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Abstract
The reflection of internal gravity waves at sloping boundaries leads to focusing or defo-
cusing. In closed domains, focusing dominates and projects the wave energy onto ’wave
attractors’. Previous theoretical and experimental work on 2D steady state wave attrac-
tors has demonstrated that geometric focusing by wave reflection can be balanced either
by viscous dissipation at high wave numbers (Hazewinkel et al., 2008), or by nonlinear
wave-wave interactions (Scolan et al., 2013).
The present study considers a weakly nonlinear 3D internal wave beam under steady
state conditions in a semi-infinite domain between two vertical walls. We analyze the
effect of the Stokes boundary layers at these two vertical side walls on the interior veloc-
ity field. With a perturbation approach, we find that the two lateral Stokes boundary
layers generate a fully three-dimensional interior velocity field component, proportional
to ν1/2, with ν the dynamical viscosity. This velocity field dampens the wave beam at
high wave numbers, thereby providing a new mechanism to establish an energetic balance
for steady state wave attractors. The analytical results agree well with the 3D numerical
wave attractor simulation by Brouzet et al. (2016).

1 Introduction

The dispersion relation of internal waves is given by ω2
0 = N2

0 sin2 θ, with ω0 the wave
frequency, θ the angle of phase propagation with respect to the vertical, z, antiparallel
to gravity, and N0 the Brunt-Väisälä frequency, assumed constant. The group propaga-
tion is always orthogonal to the phase propagation (Sutherland, 2010), thus the angle
of energy radiation with respect to the vertical is fixed for monochromatic waves. This
property results in geometric focusing or defocusing upon reflection at sloping topography.
Repeated geometric focusing in closed domains can project the wave energy onto closed
orbits, known as wave attractors (Maas and Lam, 1995; Maas et al., 1997). In the vicinity
of the wave attractor, energy is dissipated by viscous dissipation (Hazewinkel et al., 2008;
Rieutord et al., 2002), or lost to nonlinear wave-wave interactions (Scolan et al., 2013).
The energy loss at the wave attractor can have far-reaching consequences for the mixing
budget of stratified fluids, such as the oceans.
Hazewinkel et al. (2008) studied the equilibrium spectrum of internal wave attractors in
the classical trapezoidal set-up, both in the laboratory and with a simple model. For their
model, the nonlinearity is assumed to be negligibly small, and the energy input is taken
at low wave numbers. The geometric focusing increases the wave numbers k by the factor

γ =
sin(α + θ)

sin(α− θ)
> 1

upon each reflection at the supercritically inclined wall (of angle α > θ with respect to
the horizontal). Let A(k) be the wave number spectrum of the buoyancy gradient, ∂ηb,
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with η normal to the wave attractor. For the spectrum A(k), the focusing leads to a linear
increase1, i.e.

A(γk) = γA(k).

For each loop along the wave attractor with length La, the propagating internal waves
are dampened with the factor2 exp[−Laν tan θ

2ω0
k3], with ν the dynamical viscosity. The bal-

ance between the geometric focusing and viscous dissipation sets the width of the wave
attractor.
In this study, we extend the simple model by Hazewinkel et al. (2008) by incorporating the
damping induced by two Stokes boundary layers at the lateral walls. In §2 we construct
the 3D velocity field of an internal wave beam between two walls, representing one branch
of an attractor. We show that our analytical three-dimensional velocity field corresponds
well with the the 3D numerical wave attractor simulation by Brouzet et al. (2016). Sub-
sequently, in §3, we determine the damping exerted by the two boundary layers on an
internal wave attractor. Additionally, we compare the theoretical equilibrium spectrum
of our extended model with the observed wave attractor spectrum by Hazewinkel et al.
(2008). Conclusions are drawn in §4. Our results establish that the three-dimensionality
of the typical, semi-2D laboratory set-ups are not negligible for the shape of the wave
attractor, contrary to what was previously thought.

2 Internal wave beam between lateral walls

To study the effect of the no-slip boundary conditions at two lateral walls on an internal
wave beam, we consider an infinite domain with Cartesian coordinates (x, y, z) between
two walls at y = ±h. The linearized equations governing the dimensionless velocity field
u = (u, v, w), buoyancy b, and pressure p of the Boussinesq fluid, with scaled Brunt-
Väisälä frequency N = N0/ω0, are given by

ut = −∇p+ δ2∆u + bẑ, bt = −N2w, ∇.u = 0. (1)

Here, δ = d0
L0
� 1 is the thickness of the boundary layer, d0 =

√
ν/ω0, scaled with the

typical thickness of the wave beam, L0. We solve (1) with no-slip boundary conditions
u = 0 at y = ±h by expanding the velocity vector u in the small parameter δ,

u = u0 + δu1 +O(δ2),

and similarly for buoyancy b and pressure p. We assume that h = H/L0 ≥ 1, i.e. the
dimensional width of the domain, 2H, is at least of the same order of magnitude as the
wave beam width, L0.

