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Submitted to ASCE Journal of Engineering Mechanics

Optimal Design with Probabilistic Objective and Constraints

Johannes O. Royset1, Associate Member, ASCE

Armen Der Kiureghian2, Member, ASCE

and Elijah Polak3

ABSTRACT

Significant challenges are associated with solving optimal structural design problems

involving the failure probability in the objective and constraint functions. In this paper, we

develop gradient-based optimization algorithms for estimating the solution of three classes

of such problems in the case of continuous design variables. Our approach is based on

a sequence of approximating design problems, which is constructed and then solved by a

semi-infinite optimization algorithm. The construction consists of two steps: First, the

failure probability terms in the objective function are replaced by auxiliary variables resulting

in a simplified objective function. The auxiliary variables are determined automatically

by the optimization algorithm. Second, the failure probability constraints are replaced by

a parameterized first-order approximation. The parameter values are determined in an

adaptive manner based on separate estimations of the failure probability. Any computational

reliability method, including FORM, SORM and Monte Carlo simulation, can be used for

this purpose. After repeatedly solving the approximating problem, an approximate solution

of the original design problem is found, which satisfies the failure probability constraints at a

precision level corresponding to the selected reliability method. The approach is illustrated
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by a series of examples involving optimal design and maintenance planning of a reinforced

concrete bridge girder.

Keywords: Reliability-based optimal design, optimal maintenance strategies, optimization

algorithms, semi-infinite optimization, successive approximations.

INTRODUCTION

Uncertainty, feasibility, and optimality are major considerations in structural design.

Uncertainty, arising from randomness in structural materials and applied loads as well as from

errors in behavioral models, is inevitable and must be properly accounted to assure safety and

reliability. Feasibility is achieved when a design satisfies practical and codified constraints,

and hence is an essential requirement. Optimality is desirable in order to maximize benefits

and make effective use of resources. Thus, optimal design under uncertainty, which also

addresses feasibility, is a topic of significant practical interest in structural engineering. Due

to the challenges present in both probabilistic analysis and optimal design of structures,

the combined problem poses significant difficulties as well as opportunities for research and

innovation.

The theory of structural reliability (see, e.g., Ditlevsen and Madsen 1996) leads to a

general but mathematically problematic definition of the failure probability of a structure.

Specifically, the failure probability is usually expensive to estimate and there is no simple

expression for its gradient with respect to design variables. This situation renders standard

gradient-based nonlinear programming algorithms, such as NLPQL (Schittkowski 1985),

LANCELOT (Conn et al. 1992), and NPSOL (Gill et al. 1998) inapplicable for the solution

of optimization problems involving the failure probability. In an effort to construct alter-

native algorithms, a large number of researchers have derived theory and/or heuristics for

various optimization problems involving the failure probability. In the following, some of the

most important results are summarized. See Royset et al. (2002) for a more comprehensive

review.

Gradient-free optimization algorithms are theoretically applicable to most optimal design
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problems with failure probabilities in the objective function and/or as constraints (e.g., Itoh

and Liu 1999, Nakamura et al. 2000, and Beck et al. 1999). However, such algorithms tend to

be computationally expensive and impractical for problems with continuous design variables.

This is particularly the case when the problems involve functions that are costly to evaluate

and have more than a few design variables. On the other hand, gradient-free algorithms

can be efficient when applied to discrete optimization problems, but such problems are not

discussed in this paper.

Optimal design problems can be dealt with by using smooth response surfaces (e.g.,

Gasser and Schueller 1998, Igusa and Wan 2003) or surrogate functions (e.g., Torczon and

Trosset 1998, Eldred et al. 2002) combined with standard nonlinear programming algorithms.

These approaches can be numerically robust, but their accuracy and efficiency strongly

depend on the quality of the approximating surfaces and functions and the computational

cost of establishing them.

Other attempts to solve optimal design problems with probabilistic functions employ the

First-Order Reliability Method (FORM) (see Ditlevsen and Madsen (1996) and the next

section). In Enevoldsen and Sorensen (1994), the failure probability is expressed in terms

of the reliability index obtained from FORM analysis. However, the reliability index may

not have continuous gradients with respect to the design variables even for simple cases

(see Royset et al. (2004) for an example) and, hence, in such an approach gradient-based

optimization algorithms are not guaranteed to obtain a solution. In Madsen and Friis Hansen

(1992) and Kuschel and Rackwitz (2000), the failure probability is replaced by the optimality

conditions associated with the design point. This eliminates the need for computing the

reliability index during the design optimization. However, the approach requires second-

order sensitivities of the structural response, which are rarely available, and it may also lead

to ill-conditioned optimization problems (see Royset et al. (2001b) for an explanation). For

the use of the FORM approximation in multi-disciplinary design optimization, see Agarwal

et al. (2003).
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The approaches developed by Kirjner-Neto et al. (1998) and Royset et al. (2001a) are

also based on first-order approximations. However, these approaches employ a reformulation

of the problem, which avoids the need for the gradient of the reliability index. Furthermore,

by adjusting certain parameters, these formulations lead to approximate optimal design

solutions for higher-order reliability methods, e.g., the Second-Order Reliability Method

(SORM) or the Monte Carlo Simulation (MCS) method. The reformulated problem is a

semi-infinite optimization problem, for which several well known algorithms exist (see Polak

1997 Chapter 3.5). By definition, problems involving a finite number of design variables

and an infinite number of constraints are called semi-infinite optimization problems (Polak

1997 Chapter 3). For example, the optimization problem to minimize c(x1, x2, ..., xn) subject

to the constraints g(x1, x2, ..., xn, u) ≤ 0 for all u ∈ [−1, 1] is semi-infinite. A formulation

similar to that of Kirjner-Neto et al. (1998) was derived independently by Tu and Choi

(1997) and Tu et al. (1999). However, in these references the connection to semi-infinite

optimization was not made clear and an efficient algorithm was not proposed.

Kirjner-Neto et al. (1998) and Royset et al. (2001a) address optimization problems

involving failure probabilities in the objective or constraint set definitions. Royset et al.

(2001b) contains an initial study on problems with failure probabilities in both the objective

and the constraint set definitions. This is the topic of the present study. However, we follow

a different path from the one in Royset et al. (2001b). The approach in this paper builds

on the ideas in Kirjner-Neto et al. (1998) and Royset et al. (2001a).

Many researchers have studied applications of reliability-based optimal design in various

disciplinary areas. In Lin and Frangopol (1996) the focus is on reinforced concrete girders.

Mahadevan (1992) and Liu and Moses (1992) address frame and truss structures, respectively.

An overview of applications can be found in Thoft-Christensen (1991).

The objective of this paper is to present new gradient-based algorithms for reliability-

based optimal design for three classes of problems involving two-state structural components

and systems. Specifically, we consider the important case with component or series system
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failure probabilities appearing in both the objective and the constraint set. Through a series

of reformulations, we construct approximating problems which can be solved by semi-infinite

optimization algorithms. By solving these approximating problems, we obtain a design that

is guaranteed to satisfy structural and failure probability constraints and is approximately

optimal. An important advantage of the approach is that the reliability and optimization

calculations are decoupled, thus allowing flexibility in the choice of the method for computing

failure probabilities.

The following section gives an overview of the necessary elements in structural reliability

theory. This is followed by the definition of the optimal design problems considered. The

main part of the paper consists of two sections with derivations of optimization algorithms.

The paper ends with a comprehensive set of numerical examples from the area of highway

bridge design and maintenance.

