which makes the con-

62The Malawi data I use is part of the ISA project, see Section 2.3.
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struction of prices for the dimba season hard due to data scarcity. I thus use the prices

from the rainy to evaluate output in the dimba season. The costs for agricultural production

include land rents, hired labor, transportation costs associated with sales, expenditures on

fertilizers, seed, and pesticides/herbicides. Subsidies on intermediate inputs are excluded

from the costs. Other agricultural production include tree/permanent crops, livestock sales,

and livestock products. For all types of agricultural net production, costs associated with

renting-in agricultural equipment and structure capital is subtracted from output.

Labor market income is summed over all household members report working. Workers

can have multiple occupations. Wage payment can be made in cash or in kind. Household

members report the last payment they receive for a reference period and how much time they

work during a year, which can be used to construct total wage income in a year. Business in-

come is aggregate over different types of non-agricultural business, such as processing/selling

agricultural by-products, street or market trading business, etc. For each business, the data

distinguishes months with zero, low, medium, or high volume of sales and how many months

each situation spans in a year. Cost is reported only for the last month. It is re-scaled using

information on revenue to estimate costs in other months.63 Total net income from a business

is then calculated by adding up profit (revenue-cost) over different sales situations, weighted

by number of months of those situations. Fishery net production is similarly calculated by

subtracting costs from total output. The output is valued at reported prices or imputed

median price, if the households do not report any sales. Costs include rented equipment,

fuel, oil, and maintenance, hired labor, and other costs. There are two seasons, high and

low. Total net production is aggregate over the two seasons and over different types of fish.

2.9.2.3 Production Function Estimation

Output is constructed by aggregating output from different crops using the medium prices

constructed in similar fashion as described above. Plot size is GPS measured with mini-

mal measurement error. Physical capital is aggregated over different types of agricultural

63That is, given the revenue in last month, we can calculate a cost share of revenue. I assume the same
share applies to all months.
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machinery and structures measured by self-evaluated prices. The use of self-evaluation of

asset values takes into account the differences in the quality of the machinery and structures.

Intermediate input is also aggregated over different items using medium prices. Given that

intermediate inputs in Malawi are heavily subsided, I only use prices constructed from input

purchases without using coupons. Labor is aggregated over different sources and uses: family

labor, hired labor, and exchange labor used for non-harvest work and harvest work. Labor

can be supplied by men, women, and children under 15 years old. To adjust for the differ-

ences in human capital of different workers, I use wage ratios constructed from information

on hired labor as weights in summing over different types of workers. Capital income mainly

comes from saving and investment, rents of house and equipment, and asset sales. It also

includes rental income from agricultural land and fishery equipment. Finally, net transfers

is calculated as income transfers and gifts received from rural areas/urban areas/other coun-

tries minus income transfers and gifts given out to rural areas/urban areas/other countries.

It might be associated government programs, social safety nets, or private transfers.

2.9.3 Ability Sorting Under Non-homothetic Preferences

This section proves that the ability sorting result holds under general non-homothetic prefer-

ences. Consider a non-homothetic preference of the general form U(Ca, Cn). The agricultural

good is the necessity with its income elasticity of demand less than 1. Workers choose be-

tween two regions j and j′. Regions differ in prices: P j
a > P j′

a and P j
n < P j′

n . Regions might

also differ in wages, denoted wj and wj
′
. Consider the location choice of two workers i and i′

with zi > zi′ . To prove ability sorting, it suffices to show that: 1) if worker i′ chooses region

j, worker i also chooses region j; 2) if worker i chooses region j′, worker i′ also chooses region

j′. I will only prove the first part below, the second part follows the same logic.

Let uj
′

i′ be the utility worker i′ derive in region j′. That worker i′ prefers region j over

region j′ implies

e(P j
a , P

j
n, u

j′

i′ ) < wjzi′ , (2.28)

where e(·) is the expenditure function. For small changes in prices, the change in expenditure
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is given by

de(Pa, Pn, u) = CadPa + CndPn

which can be further written as

d ln e(Pa, Pn, u) =
PaCa
e

d lnPa +
PnCn
e

d lnPn = sa(Pa, Pn, u)d lnPa + sn(Pa, Pn, u)d lnPn,

where sa and sn are the expenditure share of the two goods.

For worker i′, the change in expenditure going from region j′ to j, holding utility constant,

is given by

ln e(P j
a , P

j
n, u

j′

i′ )− ln e(P j′

a , P
j′

n , u
j′

i′ ) =

∫ lnP ja

lnP j
′
a

∫ lnP jn

lnP j
′
n

d ln e(Pa, Pn, u
j′

i′ )

Similarly, the change in expenditure for worker i is given by

ln e(P j
a , P

j
n, u

j′

i )− ln e(P j′

a , P
j′

n , u
j′

i ) =

∫ lnP ja

lnP j
′
a

∫ lnP jn

lnP j
′
n

d ln e(Pa, Pn, u
j′

i )

Since worker i has higher income than worker i′, we must have

sa(Pa, Pn, u
j′

i ) < sa(Pa, Pn, u
j′

i′ ), and sn(Pa, Pn, u
j′

i ) > sn(Pa, Pn, u
j′

i′ )

Given that Pa is increasing and Pn is decreasing from j′ to j, this implies that,

ln e(P j
a , P

j
n, u

j′

i )− ln e(P j′

a , P
j′

n , u
j′

i ) < ln e(P j
a , P

j
n, u

j′

i′ )− ln e(P j′

a , P
j′

n , u
j′

i′ )

Combining this with the fact e(P j′
a , P

j′
n , u

j′

i ) = wj
′
zi and e(P j′

a , P
j′
n , u

j′

i′ ) = wj
′
zi′ , we have

e(P j
a , P

j
n, u

j′

i )

wjzi

wj

wj′
<
e(P j

a , P
j
n, u

j′

i )

wjzi′

wj

wj′
⇒ e(P j

a , P
j
n, u

j′

i )

wjzi
<
e(P j

a , P
j
n, u

j′

i )

wjzi′
< 1

where the last inequality comes from 2.28. We thus prove worker i will also be better off in

j because the change in wage is more than compensating the changes in prices.
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CHAPTER 3

Capital-Labor Substitution, Agriculture, and

Development

3.1 Introduction

This chapter continues the discussion on agriculture. While Chapter 2 mainly focuses on

the productivity gap between agriculture and non-agriculture within a country. The impor-

tance of agriculture is also reflected in the fact that agriculture accounts for a large part of

the international income differences: poor countries are much more unproductive in agri-

culture relative to non-agriculture while allocating a large share of workers to agriculture

(Caselli, 2005; Restuccia et al., 2008). Understanding the differences in sectoral allocation

and agricultural productivity across countries thus can provide key insights to understanding

economic development. In this chapter, I study the role of capital deepening in explaining

these development facts. I allow for sectoral differences in the process of capital deepening by

adopting CES production functions instead of the commonly used Cobb-Douglas production

functions.

Figure 2.1 already shows that both the employment share of agriculture and the produc-

tivity gap between agriculture and non-agriculture decline with GDP per capita.1,2 These

two patterns are linked to each other through the cross-country pattern in the nominal

1The productivity gap is related to but different from the wage gap between sectors as studied in many
micro studies. The wage gap might be a driving force behind the productivity gap. But productivity gap
might still exists if there were no wage gap such as in this model. For recent studies on the wage gap, see
Vollrath (2014) and Alvarez (2017).

2While the productivity gap can be a statistical figment due to errors in measuring output and inputs,
Gollin et al. (2014) show that the pattern persists after carefully dealing with the measurement issues. See
the discussion in Chapter 2.
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Figure 3.1: Nominal Value-added Share in Agriculture

value-added share of agriculture presented in Figure 3.1.3,4 While the value-added share

also declines in the level of development, it is much smaller than the employment share in

most countries and the gap is larger in poor countries. This explains why the agricultural

productivity gap in current prices (APG hereafter) exists and why it negatively correlates

with economic development. The same pattern can also be seen for the sectoral produc-

tivity gap measured in international prices which is presented in Figure 3.2. This directly

translates into a larger dispersion in agricultural labor productivity across countries.

The model used in this chapter is a static version of an otherwise standard model of

structural transformation as reviewed in Herrendorf et al. (2014). The model incorporates

3Remember labor productivity is defined as the ratio of value-added to employment.

4The data is for 1985 and comes from several sources, which is discussed in the data appendix in Section
3.8.
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Figure 3.2: Agricultural Productivity Gap in International Prices

both driving forces of structural transformation discussed in the literature: non-homothetic

utility (Kongsamut et al., 2001) which leads to the demand side explanation, and differen-

tial sectoral TFP (Ngai and Pissarides, 2007) which leads to the supply side explanation.

The deviation is to go from Cobb-Douglas to CES production technology, that is, allowing

for sectoral differences in the elasticity of substitution between capital and labor. In two

recent studies, Alvarez-Cuadrado et al. (2013, 2014) show that this could be a neglected

source of structural transformation: the process of capital deepening is faster in sectors with

larger elasticity of substitution such that labor moves out those sectors. Their studies are

motivated by ample evidence on changes in sectoral capital intensity and factor shares in

many countries (Zuleta and Young, 2007; Herrendorf et al., 2015). Similar evidence has been

found in agriculture. For example, Schultz (1964) argues that the modernization of tradi-

tional agriculture is mainly accomplished through the massive substitution of machines for
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labor.5 Herrendorf et al. (2015) recently show that the U.S. sectoral technology is far from

Cobb-Douglas: the elasticity is much larger in agriculture than in non-agriculture. I argue

that this difference might have more bearing on the development facts regarding agriculture

besides structural transformation and evaluate the mechanism quantitatively.

The role of capital deepening with sectoral difference in elasticity of substitution can be

seen clearly from the following optimization condition,

θ

1− θ

(
K

N

) 1
σ

=
w

r
, (3.1)

where capital intensity (K
N

) is related to the relative factor price (w
r
). Capital deepening in

an economy increases the wage-rental rate ratio. The factor that the agricultural sector has

a larger elasticity implies that capital intensity increases faster in agriculture, which can lead

to larger changes in agricultural labor productivity in real prices and shift of employment

out of agriculture.6 In terms of APG, notice that the relative productivity ratio between the

two sectors ( yn
pya

)7 equals to the ratio of sectoral labor shares of income,8

yn
pya

=
Labor Sharea
Labor Sharen

. (3.2)

Changes in factor intensity will lead to changes in this ratio, which is decreasing in wage-

rental ratio if capital-labor substitution is easier in agriculture.9

Quantitative study of the model shows that compared to Cobb-Douglas, CES technology

provides little help in explaining sectoral allocation and real labor productivity. Large TFP

differences across sectors and countries are needed to explain why agriculture performs so

5An important example of this process is the use of tractors (Manuelli and Seshadri, 2014).

6The effect on productivity holds true if capital intensity in agriculture is not substantially lower than
that in non-agriculture, see Proposition 4.

7I add the relative price of the agricultural good p to indicate that it is measured in current prices.

8This identity only requires a competitive labor market equating wages between the two sectors and
holds irrespective of other distortions in the economy. See Gollin et al. (2014) for a discussion.

9Notice the labor share can be expressed as a function of wage-rental ratio: Labor Share =
1

( 1−θ
θ )σ(wr )σ−1+1

.
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badly in poor countries. This is similar to the findings of Herrendorf et al. (2015) who use

U.S. time series data. The reason for the finding is that agriculture also has a large capital

share other than a large elasticity of substitution. When the model is specified with Cobb-

Douglas technology, sectoral differences in capital shares also help explaining the sectoral

allocation, as emphasized in Acemoglu and Guerrieri (2008). Capital-labor substitution

however helps explaining the agricultural productivity gap. In fact, it over-predicts the

cross-country difference in APG if we use the measurement error adjusted numbers from

Gollin et al. (2014). I find that APG can differ by a factor of 3 between the poorest and

richest countries, while in the data the gap in APG is in the range of 2 after adjusting for

measurement errors.

The model predicts incredibly high labor shares in agriculture for poor countries, sug-

gesting the explaining power of the model for APG might be overstated. I discuss possible

remedies to the model specification, in particular allowing for changes in factor-augmenting

productivity which can not be identified due to the paucity of data. Since reliable data on

sectoral labor shares is not available, I cannot directly test the model predictions. I how-

ever emphasize that differences in sectoral labor shares have the potential to explain the

agricultural productivity gap in poor countries, contrary to the conclusion drawn in Gollin

et al. (2014). The large differences in sectoral labor shares can still be consistent with a

relatively stable aggregate labor share as documented in Gollin (2002). Poor countries have

large employment share in agriculture which tends to lower aggregate labor share.10 It is

however counteracted by larger labor share of income in agriculture in poor countries. The

two forces work together to keep aggregate labor share relatively stable.

Related literature on agriculture and development has already been extensively reviewed

in Section 2.2. In particular, the literature on the role agriculture in comparative devel-

opment has mainly focused on finding sources of low total factor productivity (TFP) in

agriculture. Capital deepening is often thought of playing a limited role in explaining these

development facts (see, for example Lagakos and Waugh (2013) and Liao and Wang (2014)).

10Note that labor share is larger in non-agriculture than in agriculture in rich countries.
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However, the literature has mainly assumed Cobb-Douglas production functions. This chap-

ter on the other hand provides a comparison between CES technology and Cobb-Douglas

technology, in the same fashion as Herrendorf et al. (2015) who explore how structural trans-

formation is affected by the property of technology. Wingender (2015) also focuses on tech-

nology. He emphasizes sectoral differences in the elasticity of substitution between high skill

and low-skilled labor and finds that APG can be explained by the differences in skill compo-

sition between sectors. This chapter finds that CES technology mainly helps explaining the

pattern of APG, contrary to what is argued by Gollin et al. (2014). Though capital-labor

substitution still can not explain APG in rich countries, Herrendorf and Schoellman (2015)

find that the gap in the US can be fully explained by measurement errors in agricultural

value-added and in differences in worker’s human capital.

The model studied in this chapter also follows a long tradition in the structural transfor-

mation literature emphasizing the role of demand and supply factors in shaping the economic

structure (Kongsamut et al., 2001; Ngai and Pissarides, 2007; Acemoglu and Guerrieri, 2008).

In particular, my emphasis on capital-labor substitution echoes recent studies of Alvarez-

Cuadrado et al. (2013, 2014), who point out that differences in elasticity of substitution

between sectors can be a source behind structural transformation. I apply this idea to

a two-sector model to study its effect on both structural transformation and agricultural

productivity.

The next section presents the model and derives some theoretical results. Section 3.3

calibrates the model to U.S. economy and Section 3.4 presents the quantitative results.

Section 3.5 presents some supporting evidence for the capital deepening mechanism. Section

3.6 further discusses some extensions of the model. Section 3.7 concludes and Section 3.8 is

a data appendix.

