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Abstract

The Myc oncogene regulates the expression of multiple components of the protein synthetic 

machinery, including ribosomal proteins, initiation factors of translation, Pol III, and rDNA1,2. 

An outstanding question is whether and how increasing the cellular protein synthesis capacity can 

affect the multi-step process leading to cancer. We utilized ribosomal protein heterozygote mice as 

a genetic tool to restore increased protein synthesis in Eμ–Myc/+ transgenic mice to normal levels 

and show that in this context Myc's oncogenic potential is suppressed. Our findings demonstrate 

that the ability of Myc to increase protein synthesis directly augments cell size and is sufficient to 

accelerate cell cycle progression independently of known cell cycle targets transcriptionally 

regulated by Myc. In addition, when protein synthesis is restored to normal levels, Myc 

overexpressing precancerous cells are more efficiently eliminated by programmed cell death. Our 

findings reveal a novel paradigm that links increases in general protein synthesis rates downstream 

of an oncogenic signal to a specific molecular impairment in the modality of translation initiation 

employed to regulate the expression of selective mRNAs. We show that an aberrant increase in 

cap-dependent translation downstream Myc hyperactivation specifically impairs the translational 

switch to internal ribosomal entry site (IRES)-dependent translation required for accurate mitotic 

progression. Failure of this translational switch results in reduced mitotic-specific expression of 

the endogenous IRES-dependent form of Cdk11 (p58-PITSLRE)3-5, which leads to cytokinesis 

defects and is associated with increased centrosome numbers and genome instability in Eμ–Myc/+ 

mice. When accurate translational control is re-established in Eμ–Myc/+ mice, genome instability 

is suppressed. Our findings reveal how perturbations in translational control provide a highly 
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specific outcome on gene expression, genome stability, and cancer initiation that have important 

implications for understanding the molecular mechanism of cancer formation at the post-genomic 

level.

Deregulation of Myc activity is one of the most frequent oncogenic lesions underlying 

human cancers6,7. Myc plays an evolutionarily conserved role in control of cell size and 

protein synthesis rates, which in Drosophila confers a cell survival advantage1,8,9. When 

dMyc induced protein synthesis is restrained in a minute mutant background, 

haploinsufficient for ribosomal protein function, cells no longer possess a competitive 

advantage10,11. To date, the relevance of Myc-dependent increases in protein synthesis and 

cell growth in the multi-step process leading to cancer remain unknown.

To restore protein synthesis rates in Myc overexpressing cells to normal, we employed 

mouse minute mutants, haploinsufficient for ribosomal protein function. Haploinsufficiency 

in certain ribosomal proteins decreases overall protein synthesis rates to an extent that is 

compatible with overall cellular and tissue homeostasis. L24+/− mice are viable12 and do not 

display any overt differences in B-lymphocyte development, growth, and cell division 

(Supplementary Fig. 1 and Fig. 1). We intercrossed Myc transgenic mice, in which Myc is 

overexpressed in the B-cell compartment (Eμ–Myc/+)13, with L24+/− mice (Supplementary 

Fig. 2). By lowering the threshold of protein production in L24+/− mice, the increased 

protein synthesis rates and cell size in Eμ–Myc/+ cells14 were restored to normal levels in 

Eμ–Myc/+;L24+/− mice (Fig. 1a,b). Therefore, this genetic approach reveals that Myc-

induced increases in general protein synthesis rates are responsible for augmented cell 

growth. Moreover, Eμ–Myc/+;L24+/−mice are an important genetic model for selectively 

rescuing increased protein synthesis rates and cell growth downstream of oncogenic Myc 

signaling.

During cell cycle progression, cell growth normally precedes cell division and it has been 

suggested that cells must reach a critical cell size or “setpoint” in order to facilitate G1-S 

progression15. In mammalian cells, it remains undetermined whether an increase in cell 

growth is coupled to an increase in cell division following Myc activation. The percentage 

of Eμ–Myc/+ cells in S phase is markedly increased compared to WT cells (Fig. 1c,d). 