ELEMENTS OF STRUCTURAL RELIABILITY

In accordance with Ditlevsen and Madsen (1996), we express the reliability of a two-

state structure by means of a time-invariant probabilistic model defined in terms of an m-

dimensional vector of random variables V. Let x be an n-dimensional vector of deterministic

design variables, e.g., member sizes, maintenance times, or parameters in the distribution

of V. The state of the structure is defined in terms of one or more real-valued limit-state

functions Gk(x,v), k ∈ K = {1, 2, ..., K}, where v is a realization of the random vector V.

By convention, each Gk(x,v) is formulated such that Gk(x,v) ≤ 0 describes the failure of

the structure with respect to a specific performance requirement.

Several computational reliability methods require a bijective transformation of realiza-

tions v of the random vector V into realizations u of a standard normal random vector U.

Such transformations can be defined under weak assumptions. For a given design vector x,

let u = Tx(v) represent this transformation. Replacing v by T−1
x (u) defines the equivalent

limit-state functions gk(x,u) = Gk(x,T−1
x (u)).

A limit-state function gk(x,u), together with the rule that gk(x,u) ≤ 0 defines failure,
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is referred to as a component. A component may or may not be associated with a physical

member of the structure. For structural reliability problems of interest here, gk(x,0) > 0 for

all realistic designs.

We define the failure probability of the k-th component by

pk(x) =

∫

Ωk(x)

ϕ(u) du, (1)

where ϕ(u) is the m-dimensional standard normal probability density function and

Ωk(x) = {u ∈ IRm | gk(x,u) ≤ 0} (2)

is the failure domain. The boundary of Ωk(x) is referred to as the limit-state surface. For a

given design x, we define the critical component to be the component with the largest failure

probability pk(x).

A collection of components, together with a rule defining combinations of component

failures as system failure, is referred to as a structural system. The system failure probability

of the structure is defined by

p(x) =

∫

Ω(x)

ϕ(u) du, (3)

where Ω(x) is the failure domain for the system. We say the probabilistic model of the

structure is a series structural system, whenever the failure domain is given by

Ω(x) =
⋃

k∈K

{u ∈ IRm | gk(x,u) ≤ 0}. (4)

This paper deals exclusively with series structural systems. It is well known that for such sys-

tems maxk∈K pk(x) ≤ p(x) ≤ ∑
k∈K pk(x). Thus, the critical component makes a dominant

contribution to the series system failure probability.

A FORM approximation to pk(x) is obtained by linearizing the limit-state function

gk(x,u) with respect to u at the point on the limit-state surface {u ∈ IRm | gk(x,u) = 0}
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closest to the origin. Let u∗k(x) be such a closest point, i.e.,

u∗k(x) ∈ arg min
u∈IRm

{‖u‖ | gk(x,u) = 0} . (5)

Such closest points are referred to as design points. It can be shown that the FORM ap-

proximation of the component failure probability takes the form

pk(x) ≈ Φ(−βk(x)), (6)

where βk(x) = ‖u∗k(x)‖ is the reliability index and Φ(·) is the standard normal cumulative

distribution function. Equality holds in (6) when gk(x,u) is affine in u, i.e., gk(x,u) =

b0,k(x)+bk(x)Tu for some positive-valued function b0,k(x) and vector-valued function bk(x).

Other reliability approximation methods include SORM, MCS, response surface and various

importance sampling methods (Ditlevsen and Madsen 1996). In this paper, in addition to

FORM, we make use of MCS.

PROBLEM STATEMENT

This paper addresses three broad classes of reliability-based optimal structural design

problems frequently arising in practice. The three problems are denoted P3, P3,sys and P3,por

and are defined below. These problems are generalizations of the reliability-based optimal

design problems P1, P1,sys, P2 and P2,sys defined and solved in Royset et al. (2001a).

P3 is defined as

P3 min
x∈IRn

{
c0(x) +

K∑

k=1

ck(x)pk(x)

∣∣∣∣∣ pk(x) ≤ p̂k, k ∈ K, x ∈ X

}
, (7)

where x ∈ IRn is the design vector, X = {x ∈ IRn | fj(x) ≤ 0, j ∈ q} is a deterministic

constraint set, fj(x), j ∈ q = {1, 2, ..., q}, are real-valued deterministic constraint functions,

ck(x), k ∈ {0, 1, ..., K}, are real-valued cost functions, and the values p̂k, k ∈ K, are pre-

defined acceptable upper bounds on the component failure probabilities.
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Depending on the form of the cost functions ck(x), k ∈ {0, 1, ..., K}, P3 and its objective

function c0(x) +
∑K

k=1 ck(x)pk(x) can be interpreted in various ways. For example, if c0(x)

is the initial design cost and ck(x) = 0, k ∈ K, then P3 is the problem of minimizing the

initial cost. When ck(x) is the failure cost of the k-th component and the cost of no failure

is zero, the expected failure cost of the k-th component becomes ck(x)pk(x) + 0(1− pk(x)).

Hence, when the expected failure costs of the components are additive, the objective function

c0(x) +
∑K

k=1 ck(x)pk(x) is the initial cost plus the expected failure cost. Consequently, in

this case P3 can be interpreted as the problem to minimize the initial cost plus the expected

failure cost, subject to reliability and deterministic constraints. Of course the initial cost,

c0(x), and the failure costs, ck(x), k ∈ K, could themselves be functions of other random

variables, such as uncertain costs of materials and labor. In such cases, we define these cost

functions to be expected values over the distributions of these random variables. Note that

these expectations can be computed outside our optimization algorithm.

P3,sys is defined as

P3,sys min
x∈IRn

{c0(x) + c(x)p(x) | p(x) ≤ p̂, x ∈ X} , (8)

where p(x) is the system failure probability as defined in (3) and (4), c(x) is a cost function,

and p̂ is a pre-defined acceptable upper bound on the system failure probability. As in the

case of P3, P3,sys can be interpreted in various ways depending on the form of the cost

functions. For example, if c(x) is the cost of system failure and the cost of no system

failure is zero, then the objective function c0(x) + c(x)p(x) can be interpreted as the initial

cost plus the expected cost of system failure. Consequently, in this case P3,sys defines the

problem to minimize the initial cost plus the expected cost of system failure, subject to

system reliability and deterministic constraints. Practical examples of P3,sys are found in

the section with numerical examples below.

The problem P3,sys can be generalized to include more than one structural system. Con-

sider the simultaneous design of L structures, where x ∈ IRn is the vector containing the

8



design variables for all the structures. An example of an optimization problem involving

several structures would be the design of retrofit strategies for a collection of bridges. Let

each structure be modelled as a series system and the corresponding failure probability

p(l)(x), l ∈ L = {1, ..., L}, of the l-th structure be defined by (3) and (4). The k-th limit-

state function of the l-th structure is denoted g
(l)
k (x,u), k ∈ Kl = {1, ..., Kl}, l ∈ L. We

refer to such collections of structural systems as portfolios of structures. The corresponding

design optimization problem, denoted P3,por, is defined by

P3,por min
x∈IRn

{
L∑

l=1

c
(l)
0 (x) +

L∑

l=1

c(l)(x)p(l)(x)

∣∣∣∣∣ p(l)(x) ≤ p̂(l), l ∈ L, x ∈ X

}
, (9)

where c
(l)
0 (x) and c(l)(x), l ∈ L, are cost functions associated the l-th structure and p̂(l), l ∈ L,

are predefined acceptable upper bounds. As for the previous problems, the cost functions in

P3,por can be interpreted in various ways to reflect different decision making situations. In

the following, we focus primarily on P3 and P3,por. The solution strategy for P3,sys follows

as a special case of the one for P3,por with L = 1.

