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Abstract

Genome‐wide associations studies have repeatedly identified the major histo-

compatibility complex genomic region (6p21.3) as key in immune pathologies.

Researchers have also aimed to extend the biological interpretation of asso-

ciations by focusing directly on human leukocyte antigen (HLA) polymorph-

isms and their combination as haplotypes. To circumvent the effort and high

costs of HLA typing, statistical solutions have been developed to infer HLA

alleles from single‐nucleotide polymorphism (SNP) genotyping data. Though

HLA imputation methods have been developed, no unified effort has yet been

undertaken to share large and diverse imputation models, or to improve

methods. By training the HIBAG software on SNP +HLA data generated by

the Consortium on Asthma among African‐ancestry Populations in the

Americas (CAAPA) to create reference panels, we highlighted the importance

of (a) the number of individuals in reference panels, with a twofold increase in

accuracy (from 10 to 100 individuals) and (b) the number of SNPs, with a

1.5‐fold increase in accuracy (from 500 to 24,504 SNPs). Results showed

improved accuracy with CAAPA compared to the African American models

available in HIBAG, highlighting the need for precise population‐matching.

The SNP‐HLA Reference Consortium is an international endeavor to gather

data, enhance HLA imputation and broaden access to highly accurate

imputation models for the immunogenomics community.
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1 | INTRODUCTION

Beginning with the discovery of the HLA system in the
1950s, the characterization of HLA polymorphism and
HLA disease associations have been performed in parallel
(Dausset, 1999; Trowsdale & Knight, 2013). In the
genome‐wide association study (GWAS) era, the focus
was shifted on single‐nucleotide polymorphisms (SNP)
with little to no biological relevance. Even when located
in the major histocompatibility complex (MHC) region
(6p21.3), these SNP associations have largely supplanted
the traditional study of HLA allele associations. GWASs
have however confirmed the crucial role of the HLA loci
for the genetic epidemiology of nearly a quarter of all
diseases and traits (MacArthur et al., 2017; Trowsdale &
Knight, 2013), but SNP associations do not convey the
immune‐biological relevance that specific HLA alleles
have. For example, GWASs of HIV disease identified the
rs2395029 SNP near the HCP5 gene on chromosome 6 as
being the strongest associated with viral control (Fellay
et al., 2007; Limou & Zagury, 2013). This SNP, which is
located 100 kb from HLA‐B, is in nearly complete linkage
disequilibrium with the HLA‐B*57:01, which can present
HIV peptides crucial for HIV detection by the immune
system (Chen et al., 2012; Limou & Zagury, 2013). Using
novel bioinformatic approaches, we now have the ability
to statistically infer HLA alleles from genotypic SNP data
(imputation), returning HLA molecular functions to the
forefront of disease‐associated research (Meyer & Nunes,
2017; Pappas et al., 2018). Imputations are statistical
methods that infer or predict missing information based
on haplotypes. Haplotypes are a combination of genetic
variants on one chromosome, they can be SNP haplotype
(e.g., 011010, referring as the presence or absence of
SNPs), gene haplotype (e.g., HLA‐A*01:01~HLA‐B*08:01~
HLA‐C*07:01~HLA‐DRB1*03:01~HLA‐DQB1*02:01) or a
combination of different genetic variants (SNP, indels,
substitution) haplotype (e.g., HLA alleles). In genomics,
SNP imputation can infer the identity of missing SNPs
that were not genotyped on GWAS arrays (Delaneau,
Zagury, & Marchini, 2013; McCarthy et al., 2016) by
comparing whole‐genome SNP genotypes to a large
reference panel of SNP haplotypes (Delaneau et al.,
2013). Filling the genotyping gaps, SNP imputation
performance and accuracy increased significantly when
new large reference haplotype panels became available
(McCarthy et al., 2016), which has contributed to a
large number of discoveries over the past decade (Visscher
et al., 2017).