Strikingly, in Eμ–Myc/+;L24+/− mice the augmented number of cells in S phase is restored 

to normal levels (Fig. 1 c,d). The rate of cell cycle progression in Eμ–Myc/+ B-lymphocytes 

was also monitored by BrdU incorporation, [WT 0.16±0.04 vs Myc 5.77±1.78 BrdU+cells/

hour, P<0.005] and was similarly restored to normal levels in Eμ–Myc/+;L24+/− cells 

[0.11±0.02 BrdU+cells/hour, P<0.02]. Key cell cycle targets that are transcriptionally 

regulated by Myc such as p2716, p217, and Cyclin D218, were expressed at similar levels 

when Eμ–Myc/+ and Eμ–Myc/+;L24+/− cells were compared (Fig. 1e and Supplementary 

Fig. 3). Thereby, the overall protein synthetic capacity of the cell may dictate cell cycle 

progression independently from the cell cycle program established at the transcriptional 

level by Myc hyperactivation. These results strongly suggest that Myc-induced cell growth 

is dependent on Myc's ability to regulate protein synthesis and is coupled to uncontrolled 

cell cycle progression in cancer.
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Non-immortalized cells counteract Myc overexpression by undergoing programmed cell 

death as a tumor suppressive response, and inhibition of cell death downstream of Myc 

activation accelerates lymphoma initiation7. In Eμ–Myc/+;L24+/− mice the percentage of 

dying cells was more than double that of Eμ–Myc/+ mice prior to lymphoma onset (Fig. 1f). 

Therefore, the tumor suppressive response elicited by Myc overexpression is strongly 

enhanced in the background of normal protein synthesis and these findings suggest that 

clonal derivatives of precancerous cells may be more efficiently eliminated by programmed 

cell death in Eμ–Myc/+;L24+/− mice.

The restoration of normal protein synthesis downstream of Myc in Eμ–Myc/+;L24+/− mice 

is first associated with a dramatic reduction in splenomegaly, the earliest manifestation of 

Myc-induced lymphomagenesis (Fig. 2a). We next scored for lymphoma formation in each 

cohort of mice (Fig. 2b). The onset of lymphomas in the Eμ–Myc/+;L24+/− mice is 

dramatically delayed compared to Eμ–Myc/+ mice (Fig. 2b). In addition, a significant 

percentage of Eμ-Myc/+;L24+/− mice do not develop lymphomas even after 1.5 years of age 

(Fig. 2b). A second mouse minute line, heterozygous for the ribosomal protein L38 

(manuscript in preparation, Barna Lab), was intercrossed with Eμ–Myc/+ mice. Eμ–Myc/

+;L38+/− mice also display a marked rescue in cell growth and cell division as well as 

increased cell death of precancerous cells compared to Eμ–Myc/+ cells (Supplementary Fig. 

1 and 4). Importantly, lymphoma initiation in Eμ–Myc/+;L38+/− mice was markedly 

suppressed, as in Eμ–Myc/+;L24+/− mice (Supplementary Fig. 5). The suppression of 

lymphomagenesis was specific to the direct effect of Myc signaling on protein synthesis, as 

ribosomal protein haploinsufficiency in the context of the p53−/− background did not have 

any effect on tumor formation (Figure 2c). These genetic results demonstrate that Myc's 

ability to augment protein synthesis is necessary for its oncogenic potential.

To further understand the molecular mechanisms by which unrestrained increases in global 

protein synthesis can lead to tumorigenesis, we analyzed protein synthesis control during 

specific phases of the cell cycle in Eμ–Myc/+ B-lymphocytes. Unexpectedly, WT and Eμ–

Myc/+ cells synchronized in S phase do not show a difference in protein synthesis rates (Fig. 

3a). During mitosis, cap-dependent protein synthesis is normally decreased to facilitate cap-

independent translation of a subset of mRNA required for accurate mitotic progression19. 

On the contrary, Eμ–Myc/+ cells show elevated protein synthesis rates during mitosis, which 

is cap-dependent as it is restored to normal levels upon Rapamycin treatment 

(Supplementary Fig.6) and in Eμ–Myc/+; L24+/− cells (Fig. 3 a,b) . Moreover, elevated 

activity of a cap-dependent luciferase reporter gene is observed in Myc overexpressing cells 

synchronized in mitosis and restored to normal when Myc is overexpressed in the L24+/− 

background (Fig. 3c). Accurate mitotic progression relies on a very precise and orderly 

switch in translational control through a general decrease in cap-dependent translation and a 

switch to IRES-dependent translation initiation19. We next asked whether a persistent 

enhancement of cap-dependent translation during mitosis downstream of Myc 

overexpression would be unfavorable to an IRES-dependent translational switch. The 

expression of a bicistronic reporter construct harboring the Hepatitis C Virus (HCV) IRES 

element, a molecular readout of IRES-dependent translation20, is impaired in Myc 

overexpressing cells and restored to normal when Myc is overexpressed in the L24+/− 
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background (Fig. 3d). Importantly, L24+/− cells do not show differences in IRES-dependent 

translation compared to WT cells (Fig. 3d), suggesting that the rescue in IRES-dependent 

translation downstream Myc hyperactivation in the L24+/− background is the result of 

restoring cap-dependent translation to normal levels (Fig. 3c). Taken together, these data 

demonstrate that aberrant and continuous stimulation of cap-dependent protein synthesis by 

Myc perturbs the mitotic switch to IRES-dependent translation.