We restrict the energy propagation to be upwards along ξ = x cos θ+ z sin θ, implying
that the phase propagation is downwards along negative ζ = −x sin θ + z cos θ. Using
these constraints, the most general wave beam velocity field at y = 0, solving (1) at
O(δ0), is given by

[u0, v0, w0] = [cos θ, 0, sin θ]U, with U = −i
∫ ∞
0

A(k)

k sin θ
ei(kζ+t)−δβξdk, (2)

1We have corrected for a missing factor γ−1 on the right-hand side of the recursxive relation A2
n =

γ3A2
n−1 by Hazewinkel et al. (2008), where An and An−1 are the buoyancy gradient spectra before and

after reflection, respectively.
2In the viscous dissipation decay rate, we also corrected for a missing factor 1/2 in Hazewinkel et al.

(2008).
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for some undetermined, complex-valued β, and k now dimensionless (scaled by L−10 ).
We claim that β ∈ O(1), implying that Uξ ∈ O(δ), thus the along-wave-beam velocity
component U is divergent at O(δ). It is the real part of δβ, which describes the damping
of the interior wave beam due to the presence of the two lateral Stokes boundary layers.
The purpose of the present analysis is to determine β. In §3 we solve for β by matching the
divergence Uξ at O(δ), with the divergence of the O(δ)-transversal velocity component,
v1, which is determined next.
Using the stretched coordinate η = δ−1y, the momentum equations for u0 and w0 are
given by

iu0 = −p0x + u0ηη , −i cot2 θ w0 = −p0z + w0ηη . (3)

In these two equations, the partial time derivatives have already been replaced by i. It is
the buoyancy, b0 = i sin−2 θ w0, which adds to the time derivative of the vertical velocity
component, producing the factor − cot2 θ. The along-wave-beam velocity component U is
related to the pressure gradient in η-direction by p0η = i cot θU . Solving (3) with no-slip
boundary conditions at the walls, η = ±δ−1h, and prescribed velocity field (2) in the
center plane, η = 0, gives

u0 = cos θ

(
1− cosh[i

1
2η]

cosh[i
1
2 δ−1h]

)
U, w0 = sin θ

(
1− cosh[i−

1
2 cot θη]

cosh[i−
1
2 cot θδ−1h]

)
U. (4)

The presence of stratification (non-zero buoyancy) causes the factor-cot θ difference
in the thicknesses of the boundary layer, δ and δ tan θ, for respectively horizontal and
vertical velocity components, making (u0, 0, w0) divergent near the walls. In Fig. 1a,b
these velocity components are compared with the 3D numerical simulation by Brouzet
et al. (2016). During the (non-steady) start-up phase, the numerical data (blue circles)
fit the analytical velocity components (green lines) remarkably well. At steady state
(red circles), the boundary layer structure is also well-captured by our analytical velocity
expression (4). The discrepancy between numerical data and exact expressions towards
the center, y = 0, hints at the presence of some 3D effect in the interior, outside of the
boundary layers, which is not captured by (4).
By the continuity equation at O(δ0) in stretched coordinate, η,

u0x + w0z = −v1η ,

we get the O(δ) transversal velocity component3

v1 = sin θ cos θ

(
i
1
2 tan θ

sinh[i−
1
2 cot θη]

cosh[i−
1
2 cot θδ−1h]

− i−
1
2

sinh[i
1
2η]

cosh[i
1
2 δ−1h]

)
Uζ + V (y).

Here, V (y) is an undetermined velocity component satisfying Vy(y) ∈ O(δ), that is to say,
slowly varying in y-direction. The impermeability boundary condition (v1 = 0) at both
walls translates to

V (±h) = ±σUζ , with (5)

σ = sin θ cos θ
(
i−

1
2 tanh[i

1
2 δ−1h]− i

1
2 tan θ tanh[i−

1
2 cot θδ−1h]

)
.

