eScholarship
Combinatorial Theory

Title
Chromatic functions, interval orders and increasing forests

Permalink
bttgs:ééescholarshiQ.orgéucéitem452t9616£|
Journal

Combinatorial Theory, 5(1)

ISSN
2766-1334

Authors
D'Adderio, Michele
Riccardi, Roberto
Siconolfi, Viola

Publication Date
2025

DOI
10.5070/C65165016

Supplemental Material
https://escholarship.org/uc/item/5pt96164#supplemental

Copyright Information

Copyright 2025 by the author(s).This work is made available under the terms of a
Creative Commons Attribution License, available at

bttgs:cheativecommons.orgglicensesgb¥44.od

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/5pt96164
https://escholarship.org/uc/item/5pt96164#supplemental
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

COMBINATORIAL THEORY 5 (1) (2025), #5 combinatorial-theory.org

CHROMATIC FUNCTIONS, INTERVAL ORDERS
AND INCREASING FORESTS

Michele D’Adderio*!, Roberto Riccardi?, and Viola Siconolfi*?

'Diparlimenlo di Matematica, Universita di Pisa, Pisa, Italy
michele.dadderio@unipi.it
2Scuola Normale Superiore, Pisa, Italy
roberto.riccardi@sns.it
3Diparz‘imem‘o di Meccanica, Matematica e Management, Politecnico di Bari, Bari, Italy
viola.siconolfi@poliba.it

Submitted: Feb 25, 2024; Accepted: Sep 4, 2024; Published: Mar 15, 2025
© The authors. Released under the CC BY license (International 4.0).

Abstract. The chromatic quasisymmetric functions (csf) of Shareshian and Wachs associ-
ated to unit interval orders have attracted a lot of interest since their introduction in 2016,
both in combinatorics and geometry, because of their relation to the famous Stanley—Stem-
bridge conjecture (1993) and to the topology of Hessenberg varieties, respectively.

In the present work we study the csf associated to the larger class of interval orders with
no restriction on the length of the intervals. Inspired by an article of Abreu and Nigro, we
show that these csf are weighted sums of certain quasisymmetric functions associated to
the increasing spanning forests of the associated incomparability graphs. Furthermore, we
define quasisymmetric functions that include the unicellular LLT symmetric functions and
generalize an identity due to Carlsson and Mellit. Finally we conjecture a formula giving
their expansion in the type 1 power sum quasisymmetric functions which extends a formula
proved by Athanasiadis.

Keywords. Chromatic function, interval order graph, quasisymmetric functions
Mathematics Subject Classifications. 05E05

1. Introduction

In [SW16] Shareshian and Wachs introduced the chromatic quasisymmetric function xc[X; q|
associated to every graph G whose vertices are totally ordered. At ¢ = 1 the series x¢[X; (]
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by INDAM research group GNSAGA.

TPartially supported by the Italian Ministry of University and Research under the Programme *“Department of
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reduces to the well-known chromatic symmetric function y¢[X; 1] = x¢ () introduced by Stan-
ley in [Sta95]. A famous conjecture of Stanley and Stembridge ([Sta95, Conjecture 5.1], [SS93,
Conjecture 5.5]) states that if GG is the incomparability graph of a (3+1)-free poset, then y o[ X; 1]
is e-positive, i.e., its expansion in the elementary symmetric functions has coefficients in N.
Shareshian and Wachs showed (cf. [SW 16, Theorem 4.5]) that if G is the incomparability graph
of a poset that is both (3 + 1)-free and (2 + 2)-free, then x[X;¢| is a symmetric function,
and they conjecture that it is e-positive, i.e., its expansion in the elementary symmetric func-
tions has coefficients in N[g]. Thanks to a result of Guay-Paquet [GP13], it is known that the
Shareshian—Wachs conjecture implies the Stanley—Stembridge conjecture.

The posets that are (3 + 1)-free and (2 + 2)-free are precisely the unit interval orders
(see [SS58]), whose elements are intervals in R of the same length, and an interval a is smaller
than an interval b if all the points of a are strictly smaller than all the points of b. If in such
a poset we order the intervals increasingly according to their left endpoints, then we get a total
order on them, and now the incomparability graphs of these posets will inherit this total order on
the vertices, giving the labelled graphs G involved in the Shareshian—Wachs conjecture. In the
present article we will call these labelled graphs Dyck graphs, as they are in a natural bijection
with Dyck paths: see Figure 2.2 for an example.

Since their introduction, the symmetric functions y[X; ¢] of Dyck graphs have been exten-
sively studied, not only for their connection to the Stanley—Stembridge conjecture (cf. [HNY20,
AN21a, Ska21, CH22, NT22, CMP23], just to mention a few recent articles), but also for their
connection to the topology of Hessenberg varieties: for the latter see for example [SW16, GP16,
BC18, AH20]. We will not say any more things about the relation to geometry, and we will limit
ourselves to recall here a few results, belonging more properly to algebraic combinatorics, that
will be relevant to the present article.

In [CM 18], Carlsson and Mellit proved a surprising formula relating the symmetric func-
tions y¢[X; ¢] of Dyck graphs to the so called unicellular LLT symmetric functions LLT 5[ X; q]
(seee.g., [AP18, Section 3] for their connection with the original symmetric functions introduced
by Lascoux, Leclerc and Thibon), which can be restated as follows using plethystic notation (for
which we refer to [LR11]).

Theorem 1.1 (Carlsson, Mellit). If G is a Dyck graph on n vertices, then
n 1
(1—q)"wxc X | = LLT¢[X; q). (1.1)

In [AN21b], Abreu and Nigro prove a deep formula for x[X;¢q] of Dyck graph G as a
weighted sum over the increasing spanning forests of G. The role of the increasing span-
ning forests in the combinatorics of these graphs was already highlighted in [HS15], where
in fact the authors work with more general graphs. Abreu and Nigro combined their formula
with the identity (1.1) of Carlsson and Mellit to give a new proof of a formula for the expan-
sion of LLT¢[X; ¢ + 1] (here GG is a Dyck graph) in the elementary symmetric function basis
that was conjectured by Alexandersson [Ale21] and independently by Garsia, Haglund, Qiu and
Romero [GHQR19], and first proved by Alexandersson and Sulzgruber [AS22] (the e-positivity
was already proved in [D’A20]).
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Finally, in [Ath15] Athanasiadis proved a combinatorial formula (cf. Theorem 11.2) giving
the expansion of y[X; ¢ (When G is a Dyck graph) in the power symmetric functions, that was
conjectured in [SW16, Conjecture 7.6]. The starting point of his proof is the formula [SW16,
Theorem 6.3] giving the expansion of x¢[X; ¢] (When G is a Dyck graph) in the Schur function
basis.

We now turn to the contributions of the present article (all the missing definitions will be
provided later in the text).

If from the definition of unit interval orders we drop the condition on the intervals to have all
the same length, then we get the interval orders, and these are precisely the (2 + 2)-free posets
(see [Fis70]). If we order again such intervals increasingly according to their left endpoints, then
we get a total order on them, and now the incomparability graphs of these posets will inherit this
total order on the vertices: these labelled graphs G will be called (somewhat improperly) interval
graphs in this article, and their chromatic quasisymmetric functions x[X; ¢ are the object of
our study: see Figure 2.1 for an example.

First of all we observe that Dyck graphs are interval graphs, but typically if G is an interval
graph that is not a Dyck graph, then x¢[X; ¢ is not a symmetric function. Hence we will be
naturally working with quasisymmetric functions.

Given an interval graph G we will define a surjective function ®; from the (infinite)
set PC(G) of proper colorings  : V(G) — Z of G to the (finite) set ISF(G) of the increasing
spanning forests of GG (see Algorithm 2). This will allow us to define for every forest /' € ISF(G)
the associated series Z

x:‘i’

keEPC(G
Qg (k)= F

where z,, = HUeV(G) Ty(v) and Ty, To, ... are variables.

We will show that these are quasisymmetric functions, and we will prove the following
formula for their expansion in the fundamental (Gessel) quasisymmetric function
basis {L, s |n € N, S C [n—1]}.

Theorem 6.17. Given an interval graph G on n vertices and F' € ISF(G), we have
Q%G) = Z Ln,DesG(o*I)'

oe6,
Colnvg (o)=Colnvg (F)

Using the weight wt¢ (F') introduced in [AN21b] (in fact a slight modification), we will prove
the following formula for x¢[X; ¢| of an interval graph G:

Theorem 7.2. Given an interval graph G, we have
xelXigl = > thG(F
FeISF(G

Remark 1.2. The formula in Theorem 7.2 was 1nsp1red by the following formula of Abreu and
Nigro [AN21b] that holds for Dyck graphs:

Z qth p)\

FelISF(G
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where wt; is a slight modification of our wt;, and pa(r) is an explicit symmetric function associ-
ated to [. In a forthcoming article of the first author with Giovanni Interdonato and Byung-Hak
Hwang, our Q%G) is showed to be the generating function of reversed (P, w)-partitions, for suit-
able P and w associated to F'.

For every simple graph GG with totally ordered vertices we introduce the quasisymmetric
function
LLTG[X:q) = ), q™Wa,,
k€C(G)

where the sum is over all (not necessarily proper) colorings « : V(G) — Z~o of G. When G is
a Dyck graph, these are precisely the corresponding unicellular LLT symmetric functions. For
interval graphs that are not Dyck graphs, these are typically not symmetric functions, but always
quasisymmetric. Indeed the following general formula holds.

Theorem 7.7. Given any simple graph G on n vertices which are totally ordered, we have

LLTG[X;q) = > ™7 L, pesto1).

0'6671

In the previous theorem the “L” are the fundamental (Gessel) quasisymmetric functions.

Recall the well-known involutions p and v of the algebra QSym of quasisymmetric functions
defined by 1(L,) := Lye and p(Ly) = L.

The main result of this article is the following theorem.

Theorem 10.1. Given G an interval graph on n vertices, we have

(1—q)"p <¢XG {X%_L]D = LLT¢[X; q].

Notice that the plethysm of quasisymmetric functions needs a careful definition, since it
depends on the order on the alphabet (cf. [LR11]).

Since 1) restricts to the involution w on the algebra Sym C QSym of symmetric functions, p
restricts to the identity operator on Sym, and the plethysm of quasisymmetric functions restricts
to the plethysm of symmetric functions, this is indeed a generalization of the identity (1.1) of
Carlsson and Mellit. We remark that our argument gives an independent proof of that same
identity.

Our proof of Theorem 10.1 is based on a formula which in turn relies on a result of Kas-
raoui [Kas09].

In [BDH"20] the authors study a family of quasisymmetric functions that they call type 1
quasisymmetric power sums, and they denote W,. Actually {¥, | «a composition} is a basis
of QSym that refines the power symmetric function basis.

We state the following conjecture for the expansion of our Q%G) in the ¥,,.

Conjecture 11.4. For any interval graph G on n vertices and any permutation T € S,, (thought
of as a proper coloring of G) we have

v, .
p?bQSbi)(T) = Z Z#{O’ € Na.o | Colnvg(a™!) = Invg()}.

aFn
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We will show that this conjecture implies the following one, which is an extension of the
formula proved by Athanasiadis in [Ath15].