The problems P3, P3,sys, and P3,por involve the failure probability, and hence, standard

nonlinear programming algorithms are inapplicable for the following two reasons: (i) p(x)

and pk(x) cannot be computed exactly and, hence, must be estimated, and (ii) there are no

simple expressions for the gradients of p(x) and pk(x) or their approximations. For example,

the failure probability approximations based on FORM and SORM may not be continuously

differentiable because the design point may make a jump as a design parameter is varied.

Consequently, the use of a standard nonlinear programming algorithm for solving the above

problems, implemented in some ad-hoc manner, is not guaranteed to find a solution.

ALGORITHM FOR P3

Since P3 cannot generally be solved using standard nonlinear programming algorithms,

we aim to construct an approximating problem for P3 that can be solved by some other

optimization algorithm. Our derivation consists of two steps, including the definition of one
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intermediate optimization problem. The intermediate problem is obtained by replacing the

failure probabilities in the objective function of P3 with variables. The variables are included

in an augmented design vector and their values are automatically determined as part of the

minimization.

Let x = (x, a) ∈ IRn+K be the augmented design vector, where x ∈ IRn is the original de-

sign vector and a = (a1, ..., aK) ∈ IRK is a vector of K variables. We define the intermediate

optimization problem as

P3 min
(x,a)∈IRn+K

{
c0(x) +

K∑

k=1

ck(x)ak

∣∣∣∣∣ pk(x) ≤ ak, 0 ≤ ak ≤ p̂k, k ∈ K, x ∈ X

}
. (10)

The equivalence between P3 and P3 is clear from the following argument, where we assume

that ck(x) > 0 for all x ∈ X. Suppose that at least one of the constraints pk(x) ≤ ak, k ∈ K,

is inactive, i.e., pk∗(x) < ak∗ for some k∗ ∈ K. Then, because ck∗(x) > 0, the objective

function in P3 can be reduced in value by decreasing ak∗ without violating the constraints.

Hence, every local and global optimal solution of P3 must have all the constraints pk(x) ≤
ak, k ∈ K, active, i.e., pk(x) = ak for all k ∈ K. When all the constraints pk(x) ≤ ak, k ∈ K,

are active, the objective functions in P3 and P3 are identical. In addition, the constraints

in P3 allow the failure probabilities pk(x) to vary between 0 and p̂k, which is exactly the

constraints in P3. Consequently, P3 and P3 have identical solutions. A formal statement

with proof can be found in Appendix A. Since ck(x) is a cost, the assumption that ck(x) > 0

for all x ∈ X is usually satisfied. One exception occurs when ck(x) = 0 for some k for all

designs. In this case, the corresponding auxiliary variables ak become superfluous and the

reformulation of P3 takes the form

min
(x,a)∈IRn+K

{
c0(x) +

∑

k∈K∗
ck(x)ak

∣∣∣∣∣ pk(x) ≤ ak, 0 ≤ ak ≤ p̂k, k ∈ K∗,

pk(x) ≤ p̂k, k ∈ K∗∗, x ∈ X

}
,

(11)
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where K∗ are those k ∈ K with ck(x) > 0 for all x ∈ X and K∗∗ are those k ∈ K with

ck(x) = 0 for all designs. The equivalence between (11) and P3 can be shown using the

same arguments as in the case of P3 and P3, and the following derivations hold with trivial

modifications. For simplicity in the following presentation, we focus on P3 and not (11).

Since the failure probabilities appear only as constraints and not in the objective function

of P3, P3 is simpler to analyze than P3. However, P3 still involves failure probabilities and,

hence, we proceed by constructing an approximating optimization problem for P3 (and P3).

For any vector of parameters t = (t1, ..., tK) ∈ IRK , with positive components, we define

P3,t

min
x=(x,a)∈IRn+K

{
c0(x) +

K∑

k=1

ck(x)ak

∣∣∣∣∣ ψk,tk(x) ≤ 0, 0 ≤ ak ≤ p̂k, k ∈ K, x ∈ X

}
, (12)

where

ψk,tk(x) = max
u∈IB(0,1)

{−gk(x,−Φ−1(ak)tku)}, k ∈ K, (13a)

with Φ−1(·) being the inverse of the standard normal cumulative distribution function and,

for any r > 0, IB(0, r) = {u ∈ IRm | ‖u‖ ≤ r} being all the points in a ball of radius

r. Since P3,t involves a finite number of design variables (x1, x2, ..., xn) and an infinite

number of constraints (−gk(x,−Φ−1(ak)tku) ≤ 0 for all u ∈ IB(0, 1), etc.), P3,t is a semi-

infinite optimization problem. Such optimization problems are computationally tractable

and can be solved by well-tested and convergent semi-infinite optimization algorithms (Polak

1997 Chapter 3.5). Note that in the approximating problem P3,t, the failure probability

constraints are replaced by constraints on the functions ψk,tk(x). The relation between the

two sets of constraints are described in the following.

Using a linear transformation in the radial direction of the u-space and the relation

between minimization and maximization, we see that

ψk,tk(x) = − min
u∈IB(0,−Φ−1(ak)tk)

gk(x,u). (13b)
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Note that −Φ−1(ak) > 0 because ak ≤ p̂k and p̂k is assumed to be less than 0.5. Suppose

for now that tk = 1. If ψk,1((x, a)) ≤ 0, then by (13b), the limit-state function must be non-

negative for all realizations u in a ball of radius −Φ−1(ak). In view of (5), this effectively

implies that the distance from the origin to the closest point on the limit-state surface, i.e.,

the reliability index, is equal to or greater than the radius of the ball, i.e., βk(x) ≥ −Φ−1(ak).

Hence, in view of (6), we have for the FORM approximation of the k-th component failure

probability pk(x) ≈ Φ(−βk(x)) ≤ ak. The consequence of this finding is twofold: (a) if the

limit-state functions gk(x,u), k ∈ K, are affine in their second arguments, then the solutions

of P3,t with tk = 1, k ∈ K, are identical to the solutions of P3 and P3. Clearly, limit-state

functions are rarely affine in practice, but this result motivates our approach. (In fact, affine

limit-state functions simplify (7) to a standard nonlinear program.) (b) If the limit-state

functions gk(x,u), k ∈ K, are nonlinear in their second arguments, then the solution of

P3,t with tk = 1, k ∈ K, is identical to the solution of P3 and P3 with the probability

terms replaced with their FORM approximations. Consideration for higher-order reliability

approximations, e.g., SORM, MCS, can be made by adjusting the parameters tk. Specifi-

cally, if for a particular solution of P3,t the FORM approximation overestimates the failure

probability pk(x), the parameter tk is adjusted downward, whereas if it underestimates the

parameter tk is adjusted upward. The solution of P3,t with the adjusted parameters must

then be checked with the selected higher-order reliability method to make sure that the prob-

ability constraints are all satisfied. Further adjustments in the parameters tk may be effected

to improve the approximation. A specific rule for these iterative adjustments is described in

Step 3 of the following algorithm:

Algorithm 1. (For P3)

Data. Provide an initial design x0 ∈ IRn and a sequence of strictly increasing integers

N0, N1, N3, ....

Step 0. Set i = 0, a0 = (p̂1, ..., p̂K), t0 = (1, ..., 1) ∈ IRK , x0 = (x0, a0).
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Step 1. Set xi+1 = (xi+1, ai+1) to be the last iterate after Ni iterations of a semi-infinite

optimization algorithm on the problem P3,ti
with initialization xi.