In parallel to SNP, imputation also applies to HLA
polymorphisms themselves, alone or in combination. It
has revealed key associations in numerous diseases
(Fellay et al., 2007; Limou & Zagury, 2013; MacArthur

et al., 2017; Trowsdale & Knight, 2013; Vince et al., 2020)
and can, as such, lead to the development of new drugs or
patient‐care guidance. Efforts to impute HLA alleles from
these GWAS should be pursued to empower the com-
munity to go beyond simple SNP associations and to
discover new disease associations (Khor et al., 2015;
Meyer & Nunes, 2017; Shen et al., 2018); as an example,
HLA alleles can bring new functional immunogenomics
data such as prediction of amino acid, haplotypes (five
genes: A~B~C~DRB1~DQB1) or imputed HLA‐C expres-
sion easily implemented with Easy‐HLA (Geffard
et al., 2019; Vince et al., 2016). HLA allele imputation
appears as a time and cost‐effective alternative to the
laborious HLA typing of all GWAS subjects. However, to
rely on HLA imputation we must consider its accuracy,
which depends on the reference panel quality (e.g.,
matching ancestry background, matching SNPs compo-
sition; Khor et al., 2015) and size (e.g., number of in-
dividuals with both SNP as well as HLA typing data,
referred as SNP +HLA data; Pappas et al., 2018; Zheng
et al., 2014). Successful HLA imputation, therefore, de-
pends on the availability of large and diverse reference
panels, which warrants a major collective effort in orga-
nizing community resources. Here, we advocate for the
development of the SNP‐HLA Reference Consortium
(SHLARC), a new international network focused on
collecting a large collection of high‐quality HLA and SNP
data, especially from an ethnically diverse population,
with the goal to develop and share large reference panels
and help worldwide researchers exploring HLA allelic
information from their cohorts.

2 | RESULTS

We had access to the CAAPA (Consortium on Asthma
among African‐ancestry Populations in the Americas)
data set (Daya et al., 2019; Vince et al., 2020) that consists
of 880 whole‐genome sequenced African American sub-
jects with associated SNP GWAS data and typed HLA
alleles at a two‐field resolution (corresponding to the
protein level). We chose the HLA Genotype Imputation
with Attribute Bagging (HIBAG) R package (Zheng
et al., 2014) to test the impact of the number of subjects
and SNPs on HLA imputation accuracy. HIBAG de-
monstrates improved imputation accuracy over other
available methods (Pappas et al., 2018) and allows the
creation of custom reference panels, using the machine‐
learning technique of attribute bagging. Building re-
ference panels requires heavy computing power which is
related to the number of subjects and number of SNPs in
an almost linear correlation (Zheng et al., 2014). The
development of machine‐learning algorithms heavily
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relies on the evolution of computational power. We used
graphics processing units (GPUs) as they are architectu-
rally better suited to handle the computationally in-
tensive tasks. For this project, we took advantage of the
upgraded HIBAG version (HIBAG v1.15.3, HIBAG.gpu
v0.9.1; Zheng, 2018) and used GPUs to build and com-
pare multiple reference panels with a fivefold reduction
in computation time relative to central processing units).

Starting with the complete data set (n= 880 in-
dividuals), we simulated scenarios of reference panel
building by creating a collection of training and test sets.
Each of the condition was replicated 10 times to assess
the variability in the frequency of SNPs and HLA types
and display confidence intervals for each prediction: (a)
from a set of 100 samples (ntraining = 100), we created
40 different reference panels with either increasing
numbers of individuals (10/20/500/1,000) or increasing
numbers of SNPs (500/1,000/5,000/10,000/24,504; see Sup-
porting Information Methods) and (b) a test set (ntest = 780)
used to assess the accuracy of HLA imputation from the
40 different reference panels (5 HLA genes × [4 different
number of individuals + 4 different number of SNPs];
Figure 1). Accuracy is defined by the percentage of correct
HLA allele prediction.

We observed that increasing the number of in-
dividuals in the reference panel increased HLA imputa-
tion accuracy (two‐field resolution) for all loci
(Figure 1a). As an example, accuracy rose from 60% with
10 individuals to 93% with 100 individuals for HLA‐
DQB1, and from 27% with 10 individuals to 71% with
100 individuals for HLA‐B on average. We then compared
the HLA imputation accuracies obtained from our
CAAPA‐based test set with pre‐existing reference panels
available on the HIBAG website (http://www.biostat.
washington.edu/~bsweir/HIBAG/). These precomputed
reference panels were all created with more than
100 individuals of African American ancestry (from 137
for HLA‐DQB1 to 171 for HLA‐B) from the HLARES data
and the HapMap Yoruba population. The accuracies using
the precomputed HIBAG reference panels (represented as
horizontal lines in Figure 1a) ranged from 70% (HLA‐DRB1)
to 87% (HLA‐A) and were lower than those obtained using
the CAAPA‐based reference panels using a smaller number
of individuals. This illustrates the importance of close
matching of ancestry between the reference panel and the
genotyped subjects, even within a single ancestry group
(here African ancestry).

