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Associations between pattern 
separation and hippocampal 
subfield structure and function vary 
along the lifespan: A 7 T imaging 
study
Joost M. Riphagen1 ✉, Lisa Schmiedek1, ed H. B. M. Gronenschild1, Michael A. Yassa  2, 
nikos priovoulos1, Alexander t. Sack  3, frans R. J. Verhey1 & Heidi i. L. Jacobs  1,3,4

Pattern separation (PS) describes the process by which the brain discriminates similar stimuli from 
previously encoded stimuli. This fundamental process requires the intact processing by specific subfields 
in the hippocampus and can be examined using mnemonic discrimination tasks. Previous studies 
reported different patterns for younger and older individuals between mnemonic discrimination 
performance and hippocampal subfield activation. Here, we investigated the relationship between the 
lure discrimination index (LDI) and hippocampal subfield volume and activity across the adult lifespan 
(20–70 years old). Using ultra-high field functional and structural magnetic resonance imaging at 7 T, 
we found that lower DG volume and higher CA3 activation was associated with worse LDI performance 
in individuals (>60 years), suggesting that this higher activation may be an indication of aberrant 
neurodegenerative-related processes. In fact, higher activation in the CA1 and DG was associated with 
lower volumes in these subfields. For individuals around 40–50 years old, we observed that greater 
left and right DG volume, and greater activity in the CA3 was associated with lower LDI performance. 
Taken together, these results suggest that the relationship between memory and hippocampal subfield 
structure or function varies nonlinearly and possibly reciprocally with age, with midlife being a critically 
vulnerable period in life.

A decline in cognitive functions is part of normal ageing1 and for older adults, memory problems, in particular 
in episodic memory, are considered among the most worrisome. The hippocampus is known to play a central 
role in episodic memory2,3. The hippocampus is not a homogeneous structure, different subfields are involved in 
different memory processes4. This has in particular been shown for pattern separation and completion, the most 
extensively investigated memory processes in the context of distinct hippocampal subfield affinities.

Pattern separation, the ability to form distinct, non-overlapping representations from similar or overlapping 
inputs has been shown to rely on the dentate gyrus (DG) and Cornu Ammonis (CA3) regions in human stud-
ies5–10. A distinction is made between behavioural pattern separation of objects and of spatial locations4. While 
the downstream pathways for spatial pattern separation involve medial entorhinal cortices, object pattern separa-
tion engages the lateral entorhinal cortices. In the hippocampal subfields CA3/DG the distinction between object 
and spatial pattern separation is no longer present11. Both variants of pattern separation (object and spatial) are 
similarly affected by age. Age-related changes in pattern separation have been documented extensively in animal12 
and human studies4,13. Atrophy of the DG in rodent models of ageing correlated with discrimination deficits14. 
Behavioural work demonstrated a monotonic decline in discrimination abilities starting in the fourth decade in 

1Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre 
Limburg, Maastricht University, Maastricht, The Netherlands. 2Department of Neurobiology and Behavior, Center 
for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA. 3Faculty of Psychology and 
Neuroscience, Department of Cognitive Neuroscience, Maastricht University, PO BOX 616, 6200, MD, Maastricht, 
The Netherlands. 4Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital 
and Harvard Medical School, Boston, MA, USA. ✉e-mail: h.jacobs@maastrichtuniversity.nl

open

https://doi.org/10.1038/s41598-020-64595-z
http://orcid.org/0000-0002-8635-1498
http://orcid.org/0000-0002-1471-0885
http://orcid.org/0000-0001-7620-3822
mailto:h.jacobs@maastrichtuniversity.nl
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-64595-z&domain=pdf


2Scientific RepoRtS |         (2020) 10:7572  | https://doi.org/10.1038/s41598-020-64595-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

humans15. Positive associations between CA3/DG volume and performance on an object mnemonic discrimina-
tion task has been reported in individuals of 60 years of age and older16. Longitudinal cohort studies have shown 
curvilinear relationships between total hippocampal volume and age, with the first changes noticeable around 
age 40, suggesting that midlife is a critical period in life sensitive for age-related neurodegenerative processes17,18.

In addition to structural alterations to hippocampal subfield tissue, mnemonic discrimination deficits were 
also associated with hyperactivity in DG/CA3 in late adulthood (60–80 years), as measured with functional mag-
netic resonance imaging (fMRI)19,20, that are in contrast to the typically observed flexible modulation of the 
BOLD response in CA3/DG in younger adults. In the latter, an increase of the activation was observed with a 
changing similarity of the experience (i.e. greater dissimilarity of the input). This age-related hyperactivation can 
be reduced using low-dose anti-epileptic drugs21 suggesting that it is not a compensatory hyperactivation but 
rather an index of dysfunction. Evidence from animal studies suggests that this hyperactivation in CA3/DG is 
linked to loss of inhibitory input from the perforant path to the DG and CA3 regions12.