We next monitored the expression of a well-characterized endogenous mRNA that is only 

translated during mitosis via an IRES element. PITSLRE/Cdk11 is a member of the Cdc-2 

like protein kinase family that undergoes cap-independent translation from an IRES element 

during mitosis to produce a Cdk11/58-kDa isoform that facilitates accurate mitotic 

progression3,4. Importantly, deletions containing the PITSLRE/Cdk11 locus are found in 

non-Hodgkin lymphoma21 and other cancers22,23, strongly suggesting that Cdk11/p58 may 

act as a tumor suppressor gene24. The expression of Cdk11/p58 was markedly reduced in 

mitotically synchronized Eμ–Myc/+ cells (Fig. 3e and Supplementary Fig. 7) but was 

rescued to normal levels in Eμ–Myc/+; L24+/− cells (Fig. 3d). Moreover, expression of a 

reporter gene directed by the Cdk11/p58 IRES element is also impaired in Myc 

overexpressed cells and restored to normal levels when Myc is overexpressed in the L24+/− 

background (Fig. 3f). These findings indicate that the general increase in cap-dependent 

translation downstream of Myc activation prevents the accurate mitotic switch to IRES-

dependent translation that regulates Cdk11/p58 expression.

Decreased Cdk11/p58 expression during mitosis impairs accurate cytokinesis, resulting in a 

binucleated cell phenotype5 that is associated with aneuploidy25. We observed that Myc 

overexpressing MEFs display cytokinesis defects and show a significant increase in number 

of binucleated cells, a hallmark of Cdk11/p58 loss of function5 (Fig. 4a). Importantly, 

restoring accurate mitotic Cdk11/p58 expression in Myc overexpressing cells was sufficient 

to revert these cytokinesis defects (Fig. 4a,b,c). These findings strongly suggest that 

decreased IRES-dependent translation of Cdk11/p58 downstream of oncogenic Myc 

signaling may be an early event in tumorigenesis that underlies the subsequent development 

of genomic instability26.

We therefore assessed whether Eμ–Myc/+ lymphocytes display supernumerary centrosomes, 

an early hallmark of genome instability. We observed a large percentage of Eμ–Myc/+ cells 

that show centrosome duplications, which are the result of aberrant protein synthesis control 

downstream of Myc activation as Eμ–Myc/+;L24+/− cells show normal centrosome numbers 

(Fig. 4d). We next directly monitored genomic instability by employing comparative 

genomic hybridization (CGH) analysis. All of the lymphomas analyzed from Eμ–Myc/+ 

mice had chromosomal abnormalities, but Eμ–Myc/+;L24+/− tumors showed either no 

chromosomal abnormalities or showed them at a lower frequency (Fig. 4e). These findings 

establish a direct and previously unrecognized molecular connection between aberrant 

control of protein synthesis downstream of Myc activation and the accumulation of genetic 

lesions in tumors.

In our study, we have utilized ribosomal protein haploinsufficiency as a genetic tool to 

restore protein synthesis to normal levels downstream of oncogenic Myc activation. It is 

Barna et al. Page 4

Nature. Author manuscript; available in PMC 2010 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



worth noting that subsets of ribosomal proteins act as tumor suppressors in Zebrafish27. 

However, L24+/− and L38+/− mice, employed in this study, do not show cancer susceptibility 

(unpublished observations). Our findings provide genetic evidence that increased global 

protein synthesis downstream of Myc activation is a rate-limiting determinant of cancer 

initiation and delineate how deregulations in protein synthesis control confer oncogenic 

potential (Fig. 4f). These findings strongly suggest that oncogenic signals may monopolize 

the translational machinery to elicit cooperative effects on cell growth, cell cycle 

progression, and cell survival (Fig. 4f). Moreover, Myc overexpressing cells display 

cytokinesis defects, supernumery centrosomes and genomic instability as a consequence of 

augmented cap-dependent translation, demonstrating a previously unrecognized molecular 

connection between aberrant protein synthesis control and genome instability in cancer (Fig. 

