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Abstract

The non-regularizability of free fermion field theories, which is the root of various quantum anomalies, 
plays a central role in particle physics and modern condensed matter physics. In this paper, we generalize the 
Nielsen-Ninomiya theorem to all minimal nodal free fermion field theories protected by the time reversal, 
charge conservation, and charge conjugation symmetries. We prove that these massless field theories cannot 
be regularized on a lattice.
Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The non-regularizability of massless free fermion field theories is the origin of various quan-
tum anomalies. A famous example is the Nielsen-Ninomiya [1] theorem, namely, Weyl nodes 
with net chirality cannot be realized by any charge-conserved lattice model in three dimensions. 
However, Weyl nodes with net chirality can appear on the boundary of a 4D charge-conservation-
protected topological insulator (The free fermion topological classification of this 4D topological 
insulator is Z.). Another example involves Dirac cones with net vorticity in 2D. Under charge 
conservation and time-reversal (T 2 = −1) symmetries, Dirac cones with net vorticity cannot be 
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realized by any lattice model. However, they can appear on the boundary of a 3D topological 
insulator. (The free fermion topological classification of such topological insulator is Z2.)

According to the folklore, the low energy field theory describing the boundary of on-site 
symmetry protected topological states (SPTs) cannot be regularized on a lattice. In other words, 
they can not be realized as finite-range tight-binding models where the symmetry acts on the 
degrees of freedom on each lattice site independently. The obstruction lies in the realization of 
symmetry – in the boundary dimension the on-site nature of the protection symmetry cannot be 
realized. This obstruction is relieved by “UV completing” the boundary degrees of freedom with 
the bulk degrees of freedom living in one extra spatial dimension. The bulk degrees of freedom 
are gapped and respect an on-site symmetry. The bulk state is called an SPT. When the boundary
is one-dimensional, Ref. [2,3] argued that the non-regularizability is manifested by the fact that 
the boundary theory is not modular invariant after orbifolding with respect to the protection 
symmetry.

If the protection symmetry is not on-site, regularization is certainly possible. A famous ex-
ample is the tight-binding model of graphene. There, the two Dirac nodes are protected by the 
translation, charge conservation, time reversal, and inversion symmetries. Here the inversion 
symmetry is not on-site. In the rest of the paper we shall assume translation invariance and the 
term “symmetry” always refers to other on-site symmetry.

The non-regularizability discussed above lies at the heart of the physics of SPTs. It is well-
known that SPTs are defined by their symmetry-protected gapless boundaries. In the following, 
we argue that if it were possible to realize these boundaries on a lattice, the gapless boundary 
modes will not be protected.

For example, in Fig. 1 we consider a 2D SPT having two edges. It is always possible to recon-
nect these edges with symmetry-respecting interactions, i.e., seal off the boundary (Fig. 1(a)). 
After the reconnection the gapless modes are removed (Fig. 1(b)). If it was possible to regu-
larize the gapless boundaries on 1D lattices, one would have been able to fabricate the gapless 
boundaries as 1D systems (Fig. 1(c)). These fabricated edges can be brought around to interact 
with the original boundaries (via symmetry-respecting interactions) (Fig. 1(d)). As a result, the 
gapless edges can be removed (Fig. 1(e)), which proves that the original gapless edges are not 
symmetry-protected.

The purpose of this paper is to prove the following folklore, namely:

Any symmetry-protected minimal nodal free-fermion field theory cannot be regularized on a 
lattice.

Here, “nodal free-fermion field theory” is a continuum field theory which has a gapless spectrum 
with a linear-dispersing gap node, characterized by a Clifford algebra, at a single time-reversal 
invariant momentum. Without loss of generality, we shall assume such momentum to be k = 0. 
“Minimal” refers to the fact that the fermion field in the theory has the smallest number of compo-
nents necessary to represent the symmetry transformations and the Clifford algebra. “Symmetry-
protection” means there is no symmetry-allowed mass term. In this paper, we restrict ourselves to 
the charge conservation, time-reversal, and charge conjugation symmetries. “Lattice regulariza-
tion” is the procedure which converts the continuum field theory to a finite-range tight-binding 
model while preserving all symmetries.

The outline of the paper is as follows. We achieve the proof by “reductio ad absurdum”. In 
section 2, we assume the existence of a tight-binding Hamiltonian whose low energy limit is the 
field theory in question. Let the momentum space Hamiltonian of this tight-binding model be 
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Fig. 1. An illustration of the fact that the regularizability of the boundary Hamiltonian of an SPT implies the gapless 
modes are not protected. (a,b) By turning on symmetry-respecting interactions mimicking those in the bulk (the black 
lines) it is possible to gap out the gapless modes (red and blue circles). (c) The regularizability of the boundary SPT 
Hamiltonian implies it is possible to fabricate the gapless boundaries. (d,e) The fabricated boundaries can be brought to 
interact with the original boundaries and gap each other out. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

h(k), we list the four constraints h(k) must obey. In section 3 we present the h(k) which has 
the smallest matrix size and satisfies the constraints listed in section 2. This is the momentum 
space Hamiltonian of the minimal models. In section 4 we lay out the symmetry protection 
hypothesis. In section 5 and Appendix A, we show that for each h(k) obeying the constraints 
of sections 2 and 4 there is an associated “spectral symmetrised” counterpart, h̃(k). In section 6
we apply the Poincaré-Hopf Theorem to h̃(k), and show that it imposes a stringent constraint 
on the form of h̃(k) at a time reversal invariant point k0 different from k = 0. Section 7 adopts 
the strategy of reductio ad absurdum for the proof of non-regularizability. We complete the proof 
in two alternative ways. (a) When h̃(k) satisfies a special condition we prove that if it obeys 
constraints 1-4 it must violate the symmetry-protection hypothesis. (b) For other h̃(k) we prove 
that if it satisfies the symmetry-protection hypothesis it must have the energy gap close at k0 as 
well. This means it violates constraint 3 of section 2. The proof (b) is achieved by a case-by-
case study of all nodal Hamiltonians protected by the charge conservation, time reversal, and 
charge conjugation symmetries. Because of the length of this proof, it is left to Appendix B and 
Appendix C.

2. The constraints on lattice-regularized nodal Hamiltonians

In the following we assume the existence of lattice-regularized minimal SPN Hamiltonian

H =
∑

k∈BZ

χ(−k)T h(k)χ(k), (1)

and discuss the conditions it must satisfy. Here “BZ” stands for the Brillouin zone of a d-
dimensional lattice. χ(k) is a Fourier transformed Majorana lattice field. We work with Majorana 
rather than complex fermion field because it also covers charge non-conserving (Bogoliubov-de 
Gennes) free fermion Hamiltonians. There are 4 constraints we require h(k) to satisfy:

1. The Majorana constraint: hT (−k) = −h(k).
2. h(k) is an analytic function of k in the Brillouin zone.
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3. There is an energy gap between the lower half and the upper half of the eigenvalues of h(k). 
The energy gap between these two groups of eigenvalues exhibits a single node at k = 0. 
Moreover

h(k) →
d∑

j=1

kj�j as k → 0. (2)

Here {�j } are traceless symmetric matrices satisfying {�i, �j } = 2δij .
4. h(k) obeys the following symmetry requirement: U†

βh(k)Uβ = h(k) and A†
αh(−k)∗Aα =

h(k). Here Aα, α = 1, ..., NA and Uβ, β = 1, ..., NU are k-independent orthogonal matrices 
representing the anti-unitary and unitary protection symmetries.

Four comments are in order:

◦ We assume that the Hamiltonian has translation symmetry so that we can express it in momen-
tum space. The more general case where the translation symmetry is absent is more difficult, 
and is beyond the scope of this paper. The fact that the unitary and anti-unitary symmetry 
matrices do not depend on k signifies that they are on-site symmetries.

◦ In the presence of anti-unitary symmetry, A†
αh(−k)∗Aα = h(k) implies A†

αh(k)Aα = −h(k)

due to constraint 1. As a result, the spectrum of h(k) is symmetric about zero for each k.
◦ In 1D we shall assume the dispersion of h(k) is non-chiral. This is because for chiral Hamil-

tonians the constraints of continuity, Brillouin zone periodicity, and the requirement that the 
energy band crosses the Fermi energy only at k = 0 (which is the nodal condition for chiral 
Hamiltonians) obviously contradict one another.

◦ Conditions 3 and 4 impose a constraint on the minimal size of h(k). We state, without proof, 
that the smallest such matrix for the charge conservation (unitary), time reversal (anti-unitary) 
and charge conjugation (unitary) symmetries has dimension 2n × 2n. Here n depends on the 
spatial dimension and the symmetry group.

3. The minimal model satisfying constraints 1-4 in section 2

In this section and the rest of the paper we shall focus on minimal SPN models. For these 
models h(k) is a 2n × 2n Hermitian matrix. Any such 2n × 2n h(k) can be constructed from 
linear combinations of the tensor products of n Pauli matrices. Among them N1 = (22n + 2n)/2
are real and symmetric and N2 = (22n − 2n)/2 are imaginary and anti-symmetric, i.e.,

h(k) =
N1∑
i=1

oi(k)Ms
i +

N2∑
j=1

ej (k)Ma
j . (3)

Due to the Majorana constraint oi(k) and ej (k) are odd and even functions of k, respectively. 
Under the action of unitary symmetries k remains unchanged. But anti-unitary symmetries send 
k to −k. As the result, the {Ms

i } and {Ma
j } that can appear in equation (3) must satisfy the 

following equations

U
†
βMs

i Uβ = Ms
i , A†

αMs
i Aα = −Ms

i

U
†
MaUβ = Ma, A†

αMaAα = −Ma. (4)
β i i i i
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Let the number of symmetric/anti-symmetric matrices satisfying equation (4) be ns and na , re-
spectively. Thus

h(k) =
ns∑

i=1

oi(k)Ms
i +

na∑
j=1

ej (k)Ma
j . (5)

The matrices Ms
i and Ma

j are “linear independent” with respect to the following definition of 

matrix inner product 〈M1|M2〉 = V
†
M1

·VM2 , where VM is the column vector containing all matrix 
elements of M . In the following we shall order {Ms

i } so that the first d of them are the �i ’s in 
constraint 3. These {�i} satisfy the Clifford algebra {�i, �j } = 2δij . Under the above ordering 
convention,

h(k) =
ns∑

i=1

oi(k)Ms
i +

na∑
j=1

ej (k)Ma
j

=
d∑

i=1

oi(k)�i +
ns∑

i=d+1

oi(k)Ms
i +

na∑
j=1

ei(k)Ma
i . (6)

4. The symmetry protection hypothesis

Symmetry protection means that under the requirement of equation (4), there is no non-zero 
anti-symmetric matrix which anticommutes with all the �i in equation (2) and equation (6).

5. Spectral symmetrisation

Given a h(k) satisfying constraints 1-4 in section 2, we can create a “spectral symmetrised” 
Hamiltonian satisfying the same constraints.

To perform spectral symmetrization, we first write h(k) in terms of its eigenvalues and eigen-
vectors

h(k) = U
†
kD(k)Uk (7)

where D(k) is the diagonal matrix formed by the eigenvalues of h(k) in descending order. Uk

contains the eigenvectors. It is the unitary transformation necessary to diagonalize h(k).
We first replace the upper and lower halves of the eigenvalues in D(k) by their respective 

averages. After this replacement, D(k) becomes D′(k) and the Hamiltonian is given by

h′(k) = U†
k
D′(k)Uk. (8)

Note that in equation (8) Uk remains unchanged. From h′(k) we define a new Hamiltonian 
by subtracting the average of the diagonal element Ē′(k) from each element of D′(k) so that 
D′(k) → D̃(k) = D′(k) − Ē′(k)In. Here In represents the 2n × 2n identity matrix. After the 
above two steps the Hamiltonian becomes

h(k) → h̃(k) = U†
k
D̃(k)Uk. (9)

h̃(k) is the “spectral symmetrised Hamiltonian”. Note that Uk still remains unchanged. h̃(k) has 
the important property that



6 Y.-T. Huang et al. / Nuclear Physics B 954 (2020) 115005
Fig. 2. From the left to the middle panel we replaced the upper half and lower half of the eigenvalues at each k with their 
averages. From the middle panel to the right panel we subtracted the average of all eigenvalues from each eigenvalue at 
each k.

h̃(k)2 ∝ In for all k. (10)

In Appendix A, we show that the spectral symmetrization does not jeopardize constraint 1-4 
in section 2. In addition, it preserves the analyticity of h(k) in the Brillouin zone region where 
the energy gap is non-zero. In particular, spectral symmetrization does not affect equation (2), 
i.e.,

h̃(k) →
d∑

j=1

kj�j as k → 0. (11)

In Fig. 2 we show an example of spectral symmetrization in one dimension.
The spectral symmetrised h̃(k) can also be written in the form of equation (6), i.e.

h̃(k) =
ns∑

i=1

õi (k)Ms
i +

na∑
j=1

ẽi (k)Ma
i

=
d∑

i=1

õi (k)�i +
ns∑

i=d+1

õi (k)Ms
i +

na∑
j=1

ẽi (k)Ma
i

:= S(k) + A(k). (12)

Here the symmetric matrix S(k) includes the first and the second sums, and the anti-symmetric 
matrix A(k) includes the third sum.

6. The Poincaré-Hopf theorem (see, e.g., Ref. [4])

The Poincaré-Hopf theorem applies to a d-component vector function f (k) = {f1(k), ...,
fd(k)} that vanishes at a discrete set of points {kn} on a d-dimensional torus. The theorem states 
that the “index” of the k → f (k) map at each kn must sum to zero. The meaning of the index is 
the following. Pick a closed ball Dn around each kn so that kn is the only zero of f (k) in Dn. 
We define the index at kn to be the “degree” of the map from the boundary of Dn to the (d − 1)-
sphere formed by f̂ (k) = f (k)/|f (k)|. For 3D the degree is the Pontryagin index of f̂ (k), and 

in 2D it is the “winding number” of f̂ (k). For 1D the degree is equal to 
(
f̂ (kR) − f̂ (kL)

)
/2. 

Fig. 3 illustrates the degree 1 map for spatial dimension 1, 2 and 3.
Any zero of f (k) that has no mapping degree can be removed by infinitesimal changes. On 

the other hand, a zero that has non-zero mapping degree can only be shifted but not removed 
by infinitesimal changes. We assert, without proof, that it is always possible to deform h̃(k) so 
that õ(k) := {õ1(k), ....õd (k)} only possess discrete zeros while keeping the symmetrised nature 
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Fig. 3. The degree 1 maps f̂ (k) for (a) d = 1, (b) d = 2 and (c) d = 3.

of the energy spectrum. Moreover, around each of the discrete zero õ(k) exhibits a non-zero 
mapping degree.

Equation (11) implies õ(k) has a degree 1 zero at k = 0. Applying the Poincaré-Hopf theorem 
we conclude that the sum of the mapping degree in the rest of the Brillouin zone must be equal to 
−1. Due to the fact that õ(k) = −õ(−k), and the fact that the degree of mapping is not affected by 
the simultaneous sign reversal of both õ and k, we conclude that the sum of the mapping degree 
in the Brillouin zone excluding all time-reversal invariant k points must be an even integer. This, 
in turn, implies the sum of the mapping degrees across all non-zero time-reversal invariant k
points must be an odd integer. (Note that by the oddness of õ(k), it must vanish at any time 
reversal invariant k point.) Thus there must exist, at least, one non-zero time-reversal invariant k
point, say, k0, where the mapping degree is an odd integer.

7. The reductio ad absurdum proof

In section 5 we have shown that given a lattice-regularized h(k) satisfying constraints 1-4 in 
section 2 there is always a spectral symmetrised h̃(k) which obeys all constraints of h(k) and is 
lattice regularized.

In this section we complete the proof of non-regularizability via reductio ad absurdum. This 
proof is achieved in two alternative ways. (a) We prove that if õ(k) satisfies a special condition 
(see below), and if h̃(k) obeys constraints 1-4 of section 2, the symmetry-protection hypothesis 
must be violated. (b) For õ(k) that violates the special condition, we prove that if h̃(k) satisfies 
the symmetry-protection hypothesis its energy gap must also close at k0. This means constraint 3 
of section 2 is violated. Because proof (b) involves a case-by-case study of all T̂ , Q̂, Ĉ protected 
minimal SPN, we leave it to Appendix B and Appendix C.

The symmetries under consideration are generated by the subsets of {T̂ , Q̂, Ĉ}. Here

Q̂ = i
∑

k∈BZ

χT (k) Q χ(k)

is the total charge operator. It generates the global charge U(1) gauge transformation. T̂ and Ĉ
are the generators of time reversal and charge conjugation symmetries. They act on the fermion 
operators according to

T̂ χ(k)T̂ −1 = T χ(−k)

Ĉχ(k)Ĉ−1 = Cχ(k) (13)

where T , Q, C are 2n ×2n matrices. In Appendix B we list the relevant T , Q, C and all symmetry 
allowed {Ms

i , i = 1, ..., ns} and {Ma
i , i = 1, ..., na} in equation (12) for the minimal SPNs in 

spatial dimensions 1 ≤ d ≤ 3.
Due to the spectral symmetrization condition, equation (10), the S(k) and A(k) in equa-

tion (12) must anticommute. This is because the square of h̃(k) is

h̃(k)2 = S(k)2 + A(k)2 + {S(k),A(k)}, (14)
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since {S(k), A(k)} is an anti-symmetric matrix, while h̃(k)2 is proportional to the identity matrix, 
it implies

{S(k),A(k)} = 0 for all k. (15)

Now apply equation (15) to k0. Since k0 is a time reversal invariant point S(k0) = 0, which 
means {õ1(k0), ..., õd (k0)} = 0.

The simplest case to prove the contradiction is when (i) all d functions {õ1(k0 +q), ..., õd (k0 +
q)} vanish as the same power in q as q → 0, and (ii) all other õi(q), namely, õd+1(k0 +
q), ..., õns (k0 + q), vanish as higher power in q . Under such condition examining {S(k0 +
q), A(k0 + q)} = 0 to the lowest order in q gives us

{A(k0),�i} = 0, for i = 1, ..., d. (16)

Equation (16) implies A(k0) acts like a mass term. Since A(k0) = h̃(k0) �= 0 (otherwise 
h̃(k) will have more than one gap node), this violates the symmetry-protection hypothesis. More 
specifically, including A(k0) in the Hamiltonian

H =
∫

ddx χT (x)

[
−i

d∑
i=1

�i∂i + A(k0)

]
χ(x) (17)

gaps out the node at k = 0.
Under the more general condition, namely when {õ1(k0 +q), ..., õd (k0 +q)} do not vanish as 

the same power in q , and/or when õd+1(k0 +q), ..., õns (k0 +q) vanish slower than, or as slowly 
as, õ1(k0 + q), ..., õd (k0 + q) the above proof does not apply.

Under such condition we adopt a different proof strategy. Instead, we assume the symmetry-
protection hypothesis holds, and show that it is impossible for h̃(k) to have gap node at only a 
single point in the Brillouin zone. This proof is achieved via a case-by-case study of all T̂ , Q̂, Ĉ
symmetry-protected minimal nodal Hamiltonians. Because of the length of the proof we leave it 
to Appendix B and Appendix C.

8. Final discussion: the open issues

In the preceding discussions we have proven that all minimal nodal Hamiltonians protected 
by {T̂ , Q̂, Ĉ} symmetries cannot be regularized on a lattice. Here we list some of the open is-
sues. The first is the proof for non-minimal symmetry-protected nodal Hamiltonians. Such nodal 
Hamiltonians can be constructed by stacking the minimal nodal Hamiltonians together. Although 
it is clear that the non-regularizability of the minimal nodal Hamiltonians is a necessary condition 
for the non-regularizability of non-minimal symmetry-protected nodal Hamiltonians, it remains 
to be proven that it is a sufficient condition. The second issue concerns the assumption that in 
the spectral symmetrised Hamiltonian the coefficient functions in front of {�1, ..., �d} exhibit 
isolated zeros. It remains to be proven that it is always possible to deform h̃(k) so that the coef-
ficient functions fulfill such a statement while maintaining the symmetrised spectrum. The third 
issue is the proof that a general symmetry-protected gapless Hamiltonian can be deformed into 
the single-node Hamiltonian discussed in this paper. We leave these open issues for future re-
searches.



Y.-T. Huang et al. / Nuclear Physics B 954 (2020) 115005 9
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal rela-
tionships that could have appeared to influence the work reported in this paper.

Acknowledgement

This work was primarily supported by the Theory Program at the Lawrence Berkeley Na-
tional Laboratory, which is funded by the U.S. Department of Energy, Office of Science, Basic 
Energy Sciences, Materials Sciences, and Engineering Division under Contract No. DE-AC02-
05CH11231. This research is also funded in part by The Gordon and Betty Moore Foundation
EPIQS Initiative, Grant GBMF8688 to DHL.

Appendix A. The preservation of constraints 1 to 4 by the spectral symmetrization steps

In this section, we show that spectral symmetrization preserves the constraints 1 to 4. As 
discussed in the main text, if there is anti-unitary symmetry, the spectrum of h(k) is symmetric 
about E = 0, in which case there is no need for the second step of spectral symmetrization, 
namely, subtracting the average of eigenenergies.

A.1. Constraint 1

The Majorana constraint implies the original Hamiltonian satisfies

hT (−k) = −h(k) (A.1)

This implies the eigenvalues at −k are the negative of the eigenvalues at +k. Thus

D(−k) = −W
†
k D(k)Wk (A.2)

where Wk is the unitary transformation necessary to reorder the eigenvalues in D(−k) according 
to descending order. The Majorana constraint of equation (A.1) implies

UT
−kD(−k)U∗

−k = −U
†
kD(k)Uk.

We substitute equation (A.2) into the above equation,

UT
−kW

†
k D(k)WkU

∗
−k = U

†
kD(k)Uk

⇒ UkU
T
−kW

†
k D(k)WkU

∗
−kU

†
k = D(k) (A.3)

The second line of the above equation can be rewritten as

ZkD(k)Z
†
k = D(k), (A.4)

where the unitary matrix Zk = UkU
T
−kW

†
k . In order for equation (A.4) to hold, Zk needs to be 

block diagonalized where each block is spanned by the degenerate eigenvectors of D(k). Within 
each block, D(k) is proportional to an identity matrix.

After the first step of spectral symmetrization D(k) → D′(k). Since D′(k) is still proportional 
to the same identity matrix in each block of D(k), it follows that conjugation by Z(k) still leaves 
it invariant, i.e.,
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ZkD
′(k)Z

†
k = UkU

T
−kW

†
k D′(k)WkU

∗
−kU

†
k = D′(k). (A.5)

Given equation (A.5) we can multiply the unitary matrices in the reverse order to arrive at

UT
−kD

′(−k)U∗
−k = −U

†
kD′(k)Uk,

which means

h′T (−k) = −h′(k). (A.6)

Equation (A.6) implies that the spectrum of h′(k) flips sign upon the reversal of k. As a result, 
the average of the diagonal elements Ē′(k) subtracted in the second step of spectral symmetriza-
tion, obeys

Ē′(−k) = −Ē′(k). (A.7)

Consequently the subtracted piece Ē′(k)In obeys the Majorana constraint, i.e.,(
Ē′(−k)In

)T = −Ē′(k)In. (A.8)

This means if h′(k) satisfies the Majorana constraint, so does h̃(k) after the subtraction.

A.2. Constraint 2

The periodicity constraint is given by

h(k) = h(k + G) (A.9)

where G is any reciprocal lattice vector. This means

U
†
kD(k)Uk = U

†
k+GD(k + G)Uk+G

⇒ D(k + G) = Uk+GU
†
kD(k)UkU

†
k+G.

Since D(k + G) = D(k) (periodicity in Hamiltonian implies periodicity in the eigenvalues), we 
have

D(k) = Uk+GU
†
kD(k)UkU

†
k+G ≡ YkD(k)Y

†
k . (A.10)

Here the unitary matrix Yk = Uk+GU
†
k needs to be block diagonalized where each block is 

spanned by the degenerate eigenvectors of D(k). Within each block, D(k) is proportional to 
an identity matrix. Since D′(k) is still proportional to the same identity matrix in each block of 
D(k), conjugation by Y(k) leaves D′(k) invariant. Thus

D′(k) = Uk+GU
†
kD′(k)UkU

†
k+G.

Since D′(k) on the LHS equals to D′(k + G), it follows that

D′(k + G) = Uk+GU
†
kD′(k)UkU

†
k+G.

Multiplying the unitary matrices in reverse order leads to

h′(k) = h′(k + G).

Because h′(k) satisfies the periodicity constraints, so does the average of its eigenvalues 
Ē′(k). Hence Ē′(k)In, subtracted in the second step of spectral symmetrization, obeys the Bril-
louin zone periodicity. As result, h̃(k) satisfies the periodicity constraint.
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Another important part of constraint 2 is the analytic nature of h(k). In the following we 
show that in the k region where the spectrum is gapped, spectral symmetrization does not spoil 
analyticity.

Let’s consider shifting k to k + εn̂, where n̂ is an unit vector and ε is an infinitesimal. Under 
such infinitesimal shift

h(k) → h(k + εn̂). (A.11)

In the mathematics literature, e.g., theorem 1 in Chapter I (page 42) of Ref. [5]), there is the 
following theorem.

Theorem Let h(x) be a finite dimensional Hermitian matrix function of a parameter x. If the 
polynomial expansion of h(x) around x = 0 has a finite radius of convergence (i.e. analytic), 
then there exists a basis in which both the eigenvalues and the orthonormal set of eigenvectors 
of h(x) have a convergent power series expansion within the same radius.

It is important to note that this theorem applies whether there are degeneracies in the eigenvalues 
of h(0) or not.

Applying this theorem to our problem, the analytic nature of h(k) around k implies the exis-
tence of a basis in which the eigenvalues and eigenvectors of h(k + εn̂) is an analytic function of 
ε in any direction n̂. This means we can choose a basis so that both D(k + εn̂) and U(k + εn̂) in

h(k + εn̂) = U†(k + εn̂)D(k + εn̂)U(k + εn̂) (A.12)

are analytic functions of ε. In regions where h(k) is gapped we can sort the eigenvalues into 
an upper half and a lower half so that no interchange of eigenvalues between the two parts take 
place as k moves around. Note that this is also true when there is crossing between the bands in 
the upper or lower halves (see Fig. A.4 (a)).

Under such (no gap closure) condition, the spectral symmetrization does not change the an-
alyticity of the Hamiltonian, because the eigenvectors are unchanged and the average of the 
upper/lower half of the eigenvalues as well as the average of all eigenvalues are analytic in k. 
This is no longer true when k moves across a gap closing point (see Fig. A.4 (b)). In that case 
there exists eigenvalues (and their associated eigenvectors) that move from the upper to the lower 
part (and vice versa). Under this condition although the original eigenvalues and eigenvectors are 
analytic in k, the sorted ones are not (see Fig. A.4 (c)).

Thus if h is analytic and gapped in a neighborhood of k the spectral symmetrised h̃ is analytic 
too. In contrast, spectral symmetrization does not maintain the analytic nature the Hamiltonian 
if k moves across gap nodes.

A.3. Constraint 3

The spectral symmetrization step clearly does not collapse the energy gap.
At k = 0, since all eigen-energies are zero, no spectral symmetrization is necessary. Moreover, 

the spectral symmetrization does not change the fact that h(k) → ∑
j kj�j as k → 0, because ∑

j ki�j already satisfies the spectral symmetrization condition. Together, the above arguments 
imply that spectral symmetrization preserves constraint 3.
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Fig. A.4. Examples of band crossing at k �= 0 in 1D. (a) The orange arrow points at a k point where band crossing 
occurs while the energy gap remains non-zero. (b) The orange arrow points at a gap-closing k point. (c) After the energy 
eigenvalues are sorted into upper (blue) and lower (red) halves, the eigenvalues and eigenvectors are no longer analytic 
across the gap-closing k point.

A.4. Constraint 4

A.4.1. The unitary symmetries
The unitary symmetries require

U
†
βh(k)Uβ = h(k),

which means

U
†
βU

†
kD(k)UkUβ = U

†
kD(k)Uk

⇒ QkD(k)Q
†
k ≡ UkU

†
βU

†
kD(k)UkUβU

†
k = D(k). (A.13)

Again, the unitary matrix Qk = UkU
†
βU

†
k needs to be block diagonalized where each block is 

spanned by the degenerate eigenvectors of D(k). Within each block, D(k) is proportional to an 
identity matrix.

After spectral symmetrization, D′(k) is still proportional to the same identity matrix in each 
block of D(k), hence conjugation by Q(k) leaves D′(k) invariant. Thus

UkU
†
βU

†
kD′(k)UkUβU

†
k = D′(k).

Multiplying the unitary matrices in reverse order leads to

U
†
βh′(k)Uβ = h′(k).

The Ē′(k)In, subtracted in the second step of spectral symmetrization, clearly satisfies the 
unitary symmetry constraint, namely,

U
†
β

(
Ē′(k)In

)
Uβ = Ē′(k)In.

As a result, the subtraction does not jeopardize the unitary symmetry.

A.4.2. The anti-unitary symmetries
The anti-unitary symmetries require

A†
αh(−k)∗Aα = h(k).

The Majorana constraint equation (A.1) converts the above equation to

−A†
αh(k)Aα = h(k). (A.14)
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Among other things, this means the eigenvalues of h(k) are in ± pairs, which means

D(k) = X
†
k (−D(k))Xk. (A.15)

Where Xk is a unitary matrix necessary to reorder the eigenvalues of −D(k) in descending order. 
Equation (A.14) implies

A†
αU

†
kD(k)UkAα = −U

†
kD(k)Uk

⇒ UkA
†
αU

†
kD(k)UkAαU

†
k = −D(k) (A.16)

Now we use equation (A.15) to convert the last line of the above equation to

OkD(k)O
†
k ≡ UkA

†
αU

†
kX

†
kD(k)XkUkAαU

†
k = D(k)

Like before, the unitary matrix Ok = UkA
†
αU

†
kX

†
k needs to be block diagonalized where each 

block is spanned by degenerate eigenvectors of D(k). Within each block, D(k) is proportional 
to an identity matrix.

After spectral symmetrization D′(k) is still proportional to the same identity matrix in each 
block of D(k), hence conjugation by O(k) leaves D′(k) invariant, i.e.,

UkA
†
αU

†
kX

†
kD

′(k)XkUkAαU
†
k = D′(k).

Since the same Xk can reverse the ordering of eigenvalues in D′(k), the above equation turns 
into

UkA
†
αU

†
k

(−D′(k)
)
UkAαU

†
k = D′(k).

Multiplying the unitary matrices in reverse order leads to

−A†
αh′(k)Aα = h′(k). (A.17)

Since equation (A.17) implies the eigenvalues of h′(k) are symmetric with respect to E = 0, 
there is no subtraction step needed. Hence h̃(k) = h′(k), and

−A†
αh̃(k)Aα = h̃(k) ⇒ A†

αh̃(−k)∗Aα = h̃(k).

Appendix B. Under the symmetry-protection hypothesis it is impossible for the gap of 
h̃(k) to close at only a single point in the Brillouin zone

In this appendix, we prove that the symmetry protection constraint plus constraints 1, 2, 4 and 
equation (2) in section 2 lead to the violation of the single gap node assumption in constraint 3. 
More specifically, we prove that under the conditions described above A(k0) = 0. Here A(k) is 
defined in equation (12) and k0 is the non-zero time reversal invariant point discussed in the main 
text. Since S(k0) = 0 this implies h̃(k0) = 0. This violates the statement that energy gap closes 
only at k = 0. This proof addresses the generic situations discussed in section 7 of the main text.

For each symmetry group generated by a subset of {T̂ , Q̂, Ĉ} we focus on the minimal mod-
els where the number of components, n0, in χ(k) is the minimum. This is the minimal number 
of components required to realize a particular SPN. Under this condition the dimension of all 
associated matrices is n0 × n0. In other words, n0 is the minimum integer for which there exists 
n0-by-n0 matrices representing the available symmetries and �1, ..., �d (d is the spatial dimen-
sion). Here the {�i} obey the symmetry requirement (constraint 4 in section 2) and satisfy the 
Clifford algebra {�i, �j } = 2δij .
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For each spatial dimension d , we will go through all the symmetry groups G which gives rise 
to an SPN. (These groups protect non-trivial SPT’s in d + 1 dimensions.) For each (d, G) we 
write down the number n0, the symmetry matrices, and the most general form of S(k) and A(k)

allowed by symmetry.
To characterize each symmetry group we shall use the short hand

G±([ ]±, [ ]±, [ ]±).

Between the square brackets we insert T , Q or C (the maximal number of symbols in the ar-
gument of G is 3). The subscript of the symbols, when present, denotes whether the matrix 
representing the T̂ , Q̂, Ĉ squares to identity or minus identity. The superscript on G specifies 
whether the time reversal matrix T commutes (+) or anticommutes (−) with the charge conju-
gation matrix C. The matrix Q always anticommutes with T and C, and always squares to minus 
identity. Hence we do not bother to attach a subscript to Q, nor do we need to specify the com-
mutator between Q and T , C. To simplify the notation we shall abbreviate the Pauli matrices 
σ0, σx, σy, σz, iσy as I, X, Y, Z, E, respectively. When two Pauli matrices appear next to each 
other it means tensor product. For example EX means iσy ⊗ σx .

The proof is based on the following facts.

1. After spectral symmetrization, the Hamiltonian is given by equation (12) in the main text, 
where {S(k), A(k)} = 0 and S(k)2 + A(k)2 ∝ In.

2. As shown in A.2 the spectral symmetrization preserves the analytic nature of h(k) in regions 
of k where the spectrum of h(k) is fully gapped. Hence in the gapped region of h(k), h̃(k)

and the coefficient functions õi(k) and ẽj (k) in equation (12) are analytic.
3. The Poincaré -Hopf theorem implies the mapping degree of

{õ1(k), õ2(k), ..., õd (k)}
is odd around, at least, one other time-reversal invariant point k0 �= 0.

In addition, for the ease of later discussions, we define the curves {Ci, i = 1, ..., d} near k0 as 
follows.

Definition 1. Given i ∈ {1, . . . , d}, let’s consider the map q → (õ1(k0 + q), . . . , õd (k0 + q))

from any circle of radius |q| = r > 0. Due to the non-zero degree of this map there must exist, 
at least, one point q on the circle such that õj (k0 + q) = 0 for j �= i and õi (k0 + q) > 0. Let’s 
select such a point. Because the coefficient functions are continuous we can connect the points 
for different r into a curve Ci which approaches the point k0 as r → 0.

B.1. 1D SPNs

B.1.1. G(∅), or equivalently G(C+) after block-diagonalizing C

G(∅), n0 = 1,
S(k) õ1(k)

A(k) 0

As mentioned in the main text, this is a chiral SPN. It is not regularizable because the conti-
nuity and the Brillouin zone periodicity contradict with each other.
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B.1.2. G(T−), or equivalently G+(T−, C+) after block-diagonalizing C

T = E, n0 = 2,
S(k) õ1(k)X + õ2(k)Z

A(k) 0

Since there is no A(k) =⇒ A(k0) = 0.

B.1.3. G(C−), or equivalently G(Q) after identifying C with Q

C = E, n0 = 2,
S(k) õ1(k)I

A(k) ẽ1(k)Y

Since S(k) ∝ I this is a chiral SPN. It is not regularizable because the continuity and the 
Brillouin zone periodicity contradict with each other.

B.1.4. G−(T+, C+)

T = Z,C = X, n0 = 2,
S(k) õ1(k)X

A(k) 0

Since there is no A(k) =⇒ A(k0) = 0.

B.1.5. G−(T−, C+)

T = E,C = Z, n0 = 2,
S(k) õ1(k)Z

A(k) 0

Since there is no A(k) =⇒ A(k0) = 0.

B.1.6. G−(T−, C−), or equivalently G(Q, T−) after identifying C with Q

T = ZE,C = EI, n0 = 4,
S(k) õ1(k)YY + õ2(k)IX + õ3(k)IZ

A(k) ẽ1(k)Y I

{S(k), A(k)} = 0 implies⎧⎪⎨
⎪⎩

õ1(k)ẽ1(k) = 0

õ2(k)ẽ1(k) = 0

õ3(k)ẽ1(k) = 0

Because the mapping degree of õ1(k) is odd in the neighborhood of k = k0, it requires õ1(k)

to be non-zero when k is in the neighborhood but not equal to k0. This implies ẽ1(k) = 0 in the 
neighborhood of k0. The continuity of ẽ1(k) implies ẽ1(k0) = 0, which in turn implies A(k0) = 0.

B.1.7. G(Q, C+)

Q = E,C = Z, n0 = 2,
S(k) õ1(k)I

A(k) 0

Since S(k) ∝ I this is a chiral SPN. It is not regularizable because the continuity and the 
Brillouin zone periodicity contradict with each other.
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B.1.8. G(Q, C−)

Q = EI,C = ZE, n0 = 4,
S(k) õ1(k)II

A(k) ẽ1(k)YX + ẽ2(k)YZ + ẽ3(k)IY

Since S(k) ∝ II this is a chiral SPN. It is not regularizable because the continuity and the 
Brillouin zone periodicity contradict with each other.

B.1.9. G+(Q, T−, C+) or equivalently G−(Q, T−, C+) after identifying C with QC

Q = EI,T = ZE,C = XX, n0 = 4,
S(k) õ1(k)YY + õ2(k)IX

A(k) 0

Since there is no A(k) =⇒ A(k0) = 0.

B.2. 2D SPNs

B.2.1. G(T−), or equivalently G+(T−, C+) after block-diagonalizing C

T = E, n0 = 2,
S(k) õ1(k)X + õ2(k)Z

A(k) 0

Since there is no A(k) =⇒ A(k0) = 0.

B.2.2. G+(T+, C−) or equivalently, G+(T−, C−) after identifying T− with T+C−

T = ZI,C = ZE, n0 = 4,
S(k) õ1(k)XX + õ2(k)XZ

A(k) ẽ1(k)YX + ẽ2(k)YZ

Here {S(k), A(k)} = 0 implies

õ2(k)ẽ1(k) = õ1(k)ẽ2(k)

We examine the above equation in the neighborhood of k0 by expanding k = k0 + q .
On the curve C1 defined in 1 with d = 2, for any r = |q| �= 0,

0 = õ2(k)ẽ1(k) = õ1(k)ẽ2(k) (B.1)

Because õ1(k) > 0 it implies ẽ2(k) = 0. By the continuity of ẽ2(k) we conclude ẽ2(k) = 0 at 
r = 0. In other words ẽ2(k0) = 0. We can repeat this argument by looking at C2. This will lead 
to ẽ1(k0) = 0. Combining the above results, we obtain A(k0) = 0.

B.2.3. G−(T−, C−), or equivalently G(Q, T−) after identifying C with Q

T = ZE,C = EI, n0 = 4,
S(k) õ1(k)YY + õ2(k)IX + õ3(k)IZ

A(k) ẽ1(k)Y I

Here {S(k), A(k)} = 0 implies⎧⎪⎨
⎪⎩

õ1(k)ẽ1(k) = 0

õ2(k)ẽ1(k) = 0

õ3(k)ẽ1(k) = 0

Let’s focus on the first two equations.
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On the curve C1 defined in 1 with d = 2, for any r = |q| �= 0,

õ1(k)ẽ1(k) = 0 (B.2)

Because õ1(k) > 0 it implies ẽ1(k) = 0. By the continuity of ẽ1(k) we conclude ẽ1(k) = 0 at 
r = 0. In other words ẽ1(k0) = 0. This means A(k0) = 0.

B.2.4. G+(Q, T+, C−), or equivalently G−(Q, T+, C−) after identifying C with QC

Q = EII,T = ZII,C = ZEI, n0 = 8,

S(k) õ1(k)YXY + õ2(k)YZY

A(k) ẽ1(k)YXX + ẽ2(k)YXZ + ẽ3(k)YXI+
ẽ4(k)YZX + ẽ5(k)YZZ + ẽ6(k)YZI

Here {S(k), A(k)} = 0 implies⎧⎪⎨
⎪⎩

õ1(k)ẽ5(k) − õ2(k)ẽ2(k) = 0

õ1(k)ẽ4(k) + õ2(k)ẽ1(k) = 0

õ1(k)ẽ3(k) + õ2(k)ẽ6(k) = 0

We examine the above equation in the neighborhood of k0 by expanding k = k0 + q . On the 
curve C1 defined in 1 with d = 2, for any r = |q| �= 0,⎧⎪⎨

⎪⎩
õ1(k)ẽ5(k) = 0

õ1(k)ẽ4(k) = 0

õ1(k)ẽ3(k) = 0

Because õ1(k) > 0 it implies ẽ5(k) = ẽ4(k) = ẽ3(k) = 0. By the continuity of ẽ3,4,5(k) we con-
clude ẽ5(k) = ẽ4(k) = ẽ3(k) = 0 at r = 0, or in other words, ẽ5(k0) = ẽ4(k0) = ẽ3(k0) = 0. We 
can repeat this argument by looking at C2, which will lead to ẽ1(k0) = ẽ2(k0) = ẽ6(k0) = 0. 
Combining these results we conclude A(k0) = 0.

B.2.5. G+(Q, T−, C+), or equivalently G−(Q, T−, C+) after identifying C with QC

Q = EI,T = ZE,C = ZI, n0 = 4,
S(k) õ1(k)IX + õ2(k)IZ

A(k) 0

Since there is no A(k) =⇒ A(k0) = 0.

B.2.6. G+(Q, T−, C−), or equivalently G−(Q, T−, C−) after identifying C with QC

Q = EII,T = ZEI,C = ZIE, n0 = 8,

S(k) õ1(k)YYX + õ2(k)YYZ + õ3(k)IXI + õ4(k)IZI

A(k) ẽ1(k)Y IX + ẽ2(k)Y IZ + ẽ3(k)IXY + ẽ4(k)IZY

Here {S(k), A(k)} = 0 implies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

õ1(k)ẽ1(k) + õ2(k)ẽ4(k) = 0

õ1(k)ẽ3(k) + õ2(k)ẽ2(k) = 0

õ1(k)ẽ1(k) + õ2(k)ẽ2(k) = 0

õ3(k)ẽ2(k) − õ1(k)ẽ4(k) = 0

õ4(k)ẽ1(k) − õ2(k)ẽ3(k) = 0

õ3(k)ẽ3(k) + õ4(k)ẽ4(k) = 0
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Let’s focus on the first three equations. We examine these equations in the neighborhood of k0
by expanding k = k0 + q . On the curve C1 defined in 1 with d = 2, for any r = |q| �= 0,⎧⎪⎨

⎪⎩
õ1(k)ẽ1(k) = 0

õ1(k)ẽ3(k) = 0

õ1(k)ẽ1(k) = 0

Because õ1(k) > 0 it implies ẽ1(k) = ẽ3(k) = 0. By the continuity of ẽ1,3(k) we conclude 
ẽ1(k) = ẽ3(k) = 0 at r = 0. In other words ẽ1(k0) = ẽ3(k0) = 0. We can repeat this argument 
by looking at C2, which will lead to ẽ2(k0) = ẽ4(k0) = 0. Combining these results we conclude 
A(k0) = 0.

B.3. 3D SPNs

B.3.1. G(C−), or equivalently G(Q) after identifying C with Q

C = EI, n0 = 4,
S(k) õ1(k)YY + õ2(k)IX + õ3(k)IZ

A(k) ẽ1(k)YX + ẽ2(k)YZ + ẽ3(k)Y I + ẽ4(k)IY

Here {S(k), A(k)} = 0 implies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

õ2(k)ẽ3(k) = 0

õ3(k)ẽ3(k) = 0

õ1(k)ẽ3(k) = 0

õ2(k)ẽ1(k) + õ3(k)ẽ2(k) + õ1(k)ẽ4(k) = 0

We examine the above equation in the neighborhood of k0 by expanding k = k0 + q . On the 
curve C1 defined in 1 with d = 3, for any r = |q| �= 0,{

õ1(k)ẽ3(k) = 0

õ1(k)ẽ4(k) = 0

Because õ1(k) > 0 it implies ẽ3(k) = ẽ4(k) = 0. By the continuity of ẽ3,4(k) we conclude 
ẽ3(k) = ẽ4(k) = 0 at r = 0, or in other words, ẽ3(k0) = ẽ4(k0) = 0. We can repeat this argu-
ment by looking at C2 and C3, which will lead to ẽ1(k0) = ẽ2(k0) = 0. Combining these results, 
one gets A(k0) = 0.

B.3.2. G−(T+, C−), or equivalently G(Q, T+) after identifying C with Q

C = EII,T = ZII, n0 = 8,

S(k) õ1(k)YXY + õ2(k)YYI + õ3(k)YZY

+õ4(k)YYX + õ5(k)YYZ + õ6(k)Y IY

A(k) ẽ1(k)YXX + ẽ2(k)YXZ + ẽ3(k)YXI

+ẽ4(k)YYY + ẽ5(k)YZX + ẽ6(k)YZZ

+ẽ7(k)YZI + ẽ8(k)Y IX + ẽ9(k)Y IZ + ẽ10(k)Y II

(B.3)

Here {S(k), A(k)} = 0 implies
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẽ10(k)

⎡
⎢⎣ õ4(k)

õ5(k)

õ6(k)

⎤
⎥⎦ =

⎡
⎢⎣−ẽ6(k) −ẽ8(k) ẽ2(k)

ẽ5(k) −ẽ9(k) −ẽ1(k)

−ẽ3(k) −ẽ4(k) −ẽ7(k)

⎤
⎥⎦ ·

⎡
⎢⎣ õ1(k)

õ2(k)

õ3(k)

⎤
⎥⎦

ẽ10(k)

⎡
⎢⎣ õ1(k)

õ2(k)

õ3(k)

⎤
⎥⎦ =

⎡
⎢⎣−ẽ6(k) ẽ5(k) −ẽ3(k)

−ẽ8(k) −ẽ9(k) −ẽ4(k)

ẽ2(k) −ẽ1(k) −ẽ7(k)

⎤
⎥⎦ ·

⎡
⎢⎣ õ4(k)

õ5(k)

õ6(k)

⎤
⎥⎦

(B.4)

It’s straightforward to check that the above equations imply[
õ2

4(k) + õ2
5(k) + õ2

6(k) − õ2
1(k) − õ2

2(k) − õ2
3(k)

]
ẽ10(k) = 0

The solutions are

ẽ10(k) = 0 or
[
õ2

4(k) + õ2
5(k) + õ2

6(k) − õ2
1(k) − õ2

2(k) − õ2
3(k)

]
= 0

In the following we prove that ẽ10(k) must vanish.
The spectral symmetrised Hamiltonian h̃(k) satisfies h̃2(k) = [S(k) + A(k)]2 = w2(k)III . 

