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Abstract: This report describes the use of the VHSIC Hardware Description 
Language (VHDL) for synthesis in the VHDL Synthesis System 
(VSS). The corresponding internal representation of VHDL used in 
VSS will be described. We will illustrate the use of this represen­
tation to capture characteristics of four different design models 
(combinational, functional, register transfer, behavioral). Algo­
rithms for compiling the VHDL description into the design 
representation will be discussed. 
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1. Introduction 

Behavioral synthesis involves the translation of a behavioral description into a 

structural description. A behavioral description models the design as a "black box", 

describing its outputs as a function of its inputs and time. A hardware description 

language (HDL) provides a method of specification for the designer so that a synthesis 

tool can be supplied with sufficient information about the intended functionality of a 

design. Usually, the HDL consists of high-level, programming language statements 

which allow for the specification of the design's fl.ow of control as well as assignment 

statements which specify operations and data transfers to be performed. In addition, a 

true hardware description language should be able to describe the structure of a design 

implementation in terms of a set of interconnected components from a given library. 

Simulation languages classified as HDLs are used to model hardware. One such 

language is the VHSIC Hardware Description Language (VHDL) [VHDL87], an IEEE 

and DoD standard. The goals of simulation are to predict accurately the voltage values 

on all nets of a design at any given time and to verify timing relationships between 

changes on these nets. The description used for simulation does not have to be 

minimal, elegant or implementable as long as it produces correct behavior. 

Since designs can be described in several ways and at several different levels of 

abstraction using languages such as VHDL, a synthesis tool must know the intent or 

semantics of the description in order to produce hardware which performs the desired 

function. A consistent modeling practice is required if the same description is to be 
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used for synthesis and simulation. A structured rmdeling methodology has been 

proposed [LisGa89b] which recommends practices for writing synthesizable descriptions 

using VHDL. Adherence to these standards will result in a high quality design. 

A design representation or data base is the internal representation used by a 

synthesis tool. It organizes information extracted from the input specification necessary 

for synthesis. This representation is created, manipulated, and optimized by the system 

so that a netlist or other output specification can be produced. 

One common design representation used in several synthesis systems is the 

control/data flow graph [OrGa86]. The control flow graph represents sequencing 

information. Each "state" in the behavioral description is represented as a sequence of 

actions to be performed, and based on the evaluation of a condition, the next state to 

which execution is to be advanced is indicated. Control dependencies implied in the 

semantics of the behavioral description (for example, loop and if-then-else constructs) 

are preserved in the control flow graph. 

The sequence of actions to be performed (arithmetic, logical, shifting operators) is 

represented using data flow graphs. A data flow graph indicates data dependencies 

that exist between variable accesses· in assignment statements. The data flow graph 

exposes the parallelism in the input description. A control flow node representing a 

state will have a data flow graph associated with it. 
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1.1. Motivation 

In synthesis, we are interested in generating a structural description of components 

from a given library from a behavioral description. Here, we are interested in properly 

connecting all pins on all components instead of observing signal values on some of the 

pins. The behavioral description must be parsed into a design representation which can 

be operated on by a variety of synthesis tools. This design representation should be well 

defined and should capture uniquely the functionality and intention of several 

equivalent behavioral descriptions in a format appropriate for synthesis. The 

representation must allow for the transformation of behavioral information (simulatable 

functionality) to structural information (library components and their attributes). 

In this report, we will describe a control/ data fl.ow graph representation used in 

the VHDL Synthesis System (VSS) [LisGa88] [LisGa89a]. We will identify how the 

VHDL language can be used for synthesis in VSS. Through the use of signal typing and 

attribute annotations, we will show how a VHDL description for simulation can be 

enhanced to provide necessary information for synthesis. The structural, datafiow and 

behavioral description styles of VHDL will be investigated. 

We will show the corresponding internal representation (control and/ or data 

:flowgraph) produced as the VSS input compiler parses each VHDL statement. The 

various interpretations of VHDL statements used to represent characteristics of each of 

the design models mentioned in our structured modeling methodology (combinational, 

functional, register transfer, behavioral) will be illustrated. Algorithms for compiling 
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the VHDL input description into this representation will be discussed. 
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2. VJIDL Design Models 

2.1. Design Hierarchy 

The design entity is the primary hardware abstraction in VHDL. It represents a 

portion of the hardware design that has well-defined inputs and outputs and performs a 

well-defined function. A design entity may represent an entire system, a sub-system, a 

board, a chip, a macro-cell, a logic gate, or any level of abstraction in between. A 

configuration can be used to describe how design entities are put together to form a 

complete design as shown in Figure 1. 

A design entity may be described in terms of a hierarchy of blocks, each of which 

represents a portion of the whole design. The top-level block in such a hierarchy is the 

design entity itself; such a block is an external block that resides in a library and may 

be used as a component of other designs. Nested blocks in the hierarchy are internal 

blocks, defined by process or block statements. A structural, dataflow or behavioral 

description style can be used to express the functionality of an internal block. 

Successive decomposition of a design entity into components, and binding of those 

components to other design entities that may be decomposed in like manner, results in 

a hierarchy of design entities representing a complete design. