
UC San Diego
Technical Reports

Title
Efficient Cooperative Scheduling in 802.11 Wireless Networks

Permalink
https://escholarship.org/uc/item/5pz8p0vp

Authors
Ranani, Ishwar
Kompella, Ramana R
Ramabhadran, Sriam
et al.

Publication Date
2005-07-07

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5pz8p0vp
https://escholarship.org/uc/item/5pz8p0vp#author
https://escholarship.org
http://www.cdlib.org/

Efficient Cooperative Scheduling in 802.11 Wireless

Networks

Ishwar Ramani, Ramana Rao Kompella, Sriram Ramabhadran, Alex C. Snoeren

University of California, San Diego

La Jolla, CA 92093

{ishwar,ramana,sriram,snoeren}@cs.ucsd.edu

Abstract— The proliferation of 802.11a/b/g based wireless de-
vices has fueled their adoption in many domains—some of which
were unforeseen. Yet, these devices lack native support for many
advanced features (such as service differentiation, etc.) required
in specific application domains. A subset of these features
relies on cooperative scheduling whereby nodes communicate
among themselves to effectively manage resources such as power,
throughput and interference in wireless networks. The trajectory
of evolution in these devices has been primarily through new
extension standards (e.g., 802.11e/s, etc.) that offer support for
these features. Plagued with long design cycles and significant
cost overheads, this upgrade process creates an uphill battle for
users who want to use their wireless devices for new applications
that require inter-node coordination. In this paper, we argue that
cooperative scheduling extensions can be supported using a new
layer on top of the existing MAC layer. We propose a 2

1

2
-stage

pipeline architecture as a generic mechanism to create domain-
specific extensions. Using a prototype we built over an open-
source 802.11 wireless device driver, we evaluate the architecture
in a case study.

I. INTRODUCTION

Wireless networks based on the 802.11 suite of protocols are

becoming a very popular and common means of networking

in both enterprise and home environments. The total WLAN

equipment market, comprising of 802.11a/b/g standards, is

forecast to grow from 26 million devices (shipped in 2003)

to more than 160 million devices by 2006 [1]. The success of

802.11-based wireless networks can in large part be ascribed

to inexpensive, readily available equipment and ease of de-

ployment. This explosive growth has resulted in applications

to a variety of domains—each with its own set of challenges

and requirements.

For example, wireless devices are increasingly being de-

ployed in home multimedia networks [2] to support emerging

streaming services as well as traditional broadband-access ap-

plications. In these scenarios, providing throughput guarantees

to multimedia applications such as video-on-demand, VoIP,

etc., is an important challenge . Power conservation is yet

another feature critical in making 802.11 a viable solution in

scenarios involving long-term battery-powered operation.

The 802.11 protocol was designed to create a high-speed

data network with shared access to the wireless spectrum

and some basic guarantees on packet delivery. These new

throughput and power requirements are not fully addressed in

the original standard. To solve these problems, many new pro-

posals like 802.11e [3] (QoS enhancements) and 802.11r [4]

(fast roaming) are in the standardization pipeline. These

additions, each arguably successful in accomplishing their

goals, are a reactive approach to solving emerging challenges.

Unfortunately, they remain several years from pervasive, low-

cost product availability. Moreover, these upgrades usually

mandate firmware updates and protocol changes. In short, the

current, standardized MAC-layer extensions are:

• non-trivial: Every new protocol requires extensive design

cycles, investments and a huge turn-around-time; and

• non-exhaustive: It is difficult to devise a protocol that can

cater to all applications or anticipate future requirements.

Regardless, new MAC protocols do not address the shortcom-

ings of the existing installed base of legacy devices, leaving

them unsuitable for the new application domains. We present

an alternative, software-based solution to addressing some of

the problems.

A software-based solution is independent of the 802.11

hardware, enabling it to be widely deployable, even having the

same influence of a protocol modification. The disadvantage

of using a software-based solution, however, is the lack

of dedicated resources like hardware timers and processing

power. For example, 802.11 uses precise timing information

available in the hardware for implementing the DCF algorithm.

A similar solution would be difficult to achieve in software. A

software solution, therefore, has to rely on 802.11 DCF proto-

col for fine-grained scheduling, performing only macro-level

scheduling. To offset this deficiency, each participating node

can be made aware of the global demands (data requirements,

transmission rates) of the shared resource (capacity, channel).

This knowledge can be used to make optimal decisions for

enforcing new policies over 802.11. For example, if nodes

are aware of the amount of data to be transmitted at other

nodes, they can share the channel using byte-level fairness.

This overcomes the inherent unfairness in 802.11 caused by

packet diversity [5]. A critical design choice can be made at

this stage: To gain global knowledge nodes can either passively

monitor the medium [6] or exchange explicit information about

individual states. The latter has the advantage of providing an

accurate picture of the network while using resources while

the former has the potential to be less invasive, but can be

unreliable in practice.

In [7] we proposed a scheduling policy called Covenant

that meets all the design goals.It is software based and uses

explicit exchange of information to extend the capabilities of

802.11. In essence, Covenant acts as a extension layer to the

802.11 mac layer and uses information exchange to cooperate

for enforcing policies.To summarize the features of Covenant:

• Software based: Covenant is implemented in software and

works with any 802.11 card. Hence it can be implemented

on legacy 802.11 devices to provide new features.

• 2 1

2
-stage stage pipeline: Covenant uses a novel 2 1

2
-stage

stage pipeline to coordinate among nodes. This pipeline

is designed to provide efficiency and robustness to the

mechanism.

• Interoperable: Using Covenant in a milieu of cards with

regular drivers will only degrade Covenant nodes to

regular 802.11 nodes. It does not affect performance of

regular nodes.

• Broad applicability: Covenant can be used to provide

many new functionalities to 802.11 like QoS guarantees,

power conservation etc.

• Implemented prototype: We have a proof of concept

prototype of Covenant successfully implemented and

functional.

In this paper, we propose to evaluate Covenant further and

in the process answer a number of important questions. For

example, how does Covenant perform in an actual 802.11

network? How does this mechanism affect the behaviour of

TCP and UDP traffic? How robust is the mechanism to

external and internal load? We also try to analyze the benefits

and performance of Covenant in a case study. We propose to

use Covenant to make 802.11, a more attractive and better

solution for wireless home networking.