We may assume w(k) > 0 without loss of generality. In the following we show that ẽ10(k) must 
take one of the following values

{w(k),w(k)/2,0,−w(k)/2,−w(k)}
for each k. We first observe that according to equation (B.3) all tensor products in S(k) and A(k)

contain Y as the first factor. Therefore we can factor it out and write h̃(k) = Y ⊗ g(k) where 
g(k) is a 4 × 4 Hermitian matrix function. Next, we express g(k) in terms of its eigenbasis, 
i.e., g(k) = U(k)
(k)U−1(k) where U(k) is the basis transformation matrix and 
(k) is the 
diagonal matrix containing the eigenvalues. Under this basis h̃2(k) = I ⊗ U(k)
2(k)U−1(k). 
Since the spectral symmetrization condition requires h̃2(k) = w2(k)III , it follows that

U(k)
2(k)U−1(k) = w2(k)II.

This implies the eigenvalues of 
2(k) are four-fold degenerate and are equal to w2(k). Thus the 
diagonal elements of 
(k) are ±w(k). According to equation (B.3)

ẽ10(k) = 1

8
Tr[(Y II)h̃(k)] = 1

4
Tr[
(k)].

Because the diagonal elements of 
(k) are ±w(k), ẽ10(k) must be equal to one of the five 
possible values

{w(k),w(k)/2,0,−w(k)/2,−w(k)} (B.5)

for each k.
Moreover, because ẽ10(k) is a analytic function of k and w(k) > 0 away from k = 0, ẽ10(k)

can not “switch track”, i.e., it must be equal to one of above five possible functions throughout 
the Brillouin zone, away from k = 0.

Since h̃(k) → ∑d
j=1 kj�j as k → 0, it follows that w(k) → |k| as k → 0. On the other hand, 

since ẽ10(k) is an even function of k, it must vanishes as an even power in k as k → 0, hence

|ẽ10(k)| << w(k) as k → 0. (B.6)

The only choice in equation (B.5) that is consistent with equation (B.6) is
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ẽ10(k) = 0. (B.7)

Now we may set ẽ10(k) = 0 in the first three equations of equation (B.4) and examine these 
equations in the neighborhood of k0 by expanding k = k0 + q . On the curve C1 defined in 1 with 
d = 3, for any r = |q| �= 0,

⎧⎪⎨
⎪⎩

−õ1(k)ẽ6(k) = 0

õ1(k)ẽ5(k) = 0

−õ1(k)ẽ3(k) = 0

Because õ1(k) > 0 it implies ẽ3(k) = ẽ5(k) = ẽ6(k) = 0. By the continuity of ẽ3,5,6(k) we con-
clude ẽ3(k) = ẽ5(k) = ẽ6(k) = 0 at r = 0, or in other words, ẽ3(k0) = ẽ5(k0) = ẽ6(k0) = 0. We 
can repeat this argument by looking at C2 and C3, which will lead to ẽ4(k0) = ẽ8(k0) = ẽ9(k0) =
0 and ẽ1(k0) = ẽ2(k0) = ẽ7(k0) = 0. Combining these results, one gets A(k0) = 0.

B.3.3. G−(T−, C−), or equivalently G(Q, T−) after identifying C with Q

C = EI,T = ZE, n0 = 4,
S(k) õ1(k)YY + õ2(k)IX + õ3(k)IZ

A(k) ẽ1(k)Y I

Here {S(k), A(k)} = 0 implies

⎧⎪⎨
⎪⎩

õ1(k)ẽ1(k) = 0

õ2(k)ẽ1(k) = 0

õ3(k)ẽ1(k) = 0

We examine the above equations in the neighborhood of k0 by expanding k = k0 + q . On the 
curve C1 defined in 1 with d = 3, for any r = |q| �= 0,

õ1(k)ẽ1(k) = 0

Because õ1(k) > 0 it implies ẽ1(k) = 0. By the continuity of ẽ1(k) we conclude ẽ1(k) = 0 at 
r = 0, or in other words, ẽ1(k0) = 0. This implies A(k0) = 0.

B.3.4. G(Q, C−)

Q = EII,C = ZEI, n0 = 8,

S(k) õ1(k)YXY + õ2(k)YZY + õ3(k)IYY

+õ4(k)IIX + õ5(k)IIZ

A(k) ẽ1(k)YXX + ẽ2(k)YXZ + ẽ3(k)YXI

+ẽ4(k)YZX + ẽ5(k)YZZ + ẽ6(k)YZI

+ẽ (k)IYX + ẽ (k)IYZ + ẽ (k)IY I + ẽ (k)IIY

(B.8)
7 8 9 10
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Here {S(k), A(k)} = 0 implies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

õ1(k)ẽ3(k) + õ2(k)ẽ6(k) + õ3(k)ẽ9(k) = 0⎡
⎢⎣ 0 −õ3(k) õ2(k)

õ3(k) 0 −õ1(k)

−õ2(k) õ1(k) 0

⎤
⎥⎦

⎡
⎢⎣ ẽ1(k)

ẽ4(k)

ẽ7(k)

⎤
⎥⎦ = õ5(k)

⎡
⎢⎣ ẽ3(k)

ẽ6(k)

ẽ9(k)

⎤
⎥⎦

⎡
⎢⎣ 0 −õ3(k) õ2(k)

õ3(k) 0 −õ1(k)

−õ2(k) õ1(k) 0

⎤
⎥⎦

⎡
⎢⎣ ẽ2(k)

ẽ5(k)

ẽ8(k)

⎤
⎥⎦ = −õ4(k)

⎡
⎢⎣ ẽ3(k)

ẽ6(k)

ẽ9(k)

⎤
⎥⎦

⎡
⎢⎣ õ1(k)

õ2(k)

õ3(k)

⎤
⎥⎦ ẽ10(k) = õ4(k)

⎡
⎢⎣ ẽ1(k)

ẽ4(k)

ẽ7(k)

⎤
⎥⎦ + õ5(k)

⎡
⎢⎣ ẽ2(k)

ẽ5(k)

ẽ8(k)

⎤
⎥⎦

(B.9)

We examine the above equations in the neighborhood of k0 by expanding k = k0 + q . On the 
curve C1 defined in 1 with d = 3, for any r = |q| �= 0, the first equation gives

õ1(k)ẽ3(k) = 0

which implies ẽ3(k) = 0. By the continuity of ẽ3(k) we conclude ẽ3(k0) = 0. We can repeat this 
argument by looking at C2 and C3, which lead to ẽ6(k0) = ẽ9(k0) = 0.

By theorem 1 of Appendix C, for any radius |q| = r , we can find a non-self-intersecting closed 
loop γ5, such that (i) õ5(k) = 0 for k ∈ γ5, (ii) γ5 splits the sphere |q| = r into two equal-area 
regions, and (iii) the antipodal point of any k ∈ γ5 is also on γ5. Such γ5 loops for different 
radius r form a surface S5 which can be arbitrarily close to r = 0 (i.e. k0). On S5 the second to 
the fourth lines of equation (B.9) gives⎡

⎣ 0 −õ3(k) õ2(k)

õ3(k) 0 −õ1(k)

−õ2(k) õ1(k) 0

⎤
⎦

⎡
⎣ ẽ1(k)

ẽ4(k)

ẽ7(k)

⎤
⎦ = 0

Note that the 3 ×3 matrix on the left hand side is rank 2 as long as õ1(k)2 + õ2(k)2 + õ3(k)2 �=
0, which is true for in the neighborhood of k0. This gives the general solution⎡

⎣ ẽ1(k)

ẽ4(k)

ẽ7(k)

⎤
⎦ = a(k)

⎡
⎣ õ1(k)

õ2(k)

õ3(k)

⎤
⎦ (B.10)

Note that as k → k0 we can have the following two possibilities: (i) a(k) is non-singular, in 
which case (ẽ1(k), ẽ4(k), ẽ7(k)) → 0 as k → k0, or (ii) a(k) diverges and it compensates for the 
vanishing magnitude of (õ1(k), õ2(k), õ3(k)).