4f).

We have identified a specific translational impairment as a consequence of increasing 

protein synthesis downstream of oncogenic signaling (Fig. 4f). The failure to suppress cap-

dependent translation during mitosis in Myc overexpressing cells prevents the critical switch 

to IRES-dependent translation that is required for accurate expression of mitotically 

expressed mRNAs and suggests that many IRES-containing mRNAs, such as Cdk11/p58, 

may be deregulated at the translational level in Myc overexpressing cells. Defects in the 

mitotic translational switch are directly relevant for tumorigenesis, as we have shown that 

impairments in IRES-dependent translation of Cdk11/p58 result in cytokinesis failure, an 

early event in cancer that underlies the subsequent development of genomic 

instability5,25,28 and which can be reverted in Myc overexpressing cells by restoring 

accurate Cdk11/p58 mitotic expression (Fig. 4 a, b, c). Why would an increase in cap-

dependent translation downstream of Myc activation decrease IRES-dependent translation? 

An aberrant increase in cap-dependent translation during mitosis may cause preferential 

recruitment of translational components (ie., ribosomes, translation initiation factors) to the 

cap structure at the expense of IRES elements that govern accurate expression of a subset of 

mRNAs29. Interestingly, multiple tumor suppressor genes possess an IRES-element2 and 

defects in IRES-dependent translation underlie the cancer susceptibility syndrome 

Dyskeratosis Congenita30. Therefore, IRES-containing mRNAs may be preferentially found 

deregulated at the translation level in cancer and contribute to tumorigenesis. Our data 

strongly suggest that alterations in quantitative as well as qualitative translational control 

downstream of oncogenic signaling provide a highly specific and rapid response that may 

overshadow the effect of the transcriptosome towards cellular transformation.

Methods Summary

Mice

Eμ Myc/+, L24+/−, L38+/− and p53−/− mice were all maintained on a C57/BL6 background. 

Mice were monitored twice a week for signs of morbidity and tumor development. Myc 

tumor initiation was scored by peripheral lymph node palpation. Moribund mice or mice 

with obvious tumors were sacrificed, and tumors and different organs were analyzed by 

histology or processed for further analysis.
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Cell culture and analysis of IRES-dependent translation in mitosis

Primary B-lymphocytes were isolated from spleen or bone marrow from 4-5 week old mice 

utilizing an autoMACS separator (Miltenyi Biotec). Primary B-lymphocytes and MEFs were 

synchronized in mitosis by thymidine and aphidicolin block, respectively. Bicistronic 

vectors, HCV-IRES and CDK11/p58 IRES were transfected as RNAs. IRES-dependent 

expression of the endogenous CDK11/p58 was assessed by western blot utilizing anti-

CDK11/p58 (Abcam).

Analysis of global protein synthesis

Equal numbers of freshly isolated or cultured primary B-lymphocytes synchronized in S 

phase or mitosis were incubated in methionine-free DMEM and then 50 μCi/well (25 

uCi/mL) of [35S] methionine was added to the cultures for 35 minutes. Radiolabeled 

proteins were visualized by exposure to X-ray film and quantified by densitometry analysis.

Cellular and molecular analysis of B-lymphocytes

Freshly isolated and cultured B-lymphocytes from 4-5 week old mice were fixed and stained 

with the following combination of mAbs conjugated with FITC or PE: CD19-PE/CD3-

FITC, CD4-PE/CD8-FITC, CD43-PE/CD45R-B220-FITC. Cell volume measurements were 

performed using a Coulter Model Z2 (Coulter).

CGH and Cytokinesis analysis

Genomic DNA extracted from lymphomas of Eμ–Myc/+ mice, and Eμ–Myc/+;L24+/− mice 

was subjected to CGH analysis by standard methods. For cytokinesis analysis, primary 

MEFs were stably transfected with MycER harboring puromycin resistance or P58 cDNA 

plus MycER via a Phoenix viral vector and cultured. Upon release from aphidicolin, Myc 

was activated by the addition of hydroxytamoxifen. At the 20 hour time point, cells were 

fixed and stained. Binucleated cells were scored utilized automated segmentation routines.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Myc-induced increases in protein synthesis regulate B lymphocyte size, division and 
apoptosis prior lymphomagenesis
a, Protein synthesis rates assessed by S35 methionine incorporation and densitometry 

analysis (n=3) * p < 0.01. b, Cell size analysis (n=3) * p < 0.001 for Eμ–Myc/+ versus WT, 