Few studies so far included specifically a middle-aged group when investigating hippocampal activation dur-
ing an associative recognition memory task22. Subtle differences in hippocampal activity between the middle-aged 
and older groups were found, with the older group having less activation during successful retrieval compared to 
the middle-aged group. These findings combined with the hyperactivity reports in older individuals suggest that 
hippocampal activity is non-linearly associated with age. Another study included participants across the entire 
adult lifespan (range: 19 y–76 y), with a large number of also middle-aged adults (n = 39, age-range: 40–58 y)23. 
This study aimed to investigate age-invariant patterns of brain activation during encoding and retrieval of a mem-
ory task and found that in bilateral hippocampi the older participants had higher retrieval activation than the 
younger or middle-aged participants, and that this higher activation further correlated with decreased perfor-
mance. Volumetric changes were not assessed.

While behavioural and volumetric studies indicated that the first changes in hippocampal structure and 
associated discrimination abilities can be detected in midlife, the associations between subfield volume, subfield 
activation and discrimination abilities across the lifespan remain unclear. In this study, we aimed to understand 
whether the relationships between discrimination performance (an index of pattern separation), hippocam-
pal subfield volume and activity are age-dependent in a lifespan cohort (20–75 years). Given the non-linear 
age-associations with cognition18 and the suggested non-linear associations in hippocampal subfield activity 
during discrimination performance, we examined linear and non-linear models. We acquired ultra-high-field 
structural and functional MRI at 7 Tesla to accurately identify the hippocampal subfields using different modal-
ities (functional and structural).

Results
Fifty-three participants were included in this observational study (30 female (56.6%), Age: mean = 45.05, 
SD = 18.2, range = 21–73)), who all underwent neuropsychological testing, structural and functional imaging 
at 7 T, during which the well-established lure discrimination paradigm was performed (Fig. 1). All included par-
ticipants had neuropsychological test results within normal range and scored below the cut-off on the HDRS 
(<17) and MMSE (>24). A detailed overview of the sample characteristics and neuropsychological test results is 
provided in Table 1. FreeSurfer 6.0 was used to segment the hippocampal subfields (Fig. 2) and FSL to perform 
pre-processing of the functional data and compare functional activation between successful lure discrimination 
and unsuccessful lure discrimination.

Age associations with subfield volumes, subfield activity or LDI. First, we aimed to investigate the 
association between age and subfield volumes, subfield activity, and lure discrimination performance (LDI). Given 
the nonlinear relationships between age and LDI, generalized additive models (GAM) were chosen to describe 
the relationship, allowing for a more data-driven approach to model smooth functions, which are more flexi-
ble than polynomial regressions. Comparisons of linear and nonlinear models revealed that smooth terms best 
described the association between age and LDI (edf = 7.00, F = 7.66, p < 0.001). Consistent with the literature, we 
observed linear negative age-associations between age and subfield volumes in the left CA1 (ß=−0.06, t = 2.32, 
p = 0.024), and the left and right DG (left: ß=−0.02, t = 3.05, p = 0.036, right: ß=−0.03, t = 2.52, p = 0.030) (see 
Fig. 3). In these models the linear term was not significantly different from the smooth age term, and hence the 
most parsimonious model was chosen. No linear or non-linear associations between age and subfield activation 
during pattern separation were found. Older age was linearly associated with lower Corrected Recognition Score 
(CRS), a measure of target recognition (ß=−0.007, t = −3.71, p < 0.001, see Supplementary Fig. S1).

Age-varying associations between subfield volume and LDI performance. Next, we examined 
whether the relationship between subfield volume and LDI varies with age. GAM tensor products were used to 
implement interactive effects. Model fit comparisons revealed that smooth modelling of the interaction “age by 
subfield volume” on LDI described the data best for the left and right DG. These 3-way non-linear interactions are 
visualized in the contour (or topographic) plots in Fig. 4A,B (Supplemental Table S1), where the colour scale indi-
cates the LDI score and the distance between the contour lines indicates the steepness of the slope. For younger 
individuals (up to age 30), there is a vertical band of the yellow colour, indicating that they score relatively high 
on the LDI independent of the left DG volume (Y-axis). Similar relationships can be observed for the right DG 
volume (mixture of left and green values indicating moderate to good performance on LDI independent of the 
volume). We then estimated the age range at which a significant difference between individuals with high and low 
left DG volume on LDI performance can be detected (alpha <0.05) between 42.01 and 59.87 years. For the right 
DG volume, this age range was estimated at 42.54 to 54.94 years of age. These differences indicate that individuals 
in this age range who exhibited relatively higher DG volume, perform worse on the LDI than those with lower DG 
volume. For older individuals, there was a positive relationship between left DG volume and LDI scores (green 
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zone: higher volume is associated with moderate-good scores; blue zone: lower volume is associated with worse 
LDI scores). We note that the association between LDI scores and the contrast between the third and first quartile 
in left DG volume (the green versus blue zones) was not steep enough to be significantly different in these older 
individuals. For the right DG, for older individuals (>60 years) a blue vertical band can be observed, indicating 
that performance on the LDI was low irrespective of right DG volume. To better understand the findings – in 
particular the ones in the middle-aged individuals -, we will also examine age-varying relationships between 
hippocampal subfield volumes and activation across the entire lifespan. There were no significant interactions 
between age and subfield volume for the left or right CA1 and CA3 when predicting LDI performance.