3.2 The Model

Technology There are two sectors in the economy: an agriculture sector (a) and a non-

agriculture sector (n). Both sectors have a representative firm employ capital (K) and
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labor(N) to produce a single good used for final consumption. The production function has

a CES form. In non-agriculture, it is given as

Yn = A

[
θnK

σn−1
σn

n + (1− θn)N
σn−1
σn

n

] σn
σn−1

, (3.3)

where σn is the elasticity of substitution and 0 < θn < 1 is a share parameter equals to

the share of capital in output when capital-labor ratio is 1. A is a Hicks-neutral produc-

tivity parameter which can be viewed as the economy-wise total factor productivity (TFP).

Similarly, the agriculture sector has the following technology

Ya = Aκ

[
θaK

σa−1
σa

a + (1− θa)N
σa−1
σa

a

] σa
σa−1

, (3.4)

where the new parameter κ gives the relative TFP of the agricultural sector. Note that

I don’t introduce factor-augmenting productivity. This simplification is a result of data

constraint. In the quantitative analysis, I calibrate the share parameters to target factor

shares and the productivity parameters to labor productivity in data. I however don’t have

data on capital productivity, which can be used to discipline factor-augmenting productivity.

I further discuss this in Section 3.5.

Preference A representative consumer maximizes utility given income from capital and

labor. The preference is assumed to have a direct addilog form (Houthakker, 1960) over the

two goods

U(ca, cn) = ω
c1−αa
a − 1

1− αa
+ (1− ω)

c1−αn
n − 1

1− αn
, (3.5)

where 0 < ω < 1, and I require αa > 0 and αn > 0 to guarantee diminishing marginal utility.

The utility function nests the usual CES utility function when αa = αn, and it becomes the

Cobb-Douglas utility function when we further require αa = αn = 1.

For my purpose, the addilog preference has the following advantages over the Stone-Geary

preference widely used in the literature. First, it avoids the problem that utility might not

be well-defined when the subsistence consumption is not met, which is indeed the case for

the poorest countries in my data sample. Related to that, it also guarantees a positive
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non-agricultural employment in even the poorest countries, as is observed in data. Second,

the preference is not just asymptotically non-homothetic. The income elasticity of the two

goods is given by

ea,E =
αn

αnsa + αasn
, and en,E =

αa
αnsa + αasn

,

where si = pici
E

is the expenditure share of good i ∈ {a, n}. If αa > αn, the income

elasticity of the agricultural good is smaller than 1 and approaches from above to αn
αa

as the

expenditure share of the agricultural goods decreases to 0, while the income elasticity of the

non-agricultural good approaches 1 from above. This is consistent with empirical evidence

as the income elasticity of food is shown to be higher in poor countries and lower in rich

countries, and does not approach 1 as the Stone-Geary preference would predict (Seale Jr.

et al., 2003; Muhammad et al., 2011).11 Lastly, even though the Stone-Geary preference

admits an elasticity of substitution less than 1, which is key to the supply side explanation

of structural transformation (Baumol, 1967; Ngai and Pissarides, 2007). The elasticity also

approaches 1 in the limit. This is not the case for the addilog preference, whose elasticity of

substitution is given by

ean,p =
1

αa
+

(
1− αn

αa

)
(1− αa)sa(αasn + sa)

(αnsa + αasn)[2sa(1− αa) + αa]
.

The elasticity of substitution depends on the expenditure shares. One set of sufficient con-

ditions for the elasticity to be less than 1 is αa > 1 and sa <
αa

2(αa−1)
, which is satisfied in the

data. As the economy grows, the expenditure share of the agricultural good becomes small,

which gurantees [2sa(1 − αa) + αa] > 0. In this case, αa > 1 is sufficient for the two goods

to be gross complements.

11The structural transformation literature has pointed out the importance of income effect in explaining
sectoral reallocation, even in developed countries (Boppart, 2014; Comin et al., 2015). Some other proposed
preferences that allow for long-run income effects are the constant differences of elasticity of substitution
preference (Świȩcki, 2014) which belongs to the class of indirect addilog preferences of Houthakker (1960),
the price independent generalized linear preference (Boppart, 2014), and the non-constant CES preference
(Comin et al., 2015).
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Finally, the budget constraint of the representative agent is given by

pca + cn = rK + wN, (3.6)

where the non-agricultural good is taken to be the numeraire, p is the relative price of the

agricultural good, and r and w are the rental rate of capital and the wage rate respectively.

Equilibrium All markets are competitive. The equilibrium is defined in the usual way: 1)

firms maximize profits taking technology and prices as given; 2) the representative consumer

maximizes utility given the budget constraint; and 3) markets clear.

The optimality condition for utility maximization is given by

ω

1− ω
Y −αaa

Y −αnn

= p, (3.7)

where I have plugged in the market clearing conditions for the two goods. For the represen-

tative firm in agriculture, profit maximization gives

pθa (Aκ)
σa−1
σa

(
Ya
Ka

) 1
σa

= r, p(1− θa) (Aκ)
σa−1
σa

(
Ya
Na

) 1
σa

= w, (3.8)

Similarly, the profit maximization conditions in non-agriculture are given by

θnA
σn−1
σn

(
Yn
Kn

) 1
σn

= r, (1− θn)A
σn−1
σn

(
Yn
Nn

) 1
σn

= w, (3.9)

The equilibrium is fully described by the system of equations (3.3), (3.4), (3.7), (3.8), (3.9),

and the two market clearing conditions for the capital and labor,

Ka +Kn = K, Na +Nn = N. (3.10)

Discussion The model allows all the driving forces of structural transformation empha-

sized in the literature.12 The new source introduced is capital-labor substitution (Alvarez-

12Since the model economy is closed, the effect of international trade is not considered (Uy et al., 2013).
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Cuadrado et al., 2013, 2014). I next discuss how it might help explain the three development

facts regarding agriculture. Before that, the following lemma is going to be useful.

Lemma 1 The elasticity of substitution for the aggregate economy σagg = −d logK/N
d log r/w

is given

by

σagg =
ηa(1− ηa)
η(1− η)

saσa +
ηn(1− ηn)

η(1− η)
snσn +

(
1−

∑
i

ηi(1− ηi)
η(1− η)

si

)
ε,

where ηi = rKi
rKi+wNi

is the capital share of output in sector i, η = rK
rK+wN

is the aggregate

capital share, and ε is the elasticity of substitution between the two goods.

The proof follows Oberfield and Raval (2014). We can write the sectoral and aggregate

elasticity of substitution as follows.

σi − 1 = −d log rKi/wNi

d log r/w
= −d log ηi/(1− ηi)

d log r/w
= − 1

ηi(1− ηi)
dηi

d log r/w
,

σagg − 1 = −d log rK/wN

d log r/w
= −d log η/(1− η)

d log r/w
= − 1

η(1− η)

dη

d log r/w
.

Notice that η =
∑

i ηisi, we have

dη

d log r/w
=
∑
i

dηi
d log r/w

si +
∑
i

dsi
d log r/w

ηi

while changes in expenditure share is given by

dsi
d log r/w

= (ε− 1)(ηi − η)

Combining all these equations together gives Lemma 1.

It is easy to show that the aggregate elasticity of substitution given in Lemma 1 is larger

than 0,13 such that an increase in aggregate capital intensity lowers the relative price of

capital. I next proceed to study the effect of an decrease in the relative factor price (r/w)

Section 3.6.4 discusses how opening to trade might change the results of the baseline model.

13We only have to show 1−
∑
i
ηi(1−ηi)
η(1−η) si > 0, which follows from the definition of η.
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caused by capital deepening. I will consider the empirically relevant case described in the

following assumption.14

Assumption 1 σa > 1 > σn, and αa > 1 > αn.

Under Assumption 1, a decrease in the relative price of capital lowers labor share in agricul-

ture but raises that in non-agriculture. Since we have

Yn/Nn

pYa/Na

=
1− ηa
1− ηn

,

from the first order condition for labor. This just says that non-agricultural labor productiv-

ity relative to agricultural labor productivity in nominal prices increases due to the increase

in capital intensity. This explains why APG is lower in developed countries.

It can also be shown that the employment share of agriculture also decreases in aggregate

capital intensity. To see this, notice we can write the price of agricultural good as

p =

(
Ya
Na

)− 1
σa
(
Yn
Nn

) 1
σn

.

Optimal consumption allocation can be rewritten as

ω

(
Yn
Nn

Nn

)αn
= (1− ω)p

(
Ya
Na

Na

)αa
.

From these two equations we can express the employment share of agriculture as an implicit

function of labor productivity in the two sectors. Since labor productivity is determined

by the sectoral capital-labor ratio, which itself is determined by the relative price of capital

from firm’s optimal decision. Given the relative price, we can then solve for the employment

14The estimates presented in the next section are consistent with the assumption.
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share of agriculture from the following equation

Φ

[
θn

(
1−θn
θn

r
w

)1−σn
+ (1− θn)

]αnσn−1
σn−1

[
θa

(
1−θa
θa

r
w

)1−σa
+ (1− θa)

]αaσa−1
σa−1

=
Nαa
a

(N −Na)αn
,

where Φ is a constant. Since the left hand side decreases due to the decrease in relative

factor price, Na also decreases. An increase in capital intensity thus lowers the share of

labor in the agricultural sector. This establishes capital deepening as a source of structural

transformation when the elasticity of substitution differs across sectors.

Finally, I examine the effect of capital deepening on relative productivity measured in

real prices. Agains, since labor productivity is determined by capital-labor ratios which itself

is determined by the relative price, we have

∂ log Yn/Nn

∂ log r/w
=

∂ log Yn/Nn

∂ logKn/Nn

∂ logKn/Nn

∂ log r/w
= −rKn

Yn
σn,

∂ log Ya/Na

∂ log r/w
=

∂ log Ya/Na

∂ logKa/Na

∂ logKa/Na

∂ log r/w
= −rKa

Ya
σa

Changes in relative labor productivity thus depend on the size of the elasticity and capital

share of income in each sector. Agricultural labor productivity increases relative to non-

agricultural labor productivity as long as ηaσa > ηnσn. Given that σa > σn, agricultural

labor productivity increases relative to non-agriculture in response to an increase in aggregate

capital intensity as long as capital share of income in agriculture is not substantially smaller

than that in non-agriculture. This condition will hold in rich countries as agriculture is more

capital intensive than non-agriculture in those countries. We are however not sure whether

it is also the case in poor countries due lack of information on sectoral factor shares. The

effects of capital deepening in this economy are summarized in the following proposition.

Proposition 4 Given Assumption 1, capital deepening induces labor to reallocate to non-

agriculture, lowers the agricultural productivity gap, and raises labor productivity more in

agriculture if ηaσa > ηnσn.
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3.3 Calibration

I calibrate the model parameters to U.S. data in this section. I estimate the elasticity of

substitution between capital and labor following Herrendorf et al. (2015). The two param-

eters that determine the curvature of the utility function are estimated from the associated

demand system using a GMM approach. The rest of the parameters are then calibrated to

key data moments of the U.S. economy.

3.3.1 Elasticity of Substitution in Production

The elasticity of substitution is estimated using the procedures in Herrendorf et al. (2015).

They estimate a system of equations including the production function and the two first

order conditions as follows.

log

(
Yit
Ȳi

)
=

σi
σi − 1

log

[
θ̄i

(
exp(γik(t− t̄))

Kit

K̄i

)σi−1

σi

+ (1− θi)
(

exp(γin(t− t̄))Nit

N̄i

)σi−1

σi

]
+ εyit

log(rit) = log

(
θ̄iȲi
K̄i

)
+
σi − 1

σi
[γik(t− t̄)] +

1

σi
log

(
Yit/Kit

Ȳi/K̄i

)
+ εrit

log(wit) = log

(
1− θiȲi
N̄i

)
+
σi − 1

σi
[γin(t− t̄)] +

1

σi
log

(
Yit/Nit

Ȳi/N̄i

)
+ εwit

where i indexes sector and t indexes time, {εyit, εrit, εwit} is a set of random errors, the

variables with a hat are the geometric average over the sample period except for t̄, which is

an arithmetic average of the time index, γik and γin are the growth rates of factor-augmenting

productivity. The functions are normalized such that the share parameters are calibrated:

θ̄i denotes the geometric average of observed capital shares over the period. The system

is estimated using the non-linear, feasible, generalized three-stage least squares estimation

procedure implemented in Eviews. The estimation uses the one-period lags of all endogenous

variables and a time trend as instruments and allows a AR(1) structure in the error term.

Herrendorf et al. (2015) estimate the system for 3 broad sectors: agriculture, manufac-

turing, and services. They use U.S. data over the period 1947-2010. I use their data and
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Table 3.1: Production Function Estimates

Agriculture Non-agriculture

σ
1.60

(0.069)
0.88

(0.039)

γk
0.022

(0.0029)
-0.021
(0.010)

γn
0.050

(0.0043)
0.025

(0.0054)
θ̄ 0.61 0.32

Note: standard errors in parentheses.

combine manufacturing and services into one single non-agricultural sector.15 The estima-

tion results are provided in Table 3.1. Capital and labor are substitutes in agriculture with

an elasticity of 1.6. The elasticity for non-agriculture is only 0.88. These estimates are

consistent with that in Herrendorf et al. (2015) (Table 1). The estimates for agriculture are

close to their estimates for agriculture, while the estimates for non-agriculture is close to

their estimates for total economy.16 Given the small share of agriculture during most of the

period, this is hardly a surprise.

The estimates of the elasticity of substitution also find supports in other studies. Studies

of U.S. agriculture looking at the changes in factor cost shares, capital-labor ratio, and

relative prices over time also find an elasticity of substitution around 1.5 (Lianos, 1971;

Kislev and Peterson, 1981, 1982). This fits the description of a wave of mechanization after

the second world war in Schultz (1964). The ease of capital-labor substitution, however,

is not confined to the U.S. Thirsk (1974) finds that it is also the case in Colombia. He

also summarizes studies on U.S., Europe, India, and Brazil to conclude that “the elasticity

of capital-labor substitution in agriculture exceeds unity and is probably close to one and

a half” (pp. 80). More recently, Xu (1999) studies China’s rapid growth in agricultural

productivity and finds an elasticity of substitution of 1.4.

On the other hand, an estimate of elasticity of substitution for non-agriculture is rare

in the literature. There is, however, ample evidence showing it is smaller than 1 for the

15Data is downloaded at https://www.aeaweb.org/articles?id=10.1257/mac.20130041.

16Their estimate for agriculture is 1.58, and that for the total economy is 0.84.
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aggregate economy (Chirinko, 2008). Remember the aggregate elasticity of substitution from

Lemma 1. Aggregate elasticity is a weighted sum of the sectoral elasticity and the elasticity

of substitution in consumption. Given that that in data factor shares varies between 0.3

and 0.7, the weight for the elasticity in consumption is close to 0.17 Aggregate elasticity of

substitution is then close to a weighted average of the elasticity of substitution in the two

sectors. The fact it is less than 1 combined with an estimate larger than 1 for the agricultural

sector implies inelastic substitution in the non-agricultural sector.