Conjecture 11.1. For any interval graph G on n vertices we have

Pl/fXG[X;Q]:Z% S e,

aFn 7% ceNG o

The rest of the present article is organized in the following way. In Section 2 we introduce
both the interval graphs and the Dyck graphs, and clarify their relation with interval orders. In
Section 3 we recall some background from quasisymmetric and symmetric functions. In partic-
ular we will introduce our plethysm of quasisymmetric functions and we will provide a couple of
formulas that we will need later. In Section 4 we prove two basic formulas about colorings and
their inversions, while in Section 5 we analyze the case of interval graphs, proving related formu-
las for proper colorings and (co)inversions. In Section 6 we introduce the increasing spanning
forests of interval graphs G, their weight wtg, the function ¢, and we study the first proper-
ties of the quasisymmetric functions Q%G), including Theorem 6.17. In Section 7 we introduce
chromatic quasisymmetric functions and LLT quasisymmetric functions associated to interval
graphs, and we apply results from previous sections to prove Theorem 7.2 and Theorem 7.7.
In Section 8 we prove a fundamental formula that is at the heart of our proof of Theorem 10.1,
which is based on a result of Kasraoui [Kas(09] that we will explain in Section 9 for completeness.
In Section 10 we will use the formula from Section 8 and several results from previous sections
to deduce Theorem 10.1. In Section 11 we will state Conjecture 11.4 and Conjecture 11.1, and
show how the former implies the latter. Finally in Section 12 we add some speculative comments.

2. Interval graphs

In this article a graph will always be simple, i.e., no loops and no multiple edges. For every
positive integer n € Z~o := {1,2,3, ...} we will use the notation [n| := {1,2,...,n}.

Consider a graph G = ([n], E), where E = E(G) is the set of edges of G, while [n] = V(G)
is the set of vertices of G.

Remark 2.1. We can think of our G = ([n], E) as a graph on n vertices that are labelled by the
elements of [n], each appearing exactly once. In fact in this work we will simply use the fact that
the vertices of G have a fixed total order. We prefer to work directly with V(G) = [n], in order
to keep the notation lighter. In particular we will systematically omit the word labelled, and
we will talk simply about graphs. A more precise name would probably be “naturally labelled
graphs”, but its systematic use would make the reading much more unpleasant.

We will think of an edge of G both as a 2-subset {i, j} € F and as an ordered pair (i, j) € F
with ¢ < j.

In this work a (labelled) graph G = ([n], E') will be called interval if whenever {i,j} € E
and i < j, then {i,k} € E forevery i < k < j. We will call ZG,, the set of all interval graphs
with vertex set [n].
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Remark 2.2. Again, recall that our graphs are actually labelled, so for example the graphs
([3],{(1,2)}) and ([3],{(2,3)}) are two distinct elements of ZG;, though they are clearly iso-
morphic as abstract graphs.

The name interval graphs will be justified shortly in this section.

We can represent an interval graph G = ([n], E) in the following way: in a n X n square grid
we order the columns from left to right with numbers 1,2, ..., n and similarly the rows from
bottom to top; then we color the cells (i, j) € E (hence i < j). See Figure 2.1 for an example.

8
7
6
5
4
3
2
1

Figure 2.1: The interval graph G = ([8],{(1,2),(1,3),(2,3),(2,4),(2,5),(2,6),(2,7),
(3,4),(3,5),(3,6),(5,6), (5,7),(6,7),(6,8),(7,8)}).

Notice that in this pictures we simply obtain a bunch of (possibly empty) colored columns,
starting just above the diagonal cells. Hence clearly |ZG,,| = n!.

Given an interval graph G € Z§G,,, we can consider its flipped, obtained from G by replacing
each edge {7, j} with an edge {n + 1 —i,n + 1 — j}: in terms of pictures, this corresponds to
flip the picture of G around the line y = —x.

An interval graph G € ZG,, such that its flipped is still in ZG,, is called a Dyck graph. The
explanation of the name is obvious, since the picture of a Dyck graph determines a Dyck path:
see Figure 2.2 for an example. Hence, if we denote the set of Dyck graphs with n vertices
by DG,,, then clearly |DG,,| is the n-the Catalan number (*")/(n + 1).

Figure 2.2: The Dyck graph G = ([8],{(1,2), (1,3), (2,3), (2,4), (3,4), (5,6),(5,7),(6,7),(7,8)}).

Remark 2.3. If (G = (|n], F)) € ZG, is an interval graph, then G has the following property:
for every j € [n], the set of i € [j — 1] such that (i,j) € E form a cligue in G, namely
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all these vertices are connected with each other in G. Indeed, if iy < 15 < -+ < i, < J
are the aforementioned vertices, then for every k € [r — 1], (ix,j) € E implies (i, ;) for
every k <t <.

In fact, this property is saying that in our interval graphs the natural order on the set of ver-
tices [n] is a perfect elimination order, showing that our interval graphs are chordal (see [FG65]).

It turns out that the interval graphs are the incomparability graphs of certain posets called
interval orders (hence their name).

Given a (naturally labelled) poset P = ([n], <p), its incomparability (labelled) graph, de-
noted by Inc(P) = ([n], Ep), is defined by setting {, j} € Fp if and only if i and j are incom-
parable in P.

Let Z be the set of all bounded closed intervals of R, and given / = [a,b] and J = [c, d]
we set I < J if and only if b < c¢. Clearly (Z, <) is a poset. Any subposet of (Z, <) is
called an interval order. An example of interval order is given in Figure 2.3: on the right there
are the intervals, while on the left there is the corresponding Hasse diagram (in which node ¢
corresponds to interval I; for every 7).

The following propositions are probably well known. We sketch their proofs for complete-
ness.

Proposition 2.4. For every H C T such that |H| = n € N, there exists an order-preserving
bijection ¢ : (H, <) — ([n], <) such that Inc(¢(H, <)) € ZG,.

Sketch of proof. We simply order increasingly Hy, H», ... the elements of H according to their
leftmost points: it is easy to see that if ¢ < j and H; and H; are incomparable, i.e., they overlap,
then every Hj with ¢ < k£ < j must overlap with H; as well. For example, the intervals on the
right of Figure 2.3 are ordered as we just explained, and they correspond to the interval graph in
Figure 2.1. ]

On the contrary, every graph in ZG,, is the incomparability graph of a finite subposet of Z.

Proposition 2.5. For every G = ([n],E) € IG, there exist a finite subset H C 7T and an
order-preserving bijection ¢ : (H, <) — ([n], <) such that Inc(¢p(H, <)) = G.

Sketch of proof. Given G = ([n],E) € IG,, let P = ([n],<p) be the poset on [n] such
that Inc(P) = G: more precisely i <p j if and only if i < j and {i,j} ¢ E. It is easy to
check that this gives indeed a poset: for example, the poset on the left of Figure 2.3 corresponds
to the interval graph in Figure 2.1.

For each j € [n], consider

Mj = {]{?E [n]|]<p k’}

Now we take H = {1, I5,...,1,} C Z, where for each j € [n] we define I; in the following
way:

L[, M=o
7\, k; — 3], otherwise, where k; = min M;
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It is easy to see that ¢ : H — [n] such that ¢(I;) = j for each j € [n] gives the desired
bijection. For example, the intervals on the right of Figure 2.3 correspond to the interval graph

in Figure 2.1 via ¢. O
8
| 1 I
. I .
H® o ——
'Lq | I I
(4) )i
L L

ORONO

Figure 2.3: On the left the poset whose incomparability graph is the G in Figure 2.1. On the
right the family of intervals associated to the G in Figure 2.1 by the proof of Proposition 2.5.

It is known (see [SW16, Section 4]) that the Dyck graphs are the incomparability graphs of
(finite) unit interval orders, i.e., interval orders where every interval has the same fixed length
(without loss of generality equal to 1).

Remark 2.6. In one direction, notice that in the proof of Proposition 2.4 that we sketched, we
could have ordered the intervals from right to left, i.e., according to their right endpoint: of
course in general we would find again an interval graph, but in the special case where all the
intervals have the same length, this order would correspond precisely to the order of the flipped
graph, showing that also its flipped is an interval graph, hence showing that it is actually a Dyck
graph.

To conclude this section, we recall that the interval orders are precisely the (2+2)-free posets
(see [Fis70]), and that the unit interval orders are precisely the (3 + 1)-free and (2 + 2)-free
posets (see [SS58]). Finally, we observe here that our interval graphs are precisely the “dually
factorial posets” appearing in [CL11].

3. Symmetric and quasisymmetric functions

In this section we recall a few basic facts of symmetric and quasisymmetric functions, mainly
to fix the notation. As general references we suggest [LMvW 13] for quasisymmetric functions,
[Sta99, Chapter 7] for both symmetric and quasisymmetric functions, and [Stal2] for posets.

Given a composition « = («ay,as,...,a;) of n € N (denoted o F n), we denote its
size by || = > .a; = n and its length by {(o) = k. For brevity, sometimes we will use
the exponential notation, so that for example we will write (1%) for (1,1,1,1), or (13,2% 1, 3)
for (1,1,1,2,2,1,3).

To a composition a F n we associate a set set(«) = set, () C [n — 1] as follows:

set(a) = {011,051 + Qg,...,0q1 + 4 Oék_l}.
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Vice versa, to a subset S C [n — 1] whose elements are i; < is < --- < i, we associate the
composition
comp(S) = compn(S) = (il, ig — il,ig — ig, . ,ik — ik,l,n — Zk) En.

Notice that the functions set,, and comp,, are inverse of each others.

Given a composition « F n, with a« = (a1, qs,...,q;), We associate its reversal
o = (g, 1, ...,0q), its complement o¢ = comp([n — 1] \ set(«)), and its transpose
al = (") = (a°)". Notice that the reversal can also be described as o = comp(n — set(«)),
where for every S C [n — 1], wedenoten — S :={n—i|i€ S} C[n—1].

For example if « = (1,4,1,2) F 8§, then o = (2,1,4,1), ¢ = (2,1,1,3,1)
and of = (1,3,1,1,2).

Given two compositions, we say that « is a refinement of (3 (equivalently [ is a coarsening
of o), written o = [ (equivalently 5 > «), if we can obtain the parts of J in order by adding
adjacent parts of «. For example (1,3,1,1,2,1) < (1,4,1,3).

Observe that « < [ if and only if set(5) C set(«). Hence this partial order on compositions
is a boolean lattice. So we can talk about the meet o A 3: this is the coarsest common refinement
of both v and . For example if « = (2,2,1) and 5 = (3,2), then v A B = (2,1,1,1). Notice
that set(a A B) = set(a) U set (/).

Given two compositions &« = (aq, ag, ..., ;) and § = (51, Bs, . . ., Bs), we define the con-
catenation product

Oéﬂ = (C%l,Oég, . ,Oér,ﬁl,ﬂg, Ce 758)'

Given two compositions «, § F n, let

be such that for every i € [((3)]

and

71(&75)72(&76) o '/ye(ﬂ)(aaﬁ) =a 5

For example, if again & = (2,2,1) and § = (3,2), then a A § = (2,1,1,1), v(e, ) =
(Vl(aaﬁ)vﬁ)ﬂ(aaﬁ)) Wlth’yl(aaﬂ):(Zl)I:?’:ﬁl and7 ( 7ﬁ) (171) 2252
Given a composition o F n, set
La)=1 4
=D 2
=1 j=1
and
£(B)
n(v(e, ) =Y n(v'(, 8))
i=1
For example, if again @« = (2,2,1) and § = (3,2), then n(ar) = 2+ (2 +2) = 6
and n(v(a, 8)) = n(v*(a, 8)) +n(y 2( B)) =2+ 1=3. Observe that 5((n)) = 0.
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We denote by QSym the algebra of quasisymmetric functions in the variables =1, zo, ... and
coefficients in Q(q), where ¢ is a variable. Given a composition & = (v, as, . . ., ), we define
the monomial quasisymmetric function M, as

_ o1 .02 Ok
M, = E AR

11 <t <--<ig

The set {M,, | « composition} is clearly a basis of QSym (this can also be taken as the
definition of QSym).
Givenn € N and S C [n — 1], we define the fundamental (Gessel) quasisymmetric func-

tion L, g as
Ln,S = E Ly Ljy =+ Ty,

1192 <in
JES=ijFij 41
and for every o F n, we define L, := Ly, set(a)-

It is well known that {L,, | o composition} is a basis of QSym.