Age-varying association between subfield activation and LDI performance. We investigated 
whether age modulates the relationship between subfield activation and LDI using the modelling methods 
described above. Model fit comparisons revealed that smooth modelling of the interaction “age by subfield activa-
tion” on LDI described the data best for the left CA3. In the left CA3 individuals with relatively higher activation 
was associated with better performance (green-yellow colours) when between the age of 26.25 and 44.64 years. 
For older individuals, the reversed pattern could be detected: between the age of 60.39 and 67.22, lower activa-
tion was associated with better performance (bottom green-yellow colour) and higher activation was associated 
with worse performance (top blue colours), though the floodlight analyses indicated that this was significant at a 
one-sided alpha of 0.05 (Fig. 4C).

No significant interactions between subfield activation and age on LDI were observed for the right CA3, CA1 
or DG. For the left and right CA1, we observed independent negative age-effects with LDI and positive associa-
tions between activation and LDI. There were no interactions between age and activation on LDI performance. 
Younger age and higher activation were both associated with better performance. Left or right DG subfield acti-
vation did not contribute to LDI performance (Table 2 and Supplemental Table S2).

Subfield volume association with activation. In a next step we used GAM methods to examine whether 
subfield volume and subfield activation varied with age. Smooth interactions between subfield volume and age 
on subfield activity were found for the left CA1 and left DG (Fig. 5A,B). For the left CA1, we found a linear 
negative age-association interacting with a cubic CA1 volume to predict CA1 activation. As shown in Fig. 5A,B, 
this nonlinear association reveals that for individuals between the age of 21.00 and 28.35 years, greater left CA1 
volume is associated with greater CA1 activation. (green region compared to the left blue bottom corner), while 
between the age of 55.67 and 73.00 years, greater left CA1 volume is associated with lower CA1 activation (bot-
tom yellow corner contrasted with the blue blob). For the left DG, we note that for individuals between 48.84 and 
73.00 years, higher left DG volumes were associated with lower left DG activation. For individuals younger than 
50 years, left DG activation is relatively high irrespective of its volume (green-yellow zone). This is in agreement 
with our observation that in older individuals, lower activation and higher volume are associated with better LDI 

Figure 1. Experimental lure discrimination task. Note: Outline of lure discrimination task. During encoding, a 
daily life object is presented for 2500 ms and participants judge the nature of an object (“indoor” vs. “outdoor”). 
During retrieval, each object is again shown for 2500 ms. Participants first judge whether the object is “old” 
for targets, “similar” for lures, or “new” for foils. Next, for targets and lures, participants indicate in which 
quadrant the (original) was shown during encoding. For foils, participants judge how confident they are with 
their decision (“sure” vs. “unsure”). All images as well as the task are open access and freely available via (https://
faculty.sites.uci.edu/starklab/mnemonic-similarity-task-mst/).
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performance. The negative association between volume and LDI in middle-aged individuals may be related to 
an underlying pattern of higher neural activation. In the remaining subfields (the left and right CA1 and CA3, 
respectively) no significant interactive or independent age-varying associations between activation and volume 
were detected.

LDI association with subfield volume and subfield activation. Finally, we investigated whether sub-
field volume and subfield activation were synergistically associated with LDI, independent of age. In all models 
age was added as a smooth covariate, and sex and education as linear covariates. For the left and right CA1, the 
interaction between smooth activation and linear volume was significant, but model inspection revealed that the 
edf was equal to 1. We therefore interpreted the more parsimonious linear models. We observed no significant 
linear interactions between subfield volume and subfield activation on LDI performance (Supplemental Table S3).

power calculation. We conducted a power calculation for the volumetric part of our analyses. To reach 
80% power with an alpha-error probability of 0.05 and an estimated effect size of R2 = 0.221, as reported for the 
combined sample of young and old participants from a previous, similar study16, the calculated total sample-size 
was 38 participants, or 13 participants per age-group. The total sample-size of 53 participants in this study should 
thus be sufficient to detect a medium effect size. For 7 T fMRI-studies power calculations are less obvious. Our 
sample-size is comparable to previous work in the field at 3 T11,13,16,19,20.