Step 2. Compute “appropriate estimates” (see below) p̃k(xi+1) of pk(xi+1) for all k ∈ K. If

probability estimates are to be based on the FORM approximation, Stop. Otherwise,

go to Step 3.

Step 3. For k ∈ K, set

(tk)i+1 =
Φ−1((ak)i+1)

Φ−1(p̃k(xi+1))
(tk)i, (14a)

where (ak)i+1 is the k-th component of ai+1.

Step 4. Replace i by i + 1 and go to Step 1.

With the phrase “appropriate estimate” in Step 2 of Algorithm 1, we imply that the

user must select a suitable computational reliability method, e.g., FORM, SORM, MCS

(the latter with a specified precision level, e.g., a maximum 5% coefficient of variation,

c.o.v., of the estimate). This selection depends on how precisely the user wishes to compute

the probability terms in P3. For example, if the user is satisfied with SORM probability

estimates, then p̃k(x) in Step 2 must be computed by means of the SORM. Similarly, if the

user wishes to use 5%-c.o.v. probability estimates by MCS, then p̃k(x) in Step 2 must be

computed by means of MCS with a 5%-c.o.v. Note that if the FORM estimate is acceptable

to the user, then Algorithm 1 stops at Step 2.

Algorithm 1 starts out by solving P3,t0 with t0 = 1. This yields a “first-order” estimate

x1 of the optimal design in P3 (and values of the auxiliary variables a1). Then, the failure

probabilities pk(x1), k ∈ K, are estimated using any computational reliability method found

appropriate for the given application and precision requirements. Using this estimate, Step

3 adjusts tk so that, hopefully, the next iteration (x2, a2) satisfies p̃k(x2) = (ak)2 ≤ p̂k. If this

is not satisfied, tk is adjusted again at that time. As Algorithm 1 progresses, the relations

p̃k(xi) = (ak)i ≤ p̂k tend to be satisfied more and more accurately due to the adjustments
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of tk. It can be shown that for tk ≥ −
√

χ−1(1− p̂k)/Φ
−1(p̂k), where χ−1(·) is the inverse of

the chi-square cumulative probability distribution with m degrees of freedom, every feasible

design of P3,t is also feasible for P3. Hence, tk will not be adjusted upwards indefinitely and

the failure probability constraints can be guaranteed to be satisfied.

The motivation behind the rule in (14a) is related to ψk,tk(x) (see (13b)): if p̃k(xi) > (ak)i,

then the constraint ψk,(tk)i
(xi) ≤ 0 allows the limit-state surface {u ∈ IRm | gk(xi,u) = 0}

to come too close to the origin in the u-space and the radius of the ball associated with

ψk,(tk)i
(xi) must be increased. The increase of the ball radius is obtained by increasing (tk)i

(see (13b)). If pk(xi) < (ak)i, then the constraint ψk,(tk)i
(x) ≤ 0 forces the limit-state surface

to be too far away from the origin in the u-space and the size of the ball must be reduced by

reducing (tk)i. The appropriate scaling of the increase/decrease of (tk)i in (14a) is obtained

by using the ratio of normal variates associated with the probability values. The last step

of Algorithm 1 increases the iteration counter and the process is repeated.

In Algorithm 1, it is left to the user to select a semi-infinite optimization algorithm for

solving P3,t. Many such algorithms can be found in Section 3.5 of Polak (1997) and in

references therein. Descriptions of some of these algorithms are also found in Royset et al.

(2002). In our numerical examples, we adopt the semi-infinite algorithm in Gonzaga and

Polak (1979), which is based on discretization. A simplified version of this algorithm can be

described as follows. First, note that P3,t can be written as

min
(x,a)∈IRn+K

{
c0(x) +

K∑

k=1

ck(x)ak

∣∣∣∣∣ gk(x,−Φ−1(ak)tku) ≥ 0 ∀u ∈ IB(0, 1),

0 ≤ ak ≤ p̂k, k ∈ K, x ∈ X

}
.

(14b)

We observe that P3,t has an infinite number of constraints due to the infinite number of

points in IB(0, 1). As an approximation, IB(0, 1) is replaced by a finite number of points
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{u1
k,u

2
k, ...,u

d
k} for each limit-state function k ∈ K. This results in an approximate problem

min
(x,a)∈IRn+K

{
c0(x) +

K∑

k=1

ck(x)ak

∣∣∣∣∣ gk(x,−Φ−1(ak)tku
j
k) ≥ 0, j = 1, 2, ..., d,

0 ≤ ak ≤ p̂k, k ∈ K, x ∈ X

}
,

(14c)

which for a large number of points in the relevant region of IB(0, 1) is a good approximation

of P3,t. Under the assumption that the limit-state functions, cost functions and constraint

functions have continuous gradients, we see that (14c) is a standard nonlinear program and

can be solved using solvers such as NLPQL (Schittkowski 1985), LANCELOT (Conn et al.

1992), and NPSOL (Gill et al. 1998). However, it remains to compute {u1
k,u

2
k, ...,u

d
k}, k ∈ K.

In Gonzaga and Polak (1979), this computation is integrated with the solution of (14c).

Conceptually, the algorithm in Gonzaga and Polak (1979) takes the following form when

applied to P3,t: (i) Initialize x′1, a′1 and set j = 1. (ii) For each k ∈ K, compute uj
k as the

solution of minu∈IB(0,1) gk(x
′
j,−Φ−1((a′k)j)tku). (iii) Compute x′j+1 and a′j+1 by performing

one iteration of a nonlinear programming algorithm applied to (14c) with d = j. (iv) Replace

j by j +1 and go to (ii). Note that since d is increasing, (14c) is gradually becoming a better

approximation of P3,t. The semi-infinite algorithm in Gonzaga and Polak (1979), which

we use in the numerical examples, is much more efficient than indicated by the conceptual

description above. In particular, the algorithm in Gonzaga and Polak (1979) includes an

adaptive termination test in step (ii) and constraint trimming in step (iii).

Note that for semi-infinite optimization algorithms to be applicable, the functions c0(x),

ck(x), k ∈ K, fj(x), j ∈ q, and gk(x,u), k ∈ K, must have continuous gradients, which is

assumed in this paper. This is usually not a restrictive assumption in practice.

ALGORITHM FOR P3,por

With one exception, the development of an algorithm for P3,por is essentially parallel

to the two-step process described in the previous section. Let x = (x, a) ∈ IRn+L be the
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augmented design vector, where x ∈ IRn is the original design vector and a = (a1, ..., aL) ∈
IRL is a vector of L variables, one for each structure. We define the intermediate optimization

problem by

P3,por

min
(x,a)∈IRn+L

{
L∑

l=1

c
(l)
0 (x) +

L∑

l=1

c(l)(x)al

∣∣∣∣∣ p(l)(x) ≤ al, 0 ≤ al ≤ p̂(l), l ∈ L, x ∈ X

}
. (15)

The equivalence between P3,por and P3,por follows the same arguments as the equivalence

between P3 and P3 (see the discussion above and Appendix A).

For any t = (t1, ..., tL) ∈ IRL, with positive components, we define the approximating

problem for P3,por and P3,por:

P3,por,t

min
x=(x,a)∈IRn+L

{
L∑

l=1

c
(l)
0 (x) +

L∑

l=1

c(l)(x)al

∣∣∣∣∣ ψ
(l)
tl

(x) ≤ 0, 0 ≤ al ≤ p̂(l), l ∈ L,x ∈ X

}
, (16)

where

ψ
(l)
tl

(x) = max
k∈Kl

max
u∈IB(0,1)

{−g
(l)
k (x,−Φ−1(al)tlu)}. (17)

It is noted that (17) involves a maximization over all components in the l-th structure. The

relation between P3,por and P3,por,t is not as straightforward as in the previously discussed

case of P3 and P3,t. Consequently, this is the point were we depart from the derivations

in the previous section. Here, we rely on the following argument: suppose that the limit-

state functions g
(l)
k (x,u), k ∈ Kl, l ∈ L, are affine in their respective second arguments.

