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Recent advances in neuroscience together with nanoscale electronic device technology
have resulted in huge interests in realizing brain-like computing hardwares using emerging
nanoscale memory devices as synaptic elements. Although there has been experimental
work that demonstrated the operation of nanoscale synaptic element at the single
device level, network level studies have been limited to simulations. In this work, we
demonstrate, using experiments, array level associative learning using phase change
synaptic devices connected in a grid like configuration similar to the organization of the
biological brain. Implementing Hebbian learning with phase change memory cells, the
synaptic grid was able to store presented patterns and recall missing patterns in an
associative brain-like fashion. We found that the system is robust to device variations, and
large variations in cell resistance states can be accommodated by increasing the number
of training epochs. We illustrated the tradeoff between variation tolerance of the network
and the overall energy consumption, and found that energy consumption is decreased
significantly for lower variation tolerance.

Keywords: phase change memory, synaptic device, neuromorphic computing, cognitive computing, device

variation, associative learning, neural network, spike-timing-dependent-plasticity

INTRODUCTION
Historical improvements in cost and performance of CMOS tech-
nology have relied on transistor scaling for decades. However,
CMOS transistor scaling has started reaching its physical as well as
economic limits (Radack and Zolper, 2008). Further scaling may
prevent reliable binary operation of CMOS devices. As devices are
scaled down, device to device as well as cycle to cycle variations
increase (Frank et al., 2001). Conventional digital logic based
architectures cannot handle large variations as they are based on
deterministic operation of devices; and extra circuitry aimed at
mitigating these variations results in a huge overhead, increas-
ing the cost significantly. In addition, increase in leakage current
and hence the energy consumption as a result of further scaling
imply that unabated scaling of transistor size is not the optimal
solution for further performance increases (Frank et al., 2001).
Furthermore, conventional information processing systems based
on the von Neumann architecture have a performance bottleneck
due to memory and processor being separated by a data chan-
nel. The increasing performance gap in the memory hierarchy
between the cache and nonvolatile storage devices limits the sys-
tem performance in Von Neumann architectures (Hennessy et al.,
2012). Hence, in order to continue the historical performance
improvements in information processing technology, different
concepts and architectures need to be explored. New architec-
tures are highly desired especially for specific applications that
involve computation with a large amount of data and variables,

such as large-scale sensor networks, image reconstruction tools,
molecular dynamics simulations or large scale brain simulations
(Borwein and Borwein, 1987).

Massive parallelism, robustness, error-tolerant nature, and
energy efficiency of the human brain suggest a great source
of inspiration for a non-conventional information processing
paradigm which can potentially enable significant gains beyond
scaling in CMOS technology and break the von Neumann bottle-
neck in conventional architectures (Mead, 1990; Poon and Zhou,
2011; Le et al., 2012). Synaptic electronics is an emerging field
of research aiming to realize electronic systems that emulate the
computational energy-efficiency and fault tolerance of the bio-
logical brain in a compact space (Kuzum et al., 2013). Since
brain-inspired systems are inherently fault tolerant and based on
information processing in a probabilistic fashion, they are well-
suited for applications such as pattern recognition which operates
on large amounts of imprecise input from the environment (Le
et al., 2012). One approach to brain-like computation has been
the development of software algorithms executed by supercom-
puters. However, since these have been executed on conventional
architectures, they have not come close to the human brain in
terms of performance and efficiency. For instance, IBM team has
used the Blue Gene supercomputer for cortical simulations at the
complexity of a cat brain (Preissl et al., 2012). Although this is
a multi-core architecture, it is still nowhere close to the human
brain in terms of parallelism, even though it already requires large
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amount of resources: 144 TB of memory and 147,456 micropro-
cessors, and consumes 1.4 mW of power overall (as opposed to
approximately 20 W consumed in biological brain in humans)
(Preissl et al., 2012). Another approach is to realize brain-like
parallelism in hardware instead of programming conventional
systems by software. Typically, the number of synapses (con-
nection nodes between neurons) are much larger than number
of neurons in a neural network, making synaptic device the
most crucial element of the system in terms of area footprint
and energy consumption to realize brain-like computing sys-
tems on hardware (Drachman, 2005). CMOS implementations
of smaller scale physical neural networks on a specialized hard-
ware have been previously demonstrated (Indiveri et al., 2006).
The large area occupied by CMOS synapses limits the scale of the
brain-like system that can be realized with these approaches. For
instance, the synaptic element in Merolla et al. (2011) is an 8-
transistor SRAM cell, with an area of 3.2 × 3.2 µm using a 45 nm
CMOS technology. This area-inefficient synaptic element makes
it impractical to scale up the system. Implementing synaptic func-
tionality in a much more compact space, such as on the order of
few tens of nanometers, would be useful to build a more com-
pact intelligent architecture, besides potentially being more power
efficient. Such a compact synaptic device is especially required
when the goal is to upscale the system to the scale of human
brain. In recent years, different types of emerging nanoscale non-
volatile memory devices, including phase change memory (PCM)
(Kuzum et al., 2011; Bichler et al., 2012; Suri et al., 2012), resis-
tive switching memory (RRAM) (Xia et al., 2009; Chang et al.,
2011; Seo et al., 2011; Yu et al., 2011, 2013; Yang et al., 2012)
and conductive bridge memory (CBRAM) (Jo et al., 2010; Ohno
et al., 2011), have been proposed for implementing the synaptic
element in a compact space. Such devices, which can be scaled
to nanometer dimensions, would enable realization of highly
dense synaptic arrays approaching human scale implementation
of brain emulators or intelligent systems on hardware, owing to
their small feature sizes. Among these different types of emerg-
ing memory devices, phase change memory has the advantage of
being a more mature technology. In addition, phase change mem-
ory has excellent scalability. In fact, phase change material has
shown switching behavior down to 2 nm size (Liang et al., 2012).
Phase change memory arrays fabricated in 3-dimension have been
demonstrated as an alternative approach for high density mem-
ory (Kinoshita et al., 2012). Functional arrays of phase change
memory cells have already been demonstrated in 20 nm and other
technology nodes (Servalli, 2009; Kang et al., 2011). Hence, it
is possible to build a hybrid brain-like system using nanoscale
synaptic devices using phase change memory integrated with
CMOS neurons.