We have the following three involutions of QSym: ¢ : QSym — QSym, defined
by ¥(La) := Lae, p : QSym — QSym defined by p(L,) = Lar, and w : QSym — QSym
defined by w(L,) = L,¢t. Observe that these isomorphisms commute, and w = ¢ o p = p o .
Moreover, it is easy to check that p(M,) = M.

Remark 3.1. Notice that these involutions restrict to the subalgebra of symmetric func-
tions Sym C QSym, where p restricts to the identity, while both 1 and w restrict to the in-
volution w in Sym such that w(h;) = e; for every ¢ > 1, where as usual e; and h; are the
elementary and the complete homogeneous symmetric functions respectively (hence h,, = L)
and en = L(ln)).

We will need to work with plethysm of quasisymmetric functions. For a nice presentation of
this fundamental tool we refer to [LR11]. Here we limit ourselves to introduce the few things
that are needed later in the text.

First of all, some notation: given a quasisymmetric function f € (QSym, we denote its
dependence on the alphabet of variables x1, o, ... by writing f[X]; it is useful to think of X as
the series x1 + x5 + - --. Now given f € QSym, we want to define a quasisymmetric function
in the alphabet of variables {x;y,}; j>1, Where y1, 9o, . . . is another alphabet of variables.

If f is symmetric, then there is an obvious way to do it: we consider simply the func-
tion f(x1y1, X2Y1, - - ., Y5, - . . ). Since f is symmetric, it is not important in which order the z;y;
occur in this expression.

This leads to the plethystic notation f[XY'|, where again it is useful to think of Y as the
series y; +yo+- - -, so that X'V is also the formal sum of the elements of the alphabet {z;y; }; j>1.

Butif f € QSym is not symmetric, then the order in which the z;y; occur is relevant. Hence
we have to make a choice. So for any composition o we define the plethysm L, [XY] where the
alphabet XY =) ; j>1 Tiyj is considered in lexicographic order, i.e.,

Ty < T1y2 < 1Yz < -+ < oYy < TaYo < TaYys < -+ -
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by setting
Lo XY] := Z a1as - -+ ap

a1<a2< - <an
aj=a;1=>j¢set(a)
where each a; is an element of our alphabet XY = {xiyj}Lpl and the inequalities a; < a;41
are determined by the total order that we fixed on the alphabet.

Of course for any f € QSym we define f[XY] extending the above definition by linearity
(since the L, form a basis of QSym).

In [LR11] the authors define more generally the plethysm of a fundamental quasisymmetric
function in a “combinatorial alphabet”, which is in particular totally ordered, and the plethysm
depends on the order. It turns out that our definition coincides with their definition in the present
case. In particular, when applied to a symmetric function f we recover the usual plethysm of
symmetric functions (we do not recall the definition here, but it appears in [LR11]).

We observe that with the given order, the resulting series L,[X Y] is quasisymmetric sepa-
rately in the alphabet X and in the alphabet Y. The following proposition follows directly from
the above definitions and notations.

Proposition 3.2. Given a composition o E n, we have

“5)
Lo[XY] =Y ] Lyt Y1 Ms[X]. (3.1)

BFn i=1
Remark 3.3. For example

Loy XY] =
= Ly [YIMs) [X]+ Loy [Y L) [YIM2,0) [ X1+ Lty [V La2) [V M2 [ X+ Loy [Y ] M 5) [ X]

so the coeflicient of 7z is L(2)[Y]L1)[Y] = ho[Y]h:[Y], which is symmetric in Y, while the
coefficient of y7y» is 3M(13)[X| + 2M(9,1)[X] + M1,2)[X] + M3 [X], which is not symmetric
in X. This shows that we cannot switch the roles of X and Y, hence our plethysm does indeed
depend on the order that we choose on the alphabet.

On the other hand, it is easy to check that in the special cases « = (n) and o = (1") we
do recover the well-known Cauchy identities of ,,[XY] and e, [X Y] respectively. Hence our
proposition can be seen as an extension of those Cauchy identities.

To conclude this section, we compute a formula for the plethysm L, [1%} .

Lemma 3.4. Given a composition o FE n, consider the alphabet 1—iq =1+q+¢@+--- (or
better {q" | i € N}) ordered naturally as 1 = ¢° < ¢* < ¢* < ---. We have

1 » 1
[ — "y, . 2
OCL—Q} ! RL—Q} G2
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Proof. Itis well known (see e.g., [Sta99, Corollary 7.21.3]) that

n

1 B 9 B 1

;)
N pel 'l
which ¢-counts the area between the interval [0, n]| of the z axis and the infinite lattice paths
starting from (0, 0), consisting of exactly n unit east steps while all the other ones are unit north
steps (this is just another way to picture the partitions with parts of sizes at most n).

Then, to understand our formula, we can interpret the monomials occurring on the left hand
side as g-counting the same area of the same paths, but with the extra condition that for ev-
ery ¢ € set(«) the i-th unit east step is necessarily followed by a unit north step. Then the
factor n(«") takes simply into account the extra area added by the ¢(«) — 1 forced unit north
steps. [

4. Colorings and (co)inversions

Givenn € Z, let G = ([n], E) be a (simple) graph.

A coloring of G is simply a function « : [n] — Z~,. We call C(G) the set of colorings of G.
We can and will identify a coloring x € C(G) with the word x(1)k(2) - - - k(n) in the alpha-
bet Z-, as well as with the element (x(1), k(2),---,k(n)) € Z2,, so that C(G) is identified
with Z2,. Also, the elements of the symmetric group &,, can be identified as elements of C(G)
in the natural way.

A coloring of G is called proper if (i, j) € E implies k(i) # x(j). We call PC(G) the set of
proper colorings of GG. Notice that with the above identifications we always have &,, C PC(G).

Given k € C(G) a G-inversion of k is a pair (7, j) with {i,j} € E,i < jand k(i) > k(j).
Similarly, a G-coinversion of k is a pair (i,j) with {i,j} € E, 7 < j and k(i) < k(j). We
denote by Invg (), respectively Colnv (k), the set of G-inversions, respectively G-coinversions,
of k. Observe that with our notation we can identify both Invg(x) and Colnvg (k) with (disjoint)
subsets of £, and if x € PC(G), then one is the complement of the other in E.

We can now set for every k € C(G)

invg(k) :=|Invg(k)] and coinvg(k) := |Colnvg(k)|.
Example 4.1. Consider the graph G in Figure 2.1, and 0 = 31852647 € &g C PC(G). Then

|nVG(0) {(172)7(3’4)7(
COanG(U) - {(17 3)7 (27 3)7 (

so that invg (o) = 5 and coinvg (o) = 10.

,5),(3,6),(6,7)} and
2

3
27 4)7 (27 5)7 ( 76)’ (27 7)7 (57 6)’ (57 7)7 (678)7 (77 8)}7

Remark 4.2. Observe that in the case of the complete graph G = K, = ([n], F), given a
permutation o € S,, (which we think of as a proper coloring of K,,), Invg, (o) is just the set of
the usual inversions of o, and invg, (o) is usually denoted simply by inv(o).
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Let¢ : C(G) — &,, be the standardization from left to right: givenaword x(1)x(2) - - - k(n),
if ¢y < cg < -+ < ¢ is the ordered set of values (i), then ¢(x) is the permutation obtained by
replacing the d; occurrences of c; with the numbers 1,2, ..., d; from left to right, then the ds
occurrences of ¢y with the numbers d; + 1,d; + 2, ..., d; + ds from left to right, and so on. For
example ¢(3253353) = 2163475.

Remark 4.3. Observe that for any x € C(G),
Colnvg (k) C Colnvg(p(k)) and  Invg(k) = Invg(d(k)).

The asymmetry is due to the fact that the standardization ¢ is from left to right. But observe that
if kK € PC(G), then in fact Colnvg (k) = Colnvg(p(k)) as well.

Recall that given a word w = wyws - - - w,, in a totally ordered alphabet, the set of descents
of w is the set
Des(w) :=={i € [n—1] | w; > w;11}.
While the next two lemmas are well known (they can be understood using Stanley’s theory
of P-partitions, see e.g [Sta99, Chapter 7]), we prefer to provide here a short direct proof for
completeness.

Lemma 4.4. Given a simple graph G = ([n], E) and given 0 € &,, the following statements
about . € C(G) are equivalent:

1. ¢(k) =0y

2. k(o7(4)) < k(o™i + 1)) foreveryi € [n — 1] and
k(o7 (4)) < k(o™i + 1)) for every i € Des(c™!).

Proof. Suppose first (1), i.e., suppose that k € C(G) and ¢(k) = 0.

Observe that the standardization from left to right immediately implies that
if c71(i) > o7 (i + 1), then k(o' (z + 1)) > x(o~1(4)). Similarly, if c'(i) < o7 1(i + 1),
then k(o71(7)) < k(o71(i + 1)).

Suppose now that x € C(G) satisfies (2).

Let us show that ¢(k) = o: we want to show that for every ¢, j € [n] withi < j, k(i) < k(j)
if and only if (i) < o(j).

If 0(i) < o(j), then using the first condition in (2) we have

k(i) = 5o~ (0(1)) < Ko™ (o(i) + 1)) < k(07 (o(i) +2)) < - < k(07 (0(4))) = K()).
Vice versa, if o(i) > o(j), then using the first condition in (2) we have
K(j) = k(o7 (0()) < k(o™ (a(5) +1) < k(o™ (o)) +2)) < -+ < k(o (o(i)) = k(i)
and if there was the equality x(j) = x(), then using the second condition in (2) we must have
j=o0"o() <o o)+ 1) <o N o(j) +2) < - <o H(oli) =i

contradicting ¢ < j. This completes the proof of ¢(x) = o, and therefore also the proof of the
lemma. 0
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For any x € C(G), set
= Hzn(i)a
i=1

where z1, x5, ... are variables.
An immediate corollary of the previous lemma is the following result.

Lemma 4.5. Given a simple graph G = (|n], E') and given o € &,,, we have

Z xn—LnDesa 1.

keC(G
¢(n):a

Let us denote by Inv(G) the (finite) set of possible sets of G-inversions of a coloring of G:
in other words
Inv(G) :={lnvg(o) | 0 € &, }.

Similarly, set
Colnv(G) := {Colnvg (o) | 0 € G,,}.

Combining the results and remarks of this section, we get the following formula.

Proposition 4.6. Given a simple graph G = ([n], E), for every S € Inv(G) we have

§ inv E inv E :
q o q o nDescr n = LnDescr 1)

keC(G) 0eG, cEG,
Invg(k)=S Invg(0)=S Invg(o)=S

Notice that, because of Remark 4.3, a similar formula with Inv and inv replaced by Colnv
and coinv is not supposed to hold in general.

5. Interval graphs and colorings

Given n € Z, let G = ([n], E) be an interval graph, i.e., G € ZG,,.
GivenT € G, set

Desg(r):={ien—1]|7@)>7(i+1)or {r(i), 7 + 1)} € E(G)} C [n—1].

While the next two lemmas are implicit in the work of Shareshian and Wachs [SW16], we
prefer to provide here a short direct proof, appearing in unpublished work of Philippe Nadeau
and Vasu Tewari, for completeness. We will relate them to the results in [SW16] in Section 7.

Lemma 5.1. Given G = ([n|, E') an interval graph and given o € S, the following statements
about k € C(G) are equivalent:

1. k € PC(G) and ¢(k) =

) < k(o™i + 1)) foreveryi € [n — 1] and
k(o74(i)) < k(o7 (i + 1)) for every i € Desg(a™).
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Proof. Suppose first (1), i.e., suppose that k € PC(G) and ¢(k) = o.