The rest of the paper is split into two parts. In the first

part, we analyze the mechanism, its performance and effect

on higher layers. In the second part, we address problems of

using 802.11 in wireless home networking using Covenant.

The next section summarizes the design, architecture and

implementation details of Covenant. In section 3 we study the

performance of Covenant. Section 4 introduces our case study

and problems that Covenant can address with experiments.

section 5 we show results from experiments using Covenant

followed by conclusion. Discussion and future goals are in

section 6 followed by conclusion.

II. COVENANT

In this section we briefly review the design and architecture

of Covenant described in [7].

A. Design

The basic design of Covenant involves three stages:

• Estimation. Each node must independently identify their

own medium access requirements by estimating their

current and future traffic demands.

• Load exchange. This local knowledge is propagated to

each other via explicit mechanisms. Hence, each node is

aware of the global state of the system and the demand

on resources for the next window of time.

• Scheduling. Finally, using this global knowledge, each

node can individually compute a global schedule and

transmit packets according to policy constraints. Due

to explicit sharing of information, local decisions are

consistent across all nodes. We point out here that this

scheduling compliments the underlying 802.11 schedul-

ing policies (like DCF) to extend its functionality. Thus,

on a fine-grained level, the packets are still scheduled

using 802.11 since its best designed for transmission in

a shared noisy medium.

These three steps are implemented in a 2 1

2
-stage pipeline as

shown in Figure 1. In the estimation stage, each node estimates

its traffic requirements for the corresponding scheduling stage

using explicit buffering. This information is then commu-

nicated in the load exchange stage explicitly by injecting

a “broadcast” packet into the transmit path. This broadcast

packet consists information about the state on that particular

node including details about queue occupancies, rate and other

such parameters. In the scheduling stage, each node computes

a schedule based on a globally consistent scheduling policy

using the knowledge obtained through the load exchange

packets.

Each of these stages is for one epoch and they have the same

epoch time period. However, as can be seen from Figure 1,

the first half of the load exchange stage overlaps with the

estimation stage. The purpose of the load exchange stage

is to exchange state information among participating nodes.

Thus, a node broadcasts its load exchange packet at the end

of the estimation stage. However, due to queuing delays and

imperfect time synchronization, it may receive load exchange

packets from other nodes, either sometime earlier or later than

this. Therefore, the load exchange phase actually starts midway

through the estimation phase and continues till the start of the

scheduling stage. Due to the overlap with the estimation stage,

the load exchange stage contributes only half a stage to the

total latency of the pipeline; hence the name 2 1

2
-stage pipeline.

One way to implement the load estimation stage is through

active buffering of packets that arrive during this stage. This

gives an accurate estimate of the number of packets that

need to be scheduled during the scheduling stage of a given

cycle. Buffering however, increases the latency experienced

by individual packets as packets wait in the buffer awaiting

their turn to be transmitted on the wireless medium. This

increase in the latency can potentially affect both TCP and

UDP traffic. We note that the maximum delay experienced

by a packet that arrives at the beginning of the estimation

stage is 1 1

2
epoch and given constant arrival rate, the average

delay would be one epoch. This effect can be alleviated

by using passive estimation techniques that avoid buffering

such as exponentially weighted moving average (EWMA).

In such a mechanism, packets are no longer buffered. If the

EWMA prediction is right, then the expected set of packets

directly arrive in the scheduling stage and are scheduled. Of

course, buffering some packets might still be required if the

appropriate scheduling discipline grants lesser bandwidth than

the requirement of the node. The downside to this approach is

2

Scheduling

Estimation

Broadcast load exchange packet

Scheduling

Load exchange

Estimation

Cycle 1

Cycle 2 Load exchange

T T0.5 T

Fig. 1. 2
1

2
-stage pipeline architecture. Each pipeline stage is equal in

duration, but estimation stage and load exchange stage for a given cycle
overlap with each other.

that it may lead to inaccurate representation of system load if

the traffic is not easily predictable. These issues are analyzed

in detail in Section III.

Next important stage is the load exchange stage. In this

stage, local knowledge is exchanged via explicit messages

among participating nodes to obtain global knowledge. In

order to obtain accurate global knowledge, the load exchange

packets from all participating nodes have to be received during

this stage. Time synchronization therefore, plays a crucial

role in the accuracy of this stage. We solve this problem by

borrowing from 802.11 design which faces a similar problem

of synchronization for DCF. This is achieved by using the

beacon packets which are generated by the access points

periodically. Lack of external clocks like access points can

be made up by using the load exchange packets from one of

the participating nodes to synchronize like [8].

Finally, in the scheduling stage, packets are scheduled

according to the global knowledge obtained via explicit load

exchange messages and a pre-configured globally consistent

scheduling policy. Packets that are not successfully transmitted

in the scheduling stage are factored in the next cycle.

The main benefits of this design are efficiency and robust-

ness. Since we implement the mechanism in a pipeline, for

every estimation and load exchange state there is an overlap-

ping scheduling stage transmitting packets. The node is never

in an estimation stage without sending any packets, except

of course, when the pipeline begins. Robustness is achieved

due to the predominantly stateless nature of the pipeline.

Each cycle operates with fresh dissemination of individual

load estimates and global knowledge computed through these

messages. Since the amount of persistent state in each of the

nodes is minimal, it prevents inaccuracies from building up

over time. Thus, the design is tolerant to occasional loss in

load exchange messages or other control packets.

B. Implementation

Architecturally, Covenant is implemented as a sub-layer

within the 802.11 MAC layer as shown in Figure 2 [7]. The

packet transmit and receive calls from the upper layers to the

MAC layer pass through the 802.11 extension layer where ap-

propriate cooperative scheduling protocol can be implemented.

Firmware
Configuration

Network Layer

wake

queuetx
packet

rx
packet stop

queue

802.11 MAC Layer

CARD FIRMWARE

802.11 Extension Layer

Fig. 2. 802.11 extension layer architecture.

In order to perform scheduling, the 802.11 extension layer can

optionally inject new control packets into the transmit path and

receive control packets from other nodes through the receive

path.

We have implemented the extension layer on a linux plat-

form running 2.4.28 kernel. For the 802.11 interface, we chose

to use the Netgear WAG511 a/b/g card using the Atheros

chipset. This chipset is well supported by a popular open

source driver (madwifi [9]). The madwifi driver has been

modified to make the necessary calls to the extension layer.

As shown in Figure 2, the packet send and receive calls

and the queue management functions were modified to be

routed through the extension layer. This minimal modification

makes the extension layer code portable across different device

drivers.

We implemented the 2 1

2
-stage pipeline (shown in Figure 1)

using linux kernel timers. The accuracy of the pipeline is

dependent on the accuracy of this timer which is controlled by

the real time clock in the kernel. We used a frequency of 1HZ

for this clock which gives us 1ms accuracy. The implementa-

tion consists of a core handler that can both schedule as well

as process various events. Upon a packet transmit call from the

upper layer, the core handler buffers the packet and activates

the pipeline (if inactive) by scheduling two timers – estimation

timer and load exchange timer that signify the completion of

estimation stage and load exchange stage respectively. When

the estimation timer expires, control returns back to the core

handler where it performs two actions; first, it broadcasts a

load exchange packet containing information about its own

load and second, if there are packets to send this cycle, it

keeps the pipeline active by scheduling both these timers

again, otherwise stops the pipeline. In the receive path, load

exchange packets broadcast from other nodes in the radio

range are processed by the core handler. The scheduling stage

is implemented as a kernel thread whose flow is controlled

appropriately by the core handler at the expiry of load ex-

change timer. This was done to provide a degree of freedom

for implementing different scheduling policies and supporting

3

back pressure control. This thread computes a global schedule

based on load exchange packets received so far, and schedules

packets accordingly.

The load exchange packets are constructed using a 802.3

packet format, with an unused protocol value. The payload of

this packet contains basic information like node id, packet

sequence number, node transmission rate along with infor-

mation pertinent to the scheduling policy. We also provide

some feedback on the results of policy in previous epoch.

This packet is sent to the 802.11 layer for transmission to

other nodes.

C. Different Epoch Periods

Another degree of freedom offered in the architecture is to

operate with different epoch values at different nodes. At first

glance, it might appear counter-intuitive that such deployment

offers any benefits. Epoch value closely controls the amount

of throughput loss and also the delay experienced by packets

that belong to a particular application. While having a lower

epoch value clearly reduces the effect on delay, it increases the

overhead. So, in order to reduce the overhead, certain nodes

whose performance is not affected by large epoch periods can

be run with higher epoch periods, so that the frequency of load

exchange packets is reduced. This can bring down the amount

of overhead for the control channel.

To achieve this, the Covenant architecture can be modified

to have different participating nodes operating with different

epochs. But at the same time constraints of synchrony have to

be met. For example, a video streaming device can have an

epoch value of 3τ , while a real-time device can have a value

of τ . To guarantee that they have the same global estimate,

the start of every scheduling stage should be synchronized

and the nodes having a longer epoch have to re-estimate at

the end of every smaller epoch. Since both the nodes should

also synchronize with the beacons, both 3τ and τ should be

a factor of beacon interval.

This is better illustrated in Figure 3. Node B is running

at three times the epoch of Node A. Since both the nodes

are synchronized with the beacon, their load exchange phase

starts at the same time. As seen from the figure, the schedule

stage of Node A in cycle 3 starts at the same time as the

schedule stage of Node B, cycle two. Hence at this time (3T)

both the nodes are aware of the load estimate for time 3T to

5T and they can schedule accordingly. Node B also captures

the lodex packets generated by Node A at 4T and 6T. At the

end of the load exchange stage, Node B, re-estimates schedule

at 5T and 6T (at the end of Node A’s load exchange states).

Node B has the benefit of making better policy decision since

it has a bigger window of estimation. While Node A, saves

on buffering delay by running on shorter epochs. Moreover

load exchange stage of Node B can receive multiple lodex

packets from A. To avoid confusion, the lodex packets will

also contain its epoch value and the epoch val its running on.

This information can be used to figure out if the lodex packet

is for the next scheduling stage or the current scheduling stage.

S

S

S

S

S

S

S

L

L

L

L

L

E

E

E

b

e

a

c

o

n

T
 2T
 3T
 4T
 5T
 6T
 7T
 8T
 9T

N

o

d

e

A

N

o

d

e

B

cycle 1

cycle 2

cycle 1

cycle 2

cycle 3

cycle 4

cycle 5

Re-estimate
 Re-estimate

Timeline

Fig. 3. Timeline of pipeline stages. S stands for scheduling stage, L stands
for load exchange and E stands for estimation stage. As figure show cycle
1 in both nodes are cut half way to show the timeline starting from beacon
arrival

For example, the L stage for Node B in cycle 2 , should only

use the lodex packets from L stage in cycle 3 for Node A.

In general, let the shortest epoch time used in the system

be 2τ , then for another node to have a different epoch τ1,

τ1 = τ + 2ατ

where α is an integer value. Another constraint on the

system is the beacon synchronization,

2τλ1 = beacon interval

(1 + 2α)τλ2 = beacon interval

α =
λ1

2λ2

−
1

2

Hence for α to be an integer λ1

λ2

should be an odd number.

Thus for example, a VoIP client can set the epoch value at

around 6ms (beacon interval/18) to minimize delay and jitter, a

TCP client can set the epoch value to 20ms (beacon interval/6)

to minimize bandwidth loss, a video client can set it to

50ms (beacon interval/2) to maximize scheduling benefits.

This feature make Covenant very flexible to the needs of

different traffic. For simplicity, however, we assume that all

nodes have equal epochs for the rest of the paper.

III. EVALUATION

In this section we evaluate the feasibility and performance

of Covenant. The performance of Covenant is dependent on

the control flow of information (load exchange packets) and

the parameters of the system (epoch values).

A. Load exchange packets

The load exchange (lodex) packets are the control packets

of the mechanism and its is critical for the performance of

Covenant. There are two important requirements on them:

• They should be transmitted by the hardware on time.

4

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0 10 20 30 40 50

D
e

lt
a

(s
)

Time(s)

Load Exchange packet Jitter with background traffic

Fig. 4. This plot shows the deviation of the lodex packets from expected
arrival time in the presence of two full-blast interfering nodes. In spite of two
other interfering nodes, almost all the lodex packets arrived at an independent
sniffer well within the allocated 10ms budget for the stage.