The main characteristic of PCM that makes it a good candi-
date as a synaptic device is its capability for being programmed
to intermediate resistance states between high and low resistance
values, or gradual programming (Kuzum et al., 2011). As illus-
trated by Kuzum et al., the ability to program a PCM in 1%
gray-scale conductance levels enables the PCM to emulate the
spike-timing-dependent plasticity (STDP) in synaptic strength
in hippocampal synapses. Furthermore, the crossbar architecture
used in most memory array configurations is actually analogous

to grid-like connectivity of brain fibers in human brain (Wedeen
et al., 2012).

The low resistance state of PCM is called the SET state and
transition from the high resistance state to the low resistance state
is called SET. High resistance state of PCM is called the RESET
state and transition from low resistance state to the high resis-
tance state is called RESET. Applying appropriate voltage pulses
create intermediate resistance states between the fully SET state
and the fully RESET state in a phase change memory device
(Kuzum et al., 2011). This is similar to gradual weight change
in biological synapses, where the synaptic weight is modified in
accordance with relative arrival timing of the spikes from pre
and post-neurons. This is called spike timing dependent plasticity
(STDP), and is thought to be one of the fundamental learning
rules in hippocampal synapses (Bi and Poo, 1998). Using this
property of phase change devices as well as similar characteristics
of other emerging memory devices mentioned above, network
level learning studies have been done (Pershin and Di Ventra,
2010, 2011; Bichler et al., 2012; Alibart et al., 2013; Kaneko et al.,
2013; Yu et al., 2013). However, many of these works studying
nanoscale synaptic devices on network level have been limited to
simulations, and experimental works either have used few num-
ber of synapses or lack a thorough analysis of important network
parameters (Pershin and Di Ventra, 2010; Alibart et al., 2013;
Kaneko et al., 2013). Recently, we presented preliminary findings
of hardware demonstration of a synaptic grid using phase change
memory devices as synaptic connections (Eryilmaz et al., 2013).
In this work, we present a detailed description of the algorithm
and signaling scheme used, and additionally present a thorough
analysis of the tradeoff between the power consumption, the
number of iterations required, and the device resistance varia-
tion. We experimentally study the effects of resistance variation
on learning performance in the system level. We find that larger
variations can be tolerated by increasing the number of learning
epochs, but this comes with increased overall energy consump-
tion, resulting in a trade-off between variation tolerance, energy
consumption, and speed of the network.