3.3.2 Preference Parameters

I estimate the two preference parameters αa and αn using a GMM approach.18 Given the

preference parameters and data on the budget constraint, we can solve for the optimal

consumption decisions numerically. The predicted expenditure shares (ŝit) are not going to

exactly match the true expenditure shares (sit). I treat the gap between data and model

prediction as a result of measurement errors and non-optimizing consumer behavior. These

errors should be uncorrelated with the production side of the economy. We thus can use

supply side variables as instruments. Given the instrument, the moment condition is given

as follows

E [xitεit] = 0,

where εit = sit − ŝit is the prediction error in expenditure share for sector i in period t, xit

is any instrument used. The sample analog to the moment condition is

m(Ω;xit) =
1

T

T∑
t=1

xit(sit − ŝit),

17The maximum of η(1− η) is 0.25 when η = 0.5, while the minimum is 0.21 when η = 0.3, or 0.7. This

says ηi(1−ηi)
η(1−η) will be close to 1.

18I also recover the parameters by estimating the associated demand system, following the approach in
Deaton (1974). The estimates are similar to that reported below. The parameters can also be estimated by
using the cointegration structure implied in the optimality condition (Ogaki, 1992; Clarida, 1994). I however
fail to detect a cointegration relationsip in the data.
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where T is the total number of periods in data, Ω is the set of parameters to be estimated.

The GMM estimator then minimizes the following object

Ω̂ = argmin
Ω

T ·
∑
k

m(Ω;xkat)
2,

where k indexes the instruments used. Also notice that the estimation is confined to the agri-

cultural sector. The other sector does not provide additional information as the expenditure

shares sum up to 1 both in data and in the model (Deaton, 1974).

I use Herrendorf et al. (2013)’s 3-sector consumption value-added data, which covers the

period 1947-2010. Manufacturing and services are again combined into one non-agricultural

sector. The instruments used include a constant term, and labor productivity in both sectors,

which comes from Herrendorf et al. (2015) as described above. The Herrendorf et al. (2013)

dataset only considers value-added used for consumption while neglecting investment. This

could be a problem for the model to match data as the size and structure of investment

might change from country to country. Section 3.6.1 gives a discussion on how to adjust for

investment.

The estimation results are presented in Table 3.2. I also report the implied income elas-

ticity of the agricultural good for two expenditure shares 0.1 and 0.5, which respectively are

reasonable numbers for U.S. around 1950 and a poor country like Malawi today. The income

elasticity is reported to make sure the estimates are within reasonable bounds. The litera-

ture only provides income elasticity estimates for final consumption, but not consumption

value added. I thus compare these estimates to income elasticity of food. Notice that the

income elasticity of food tends to be much larger than that for agricultural value added, as

food includes not only agricultural value-added but also services associated with processing,

packaging, and distributing food (Bunkers and Cochrane, 1957). Column 1 of Table 3.2

shows that the estimate for αn approaches 0, indicating that a quasi-linear utility function

fits the data. Income elasticity of the agricultural good takes two extreme values. When

income is low, it is 1 while it jumps to 0 when income is high enough. These estimates

provides support for the preference used in Gollin et al. (2004, 2007).
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Table 3.2: Estimates of Preference Parameters

1
(No constraint)

2
(αn > 0.1)

αa 1.74 1.87
αn ∼ 0 0.102

RMS sa 0.0516 0.0521
Implied income elasticity

sa = 0.1 0 0.06
sa = 0.5 0 0.1
Note: the estimates for ω is not reported.

The implied income elasticity in Column 1 however is far below Bunkers and Cochrane

(1957)’s estimates for farm product, which casts doubt on the extreme estimates for αn.

Similar to the Stone-Geary preference, it is still possible under the quasi-linear preference

that a poor country has all employment in agriculture, which is not observed in data. In

view of this, I provide another set of estimates by imposing an additional constraint on the

estimation. In Column 2 I require αn > 0.1. Judging by the mean squared error of the

estimated equation for expenditure shares, the model fit does not change much. The implied

income elasticity now are 0.06 and 0.1 respectively, which are more reasonable. I hence use

these estimates in the baseline numerical experiment.19

3.3.3 Other Parameters

Given the production and preference parameters, the other parameters are calibrated to

match data moments of the U.S. economy. The two productivity parameters are normalized

to be 1. This only changes the unit of output. The two share parameters in the production

function are calibrated to match a capital share of 0.61 in agriculture and 0.32 in non-

agriculture (see Table 3.1). The weight in preference ω is calibrated to match a current

employment share of 2.85% in agriculture. Labor endowment is normalized to be 1 such

that the results are on a per capita basis. K is set to deliver a capital-output ratio of 2.5.

Even in the U.S., the agricultural productivity gap is still larger than 1, which is incon-

19Note smaller income elasticity of food helps explain a large agricultural sector in poor countries. The
additional constraint hence might lower the explaining power of the model.
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Table 3.3: Baseline Calibration

Parameter Value Target

Production
A,k,N 1 Normalization
K 3.95 Capital-output ratio (2.5)
θa 0.46 Capital share in agriculture (0.61)
σa 1.60 Table 3.1
θn 0.36 Capital share in non-agriculture (0.32)
σn 0.88 Table 3.1

Preference
αa 1.87 Table 3.2
αn 0.102 Table 3.2
ω 0.003 Employment share in agriculture (2.85%)

Barrier
ξ 0.59 Agricultural productivity gap (1.4)

sistent with observed factor shares. To match this gap, I add a wedge to the non-agricultural

labor market following Adamopoulos and Restuccia (2014). In particular, I assume a gap of

1
1−ξ between non-agricultural and agricultural wages. Now let w denote the wage prevalent

in the agricultural sector, the only change to the equilibrium is that the labor demand in

non-agriculture now reads,20

(1− θn)A
σn−1
σn

(
Yn
Nn

) 1
σn

=
w

1− ξ
, (3.11)

with ξ chosen to match a agricultural productivity gap of 1.4 as observed in data. The

calibrated parameters are summarized in Table 3.3.

3.4 Quantitative Results

I am now ready to examine the model’s quantitative performance. The data I use are

compiled from Penn World Table, Food and Agriculture Organization of United Nations,

United Nations National Accounts, and International Labor Organization. It covers 80

20Another interpretation is this procedure corrects the measurement errors in the data. Herrendorf and
Schoellman (2015) show that after accounting for the measurement errors and differences in human capital
agricultural wage and non-agricultural wage are not so different from each other.
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Figure 3.3: Sectoral Allocation, Model VS. Data

Note: left panel is for employment shares, and the right panel is for value-added
shares.

countries in 1985, including information on sectoral productivity, employment and value-

added shares, and aggregate capital and labor endowment.21 For each country, I calibrate

the two productivity measures to match observed labor productivity in the two sectors, and

the aggregate capital intensity is calibrated to directly match that in data. A comparison

between model prediction and data are presented in Figure 3.3 and 3.4. Figure 3.3 shows that

the model outcome tracks well the employment and value-added share in data. Figure 3.4

shows that the model predicts a negative relationship between the agricultural productivity

gap and income level, which can only be driven by difference in capital-labor substitution

between sectors.

To examine the model fit quantitatively, I regress data on model prediction for each

of the measures shown in Figures 3.3 and 3.4. The regression results are shown in Table

3.4. I look at the regression coefficient and R-squared respectively. The model predicts

the employment share quite well, with the regression coefficient close to 1 and a R-squared

of 0.87. The model prediction for value-added share is worse than that for employment.

In particular, a regression coefficient less than 1 indicates that the model over-predicts the

value-added share for most countries. This directly translates to an underestimation of the

21Section 3.8 provides a more detailed description.
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Figure 3.4: Agriculture Productivity Gap, Model VS. Data

agricultural productivity gap. R-squared for APG is also very low, confirming the impression

from Figure 3.4. Also presented in Table 3.4 is a comparison with Cobb-Douglas technology

allowing for sectoral differences in the capital share.22 It shows that allowing for capital-labor

substitution helps explaining the sectoral allocation pattern, though not by a large margin.

The model with CES technologies helps getting the employment shares right but performs

worse for the value-added shares. As I emphasize above, Cobb-Douglas technology cannot

explain APG at all.

The model underestimates the agricultural productivity gap and the data is also much

22To save space, I don’t present the figures for Cobb-Douglas technology.
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Table 3.4: Model Fit

CES C-D
Coefficient R-squared Coefficient R-squared

Employment 1.01
(0.043)

0.88 1.41
(0.069)

0.84

Value-added 0.63
(0.043)

0.74 0.77
(0.043)

0.80

APG 2.42
(0.31)

0.08

Note: This table compares the model fit with CES and CD production functions.
The numbers reported come from regressing actual data on predicted value without
an intercept.

more volatile than the model predicts. This is partly driven by measurement errors in APG.

Gollin et al. (2014) show that after adjusting for measurement errors in both input and

output, the agricultural productivity gap shrinks a lot, which is particularly the case in

developing countries. Figure 3.5 contrasts the model prediction to the adjusted APG in

Gollin et al. (2014). What is presented is the model prediction against a linear relationship

between APG and GDP per capita using the adjusted numbers from Gollin et al. (2014), so

we are not targeting the extreme values for particular countries but an average over countries.

Surprisingly, the model actually over-predicts APG in the poorest countries. While Gollin

et al. (2014) show that the gap in APG between the poorest and richest countries is on

average around 2, the model predicts a gap close to 3.

As shown above, APG is tightly linked to sectoral labor share of income under com-

petitive markets. Figure 3.6 plots the model prediction of labor shares for the two sectors

and the aggregate economy. This over-prediction of APG in poor countries is echoed by

the implausible predictions for labor shares, with agricultural labor share in poor countries

between 0.8 and 0.9. Even though we don’t have good data on sectoral labor shares covering

countries of different income levels, these numbers are not credible. Fractional evidence in

Fuglie (2010) shows that labor share in agriculture tends to be around 0.6 in developing

countries and it doesn’t fall as country develops. Using the labor share of 0.6, APG in poor

countries will be reduced by a third, closer to the adjusted numbers reported in Gollin et al.

(2014). I argue that the over-prediction of APG and agricultural labor share are more likely
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Figure 3.5: Agriculture Productivity Gap, Model VS. GLW

Note: The blue dots are fitted APG for each country using adjusted numbers
from Gollin et al. (2014).

due to model mis-specification, and should not be seen as a rejection of the capital-labor

substitution mechanism. In particular, land as an important input in agricultural production

is not separated from physical capital in the model. Also, factor-augmenting productivity

change is not modeled due to data constraints. Section 3.6 discusses some extensions that

take these into consideration. For countries above a certain income level, the model predicts

that the aggregate labor share does not change much across countries. This is consistent

with the findings of Gollin (2002). In the model, both sectoral labor share of income and

sectoral composition change along economic development. Poor countries have both a larger
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Figure 3.6: Model Prediction of Labor Share of Income

agricultural sector and larger labor share of income in agriculture, which helps to keep the

aggregate labor share relatively stable across countries.

Lastly, I examine whether capital-labor substitution helps explain low agricultural pro-

ductivity in poor countries. Figure 3.7 compares the relative TFP in agriculture (κ) for

different model specification. Two points are worth mentioning. First, large TFP differ-

ences are needed to get the agricultural productivity right, which is why recent studies

tries to model TFP differences (e.g., Adamopoulos and Restuccia (2014)). Second, the

Cobb-Douglas technology actually performs better than CES, as the inferred relative TFP is

larger under the former. This is because capital intensity is also much larger in agriculture.
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Figure 3.7: Relative TFP in agriculture, CES VS. C-D

The same difference in capital intensity leads to larger productivity difference in agriculture.

To summarize, besides APG, CES does not help explain other development facts regarding

agriculture. This is consistent with the findings of Herrendorf et al. (2015) using U.S. time

series data.

3.5 Labor Share of Income and Sectoral Capital Intensity

This section presents further evidence for the capital-labor substitution mechanism. I first

examine whether APG is tightly linked to the the ratio of sectoral labor shares as predicted

by the model. Data on sectoral labor share is not available for a large number of countries,
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Figure 3.8: APG VS. Ratio of Labor Share, EU-KLEMS data

in particular the poor countries. I hence use the EU KLEMS database (O’Mahony and

Timmer, 2009), which covers the OECD countries for the period 1970-2005. The OECD

countries are mostly rich countries but the data does show some variation in APG across

countries and over time. Figure 3.8 plots APG against the ratio of non-agricultural labor

share to agricultural labor share.23 The ratio of labor share does track APG closely.24 APG

however is in general larger than the ratio of labor shares, indicating possible measurement

errors or distorted labor market.

Labor shares are closely tied to capital-labor ratios. In particular, the model predicts

that capital intensity in non-agriculture relative to that in agriculture decreases with aggre-

gate capital intensity. I next examine this using the dataset of Butzer et al. (2010), who

23Labor share is defined as labor compensation (LAB) divided by gross value added(VA). Labor produc-
tivity is calculated as value added divided by total hours worked by persons engaged (H EMP). Agriculture
corresponds to the industry agriculture, hunting, forestry and fishing (AtB), and non-agriculture is defined
as the difference between total industries (TOT) and agriculture.

24The correlation coefficient between the two is 0.67, and it’s statistically significant at 1%.
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Table 3.5: Relative Capital Intensity VS. Income Levels

(1) (2) (3)

Log of GDP per
capita

-7.03
(3.29)

-24.12
(5.32)

-2.99
(0.41)

Time Dummies No Yes -
R-squared 0.23 0.24 0.68
# of Obs. 520 520 80

Data Source Butzer et al. (2010) Butzer et al. (2010) Model
Note: the estimate for the constant term is omitted here, standard errors in parentheses.

provide internationally comparable measures of fixed capital in agriculture for a set of 30

countries from 1967-2003. These countries include not only rich countries but also some poor

countries. I complement this data with total capital stock from PWT and employment share

of agriculture from WDI to reach a measure of relative capital intensity. Non-agricultural

capital stock is defined as the difference between total and agricultural capital stock.25 Since

employment share of agriculture is often missing for poor countries and for early periods, I

end up with an unbalanced panel with 520 observations, covering 28 countries from 1980-

2003. Even the sample covers mainly rich countries, it does include observations for poor

countries such as Indonesia, Sri Lanka, and Pakistan, where agriculture takes up around half

of total employment. I regress the relative capital intensity on the log of GDP per worker,

which is derived from PWT. The results are shown in Table 3.5. Column 1 shows that the

relative capital intensity decreases along economic development as the model predicts. The

estimate is statistically significant at 1% level.26 Column 2 adds time dummies to control

for measurement errors in each year, as the two capital stock might still not be comparable

after our adjustment.27 Adding time dummies increases both the level and statistical signif-

icance of the estimate. To make a comparison, I also run the same regression using model

simulated data in Column 3. Curiously, the decline in relative capital intensity is larger in

25 To make the two capital stocks as comparable as possible, I convert PWT’s capital stock evaluated at
current price PPPs (ck) into 1990 prices using the capital price for US (pl k).

26The significant effect mostly comes from cross-section variation, as the between group estimator produces
much larger and more significant estimates then the within group estimator.

27See footnote 25. In particular, total aggregate stock is comparable across countries but not so much
over time. We should expect the time dummies to catch this effect.
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data, despite the model produces a larger effect on APG. I don’t want to overemphasize this

contradiction as the data is not of highest quality. Also, the model abstracts some features

that can alter the relationship between capital intensity and labor shares. The next section

discusses some of these features. I conclude this section by emphasizing that the evidence

presented here does lend support to the model prediction at least qualitatively.