• They should be received by other nodes in their load

exchange stage.

The first requirement can fail since both control and data

packets share the medium. Moreover due to our pipelined

design there is always an overlapping scheduling phase where

data packets are being transmitted. To study the effect of

such background traffic on lodex packets we performed an

experiment where a Covenant node shares the channel with

two 802.11 nodes. To saturate the channel the two 802.11

nodes were running an UDP packet generator sending traffic

as fast as possible.

Figure 4 show the effect of this background traffic on

the arrival times of the load exchange packets. This data is

obtained by a passive sniffer operating in the same channel as

the nodes. The graph plots difference between expected arrival

time of the lodex packets and the actual arrival time. In ideal

conditions, the lodex packets should arrive every epoch time

period (20ms) and hence the difference should be zero. As

the first 10 seconds of the graph shows, this is the case when

there is no background traffic. Between 10 and 50 seconds

two competing wireless nodes start transmitting packets as fast

as they can. This affects the jitter experienced by the lodex

packets due to increased contention in the wireless medium.

As the figure shows, the worst case jitter, when the channel

is saturated, does not exceed 1

2
the epoch time shown by the

straight line at 0.01 sec. Thus for an epoch time of 20ms all

the lodex packets are sent within the lodex stage.

Since each lodex packet is essentially a broadcast packet

there are no explicit acknowledgements. This leads to packet

losses during channel congestion. In the experiment above, we

observed a packet loss of 2%. The loss of lodex packets can

lead to incomplete knowledge of the system load. To avoid

this problem, we can maintain a short term history of lodex

packets and extrapolate demand estimate on a lodex packet

loss, although we have not yet deployed this optimization yet.

Both the packet losses and jitter are smaller when the channel

is not fully saturated or when TCP traffic is used (< 1%

 4.4 4.45 4.5 4.55 4.6 4.65 4.7

 14.5 15 15.5 16

time (s)

time (s)

beacons
node 1
node 2

snapshot 3

snapshot 2

snapshot 1

14.5
15 15.5

16 time (s)

Fig. 5. Timeline of lodex packets and beacons. There are three different
snapshots each showing the beacon arrival times, node 1 lodex packet arrival
times and node 2 lodex packet arrival times. The top two snapshots use a
different scale of timeline.

packet loss).

The second requirement needs some way of synchronizing

the pipeline stages at all the participating nodes. As explained

in design section, we propose to use beacons to achieve this

synchronization. Beacon interval values are commonly set to

102.4ms and they use microsecond granularity while most

kernel timers use millisecond granularity or higher. This could

be a problem since we cant precisely sync with the beacons.

Moreover another constraint is that all the epoch intervals

must have the same time period. We solve this problem by

using varying epoch times that averages to the beacon intervals

while keeping the variations small. The epoch time period is

calculated as

next epoch int = ⌊
beacon int

num epochs
× epoch val⌋

where next epoch int is the time period for the next

pipeline stage, beacon int is the beacon interval, num epochs

is a constant decides how many epochs are there between

any two beacons and epoch val decides which epoch the

pipeline is in between two beacons. This mechanism makes

bootstrapping a new node very simple. When a new node

wants to join the system it uses the last received beacon (which

is always maintained by all the nodes) to figure out which

epoch it has to join and starts accordingly.

Figure 5 illustrates the performance of this technique. In

this experiment, two Covenant nodes are trying to synchronize

with each other. We use a sniffer to monitor the traffic and

try to see the effect of saturating the channel using UDP

background traffic similar to the previous case. The graph

depicts three different snapshots of the system. The bottom

one representing a timeline of 0.300ms, show node 1 joining

the system. Node 2 is clearly synchronized with the beacon

and Node 1 uses the last seen beacon at 4.5 to bootstrap. The

snapshot 2 represents a timeline of 1.5sec (different scale)

and shows that synchrony is maintained in longer timescales

also. Also note that the beacon packet got lost near 15sec

5

but the nodes stay synchronized. The third snapshot is for

1.5 sec but with background traffic. Due to competing traffic

there are more packet losses in this case but the nodes stay

synchronized.

B. Number of nodes

The number of nodes participating in the scheduling disci-

pline is another significant factor affecting performance. More

nodes imply more load exchange packets which can consume

bandwidth and capacity. One approach to solving this problem

is to increase the epoch time periods, which in turn frequency

of load exchange. But, this would cause packets to experience

larger delays. The complete size of the load exchange packet

we have implemented including 802.11 headers is 208 bytes. If

we include the time for other 802.11 actions (e.g. DIFS, PLCP,

etc.), the airtime consumed by this packet for 802.11b card

operating at 11 Mbps is 270µs and for 802.11a at 36 Mbps it

is 148µs. The bandwidth consumed by the control channel is

12.8Kbps (approximately .1% for 802.11b at 11 Mbps) per

node when operating at 20ms epoch periods. As the number

of nodes increase the saturation capacity also drops [?] and

hence this value may become more significant. For ten nodes,

the control channel will occupy 270µs + δ (δ is the contention

backoff time) for each node. Our solution is to increase the

epoch time of the pipeline stages as a tunable parameter to

offset this effect.

C. Epoch time period

The main parameter of the mechanism is the time period

of the pipeline stages. This becomes more critical when the

estimation stage uses buffering. This would contribute to

packet delay and jitter which can affect both UDP and TCP

traffic. The choice of this parameter also reflects a tradeoff

in the system. A smaller value would make Covenant more

transparent to other layers but decreases scheduling efficiency

and increases control overhead (more lodex packets). A bigger

value would have the opposite effect. In this section, we

analyze the effect of the time period on UDP and TCP traffic.

UDP traffic is the most common means of transport for

multimedia applications. To study the effect of Covenant, we

use evalvid [10] to trace the packet flow of a real multimedia

stream. For this experiment, a node running Covenant streams

the multimedia file (MPEG-4 video) over the access point to a

networked machine. Traces are collected at both ends to study

the delay and jitter caused by Covenant. This setup is repeated

using a regular 802.11 node to compare performance. Figure 6

shows the effect of varying the epoch time on mean delay and

mean jitter of the multimedia traffic. The mean delay increases

with the epoch time since packets are buffered longer in the

estimation stage. Compared to the regular node at 0 whose

mean delay is at 8ms, the delay is doubled to 18ms for a 20ms

epoch. For non-real time multimedia streaming this delay will

be easily captured by a playback buffer at the receiving side.