PHASE CHANGE MEMORY CELL ARRAY FOR SYNAPTIC
OPERATION
Phase Change Memory (PCM) cells used in the experiment are
mushroom type cells, which means the heater material, bottom
electrode (BE), phase change material, and the top electrode (TE)
are stacked on top of each other, respectively (Wong et al., 2010).
The 10-by-10 memory array used in the experiments consists of
100 memory cells. These cells are connected in a crossbar fashion
as illustrated in Figure 1A. Each memory cell consist of a PCM
element in series with a selection transistor. The circuit schematic
of a memory cell is shown in Figure 1A, and a cross section of
a memory cell is shown in Figure 1B, together with the optical
microscope image of the memory chip used. The cells can be
accessed through bitline (BL) and wordline (WL) nodes. Each
wordline is connected to the gates of selection transistors of 10
memory cells, and each bitline is connected to the top electrode
of the PCM element of 10 memory cells. Overall, there are 10 WL
and 10 BL nodes in the array. Note that the bottom electrode of a
PCM element within a cell is connected to the selection transistor
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FIGURE 1 | (A) Schematic of 10 × 10 phase change memory (PCM) cell
array is shown on the left. Resistances connected in series with the
selection transistors represent PCM element. The figure on the right shows
the complete schematic of a single memory cell. This particular cell can be
accessed by applying appropriate biases at WL #2 and BL #10. Substrate
and common source terminals are grounded during the experiment. (B)

Optical microscope image of memory cell array located on the memory
chip is shown on the left. TEM image of a single memory cell is appended
to the right hand side. Mushroom type cell structure can be seen by
observing the bitline (BL), top electrode (TE), phase change material (PCM)
and bottom electrode (BE) stack (BE) stack. TEM image is reprinted with
permission from Close et al. (2010) Copyright 2010 IEEE. TEM image is a
representative figure for 90 nm node mushroom PCM cell, and PCM cells in
the array in this paper are 180 nm node with the same device structure.

of that cell. Each cell is associated with a unique (WL, BL) pair,
hence each cell can be accessed by applying bias to the corre-
sponding BL and WL nodes, as shown in Figure 1A. The device
fabrication as well as retention and endurance characteristics of
memory cells in the array are given in detail elsewhere (Close
et al., 2010).

SET programming of a memory cell is achieved by applying
a long (from a few hundred ns to few µs) current pulse through
the PCM element to crystallize the phase change material in the
PCM via Joule heating. In a gradual SET programming, depend-
ing on the amplitude of the current pulse, resistance of the PCM
reduces for a certain amount, rather than going directly into the
lowest resistance (fully SET) state (see Figure 2D). RESET (high
resistance) programming is achieved by amorphizing the phase
change material of the memory cell by applying a larger current
pulse with a very sharp (2–10 ns fall time) falling edge. A large
amplitude of current pulse results in melting of PCM material
through Joule heating, the sharp falling edge quenches the cell,
without allowing time for the phase change material to go into

FIGURE 2 | Electrical characterization of memory cells. (A) shows the
DC switching characteristics of a single memory cell arbitrarily selected
from the array. Switching behavior can be observed when there is 2 µA of
current through the memory cell. Binary switching cycles are shown in (B).
SET pulse is applied at odd numbers of measurement (pulse #1, 3, . . . ) and
RESET pulse is applied at even numbers of measurement. The plot shows
the measured resistance of the memory cell right after the programming
pulse is applied. Array level binary resistance distribution is shown in (C).
Resistance window for binary operation is larger than 10 k. Gradual
resistance change in a single cell is shown in (D). This plot is obtained by
applying gradual SET pulses right after the cell is abruptly programmed to
RESET state. The plot shows 3 cycles of this measurement.