Then ψ
(l)
tl

((x, a)) ≤ 0 implies that, for design x, the limit-state function of the critical

component, say k′l, of the l-th structure is at least the distance −Φ−1(al)tl away from the

origin in the u-space and the failure probability of this component p
(l)

k′l
(x) ≤ Φ(−Φ−1(al)tl).

Hence, when tl = 1, p
(l)
k′l

(x) ≤ al. This does not guarantee that the constraint p(l)(x) ≤ al

is satisfied. However, since the critical component makes the dominant contribution to

the system failure probability, design changes are expected to result in similar variations
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in p
(l)
k′l

(x) as in p(l)(x). As in the previous section, every feasible design of P3,por,t with

tl ≥ −
√

χ−1(1− p̂(l))/Φ−1(p̂(l)) is feasible for P3,por even for nonlinear limit-state functions.

Hence, p(l)(x) ≤ al is guaranteed to be satisfied for sufficiently large t.

Consequently, P3,por,t is a good approximation to P3,por for a suitable selection of t =

(t1, ..., tL). It is important to note that the design so obtained is an approximate one, even

when the limit-state functions are affine in their respective second arguments.

For a given t, problem P3,por,t can be solved by applying a semi-infinite optimization

algorithm. As described above, adjustments in the parameters t must be made to satisfy

system probability constraints. The following algorithm accomplishes these objectives:

Algorithm 2. (For P3,por)

Data. Provide an initial design x0 ∈ IRn and a sequence of strictly increasing integers

N0, N1, N3, ....

Step 0. Set i = 0, a0 = (p̂(1), ..., p̂(L)), t0 = (1, ..., 1) ∈ IRL, x0 = (x0, a0).

Step 1. Set xi+1 = (xi+1, ai+1) to be the last iterate after Ni iterations of a semi-infinite

optimization algorithm on the problem P3,por,ti with initialization xi.

Step 2. Compute “appropriate estimates” p̃(l)(xi+1) of p(l)(xi+1) for all l ∈ L.

Step 3. For l ∈ L, set

(tl)i+1 =
Φ−1((al)i+1)

Φ−1(p̃(l)(xi+1))
(tl)i, (19)

where (al)i+1 is the l-th component of ai+1.

Step 4. Replace i by i + 1 and go to Step 1.

An “appropriate estimate” in Step 2 of Algorithm 2 is essentially the same as an appro-

priate estimate in Algorithm 1, i.e., an estimate of the system failure probability computed
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by a reliability method using the same precision level as used to verify the design with re-

spect to the constraints p(l)(x) ≤ p̂(l) in P3,por. Algorithm 2 works in a manner similar to

Algorithm 1, and the discussion after Algorithm 1 remains valid with appropriate changes

in notation.

We cannot guarantee that Algorithms 1 and 2 converge to the true optimal solutions

of P3 and P3,por, respectively, in general cases. Nevertheless, the designs found by Algo-

rithms 1 and 2 are guaranteed to satisfy structural and reliability constraints, which is of

significant practical interest, and, at least for moderately nonlinear limit-state functions, are

also expected to be close to locally optimal solutions due to the relation between reliability

constraints and corresponding semi-infinite constraints in P3,t and P3,por,t.

NUMERICAL EXAMPLE

Consider a highway bridge with reinforced concrete girders of the type shown in Figures

1 and 2. In this example, we design one such girder using the material and load data from

Lin and Frangopol (1996) and Frangopol et al. (1997). The design variables are collected in

the vector x = (As, b, hf , bw, hw, Av, S1, S2, S3) ∈ IR9, where As is the area of the tension steel

reinforcement, b is the width of the flange, hf is the thickness of the flange, bw is the width

of the web, hw is the height of the web, Av is the area of the shear reinforcement (twice the

cross-section area of a stirrup), and S1, S2, and S3 are the spacings of shear reinforcements

in intervals 1, 2, and 3, respectively, see Figure 2.

The random variables describing the loading and material properties are collected in the

vector V = (fy, f
′
c, PD,ML, PS1, PS2, PS3,W ) ∈ IR8, where fy is the yield strength of the

reinforcement, f ′c is the compressive strength of concrete, PD is the dead load excluding the

weight of the girder, ML is the live load bending moment, PS1, PS2 and PS3 are the live load

shear forces in intervals 1, 2 and 3, respectively, see Figure 2, and W is the unit weight of

concrete. Following Lin and Frangopol (1996), all the random variables are considered to

be independent and normally distributed with the means and c.o.v.’s listed in Table 1. Let

the girder length be Lg = 18.30 m, and the distance from the bottom fiber to the centroid
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of the tension reinforcement be α = 0.1 m, see Figure 1.

The objective is to design the girder according to the specifications in AASHTO (1992).

However, as they stand, these specifications do not lead to well-defined optimization prob-

lems for two reasons. First, some of the constraints specified by AASHTO (1992) are not

continuous functions, but of the form f(x) ≤ 1 whenever h(x) ≤ 0 and otherwise f(x) ≤ 2,

where f(x) and h(x) are continuous functions. Second, h(x) may also depend on the ran-

dom variables of the problem. In the following, the first difficulty is overcome by considering

different cases. For example, Case 1 has the constraints f(x) ≤ 1 and h(x) ≤ 0, while Case

2 has the constraints f(x) ≤ 2 and h(x) ≥ 0. The optimal design for each case is found in-

dependently, and the design with the smallest value of the objective function is our solution.

The second difficulty is overcome by replacing the random variables in the definition of h(x)

by their mean values. In Appendix B, we define four cases corresponding to the different

specifications in AASHTO (1992). To find the optimal design, an optimization problem is

solved for each of the four cases.

The girder is assumed to have four failure modes corresponding to the bending moment

in the mid span and the shear forces in intervals 1, 2, and 3 (see Figure 2). Each failure

mode is represented by a component with an associated limit-state function given by (B.1)

and (B.2) in Appendix B. The failure probability of the girder is defined as that of a series

system with the four components.

Example 1. Design for Minimum Initial Cost

Suppose that the objective is to minimize a deterministic initial cost of the reinforced

concrete girder, while ignoring other costs. The design is subject to the system failure prob-

ability constraint p(x) ≤ 0.00135 and the deterministic constraints according to AASHTO

(1992) described in Appendix B. This is a design problem of the type P3,sys, as defined in

(8), with c(x) = 0. Let Cs = 50 and Cc = 1 be the unit costs of the steel reinforcement and

concrete per cubic meter, respectively. As in Lin and Frangopol (1996), we define the initial
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cost to be

c0(x) = 0.75CsLgAs + CsnSAv(hf + hw − α + 0.5bw) + CcLg(bhf + bwhw), (20)

where nS = Lg(1/S1 + 1/S2 + 1/S3)/3 is the total number of stirrups. In (20), the first

term represents the cost of the bending reinforcement. The factor 0.75 appears due to the

assumption that the total amount of bending reinforcement is placed only within a length

Lg/2 centered at the middle point of the girder, and the remaining part is reinforced with

0.5As. The second and third terms in (20) represent the costs of shear reinforcement and

concrete, respectively.