For interactive multimedia traffic, adding a 10ms delay may

affect the performance if the cumulative delay (Covenant +

network) becomes larger than ones the codec can handle. For

 0.01

 0.02

 0.03

 0.04

 0.05

 0 5 10 15 20 25 30 35 40 45 50

m
e

a
n

 d
e

la
y
(s

)

epoch time(ms)

mean delay

Fig. 6. Mean delay for multimedia streaming traffic. The mean jitter was
constant at 2ms.

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120 140

T
C

P
 t

h
ro

u
g

h
p

u
t

(M
b

p
s
)

RTT (ms)

Effect of Disco epoch values on TCP up/download over LAN/WAN

WAN download
WAN upload

LAN download
LAN upload

Fig. 7. TCP throughput

example, the VoIP can handle a delay of upto 250ms in the

network.

As the top plot in Figure 6 shows, packet jitter is not affected

by the epoch time. This is because multimedia streaming from

a media source with playout buffer (like playing from stored

media) will generate packets at fast rates. Since buffering in

Covenant can only shorten the gap between the packets, it does

not affect packets that are anyway very close to each other.

Further because of the pipelined design, packets separated by

an estimation stage also don’t have any jitter in them. Hence,

Covenant does not affect the inter-packet delay in this case.

But this may not be valid for real time interactive traffic that

generates packets in a periodic fashion (e.g., 20ms inter arrival

time for VoIP packets). In this, case we propose to use passive

estimation as suggested in the design section.

The effect of Covenant on TCP traffic is a direct increase

in the RTT as perceived from Covenant nodes. We performed

experiments to study the extent of these effects while varying

the epoch times. We evaluate TCP performance by measuring

throughput in two different settings – LAN and WAN. In

the LAN setting, a Covenant node transmitted packets to a

wired desktop sharing the same access point. In the WAN

setting, we used the planet-lab node in Cornell University and

6

the Covenant node in San Diego. Although Covenant has an

asymmetric effect on traffic (only outgoing traffic is affected),

it can still impact both directions of closed loop protocols

such as TCP. Hence, we tested the effect on both upload and

download TCP traffic (shown in Figure 7). As expected, in-

creasing RTT increases as the epoch time increases. Since the

effect of epoch time on RTT is apparent, we plot throughput

(median amongst five measurements) versus RTT instead of

epoch times. As the graph shows, the effect of Covenant is

more significant in the LAN than the WAN traffic since the

wireless link is the bottleneck link in the former. The smallest

RTT value is the base case when the node is running on regular

802.11. For the LAN setting at 20ms, the drop in throughput

is very marginal – around 300 Kbps for upload and download.

However, as we increase the epoch period from 20ms to 60ms,

we observed significant throughput loss (about 2.5 Mbps)

suggesting that smaller epoch values are preferable for TCP

throughput intensive connections when the base RTT is small.

For the WAN setting, there is no effect for the upload traffic,

while download traffic suffers by 100 Kbps. We consider

this epoch value to be a sufficient tradeoff between affecting

TCP performance and Covenant performance. Another effect

is that buffering ACKs affects TCP more in both WAN and

LAN settings. The reason is that ACKs control the congestion

response in TCP, and therefore delayed ACKs can be much

more harmful to TCP throughput than that of the data packets.

In our analysis of the Covenant extension layer, we noticed

that a 20ms epoch value is a good choice for tradeoff between

delay and overhead. We use this value for implementing

Covenant in our case studies. But Covenant provides the bene-

fit of being tunable to meet different demands. For example, if

the number of participating nodes go up, the epoch values can

be set higher. This translates into smaller control overhead

and more time in the load exchange state to receive other

lodex packets (to overcome high contention delays). For delay

sensitive traffic, making this value smaller will reduce the

delay experienced.

IV. CASE STUDY

In the last two sections, we introduced the design of

Covenant, its evaluation and performance. The success of this

framework hinges on realizing its benefits in a real world

scenario. To this extent, we use the home networking scenario

to depict the efficacy of Covenant.

Wireless home networking is a new frontier for 802.11

networking [11] [2]. 802.11 networks’ initial growth was

supported by widespread adoption of wireless data networking

in the home environment. But for 802.11 to grow into a

complete networking solution for homes, certain challenges

have to be addressed. Some of the characteristics of wireless

home networks are:

• Diverse traffic: Networking in home environment is not

restricted to PCs and laptops anymore. Devices like

DVD players, VoIP phones are also data sources and

destinations in the network. Broadly, media devices,

communication devices and computing devices are part of

the home network. Each group has its own set of features

and requirements for the traffic flow. Conventional 802.11

devices are not designed to handle this variety, since

the 802.11a/b/g protocols only provide fair packet based

sharing among all participants.

• QoS requirements: Multimedia traffic needs some band-

width guarantees for successful transmission. Interactive

voice traffic require higher priority and are sensitive to

jitter, while TCP occupies any unused bandwidth for

transmission. 802.11 a/b/g cannot handle any of these re-

quirements since they operate for providing basic packet

delivery in the wireless network and do not provide

mechanisms to support service differentiation.

• Rate diversity: It is common to have different nodes in

a home environment operating at different rates because

of their relative positions to the APs or to each other. In

such situations the aggregate throughput of the system

is brought down due to packet based sharing of 802.11

[12]. This may not be a favorable policy for other traffic

flows.

• Packet diversity: Packet sizes also vary greatly in such

a network. For example, voice packets are 300 bytes in

size [13], UDP streaming packets are 1300 bytes and

TCP packets are 1500 bytes. This could also lead to a

unfairness in sharing since 802.11 does not account for

packet size but just the number of packets in allocating

the share [5].

• QoS-node associativity: Each node has a distinct require-

ment for its traffic flow. Since most nodes are monolithic

in terms of the traffic they generate. For example, DVD

players generate high bandwidth UDP packets, VoIP

phones generate high priority rtp traffic. Hence it is easier

to decide on QoS policy at the link layer for higher layer

traffic.