the more stable crystalline state, leaving it in the amorphous state.
The amount of resistance increase for gradual RESET can be con-
trolled either by changing the falling edge width of the current
pulse or by changing the current pulse amplitude (Kang et al.,
2008; Mantegazza et al., 2010). Typical DC switching characteris-
tics of a single device arbitrarily chosen from an array are shown
in Figure 2A. For DC switching characterization, 3.3 V is applied
at WL of a single cell and BL node is swept from 0 V up to the
switching threshold. The measurement result in Figure 2A shows
that switching threshold for one of the cells in a fully RESET state
is around 0.8 V, and the current when switching occurs is 2 µA.
Note that these values can vary across the memory array due to
device to device variation. Set and reset pulses with amplitudes of
1 V and 1.5 V and with (50 ns/300 ns/1 µs) and (20 ns/50 ns/5 ns)
rise/width/fall time is applied at WL node, while BL node is held
at 3.3 V during characterization of pulse switching in the memory
cells. Pulse switching characteristics are shown in Figure 2B. This
data is obtained by applying SET pulses for pulse #1,3,5. . . and
RESET pulses for pulse #2,4,6. . . The same SET and RESET pulses
are used for array level binary resistance characterization shown
in Figure 2C. RESET resistance is distributed around 3 M ohms
and SET resistance is distributed around 10 k ohms. For synaptic
operation, gradual resistance change characteristics of memory
cells are utilized. Specifically, our system utilizes gradual SET pro-
grammability of memory cells. To characterize gradual resistance
change from the RESET state to the partially SET state, we apply
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once a 1.1 V RESET pulse and then 9 SET pulses with 0.85 V
amplitude. Gradual resistance change characteristics from RESET
to SET for a single cell is shown in Figure 2D for a few cycles of
gradual SET characterization. This gives us around 9 resistance
levels between low and high resistance state. Although the energy
consumption for gradual SET is lower than gradual RESET, vari-
ability is larger for gradual SET since gradual SET is probabilistic
in nature (Braga et al., 2011). The reason behind this is the
intrinsic stochasticity of the nucleation of crystalline clusters dur-
ing gradual SET operation. The cycle-to-cycle variability is also
observed in Figure 2D The same resistance levels are not accu-
rately repeatable from cycle to cycle. Due to variability in gradual
resistance change, multi-level-cell (MLC) memory applications
use a write-and-verify technique since the data storage applica-
tions require deterministic binary resistance levels (Kang et al.,
2008). However, massively-parallel brain-like architectures can
tolerate such variations and do not require the use of write-and-
verify that is needed to achieve an accurate resistance level. Hence,
the variations observed in Figure 2D do not pose a problem for
our purposes.

ARRAY LEVEL LEARNING
A fully-connected recurrent Hopfield network is employed for
the learning experiments (Figure 3A) (Hertz et al., 1991). The
Hopfield network consists of 100 synaptic devices and 10 recur-
rently connected neurons, as shown in Figure 3A. It is worth
noting that in this architecture, all neurons are both input and
output neurons. Integrate-and-fire neurons are implemented by
computer control and memory cells serve as synaptic devices
between neurons. Figure 3A illustrates how the network is con-
structed using the memory cell array. The input terminal of the
i-th neuron is connected to BL #i, and output terminal of the
i-th neuron is connected to WL #i, where i = 1, 2, . . . , 10, i.e.,
neuron #1 input and output is connected to BL #1 and WL #1,
respectively, and neuron #2 input and output is connected to BL
#2 and WL #2, respectively, etc. (Figure 3A). Before the experi-
ment, all synapses are programmed to the RESET state. A learning
experiment consists of epochs during which synaptic weights are
updated depending on firing neurons. After training, the pat-
tern is presented again but with an incorrect pixel this time, and
the incorrect pixel is expected to be recalled in the recall phase

FIGURE 3 | Neural network realized and how it is implemented with the

memory array is explained. (A) Shows the recurrently connected Hopfield
network implemented in the learning experiment. Pulsing scheme during
training as well as recall is shown in (B). We train the network with two
patterns as shown in (C), where red pixels correspond to ON and blue pixels
correspond to OFF. Numbers in pixels correspond to the neuron number
associated with that pixel. During update phase shown in (D), the resistance
of synaptic elements connected to non-firing neurons do not change, since
no pulse is applied at the WL node of non-firing neurons during update
phase. The synaptic connections between firing neurons, however, are