** p < 0.01 for Eμ–Myc/+ versus Eμ–Myc/+;L24+/−. c, d, Cell cycle distribution and 

quantification of the percentage of cells in S phase (n=3). Red bar indicates S-phase, * p < 

0.01, ** p < 0.05. e, Western blot analysis for cell cycle targets transcriptionally regulated 

by Myc f, In situ Tunnel analysis (n=3). Inserts are representative pictures of Tunnel 

analysis comparing Eμ–Myc/+ and Eμ–Myc/+;L24+/− samples * p < 0.05, ** p < 0.05. a-e, 

all experiments were performed on freshly isolated B-lymphocytes. Error bars, s.d.
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Figure 2. The ability of Myc to augment protein synthesis is necessary for its oncogenic potential
a, Representative photographs of spleens and average spleen weight (n=6 per genotype, 4 

weeks of age). Error bars, s.d. b, Kaplan-Meier curves showing lymphoma-free survival 

(LFS) of Eμ–Myc/+ and Eμ–Myc/+;L24+/− mice (n=30 per genotype). c, Kaplan-Meier 

curves showing tumor-free survival (TFS) of p53−/− and p53−/−;L24+/− mice (n=25 per 

genotype).
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Figure 3. Myc hyper-activation impairs the translational switch from cap to IRES-dependent 
translation control during mitosis and blocks mitotic translation of the Cdk11/p58 PITSLRE 
kinase
a,b, S35 methionine incorporation in B-lymphocytes synchronized in S phase and mitosis. 

Densitometry analysis (n=3) comparing protein synthesis levels in S-phase and mitotically 

arrested B-lymphocytes. c, Cap-dependent activity of the Renilla luciferase reporter mRNA 

in asynchronous and mitotic synchronized MEFs expressing a tamoxifen inducible Myc 

vector (n=6 experiments performed in triplicate) *(p < 0.001) compared to WT, **(p < 

0.005) compared to asynchronous values. d, HCV-IRES dependent activity of the Firefly 

luciferase reporter mRNA (n=6 experiments performed in triplicate) in asynchronous and 
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mitotic synchronized MEFs ** (p < 0.001) compared to asynchronous values. e, 
Representative western blot of the endogenous Cdk11/p58 PITSLRE kinase in asynchronous 

and mitotic synchronized primary B-lymphocytes. Note that expression of Cdk11/p58 

PITSLRE is only present in mitotically synchronized cells (left), and not asynchronous cells 

(right) via an IRES-element positioned in its 5′UTR. Densitometry analysis (n=3). f, Cdk11/

p58-IRES dependent activity of Firefly luciferase reporter mRNA (n=4 experiments 

performed in triplicate) transfected in asynchronous and mitotic synchronized cells ** (p < 

0.001) compared to asynchronous values. (c,d,f) Average steady state WT values were set to 

1. The Y-axes show fold change. Error bars, s.d.
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Figure 4. Aberrant translation control downstream of Myc activation underlies cytokinesis 
defects and genome instability
a, Myc overexpressing MEFs show increased numbers of binucleated cells (arrows). Insert 

illustrates dysmorphic and variably sized nuclei frequently observed in Myc overexpressing 

MEFs. b, Western blot of mitotic Cdk11/p58 expression showing decreased expression in 

MEFs expressing a Myc inducible vector. Myc+p58 cells express a retroviral Cdk11/p58 

cDNA. c, The increased number of binucleated cells in Myc overexpressing cells is restored 

to normal level when Cdk11/p58 is reintroduced (n=4, at least 500 cells were scored per 

experiment) Error bars, s.d. d, Percentages of cells with normal (1 and 2) and aberrant (3) 

centrosome numbers in freshly isolated B-lymphocytes (n=6, at least 300 cells per 

experiment), *p < 0.001. Insert shows representative immunofluorescence staining with a 

centrosome marker. e, Comparative genomic hybridization (CGH) analysis of tumors (n=6). 

Error bars, s.d. f, Proposed model for how deregulations in translation control downstream 

of Myc activation lead to cancer initiation. Myc dependent increases in protein synthesis 

augment cell growth and this effect is coupled to increased cell cycle progression and a cell 

survival advantage. Increasing cap-dependent translation downstream of Myc-activation also 
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gives rise to a specific molecular impairment in the modality of translation initiation 

employed during mitosis that leads to cytokinesis defects associated with genome instability.
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