3.6 Discussion

The baseline model is surely oversimplified. I now discuss some possible extensions. In

particular I will focus on how the results on APG will be altered.

3.6.1 Land in Agriculture Production

I have only considered reproducible capital which can be freely allocated between sectors.

In reality land plays an important role in agricultural production. For instance, Valentinyi

and Herrendorf (2008) show that the high capital share in agriculture is mainly explained

by land rents. Adding land to production probably helps bring the predicted APG for poor

countries down because land is going to take up a share of output, which can come from

labor. I make the extension here by assuming agricultural production employs capital, labor,

and land under a nested CES production function. There are 3 possible nesting structure. I

consider 2 of them as follows,

Ya = Ak

[
θa

(
γK

η−1
η

a + (1− γ)L
η−1
η

) η
η−1

σa−1
σa

+ (1− θa)N
σa−1
σa

a

] σa
σa−1

, (3.12)

Ya = Aκ

[
γL

η−1
η + (1− γ)

(
θaK

σa−1
σa

a + (1− θa)N
σa−1
σa

a

) σa
σa−1

η−1
η

] η
η−1

. (3.13)

The first technology combines land and physical first as in Adamopoulos and Restuccia

(2014). This makes sense as land is often treated as a form of capital, and both land and

physical capital are operated by labor. The second technology nests physical capital and
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Table 3.6: Estimates for 3-factor Agricultural Production

Eq 3.12 Eq 3.13

σa
1.85

(0.049)
0.93

(0.041)

η
0.44

(0.046)
1.08

(0.029)

γk
0.012

(0.0016)
0.031

(0.021)

γn
0.023

(0.0035)
0.096

(0.020)

γl
0.034

(0.0025)
-0.041
(0.022)

Note: standard errors in parentheses.

labor together. It recognizes the fact that capital and labor might provide services together,

which is then applied to land (Kislev and Peterson, 1982).

I still use the data and the estimation procedure of Herrendorf et al. (2015) to estimate the

production functions except now I break down capital income into those from reproducible

capital and land rents. The normalization is altered following León-Ledesma et al. (2011) who

also estimate a two-level nested CES production function using a normalized system. The

system is estimated combining the two sectors together, though I only report the results for

agriculture. The estimates for the non-agricultural sector change only a little. Under the first

nesting structure, we can see that the elasticity of substitution between capital and labor is

larger with land added to production, while land is a complement to physical capital. Under

the second nesting structure, capital and labor become complements though the elasticity

of substitution is still larger than in non-agriculture. The estimates for productivity growth

rate however seems less probable. In particular, land productivity declines at 4.1% per year,

which is significant at 10% level. The first technology seem to be a more reasonable choice.

I next repeat the numerical exercise using the new production technologies. Figure 3.9

presents the results on APG. Naturally, we see that the model with the first technology

produces even larger APG for developing countries. On the other hand, the explanatory

power of the model for APG is substantially reduced when we use the second technology.

Adding land to agricultural production thus delivers different results, depending on the
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Figure 3.9: APG with Land in Agricultural Production

Note: left panel is for the first technology (Eq. 3.12), and the right panel is for the
second technology (Eq. 3.13).

specification of technology. Under the more reasonable case capital-labor substitution is still

an important source of large APG in developing countries.

3.6.2 Factor-augmenting Productivity

I have omitted factor-augmenting productivity but only relied on Hicks-neutral productiv-

ity. This is partly due to data constraint. The literature has long recognized that factor-

augmenting productivity can be a key driving force behind changes in factor shares, which is

particularly a problem in production function estimation. I now discuss how the results will

be affected if we allow for factor-augmenting productivity. I first consider another extreme

case where only labor-augmenting productivity is allowed. This is the natural case to con-

sider as labor-augmenting productivity is consistent with balanced growth path in one-sector

models. I modify the production functions as follows,

Yn =

[
θnK

σn−1
σn

n + (1− θn)(ANn)
σn−1
σn

] σn
σn−1

, (3.14)

Ya =

[
θaK

σa−1
σa

a + (1− θa)(AκNa)
σa−1
σa

] σa
σa−1

. (3.15)
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The effect of labor-augmenting productivity is intuitive. If poor countries also have low

productivity, factor shares might change less as what matters is the ratio of capital to effective

labor.28 This potentially can help get the predictions on APG right, or even reverse the

results. A problem with this modification however is that the calibration strategy in Section

3.4 might not produce sensible results. Notice that there we need large TFP differences to

match labor productivity in poor countries. To match the same data in the new specification

can be unfeasible as it is possible that using capital alone is more than necessary to produce

the output a developing country can produce.29 Labor-augmenting productivity hence will

be negative if we require labor productivity in the model to match data.30 Indeed, this is a

serious problem in the sample of countries, the calibration is successful for only 16 out of 80

countries.31 I note that predicted APG is still negatively correlated with income levels, even

though now the correlation is less systematic than the baseline case.

We have seen in Section 3.5 that relative capital intensity in data is larger than model

prediction and the gap is larger for developing countries. For example, relative capital

intensity in U.S. is 0.74 in the model, while it is 1.13 in data. For a poor country like Morocco,

they are 4.34 and 46! This could be due to factor-augmenting productivity differences. But

will this overturn the results on APG? The answer is no. The reason is that no matter how

factor prices change, the changes in capital intensity due to factor-augmenting productivity

are going to increase the labor share of agriculture relative to that of non-agriculture if the

model is going to match data on sectoral capital intensity. On the other hand, changes in

factor prices might change the results. For that, I consider the following thought experiment.

Without re-calibrating the model, let’s assume that the model predicts a constant aggregate

28That is, capital intensity might increase less if increase in effective labor reduces the need of substituting
capital for labor.

29This is because neither capital or labor is necessary for producing output in CES production functions.

30At a deeper level, the problem is not concave if we have to change A and κ to match data on labor
productivity. For example, if we increase rental rate of capital, we can show that the demand for capital
might also increase due to corresponding shifts in production function.

31To solve the problem, I use a grid search over employment share in agriculture, given which all other
variables can be solved. The grids range from 0 to 1 with a grid size of 0.0001. An equilibrium exists if the
equilibrium conditions holds roughly.
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labor share of 0.67 for all countries and the allocation of capital and labor is the same as in

data.32 This pins down the wage-rental rate ratio, as33

w

r
=

ls

(1− ls)
K

Na + Nn
1−ξ

,

where ls is the aggregate labor share. Given that the allocation of capital and labor is

exactly what we observe in data, what are the predictions for APG? To get that, I apply the

following formula to all the countries with comprehensive data,

APG =

Kn
Nn

r
w

+ 1
1−ξ

Ka
Na

r
w

+ 1
.

I find that predicted APG is still negatively correlated with income levels. In particular, it is

higher than 10 for 14 out of 27 countries, and it can be as large as 150! I find these numbers

implausibly large, indicating substantial errors in the capital measures.

The first experiment in this subsection shows that even labor-augmenting productivity

might play a role, it cannot account for the large international differences in labor productiv-

ity alone. The second experiment shows that a model calibrated to target capital allocation

in the data provided by Butzer et al. (2010) will still over-predict APG for poor countries,

indicating potentially large measurement errors in the capital measures. The conclusion is

that factor-augmenting productivity might get the predicted APG right. The data from

Butzer et al. (2010) however is not good enough for a quantitative study.

3.6.3 Investment

The model is static such that investment is not explicitly considered. With investment,

output will be different from consumption. The model thus implicitly requires the investment

rates in the two sectors follow a certain rule. To see that, notice the first order condition

32One property of a successful model would be a relative stable aggregate labor share (Gollin, 2002). The
baseline model shows the predictive power for labor allocation. Capital allocation can also be targeted if we
were to use that information.

33Notice the calibration of ξ will not be affected by adding factor-augmenting productivity.
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with investment changes to

ω

1− ω
((1− inva)Ya)−αa

((1− invn)Yn) −αn
= p,

where invi is investment rate in sector i. Ignoring investment doesn’t affect model prediction

only if (1− inva)αa = (1− invn) αn , which implies invn > inva. As investment is commonly

believed to come from the manufacturing sector (Herrendorf et al., 2014), the bias due to ig-

noring investment might be small. In general, raising investment rate in the non-agricultural

sector increases the demand for the non-agricultural good, which further increases the rental

rate of capital, as non-agriculture is more capital intensive than agriculture in poor coun-

tries. The changes in factor prices will increase predicted APG as it further deviates the

wage-rental rate ratio from the U.S. benchmark. Adding investment hence will not overturn

the prediction for APG but reinforces it.

3.6.4 Trade and International Capital Flow

How does opening to international markets change my results? I next analyze two cases:

one with international trade and the other with international capital flow. I focus on what

will happen to developing countries.

What happens if a poor country opens to international trade? Given the low agricultural

productivity, relative price of the agricultural good is high in poor countries (Restuccia et al.,

2008; Lagakos and Waugh, 2013). This means poor countries will import food and export

industrial products.34 In my model, opening to international trade lowers the wage-rental

rate ratio, which tend to raise model predicted APG in poor countries. To see that, notice

that we can write the resource constraint for capital as

(
Kn

Nn

)
Nn +

(
Ka

Na

)
Na = K.

34In data poor countries don’t import as much food as they should, as trade costs are prohibitively high
in agriculture (Tombe, 2015). The fact that poor countries allocate a lot workers to agriculture is a reflection
of high trade costs.

94



Given that the country will export non-agricultural good and import agricultural good, we

expect Nn to increase and Na to decrease. Since Kn
Nn

> Ka
Na

in developing countries, we will

have both of them decrease, otherwise the resource constraint cannot be met.35 This leads

to a decrease in labor share in non-agriculture and an increase in agriculture, contributing

to a even larger APG. Opening to international trade thus only strengthens my results. The

fundamental reason behind this result is international trade benefits capital in capital-scarce

countries, which leads to a lower wage-rental rate ratio than under a closed economy. This

seemingly counter-intuitive result makes sense because the source of comparative advantage

mostly comes from TFP differences rather than factor endowment. In rich countries, the

opposite will happen. The dispersion in APG across countries will increase.

What about opening to the international capital market? The model predicts that capital

will move from rich to poor countries as returns are higher in poor countries. The wage-rental

rate ratio will increase in poor countries, which will reduce the APG. However, the difference

in relative factor price will not disappear because of capital flow alone. Factor prices will

not be equalized across countries because countries differ in TFP. Workers in rich countries

benefit from high TFP and receive higher wages. Efficient allocation of resources requires

both capital and labor move to rich countries instead of capital moving to poor countries.

Opening to international capital inflow however contributes to a decrease in the dispersion

of APG, which might help resolving the over-prediction of the model.

3.7 Summary

This chapter examines whether differential capital-labor substitution across sectors helps

explain some of the development facts regarding agriculture. I find that it helps explain

the negative relationship between the agricultural productivity gap and GDP per capita.

While Gollin et al. (2014) conclude that difference in sectoral labor shares cannot explain

the agricultural productivity gap, I find that the changes in sectoral labor shares might

35This relies on a shift of labor from agriculture to industry. This is necessary because if it’s not the case,
increased non-agricultural production require a larger increase in capital intensity in non-agriculture, which
leads to an even larger increase in agricultural labor share. The resource constraint again cannot be met.
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nevertheless help explain the cross-country pattern of APG. Since sectoral labor share data

covering a large set of countries are not readily available, we however cannot directly test this

model prediction. Fractional evidence in Fuglie (2010) supports the model. Quantitatively,

my baseline model even over-predicts the negative correlation, which can be attenuated by

adding more realistic features to the model. In terms of sectoral allocation of resources and

sectoral labor productivity, I find that the effect of capital-labor substitution is quantitatively

small, conforming the findings of Herrendorf et al. (2015).

The evidence presented in this chapter is hardly conclusive due to the lack of good data.

What’s clear is that relative capital intensity and labor share of income do change over time,

and the change is different across industries. This cautions using Cobb-Douglas production

functions in the study of agriculture and development. I show that it is in particular the

case when we try to attribute labor productivity differences across sectors to distortions.

3.8 Data Appendix

For the quantitative analysis, I construct a dataset countries for the year 1985. The dataset

includes each country’s agricultural and non-agricultural real GDP per capita, employment

and value-added shares of both sectors, relative prices, capital stock, and land endowment

per capita. Data on agricultural output come from Food and Agriculture Organization of

the United Nations (FAO, Rao (1993)). Aggregate output data come from Penn World

Table 8.1 (Feenstra et al., 2015). While both the FAO and PWT provide real output,

they are not comparable because the international prices used are not comparable. I use the

procedure in Caselli (2005) to adjust the FAO data to make it comparable to PWT. The non-

agricultural output then is derived by subtracting agricultural output from aggregate output.

The employment data also come from FAO and PWT. Because FAO reports economically

active population while PWT only considers people who work, I use International Labor

Organization’s (ILO) data on economically active population to adjust the PWT data and

make economically active population as my measure of employment. The source of value-

added shares is the United Nations National Accounts, which I download from the online
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data appendix of Herrendorf et al. (2014). Relative prices are derived as the ratio of PPPs

for the two sectors. Finally, I use PWT’s capital stock measure. The land data also comes

from FAO. The dataset has 80 countries with non-missing values for all variables.
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CHAPTER 4

Value-added, Production Networks, and Misallocation

4.1 Introduction

Both the previous two chapters provide explanations for the agricultural productivity gap,

which has often been as an indicator of severe labor misallocation in developing countries

Gollin et al. (2014). While my study does not favor the misallocation explanation for the

productivity gap, a recent literature pioneered by Restuccia and Rogerson (2008) and Hsieh

and Klenow (2009) does argue forcefully and provide much evidence that resource misallo-

cation could be an important reason behind the staggering productivity differences between

developed and developing countries. In particular, Hsieh and Klenow (2009) develop an ac-

counting framework to estimate the efficiency loss resulted from misallocation across micro

production units such as firms, which is followed by later studies such as Oberfield (2013),

Hsieh and Klenow (2014), and Gopinath et al. (2017). While their approach relies on value-

added production functions and ignores intermediate input use in production, later studies

also have pointed out that the effect of given micro distortions can be magnified through the

linkages across sectors (Jones, 2011, 2013). Without taking firm productivity and distortions

as given, this chapter asks and answers a different question: will a model with production

networks produce larger efficiency loss than a model with value-added production functions

conditional on observing the same data?

To answer this question requires correct specification of both models. While we can

naturally view sectors as either categories of final expenditure or value-added that are con-

nected through complicated input-output linkages,1 Herrendorf et al. (2013) show that it

1An example given in Herrendorf et al. (2013) is a cotton shirt. While it is a product of the manufacturing
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is not easy to specify tractable models that can be easily transformed into the other form.

If the models are mis-specified, the question raised can not be properly answered because

we can not distinguish between model mis-specification and the use of different production

functions. The first contribution of this chapter is to show that the widely used model of

production networks with Cobb-Douglas production technologies at the sectoral level a la

Long and Plosser (1983) (the output model hereafter) is theoretically consistent with the

model of Hsieh and Klenow (2009) (the value-added model) when there are no distortions

in intermediate input use.2 This provides the basis for the comparison of these two models.