programmed by the pulses applied at the BL and WL of the corresponding
memory cell. The pulse characteristics are predetermined for gradual SET
programming of the memory cell, hence the resistance is reduced with an
amount and the connection gets stronger. (E) During the read phase, a small
amplitude voltage applied at the BL node of non-firing neurons sense the
total current due to the synapses of that neuron connected to firing neurons,
since a pulse applied at the output of the firing neurons turns the selection
transistor on simultaneously. (F) In this example, during the recall phase,
N1–N4 are presented with N6 OFF (not firing), but N6 is recalled since the
input current of N6 is larger than the threshold.
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after training is performed (Figure 3B). A complete pattern is
presented during the training phase of an epoch, and an incom-
plete pattern with an incorrectly OFF pixel is presented during
the recall phase. All patterns consist of 10 pixels, and each neuron
is associated with a pixel. This mapping between pixels and neu-
rons is shown in Figure 3C for two different patterns considered
in this work. Figure 3B shows the pulsing scheme for firing and
non-firing neurons in both update and recall phases. When a
pattern is presented during a training phase, the neurons asso-
ciated with ON (red pixels in Figure 3C) pixels are externally
stimulated, hence they fire. As can be seen in Figure 3D, when
a neuron spikes during the training phase, it applies program-
ming pulses at its input (corresponding BL) and output (WL).
This results in gradual SET programming of the synaptic device
between those two firing neurons. For instance, when neuron 1
and neuron 2 fire, programming pulses are applied at WL1, WL2,
BL1, and BL2, as defined in the pulsing scheme in Figure 3B.
These pulses will result in a current going through PCM ele-
ments and hence gradual SET programming of memory cells that
connect neuron 1 and neuron 1 (see Figure 3D). After train-
ing, the recall phase begins. During the recall phase, a pattern
with an incorrectly OFF pixel is presented (Figure 3E). Again,
the neurons associated with ON pixels during recall phase fire,
and appropriate pulses are applied at the input and output of
neurons as shown in the pulsing scheme in Figure 3B). Neurons
associated with OFF pixels during recall phase do not fire. Note
that there is a low amplitude pulse applied at the input of non-
firing neurons during recall phase. This voltage pulse, together
with the large amplitude voltage pulse applied at the firing neu-
rons’ output during recall phase, create an input current feeding
into non-firing neurons. The amplitude of this current through a
non-firing neuron is determined by the resistance values of synap-
tic connections between that neuron and the firing neurons. This
input current of non-firing neurons during recall phase is analo-
gous to membrane potential of biological neurons. In biological
neurons, the postsynaptic current feeding into a neuron accu-
mulates charge on capacitive membrane, forming a membrane
potential. Typically, this is modeled by a time constant that is
determined by membrane capacitance. In this experiment, neu-
rons fire simultaneously during the recall phase, while at the same
time the input current through the non-firing neurons is mea-
sured. Since the delays and timing properties of the neurons are
not included in the neuron model, the membrane capacitance is
not included in neurons. Hence, input current through a neuron
is actually equivalent to membrane potential in our experiments.
Note that in this paper, we will use the terms input current and
membrane voltage interchangeably, due to the reasons explained
above. The input current into a non-firing neuron during recall
phase can be written as follows:

Ii = Vread

∑
j ∈ F

1

Rij
(1)

In Equation (1), Ii is the input current into the ith neuron where
it is a non-firing neuron, F is the set of indices of firing neu-
rons, Rij is the resistance of synaptic element between bitline i and
wordline j, and Vread is the read voltage at the input of non-firing

neurons during recall phase (see Figure 3B), which is 0.1 V in our
experiments. As Figure 3B shows, if a neuron is not associated
with an OFF pixel at the beginning of the recall phase, it fires, and
the reading voltage Vread at its input is 0, making its input 0.