Observe that the standardization from left to right immediately implies that
if o71(i) > o7(i + 1), then k(0" (i + 1)) > r(o~1(¢)). Similarly, if c71(i) < o7'(i + 1),
then k(o= 1(3)) < k(o~(i+1)). Butif {o71(i),0" (i + 1)} € E, then the last inequality must
be strict since x € PC(G).

Suppose now that x € C(G) satisfies (2).

Let us show that k € PC(G): giveni,j € [n] withi < jand {o7'(i),07(i)} € E, we want
to show that k(0 (i)) # k(o 71(j)). By iterating the first inequality of (2) we must have

Ko (0) < k(o (i + 1)) < < R(o7'()).

If by contradiction we had the equality (o~ (i)) = k(c7*(4)), then the second condition in (2)
would imply that

o) <o i) <o i+2) < <al())

and that {c~'(i +7),07'(i+r+1)} ¢ Eforeveryr =0,1,...,j5 —i — 1. But since our G
is an interval graph, {c7'(i),0c7'(j)} € E implies {o7'(:),0c7'(i + 1)} € E, which gives
a contradiction. Hence we must have x(c71(i)) < r(o~!(j)), completing the proof that x is
in PC(Q).

Now let us show that ¢(x) = o: we want to show that for every ,j € [n] with ¢ < j,
k(1) < k(j) if and only if o (i) < o(j).

If 0(i) < o(j), then using the first condition in (2) we have

k(i) = w0~ (0(i)) < Ko™ (o(i) + 1)) < k(0™ (0(i) +2)) < -+ < k(0 (0())) = K()).
Vice versa, if o(i) > o(j), then using the first condition in (2) we have
k(j) = k(o7 (0(5)) < k(o7 (0 (j) +1)) < k(07 (0(j) +2)) <+ < k(o7 (o(i)) = k().
and if there was the equality x(j) = x(), then using the second condition in (2) we must have
j=o0"Ho() <o Ho(j) +1) <o o(j) +2) < <o (o(i) =i

contradicting ¢ < j. This completes the proof of ¢(x) = o, and therefore also the proof of the
lemma. 0

An immediate corollary of the previous lemma is the following result.

Lemma 5.2. Given G = ([n], E) an interval graph and given o € &,,, we have

Z Ty = Ln,DesG(ofl)-

KEPC(G)
d(r)=c

Combining the previous lemmas with Remark 4.3, we get the following formulas.
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Proposition 5.3. Given G = (|n|, E') an interval graph, for every S € Inv(G) we have

Z quG(’i Z quG n ,Desg (o Z Ln ,Desg(c—1)

kEPC(G) ST oeb,
Invg(k)=S Invg(0)=S Invg(o)=S

and for every S € Colnv(G) we have

Z qCOInVG(H):Em = Z qCOinVG(U)Ln,DeSG(afl) = q|S| Z Ln,DesG(a*1)~

rePC(G) oSG2 ce6y,
Colnvg(k)=S Colnvg(0)=S Colnvg(0)=S

6. Increasing spanning forests and quasisymmetric functions

Given a graph G = ([n], F), we say that a subgraph ' C G is a spanning forest if F is a forest
on the vertices [n]. In this case, the connected components are labelled trees, with the vertex
set contained in [n]. Given such a tree T', we call root(T) its minimal vertex. Then T is called
increasing if in the paths stemming from root(7") the other vertices appear in increasing order.

A spanning forest F' of a graph G = ([n], F) is called increasing if all its connected compo-
nents are increasing trees. Hence we think of F' as the ordered collection F' = (T}, T, ..., T}),
where the 7; are its connected components, ordered so that

root(7}) < root(T3y) < --- < root(T}).

For example, the forest F' = (7}, T3) in Figure 6.1, with
T = (V(Th), BE(Th)) = ({1,3}{(1,3)})
T, = (V(T2)> E(T2)) = ({27 4,5,6,7, 8}7 {(27 4)7 (2’ 5)? (27 6)7 (57 7)’ (67 8)})7

is an increasing spanning forest of the graph G in Figure 2.1.

8
T D®
; L {
( ’ T 01610

3 —te

5 I s,

1 I 23450673809 (2)

Figure 6.1: From left toright: an interval graph GG (same from Figure 2.1), the family of intervals
associated to it, an example of increasing spanning forest for this graph.

We denote by ISF(G) the set of increasing spanning forests of G.
For example, for G = ([3],{(1,2), (1,3)}), the increasing spanning forests of G are

(([31,{(1,2), (1,3)})), ({1,331, {(1,3)}), ({2}, 9)),
(({1,2},{(1,2)}), ({3}, 2)) ({1}, 2), ({2}, 2), ({3}, 9)),
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HONORNONORNONORO,
Figure 6.2: The increasing spanning forests of the graph G = ([3], {(1,2), (1,3)}).

see Figure 6.2.

Given a (simple) graph G = ([n], F) and an F' € ISF(GQ), F' = (T3, T5,...,T}), we say
that a pair (u,v) with u,v € [n] is a G-inversion of F if u € V(T;), v € V(1}), 1 > j
and (u,v) € E (so that u < v). Given an edge (u,v) € E(T;) of T; we define its weight in G,
denoted wtg ((u, v)), to be the number of w € V(7;) such that w < w < v and (w,v) € E(G).
So for every tree T; we define its weight in G as

wtg(T;) = Z wte((u, v))

(u,w)EE(T;)

and finally the weight of F' (in ) as

k
wtg(F) := #{G-inversions of F'} + Z wte(T5).

=1

Example 6.1. The forest F' = (T3, T5) in Figure 6.1 there is an increasing spanning forest : we
observe that its only G-inversion is (2, 3) (as 3 occurs in 73, 2 occurs in 75 and (2,3) € E),
wte(T7) = wte((1,3)) = 1, and

wig(Ts) = wtg((2,4)) + wte((2,5)) + wte((2,6)) + wtg((5,7)) + wte((6,8))
=1+1+24+242=38,

so that wt(F) =141+ 8 = 10.

Remark 6.2. Our weight function wt¢ is almost the same as the one appearing in [AN21b]: the
difference of the two is the number of edges in the forest.

Let G = ([n], E) be an interval graph, i.e., G € ZG,,. The next goal is to define a func-
tion ¢ : PC(G) — ISF(G) with certain desirable properties. In particular, we will come up
with a surjective function that sends the number of GG-coinversions of a proper coloring into the
weight of the resulting increasing spanning forest of G.

We define ®(; via an algorithm. We start with an auxiliary function, that we call getW: given
a proper coloring ~ of G, this function will select the vertices that will belong to an increasing
tree of ®(k), rooted at a given vertex v.

We define getW with the following algorithm. The idea is to pick the vertices in order so
that we always pick a vertex that creates at least one (G-coinversion of « with another vertex that
we already picked.

Now we are ready to define the function ®;: Algorithm 2 will construct the
image @ (k) € IFS(G), ®¢(k) = (11,15, ... ), one tree at the time, in the order 71,15, . ..
with root(77) < root(Ty) < - --.
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Algorithm 1 Algorithm defining the function getW (G, v, S, k)
Input: A graph G = ([n], E), S C [n], v € [n] \ S, and k € PC(G)
Output: W >Itwillbe W C S U {v}
W+ {v}
for w € S do
if {fueW|u<w,(u,w) € Eand k(u) < k(w)} # & then
W+ W uU{w}
end if
end for

The main idea is that in every iteration of the while loop, Algorithm 2 will construct an
increasing tree 7}, whose set of vertices IV is given by applying the function getW to the re-
maining vertices, and it attaches these vertices in increasing order, so that the amount of weight
of T} created by attaching the vertex W; € W is equal to the number of G-coinversions of K
that WW; creates with the smaller elements in V.

Algorithm 2 The algorithm defining the function ®¢ (k)
Input: A graph G = ([n], F) and x € PC(G)

Output: ' = (71,71,...) > It will be F' € ISF(G)
S <« [n]
F+ () > Empty list
while S # @ do
v < min(5)
S« S\ {v}
T=(V(T),E(T)) «+ ({v},9) > The tree we are going to build
W+ getW(G, v, S, K) > Defined in Algorithm 1

foric {2,...,#W} do
L+ {ueV(T)|u<W;and (u,IW;) e E} W ={W, <Wy<--- <Wuw}
r<« #{uel|(u,W;) € Eand k(u) < c(W;)}
T + (V(T) U {m},E(T) U {(L#L—T+17 Wz)}) > L= {Ll <Ly<---< L#L}
S« S\ {W}

end for

Append T to the right of F'

end while

Before discussing Algorithm 2 further, we illustrate it with an example.

Example 6.3. Let GG be the (interval) graph in Figure 6.1, and o = 31852647 € G5 C PC(G).

We enter the first iteration of the while loop of Algorithm 2 with S = [8], we set v = 1,
T = ({1}, 9), and the function getW defined by Algorithm 1 gives us W = {1,3}. So in the
for loop we only have i = 2 to work out: here Wy, = 3, L = {1}, r = 1, and we update T,
getting 7" = ({1, 3}, {(1, 3)}), which becomes 77 of our output F' = (77,...). Along the way
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L r
{2} |1 ({24}1L{24H})

{2} |1 ({2,4,5},{(2,4),(2,5)})

{25} |2 ({2,4,5,6},{(2,4),(2,5),(2,6)})
{2,5,6} | 2 ({2,4,5,6,7},{(2,4),(2,5),(2,6),(5,1})
{6,7}y | 2| ({2,4,5,6,7,8},{(2,4),(2,5),(2,6),(5,7),(6,8)})

T

o| <o u| &=

A\ DN | W~

Table 6.1: Partial results of Algorithm 2 taking GG from 6.1 and kK = 31852647 as input.

of the first iteration of the while loop we updated S ending up with S = {2,4,5,6,7, 8}, which
are the vertices that we still need to add to F'.

We enter the second iteration of the while loop of Algorithm 2 with S = {2,4,5,6,7,8},
we set v = 2, T = ({2},9), and the function getW defined by Algorithm 1 gives
us W =1{2,4,5,6,7,8}. Hence we enter the for loop: what happens is described below in
Table 6.1.

Hence at the end we computed T, = ({2,4,5,6,7,8},{(2,4),(2,5),(2,6), (5,7),(6,8)}).
At this point S is empty, hence the algorithm terminates, giving us /' = (77, 73): this forest
is depicted in Figure 6.1. Notice that we already computed coinvg (o) = 10 in Example 4.1
and wtg(F') = 10 in Example 6.1: we will see shortly that this equality is not a coincidence.

Proposition 6.4. Given a graph G = ([n], E), the Algorithm 2 defines a function ¢ : PC(G) —
ISF(G).

Proof. First of all notice that the function @ is well defined: clearly the algorithm terminates,
producing a forest with vertex set [n]. We need to check that the edges of (k) are in G, and
finally that ® (k) is increasing.

Notice that the j-th iteration of the while loop produces the tree 7 in ®(x). The call of the
function getW in the j-th iteration of the while loop produces the vertex set W = V(1) of T}.
The j-th iteration of the while loop adds the vertex root(7}) before the for loop, and then the
for loop adds to 7 the vertices of ¥ in increasing order, in such a way that I¥/; gets added in 7}
with an edge (u, W;) € E with u < W;, since L is precisely a set of elements of this type. All
this shows that indeed ® (k) € ISF(G). O

The first nontrivial property of the function ® is its surjectivity. Indeed we will define a
function f¢ : ISF(G) — &,, € PC(G) such that ¢ o fo(F) = F for every F' € ISF(G).

We start by defining a function colortree(G, T', d) that takes as input a graph G = ([n], E),
an increasing subtree 1" of G of size £ < n, and an integer d, and it returns a permutation o of
the numbers {d,d + 1,...,d + k — 1}: this function is defined in Algorithm 3. We will show
that if 7" is an increasing spanning tree of GG, then indeed ®¢(colortree(G, T, d)) = F := (T).