N = 53 Mean (sd) n (%) Range

Demographics

Age (in years) 45.05 (18.2) 21–73

Female (%) 31 (57.4)

Educationa 5.51 (1.6) 2–8

Neuropsychological assessment

HDRS-score 1.16 (1.8) 0–8

MMSE-score 29.38 (0.7) 27–30

WLT learning (number of words) 52.09 (8.3) 32–71

WLT delayed recall (number of words) 11.05 (2.8) 1–15

SWCT interference score 35.96 (15.6) −2.3–69.8

LDST (number correct) 57.12 (10.6) 37–87

CST mental flexibility score 7.31 (4.7) −2.1–19.8

Verbal Fluency animals (number words) 26.57 (6.2) 11–38

Verbal Fluency professions (number words) 18.41 (4.8) 11–32

Verbal Fluency M (number words) 17.20 (5.6) 7–31

LDI-score 0.16 (0.18) −0.15–0.47

CRS 0.58 (0.25) −0.02–0.90

Subfield volumeb

Left CA1 30.63 (3.2) 22.2–38.1

Right CA1 31.19 (3.3) 24.1–38.9

Left CA3 9.69 (1.1) 7.3–12.1

Right CA3 10.48 (1.2) 7.7–12.8

Left DG 13.88 (1.3) 11.2–16.2

Right DG 14.29 (1.4) 10.4–16.8

Subfield activationc

Left CA1 3.09 (21.5) −38.6–117.0

Right CA1 1.98 (17.1) −52.7–47.1

Left CA3 −0.81 (29.1) −92.1–65.1

Right CA3 2.31 (27.1) −48.2–79.7

Left DG 8.11 (47.4) −91.2–275.6

Right DG 5.51 (34.3) −57.8–149.5

Table 1. Demographics of sample. Note: HDRS: Hamilton Depression Rating Scale; MMSE: Mini Mental 
State Examination; WLT: Word learning test; SWCT: Stroop word colour test; LDST: Letter digit substitution 
test; CST: Concept shifting test; LDI: Lure Discrimination Index; CRS: Corrected Recognition Score. MMSE, 
WLT, Stroop, LDST, CST, and Verbal Fluency are corrected for age, sex, and education, CA: Cornu Ammonis, 
DG: dentate gyrus. ªA standardized 8-point scale (CBS, 2011) was used to indicate educational level (range 1 = 
primary school to 8 = university). bSubfield volume is expressed as raw volume in mm3 divided by intracranial 
volume in mm3 and multiplied by 1000 (arbitrary unit). cActivation contrast is successful vs. unsuccessful 
pattern separation.
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Discussion
The aim of this study was to investigate whether the relationship between hippocampal subfield volume or activity 
and discrimination performance varies across the lifespan, given that previous studies have indicated that around 
midlife the hippocampus is vulnerable to neurodegenerative processes. This volumetric change seems to occur 
simultaneously with lower discrimination performance, suggesting that 40–50 years of age is an important period 
in life to detect the first possible signs of age-related brain-behaviour changes and may also be a critical period to 
enhance brain resilience24. Our findings replicate previous studies reporting differences in discrimination per-
formance between young and old participants25. We show that lure discrimination performance is negatively and 
non-linearly associated with increasing age. Our study adds important observations on the non-linear nature of 
this age-association during the lifespan, and its interplay with pattern separation-specific subfield volumes and 
activation patterns.

Interestingly, for the left and right DG we found that in middle-aged individuals (~40–50 years) lower hip-
pocampal subfield volume was associated with higher discrimination performance. This age-group, between 
40–50 years, is an important age group of interest, as many molecular and neuronal changes are manifested, 
ranging from hippocampal atrophy to increased amyloid-beta and tau protein accumulation26–28, that may set 
the stage for future cognitive decline. In fact, previous work has indicated that verbal episodic memory starts 
to decline around middle-age29. Understanding the neuronal correlates underlying subtle age-related cognitive 
changes and deciphering typical from atypical age-related decline will be crucial to improve early detection of 
persons at-risk for cognitive decline. As for the younger and older individuals a larger DG volume was associated 
with better LDI performance, consistent with findings from previous studies16,30,31.

In addition, we found that in the left CA3, higher activation is only associated with better performance 
in younger adults until about 45 years of age. The CA3 areas are crucially involved in pattern separation, and 
similar relationships between activation and LDI-performance in younger adults have been reported in the lit-
erature9,32,33. In contrast, in late adulthood (~60–70 years) lower activation in the left CA3 was at-trend level 
associated with better performance. Hyperactivation in the CA3 in older individuals has been related to worse 
performance in previous work19. This hyperactivity has been associated with reduced inhibitory activity by the 
recurrent auto-associative fibres in the CA3. These events, compounded by volume loss in the DG and lower 
performant pathway input, are assumed to lead to a pattern-completion bias10. The meaning of hyperactivation, 
whether it reflects compensatory or aberrant processes, has been a long debate34. The relationship with lower 
performance in our sample suggests an aberrant process, and we speculate that this could stem from neuronal 
network breakdown, potentially resulting from amyloid-induced hyperexcitability35. It is important to note that 
studies reporting compensatory mechanisms often find hyperactivation in regions outside the medial temporal 
lobe36–38. Hence, compensatory and aberrant processes may be co-existing but acting in different regions.