We solve P3,sys by using Algorithm 2, with the index l ignored due to the fact that we

are dealing with only one structure. The semi-infinite optimization algorithm described as

Algorithm 3.3.2 in Royset et al. (2002), which is originally due to Gonzaga and Polak (1979),

is used in Step 1 of Algorithm 2. MCS with 1%-c.o.v. is used to compute the system failure

probability in Step 2. Case 1 defined in Appendix B yields the lowest cost, and the optimal

design is given in the second column of Table 2, where the design vector x, the initial cost,

and the system failure probability p(x) are listed. Some of the entries in Table 2 are not

applicable (N/A) to Example 1.

Example 2. Design for Minimum Cost

Suppose that we extend Example 1 by including the expected cost of failure, such that

the objective is to minimize the initial cost plus the expected failure cost of the reinforced

concrete girder, subject to the same constraints as in Example 1. When the cost of no

failure is assumed to be zero, this problem takes the form of P3,sys. Let the cost of failure

be c(x) = 500c0(x). As in Example 1, we solve this problem by using Algorithm 2. Case 1

defined in Appendix B yields the lowest cost, and the result for this case is given in the third

column of Table 2. The system failure probability is evaluated using MCS with 1%-c.o.v.

Relative to Example 1, a significant increase in the initial cost of the design is observed due
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to the consideration of the failure cost. On the other hand, the design failure probability is

almost one order of magnitude smaller than that of Example 1.

Example 3. Design for Minimum Cost of Deteriorating Girder

Suppose that the girder is subject to corrosion of its longitudinal reinforcement. We

adopt a corrosion model similar to that used in Frangopol et al. (1997), where the diameter

Db(t) of a longitudinal reinforcing bar at time t is given by

Db(t) =





Db0 − 2ν(t− TI), t > TI

Db0, otherwise

(21)

where Db0 = 0.025m denotes the initial diameter, ν is the corrosion rate, and TI is the

corrosion initiation time. The factor 2 in (21) takes into account that the reinforcing bar is

subject to corrosion from all sides. We assume TI = A+Bca, where A is a lognormal random

variable with mean 5 years and c.o.v. equal to 0.20, representing the time it takes to initiate

corrosion with a 0.010 m concrete cover, B is a lognormal random variable with mean 300

years/m and c.o.v. equal to 0.20, representing the additional time it takes to initiate corrosion

per meter additional concrete cover, and ca is the concrete cover in meters in addition to the

0.010 m minimum cover. The additional concrete cover ca is considered a design variable

and is included in the design vector x, i.e., x = (As, b, hf , bw, hw, Av, S1, S2, S3, ca) ∈ IR10.

We assume that the corrosion rate ν is lognormally distributed with mean 4.0 ·10−5 m/years

and c.o.v. 0.30. The random variables A,B, and ν, together with the variables in Table 1,

are assumed to be statistically independent.

As seen from (21), the area of bending reinforcement is reduced over time. The remaining

bending reinforcement area after time t is A′
s(t) = nbπDb(t)

2/4, where nb is the number of

reinforcing bars and Db(t) is given in (21). Then, we obtain that A′
s(t) = AsRc(t), where

the reduction factor Rc(t) = (1− 2ν(t− TI)/Db0)
2.

The reinforced concrete girder is now a time-varying structure with As replaced by A′
s(t)

in the four limit-state functions in (B.1) and (B.2). Let TL = 60 years be the lifetime of the
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girder. We assume that the system failure probability in the time interval [0, TL] is equal to

the point-in-time system failure probability at TL, which is reasonable due to the monotone

deterioration of the structure. This results in an optimal design problem of the form P3,sys,

where p(x) is the system failure probability at time TL, the initial cost is

c0(x) = 0.75CsLgAs + CsnSAv(hf + hw − α + 0.5bw) + CcLg(bhf + bwhw) + CcLgbwca, (22)

the cost of failure is c(x) = 500c0(x), and the deterministic constraints are as in Example 1

with two changes. First, As is replaced by A′
s(TL) = AsRc(TL) in the constraint definitions

(see Appendix B), where Rc(TL) is equal to Rc(TL) with A, B, and ν replaced by their

respective mean values. Second, we include the following two additional constraints bounding

the new design variable ca:

ca − 0.05 ≤ 0, (23)

−ca ≤ 0. (24)

The first of these constraints imposes an upper limit of 0.05 m on ca. The constraint on the

system failure probability remains as in Example 1, i.e., p(x) ≤ 0.00135.

We ignore the effect of the small additional load caused by the weight of the additional

concrete cover, but include the added cost. As above, we solve P3,sys by using Algorithm

2 with the semi-infinite optimization algorithm described in Royset et al. (2002) and MCS

with 1%-c.o.v.. Case 1 defined in Appendix B yields the lowest cost, and the result for this

case is given in the fourth column of Table 2. We see from the fourth column of Table 2

that constraint (23) is active, i.e., the use of maximum concrete cover is most cost effective.

Relative to Examples 1 and 2, the total expected cost of the design is much higher due to

the effect of deterioration in the strength with time.
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Example 4. Design of Maintenance Plan for the Girder

Suppose that it is decided to maintain the structure in intervals of 20 years, i.e., at

20 and 40 years after its construction. The time of maintenance can be incorporated as

a design variable, but in this example we have fixed those times for simplicity. Let mi ∈
[0, 1], i = 1, 2, be two design variables characterizing the maintenance effort at 20 years

and 40 years, respectively. Let mi = 0 denote no maintenance and mi = 1 denote full

maintenance, i.e., restoration to the initial state of the structure. Furthermore, we consider

m1 as the fraction of the aging of the structure from initial construction (t = 0) to the first

maintenance action (t = 20 years), which is restored to its initial condition. Thus, 40−20m1

years is the effective age of the structure before the second maintenance action at t = 40

years. Similarly, m2 is the fraction of the aging of the structure from initial construction

(t = 0 years) to the second maintenance action (t = 40 years), which is mitigated by the

second maintenance effort, i.e., 20 + (40 − 20m1)(1 − m2) years is the effective age of the

structure at t = TL = 60 years. We add m1 and m2 to the vector of design variables, i.e.,

x = (As, b, hf , bw, hw, Av, S1, S2, S3, ca,m1,m2) ∈ IR12.

We ensure the safety of the girder by imposing the constraint p(x) ≤ 0.00135 on the

system failure probability over the 60 years lifetime. This probability is obtained as the

probability of the union of the failure events during the intervals 0 - 20 years, 20 - 40 years,

and 40 - 60 years. For the reasons mentioned earlier, the event of failure within each interval

is identical to the failure event at the end of the interval. Thus, the problem is defined

as a series system with 3 · 4 = 12 limit-state functions. The design is subject to the same

deterministic constraints as in Example 3, with the additional constraints

mj − 1 ≤ 0, j = 1, 2, (25)

−mj ≤ 0, j = 1, 2. (26)
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Furthermore, let the cost of maintenance be

cm(x) = cy[20m1 + (40− 20m1)m2], (27)

where cy = 0.15 represents the cost of complete restoration of the girder after one year’s

worth of corrosion. Note that the factor in front of m2 represents the effective age of the

structure at 40 years. The initial cost and the cost of failure are as above. Since cm(x) does

not depend on the failure probability, in formulating the objective function, it is incorporated

into c0(x). The problem is solved by applying Algorithm 2 and the result is given in the

fifth column of Table 2.

We observe from Table 2 that the expected total cost of the design is smaller for the

example with the option of maintenance (Example 4) than for the example without this

option (Example 3). Also in the example with maintenance, there is a significant decrease

in the initial cost, at the expense of a subsequent maintenance cost. The optimal design

suggests a larger maintenance effort at 40 years than at 20 years.