With the equivalence of the two models, I proceed to show that efficiency loss produced

in these two models are identical when there are no distortions in the intermediate input

use. Despite the magnification of distortions through the production network, the output

model doesn’t produce larger efficiency loss as firm productivity measured under an output

production function is substantially less dispersed that that measured under a value-added

production function, which lowers the effect of misallocation. This scaling effect has been

pointed out by Bruno (1978) in comparing the real value-added production and the output

production function. It has also recently been emphasized by Gandhi et al. (2013, 2017) as a

reason that the value-added framework might overstate the extent of misallocation in data,

though they do not consider production networks.

The scaling effect can be intuitively understood as follows. A rise in productivity will

induce the firm to employ more intermediate inputs and raise its output and value-added.

Value-added-based productivity will register a larger increase in productivity because it

doesn’t take into account the increase in intermediate input use, which is correctly accounted

for in the output-based productivity measures. It is essentially the magnification effect of

production networks, now implicitly reflected in measured firm productivity, while the same

effect is explicitly spelled out in the output model. It is another manifestation that the two

sector under the final expenditure view, it is a combination of raw cotton from agriculture, processing from
manufacturing, and retail services from the services sector under the value-added view.

2A minor modification is required: the elasticity of substitution between products of firms within a sector
should be different. Hsieh and Klenow (2009) assume a constant elasticity. I’ll come back to this point when
I discuss empirical implementation of the models.
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models are just different representations of the same production process.

When distortions in intermediate input use are introduced, the value-added model is no

longer a correct representation of data and will not produce the correct measure of efficiency

loss. I explore how the results might be biased in this scenario if the value-added model

is nevertheless specified. I go on to analyze a case where there is no misallocation across

sectors. This is the case considered by Hsieh and Klenow (2009) and many others.3 It also

allows us to identify the production network and makes the implementation feasible. Sur-

prisingly, efficiency loss in the value-added model actually has the theoretically correct form

in terms of revenue and physical productivity of firms, despite a value-added representation

of the data does not exist. Though measured efficiency loss will be biased when the model

is implemented in data. The reason for the bias is that both revenue productivity and phys-

ical productivity are incorrectly measured in the value-added model. Since I assume that

intermediate inputs observed in the data are recorded in the same prices,4 one way to under-

stand this mismeasurement is to think of the commonly used value-added measure (output

minus intermediate input) as a real value-added measure constructed with constant prices

while the firms actually face different nominal prices due to the presence of distortions. As

argued by Bruno (1978), when prices are not constant, both marginal products and total

factor productivity measured using real value-added will be biased. The same logic underlies

the findings of Basu and Fernald (1995) that productivity spillover across manufacturing

industries exist in the value-added data but not in the output data. They consider imperfect

competition as a particular source of price distortion, while the distortions in this chapter

are generic and I apply the idea to misallocation accounting.

While efficiency loss is mismeasured in the value-added model with distortions in interme-

diate input use, the model does not predict a unambiguous direction for the bias. It depends

on how the distortions are distributed in data. I next empirically measure efficiency loss in

China under these two models using the Chinese Annual Survey of Industrial Production in

3In the contrary, Jones (2011) studies only misallocation across sectors.

4That is, the distortions considered in the chapter are implicit, or the data is net of taxes if the distortions
come from actual taxes.
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2005, which is also used by Hsieh and Klenow (2009) among others. When the value-added

model is calibrated in a way consistent with the theoretical discussion, I find that there are

biases in both directions across 4-digit industries of China. The biases however are relatively

small. The difference between the measures from the two models is less than 5 percentage

points for over 95% of the industries. This is because measured distortions in the interme-

diate input markets are substantially smaller than that in the capital and labor markets,

a finding that is consistent with Krishna and Tang (2018). The standard deviation of the

distortions in intermediate input market (in logs) is only 0.19, while that in the primary

input market is 0.85.

Existing literature however might have overstated the cost of misallocation due to mis-

specified parameter values. A key parameter for measuring efficiency loss is the elasticity

of substitution between varieties within a sector. This parameter is often assigned wrong

values in the literature in two ways: 1. it should be sector-specific, and 2. it is different in

the two models. While the bias coming from the first source is small, efficiency loss can be

substantially overstated when an output elasticity is assigned to a value-added model. In the

Chinese data, if I let the elasticity to be 3 in both models,5 measured efficiency loss is larger

in the value-added model in over 95% of the industries and the value-added measures are

on average 14 percentage points larger than the output measures. The reason behind this

overstatement is that the output elasticity is much smaller than the value-added elasticity.

The distinction between these two parameters is emphasized by Herrendorf et al. (2013) who

discuss the two views of sectors. It however has not be fully appreciated in the literature.

While the elasticity is often estimated for goods (Broda and Weinstein, 2006; Hendel and

Nevo, 2006), these estimates are often used in the value-added model without deliberation.

This chapter contributes to a burgeoning literature on misallocation, in particular those

studies using micro data to measure aggregate efficiency loss following Hsieh and Klenow

(2009).6 It is also closely related to a newer literature studying misallocation in production

5This is the baseline case in Hsieh and Klenow (2009). The overstatement still exists if other values are
assigned.

6It is part of the “indirect approach” under the taxonomy of Restuccia and Rogerson (2013). Studies
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networks.7,8 This chapter focuses on the measurement of efficiency loss under production

networks and compared it to the value-added model of Hsieh and Klenow (2009). It is

close to Krishna and Tang (2018), who also measure misallocation for China and India

using an output model similar to mine. They find that measured efficiency losses in the

two countries are not necessarily higher than those in Hsieh and Klenow (2009). This

chapter provides a theoretical underpinning for their findings. The comparison between

the use of output and value-added measures also echoes the early studies of Bruno (1978,

1984), and Basu and Fernald (1995). Different from them, this chapter explicitly considers

production networks and studies misallocation across firms.9 The two views of sectors are also

extensively discussed in Herrendorf et al. (2013) who try to disentangle different sources of

structural transformation. This chapter applies the idea to the measurement of misallocation

and explicitly models the input-output linkages.

The rest of the chapter is structured as follows. The next section presents the output

model, which is followed by the value-added framework in Section 4.3. Section 4.4 shows

that the output model can be transformed into the value-added model and efficiency loss

measured in the two models are identical if there are no distortions in intermediate input

use. Section 4.5 discusses how the value-added model will produce biased results when those

distortions are present. Section 4.6 evaluates the two models empirically using Chinese data.

Section 4.7 concludes.

along this line include Dollar and Wei (2007), Alfaro et al. (2009), Kalemli-Özcan and Sorensen (2012),
Ziebarth (2012, 2013), Brandt et al. (2013), Oberfield (2013), Hsieh and Klenow (2014), Adamopoulos et al.
(2015), Chen and Irarrazabal (2015), ,Gopinath et al. (2017), and Restuccia and Stantaeulàlia-Llopis (2017),
among others.

7This line of research includes Jones (2011, 2013), Bartelme and Gorodnichenko (2015), Bigio and LaO
(2016), Baqaee and Farhi (2017a), Caliendo et al. (2017), Liu (2017), and Krishna and Tang (2018).

8Other important contributions to the misallocation literature include Banerjee and Duflo (2005), Restuc-
cia and Rogerson (2008), Guner et al. (2008), Banerjee and Moll (2010), Bartelsman et al. (2013), Buera
and Shin (2013), Asker et al. (2014), Midrigan and Xu (2014), Moll (2014), David et al. (2016), David and
Venkateswaran (2017), among many others. Sectoral interlinakges have also been studied by Hirschman
(1958), Hulten (1978), Long and Plosser (1983), Horvath (1998, 2000), Ciccone (2002), Acemoglu et al.
(2012), Baqaee (2016), and Baqaee and Farhi (2017b), to name a few.

9The other studies mainly focus on measuring productivity growth over time, while this chapter compares
productivity across firms.
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4.2 The Output Model

This section presents the output model, which comes from adding a production network a la

Long and Plosser (1983) to the Hsieh and Klenow (2009) framework. I view this model as a

natural representation of production in an economy, as firms treat primary inputs and inter-

mediate inputs symmetrically in reality. From the point of view of the aggregate economy,

the concept of value-added however is more natural as the intermediate inputs cancel out

in the aggregation process. This makes sure that the comparison between the output model

present here and the value-added model in the next section is legitimate: both model takes

capital and labor to produce a final product (GDP) while one model considers endogenous

intermediate input use and the other model does not. The output model corresponds to the

“final consumption expenditure approach” of Herrendorf et al. (2013), while the value-added

model corresponds to the “consumption value-added approach”.10

The are S sectors in the economy. A final product is produced by competitive firms from

sectoral output,11

Y =
S∑
s=1

Cθs
s , with

S∑
s=1

θs = 1. (4.1)

Let the final output be the numeraire, the demand for sectoral output from final good

producers is given by PsYs = θsY . The sectoral output is used both for final consumption

and as intermediate inputs in production, with the market clearing condition,

Qs = Cs +Ms, (4.2)

where Ms is intermediate input demand from all sector, Ms =
∑S

q=1Msq, where Msq is the

demand of sector q for the output of sector s. The sectoral output is produced using different

10Note Herrendorf et al. (2013) only considers consumption as their purpose is to estimate utility functions
without considering which sector investment sources from. In this chapter both consumption and investment
are taken as part of total expenditure.

11I use C to denote consumption and will call it consumption, but it should be understood as expenditure
including both consumption and investment, see Footnote 10.

103



intermediate varieties Qsi,

Qs =

(
Ns∑
i=1

Q
σs−1
σs

si

) σs
σs−1

, (4.3)

where Ns is the total number of varieties in sector s. I assume each variety is produced by

one firm such that firm and variety can used interchangeably. Note that the elasticity of

substitution between varieties is sector specific. This is not necessary for the output model

but I will later show that the elasticity cannot be constant in both models. The inverse

demand for a variety is given by Psi = PsQ
1
σs
s Q

− 1
σs

si , with the sectoral price index given as

Ps =
(∑S

i=1 P
1−σs
si

) 1
1−σs

.

The firms produce with two primary inputs, capital and labor, and intermediate inputs

from all sectors, according to a Cobb-Douglas technology

Qsi = Asi
(
Kαs
si L

1−αs
si

)ηs ( S∏
q=1

M
λqs
qsi

)1−ηs

, (4.4)

with
∑S

q=1 λqs = 1. Different from Hsieh and Klenow (2009), I assume the firms take prices

as given instead of actively set prices.12 They face idiosyncratic distortions in the factor

markets, trying to maximize,

πsi = PsiQsi − (1 + τKsi)RKsi − (1 + τLsi)WLsi − (1 + τMsi)
S∑
q=1

PqMqsi.

The key to equivalence results presented below is there are no distortions in intermediate

input use, which I make explicit in the following assumption.

Assumption 2 τMsi = 0, ∀ s ∈ {1, 2, ...S} and i ∈ {1, 2, ...Ns}.

To prove the two models represent the same production structure, it is however not

necessary to introduce the distortions but adding them shows that the results are not affected

12One way to think about this is there are many firms with access to identical technology with tiny entry
costs. In equilibrium there will be only one firm operating but act like competitive producers. Otherwise, I
can assume there are many firms producing one variety and they all have the same technology and face the
same distortions. Assuming monopoly pricing does not change main conclusions in this chapter but only
alters the constant terms in the aggregate production derived below.
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by distortions in primary factor markets. It also facilitates the presentation of results below.

Following Hsieh and Klenow (2009), I assume that the payments to factors are recorded in

market prices net of the wedges. One way to think of this to view the wedges as the shadow

prices for the constraints the firms face in the factor markets, such as a collateral constraints

for renting capital. This however runs the risk of having firms with negative profits if they

face negative wedges. Giving the firms monopoly power can ease the problem but will not

solve it altogether. To assume the taxes and subsidies are rebated to the firms lump sum

however guarantees all firms receive zero profit. Either way, the allocation of production

factors is not affected. Finally, factor market clearing for capital and labor requires,

S∑
s=1

Ns∑
i=1

Ksi = K, and
S∑
s=1

Ns∑
i=1

Lsi = L. (4.5)

Within a sector, sectoral intermediate demand is the sum of demand from all variety pro-

ducers Mqs =
∑Ns

i=1Mqsi.

I next proceed to show that the model allows an aggregate production function with a

Cobb-Douglas form. Following Hsieh and Klenow (2009), I define marginal revenue products

as follows,

MRPKsi ≡ αsηs
PsiQsi

Ksi

= (1 + τKsi)R, (4.6)

MRPLsi ≡ (1− αs)ηs
PsiQsi

Lsi
= (1 + τLsi)W, (4.7)

MRPMqsi ≡ λqs(1− ηs)
PsiQsi

Mqsi

= Pq, (4.8)

where the second equality simply comes from the first order conditions of the profit maxi-

mizing firms. With the wedges, the marginal revenue products are no longer the same across

firms, which is required for efficient resource allocation. I also define value productivity and
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physical productivity as follows,

TFPRsi ≡
PsiQsi(

Kαs
si L

1−αs
si

)ηs (∏S
q=1M

λqs
qsi

)1−ηs , (4.9)

TFPQsi ≡
Qsi(

Kαs
si L

1−αs
si

)ηs (∏S
q=1M

λqs
qsi

)1−ηs = Asi. (4.10)

Revenue productivity is simply a firm’s marginal cost of a production bundle such that we

can express price as Psi = TFPRsi
Asi

.13 It also contains all the information on the wedges, each

of which weighted by the output elasticity of the corresponding production factor. Without

the wedges, revenue productivity is equalized across firms within a sector, which leads to the

efficient allocation of resources. Under efficient allocation, more productive firms employs

more inputs and produce more, which lowers the price of its product eventually to the point

of equal revenue productivity across firms.

For a sector as a whole, value productivity can be similarly defined as14

TFPRs ≡
PsQs

(Kαs
s L

1−αs
s )ηs

(∏S
q=1 M

λqs
qs

)1−ηs , (4.11)

which allows us to express sectoral total factor productivity as,

TFPs ≡
Qs

(Kαs
s L

1−αs
s )ηs

(∏S
q=1M

λqs
qs

)1−ηs =
TFPRs

Ps
.

13From the first order conditions, we have TFPRsi ∝
(
MRPKαs

si MRPL1−αs
si

)ηs (∏S
q=1MRPM

λqs
qsi

)1−ηs
.

14We have TFPRs ∝
(
MRPKαs

s MRPL1−αs
s

)ηs (∏S
q=1MRPM

λqs
qsi

)1−ηs
, with

MRPKs ≡ αsηs
PsQs
Ks

=
1∑Ns

i=1
1

MRPKsi

PsiQsi
PsQs

,

MRPLs ≡ (1− αs)ηs
PsQs
Ls

=
1∑Ns

i=1
1

MRPLsi

PsiQsi
PsQs

,

MRPMqs ≡ λqs(1− ηs)
PsQs
Mqsi

=
1∑Ns

i=1
1

MRPMqsi

PsiQsi
PsQs

.