Activation during pattern separation in the left and right CA1 showed a negative relationship with 
LDI-performance, independent of age. The CA1 is a region typically, but not exclusively, recruited during pattern 
completion processes32,39 and only deteriorates with age with increasing difficulty of presented items40. A hypo-
thetical explanation for why activation in this region contributes to predicting LDI-performance lies in the nature 
of the behavioural task. During retrieval, the similarity of the presented lures is manipulated, resulting in some 
lures being more or less similar to the object presented during encoding. For the more dissimilar lures, the CA1 is 
more strongly engaged, while for more similar lures, the CA3 and DG are more strongly engaged9.

While a coupling between age and subfield volumes for explaining subfield activation could have shed light 
on the interplay between structure and function of the subfields, we failed to find synergistic effects of subfield 
volumes and activation on task performance. However, we found that age modulated the association between 

Figure 2. Hippocampal subfields segmentation. Note: Hippocampal subfield segmentation of three participants 
without (a,c,e) and with (b,d,f) superimposed the hippocampal subfield mask overlaid in coronal view. The first 
row (a,b) shows a young participant, the second row (c,d) shows a middle-aged participant, the old row (e,f) 
shows an older participant. Colours: CA1 (red), CA3 (green) and DG (blue).

https://doi.org/10.1038/s41598-020-64595-z
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subfield activation and volume in the left CA1 and DG. Interestingly, in the left CA1, from late midlife (>55 
years), lower volume was associated with higher activation, which potentially hints at a hyperactivation of this 
subfield. Our data does not provide conclusive evidence to determine whether this activation is related to aberrant 
neural processes or underlying pathology.

Limitations
This version of the discrimination paradigm had a high difficulty level, as it included an additional active 
location-retrieval component, while the classic task focuses solely on discrimination and recognition15. While it 
is important to prevent ceiling effects in younger individuals, a more difficult task may demotivate older individ-
uals. Our participants did not report lack of motivation after testing. As indicated by the CRS, our participants 
showed a normal distribution of scores on target recognition, excluding possible floor effects due to task diffi-
culty. Nonetheless, it may be interesting to explore the use of adaptive discrimination tasks that titrate difficulty 
level on a subject-by-subject level. We are also aware that by recruiting individuals within three pre-defined age 
groups, we are missing out data and interpolating our effects in between these age groups, but based on previous 
findings41 we do not expect strong brain-behaviour changes in the 10-year time period in between the successive 
age groups.

Figure 3. Relationships between hippocampal subfield volumes and discrimination performance. Note: 
Scatterplots showing the relationship between age and LDI (top left), age and left CA1 volume (top right), age 
and left DG volume (bottom left), and age and right DG volume (bottom right). The relationship between age 
and LDI is non-linear. Relationships between the three subfield volumes and age are linear. Only significant 
relationships are shown. Subfield volumes are is expressed as raw volume in mm3 divided by intracranial volume 
and multiplied by 1000 (arbitrary unit).

https://doi.org/10.1038/s41598-020-64595-z
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conclusion
In conclusion, we showed age-dependent, non-linear associations in lure discrimination performance. For older 
individuals, lower DG volume and higher CA3 activation was associated with worse LDI performance, suggesting 
that this higher activation may be an indication of aberrant neurodegenerative-related processes. In fact, higher 
activation in the CA1 and DG was associated with lower volumes in these subfields. Importantly, we observed 
specific brain-cognition patterns during midlife. For individuals around 40–50 years old, we observed that greater 
left and right DG volume, but greater activity in the CA3 was associated with lower LDI performance. These 

Figure 4. Non-linear relationships of age with hippocampal subfield volumes or activation predicting LDI-
performance. Note: Age-varying associations between left (a) or right DG (b) volume with LDI performance; 
and age-varying associations between left CA3 pattern separation activation and LDI performance (c). The 
colour in the contour line codes the performance on the task (predicted values), with orange-yellow indicating 
a higher predicted score, green moderate, and blue poor scores. The distance between the iso-value (contour) 
lines indicates the steepness of the 3D plane. On the right side of each contour plot is a difference plot indicating 
during which age range a difference between higher and lower volume or activation (quartile 3 versus quartile 1)  
is associated with LDI performance (using floodlight analyses for curved associations).

https://doi.org/10.1038/s41598-020-64595-z
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findings highlight that midlife is a critical time in life, where subtle brain changes related to memory decline can 
be observed. These findings reiterate the current opinion that starting interventions during midlife to delay or 
modify cognitive decline and potentially neurodegenerative disorders is of utmost importance24,42.