CONCLUSIONS

Two algorithms are developed for solving a class of optimal structural design problems

with component or series system failure probabilities in the objective function and the con-

straint set definition.

Motivated by a first-order approximation to the failure probability, parameterized approx-

imating problems are constructed that can be solved repeatedly to obtain an approximation

to a solution of the original design problem. Higher-order failure probability approximations,

e.g., SORM, MCS, can be used by adjusting the parameters of the algorithm. Thus, a sig-

nificant advantage of the new algorithms is the flexibility in the selection of the method for

computing failure probabilities. The approximating problems are semi-infinite optimization

problems that can be solved by well-tested and convergent algorithms from the literature.

Numerical examples demonstrate that the new algorithms can be used in design and
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maintenance planning and with models involving both time-invariant and time-variant failure

probabilities.

The algorithms are derived with careful attention to the underlying assumptions and

approximations to ensure a rigorous mathematical foundation. This, together with the fact

that any computational reliability method can be employed, makes the algorithms efficient,

robust and versatile tools for solving reliability-based optimal structural design problems.
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APPENDIX A. THEOREMS AND PROOFS

Here we present formal statements about the equivalence between P3 and P3, and be-

tween P3,por and P3,por.

Assumption 1. We assume that

(i) the cost functions c0(x), ck(x), k ∈ K, c
(l)
0 (x), c(l)(x), l ∈ L, the limit-state functions

gk(x,u), k ∈ K, g
(l)
k (x,u), k ∈ Kl, l ∈ L, and the deterministic constraint functions
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fj(x), j ∈ q, are continuous,

(ii) M({u ∈ IRm | g(x,u) = 0}) = 0 for any limit-state function g(x,u) and x ∈ X, where,

for any set S ⊂ IRm, M(S) =
∫
S
ϕ(u)du, with ϕ(u) being the standard multi-variate

normal probability density function,

(iii) the deterministic constraint set X is bounded, and

(iv) the costs ck(x) > 0, k ∈ K, and c(l)(x) > 0, l ∈ L, for all x ∈ X.

Assumption 1(ii), essentially, requires that the interval (for m = 1), area (for m = 2),

volume (for m = 3), etc., in which the limit-state function vanishes, has length, area, volume,

etc., equal to zero, respectively. This is normally satisfied in realistic design problems.

In the following, for any integer d, y ∈ IRd, and ρ > 0, we define IB(y, ρ) = {y′ ∈
IRd|‖y′ − y‖ ≤ ρ}.

Theorem 1. Suppose that Assumption 1 is satisfied. Then, P3 and P3 are equivalent in

the following sense:

(i) If (x̂, â) is a local optimal solution of P3 with optimal value f̂ and domain of attraction1

IB(x̂, ρ̂)× IB(â, ρ̂), then there exists a ρ̂0 > 0 such that x̂ is a local optimal solution of

P3 with optimal value f̂ and domain of attraction IB(x̂, ρ̂0).

(ii) If x̂ is a local optimal solution of P3 with optimal value f̂ and domain of attraction

IB(x̂, ρ̂), then (x̂, (p1(x̂), p2(x̂), ..., pK(x̂))) is a local optimal solution of P3 with optimal

value f̂ and domain of attraction IB(x̂, ρ̂)× [0, 1]K .

Proof. By Corollary 1 in Polak et al. (2000), Assumption 1(i,ii) implies that pk(x), k ∈ K,

are continuous functions. This fact and Assumption 1(iii) ensure that P3 and P3 have

optimal solutions.

1A domain were all feasible points have objective values no smaller than the local minimizer.
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First, consider (i). Suppose that (x̂, â) is a local optimal solution of P3 with domain

of attraction IB(x̂, ρ̂) × IB(â, ρ̂). For the sake of a contradiction, suppose that there exists

a k̂ ∈ K such that pk̂(x̂) < âk̂. Then, there exists an ε > 0 such that pk̂(x̂) ≤ âk̂ − ε

and (â1, â2, ..., âk̂−1, âk̂ − ε, âk̂+1, ..., âK) ∈ IB(â, ρ̂). Consequently, (x̂, (â1, â2, ..., âk̂−1, âk̂ −
ε, âk̂+1, ..., âK)) ∈ IB(x̂, ρ̂)× IB(â, ρ̂), is feasible for P3, and, because ck̂(x̂) > 0, has a smaller

objective value for P3 than (x̂, â). This contradicts the fact that (x̂, â) is a local minimum

for P3 and, hence, pk(x̂) = âk for all k ∈ K.

For the sake of another contradiction, suppose that there is no ρ > 0 such that x̂ is a local

optimal solution of P3 with domain of attraction IB(x̂, ρ). Then, for all ρ > 0 there must

exist a feasible design xρ ∈ IB(x̂, ρ) with lower objective value for P3, i.e., pk(xρ) ≤ p̂k, k ∈ K,

xρ ∈ X, and

c0(xρ) +
K∑

k=1

ck(xρ)pk(xρ) < c0(x̂) +
K∑

k=1

ck(x̂)pk(x̂). (A.1)

Since pk(x̂) = âk and pk(x) is continuous for all k ∈ K, there exists a ρ0 ∈ (0, ρ̂] such that

(p1(x), p2(x), ..., pK(x)) ∈ IB(â, ρ̂) for all x ∈ IB(x̂, ρ0). Now suppose that ρ ∈ (0, ρ0]. Then,

the point (xρ, (p1(xρ), p2(xρ), ..., pK(xρ))) ∈ IB(x̂, ρ̂)× IB(â, ρ̂) and it is also feasible for P3.

Using (A.1), Assumption 1(iv), and the fact that pk(x̂) ≤ âk for all k ∈ K, we see that

c0(xρ) +
K∑

k=1

ck(xρ)pk(xρ) < c0(x̂) +
K∑

k=1

ck(x̂)pk(x̂) ≤ c0(x̂) +
K∑

k=1

ck(x̂)âk. (A.2)

Hence, the objective value for P3 is smaller at (xρ, (p1(xρ), p2(xρ), ..., pK(xρ))) than at (x̂, â),

which contradicts the assumption that (x̂, â) is a local minimum for P3. Consequently, there

exists a ρ̂0 > 0 such that x̂ is a local optimal solution of P3 with domain of attraction

IB(x̂, ρ̂0).

Furthermore, since pk(x̂) = âk for all k ∈ K, the objective value for P3 at (x̂, â) is

c0(x̂) +
∑

k∈K ck(x̂)pk(x̂), which is identical to the objective value for P3 at x̂.

Second, consider (ii). Suppose that x̂ is a local optimal solution of P3 with domain of

attraction IB(x̂, ρ̂). For the sake of a contradiction, suppose that (x̂, (p1(x̂), p2(x̂), ..., pK(x̂)))
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is not a local optimal solution of P3 with domain of attraction IB(x̂, ρ̂)× [0, 1]K . Then, there

must exist another feasible design (x∗, a∗) ∈ IB(x̂, ρ̂)× [0, 1]K with lower objective value for

P3, i.e., pk(x
∗) ≤ a∗k, 0 ≤ a∗k ≤ p̂k, k ∈ K, x∗ ∈ X, and

c0(x
∗) +

K∑

k=1

ck(x
∗)a∗k < c0(x̂) +

K∑

k=1

ck(x̂)pk(x̂). (A.3)

The point x∗ ∈ IB(x̂, ρ̂) is a feasible point for P3. Using (A.3), Assumption 1(iv), and the

fact that pk(x
∗) ≤ a∗k for all k ∈ K, we see that

c0(x
∗) +

K∑

k=1

ck(x
∗)pk(x

∗) ≤ c0(x
∗) +

K∑

k=1

ck(x
∗)a∗k < c0(x̂) +

K∑

k=1

ck(x̂)pk(x̂). (A.4)

Hence, the objective value for P3 is smaller at x∗ than at x̂, which contradicts the assumption

that x̂ is a local minimum for P3. Consequently, (x̂, (p1(x̂), p2(x̂), ..., pK(x̂))) is a local opti-

mal solution of P3 with domain of attraction IB(x̂, ρ̂) × [0, 1]K . Furthermore, the objective

value for P3 at x̂ is identical to the objective value for P3 at (x̂, (p1(x̂), p2(x̂), ..., pK(x̂))).