Before discussing the algorithm, let us work out an example.

Example 6.5. Let G=([4],{(1,2),(1,3),(1,4),(2,3),(2,4)}), T=([4],{(1,2),(1,4),(2,3)})
and d = 2. In Algorithm 3 first of all we set oy = 2, 0 = (01) = (2), and E(T) =
((1,2),(2,3),(1,4)), i.e., we get the edges of 7" in increasing order with respect to the second
coordinate (so by = 2, by = 3 and b3 = 4, and a; = a3 = 1, as = 2). Then in the first iteration



20 Michele D’Adderio et al.

Algorithm 3 The algorithm defining colortree(G, T, d)

Input: A graph G = ([n], E), an increasing subtree 1" of G of size k < n, and an integer d
Output: o permutation of {d,d+ 1,...,d+ k — 1}

o1 < d

o+ (01) > o will be a vector

E(T) < ((a1,b1), (ag,bs), . ..) edges of T sorted by the b;’s >

V(T) ={root(T) < by <by <---}

for i from 1 to |E(T')| do > |E(T)|=|V(T)|-1=k—-1
L+ {ueV(T)|u<b; and (u,b;) € E} >a; € L

r<#{uel|u>a}
cL(—(ail,am---)whereL:{il <12<}
Oip1 < 05 + 1 where s is such that r = #{j | 0y, < 0}

for j € [i| do
if 0; > 0,1, then
0;j < ; +1
end if
end for
o< (01,09,...,0,0i11)
end for

of the first for loop (: = 1) we get L = {1}, r =0, cL = (2), 03 = 01 + 1 = 3, and now in the
internal for loop we do nothing (o7 < 03), hence we finally update o to o = (01, 02) = (2, 3).

In the second iteration of the first for loop (: = 2) we get L = {1,2}, r = 0, cL = (2, 3),
03 = 01 + 1 = 3, and now in the internal for loop we update 05 = 4 (3 = 05 > 03 = 3), hence
we finally update o to o = (01, 02, 03) = (2,4, 3).

In the third and last iteration of the first for loop (i = 3) we get L = {1,2}, r = 1,
cL = (2,4), 04, = 09+ 1 = 5, and now in the internal for loop we do nothing (o, < o4
for every k € [3]), hence we finally update o to 0 = (01, 09,03,04) = (2,4,3,5). It can be
checked that & (0) = F = (7).

Proposition 6.6. Algorithm 3 defines a function colortree(G,T,d) that takes as input a
graph G = ([n], E), an increasing subtree T of G of size k < n, and an integer d, and it returns
a permutation o of the numbers {d,d + 1,...,d + k — 1}. Moreover, if T is an increasing
spanning tree of G, then ®(colortree(G, T, d)) = F = (T).

Proof. 1t is easy to see that Algorithm 3 is well defined and that it always terminates. Indeed,
notice that since 7 is an increasing tree, the edges £(T') are such that the second coordinates are
all distinct, and they give all the vertices of 7" except root(7") (each one appearing exactly once).
It is also clear that the output is a permutation of {d,d+1, ... ,d+k—1}: we start with o = (d),
and then we always add 0,1 by taking a o, that we already have, augment it by 1, and then in the
inner for loop we increase by 1 all the o; that are > 0,4 for j € [i], hence at the end of the i-th
iteration of the first for loop our o will necessarily contain the numbers {d,d + 1,...,d + i}.
To see why @ should send our ¢ into the forest /' = (1') € ISF(G) containing the only
increasing tree 7', we observe that when we added o, to our coloring (in the ¢-th iteration of
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the first for loop) we made sure that the number of v € V(7") smaller than the (i + 1)-th vertex
of T, i.e., b; in our notation, that are connected in GG and that they have a smaller corresponding
color, i.e., value of o, is precisely the number that in Algorithm 2 would lead to join the vertex b;
to the vertex a;. The rescaling occurring in the inner for loop is only there to guarantee that we
get a proper coloring, in fact a permutation of distinct colors, as it does not affect the relative
order of the previous colors, hence it does not change the outcome of Algorithm 2. 0

We are now in a position to define a function fi : ISF(G) — &, C PC(G) such
that & o fo(F) = F for every I € ISF(G). We will define f via Algorithm 4.

Algorithm 4 The algorithm defining the section f¢ : ISF(G) of O

Input: A graph G = ([n], E) and F' = (1}, T5,...,T}) € ISF(G)

Output: 0 € G, > It will be @ (o) = F
clrT < () > empty vector
for : from 1 to k£ do

den+1- Y0 V(T))
clrT; < colortree(G, T;, d)
Append clrT; to the right of clrT
end for
o+ () > empty vector
for ; from 1 to n do
for j from 1 to k£ do
if i € V(7)) then
r—#{k e V(T |k <)
Append ¢, to the right of o, where clrT; = {c; <y <---}
end if
end for
end for

Theorem 6.7. Let G = ([n],E) a graph. Then Algorithm 4 defines a function
fa : ISF(G) — &,, C PC(G) suchthat ®go fo(F) = F forevery F € ISF(G). In particular ®¢
is surjective, fq is injective, and ISF(G) = {®g(0) | 0 € 6,} = {Ps(0) | 0 € fo(ISF(G))}.

Proof. 1t is easy to check that Algorithm 4 is well defined and that it always terminates. In-
deed the first for loop is just a sequence of iterations of Algorithm 3 on the trees 71,75, . ..
of ' € ISF(G), in such a way that the tree 7; gets the colors {n — Zj’:l \V(T;)| + 1,
n — 23:1 V(T;)| +2,...,n — Z;;ll |V(T})|}. Then the second for loop takes the color-
ings computed before and put it together to get a coloring of the forest F', getting obviously a
permutation o € G,,.

To see why @i o fo(F) = F, notice that, because of how we attributed the colors to the trees,
the first call of getW (Algorithm 1) in Algorithm 2 will necessarily pick the vertices of 7} (the
colors of the vertices of the other trees are all strictly smaller than all these colors), hence it will
send the colorings of those vertices back to the tree 77 (by Proposition 6.6); then the second call
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of getW will necessarily pick the vertices of 75 (the colors of the vertices of the other remaining
trees are all strictly smaller than all these colors), hence it will send the colorings of those vertices
back to the tree 75 (by Proposition 6.6); and so on. [

Our function f has also the following property.

Proposition 6.8. For every graph G = ([n], E) the function fg : ISF(G) — &,, defined by
Algorithm 4 is such that Desg(fo(F)™') = [n — 1] for every F € ISF(Q).

Proof. Suppose by contradiction that there exists G = ([n],E), FF' € ISF(G) and
i € [n — 1] \ Desg(fe(F)™!). For simplicity, we set ¢ := fg(F), so that we must
have 071(i) < o™i+ 1) and {o7 (i), 07 (i + 1)} ¢ E.

We use the fact proved in Theorem 6.7 that & ( fo(F)) = F. We distinguish two cases.

Case 1: both 0!(:) and o~ '(i + 1) are in the same tree 7" of F. Then Algorithm 3 tells
us how ®¢(fe(F)) = F could have happened: in the o~!(i + 1)-th iteration of the first for
loop there was a color ¢ < ¢ in position 0‘1(2'), and in that iteration we added a + 1 in po-
sition o~ 1(7 + 1); later on we might have updated those colors by adding 1 to both of them
simultaneously. But the problem is that to add a + 1 the color a should have been in the
set cL (see Algorithm 3), hence the vertex o1 () should have been in L, but this is impossible
since {o7!(i),07 (1 + 1)} ¢ E.

Case 2: 071(i) and o~ !(i + 1) occur in distinct trees of F', say T' and 1" respectively.
Since ¢ (fe(F')) = F and Algorithm 4 gives higher colors to trees that are to the left in F', we
must have that 7" is to the left of 7', i.e., root(7”) < root(T"). Moreover i+ 1 must be the smallest
color occurring in 7", since the colors of every tree of F' are consecutive (cf. Proposition 6.6),
and the smallest color always gets assigned to the root root(7") of the tree (cf. Algorithm 1).
So o7 !(i+ 1) = root(T") < root(T'), and root(T") is smaller than any other vertex of 7', hence
it is also smaller than o~ (7), giving a contradiction. O

The function ® has also the following important property.

Proposition 6.9. Given a graph G = ([n], E), the function @ : PC(G) — ISF(G) defined by
Algorithm 2 is such that wtg(Pg(k)) = coinvg (k) for every k € PC(G).

Proof. Notice that in the for loop we added W; with an edge (u, W;) in such a way that the
weight wte ((u, W;)) equals the number of G-coinversions involving WW; and the elements in W
smaller than W;. In this way the number of GG-coinversions of « involving two vertices of the
same tree 7; equals wte(7}). The other G-coinversions of x are automatically G-inversions
of Og(k): if u < w, (u,w) € E, k(u) < k(w), u € Tj and w € T, with j # s, then
necessarily j > s, in other words w gets added before v in Algorithm 2 (if we add w first, then
Algorithm 1 would put w in the same tree as ). This shows that wtg(Pg(k)) = coinvg(k). [

Remark 6.10. In the above proof of Proposition 6.9, the only thing that is missing to get the
equality wte(Pe(k)) = coinvg(k) is the fact that every G-inversion of ®(x) corresponds to a
G-coinversion of . In fact this is not always the case: for example for the graph
G = ([3],{(1,3),(2,3)} (whichis notin ZG3) we have ®(132) = (({1,3},{(1,3)}), ({2}, 9))
and Colnv(132) = {(1,3)}, so that wtg (P (132)) = 2 > 1 = coinv(132).
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Remark 6.11. An important observation is that ®;(x) only depends on Colnvg(k): in other
words, if k, " € PC(G) are such that Colnvg (k) = Colnvg(K'), then (k) = g (K'). Indeed,
in Algorithm 2 x only enters in two places: in the call of getW, and it is immediate to see that
Algorithm 1 is determined by the G-coinversions of « (cf. the condition of the if), and in the
computation of r in the for loop, and again it is clear that it only depends on the G-coinversions
of k.

In the special case of G = ([n], E') € ZG,, an interval graph, the statement in Remark 6.11
has a converse. In fact we have even more.

Proposition 6.12. Given an interval graph G = ([n|, E) € ZG,, the function O : PC(G) —
ISF(G) defined by Algorithm 2 is such that for every r, k" € PC(G), ®¢(k) = Pu(r') if and
only if Colnvg (k) = Colnvg (k). Moreover wtg(®Pa(k)) = coinvg (k) for every k € PC(G).

Proof. For the first statement, because of Remark 6.11, it is enough to show that we can recon-
struct Colnv¢ (k) from the knowledge of G and @ (k).

(i) Inside each tree of ®;(x) we can reconstruct the G-coinversions inductively. Indeed,
when we add a vertex in Algorithm 2, we are in the ¢-th instance of a for loop, and we are
adding W; to the tree 7T'; the vertices in 7" that are connected to IV/; are the vertices in L (they are all
smaller than W;), and since G is an interval graph they form a clique (cf. Remark 6.11); from the
vertex which W is attached so we can reconstruct r, so that we can determine how many u € L
are such that x(u) < k(W;); since by induction we know the order of {x(u) | u € L}, we
determine in this way the order of {x(u) | u € L U {W;}}.