3The y-momentum equation is also satisfied at O(δ) by choosing an appropriate pressure p2(η), which
is O(δ2), thus negligible.
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Figure 1: Horizontal velocity u (a) and vertical velocity w (b) at two points in time, t = 0 and t = T0/4,
with T0 = 2π/ω0 the period. Circles: numerical simulation by Brouzet et al. (2016), filtered around
ω0 = 0.589s−1 over respectively 3 T0 during start-up phase (blue), and over 75 periods during steady
state (red). Green lines: the analytical expressions (4) for u0 and w0, with their amplitudes fitted to the
corresponding numerical data at t = 0 and y = −8.1 cm. In (c), the (normalized) observed spectrum
|A(k)|2 (red) by Hazewinkel et al. (2008) is compared with the theoretical spectrum, expression (6) for
P = constant, with (blue) and without (black) wall damping. The ranges [kb, γkb] for the peak for all
possible choices of P are indicated by the horizontal dashed lines. Plot (d) shows the range 2π/kb[γ

−1, 1]
(between blue lines) as a function of tank width, 2H; the black horizontal lines present the same range
for internal viscous dissipation only (H → ∞). The observed attractor width, L0, in the experiment by
Hazewinkel et al. (2008) is indicated by the red dot. We refer to the cited papers for the details on the
3D simulation and laboratory set-up, including the parameter values, which we adopted.

In the limit δ−1h � 1, the expression simplifies to σ = sin θe−i(θ+π/4). The transversal
velocity component V is governed by (1) at O(δ) in the unstretched coordinates, (x, y, z).
The continuity equation at O(δ) reads Uξ + Vy = 0. Since U is y-independent, we get
Vyy = 0, hence V = σy

h
Uζ . Thus, the transversal velocity v decays linearly (= slowly)

towards the center plane, y = 0, making the velocity field in the interior truly three-
dimensional at O(δh−1).

3 Damping by lateral walls

Rewriting the continuity equation Uξ + Vy = 0 in terms of the spectrum A(k) gives∫ ∞
0

(
i
σδ

h
k − δβ

)
A(k)

k
ei(ζk+t)−δβξdk = 0.

This equation is satisfied for an arbitrary spectrum A(k) if and only if

β =
iσk

h
.

Hence, the velocity U decays in the along-wave-beam direction, ξ, with e−δh
−1σ0kξ, where

σ0 = <[iσ] > 0 for θ ∈ (0, π/2). The imaginary part of β, which takes both positive and
negative values for θ ∈ (0, π/2), describes a slight change in tilt in phase propagation
direction, that changes from ζ to ζ − δh−1<[σ]ξ.

VIIIth Int. Symp. on Stratified Flows, San Diego, USA, Aug. 29 - Sept. 1, 2016 4



We now turn to the simple model for the equilibrium spectrum A(k) by Hazewinkel et
al. (2008), which we briefly introduced in §1 (with k again dimensional). Our extended
model for the wave spectrum A(k), incorporating both internal viscous dissipation and
the damping by the two lateral walls, gives the constraint

A(γk) = γA(k) exp

[
−Lad0iσ

H
k − Lad

2
0 tan θ

2
k3
]
. (6)

Solutions to (6) are not unique. All solutions to the inviscid case, A(γk) = γA(k), are
given by kP (logγ(k)) for arbitrary period-1 functions P (Beckebanze and Keady, 2016).
Extending this to (6) gives

A(k) = kP (logγ(k))e−λ1k−λ2k
3

, with λ1 =
iLad0σ

H(γ − 1)
and λ2 =

Lad
2
0 tan θ

2(γ3 − 1)
. (7)

The ”model continuous” by Hazewinkel et al. (2008) corresponds to P = constant.
Whereas the corrected4 theoretical spectrum by Hazewinkel et al. (2008) (black line in
Fig. 1c) clearly mismatches the observed spectrum (red line), the extended theoretical
spectrum (blue line) matches the observation fairly well.
The choice P = constant is arbitrary, and different choices for the period-1 function P lead
to different wave numbers k0 for which |A(k)| peaks. The maximum of |A(k)| for arbitrary
period-1 function P falls in the range (kb, γkb), where kb > 0 solves |A(kb)| = |A(γkb)| for
P = constant. This range is indicated by the horizontal dashed lines in Fig. 1c. Con-
sequently, without knowledge of the precise energy input at low wave numbers, one can
only define a range for the typical thickness of the wave attractor, L0 = 2π

k0
, as indicated

Fig. 1d.