Theorem 2. Suppose that Assumption 1 is satisfied. Then, P3,por and P3,por are equivalent

in the following sense:

(i) If (x̂, â) is a local optimal solution of P3,por with optimal value f̂ and domain of attraction

IB(x̂, ρ̂)× IB(â, ρ̂), then there exists a ρ̂0 > 0 such that x̂ is a local optimal solution of

P3,por with optimal value f̂ and domain of attraction IB(x̂, ρ̂0).

(ii) If x̂ is a local optimal solution of P3,por with optimal value f̂ and domain of attraction

IB(x̂, ρ̂), then (x̂, (p(1)(x̂), p(2)(x̂), ..., p(L)(x̂))) is a local optimal solution of P3,por with

optimal value f̂ and domain of attraction IB(x̂, ρ̂)× [0, 1]L.

Proof. By following a similar argument to the one in Corollary 1 in Polak et al. (2000),

Assumption 1(i,ii) can be shown to imply that p(l)(x), l ∈ L, are continuous functions. This

fact and Assumption 1(iii) ensure that P3,por and P3,por have optimal solutions. The remain-
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ing parts of the proof now follows by the same arguments as in Theorem 1.

APPENDIX B. DETAILS ABOUT REINFORCED CONCRETE GIRDER

For the optimal design problem of the reinforced concrete girder to be well-defined, we

consider four different cases corresponding to different specifications in AASHTO (1992).

Only the first case is presented here in full detail. This is also the case corresponding to the

lowest cost in all the examples. The three other cases are described in Royset et al. (2002).

Case 1 corresponds to the situation where the force in the tension reinforcement can be

balanced by a compression force in the flange, i.e., 0.85f ′cbhf ≥ fyAs, and the shear capacity

in the shear reinforcement is less than or equal to a value related to the cross-section area and

the strength of concrete, i.e., Avfy/S1 ≤ 4bw(γf ′c)
0.5, where γ = 6.89 · 103 and the variables

are given in SI units (i.e., meter, Newton, etc). Hence, these two conditions, with f ′c and

fy replaced by their mean values f y and f ′c, respectively, are imposed as constraints for

Case 1 together with other specifications from AASHTO (1992). Consequently, we have the

following deterministic constraint functions (all variables in SI units): f1(x) = −0.85f ′cbhf +

f yAs, f2(x) = Avf y/S1 − 4bw(γf ′c)
0.5, fj(x) = Sj−2 − Avf y/(50γbw), j = 3, 4, 5, fj(x) =

Sj−5 − (hf + hw − α)/2, j = 6, 7, 8, fj(x) = Sj−8 − 0.6096, j = 9, 10, 11, f12(x) = bw/2− hf ,

f13(x) = b − 4bw, f14(x) = bw − b, f15(x) = 1 − As/0.001, f16(x) = b − 1.22, f17(x) =

0.15 − hf , f18(x) = 0.15 − bw, f19(x) = hw/bw − 4, f20(x) = 1 − Av/0.0001, f21(x) = −hw,

fj(x) = −Sj−21, j = 22, 23, 24, f25(x) = hf +hw−1.2, f26(x) = Avf y/(2γS3bw(f ′c/γ)0.5)−4,

f27(x) = ρ(x) − 0.75ρb(x), and f28(x) = ρ0 − ρ(x), where ρ(x) = As/(b(hf + hw − α)),

ρb(x) = (0.852f ′c/f y)87000/(87000 + f y/γ), and ρ0 = 200γ/f y.

These 28 functions define the constraint set X (see (7) and (8)) in Examples 1 and 2.

In Example 3, the additional constraints (23) and (24) are also included. In Example 4, the

additional constraints (23), (24), (25), and (26) are also imposed.

For Examples 1-3, the girder is considered a series structural system with four components
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defined as follows: the failure in flexure is specified by the limit-state function

G1(x,v) = 1− ML

ω(x,v)
− PDL2

g

8ω(x,v)
− (bhf + bwhw)WL2

g

8ω(x,v)
, (B.1)

where ω(x,v) = Asfy(hf + hw − α − η(x,v)/2) and η(x,v) = Asfy/(0.85f ′cb). Failure in

shear in interval j ∈ {1, 2, 3} is defined by the limit-state functions

Gj+1(x,v) = 1− PSj

κj(x,v)
− PDLg

6κj(x,v)/j
− (bhf + bwhw)WLg

6κj(x,v)/j
, (B.2)

where κj(x,v) = 8.45bw(hf + hw − α)(f ′c/γ)0.5/0.02542 + Avfy(hf + hw − α)/Sj, with all

variables in SI units. For Example 4, the four limit-state functions apply in each of three

time periods resulting in a series structural system with 12 components. The reader should

consult Lin and Frangopol (1996) regarding background information on the above constraints

and limit-state functions, which originate from AASHTO (1992) rules.
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TABLE 1. Statistics of normal random variables.

Variable Description Mean c.o.v.
fy Yield strength of reinforcement 413.4 · 106 Pa 0.15
f ′c Compressive strength of concrete 27.56 · 106 Pa 0.15
PD Dead load excluding girder 13.57 · 103 N/m 0.20
ML Live load bending moment 929 · 103 Nm 0.243
PS1 Live load shear in interval 1 138.31 · 103 N 0.243
PS2 Live load shear in interval 2 183.39 · 103 N 0.243
PS3 Live load shear in interval 3 228.51 · 103 N 0.243
W Unit weight of concrete 22.74 · 103 N/m3 0.10
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TABLE 2. Optimal design of reinforced concrete girder.

Example 1 Example 2 Example 3 Example 4
As 0.00983 m2 0.0116 m2 0.0161 m2 0.0144 m2

b 0.418 m 0.492 m 0.686 m 0.612 m
hf 0.415 m 0.415 m 0.415 m 0.415 m
bw 0.196 m 0.196 m 0.197 m 0.196 m
hw 0.785 m 0.785 m 0.785 m 0.785 m
Av 0.000186 m2 0.000227 m2 0.000255 m2 0.000255 m2

S1 0.508 m 0.502 m 0.549 m 0.550 m
S2 0.224 m 0.226 m 0.246 m 0.247 m
S3 0.140 m 0.142 m 0.154 m 0.155 m
ca N/A N/A 0.050 m 0.050 m
m1 N/A N/A N/A 0.105
m2 N/A N/A N/A 0.243

Initial cost 13.664 15.558 20.434 18.678
Failure cost N/A 1.459 2.514 1.824

Maintenance cost N/A N/A N/A 1.699
p(x) 0.00131 0.000188 0.000246 0.000195

Total expected cost 13.664 17.017 22.948 22.201
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FIG. 2. Reinforced concrete girder with shear reinforcement.

39