In addition, we reduced the number of SNPs in the
training data set (500, 1,000, 5,000 and 10,000 out of the
24,504 available chromosome‐6 SNPs) and observed that
increasing the number of SNPs in the reference panel
increased the HLA imputation accuracy for all genes
(Figure 1b). For example, accuracy rose from 86% with

500 SNPs to 91% with the full set of 24,504 SNPs for HLA‐
A, and from 65% with 500 SNPs to 77% accuracy with the
full set of SNPs for HLA‐B. The number of SNPs in
the training data set differs from the number of SNPs in
the statistical model (or bag) as HIBAG does not use all
SNPs provided in the input to create the reference panels
(see Tables S1.1 and 1.2 for exact numbers). Indeed,
HIBAG only includes SNPs within a 500‐kb window
around the gene of interest, and only keeps those
improving the model after random selection (see
Supporting Information Methods). For in‐depth analysis
of HLA imputation, we have also plotted the sensitivity
and frequency of each allele to predict in the validation
data set, to identify alleles decreasing the overall
accuracy (see Figures S1–S5 and Table S2).

3 | DISCUSSION

Our results illustrate the importance of matching large
reference panels with high SNP coverage to the input
data set for efficient and accurate HLA allele imputation
(Dilthey et al., 2016; Jia et al., 2013; Khor et al., 2015;
Pappas et al., 2018). The goal of the SHLARC is to
combine international expertise with data and computa-
tional resources. It will bring data to a level of inter-
pretation that is key to solving questions on immune‐
related pathologies through innovative algorithms and
powerful computation tool development. To achieve this
goal, we determined three main objectives (Figure 2):

1. Data. By bringing together scientists from around the
world, we will collectively increase the amount of
SNP+HLA data available, both in terms of quantity and
genetic diversity. Building new reference panels from
these data will improve the performance of HLA allele
imputation from SNPs as large, diverse, well‐defined
genomic data are the prima materia of successful colla-
borations and machine‐learning applications for dis-
secting the genetic determinants of disease association.

2. Applied mathematical and computer sciences. We will
further optimize SNP‐HLA imputation methods using
the HIBAG tool, and particularly for genetically di-
verse and admixed populations as (a) the higher
complexity of their MHC region is a challenge for
imputation and (b) these populations are still under-
represented in genomic studies (Sirugo, Williams, &
Tishkoff, 2019). In addition, we will explore new
machine‐learning approaches such as deep learning to
develop new, more efficient methods of HLA
imputation.

3. Accessibility and service to the scientific community.
Following the Haplotype Reference Consortium
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initiative (McCarthy et al., 2016), our network envi-
sions building a free, user‐friendly webserver where
researchers can access our improved imputation pro-
tocols by simply uploading their data and obtaining
the most accurate possible HLA imputation for their

data set. This service will offer several solutions (a)
ready‐to‐use anonymized reference panels for re-
searchers wishing to impute the HLA themselves, (b)
allow the on‐demand creation and sharing of tailored
(customized) reference panels based on data available