• Cooperative allocation: Since nodes belong to the same

domain, they can cooperate to enforce globally optimal

policy.

• Full duplex packet flow: Unlike conventional data net-

works, home networks have an equal share of upload

and download traffic. Typically, laptop clients which

generate web traffic tend to be download intensive, while

video-streaming server tends to be upload intensive. Of

course, devices such as VoIP phones are both upload and

download intensive.

There are many challenges that need to be addressed for

making 802.11 viable in this scenario and the architecture of

the system is favorable for Covenant deployment.

A. Experimental setup

Most of our experiments are performed on two dell inspiron

laptops running on linux-2.4.28 kernel with the Covenant

drivers. For ease of implementation, we chose to use a

conventional access point and all the destination nodes were

machines on the wired network connected over a 100BaseT

cable. This way, we ensure that all the traffic flow in the

wireless channel is controlled by Covenant. All traces were

7

 0

 5

 10

 15

 20

 25

 5 10 15 20 25 30 35 40

th
ro

u
g

h
p

u
t

(M
b

p
s
)

802.11 Rate (Mbps)

Effect of transmission rate on UDP throughput

measured capcity
expected capcity

Fig. 8. Variation of saturation capacity over different operational rates.

 0

 5

 10

 15

 20

 25

 5 10 15 20 25 30 35 40

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

802.11 Rate (Mbps)

Effect of varying rate of transmission of node 2 on node 1

node 1
node 2

aggregate

Fig. 9. Node 2 is operating at 36Mbps. Node 1 varies from 6 to 36Mbps.
Aggregate bandwidth is affected.

collected at source, destination and a sniffer operating in the

same channel. The experiments were conducted in both 11a

and 11b network depending on the baseline capacity required.

It is important for the nodes to estimate the channel capacity

to calculate their share based on the scheduling policy. We

use common estimation techniques based on the transmission

rate, physical and MAC layer overhead [14]. Figure 8 shows

a comparison of this estimate with the observed capacity. The

values were averaged over 10 runs.

Thus each lodex packet contains information about rate (ri)

and load in bytes (bi).

B. Rate and packet diversity

802.11 provides fairness based on packets generated without

any flexibility for different policies. To demonstrate this effect,

we used two nodes with regular 802.11 drivers using the

802.11a protocol. The nodes were running an UDP packet

generator (at full rate) to a destination over the wired network

in the LAN. The throughput is recorded at the destination. As

Figure 9 shows, the throughput of node 1 which is operated

at 36Mbps is brought down by the throughput of node 2

whose transmission rates varies (6,12,18,24 and 36Mbps). All

the plotted values are averaged over 10 runs.The aggregate

 0

 5

 10

 15

 20

 25

 5 10 15 20 25 30 35 40

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

802.11 Rate (Mbps)

Effect of varying transmission rate of node 2 on node 1 while running disco

node 1
node 2

aggregate

Fig. 10. Using Covenant Node 2’s throughput remains the same due to
air-time sharing

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Time (s)

Video

Fig. 11. Media traffic without contention

throughput of the system suffers because of this property as

shown in the Figure. We resolve this problem by sharing load

and the transmission rate in the lodex packets. Thus each node

is aware of the number of nodes participating in the following

scheduling stage, their load and the rates their operating.

From this information, a simple air-time based sharing of the

scheduling stage can be estimated. If any airtime slice is under-

subscribed, the free time is redistributed among oversubscribed

nodes.

Figure 10 shows the result of using this technique for

improving aggregate throughput. The expected throughput for

node 2 should be same as when it is sharing with another node

at the same rate. This is consistent with the figure when node

2 is at 36Mbps. The aggregate throughput has also improved

compared to Figure 9. A similar approach is used for packet

diversity. Since each node is aware of the load (bytes to

transmit) at other nodes, byte based fairness is achieved by

allocating equal number of bytes at all nodes during each

scheduling stage. The effect observed is similar to the previous

case.

8

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Time (s)

Video
UDP

Fig. 12. Media traffic with contention (UDP traffic)

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80 90

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Time (s)

Video
UDP

Fig. 13. Media traffic with contention(UDP traffic) and Covenant

C. Bandwidth reservation

The notion of bandwidth reservation is not available in

802.11. To achieve this with Covenant, we assign a priority

mode and level to each node indicative of its requirements.

These two values give a greater degree of freedom in imple-

menting different QoS policies. This enables the system meet

unique requirements of each traffic. For example, an adaptive

video traffic may just need a larger share of the capacity as

much as possible. On the other hand, a high quality video

traffic would need a guaranteed throughput. To meet these

varied demands, the priority mode helps decide the kind of

QoS required.

In the first case, we implemented proportional priority. in

which each node is assigned a weight to decide its share of the

resource. The resource could be air time or the size of data to

send. The weights decide the proportion of resource each node

gets. Similar to the previous experiment, any unused resource

is redistributed among oversubscribed nodes. Let wi, ri and

bi denote the weight, operating rate and load in bytes at each

node i, then the share for the node is calculated as

sharei = wi × τ × ri +
w′

i

n − k

k∑

j=1

(wi × τ × ri − bi)

where n is the total number of nodes in the system and k is

the number of under-subscribed nodes. w′

i is the proportional

weight among the remaining n-k nodes.

The experiments for studying this feature is performed using

a popular media server (videolan [15]) playing a high quality

variable bit rate MPEG-4 file at one of the nodes (running reg-

ular 802.11) while the receiver is a wired desktop in the same

LAN. Figure 11 shows the instantaneous bandwidth measured

at the receiver when only the videolan node is transmitting

. Figure 12 shows the same graph with a background UDP

traffic generated by another node. As soon as the videolan

starts at 8 seconds, 802.11 fair sharing makes the two node

share the channel equally. Compared to the single node case,

the videolan traffic is affected by the UDP flow and its average

bandwidth drops to 11Mbps from 13.8Mbps in the previous

graph. Figure 13 shows the same experiment but with the two

nodes running Covenant with air-time as the resource. The

videolan node is assigned a weight of 3 while the UDP node is

assigned a weight of 1. As the figure shows the videolan node

now achieves the same bandwidth as the node in Figure 11.