(ii) Between trees, assume that v is in a tree T strictly to the left of the tree 7" containing v,
u > vand (v,u) € E. We already observed in the proof of Proposition 6.4 that the vertices of T
are determined by the call of the function getW, hence (see Algorithm 1), since u € 7T, there
exists a sequence root(7") = u; < uy < - -+ < u, = u of vertices of 7" such that (u;, u;+1) € E
and k(u;) < kK(u;4q1) for every i € [r — 1]. Since root(7") < root(7"), root(7") is smaller
than every other vertex of 7" and v is one of those vertices, there exists a j € [r — 1] such
that u; < v < w;41. Since G is an interval graph, (v,u = u,) € Eand v < uj1; < u, we
have (v, u;;+1) € E. Again, since G is an interval graph, (u;, uj41) € Fand u; < v < ujtq1, we
have (u;,v) € E. Soif k(u) < x(v), we would have

k(uj) < K(ujpr) < -+ < Kk(u,) = k(u) < Kk(v),

and Algorithm 2 would have placed v in 7', which is a contradiction; hence we must
have x(u) > k(v).

(iii) Finally, if w is in a tree T strictly to the left of the tree 7" containing v, u < v
and (u,v) € E, then necessarily x(u) > k(v), otherwise the algorithm would have placed v
in 7', which is a contradiction.

This shows that we can reconstruct all the G-coinversions of x from G and P (k), as we
wanted.

For the last statement, point (ii) above shows that a G-inversion of ®(x) must necessarily
correspond to a (G-coinversion of «, and this was the only thing that was missing in the proof of
Proposition 6.9 to get the actual equality wtg (P (x)) = coinvg(k): see Remark 6.10. O
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Remark 6.13. In Proposition 6.12 we cannot drop the hypothesis G € ZG,, even for the first
statement. For example the graph G = ([3],{(1,3), (2,3)} is not in ZG3, and now $(123) =

¢(132) = (({1,3},{(1,3)}), ({2}, 9)) but Colnv(123) = {(1,3),(2,3)} # {(1,3)} =
Colnv(132).

Remark 6.14. When G = ([n], E') € G, is an interval graph, using Theorem 6.7 we can de-
fine for any F' € ISF(G) a set of G-coinversions of F' by setting Colnvg (F') := Colnvg(fa(F)),
where fq is the function defined by Algorithm 4. Then Proposition 6.12 shows that for
every k € PC(G), ¢(k) = F if and only if Colnvg (k) = Colnvg(F).

Here is an application of our results.

Corollary 6.15. For G = K,, the complete graph, the restriction i |s, : &, — ISF(K,) isa

bijection, and
= S g,

FEISF(Ky)

Proof. The first statement is clear: by Theorem 6.7 the restriction is always surjective, and
when G = K, the set Colnv(0) is simply the set of coinversions of o, which is well known to
determine o uniquely (essentially via the Lehmer code).

The formula follows from the property that wtg, (®g, (0)) = coinvg, (o) (cf. Proposi-
tion 6.12), and the well-known fact that the number of (co)inversions is a Mahonian statistic. [

We are now ready to define quasisymmetric functions associated to increasing spanning
forests of interval graphs.

Definition 6.16. Given an interval graph G = ([n|, F) € IG,, and given F' € ISF(G), we
define the formal power series

=0l X] = >

kEPC(Q)
g (k)=F

We give immediately the following fundamental formula.

Theorem 6.17. Given an interval graph G = (|n|, E) € ZG,,, and given F' € ISF(G), we have

QETG) = Z Ln,DesG(ofl)- (61)
ceG,
Colnvg (o)=Colnvg (F)

Proof. Combining Proposition 6.12 and Theorem 6.7, we have

Q%G) - Z Ly

kePC(G)
Colnvg (k)=Colnvg (F)

and now the formula follows from Proposition 5.3 (at ¢ = 1). L]
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For example, for G = ([8], E) the interval graph and forest from Figure 6.1, we get

Q%G) = Lasy + Loy + 2Las21) + 3La2,12) + 2L1a92) + Laz 1y + 3L s 2,13)
+3Lus 212 + 2L 021y + Lz 32y + Lz + 3Laz214) + 3Lz 2122
+2La22121) + 2Lz 0212) + 2L2,93) + Lz 313) + L2312 + 2L1,2,15)
+2Lap132) + 2021221 + 2L 2,12,12) + 2L 21,22) + 2L(1,2213) + 2L(1 22,12
+ Lz + Lazaze)-

For a smaller example, consider the interval graph G = (]

forest F' = ([3],{(1,2),(1,3)}) € ISF(G). Then Colnvg(F

Colnvg (o) = Colnvg(F)} = {0 = 123,7 = 132}, Desg(o~
hence

{(1,2),(1,3)}) € ZG5 and the
{(1,2),(1,3)}, and {0 € &3 |
) = {1}, Desg(t71) = {1,2},

)

Q) = Lug + Las).

Notice that Theorem 6.17 shows in particular that our Q%G) are quasisymmetric functions.

In fact it is not hard to write the expansion of Q%G) in the monomial quasisymmetric func-
tions. Given G = ([n], F) a graph, call PPC(G) C PC(G) the set of packed proper colorings
of G, i.e., proper colorings k € PC(G) such that {x(i) | ¢ € [n]} = [r] forsome 1 < r < n.
Given k € PPC(G), call ev(k) the exponents vector, i.e., the composition of n whose i-th part
is the number of j € [n] such that x(j) = 4, forevery i = 1,2,. .., max({x(i ) | z € [n]}).

The next proposition follows immediately from the deﬁnmon of Q¢ F and the fact

that Q' € QSym.
Proposition 6.18. Given an interval graph G = ([n], E) € ZG,, and given F € ISF(G), we

have
= Y M (62)

KEPPC(G)
dg(k)=F

For example, consider the interval graph G = ([3], {(1,2), (1,3)}) € ZG; and the increasing
spanning forest F' = ([3],{(1,2), (1,3)}) € ISF(G). Then Colnvg(F) = {(1,2),(1,3)} and

{rk € PPC(GQ)|P¢(k) = F'} = {r € PPC(G) | Colnvg (k) = Colnvg(F)} = {123, 132,122},
giving
Q) = Mg +2Mus),
which agrees with our previous computation.
7. Interval orders, chromatic quasisymmetric functions and LLT
Given any simple graph G = ([n], E), Shareshian and Wachs defined in [SW16] its chromatic

quasisymmetric function as
coinv
E g™,

KEPC(GQ)
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Remark 7.1. Notice that in the literature, following the original work [SW16], what we
call coinvg (invg respectively) is called a ascq (desg respectively). We prefer to avoid the remi-
nescence of the words “ascents” and “descents”, as they are commonly used (also in the present
work) with different meanings.

The following theorem is a direct consequence of Proposition 6.12 and Theorem 6.7.

Theorem 7.2. Given an interval graph G = (|n], E) € ZG,,, we have
= > qwta(F (7.1)

FelSF(G

Example 7.3. For G = ([3],{(1,2), (1,3)}), the increasing spanning forests of G are
1,2),(1

Fro=(([31,{(1,2),(1,3)}), Fo=(({1,3},{(1,3)}), ({2}, 9)),
= (({172 172)})7<{3}a®))7 Fy = (({1}’®)7({2}7®)7({3}7@))7

and we compute

(1,2
FA(

th(Fl) =2, th(Fg) = th(Fg) =1, th(F4) =0,

Qﬁff) = L(12) + L3, Q% Q(G) L3y, Q%Cj) = L21) + L13),

hence finally
XclX:q) = Leay + ¢*Lag + (L+2q + ¢*) Lgs).

The following corollary is a reformulation of [SW16, Theorem 3.1] in our cases, and it fol-
lows immediately from Theorems 7.2 and 6.17.

Corollary 7.4. Given an interval graph G = (|n|, F) € IG,,, we have
XelXiql = > ™) Ly pesg o) (7.2)
UEGn

Remark 7.5. To see why Corollary 7.4 is a reformulation of [SW16, Theorem 3.1], for
any o € 6, setg =o(n)o(n—1)---0(2)o(1),ie., (i) := o(n+1—1i) forevery i € [n]. If
for every o € &,, we set!

Desg(0) = {i € [n — 1] | 0(i) > o(i + 1) and {o(i),0(i + 1)} ¢ E}
and .
invg(o) :={{o(i),o(j)} € E|i<jand o(i) > o(j)},
then [SW16, Theorem 3.1] can be restated as
VYxalX;q] Z gme @ L, . Besc(o)

ceG,

'In [SW16] they call “inve” what we call here “in~vc;” and “DESp” essentially what we call here “6?5@’
(P refers to the poset “behind” G).
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recalling that forevery S C [n—1|,n—S := {n—i | i € S}, and ) is the involution sending L,, s
to Ly n-1)\s-
It is now easy to check that

[n— 1]\ (n — Des¢(c)) = Desi(7) (7.3)
and .
invg(o) = invg(o™t) = coinvg (@ 1). (7.4)

Using Propositions 6.12 and 6.18, from Theorem 7.2 we also get the following formula.

Corollary 7.6. Given an interval graph G = ([n], E) € ZG,,, we have

Z qcova ( )-

kEPPC(G)

Given any simple graph G' = ([n], E) € ZG,,, we define its LLT quasisymmetric function as

LLT¢[X:q] Z gme )

keC(G
The following formula is an immediate consequence of Proposition 4.6.

Theorem 7.7. Given any simple graph G = ([n], E), we have

LLTG[X;q) = > ¢™ 7 Ly pesto ).

O’GGn

For example, if G = ([3],{(1,2), (1,3)}) € ZG3, then
LLT¢[X;q] = ¢"Las) + (0 + ¢*) Loy + (1 +9) L + L),

The name LLT of these quasisymmetric functions comes from the following well-known
facts: when G is a Dyck graph, LLT¢[X; ] is a symmetric function, and in fact it is a so called
unicellular LLT symmetric functions (see e.g., [AP18, Section 3]). In this case the formula in
Theorem 7.7 is well known (e.g., it can be deduced from [NT21, Theorem 8.6])).

Notice that LLT4[X; ¢ is typically not symmetric when G is not a Dyck graph. In particu-
lar LLT [ X; ¢ is typically not symmetric when G € ZG,,\ DG,, (e.g., Example 7.3 is manifestly
not symmetric). Still, we argue (cf. Theorem 10.1) that the LLT quasisymmetric functions of
interval graphs are an interesting quasisymmetric extension of the family of unicellular LLT (for
a noncommutative analogue see instead [NT21]).
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8. A fundamental formula

Let G = ([n], E) € ZG,, be an interval graph.

Given a composition 3 F n, let R(/3) be the set of words of length |3| = n in the alpha-
bet [¢(()] in which i occurs ; times for every i € [¢(()]. In other words, R(() is the set of
all the rearrangements of the word 171272 ... ¢(3)%«# . Of course we can identify R(3) with a
subset of colorings C(G), so that for every w € R([3)

invg(w) = #{{i,j} € E | i < jand w;, > w;}.

Recall all the definitions from Section 3, and the definitions of i/nva and [/)\e/sG from Re-
mark 7.5: forevery 0 € G,

Desg(o) :=={i € [n—1] | 0(i) > o(i + 1) and {0 (i), 0(i + 1)} ¢ E}

and
inve(0) = {{o(i),0(j)} € E | i < jand o(i) > o(j)}.
Finally, set

ag(o) := comp(n — [n — 1]\ Desg (7)) = comp ([f)\e/sG(a)) ) (8.1)

where the last equality follows from (7.3).
For example, if G is the graph in Figure 6.1 and 0 = 31852647 € &g, then Desq(7) =

{1,3,4,6}, so that Desi(0) = 8 — [8 — 1] \ Des¢(7) = {1, 3,6}, and ag(0) = (1,2,3,2).
We are ready to state the main result of this section.