We first consider possibility (ii). In this case as k → k0, (ẽ1(k), ẽ4(k), ẽ7(k)) can be non-zero. 
However, its direction must be parallel (or antiparallel) to

n̂(k) = (õ1(k), õ2(k), õ3(k))/|(õ1(k), õ2(k), õ3(k))|.
Let’s look at the pair of antipodal points on a γ5 loop at an infinitesimal radius |q| = r . By 
continuity of (õ1(k), õ2(k), õ3(k)) and n̂(k) must change continuously on γ5. This implies 
n̂(k) · (ẽ1(k), ẽ4(k), ẽ7(k)) changes continuously on γ5. Since n̂(k) is odd and ẽ1,4,7(k) are even, 
n̂(k) · (ẽ1(k), ẽ4(k), ẽ7(k)) has opposite sign among antipodal points on γ5. Thus it must vanish 
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at some intermediate point k′ on γ5. Since (ẽ1(k), ẽ4(k), ẽ7(k)) ‖ n̂(k) on γ5 by (B.10), thus 
(ẽ1(k

′), ẽ4(k
′), ẽ7(k

′)) = 0. By connecting such point for different r , we arrive at a continuous 
path on which (ẽ1(k), ẽ4(k), ẽ7(k)) = 0. By continuity we have

(ẽ1(k0), ẽ4(k0), ẽ7(k0)) = 0

We can repeat the same arguments for the surface corresponds to õ4(k) = 0. This leads to
(ẽ2(k0), ẽ5(k0), ẽ8(k0)) = 0.

Moreover, by the theorem 2 of Appendix C, on the sphere correspond to any r = |q|, one can 
find a point k such that both õ4(k) and õ5(k) are zero. Such points for different r form a curve 
which approaches k0 as r → 0. On the curve, the last of equation (B.9) gives⎡

⎣ õ1(k)

õ2(k)

õ3(k)

⎤
⎦ ẽ10(k) = 0

Since on this curve since õ1(k), õ2(k), õ3(k) cannot simultaneously be zero, it follows that 
ẽ10(k) = 0 on the curve. Due to the continuity of ẽ10(k) we conclude that ẽ10(k0) = 0. Combin-
ing all of the above results, we conclude A(k0) = 0.

B.3.5. G+(Q, T−, C−)

Q = EII,T = ZEI,C = ZIE, n0 = 8,

S(k) õ1(k)YYX + õ2(k)YYZ + õ3(k)IXI + õ4(k)IZI

A(k) ẽ1(k)Y IX + ẽ2(k)Y IZ + ẽ3(k)IXY + ẽ4(k)IZY
(B.11)

Here {S(k), A(k)} = 0 implies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

õ2(k)ẽ4(k) + õ3(k)ẽ1(k) = 0

õ1(k)ẽ4(k) − õ3(k)ẽ2(k) = 0

õ1(k)ẽ1(k) + õ2(k)ẽ2(k) = 0

õ2(k)ẽ3(k) − õ4(k)ẽ1(k) = 0

õ1(k)ẽ3(k) + õ4(k)ẽ2(k) = 0

õ3(k)ẽ3(k) + õ4(k)ẽ4(k) = 0

(B.12)

We examine the above equations in the neighborhood of k0 by expanding k = k0 + q . On 
the curve C1 defined in 1 with d = 3, for any r = |q| �= 0, the second and third lines of equa-
tion (B.12) give{

õ1(k)ẽ4(k) = 0

õ1(k)ẽ1(k) = 0

which implies ẽ1(k) = ẽ4(k) = 0. By the continuity of ẽ1,4(k) we conclude ẽ1(k0) = ẽ4(k0) = 0. 
We can repeat this argument by looking at C2 and C3, which will lead to ẽ2(k0) = 0.

It remains to prove that ẽ3(k0) = 0. By the theorem 1 in Appendix C, for any radius r = |k|
one can find a non-self-intersecting closed loop γ4 such that õ4(k0) = 0. As a function of r all 
such loops span surface which approach k0 as r → 0. Everywhere on the surface, the 4-6 lines 
of equation (B.12) give
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⎧⎪⎨
⎪⎩

õ2(k)ẽ3(k) = 0

õ1(k)ẽ3(k) = 0

õ3(k)ẽ3(k) = 0

Because (õ1(k), õ2(k), õ3(k)) has non-trivial mapping degree around k0, they cannot be si-
multaneously zero. It follows that ẽ3(k) = 0 everywhere on the surface. By the continuity of 
ẽ3(k), we conclude that ẽ3(k0) = 0. Combining these results, one gets A(k0) = 0.

Appendix C. Odd continuous functions on S2

In this appendix, we prove some properties for odd continuous functions obeying o(−q) =
−o(q), on a two-sphere S2 formed by |q| = constant.

C.1. Theorem 1

Theorem 1 For any continuous odd function o(q) defined on a sphere formed by |q| = r , 
there exists a non-self intersecting closed loop γo on the sphere, such that (i) o(q) = 0 for 
q ∈ γo, (ii) the curve separates the sphere into two equal-area regions, and (iii) the antipodal 
point of any point q on the loop also belongs to the loop.

Proof: We will prove it by explicitly constructing γo. If o(q) = 0 everywhere on the sphere, 
any arbitrary great circle on S2 can be used for γo. Thus the non-trivial case must have at least 
one point, q∗, such that o(q∗) �= 0. Without loss of generality, let’s assume o(q∗) > 0. Due to the 
oddness, o(−q∗) < 0. Now consider a geodesic (or a great arc) connecting q∗ and −q∗. Owing 
to the continuity of o(q), the function must change sign an odd number of times as the geodesic 
is traversed. The points at which the sign changes take place must correspond to o(q) = 0. They 
can either be discrete points or form a continuous segment on the great arc. In either case we can 
choose a middle point (which can either be the mid point of the middle zero-segment, or just the 
mid point among the discrete points where the sign change takes place). We then rotate the great 
arc through the whole 2π angle. As a function of angle, the aforementioned mid points span the 
loop γo. The loop can not self-intersect because we only choose a single point on every great arc.

Moreover, due to the oddness of o(q), the mid point qm chosen for a given great arc must 
be antipodal to −qm chosen on the complementary great arc (a great arc and its complementary 
form a great circle). This guarantees that the loop γo will separate the sphere into two regions 
with equal areas. By construction, the antipodal point of any point q on the γo is also on the loop. 
Q.E.D.

C.2. Theorem 2

Theorem 2 For any two continuous odd functions o1(q), o2(q) defined on a sphere |q| = r , 
there exists at least a point q∗∗ such that o1(q∗∗) = o2(q∗∗) = 0.

Proof: Assuming the opposite, namely, there is no point q at which o1(q) = o2(q) = 0. For 
these two functions o1(q), o2(q), we can use theorem 1 to find the non-self-intersecting closed 
loops γ1 and γ2 which separately divide the sphere into two equal-area regions, and o1(q) = 0
for q ∈ γ1 and o2(q) = 0 for q ∈ γ2. γ1 and γ2 must not intersect each other, otherwise the 
intersection will satisfy o1(q) = o2(q) = 0. Thus, one loop must be totally enclosed by the other 
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loop, which contradicts the statement that they separately split the sphere into two equal-area 
regions. Q.E.D.
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