If the input current through a non-firing neuron exceeds a
threshold during the recall phase, then the neuron associated with
the pixel fires, the complete pattern is recalled (Figure 3F). The
membrane potential of neurons is set to 0 at the beginning of
each epoch, hence it does not transfer to the next epoch. We
define “missing pixel” as the pixel that is ON in the correct pat-
tern used for training, but OFF in the input pattern during recall
phase. Note that the pixel missing from the pattern in recall phase
still fires in update phase during training, SET programming the
corresponding memory cells between this neuron and other fir-
ing neurons. This results in a decrease in the resistance values
between this missing pixel’s neuron and other firing neurons (ON
pixels) as shown in Figure 3D), increasing the input current of
the missing pixel’s neuron during the recall phase (Figure 3F).
Hence, recall is expected to occur after a few epochs, at which
point the membrane potential exceeds a pre-determined thresh-
old. This learning scheme is a form of Hebbian learning, since the
weights of synaptic connections between coactive neurons during
training phase get stronger, due to reduced resistances of these
synaptic connections. The time window that defines the firing
of two neurons as being coactive is determined by the width of
the pulse applied at the input of firing neurons during update
phase, shown in Figure 3B. This time window is 100 µs in our
experiments. As an illustration of the aforementioned learning
process, two simple 10-pixel patterns are chosen to be learned.
The two patterns of 10 pixels are shown in Figure 3C. The net-
work is first trained with pattern 1 (on the left in Figure 3C),
and then pattern 2 (on the right in Figure 3C). During training
with pattern 1, until the pattern is recalled, the complete pattern
is presented in training phase and the pattern with pixel 6 miss-
ing is presented during recall phase. After pattern 1 is recalled,
the same procedure is performed for pattern 2, this time with
pixel 5 missing in the recall phases of epochs. This experiment
is performed for 4 cases, each corresponding to different ini-
tial resistance variations across the array. Initial variation here
refers to the variation after all cells are programmed to RESET
before learning experiment begins. Different initial variation val-
ues are obtained by individually programming the memory cells
in different arrays. The evolution of synaptic weights is shown in
Figure 4 during the experiment for the case where the initial vari-
ation is 60%. Note that the synaptic weight map in Figure 4 shows
the normalized synaptic weights of each synaptic device. Each
data point in this map shows the resistance of the synaptic device
after the corresponding epoch divided by the initial RESET resis-
tance (right before the experiment when all devices are RESET
programmed as explained above) of that device. Hence the map
does not include the variations of initial RESET state resistances
across the array. The variation study is explained in the next sec-
tion. As can be seen in Figure 4, after feeding each input pattern
into the network, synapses between the ON neurons gradually
get stronger (resistance decreases); after 11 epochs, patterns are
recalled. The overall energy consumed in synaptic devices dur-
ing this experiment is 52.8 nJ. This energy does not include the
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FIGURE 4 | Evolution of normalized resistance of synaptic devices is

shown, for the 60% initial variation case. All normalized resistances
are 1 initially since the normalized resistance map shows the current
resistance of a synaptic device divided by its initial resistance. Note that
the row and column numbers corresponds to BL and WL that connect
the synaptic devices. For instance, the data shown in row #3 and
column #6 is the normalized resistance of the memory cell that can be
accessed by BL #6 and WL #3. First, pattern 1 is presented to the
network. For pattern 1, ON neurons for the complete pattern during

update phase are N1, N2, N3, N4, N6, and, and for the recall phase
N6 is OFF and expected to be recalled (i.e., expected to fire) after
training with a certain number of epochs. The gradual decrease in the
normalized resistance of synaptic connections between firing neurons
during the update phase can be observed. After 11 epochs, when recall
phase is performed, OFF pixel #6 (neuron #6) is recalled (meaning
neuron #6 fires in recall phase) , and then pattern 2 is presented for
training. For pattern 2, the complete pattern is represented by N5, N7,
N8, N9, N10; and N5 is missing in the recall phase.

energy consumed in the neurons and the wires, and is the energy
consumed by the synaptic devices during training and recalling
of pattern 1. Our measurements indicate that roughly 10% of this
energy is consumed in phase change material, while around 90%
is consumed in selection devices in our experiment. Note that
the number of epochs and the overall energy consumed strongly
depends on the choice for the threshold membrane potential of
neurons. If threshold membrane potential is kept low, the number
of epochs would be reduced, but a wrong pixel might fire (hence
turn on) in the output of recall phase due to variations, hence
recalling a wrong pattern. This is explained in detail in the next
section.

EFFECT OF VARIATION ON LEARNING PERFORMANCE
Figure 5A shows the actual resistance map of synaptic connec-
tions after 11 epochs for the experiment above, along with the
resistance distribution (on the left in Figure 5) when all the cells
are in the RESET state before the experiment. As the synaptic
connections evolve during training for two patterns, synapses
between coactive neurons get stronger. Actual resistance maps
in Figure 5 also illustrate the resistance variation across the
array when all cells are in RESET state before training. In our
experiment, the neuron firing threshold is the important param-
eter that can be tuned to tolerate the variation. This threshold
value has to be large enough so that a wrong pixel will not
turn on in recall phase, but low enough to guarantee that the
overall energy consumed is minimal and the missing pixel will
actually turn on in recall phase, hence recalling the original

pattern. To this end, the firing threshold of neurons is selected as
follows:

Ithr = C · max
N,i

⎛
⎝Vread

∑
j ∈ N

1

Rij

⎞
⎠ (2)