Theorem 8.1. For every interval graph G = (|n], E) € ZG,, and every 5 E n

D gD N e = BB Bl Y d™ ) (8.2)
aFn oe6, weR(B)
ag(o)=a

To prove this theorem, we first prove the special case 5 = (n), and then we see how to reduce
the general case to this one.
For 5 = (n), we have v(«, ) = «, so that

L(a)—1

n(v(a, B)) =nla) = > > oy,

i=1 j=1

hence if for every 0 € G,, we set
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majge(0) = nlac(o)) = Y i,

icDesg ()
then (8.2) reduces to the following identity.

Theorem 8.2. For every interval graph G = ([n], E') € ZG,, we have

Z ae (@) +vG(e) [n],! .

oceGy,

It turns out that this identity is a reformulation of a theorem in [Kas09] (cf. [Kas09, Corol-
lary 1.11]). Since it is not immediate to see how the theorem in [Kas09] translates into our
statement, we will explain in the next section how the bijective proof goes. In this section we
show how this theorem implies the general formula.

Proof of Theorem 8.1. Let 5 E n, B = (f1,Pa,...,05) so that r = £(5). We will use the
notation [a,b] := {a,a+1,...,0— 1,b}. For a fixed 0 € &,, and for every i € [r], let

S7P = 8= {U(j) |Jj € ﬁlﬂLZﬁk,Zﬂkﬂ},
i

k=1

and let o be the element in R(3) obtained by replacing in the word 123 - - - n every element
in .S; with an i, for every i € [r].

For example, if 5 = (1,2,1,3) E 7, sothat r = {(8) = 4, and 0 = 4163275 € &y,
then Sy = {4}, S = {1,6}, S5 = {3}, Sy = {2,5, 7}, and 03 = 2431424 € R(S).

Now call inv(0, S;) the contribution to inve(o) of the subword of o consisting of the letters
in S,

In the example, if G = ([7],{(1,2),(1,3),(1,4),(2,3),(3,4), (4,5), (4,6), (5,6),(5,7)}),
then invg(o, 1) = invg(o,S5) = invg(o,S;) = 0, while invg(o,Sy) = 1 (here (5,7) is
contributing).

Then the observation is that

r

inva (o) = inva(0g) + Y inva(o, 577).

=1

Indeed the contributions to ifnva(a) not counted in the summation in the right hand side corre-
spond precisely to the pairs {c(i),0(j)} € F suchthat1 <i < j < n,o(i) > o(j), o(i) € S
and o(j) € S, sothat k < h. Now such a pair gives a k in 03 occurring in position o(z) and an h
in position o(j). Hence all these pairs correspond precisely to the ones counted by invg(o3).

In our example, invg(oz) = 4 (here (1,4),(2,3),(3,4) and (5,6) are contributing), and
indeed

inve(0) = 5 = 4404+0+0+1 = invg(og)+invg (o, S1)+inve(o, So)+inve (o, Ss)+inve (o, Sy)
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Therefore

an(v(a,ﬁ)) Z qﬁlc(o):

aFn oeGy,
aG(0)=a
— Z qn(”/(OéG(U)ﬁ))-&-i’nVVG(U)
oeGy,
= Y el Tt ec@ s+, inve (o,577)
oe6y,
Z gre 3 gxi i=1[10v (ac(0).8)+inve(o.577)]
weR(B oe6,
os=w

Now notice that in the internal sum, fixing 03 = w determines the S7 B , so that the permuta-
tions 0 € &, such that o3 = w are simply obtained by permuting in any way the elements
of S; and placing them in the first 5; = |S;| positions, then doing the same with the ele-
ments of S and putting those in the following /3, positions, etc. Observe also that the statis-
tic (v (ac(0), B)) +inve(o, S77) corresponds to the statistic n(aas) (7)) + mg(si) (7) on the
permutations 7 of elements of S; with respect to the graph G/(.S;) obtained from G by taking the
subgraph on the subset S; C [n] of vertices of G. Therefore the internal sum of the formula we
just computed is indeed a product of formulas of the original type, but with 5 = (n). Finally, it
is easy to check that the G(S;) are still interval graphs (up to the obvious monotone relabelling
of the vertices), hence we can apply Theorem 8.2 to finally get

Z qlnvG (w) Z q i(ag(0),8))+invG (0,57 )] _

weR(B oeG,
og=w

— [B1132] LS gt 0

wGR(ﬁ

9. A modified Foata bijection

In this section we briefly describe how Kasraoui proved Theorem 8.2 in [Kas09], using our
notation.

Let G = ([n], E) € ZG, be an interval graph. We describe a Foata-like bijection ¢ such
that inv(¢a(0)) = inve (o) + maje. (o) for every o € &,

The map g is described in terms of an auxiliary map v& with 2 € [n], defined on the set of
words w in the alphabet [n]. First we define two sets

RY = {j € [l(w)] | w; >zand {z,w;} ¢ E} and
LY :={je[l(w)]|w; <xor{w;z} e E},

where ¢(w) is the length of the word w, i.e., the number of its letters.
Notice that the sets 2%’ and LY depend on G, even if it does not appear in the notation.
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Remark 9.1. In our situation, for any z € [n] and for any word w, giveni € RY and j € LY, we
must have w; < w;: ¢ € RY implies v < w; and {z,w;} ¢ E;if w; > w;, then {z,w;} ¢ E
since G is an interval graph, but j € LY, hence necessarily w; < x, which contradicts z < w;.
Therefore we must have w; < w;.

We define 7% (¢) = €, where ¢ is the only word of length 0, i.e., the empty word. Assume
now that £(w) > 0, where wy(,) is its rightmost element. In order to define 7 (w) we study two
cases:

a) l(w) € RY;
b) l(w) € LY.
In case a) we decompose w as follows:

w = vz, .. vk with z3, = wy(w), 9.1)

where z1,...,24_1,7 € {w; | j € R¥} and v',...,v" are (possibly empty) words
in {w; | j € LY}. We notice that the decomposition in (9.1) is unique. We now
define & (w) = zyvtz0? .. 0P

The situation in case b) is the same except that we are changing the roles of the values
of RY and LY. We therefore decompose w = vizvie, .. vPxy, with = We(w), Where now
T1,.. . Tpo1, 0 € {w; | j € LY} and v, ..., v* are (possibly empty) words in {w; | j € R¥}.
We define again 7& (w) = zjvlz90? . .. 230",

Now ¢ is defined recursively as pg(wz) = 7 (pg(w))z. So that, if w = wyws - - - wy,
then

pe(w) = Vgn (Vgn,l (- '752 (751 (Jwi)wz) - -+ Jwp—1)wy.

We have the following result (the notation inv is explained in Remark 4.2).

Proposition 9.2 (Kasraoui). If G = (|n|, E) is an interval graph, then
@G‘Gn : Gn — Gn

is a bijection such that for every o € S,, we have

inv(pa(o)) = invg(o) + majee (o).

Before recalling a proof of this proposition we illustrate how the map ¢ works with an
example.

Example 9.3. Let n = 6 and G = ([6],{(2,3),(2,4),(3,4)}) € DGs C IGs. We take
) =

o = 512463 € S and notice that maj.(o) = 6 (since /D\e/Sg(O') = {1,5) and invg(0) = 1
(the inversion is given by (3,4)).

By definition
(o) =75 (6 (7F (05 (17 (957 (€)5)1)2)4)6)3.
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Hence we are going to build ¢ (o) in 6 steps. The output of the i-th step is a word in the alphabet
{o(1),...,0(7)} (each value appearing exactly once) such that the rightmost value is (). The
first two steps are trivial:
5= 15—=5=15(e)b
5]1 = |5]1 = 51 = 4&(5)1.

The third step can be more interesting. As we take in 0(3) = 2 we compare it with o(2) = 1
and notice that 1 # 2. Therefore we draw a bar after every other element z that is not greater
than 2 or such that {z,2} € E, and we add always a bar at the end to the left (we will always
do this later on without further notice). We now cyclically permute the elements in every block
of numbers delimited by two consecutive bars, moving the rightmost element of the block in the
leftmost position of the same block: in this particular case we are just permuting 1 and 5, i.e.

5112 — |15]2 — 152 = 4F(51)2.

Now to add o(4) = 4 we compare it with ¢(3) = 2 and find out {2,4} € E. Again we draw
a bar after every value z that is not greater than 4 or such that {z,4} € F and permute cyclically
the elements in every block:

|1]52]4 — [1]25]4 — 1254 = ~$(152)4.

We proceed by comparing 4 and 6. Because 4 ¥ 6 we draw a bar after every element 2 that is
not greater than 6 or such that {z,6} € E:

1112]5]4]6 — |1]25]4]6 — 12546 = 7& (1254)6.

We conclude comparing 6 and 3. Because 6 > 3 and {3,6} ¢ E, we draw a bar after every
element z that is greater than 3 and such that {3, 2z} ¢ E. We obtain:

125463 — |51264|3 — 512643 = 75 (12546)3.

We finally obtained ¢ (o) = 512643. Notice that

—_—

inv(¢g(0) =7 =146 = invg(o) + majg. (o).

Remark 9.4. In the case of the graph G = ([n],@) with no edges, invg = 0 while
E;a/jg(a) = maj(0) = ) icpes(o) ! is the usual major index of a permutation 0 € &, and
in this case (¢ is the usual Foata bijection. After translating the notations, Proposition 9.2 is
a corollary of [Kas09, Theorem 1.6]. In fact from [Kas09, Corollary 1.11] we know that the
interval graphs are precisely the graphs G = ([n], E') such that invg + Fn\a/jgc is a Mahonian
statistic.

Proof of Proposition 9.2. To simplify the notation, given a permutation o € S,,, we denote o (7)
by o; for every ¢ € [n]. Now notice that ¢ (o) is obtained recursively as follows:

vc(o) =75 (V& (.. (V& (S (e)ar)ar) .. ) ont) On.
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We set w =~& (... (75 (75 (€)o1)02) . . .) 0; and notice that £(w') = i and that the ¢ elements
appearing in w; are precisely o1, ..., 0;; furthermore, the rightmost element in w" is o;.

Since the rightmost element in w® is ¢;, we can recover w'~! starting from w’: we compare
the leftmost letter of w’ with o;, from which we can recover the position of the bars giving
the blocks (cf. Example 9.3), and hence we can perform inside each block the inverse cyclic
permutation (bringing the leftmost element of each block in the rightmost place of the block),
in order to recover w'~!. Hence recursively we can recover o from og(c). This shows the
bijectivity of pg|s,,-

To show that inv(pe(0)) = invg (o) + majg. (o) we prove the following:

a) if o; > Oit+1 and {UZ‘, O'i+1} ¢ E, then
inv(w™t) = inv(ygﬂ(wi)aiﬂ) = inv(w')+i+|{j € [i] | w;- > ;41 and {aiﬂ,w;-} € E};
b) if o; < O;41 Or {O’i, Ji+1} € F then

inv(w™) =inv(yS  (w)oi) = inv(w’) + [{j € [i] | w} > 0141 and {0341, wl} € E}.