Volume and Age associations with LDI Activation and Age associations with LDI

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Volume
Age 
smooth

Volume 
smooth x 
Age smooth

Volume x 
Age smooth Activation Age smooth

Activation 
smooth x Age 
smooth

Activation x 
smooth Age

Left CA1 0.70 7.77*** 1.28 1.71 2.47* 17.56*** 0.35 0.16

Right CA1 0.33 7.35*** 0.95 1.54 2.60* 19.43*** 0.98 0.61

Left CA3 1.01 8.09*** 1.13 1.24 0.09 7.06*** 2.64*∆ 2.73*

Right CA3 0.99 7.33*** 2.58 1.97 1.74 8.26*** 3.34**∆ 1.17

Left DG 1.43 8.21*** 2.07*∆ 2.34 1.20 8.11*** 1.75 1.55

Right DG 0.34 7.34*** 3.32*∆ 1.58 1.77 16.81*** 0.84 0.46

Table 2. Age, subfield volume or activation predicting LDI-performance. Note: Reported values are F-values. 
Covariates included in all generalized additive models are sex and education. Age is added as smooth variable 
in all models. Volume and activation are explored as smooth and linear terms. In models 1 the main effects 
(without the interaction in the model) are reported, for models 2 and 3 only the interactions are reported. More 
detailed statistical information is provided in Supplementary Tables 1 and 2. *Indicates significance (* p < 0.05; 
**p < 0.01; ***p < 0.001). ∆ indicates best model fit.

Figure 5. Non-linear relationships of age with hippocampal subfield volumes and activation. Note: Age-varying 
associations between left CA1 activation (a) or left DG activation (b) volume their respective volume. The 
colour in the contour line codes the performance on the task (predicted values), with orange-yellow indicating 
a higher predicted activation, green moderate, and blue lower activation. The distance between the iso-value 
(contour) lines indicates the steepness of the 3D plane. On the right side of each contour plot is a difference plot 
indicating during which age range a difference between higher and lower volume (quartile 3 versus quartile 1) is 
associated with activation (using floodlight analyses for curved associations).
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Methods
participants. Fifty-three individuals (30 female (56.60%), Age: mean = 45.05, SD = 18.2, range = 21–73) 
were recruited from the general population via advertisements. Participants were stratified into three age groups 
(20–30 years old (n = 18), 40–50 years old (n = 18) and 60–80 years old (n = 17). The choice of these age groups 
was based on literature indicating that cerebral changes are most pronounced in these phases of life41. In addition, 
studies in the field of cognitive neuroscience have suggested that memory performance stays relatively stable until 
midlife and then declines with age43. Thus, this sampling choice should provide a reasonable representation of 
the population and brain-behavior differences of interest, while allowing a sample-size that is manageable given 
the complexity of 7 T MR-scanning. Inclusion was allowed if participants were right-handed and had normal or 
corrected-to-normal vision and absence of contra-indications for MR-scanning, major neurological disorders, 
depression, and hypertension (with or without treatment).

Informed consent was obtained from each participant prior to participation. Each participant underwent 
a comprehensive neuropsychological assessment included the Mini Mental State Examination (MMSE,44), 
the Dutch version of the 15-word learning task45 for episodic memory (learning and delayed recall), the 
concept-shifting test46 and the Stroop-Colour Word-test for attention and executive functioning47, letter substitu-
tion test for processing speed48, and a category and letter verbal-fluency task for language49. Performance below 2 
standard deviations (SD) from the mean, corrected for age, sex, and education in these domains led to exclusion 
from the study. Depression was assessed with the Hamilton Depression Rating Scale (HDRS,50). Participants with 
scores above 17 were excluded from analysis51, as depression can influence memory performance. In total, seven 
individuals (out of n = 60) were excluded prior to participation in the fMRI study and are not included in the 
current analyses. Written informed consent was obtained from each individual. The study was approved by the 
local ethics committee of the Faculty of Psychology and Neuroscience at Maastricht University and was carried 
out in accordance with the Helsinki guidelines.