Another interesting observation is that the UDP traffic fills in

any under-subscribed airtime (due to variable bit rate) with its

traffic. This represents the advantage of using Covenant where

it lets the high bandwidth traffic to perform unchanged while

at the same time make optimal use of the resource.

For a high priority node, the priority level decides who

get first share of the resource. The highest priority node gets

full share of the channel depending on its load. While the

remaining resource is used by the rest. To evaluate this method

we use the same setup in 802.11b to saturate the network.

Figure 14 shows a different media stream bandwidth for the

regular case with no interference. Compare this to Figure 15

where the UDP traffic shares the capacity with the stream.

The bandwidth drops from 4.5Mbps to 3 Mbps that leads to

a significant loss in quality. Moreover the media stream takes

a longer time to complete (12s) compared to 10 seconds in

Figure 14.

In Figure 16, the media stream traffic is given higher priority

to complete its throughput every scheduling stage. The UDP

traffic only uses up any remaining resource left in the stage. As

the graph shows, the throughput of the UDP traffic remains the

same while the UDP traffic throughput drops down to 1Mbps.

V. DISCUSSION

Covenant is a solution with a wide range of applications.

The ability to control packet scheduling and its transmission

parameters along with global knowledge can be used to

add novel and valuable features to 802.11. For example,

Covenant can be used to improve the performance of the

SPARTA protocol [6] for energy conservation. SPARTA uses

information about load at other nodes to schedule packet at a

9

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10

T
h

ro
u

g
p

u
t

(M
b

p
s
)

Time (s)

Video

Fig. 14. Media stream without contention in 802.11b

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10 12

T
h

ro
u

g
p

u
t

(M
b

p
s
)

Time (s)

UDP
Video

Fig. 15. Media stream with contention. The UDP traffic saturates the channel
initially and shares it with the media stream.

slower rate to save power. By using Covenant, this information

is readily available and can lead to accurate selection of

rate. The flexibility of working in ad-hoc and mesh network

environments also boosts the applicability of Covenant. One

can use Covenant to inform other nodes about the load to

avoid interference in mesh networks [16]. Covenant can also

be used to gain benefits in areas other than packet scheduling.

For example, handoff in 802.11 has problems with latency [17]

and affects 802.11 mobility. Some solutions [18] suggest

using a neighborhood graph of APs to make fast decisions.

Using Covenant this information can be disseminated in the

lodex packets during the scanning process. The advantages

in this process are the information is captured live and no

infrastructure support is required.

Covenant’s underlying philosophy is to give more control

to the clients. The motivation here is based on the fact that the

clients are in the best position to make decisions for optimal

performance. The clients are aware of the channel conditions

during transmission, they are closer to the applications gener-

ating the traffic and can better estimate the resource required

for delivering packets. Covenant compliments this knowledge

with information from other nodes participating in the channel.

Clients in 802.11 network also have more computing resource,

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10 12

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Time (s)

Video
UDP

Fig. 16. Media stream with contention. Prioritized using Covenant

power and flexibility than access points. The 802.11 clients are

usually laptops and PDAs that have powerful processors and

large memories. The drivers in these devices are more easily

accessible (ioctls,generic APIs) and upgradable.

Implementing Covenant was an interesting and rigorous pro-

cess. It gave us new insights into the functioning of the kernel

and how the accuracy of various functions are critical to the

performance. We also realized that many hardware limitations

can be overcome by smart software solutions and algorithms.

This process also validated our approach of implementing

a software based approach. Covenant has evolved through

our implementation based on observations made during our

experiments. Among the many ideas we chose to implement

those with the greatest impact on performance. We have a

few other developments in the design board that is worth

mentioning here.

Our implementation of Covenant assumes a standard chan-

nel capacity based on theoretical calculations. 802.11 spectrum

being a highly noisy and variable channel can result in varying

saturation capacities depending on location, interference and

movement. The channel capacity is also based on the assump-

tion that all the participating nodes use Covenant. This may

not be the case if some legacy nodes are also being used in

the neighborhood. In both these cases the estimated saturation

capacity using theoretical approach can be inaccurate and lead

to an attrition of Covenant benefits. One approach would be

use rate estimation techniques for measuring channel capacity

similar to [19]. This estimation technique can also benefit

from information sharing using Covenant. For example, if the

channel gets noisy due to interfering signals for non-802.11

devices, this effect will be noticed in all the other nodes. If the

estimation technique used the information from other nodes,

it can converge to the new rate faster.

Since nodes in Covenant share information about their load,

they can estimate their share of the capacity. This knowledge

can be used to indicate status regarding the network conditions

to the upper layers. This upcall can be useful in applications

that can adapt to network traffic [20]. One way of avoiding

jitter is to replay the traffic as it comes to the extension layer

10

thus maintaining inter-packet distance (over time). The current

version of Covenant schedules all the packets at the beginning

of the scheduling stage leading to jitter. This solution needs

careful implementation to avoid timing issue in the scheduling

stage leading to under-subscribing.

VI. RELATED WORK

The idea of using software approach in wireless networks

is a popular one [21]. But with regards to 802.11, limitations

of firmware APIs and support makes it difficult to implement.

To our knowledge, our solution is one of the few practical

implementations of this approach in 802.11. Our work is

similar to the Overlay MAC [22] approach which is designed

to implement a TDMA mechanism over the underlying 802.11

hardware. Our solution differs in the fact that we use explicit

information sharing that can consume more resource but

allow for highly optimal scheduling (dynamic knowledge of

estimate). The pipeline mechanism and varying epoch intervals

are also unique to our solution and our demands on clock

synchronization are more relaxed.

Using explicit broadcast mechanisms for providing a control

channel to add functionality is a common approach in many

scenarios. Catch [23] performs information sharing using

broadcasts packets to solve the free-rider problem in mesh

networks. In most of these solutions the tradeoff is between the

overhead and the benefits. Similarly Covanent can be practical

only in scenarios where the advantage of having control over

packet scheduling outweighs the capacity overhead of load

exchange packets: like our case study.