We discuss the case a) first. Starting from w’ = wjw} - - - w}, to obtain 75 (w’) we decom-
pose w' = vl -0l yvkxy with 7y, := oy, where for every j € [k] we have z; > 0,44
and {z;, 0,11} ¢ F, and v’ is a word in elements z that are not greater than o, or {z, 0,41} € E.
By Remark 9.1 we notice that for every j € [k], every letter in v/ is smaller than z;, there-
fore inv(v/x;) = inv(z;v7) + £(v7): we deduce that

w

inV(’y(iH(wi)am) = inV(%Gm(wi)) + ‘RU;+1| +{j € [i]\w§ > 041 and {041, wj-} € E}|

Oi+1

k
= inv(w')+ > o) HIRY, |+ () € li[w} > 0y and {or41, wi} € B}
=1

= inv(w’) + [LY" |+ |RY |+ |{j € [i]|w} > 0,41 and {041, wi} € B}

Oi+1 Oi+1

= inv(wi) +1 4+ ’{j S [ZHUJ; > 041 and {O’iJrl,w;-} € E}|

Yoy ook

with xy, := o;, where for every j € [k] we have z; % 0,41 or {x;, 0.1} € F, and v’ is a word in
elements z that are greater than o, ; and such that {2, 0,1} ¢ E. Now Remark 9.1 implies that
for every j € [k] we have inv(v/z;) = inv(x;07) — £(v?) because the letters of v7 are all greater
than z;. We deduce that

For the case b), we start again by computing vg’:H (w'), so decomposing w’ = v

inv(vgﬂ(wi)aiﬂ) = inv(%GM(wi)) +|RY |+ |{je [2]|w§ > 0,41 and {ai“,w;»} € E}|

Oi+1

k
= inv(w)~ S0 +RE |+ 14 € [l > 0w and {0341, ut) € B}
=1

= inV(U}Z) — |Rwl ‘ + ‘sz ‘ + ‘{j € [z]|w; > 041 and {O’iJrl,U};-} € E}‘

Oi+1 Oi+1

= inV(’LUi) + ’{j S [ZHUJ; > 041 and {aHl,wj-} € E}’
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We use the results from case a) and case b) to write:

inv(og(o) =inv(S (7S (.. (WS (WS (e)ar)o2) ...) 0ur) 02)

n—1
= Z i+ Z {j € [illw} > 0141 and {0341, Wi} € E}|
0;>04+1 and {Ui,0i+1}§§E =1
= majg.(0) + invg (o). O

10. The main identity

In this section we show how an identity of Carlsson and Mellit [CM 18] proved for Dyck graphs
extends to the case of interval graphs. This is the main result of the present article.

Recall from Section 3 the involutions ¢/ and p, the plethysm of quasisymmetric functions,
and all the other notation for compositions.

Theorem 10.1. Let G = (|n|, E) € ZG,, be an interval graph. Then

(1—-q)"p <¢XG {X%_(JD = LLT¢[X; ql. (10.1)

Remark 10.2. This is really an extension of [CM18, Proposition 3.5]. Indeed, when G is a
Dyck graph, xg[X; ¢ is symmetric (by [SW16, Theorem 4.5]), the plethysm reduces to the
usual plethysm of symmetric functions (cf. [LR11]), p fixes the symmetric functions while
gives the usual w involution of symmetric functions (cf. Remark 3.1), and LLT4[X; ¢ is pre-
cisely the unicellular LLT symmetric function corresponding to the Dyck graph G (denoted x ()
in [CM18], where 7 refers to the Dyck path corresponding to the Dyck graph (). So, when GG
is a Dyck graph, our (10.1) is just a rewriting of [CM 18, Proposition 3.5].

Proof. Using (7.2), we have

1 coinvg (o™ 1
(CPVE [Xl——q] = Z geome! l)wLn,DesG(J) [Xl——q}
oeG,
_ coinvG(afl)L X 1
= Z q n,[n—1]\Desg () 1—4
ceGy, q
. _ 1
: _ coinvg (o™ 1) .
(using (73)) = > ¢®™e¢ L oo o [X—l - q}
0'6671
. coinvg (ot 1
(using (8.1)) = UGZG ™ ) L@y le—_q] :

Setting (cf. (7.4))

Coplg) = Y ¢ = N e,

ceS, ceG,
aa(@)=a ag(@)=a
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and recalling the notations from Section 8, we compute

oo onfic)

. _ 1
— (1 = )" coinvg (o™ 1) La - X
=" > q ,0( a(0) { —1_qD

O’GGn

= (10" carlalp (1o [x7])

aFn

(using (3.1)) = (1 = )" > _ ca,r(q)p

akFn
(1 - q Z Ca, P
aFn
= (]- - Z Ca, P
aFn
(using 3.2)) = (1 — )" > _ cap(
aFn
(]‘ - q Z Ca P
aFn
(using 3.3)) = Y car(q) Y "
aFn BEN

= Z Z Ca,P(Q)qn(’Y( g

BEN aFn

1—gq
) .
S T vt sn L—_q} M [X]
BEn i=1
1

ZHL (ar B7) [—q} M;[X]
,BI:nz 1
ZHL wf L—q Mp[X]
Bl:nz 1
ZHCJ”( @By, 1%} Mp[X]
BEn =1 - q
q)> g hﬂ{ ]Mﬂ[X]
BEN
v(@h)) ! Mjs[X

[Bilg! -+ [Bes]d! o]
B) ! Mg[X

Bl Bt 2

=Y D d™MIM[X],

BEn weR(B)

where in the last equality we used Theorem 8.1.

Now recall that
LLTs[X;q] =

Z qlnvG T

keC(G

is a quasisymmetric function (see Theorem 7.7), hence the coefficient of M3[X] in its expansion

in the monomial basis is the coefficient of the monomial 2 := x}'x

B1,.B2 .
2

, which is apparently

Z qlnvG

weR(B

completing the proof of (10.1).

(8)
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11. Expansions in the V¥,

In [BDH"20] the authors study a family of quasisymmetric functions that they call type I qua-
sisymmetric power sums, and they denote W,. Actually {¥, | « composition} is a basis
of QSym, and these quasisymmetric functions refine the power symmetric functions, i.e., for
any partition A = n

> W, =py, (11.1)

aFn

Ala)=A

where \(a) the unique partition obtained by rearranging in weakly decreasing order the parts
of «, and the p) = py,py, - - - are the usual power symmetric functions.

For example p221) = Y(22.1) + Y2,1,2) + Y(1,2,2).-

The following definitions appear in [SW16, Section 7], in a slightly different language.

Given G = ([n], F) a graph and 0 € &,, a permutation, we say that € [n] is a left-to-right
G-maximum if for every s € [r — 1] we have o(s) < o(r) and {o(s),o(r)} ¢ E. Notice that 1
is always a left-to-right G-maximum, that we call trivial. We say that i € [n — 1] is a G-descent
if i € Desg(0),ie., 0(i) > o(i+ 1) and {o(i),0(i + 1)} & E.

Given a composition o = (aq, @, ..., ) E n, let Ng,, be the set of o € &,, such that
if we break 0 = o(1)o(2)---0(n) into contiguous segments of lengths o, a, . .., y, each
contiguous segment has neither a G-descent nor a nontrivial left-to-right G-maximum.

For example if G = ([7], E:={(1,2),(1,3),(1,4),(2,3),(3,4), (4,5), (4,6),(5,6), (5,7)})
and o = (1,2,1,3) F 7, then 0 = 2567143 € N ,: the contiguous segments are 2, 56, 7 and
143, now the segment 56 does not have a nontrivial left-to-right G-maximum, since {5,6} € E,
the segment 143 does not have a nontrivial left-to-right G-maximum, since {1,4} € FE, nor
a G-descent, since {3,4} € E. On the other hand 7 = 5267143 ¢ Ng,: the contiguous
segments are 5, 26, 7 and 143, but now the segment 26 has a nontrivial left-to-right G-maximum,
since {2,6} ¢ E.

Given a composition «, define 2z, := z)(q), Where, as usual, for every partition A - n, if m;
denotes the number of parts of A equal to ¢, then z) := [, m,!- ™.

Finally, recall the involution w : QSym — QSym from Section 3.

We state our first conjecture.

Conjecture 11.1. For any interval graph G = (|n], E') we have
WXG X q Z Z qlnvG(U
aEn & oeNG, o

This conjecture was inspired by the following formula, that was conjectured by Shareshian
and Wachs [SW16, Conjecture 7.6] and later proved by Athanasiadis [Ath15].

Theorem 11.2. For any Dyck graph G = (|[n], E)) we have

WXGX q ZpA Z |nvG(U)‘

An UGNG 2
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Notice that thanks to Theorem 11.2 and (11.1), our Conjecture 11.1 for Dyck graphs is equiv-
alent to the following tempting conjecture.

Conjecture 11.3. For any Dyck graph G = ([n], ') and any composition « F n we have

3 g™ = 3 @)

0ENG o TE€NG A(a)

. . . . . . G
In fact, we have a more general conjecture involving our quasiymmetric functions Q% ),

Conjecture 11.4. For any interval graph G = (|n], E') and any permutation 7 € &,, we have

Qi = D %#{a € N | Colnvg(0™") = Invg(7)}- (1.2

«
aFn

Lemma 11.5. Conjecture 11.4 implies Conjecture 11.1.

Proof. Given an interval graph G = ([n], E) € ZG,,, Proposition 6.12 implies wt (P (7)) =
coinvg(7), while (7.4) implies invg(o) = invg(o~!). Now observe that 0 € &, C PC(G),
hence Colnvg (o) = E \ Invg (o), so if Colnvg (o) = Invg(7), then

invg(o™!) = |E| — coinvg(c7!) = |E| — invg(T) = coinvg (7).
Hence multiplying Conjecture 11.4 by ¢"t¢(®6(") we get

v, -
thG((I’G(T))ng?(T) = ¢"c(®e(m) Z Z—#{a € Na.o | Colnvg(o™h) = Invg(T)}

aFn

Vo Z coinvg(T)
=25 ¢
aFn o 06]\/@7(¥
Colnvg (o~ 1)=Invg(T)

\\J —~
_ Fa invg (o)
Sy e
aFn TENG o
Colnvg (o~ 1)=Invg(T)
Now notice that because of Theorem 6.7, the set
Inv(G) := {lnvg(o) | 0 € &, }

is such that

Inv(G) = {E \ Colnvg(o) | o € fo(ISF(G))} = {Invg(o) | o € fo(ISF(G))}.
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Hence, using Theorems 7.2 and 6.7, we have

wxalX;a = ) thG wol

FelSF(G

wtg (g (T
= Z q ta(Pa( )qu)G(T)

Tefa(ISF(G))

S ID D DL
refa(ISF(G)) aFn Za oENG.a
Colnvg(o—1)=Invg(T)

_ Z Z qva(O'

aFn o 0eNG,a

which is precisely Conjecture 11.1.

12. Speculative comments

In the light of the results and conjectures of the present article, it is natural to wonder how far
both conjectures and results about Dyck graphs can be extended to interval graphs. We add here
some speculative comments.

First of all notice that the results in this article are “tight”, in the sense that, experimentally,
as soon as ( is not an interval graph, our statements of both theorems and conjectures tend to
be false for G.

About the e-positivity conjecture of Shareshian and Wachs for Dyck graphs: we wonder if
there exists a quasisymmetric refinement of the elementary basis for which the positivity con-
jecture extends to interval graphs. This would extend the Shareshian—Wachs conjecture to a
quasisymmetric situation, and it could possibly suggest a new approach to the original conjec-
ture. Similarly, we wonder if such a refinement would give the positivity of the quasisymmetric
functions LLT4[X; ¢ + 1] for G an interval graph, in analogy with the results in [AS22].

We wonder if there is an extension of the formula of Abreu and Nigro [AN21b] for x[X; ¢]
to interval graphs GG. More generally, we wonder if there is a nice way to relate their formula to
our Theorem 7.2, as they have some obvious similarities.

Finally, the identity (1.1) of Carlsson and Mellit is somehow related to the equivariant coho-
mology of Hessenberg varieties. These varieties are associated to so called Hessenberg vectors
(or Hessenberg functions), which correspond naturally to Dyck paths, hence to Dyck graphs.
Our interval graphs are similarly associated to vectors that are analogous to Hessenberg vec-
tors. Unfortunately the natural way to associate a variety to these vectors (i.e., following the
definition of the Hessenberg varieties) does not seem to give new interesting geometric objects.
Nonetheless, one can construct a “cohomology ring” following GKM theory (see e.g., [GP16,
Section 8]). It would be interesting to see if these rings share some properties with the ones
associated to Dyck graphs. In particular if they are related to our Theorem 10.1.
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