4 Conclusions and discussion

The present analysis establishes the importance of damping by the lateral walls on the
shape of wave attractors in semi-2D set-ups. Neglecting the effects by the side walls (H →
∞), we get a viscous attractor width5 LI0 = 2π (3λ2)

1/3 ∝ (Laν/N0)
1/3, as originally found

by Rieutord et al. (2001) and numerically verified by Grisouard et. al. (2008). Damp-

ing only by the walls results in an attractor width LW0 = 2π<[λ1] ∝ (La/H) (ν/N0)
1/2.

Interestingly, this attractor width, LW0 , is independent of the actual size of the 3D tank,
because scaling both La and H leaves LW0 invariant. The effects of the walls may be
neglected only if LI0 � LW0 , which is the case when

H � L2/3
a d

1/3
0 σ0[cot θ 2(γ3 − 1)/3]1/3/(γ − 1).

For the experiments by Maas et al. (1997), Hazewinkel et al. (2008), and Brouzet et al.
(2016), this is not the case.
Recall that it is the stratification, which causes the factor-cot θ difference in the thicknesses

4Notice that the spectrum for internal dissipation only (black line in our Fig. 1c) does not correspond
to the same theoretical spectrum in Hazewinkel et al. (2008), their Fig. 6, because they seemingly
scaled their set of wave numbers, {k0, k1, k2, ...}, while keeping the corresponding spectrum amplitudes,
{A0, A1, A2, ...}, constant. However, all amplitudes An, n = 0, 1, 2, ... depend on k0. Strictly speaking,
it is thus not permitted to change k0 without adjusting An. Additionally, we corrected for the missing
factors γ−1 and 1

2 discussed in footnotes 1 and 2.
5For simplicity, we consider only P = constant.
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of the Stokes boundary layer for vertical and horizontal velocity components. Vasiliev and
Chashechkin (2003) also found this peculiar twist of the stratification on the boundary
layer thickness in their theoretical study on 3D internal wave generation by an oscillating
inclined plane.
While the boundary layer structure of our analytical velocity expressions fits the numerical
data by Brouzet et al. (2016) very well, the comparison also reveals some discrepancies for
the steady state motion. It appears that our assumption that, away from the boundaries,
the along-wave-attractor velocity does not vary in transverse direction (Uy = 0 in the
interior) does not hold. Through the non-linear advection terms, a mean flow and the
first higher harmonic are induced at lowest order of (weak) non-linearity. It is speculated
that these flow components might interact with the leading-order monochromatic velocity
field, thereby producing the numerically observed inhomogeneity in the harmonic field in
the transversal direction (Fig. 1a,b).

References
Beckebanze, F. and Keady, G. (2016). On functional equations leading to exact solutions

for standing internal waves. Wave Motion, 60:0-15.

C. Brouzet, I. Sibgatullin, H. Scolan, E. V. Ermanyuk, T. Dauxois (2016). Internal wave
attractors examined using laboratory experiments and 3D numerical simulations. J.
Fluid Mech., 793:109-131.

Grisouard, N., Staquet, C. and Pairaud, I. (2008). Numerical simulation of a two-
dimensional internal wave attractor. J. Fluid Mech., 614:1-14.

Hazewinkel, J., van Breevoort, P., Dalziel, S.B. , Maas, L. R. M. (2008). Observations on
the wave number spectrum and evolution of an internal wave attractor, J. Fluid Mech.,
598:373-382.

Maas, L. R. M. and Lam, F.-P. A. (1995). Geometric focusing of internal waves. J. Fluid
Mech., 300:1-41.

Maas, L. R. M., Benielli, D., Sommeria, J. and Lam, F.-P. A. (1997). Observation of an
internal wave attractor in a confined, stably stratified fluid. Nature, 388:557-561.

Rieutord, M., Georgeot, B. and Valdettaro, L. (2001). Inertial waves in a rotation spherical
shell: attractors and asymptotic spectrum. J. Fluid Mech., 435:103-144.

Rieutord, M., Valdettaro, L. and Georgeot, B. (2002). Analysis of singular inertial modes
in a spherical shell: the slender toroidal shell mode. J. Fluid Mech., 463:345-360.

Scolan, H., Ermanyuk, E. V., Dauxois, T. (2013). Nonlinear fate of internal wave attrac-
tors. Phys. Rev. Lett., 110, 234501.

Sutherland, B. R. (2010). Internal Gravity Waves. Cambridge University Press, ISBN:
978-0-521-83915-0.

Vasiliev, A. Y. and Chashechkin, Y. D. (2003). Generation Of 3d Periodic Internal Wave
Beams. J. Appl. Mathes Mechs, 67:397-405.

VIIIth Int. Symp. on Stratified Flows, San Diego, USA, Aug. 29 - Sept. 1, 2016 6