Experimental pattern-separation task. During fMRI-scanning all participants performed an object 
version of a validated robust mnemonic object discrimination task10,15 with a location retrieval component52. The 
location retrieval component is intended to assess source memory but since it is not a direct assessment of the dis-
crimination process, it was not included in the current analysis. Reliability measures for this task are not available. 
During encoding participants saw 150 every-day objects, appearing in one of the four corners of the screen, and 
were instructed to make an “indoor-outdoor” judgement. The judgement was added to ensure adequate attention 
and processing of the object. Stimulus presentation for each object was 2500 ms. During retrieval participants 
were presented with targets (n = 50), similar lures (n = 100) and novel foils (n = 50). Stimulus presentation was 
the same as during encoding (2500 ms). All objects were presented at the centre of the screen during retrieval. 
Targets were objects that were present during both encoding and retrieval, while foils were new objects that were 
absent during encoding. Similar lures were objects that resembled those presented during encoding, but differed 
along one or more dimensions (angle of presentation, brand, colour, etc.). Those critical lure trials allowed for an 
assessment of discrimination performance, which is sensitive to the integrity of the pattern separation process. 
Participants were asked to make two judgements, the first one regarding memory for the object (“Old”, “Similar” 
or “New”). Old and Similar judgments were followed by a second judgement made with regard to the quadrant in 
which the object was presented during encoding. New judgments were followed by a second judgment that was a 
confidence judgment (“Sure vs. “Unsure”).

Discrimination performance was measured using the Lure Discrimination Index (LDI), which controls for 
response bias and is calculated as p(“Similar”|Lure) – p(“Similar”|Foil). Probabilities were calculated by dividing 
the number of responses by the total number of responses to lures (e.g., p(“Similar”|Lure) is calculated by dividing 
number of correct lure trials called “Similar” by total number of lure trials). Memory for targets was also similarly 
calculated using a Corrected Recognition Score (CRS) operationalized as p(“Old”|Target) – p(“Old”|Foil) and is 
reported here for the sake of completion. Trials without a behavioural response were not taken into account for 
the calculation of the LDI or CRS.

MR-scanning. FMRI data were acquired on a MAGNETOM 7 T whole-body magnet scanner (Siemens 
Healthineers, Erlangen, Germany) with a 32-channel head coil (Nova Medical, Wilmington, MA, USA) during 
both encoding and retrieval in anterior-posterior direction, covering the whole brain with the following param-
eters: voxel size = 1.25 mm isotropic (90 slices), FoV = 200 mm, TR = 1400 ms, TE = 19 ms, Flip Angle = 70°, 
interleaved acquisition, and a multi-band GRAPPA acceleration factor of 3 (acquisition time = 16 min 30 s min-
utes for retrieval). Reversed phase-encoding blips were collected, resulting in pairs of images with distortions in 
opposite directions. Furthermore, a high-resolution anatomical Magnetization Prepared 2 Rapid Acquisition 
Gradient Echoes (MP2RAGE) image53 was acquired in 240 slices with 0.7 mm isotropic voxel size, covering the 
whole brain (FoV = 224 mm, TR = 5000 ms, TE = 2.47 ms, Flip Angle = 5°/3°, Inversion time=900/2750 ms and 
acquisition time = 9 min 42 s.). Between encoding and retrieval there was a resting period of 6 minutes, each 
representing a different run.

Hippocampal subfields. Hippocampal subfields were automatically segmented from the T1-weighted 
images with FreeSurfer version 6.0, using the built-in automated reconstruction process54,55. The technical details 
of these procedures are described in prior publications55. Briefly, the processing involves intensity normaliza-
tion of the T1-weighted images, skull-stripping, segregating left and right hemispheres, removing brainstem 
and cerebellum, correcting topology defects, defining the borders of grey and white matter, and of grey mat-
ter and cerebrospinal fluid (CSF), and parcellating cortical and subcortical areas. Further, using FS’s native vis-
ualization toolbox and in-house tools we visually inspected and, if necessary, edited each image for over- or 
under-estimation of the grey/white matter boundaries and to identify brain areas erroneously excluded during 
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skull stripping. In addition, we checked if the hippocampal subregion mask was well positioned. The current 
version of FreeSurfer uses a Bayesian inference approach combined with a novel atlas algorithm of the hip-
pocampal formations, based on an ultra-high resolution (0.13 mm isotropic) ex vivo MRI atlas created from 15 
postmortem brains. In addition, the approach was validated in an independent in vivo 1 mm MRI resolution 
data-set of 39 individuals, and was shown to be superior to its predecessor (FreeSurfer v.5.0.3) that was based on 
in-vivo data only. FreeSurfer v6.0 further has a high reliability (intraclass correlation coefficient = 0.9 or higher 
for subfields CA1, CA3, DG, subiculum, and other), which is also superior to the previous version of Freesurfer56. 
Identification of hippocampal subfields using FreeSurfer 6.0 should be considered probabilistic, as it uses prior 
knowledge from ex vivo brains scanned at 7 T MRI combined with the available contrast information from MR 
images (Iglesias, et al., 2015). Moreover, combining the contrast of a T2- with T1-weighted image may improve 
FreeSurfer’s segmentation, however, high-resolution T2-weighted images were not available in the current study.