The protocol based alternatives for QoS and service guar-

antees, use priority based channel access at the physical

layer (eg. [24], [25], [3] and the references therein). These

mechanisms require firmware/hardware upgrades and a change

in the standard. Covanent explores the other alternative of

performing these in software with some tradeoffs. Another

critical feature available in Covanent, is the ability to tune

parameters like epoch times, priority mode and value. This

degree of freedom is very critical in QoS implementations.

802.11e [3], the new standard for providing QoS guarantees,

may face problems at high loads and cannot make strict guar-

antees. In these situations, Covanent can provide a convenient

and easy alternative for various priority schemes and also

handle the problem of rate diversity. To this extent, Covanent

can be used in compliment with 802.11e devices to provide

more tunability and performance. Covanent can also benefit

from 802.11e by making load exchange packets high priority

for best effort delivery.

VII. CONCLUSIONS

Wireless networks based on 802.11a/b/g technology have

enjoyed tremendous success in terms of their penetration into

various application domains – some of which are unfore-

seen. These application domain specific requirements such

as service differentiation are currently being addressed by

new MAC protocol standards. In this paper, we evaluated in

depth Covenant, a cooperative scheduling layer that allows

the implementation of flexible scheduling policies with min-

imal changes to the widespread 802.11a/b/g devices. Using

experiments, we have shown that Covenant can be adjusted

and tuned to a flexible mix of traffic types with minimal

impact on the applications. Moreover, such flexibility can

be achieved with only a small fraction (<0.1% per node)

of the available channel for control packets. We also show

real deployments of Covenant in home gateway scenarios to

illustrate the applicability of Covenant in practice. While we

have only began to scratch the surface, it appears that our

architecture can be very useful in other application domains

that require some form of cooperation.

ACKNOWLEDGEMENTS

We thank Stefan Savage and Geoff Voelker for their valuable

feedback and beneficial discussions. This work was made

possible by NSF Grant ANI 0074004.

REFERENCES

[1] Forward Concepts, ,” http://www.analogzone.com/netp1020b.htm.
[2] DLink wireless media player, ,” http://www.dlink.com/products/?pid=318

.
[3] IEEE Draft Standard 802.11e, “Wireless medium access control (MAC)

enhancements for quality of service(QoS),” Standard 802.11e, 2001.
[4] Institute of Electronic and Electrical Engineers (IEEE), “Wireless

medium access control (MAC) and physical layer (PHY) specifications,”
Standard 802.11, 1999.

[5] Godfrey Tan and John Guttag, “Time-based fairness improves perfor-
mance in multi-rate WLANs,” in USENIX Annual Technical Conference,
June 2004.

[6] Ramana Rao Kompella and Alex C. Snoeren, “Practical lazy scheduling
in sensor networks,” in Proceedings of ACM Conference on Embedded

Sensor Systems, Los Angeles, CA, Nov. 2003.
[7] Ramana Rao Kompella, Sriram Ramabhadran, Ishwar Ramani, and

Alex C. Snoeren, “Cooperative Packet Scheduling via Pipelining in
802.11 wireless networks,” in Proceedings of ACM SIGCOMM E-WIND,
Aug. 2005.

[8] K.Romer, “Time synchronization in ad hoc networks,” in In Proceedings

of the 2nd ACM international symposium on Mobile ad hoc networking

and computing, Aug. 2005.
[9] Sourceforge MadWifi Driver, ,” http://www.sourceforge.net/madwifi.

[10] J. Klaue, B. Rathke, and A. Wolisz, “EvalVid - A Framework for
Video Transmission and Quality Evaluation,” in In Proc. of the

13th International Conference on Modelling Techniques and Tools for

Computer Performance Evaluation, Sept. 2003.
[11] Zyxel VoIP WIFI phone, ,” http://www.zyxel.com/product/P2000W.php.
[12] Martin Heusse, Franck Rousseau, Gilles Berger-Sabbatel, and Andrzej

Duda, “Performance anomaly of 802.11b,” in In proceedings of IEEE
INFOCOM, 2003.

[13] Cisilion, ,” http://www.cisilion.com/pdfs/Tech VOIP Bandwidth.pdf.
[14] Yang Xiao and Jon Rosdahl, “Throughput and delay limits of IEEE

802.11,” IEEE Communication Letters, vol. 6, no. 8, 2002.
[15] VideoLan, ,” http://www.videolan.org.
[16] MIT RoofNet, ,” http://www.pdos.lcs.mit.edu/roofnet.
[17] Ishwar Ramani and Stefan Savage, “Syncscan: Practical fast handoff for

802.11 infrastructure networks,” in Proceedings of IEEE INFOCOM,
Miami, FL, Mar. 2005.

[18] Minho Shin, Arunesh Mishra, and William A. Arbaugh, “Improving the
latency of 802.11 hand-offs using neighbor graphs,” in Proceedings of

the 2nd international conference on Mobile systems, applications, and
services, Boston, MA, 2004.

[19] Q. Xue and A. Ganz, “Proportional service differentiation in wireless
lan using spacing-based channel occupancy regulation,” in International

Multimedia Conference, New York, NY, May 2004.
[20] Xiaomei Yu, Doan B. Hoang, and Dagan Feng, “A QoS control protocol

for rate-adaptive video traffic,” in Ninth IEEE International Conference

on Networks (ICON’01), Las Vegas, NV, Oct 2001.
[21] Software Defined Radio Forum, ,” http://www.sdrforum.org.

11

[22] Ananth Rao and Ion Stoica, “An overlay MAC layer for 802.11
networks,” in In Proceedings of Networked Systems Design and Imple-

mentatioedings of the 3rd international conference on Mobile systems,

applications, and service, Feb. 2005.
[23] Ratul Mahajan, Maya Rodrig, David Wetherall, and John Zahorjan,

“Sustaining cooperation in multi-hop wireless networks,” in In Pro-

ceedings of Networked Systems Design and Implementation, May 2005.
[24] Imad Aad and Claude Castelluccia, “Differentiation mechanisms for

IEEE 802.11,” in In Proceedings of IEEE INFOCOM, Apr. 2001.
[25] Anders Lindgren, Andraes Almquist, and Olov Schela, “Quality of

service schemes for IEEE 802.11 wireless LANs: An evaluation,” Mobile

Networks and Applications, vol. 8, no. 3, 2003.

12