In Equation (2), N is constrained to be a 4-element subset of
the set {1,2,3,. . . 9,10}, and Rij is the initial RESET resistance
of the memory cell defined by bitline i and wordline j, and
Vread is defined as in Equation (1). This equation means that
the threshold current is a constant C times the largest input
current that a neuron can possibly have in the recall phase,
given the resistance values for each cell. The reason for con-
sidering 4-element subsets is because we are assuming 4 pixels
are ON in the input during recall phase, and we want to make
sure that the threshold is large enough to avoid firing of a neu-
ron during recall phase when it is actually not ON in the true
pattern. In its current form, this scheme might not be success-
ful when different number of pixels are missing, for example,
when three pixels are ON in recall phase while 5 pixels are
ON in the actual pattern. This generalization can be made by
allowing negative weights; equivalently using 2-PCM synapse sug-
gested in Bichler et al. (2012), or adaptive threshold method
suggested in Hertz et al. (1991). The requirement that C > 1
guarantees that during the training, the wrong pixel will not be
recalled at any epoch. This is because the resistance of the synap-
tic connections between an arbitrary OFF pixel in the original
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FIGURE 5 | Evolution of actual resistance of synaptic devices is

shown for four different initial resistance variation cases: (A) 60%,

(B) 40%, (C) 24% and (D) 9%. The representation of synaptic devices
in these resistance maps are the same as in Figure 4, but this time
the resistance values are not normalized. The variations across the

memory cell arrays are apparent here. Synaptic devices between firing
neurons during training get stronger (i.e., are driven to lower resistance
values). As the initial variation reduces, the difference in resistance
values between potentiated synapses and the synapses that remain
unchanged becomes more pronounced.

pattern and other neurons do not decrease, as the OFF pixels
do not fire during training. We choose C = 2 for our experi-
ments. Choosing C = 2 also allows us, without requiring negative
synaptic weights, to generalize recall to some extent for inputs
with incorrectly ON pixels, in addition to incorrectly OFF pix-
els as given in our example. This idea is similar to adaptive
threshold method in Hertz et al. (1991), where instead of using
negative weights, neuron threshold is increased while keeping

the weights positive. Observe that as the variation increases,
the low-resistance tail of the initial RESET resistance distribu-
tion (leftmost histograms in Figures 5A–D) extends toward lower
resistance values. This results in a decrease in minimum resistance
values, as can be seen in histograms in Figures 5A–D). Hence,
maximum neuron input current with 4 neurons firing increases.
This increases the max term in Equation (2), hence a higher
number of epochs is needed to recall the missing pixel for larger
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FIGURE 6 | Recall of the missing pixel for training with pattern 1 for four

different initial variation cases, (A) 60%, (B) 40%, (C) 24%, and (D) 9%,

are shown. For each case, top figures show what the input current of
neurons that do not fire would be if the recall is performed after the
corresponding number of epochs, and bottom figures show the neurons that
fires if the recall was performed after the corresponding number of epochs

for C = 2 (see the text for details about parameter C). Different threshold
levels for C = 1.5 and C = 2 cases are shown in the top figures. When the
input current exceeds the threshold after a certain number of epochs, the
missing pixel N6 fires. For C = 2, the number of epochs after which N6 fires
in each case is 11 (60% variation), 9 (40% variation), 5 (24% variation) and 1
(9% variation).
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variation. The resistance maps for other variation cases are shown
in Figures 5B–D. We can see that as initial variation reduces, the
same number of epochs yields a more pronounced overall dif-
ference between the weights that get stronger versus the weights
that do not change, as illustrated in Figure 5. The evolution of
the membrane potential with the number of epochs for different
variation cases are shown in Figure 6. While it takes 11 epochs
to recall a pattern when there is 60% initial variation, only one
epoch is sufficient in our case when the initial resistance variation
is 9%. It is worth mentioning that we have negligible variation
in read voltage during our experiment, since the reading of mem-
ory cell resistances is performed with electronic equipment. When
this synaptic grid is integrated with actual CMOS neurons, how-
ever, it is expected to have some variation in read voltage, which
results in variation in the input current of neurons. This variation
in input current might cause variations in the number of epochs
needed for training. We can observe from Figure 6 that while it
takes 3% input current variation (hence read voltage variation)
to change the number of epochs needed for 60% variation case
(Figure 6A), it takes 40% variation in read voltage to change the
number of training epochs required for 9% initial variation case
(Figure 6D). This is because as the number of epochs increases,
resistances of programmed synapses begin to converge to low
resistance values. To minimize the effect of read voltage variation,
properties of synaptic device as well as pulsing scheme during
training should be carefully chosen, considering the read voltage
variation of CMOS neuron circuit. The increase in the required
number of epochs to recall the pattern results in a higher overall
energy consumption. Overall energy consumption for 9% initial
resistance variation case is 4.8 nJ, whereas it is 52.8 nJ for 60% ini-
tial variation case. Figure 7 illustrates the dependence of energy
consumption and number of epochs needed on initial resistance
variation. As can be seen in Figure 7, there is a clear reduction in