Hippocampal subfields considered in the analyses are CA1, CA3, and dentate gyrus (DG) (see Fig. 4). Subfield 
volume was expressed in arbitrary units as actual volume divided by intracranial volume, multiplied by 1000, 
consistent with other studies. Left and right hemispheres were investigated separately.

fMRI-analysis. FMRI preprocessing was completed with FSL version 5.0.9 (Woolrich et al., 2009). First, the 
functional images were motion corrected with respect to the last image with a 6-dof transform using MCFLIRT57. 
The motion outliers were determined as the frames with framewise-displacement higher than 0.9 (Power et 
al., 2012). These motion outliers were later added to the general linear model (GLM) to be regressed out. To 
reduce EPI-distortions, which are greater at 7 T than at 3 T, the susceptibility-induced off-resonance field was 
estimated and applied with FSL-TOPUP by employing the last 5 frames of each fMRI scan and their closest 
time-wise reversed phase encoding blips58. To further remove motion artifacts, an independent component anal-
ysis (ICA-AROMA) was applied59. Finally, the data were smoothed with a 1.5mm3 Gaussian kernel, which is 
roughly the size of one voxel, allowing us to investigate our tiny regions of interest, without losing information 
due to smoothing. To register the BOLD fMRI images to the T1, a boundary-based registration was applied using 
FSL’s epi_reg on the white and gray matter segmentations from FreeSurfer. The hippocampal subfields extracted 
from FreeSurfer, as well as CSF and white matter masks, were projected to the native fMRI space by means of the 
inverse of this transform. This ensured that the subfield segmentation had the same spatial resolution as the fMRI 
data. A GLM was implemented to compare the BOLD-response during correct lure discrimination and incorrect 
lure discrimination across groups. The average time course of CSF and white matter, as defined by FreeSurfer, 
were extracted for inclusion as confound regressor in the GLM model to minimize partial volume effects. In 
addition, the motion outliers and the 6 first order motion parameters were also added to the model. The behav-
ioral regressors were modeled as boxcar functions with a variable epoch model. A double gamma and a temporal 
derivative were used as basis functions to be convolved with the GLM fitting. Functional activation in the hip-
pocampal subfields of interest was extracted with featquery, which included weighing for the interpolation values 
of the downsampling of the hippocampal subfield masks and masks were subsequently thresholded at value 0.5 to 
mitigate possible partial volume effects. Activation was extracted for the contrast successful lure discrimination> 
unsuccessful lure discrimination (emphasizing pattern separation). A successful lure discrimination is defined as 
a lure that was identified as being similar, whereas an unsuccessful lure discrimination was a lure that was identi-
fied as old. A response of “old” to a lure item would suggest that the participant was more biased towards pattern 
completion, whereas an accurate response of “similar” to a lure would suggest a bias towards pattern separation 
instead. Lures subsequently identified as new were modelled to serve as an arbitrary baseline for the other condi-
tions, but was not considered in the analysis.

Statistical analyses. Statistical analyses were performed with R software version 3.5 (www.r-project.org). 
Demographics are provided using the means and standard deviations. General additive models were carried out 
with the mgcv package. GAM is a type of modelling that is more data-driven than standard regression model-
ling60. GAM is able to fit any form of relationship, linear or non-linear, between variables without explicit assump-
tions on the shape of the modelled fit and with more flexibility than polynomial forms. Where polynomials model 
global expansions (data of the 20-year old individual contribute to the fit of the 80-year old), GAM allows for local 
expansions, resulting in a better fit. We applied smooth regression splines in additive models and tensor product 
splines for interactive models.

First, we investigated the linear and non-linear age-associations with LDI, subfield volumes or subfield acti-
vations. Sex and education were added as covariates in all models. In a second step, we assessed age-varying 
relationships between LDI performance and subfield volume or activation. To this end, LDI was taken as out-
come variable, subfield volume or activation as predictor variable in interaction with age. Sex and education were 
added as covariates to all models. All models were performed in the entire group. Finally, we investigated possi-
ble age-varying associations between subfield activation and subfield volume, with activation as outcome vari-
able and subfield volume as predictor, and sex and education as covariates. We also investigated the interaction 
between subfield volume and subfield activation on LDI performance corrected for smooth age, education and 
sex. In all analyses smooth terms were compared with linear terms using the Akaike Information Criteria (AIC) 
and the Wald test on an analysis of deviance to guide model selection and help guard against over-fitting. For 
the GAM models with interactions, we determined the age-range where curve differences between the first and 
third quartile for the subfield predictor interacting with age were significant in predicting the outcome (floodlight 
analyses including the entire age range). Difference between the first (25–50%) and third (50–75%) quartile were 
chosen to detect the most salient associations. These quartiles were chosen to reflect the interquartile range of 
the data and to eliminate the influence of values at the endpoints of the distribution. The region of significance 
was identified by the 95% confidence interval that did not include zero. Statistical significance was set at p < 0.05.
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