The sectoral marginal revenue products hence are the weighted average of that of the firms.
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Plugging in Ps and using the prices of varieties, sectoral production takes a Cobb-Douglas

form as follows.

Qs = TFPs ·
(
Kαs
s L

1−αs
s

)ηs ( S∏
q=1

Mλqs
qs

)1−ηs

, and TFPs =

[
Ns∑
i=1

(
Asi

TFPRs

TFPRsi

)σs−1
] 1
σs−1

(4.12)

I next study the allocation of resources across sectors and derive an aggregate production

function. For this purpose, it is useful to define the Domar weight vs = PsQs
Y

, which is simply

the sales to GDP ratio. From the market clearing condition for sectoral output, we have15

V = θ +BV,

where V is the 1 by S vector of Domar weights vs, θ is the vector of sectoral shares in final

consumption θs, and the S by S matrix B is the input-output matrix with its sqth element

bsq given by λsq(1− ηq). We can solve for the Domar weights as V = (I − B)−1θ. Without

distortions in intermediate input use, the Domar weights are determined by technology

parameters alone. We can then relate the intermediate input demand to sectoral output as,

Mqs = λqs(1− ηs)
PsQs

Pq
= bqs

vs
vq
Qq.

The allocation of capital and labor across sectors is simply given by,

Ks

K
=

1
TKs

αsηsvs∑S
q=1

1
TKq

αqηqvq
≡ βKs,

Ls
L

=
1
TLs

(1− αs)ηsvs∑S
q=1

1
TLq

(1− αq)ηqvq
≡ βLs,

15Remember the market clearing condition for sectoral output is given by

PsQs = PsCs +

S∑
q=1

λsq(1− ηq)PqQq,

where I have plugged in the sectoral demand for intermediate inputs. Dividing the equation by Y and stack
it in a vector gives the result.
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where TKs = MRPKs
R

and TLs = MRPLs
W

summarize the effect of distortions on sectoral factor

demand. Without distortions, TKs = 1 and TLs = 1.

Plugging the allocation of production factors described above into the sectoral production

function and taking logs, we have the log of sectoral production function in vector form16

q̄ = ā+ ωq + δK logK + δL logL+B′q̄,

where q̄ is a vector of logQs, δK a vector of αsηs, δL a vector of (1−αs)ηs, and ωq is a vector

of the allocation terms.17 The vector of log output is solved as

q̄ = (I −B′)−1(ā+ ωq + δK logK + δL logL)

Notice that we can write Cs = θsQs
vs

. Taking logs and stacking it into a vector, we have

c̄ = ωc + q̄,

where c̄ is the vector of logCs and ω a vector of log θs
vs

. Using the final good production

function, we have,

log Y = θ′c̄ = θ′[ωc + (I −B′)−1(ā+ ωq + δK logK + δL logL)]

which leads to the aggregate production function summarized in the following proposition.

Proposition 5 The economy has an aggregate production function given by

Y = AKαL1−α, (4.13)

16The sectoral production function is given by

Qs = TFPs ·
(
(βKsK)αs(βLsL)1−αs

)ηs [ S∏
q=1

(
bqs

vs
vq
Qq

)λqs]1−ηs

17The sth element of ωq is given by αsηs log βKs + (1− αs)ηs log βLs + (1− ηs)
∑S
q=1 λqs log

(
bqs

vs
vq

)
.
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where total factor productivity is given by

A = γ (TFPs)
vs

S∏
s=1

[
(βKs)

αsηs (βLs)
(1−αs)ηs

]vs
, (4.14)

with γ being a constant given by
∏S

s=1

(
θs
vs

)θs∏S
s=1

[∏S
q=1

(
bqs

vs
vq

)1−ηs
λqs

]vs
and18

α = θ′(I −B′)−1δK . (4.15)

Notice that I have decomposed the aggregate total factor productivity into three terms.

The first is a constant. The second is the weighted average of sectorl TFP where the weights

are the Domar weights. This term gives the effect of distortions on within sector allocation.

The third reflects the allocation of capital and labor across sectors. If there is no misallocation

across sectors, the third term will also be constant in this Cobb-Douglas economy such that

the impact of an increase in sectoral TFP is given by its sales to GDP ratio, which is Hulten’s

theorem (Hulten, 1978).

Efficient allocation across all variety producers requires the marginal revenue products

to be equated across firms and sectors. Let Y E be the efficient output, the efficiency loss

from resource misallocation in the output model is given as

(
Y E

Y

)o
=

S∏
s=1

(
TFPE

s

TFPs

)vs S∏
s=1

[(
βEKs
βKs

)αsηs (βELs
βLs

)(1−αs)ηs
]vs

(4.16)

where

TFPE
s =

[
Ns∑
i=1

Aσs−1
si

] 1
σs−1

(4.17)

and

βEKs =
αsηsvs∑S
q=1 αqηqvq

, and βELs =
(1− αs)ηsvs∑S
q=1(1− αq)ηqvq

(4.18)

18To show that the production function has constant returns to scale, notice that the share of labor is
given by θ′(I−B)−1δL, returns to scale is then θ′(I−B′)−1(δK + δL). Since the value-added shares δK + δL
are given by (I −B′)1 where 1 is the vector of ones. It is easy to show that θ′(I −B′)−1(δK + δL) = 1.
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The two terms in the efficiency loss measure again reflect the role of within and across sector

allocation respectively.

4.3 The Value-added Model

I next present the value-added model, which comes straight from Hsieh and Klenow (2009)

with minor modifications. The model ignores sectoral linkages and assumes all firms work

with a value-added production. For the whole economy, there is still a single final product

that is the GDP of this economy. The final output is produced from sectoral value-added

with a Cobb-Douglas technology.

Y = Φ
S∑
s=1

Y θ̂s
s , with

S∑
s=1

θ̂s = 1 (4.19)

where Φ is a normalizing constant and I have used a hat to indicate a variable that’s different

between the two models. Profit maximization leads to PY sYs = θ̂sY . Sectoral value-added

is an aggregate over the varieties,

Ys =

(
Ns∑
i=1

Y
σ̂s−1
σ̂s

si

) σ̂s
σ̂s−1

, (4.20)

where the elasticity of substitution σ̂s will be different from that in the output model. These

differences in parameters resemble the differences in utility functions under different views

of sectors as discussed in Herrendorf et al. (2013). For example, we can view the aggregate

production as a utility function without affecting the results of the model. Profit maximiza-

tion again leads to the inverse demand, PY si = PY sY
1
σ̂s
s Y

− 1
σ̂s

si with the price index of sectoral

value-added given by PY s =
(
P 1−σ̂s
Y si

) 1
1−σ̂s .

Production of the varieties uses only primary inputs,

Ysi = ÂsiK
αs
si L

1−αs
si , (4.21)
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where I have set the value-added shares of capital and labor to be identical in the two

models. The firms face idiosyncratic distortions in the factor markets. They take prices and

production technology as given and maximize,

π̂si = PY siYsi − (1 + τKsi)RKsi − (1 + τLsi)WL,

where I have assumed that the size of the distortions are the same in the two models. Inferred

distortions using data however might be different in these two models, depending on whether

there are distortions in the intermediate input markets. I will discuss the inference later.

Factor market clearing conditions are defined the same as above.

Let’s proceed to define the marginal revenue products as above,

M̂RPKsi ≡ αs
PY siYsi
Ksi

= (1 + τKsi)R, (4.22)

M̂RPLsi ≡ (1− αs)
PY siYsi
Lsi

= (1 + τLsi)W. (4.23)

Similarly, value productivity and physical productivity are defined as,

T̂FPRsi ≡
PY siYsi

Kαs
si L

1−αs
si

, (4.24)

T̂FPQsi ≡
Ysi

Kαs
si L

1−αs
si

= Âsi, (4.25)

with price given by PY si = T̂ FPRsi
Âsi

.19 Sectoral value productivity is defined as

T̂FPRs ≡
PY sYs

Kαs
s L

1−αs
s

. (4.26)

Making use of these definitions leads to the sectoral value-added production function

Ys = T̂FP s ·Kαs
s L

1−αs
s , and T̂FP s =

 Ns∑
i=1

(
Âsi

T̂FPRs

T̂FPRsi

)σ̂s−1
 1
σ̂s−1

. (4.27)

19We again have T̂FPRsi ∝ M̂RPK
αs

si M̂RPL
1−αs
si .
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Given the sectoral production function, the allocation of capital and labor across sectors

is given by,

Ks

K
=

1

T̂Ks
αsθ̂s∑S

q=1
1

T̂Kq
αqθ̂q

≡ β̂Ks,

Ls
L

=

1

T̂Ls
(1− αs)θ̂s∑S

q=1
1

T̂Lq
(1− αq)θ̂q

≡ β̂Ls,

where T̂Ks = M̂RPKs

R
and T̂Ls = M̂RPLs

W
are defined as as above.20 Combining the factor

demand with the production function, the aggregate production function also has a Cobb-

Douglas form, which is introduced in the following proposition.

Proposition 6 The value-added model also admits an aggregate production function given

as

Y = ÂK α̂L1−α̂, (4.28)

where total factor productivity is given by

A = Φ
S∏
s=1

(
T̂FP s

)θ̂s S∏
s=1

[(
β̂Ks

)αs (
β̂Ls

)1−αs
]θ̂s

, (4.29)

and the capital share is α̂ =
∑S

s=1 θ̂sαs.
21

Again TFP is decomposed into a within sector and a between sector component. The

exponents on sectoral TFP and the allocation terms are the sectoral shares in final ouptut

instead of the Domar weights in the output model. This difference reflects the fact that the

20The marginal revenue products are defined as

M̂RPKs ≡ αs
PY sYs
Ks

=
1∑Ns

i=1
1

M̂RPKsi

PY siYsi
PY sYs

,

M̂RPLs ≡ (1− αs)
PY sYs
Ls

=
1∑Ns

i=1
1

M̂RPLsi

PY siYsi
PY sYs

.

From the definition, we again have T̂FPRs ∝ M̂RPK
αs

s M̂RPL
1−αs
s .

21The share of labor is
∑S
s=1 θ̂s(1− αs). It is obvious that they sum to 1.
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shocks to productivity or resource allocation are magnified through the production network.

We can similarly decompose the efficiency loss from resource misallocation into two terms,

which is given by

(
Y E

Y

)v
=

S∏
s=1

(
T̂FP

E

s

T̂FP s

)θ̂s S∏
s=1

( β̂EKs
β̂Ks

)αs (
β̂ELs

β̂Ls

)1−αs
θ̂s (4.30)

where

T̂FP
E

s =

[
Ns∑
i=1

Âσ̂s−1
si

] 1
σ̂s−1

(4.31)

and

β̂EKs =
αsθ̂s∑S
q=1 αqθ̂q

, and β̂ELs =
(1− αs)θ̂s∑S
q=1(1− αq)θ̂q

(4.32)

Notice that Hsieh and Klenow (2009) focuses only on the within sector reallocation, efficiency

loss measured by them corresponds to the the first part of measured efficiency loss here.

4.4 The Equivalence of The Two Models

This section presents the equivalence results. I first show that we can transform the output

model to the value-added model with appropriate choice of parameters. I then show that

efficiency loss measured in these two models are identical for the case with no distortions in

the intermediate input markets.

4.4.1 The Proof

The proof builds the value-added model from firm value-added production and shows the

two models have the same resource allocation. I proceed in three steps. I first show that

given a value-added production function for the firms, there is an value-added production

function for the sectors. I then show that it is also the case for the whole economy. Lastly,

I prove that resource allocation in the constructed value-added model indeed conforms with

the output model.
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Step 1 I first show that sectoral output can be viewed as produced from sectoral value-

added and intermediate inputs, with sectoral value-added defined as a CES aggregator of

firm value-added while taking firm value-added production function as given. I will show in

step 3 that the two models have the same allocation of primary factors, such that the firm

value-added production function is properly defined.

Since the primary inputs and intermediate inputs are separated in output production, it

is easy to define a firm value-added production. Let’s rewrite the production function for

the variety as,

Qsi = Y ηs
si

(
S∏
q=1

M
λqs
qsi

)1−ηs

, (4.33)

with Ysi = A
1
ηs
si K

αs
si L

1−αs
si as the firm’s value-added production function. For the moment, I

assume the firms take value-added as given and maximize profit by changing intermediate

input use only.22 Combining the transformed production function with the demand for

intermediate input of the firms, the allocation of intermediate inputs is given by

Mqsi

Mqs

=
Y

ηs(σs−1)
1+ηs(σs−1)

si∑Ns
j=1 Y

ηs(σs−1)
1+ηs(σs−1)

sj

Plugging the intermediate allocation rule back into the production functions, we can rewrite

the sectoral production function as produced from sectoral value-added and intermediate

inputs,

Qs = Y ηs
s

(
S∏
q=1

Mλqs
qs

)1−ηs

, with Ys =

(
Ns∑
i=1

Y
ηs(σs−1)

1+ηs(σs−1)

si

) 1+ηs(σs−1)
ηs(σs−1)

. (4.34)

If we set Âsi = A
1
ηs
si and σ̂s = 1 + ηs(σs − 1), we just have shown that there exists a sectoral

value-added production function which takes firm value-added as inputs.

Step 2 I next proceed to show that given the sectoral production function, final output is

given by a Cobb-Douglas aggregator of sectoral value-added.

22The result of this maximization problem is the restricted profit function.
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Plugging the demand for intermediate input Mqs = (1−ηs)λqsPsQs
Pq

into the sectoral output

production function and taking logs, we have,

logQs = ηsQs+
S∑
q=1

(1−ηs)λqs log(1−ηs)λqs+(1−ηs)(logPs+logQs)−
S∑
q=1

(1−ηs)λqs logPq.

Solving for logQs and stacking it into a vector, we have,

q̄ = ȳ + [diag((1− η̄)� η̄)− diag(η̄◦−11)B′]p̄,

where ȳ is the vector of log Ys, p̄ the vector of logPs, and ◦ the is the operator for the

element-wise Hadamard product, ◦−1 for Hadamard inverse, � for Hadamard division, and

diag transforms a vector into a diagonal matrix with its elements on the diagonal. This

equation gives the sectoral ouptu as a function of sectoral value-added and sectoral prices.

Next notice that the Domar weights links final output to sectoral price and output. Taking

logs of the Domar weight and stacking it into a vector, it reads

p̄+ q̄ = v̄ + 1 log Y,

where v̄ is the vector of log vs, and 1 is a vector of ones. Combining these two equations, we

can express p̄ as a function of log Y ,

p̄ = (I −B′)−1diag(η̄)[v̄ + 1 log Y − ȳ]

Since I have used the final good as numeraire such that
∏S

s=1

(
Ps
θs

)θ
= 1. Taking logs and

combining it with the above equation, we have

θ′(I −B′)−1diag(η̄)[v̄ + 1 log Y − ȳ]−
S∑
s=1

θs log θs = 0,
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which can be used to solve for final output as,

log Y = (η̄ ◦ v̄)ȳ − v̄′diagη̄v̄ −
S∑
s=1

θs log θs (4.35)

where I have made use of the fact that (η̄ ◦ v̄)1 = 1, which also implies that the production

function has constant returns to scale.23 Let θ̂s = ηsvs, I just proved that final output can

be viewed as produced from sectoral value-added with a Cobb-Douglas technology.24

Step 3 Finally, I show that the allocation of primary production factors are identical in the

two models given the same distortions in primary factor markets, which justifies the use of

firm value-added in the first step.