FIGURE 7 | The same experiment is repeated for different initial

variation cases. In order to guide the eye, dashed arrows and circles
indicate which curves correspond to which axis. For four different initial
variation cases, the plot shows the total number of epochs required for
training as well as overall energy consumed in the synaptic devices during
training and recall phases for pattern 1. As the variation increases, larger
firing threshold is required for neurons. This increases the number of
epochs and energy consumption required for training.

the overall energy consumption as initial resistance variation goes
down. Note that these energy values represent only the energy
consumed in the synaptic devices for training and recall phases
for pattern 1. They do not include the energy consumed in the
wires or the neurons. Energy consumption in the wires can be
a substantial part of the overall energy consumption for a large
array (Kuzum et al., 2012). It is also worth noting that since the
time scale between the epochs in these experiments is on the order
of seconds, we did not observe any effects of drift in our measure-
ments, which would require a timescale of µs or ms to observe
(Karpov et al., 2007).

CONCLUSION
We report brain-like learning in hardware using a crossbar array
of phase change synaptic devices. We demonstrated in hardware
experiments that synaptic network can implement robust pat-
tern recognition through brain-like learning. Test patterns were
shown to be stored and recalled associatively via Hebbian plas-
ticity in a manner similar to the biological brain. Increasing the
number of training epochs provides a better tolerance for initial
resistance variations, at the cost of increased energy consumption.
Demonstration of robust brain-inspired learning in a small-
scale synaptic array is a significant milestone toward building
large-scale computation systems with brain-level computational
efficiency.

METHODS
The memory cell array was probed using a 25 × 1 probe card
which is connected to a switch matrix consisting of two cards,
each providing a 4 × 12 matrix (see Supplementary Figure 1).
The probe card contacts 25 pads on the wafer that has the mem-
ory arrays. These 25 pads consist of 10 bitlines, 10 wordlines,
1 common source terminal, 1 substrate terminal, and 3 floating
terminals. Switch matrix is connected to Agilent 4156C semicon-
ductor analyzer to perform DC measurements and Agilent 81110
pulse generator for pulse measurements. All these equipment is
controlled by a Labview program on a separate computer. This
program allows us to switch between cells on the array automati-
cally and applying custom signals from semiconductor analyzer
or the pulse generator to the desired cell. In all the measure-
ments, resistance of the memory cell is measured by applying
0.1 V read voltage at the bitline and 3.3 V at the wordline. The cur-
rent (I) through the cell is measured and resistance is obtained by
R = 0.1 V/I. DC switching measurement in Figure 2A is obtained
from an arbitrarily selected cell on the array. For this particu-
lar measurement, current through the device is swept. For binary
switching measurement in Figure 2B, alternating SET pulses (1 V
amplitude, 50 ns/300 ns/1 µs rise/width/fall time) and RESET
pulses (1.5 V amplitude, 5 ns/50 ns/5 ns rise/width/fall time) are
applied by pulse generator. For the measurement in Figure 2C,
the same SET and RESET pulses are applied at each 100 cells in
an array. The gradual SET characteristics in Figure 2D is obtained
by applying 1.1 V RESET pulse once and then 0.85 V gradual SET
pulse 9 times. This cycle is repeated for a few times to obtain
the result in Figure 2D. During learning experiment, the ini-
tial RESET programming of the cells before learning experiment
starts was done by applying a RESET pulse (1.5 V amplitude,
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5 ns/50 ns/5 ns rise/width/fall time) at every cell within the array.
The energy consumed during gradual SET programming of
synaptic connections in update phases is extracted by measuring
the current through the devices during programming. Fraction
of energy consumed in phase change material and in selection
transistor is extracted by measuring individual transistor charac-
teristics separately, as well as by current sweep measurements in
PCM cells.
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