FIGURE 1 Influence of the number of individuals (a) and SNPs (b) in the HIBAG reference panel building on the accuracy of
HLA alleles prediction. From the CAAPA data set (N= 880 and SNPs = 24,504), we produced a set of 10 training subsets
(ntraining = 100) and test (ntest = 780) sets to assess HLA imputation accuracy in different scenarios. Each model was validated by
comparing the typed HLA alleles to the model‐predicted HLA alleles across all individuals to provide an accuracy percentage
(postprobability call threshold = 0). (a) By randomly selecting individuals in the training data set, we created sub‐datasets containing
10, 20, and 50 individuals. Custom HIBAG models were computed for these subsets as well as for the whole 100 training individuals,
using every available SNP. (b) Subsets of the training data set with 500, 1,000, 5,000, 10,000 randomly selected SNPs (out of the 24,504
available SNPs) were created and the corresponding models computed. The number of SNPs on the x‐axis is indicative of the number
of SNPs in the data set. The number of SNPs kept to create the model, which varies depending on the gene studied and the subset, is
five times lower on average (see Tables S1.1 and S1.2). Note that the horizontal marks on each HLA gene curve indicate the
accuracies obtained with the default African American HIBAG models. HIBAG, HLA Genotype Imputation with Attribute Bagging;
HLA, human leukocyte antigen; SNP, single‐nucleotide polymorphism; nS, number of SNPs in the model; nT, number of individuals
in the model
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in our database, or (c) provide a full SNP‐to‐HLA
imputation service from uploaded raw SNP genotypes.
We will also explore how to create the reference panel
with the best fit for ancestry and genotyping platforms,
given the queried samples, without the need for the
centralization of individual data. Indeed, distributed
calculation techniques may allow to create reference
panels from data hosted on different servers without
collecting all the information in a single place.

Our objectives require access to the extensive com-
putation power that is readily available through several
GPU servers within the Université de Nantes. For each
submission, we aim to design custom reference panels,
for which SNPs, HLA, and reference panel data will be
securely stored on University's servers. Importantly, re-
ference panels represent statistical models that do not
allow individual re‐identification. The current SHLARC
partners share complementary expertise including but
not limited to bioinformatics, population genetics, and
immunogenetics. Importantly, our network is designed
around data sharing to facilitate open research as we
believe research can be accelerated by freely sharing
knowledge and data. With this in mind, we have added
this consortium as a component of the 18th International
HLA and Immunogenetics Workshop (https://www.
ihiw18.org/).

HLA imputation is primarily intended for research
applications, as clinical applications such as hematopoietic

stem cell transplantation (HSCT) cannot tolerate statistical
uncertainty, even though it might be used to accelerate
pre‐selection of HSCT patients as well (Meyer & Nunes,
2017; Pappas et al., 2018). The 1000 Genomes project (1000
Genomes Project Consortium et al., 2015) generated a
large collection of polymorphisms from 2,504 individuals
of diverse ancestry (SNPs, indels, and copy number var-
iants), along with HLA allele typings (Gourraud
et al., 2014), providing an informative overview of genetic
diversity among human populations. However, a recent
study by Abi‐Rached et al. (2018) highlighted the absence
of several common HLA alleles (>1% allele frequency)
from the 1000 Genomes project which shows how HLA
imputation results could be biased by an insufficient re-
ference panel. With the proper sampling and a shared
effort in gathering diverse data, HLA imputation could
bridge the gap between HLA allele diversity and the un-
derstanding of its impact on phenotypes by harnessing the
latent information stored in GWAS data sets to upgrade
genetic epidemiological knowledge of immune‐related
diseases. As shown previously (Okada et al., 2015), pre-
dicting HLA alleles from population‐matching reference
panels not only increases the confidence in the predicted
HLA but above all, allows prediction of specific HLA al-
leles that could not be imputed otherwise. Therefore, the
informed choice of the applied model would strengthen
the relation between HLA, ancestry, and disease risk
factor. By applying this customization at a general level,
we would assess ancestry with SNP relatedness, a

FIGURE 2 The SNP‐HLA Reference Consortium (SHLARC) design. Aim 1: Increase the amount of SNP +HLA data available
both in terms of quantity and diversity. Aim 2: Optimize SNP‐HLA imputation methods. Aim 3: The SHLARC website will
allow users from the scientific community to benefit from the data and knowledge accumulated by the consortium on SNP‐to‐HLA
allele imputation. From a list of SNPs and a selected ethnicity of interest, or alternatively from uploading SNP genotype data sets, the
best custom reference panel for HLA allele imputation will be built in our servers. HLA, human leukocyte antigen; SNP,
single‐nucleotide polymorphism
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consistent marker of population, rather than using self‐
reported ancestry which can be often misleading
(Sanchez‐Mazas et al., 2012).

To develop this ambitious project, we encourage
willing participants with available two‐fields HLA al-
leles + SNPs data sets to join the SNP‐HLA reference
consortium (https://www.ihiw18.org/component-bio-
informatics/snp-hla-reference/) to contribute empower-
ing the immunogenetic community to move into the era
of immunogenomic association.
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