I start with the allocation of resources within a sector. For the output model, remember

that Psi = TFPRsi
Asi

and PsQ
1
σs
s Q

− 1
σs

si = Psi. Combining these two equations, we have

PsiQsi ∝
(
TFPRsi

Asi

)1−σs
,

where I have made use of the definition of value productivity. Combining this equation with

firm’s factor demand, we have within sector factor allocation in the output model given as

Ksi

Ks

=

1
1+τKsi

(
TFPRsi
Asi

)1−σs

∑Ns
i=1

1
1+τKsi

(
TFPRsi
Asi

)1−σs ,

Lsi
Ls

=

1
1+τLsi

(
TFPRsi
Asi

)1−σs

∑Ns
i=1

1
1+τLsi

(
TFPRsi
Asi

)1−σs .

23From the definition of Domar weights, we have PY = (η̄ ◦ v̄)Y , where PY is the vector of nominal
value-added PY sYs. Since final output in this economy equals the sum of sectoral value-added, it is obvious
that (η̄ ◦ v̄)1 = 1.

24The normalizing constant Φ in the value-added model is given by exp
(
−
(
v̄′diagη̄v̄ +

∑S
s=1 θs log θs

))
.
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Similarly, for the value-added model, the same shares are given by

Ksi

Ks

=

1
1+τKsi

(
T̂ FPRsi
Âsi

)1−σ̂s

∑Ns
i=1

1
1+τKsi

(
T̂ FPRsi
Âsi

)1−σ̂s ,

Lsi
Ls

=

1
1+τLsi

(
T̂ FPRsi
Âsi

)1−σ̂s

∑Ns
i=1

1
1+τLsi

(
T̂ FPRsi
Âsi

)1−σ̂s .

From the definition of value productivity, we have TFPRsi = T̂FPR
1
ηs

si .25 Combining this

information and the definition of Âsi in step 1. It is easy to see that within sector allocation

are the same in the two models. I next move to the between sector allocation. From the

discussion above, it is obvious that TKs = T̂Ks and TLs = T̂Ls. Also remember that θ̂s = ηsvs

from step 2. Across sector allocation again can be shown to be identical from comparing the

results in Section 4.2 and Section 4.3. This completes the proof. I summarize the results in

the following proposition.

Proposition 7 Let Âsi = A
1
ηs
si , σ̂s = 1 + ηs(σs − 1), and θ̂s = ηsvs, the two models are

equivalent.

The relationship between σs and σ̂s shows why it is necessary to specify the elasticity to

be sector specific. As long as the value-added shares are not identical across sectors, it is

not possible for both models to have identical elasticity of substitution across sectors. It also

says the elasticity of substitution should be different in the two models, a point emphasized

in Herrendorf et al. (2013). For practical considerations, since the elasticity is more likely

to be estimated for goods instead of value-added, the value-added studies are more likely

to have chosen wrong parameters. For example, Hsieh and Klenow (2009) cite Broda and

Weinstein (2006) and Hendel and Nevo (2006) for their choice of elasticity while both studies

estimate the parameter for goods instead of value-added. Hsieh and Klenow (2009) use 3

as a conservative measure of elasticity. If we take 3 as the elasticity for output, that for

25Remember TFPRsi ∝ (1 + τKsi)
αsηs(1 + τLsi)

(1−αs)ηs and T̂FPRsi ∝ (1 + τKsi)
αs(1 + τLsi)

(1−αs).
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value-added will be 2 if we assume ηs = 0.5 and only 1.56 if ηs = 0.28.26 This will lower

measured efficiency loss as the larger the elasticity, the higher the cost of misallocation. The

next section shows that assigning incorrect values to the elasticity is the major reason why

the value-added model might have overstated the cost of resource misallocation.

The scaling up of productivity in the value-added model has been discussed by Bruno

(1978). It is just another manifestation of the magnification effect of sectoral linkages. To see

this clearly, consider the following one sector example. Final output is produced by labor and

intermediate input Q = ALαX1−α, which is used for consumption and intermediate inputs in

production, Q = C+X. GDP in this economy then is simply given by C = α(1−α)
1−α
α A

1
αX.

If we derive the aggregate production from the output production function, we realize that

the effect of a shock to productivity A is magnified through the input-output linkages. The

exponent 1
α

is the Domar weight for this economy. In the full model,the Domar weights can

be rewritten as vs = θ̂s
ηs

such that it is clear to see the resemblance to the simple one-sector

model. On the other hand, if we are only given data on the value-added and primary inputs,

we will just scale up the size of the productivity shock. The value-added model hence is not

wrong, it just implicitly includes the magnification effect explicitly presented in the output

model.

4.4.2 Implementation

Even though the two models are theoretically equivalent in representing the underlying data,

measured efficiency loss could still be different if the wedges and productivity are incorrectly

estimated in one of the models. This subsection shows that this is not the case. Efficiency

loss measured in the two models are identical. For this exercise, assume we observe data

on output (PsiQsi), capital (Ksi), labor ( Lsi), and intermediate input use (
∑S

q=1 PqMqsi) at

260.5 is the rough value used in Jones (2011) and 0.28 is the average across industries found in the Chinese
manufacturing data used below. Note the share of intermediate inputs is higher in manufacturing, see for
example Donovan (2014).
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the firm level.27 Nominal value-added is defined as PY siYsi = PsiQsi−
∑S

q=1 PqMqsi.
28 I also

assume that we have assigned correct values to all the parameters.29

To refresh memory, I copy the efficiency loss measures from above. For the output model,

it is given by

(
Y E

Y

)o
=

S∏
s=1

(
TFPE

s

TFPs

)vs S∏
s=1

[(
βEKs
βKs

)αsηs (βELs
βLs

)(1−αs)ηs
]vs

For the value-added model, it is given by

(
Y E

Y

)o
=

S∏
s=1

(
T̂FP

E

s

T̂FP s

)θ̂s S∏
s=1

( β̂EKs
β̂Ks

)αs (
β̂ELs

β̂Ls

)1−αs
θ̂s

Also remember the definition of sectoral TFP and the cross sector allocation rule, these

measures are operative if we have measures of firm productivity and wedges in factor markets.

I next discuss the identification of these objects in data.

For the output model, the wedges can be measured as

1 + τKsi =
αsηsPsiQsi

RKsi

,

1 + τLsi =
(1− αs)ηsPsiQsi

WLsi

27Note that I have assumed that we only observe total intermediate input in nominal values, which is
what most firm-level database can provide. Given our assumption of technology and the fact that there
is no distortions in the intermediate markets, we can attribute total expenditure on intermediate inputs to
different inputs, which can be further used to estimate the real quantity of intermediate inputs from different
sectors given appropriate price indexes for sectoral output. I will later show that this however is unnecessary
for the exercise here.

28Note that nominal value-added is measured net of wedges. See the discussion above.

29This might not be an easy job in particular for the elasticity of substitution. Previous studies have
mostly made the simplifying assumption that the parameter is the same for all sectors, for example see
Hsieh and Klenow (2009) and Oberfield (2013). See also the discussion in last subsection.
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For the value-added model, they are given by

1 + τKsi =
αsPY siYsi
RKsi

,

1 + τLsi =
(1− αs)PY siYsi

WLsi

Since we have PY siYsi = ηsPsiQsi, it is obvious the wedges are identical in these two models

if factor prices are assumed to be the same. We however need not to be worried about factor

prices as they cancel out when the wedges are plugged into the efficiency loss measures.

Identifying firm’s physical productivity is a bit more involved as there are no measures

of output prices or value-added prices at the firm level. Following Hsieh and Klenow (2009),

I calculate physical productivity in the output model as

Asi = P
σs
σs−1
s Q

1
σs−1
s

S∏
q=1

(
Pq
λqs

)λqs(1−ηs) (PsiQsi)
σs
σs−1(

Kαs
si L

1−αs
si

)ηs (∑S
q=1 PqMqsi

)1−ηs ,

where I have used the allocation rule for intermediate inputs and the pricing function for the

variety. The term before the fraction can be viewed as a constant as it will be canceled out

in the process. Similarly, physical productivity measured in the value-added model is given

by,

Âsi = P
σ̂s
σ̂s−1

Y s Y
1

σ̂s−1
s

(PY siYsi)
σ̂s
σ̂s−1

Kαs
si L

1−αs
si

.

To make a comparison between these two measures, notice that
∑S

q=1 PqMqsi = (1−ηs)PsiQsi

and PsiQsi = 1
ηs
PY siYsi. Plugging these into the output measure, we have

Asi = P
σs
σs−1
s Q

1
σs−1
s

S∏
q=1

(
Pq
λqs

)λqs(1−ηs) η
ηsσ̂s
1−σ̂s
s

(1− ηs)1−ηs

(
(PY siYsi)

σ̂s
σ̂s−1

Kαs
si L

1−αs
si

)ηs

Note that what matters for computing efficiency loss is the variation in physical productivity

but not the absolute level, we can thus set both of the constants to be 1, then it’s obvious

Âsi = A
1
ηs
si .30 Given our discussion in step 3 of the equivalence proof, the relationship

30If instead we set the constants to be φ and φ̂, then we have Âsi = φ̂φ−
1
ηsA

1
ηs
si . Measured efficiency loss
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in measured wedges and firm productivity between the two models implies that measured

efficiency loss will be the same in the two models.

This result confirms that the value-added model is a correct representation of the under-

lying data generated from an output model. As discussed above, value-added productivity

observed in data implicitly includes the magnification effect of intersectoral linkages, which

is made explicit in the output model. The output model has magnification effect while mea-

sured productivity is less dispersed than in the value-added model. The two forces cancel

out each other, leaving the efficiency measure unaffected.

Identical measured efficiency loss also relies on the fact that marginal revenue products

and firm productivity can be correctly estimated in the value-added model. My definition

of value-added assumes the same intermediate prices for all firms, we thus can also view

them as a real value-added measure for the firms even though product prices are allowed to

change across firms.31 As shown by Bruno (1978), marginal revnue products and produc-

tivity for the real value-added production function can be correctly measured if the price of

intermediate inputs are constant. This condition is satisfied when there are no distortions

in the intermediate input markets. This assumption however is highly unrealistic. I proceed

to the discuss the more realistic case with intermediate input market distortions in the next

section.

4.5 Adding Intermediate Input Market Distortions

Having proved the equivalence results under the case with no distortions in intermediate

input markets, I next add these distortions and discuss the measurement of misallocation in

this more realistic case. There does not exist a correct value-added model with the newly

will still be the same in this case because the constants cancel out.

31This point becomes clearer when distortions in intermediate input use are introduced. Firms will then
face different effective prices in the intermediate input markets while value-added is defined using the same
market price.
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added distortions.32 I however continue to use the value-added model laid out in Section 4.2

as it is widely used in the literature.33 The purpose is to show how the value-added model

will bias the results. I first discuss the measurement of efficiency loss in the output model

in next section. I then discuss how the implementation is affected in Section 4.5.2.

4.5.1 Measuring Misallocation in the Output Model

I first describe how adding distortion to the intermediate inputs markets changes the mea-

surement of efficiency loss in the output model. The theoretical results in the value-added

model is not affected by this but the identification of wedges and firm productivity will be

affected, which I discuss in the next subsection.

Remember the firms try to maximize profit given distortions in factor markets from

Section 4.2,

πsi = PsiQsi − (1 + τKsi)RKsi − (1 + τLsi)WLsi − (1 + τMsi)
S∑
q=1

PqMqsi,

I now drop Assumption 2 and allow τMsi to be non-zero. Notice that I have assumed the

same wedge for all the intermediate inputs, as the data does not allow us to distinguish

distortions for inputs sourced from different sectors. This changes marginal revenue product

for intermediate inputs

MRPMqsi ≡ λqs(1− ηs)
PsiQsi

Mqsi

= (1 + τMsi)Pq. (4.36)

Let TMs = MRPMqs/Pq be the distortion on sectoral intermediate input use. Market

clearing for sectoral output now reads as,

PsQs = PsCs +
S∑
q=1

1

TMq

λsq(1− ηq)PqQq,

32This is because there is no value-added production function at the sector level. That is, step 1 of the
proof in Section 4.4.1 breaks down.

33See the review of literature in the Section 4.1.
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which is now also distorted given the presence of TMs. Let B̃ = B ◦ diag(T ◦−1
M ) with TM

denoting the vector of TMs. The vector of Domar weights Ṽ can then be solved from,

Ṽ = θ + B̃Ṽ .

Domar weights are now affected by market distortions, Ṽ = (I − B̃)−1θ with its element

given by ṽs. Let the sqth element of B̃ be b̃sq. We can then write the intermediate input

demand of sector s for sector q’s good as Mqs = b̃qs
vs
vq
Qq. This leads to the vector of log

sectoral output

q̄ = (I −B′)−1(ā+ ω̃q + δK logK + δL logL),

where the vector ω̃q again summarizes the information on sectoral factor allocation.34 This

further leads to an aggregate production function summarized as follows.

Proposition 8 The economy with intermediate input market distortions has a aggregate

production function given as

Y = ÃKαL1−α, (4.37)

with total factor productivity is given by

Ã = γ̃
S∏
s=1

(TFPs)
ṽs

S∏
s=1

[
(βKs)

αsηsṽs (βLs)
(1−αs)ηsṽs

]
, (4.38)

where γ̃ =
∏S

s=1

(
θs
vs

)θs∏S
s=1

[∏S
q=1

(
b̃qs

vs
vq

)1−ηs
λqs

]ṽs
and α is defined as above.

Compared to Proposition 5, γ̃ is no longer a constant. The fact that the Domar weights

are no longer constant however makes the measurement of efficiency loss much more involved.

Notice that the aggregate output elasticity of capital and labor stays intact, such that the

effect of misallocation still manifests itself as a shock to TFP. To make it more comparable

to the existing literature, I go on to analyze the case with no misallocation across sectors by

making the following assumption,

34Its element is given by αsηs log βKs + (1− αs)ηs log βLs + (1− ηs)
∑S
q=1 λqs log

(
b̃qs

vs
vq

)
.
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Assumption 3 TJs = 1,∀J ∈ {K,L,M} and s ∈ {1, 2, ...S}.

This assumption directs attention to within sector allocation as in Hsieh and Klenow (2009).

It also allows us to identify the factor shares in the production function using sectoral

aggregates. Otherwise they can not be distinguished from the market distortions. With this

assumption, efficient loss from resource misallocation in the output model reduces to

(
Y E

Y

)o
=

S∏
s=1

(
TFPE

s

TFPs

)vs
, (4.39)

while that in the value-added model is

(
Y E

Y

)v
=

S∏
s=1

(
T̂FP

E

s

T̂FP s

)θ̂s

. (4.40)

With Assumption 3, the efficiency loss measures are identical in the two models if we have

correct measures of revenue and physical productivity. This is surprising as the value-added

model does not actually exist. Measured efficiency loss however will be different in the two

models because marginal revenue products and firm productivity will be incorrectly inferred

in the value-added model while the output model still leads to correct measures. The next

subsection makes this point clear and discusses how the value-added model might measure

efficiency loss in data wrong.

4.5.2 Implementation

This subsection performs the same exercise in Section 4.4.2 with hypothetical data on firm

production and value-added computed as subtracting intermediate inputs from output. Im-

portantly, intermediate inputs are assumed to be measured with the same market prices in

the data, such that constructed value-added can be thought of a real value-added measure

as firms actually face different prices in the intermediate input markets due to the presence

of wedges.

Wedges and productivity in the output model will be correctly measured following the
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discussion in the previous section, but it is no longer the case for the value added model.

Using the first-order condition for intermediate input use, value-added is now solved as

PY siYsi =

(
1− 1− ηs

1 + τMsi

)
PsiQsi, (4.41)

which when plugged into the first order condition for the value-added model leads to

1 + τKsi =
αs

(
1− 1−ηs

1+τMsi

)
PsiQsi

RKsi

,

1 + τLsi =
(1− αs)

(
1− 1−ηs

1+τMsi

)
PsiQsi

WLsi

It is obvious the wedges are mismeasured by a factor of 1
ηs
− 1−ηs

ηs(1+τMsi)
as the share of

intermediate inputs in total output is distorted. Following the same steps in section 4.4.2,

firm productivity in the output model can be rewritten as

Asi = P
σs
σs−1
s Q

1
σs−1
s

S∏
q=1

(
Pq
λqs

)λqs(1−ηs) (1− 1−ηs
1+τMsi

) ηsσ̂s
1−σ̂s

(1 + τMsi)
1−ηs

(1− ηs)1−ηs

(
(PY siYsi)

σ̂s
σ̂s−1

Kαs
si L

1−αs
si

)ηs

Assume the constant terms are 1 as before, we now have firm productivity in the value-added

model given by

Âsi =

(
1− 1− ηs

1 + τMsi

) σ̂s
σ̂s−1

(1 + τMsi)
ηs−1
ηs A

1
ηs
si

Measured physical productivity hence is also distorted by the presence of distortions in the

intermediate inputs markets.

I next proceed to express sectoral productivity in terms of inferred firm productivity and

wedges. For the output model, it is given by

TFPs =

(
Ns∑
i=1

(
Asi

[(1 + τKsi)αs(1 + τLsi)1−αs ]ηs (1 + τMsi)1−ηs

)σs−1
) 1

σs−1

, (4.42)

while efficiency sectoral TFP in the output model is only determined by firm productivity

125



as described above, TFPE
s =

(∑Ns
i=1 A

σs−1
si

) 1
σs−1

. This equation breaks down revenue pro-

ductivity and allows us to see the effect of different distortions more clearly. In the case of

the value-added model, sectoral TFP is given by

T̂FP s =

 Ns∑
i=1

 Asi

(
1− 1−ηs

1+τMsi

) 1
σs−1

[(1 + τKsi)αs(1 + τLsi)1−αs ]ηs (1 + τMsi)1−ηs


σs−1


1

ηs(σs−1)

. (4.43)

This result comes from mismeasured wedges in capital and labor use and physical productiv-

ity, and also reflects the fact that distortions in the intermediate input markets are not taken

into account in computing revenue productivity of firms. Given mismeasured firm physical

productivity, efficient sectoral TFP will also be mismeasured as

T̂FP
E

s =

 Ns∑
i=1

(
Asi

(
1− 1− ηs

1 + τMsi

) 1+ηs(σs−1)
σs−1

(1 + τMsi)
ηs−1

)σs−1
 1

ηs(σs−1)

(4.44)

Measurement errors at the firm level thus build up, such that both actual and efficient

sectoral TFP will deviate from the true measures. These findings confirm the results of

Bruno (1978): the real value-added production function will leads to incorrect measures

of marginal products and productivity. Bruno (1984) has used this idea to explain the

productivity slowdown and Basu and Fernald (1995) find it useful in understanding why

productivity spillover across industries exists in value-added data but not in output data.

I show here that the mismeasurement builds up to the sector level and further leads to

mismeasured efficiency loss in the value-added model.

From the results above, it is not clear in which direction the value-added model will

bias measured efficiency loss. To see this more clearly, I next approximate the measures by

assuming Asi, 1 + τY si,
35 and (1 + τMsi) jointly follow a log-normal distribution, with the log

of the latter two having zero mean. I further assume ηs = 0.5 such that 1 − 1−ηs
1+τMsi

can be

351 + τY si is defined as (1 + τKsi)
αs(1 + τLsi)

1−αs , which summarizes the distortion in primary input use.
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approximated by 1
2
(1 + τMsi).

36 Efficiency loss for a single sector in these two models can be

approximated by37

log

(
TFPE

s

TFPs

)vs
=
vs(1− σs)

2

(
σ2
y

4
+
σ2
m

4
− σay − σam +

σym
2

)
,

where σ2
x is the variance of variable x and σxz is the covariance between variables x and z.

Efficiency loss in the value-added model is approximated by

log

(
T̂FP

E

s

T̂FP s

)θ̂s

=
vs(1− σs)

2

[
σ2
y

4
+

(
1

4
− 1

σs − 1

)
σ2
m − σay − σam +

(
1

2
− 1

σs − 1

)
σym

]

Hence efficiency loss measured in these two model is differed by

log

(
TFPE

s

TFPs

)vs
− log

(
T̂FP

E

s

T̂FP s

)θ̂s

= −vs
2

(σ2
m + σym) (4.45)

From this comparison, efficiency loss in the value-added model can be biased from that in

the output model in either direction. The sign and the size of the bias depends on how the

wedges for intermediate inputs are distributed. I next go on to explore the bias empirically

using Chinese data.

4.6 An Application to Chinese Data

In this section I take the models to data and evaluate the bias in the value-added efficiency

loss measure quantitatively. The data I use is the Chinese Annual Survey of Industrial

Production in 2005. Since the survey is only for the the industrial sector, it is not sufficient

for measuring aggregate efficiency loss. Instead I will look at efficiency loss measures at

36The assumed value-added share in output is not so different from aggregate data. See Jones (2011) for
the evidence. The share might be different across sectors, as shown in the Chinese data in the next section.

37Notice the measure is raised by the Domar weights. This expression actually gives the contribution of
sector s to aggregate efficiency loss. It is the same case for the value-added model.
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4-digit industry level using both models.38 Despite that there are complicated input-output

linkages between the sectors, the discussion above shows that what we need is only the

sector’s Domar weight if we ignore cross sector misallocation. The purpose in this section

is to show how the use of the value-added model might distorts measured efficiency loss at

the industry level, as distortions in the intermediate input use enters our measure of firm

value-added.

The Survey of Industrial Production covers all non-state firms with more than 5 million

yuan in revenue plus all state-owned firms in the industrial sector, which includes mining,

manufacturing, utilities, and construction. I use the information on the firm’s industry

(at the four-digit level), wage payments,39 employment, output, value-added, capital stock,

and intermediate inputs. Capital stock is defined as the book value of fixed capital net of

depreciation. Labor compensation in the data is systematically under-reported such that

calculated industrial labor share is much smaller than those in the national accounts.40 To

correct for the under-reporting, Hsieh and Klenow (2009) raise the wage payments of all firms

to make aggregate labor share calculated from the survey consistent with national accounts

data. This however will create a labor share larger than 1 for some industries. To make the

industry labor shares bounded by 1, I raise wage payments by a factor of 2.75 for firms in the

industries with raw labor share less than 0.3 and by a factor of 1.26 for all other firms. This

assumes that the industries with smaller labor share surfer more from the under-reporting

of wage payments. Note that I only study misallocation within a sector, this adjustment

should not bias the results too much. The procedure produces an aggregate labor share of

0.5. Finally, to allow for differences in worker human capital across firms, I use wage bills as

my measurement of labor input instead of employment.

To measure efficiency loss, we need to assign values to parameters αs, ηs, σs, and vs.

38That is, log
(
TFPEs
TFPs

)vs
and log

(
T̂FP

E

s

T̂FP s

)θ̂s
as in last section.

39Wage payments include wages, retirement and unemployment insurance, health insurance, housing
benefits, and employee supplementary benefits.

40It can be clearly seen in the data. For example, 59% of all firms report zero unemployment insurance
payment, 38% of all firms report zero health insurance payment, while both of which are mandatory by the
law.
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Figure 4.1: Distribution of the Output Share of Intermediate Inputs
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Note: The distribution of 1− ηs at the industry level is plotted.

The output share parameters come from dividing factor payments by total output in an

industry, thanks to the assumption that there is no misallocation across sectors. Capital

income is derived by subtracting from total output the expenditure on intermediate input

and the adjusted payment to labor. To relieve the burden of assign different elasticity of

substitution for so many industries, I assume σs is 3 for all industries. This implies that

σ̂s = 1 + ηs(σs − 1) is different across industries for the value-added model if ηs is different

across industries. Figure 4.1 plots the distribution of the output share of intermediate inputs

(1 − ηs) for the 482 industries in the data. Most industries have relative high shares and

there is some variation across industries. The average across industries is 0.72. Finally, as

vs affects both measures to the same degree, I simply normalize it to 1.

Figure 4.2 compares measured efficiency loss in the two models. The measures are not so

different in the two models as most points center around the 45 degree line. The difference

between the two measures is less than 5 percentage points for over 95% of the industries.

There is no evidence that one model produces results substantially lower than the other, a
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Figure 4.2: Efficiency Loss in Different Models
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Note: What’s plotted is log
(
TFPEs
TFPs

)vs
and log

(
T̂ FP

E

s
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)θ̂s
, both computed

by the author.

point my theoretical analysis emphasizes above. Despite the magnification effect of produc-

tion networks, the reason that the efficiency loss in the output model is not substantially

larger than that in the value-added model is lower dispersion of firm TFP measured in the

output model. This can be clearly seen from Figure 4.3, where the standard deviation of

log firm TFP in the output model is plotted against that in the value-added model. It is

also interesting to point out that the dispersion measured in the output model are quite

similar across industries, while it shows much more variation in the value-added model.41

This suggests that the differences in the dispersion of firm TFP across industries also come

from differences in intermediate input share across industries.

Efficiency loss measured in the value-added model will only deviate from that in the

output model if there are distortions in intermediate input use. The fact that the two

41The coefficient of variation across industries is 0.25 in the value-added model and 0.18 in the output
model.
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Figure 4.3: Dispersion of Firm Productivity in Different Models

0
2

4
6

8
D

is
pe

rs
io

n 
of

 L
og

 F
irm

 T
F

P
, O

ut
pu

t

0 2 4 6 8
Dispersion of Log Firm TFP, Value-added

45 degree line

Note: Here dispersion is measured by standard deviation of log productivity.

measures stay close to each other suggest that distortions in intermediate input might be

mild. Figure 4.4 confirms this in the data, where I plot the density of the marginal revenue

product (in logs) of primary inputs and Intermediate inputs relative to their industry average

respectively.42 While the marginal revenue product of primary inputs has a very dispersed

distribution with a standard deviation of 0.85, that of intermediate inputs centers around

the industry average with a standard deviation of only 0.19. This confirms the finding of

Krishna and Tang (2018).

The elasticity of substitution in the value-added model is assumed to be different across

industries. If we instead use a constant elasticity by imposing the intermediate input share

for the whole industrial sector on σ̂s = 1 + ηs(σs − 1). The resulted efficiency loss will

not be so different. On the other hand, if we assume the elasticity is 3 as in Hsieh and

Klenow (2009), the value-added model will produce much larger efficiency loss than the

output model. This is because the true elasticity for the value-added model is only 1.56 on

42They are given by MRPKαs
si MRPL1−αs

si and
∏S
q=1MRPM

λqs
qsi .
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Figure 4.4: Dispersion of Marginal Revenue Products
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average given the transformation from the output model to the value-added model. This

result is plotted in Figure 4.5. Measured efficiency loss is larger in the value-added model

for over 95% of the industries and the difference between the two models is 14 percentage

points on average. This finding suggests that the value-added model actually overstates

efficiency loss due to incorrectly assigned elasticity of substitution. Production networks will

not help in accounting for international income differences by raising measured efficiency loss

from resource misallocation but tends to lower the estimated cost of misallocation once the

differences between the output model and the value-added model are fully appreciated.

Finally, I examine how the approximation at the end of Section 4.5 compares to data.

Under the log normality assumption, the approximation of efficiency loss says that

(
TFPE

s

TFPs

)vs
>

(
T̂FP

E

s

T̂FP s

)θ̂s

⇐⇒ σ2
m + σym < 0.
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Figure 4.5: Efficiency Loss in Different Models with σs = σ̂s = 3
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Note: Here I have assigned 3 to σ̂s instead of using the theoretically correct
value.

Table 4.1 presents the frequency counts of these incidents. If the approximation is accurate,

we should observe larger numbers in the off diagonal cells. This is indeed the case in data.

If σ2
m + σym < 0, the probability of observing

(
TFPEs
TFPs

)vs
>

(
T̂ FP

E

s

T̂ FP s

)θ̂s
is 0.70. On the other

hand, if σ2
m + σym > 0, the probability of observing

(
TFPEs
TFPs

)vs
<

(
T̂FP

E

s

T̂ FP s

)θ̂s
is 0.61. On

average, the approximation will have the correct prediction on the relative size of efficiency

loss measured in the two models at a probability a little over 2/3. A t-test that the prediction

is random is rejected with a p-value less than 0.0001.

Table 4.1: Frequency Counts

σ2
m + σym > 0 σ2

m + σym < 0(
TFPEs
TFPs

)vs
>

(
T̂ FP

E

s

T̂ FP s

)θ̂s
28 286

(
TFPEs
TFPs

)vs
<

(
T̂ FP

E

s

T̂ FP s

)θ̂s
44 124

Data source: Authors’ own calculation.
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4.7 Summary

This chapter shows that the widely-used value-added framework of Hsieh and Klenow (2009)

does not necessarily understate the cost of resource misallocation. If there are no distortions

in the intermediate input markets, a model with a production network a la Long and Plosser

(1983) can be transformed into the value-added model and the two models produce the same

efficiency loss. If there are distortions in the intermediate input markets, the value-added

model produces biased results but the bias can go in either direction. The literature using

the value-added model, if anything, might have overstated the efficiency loss due to the use

of higher elasticity of substitution that is only suitable for the output model.

The findings in this chapter support the idea of Herrendorf et al. (2013) that we can

either view sectors as categories of final expenditure or value-added. Both models can be

correct representations of the same underlying data and they are connected through the

input-output linkages. The findings also suggest that the models can be easily mis-specified

if we don’t distinguish between the two perspectives explicitly, a point also emphasized in

Herrendorf et al. (2013). Given the recent surge in the study of production networks and

multi-sector models in general, we should pay more attention to the distinction between final

expenditure and value-added and how value-added models might be mis-specified.
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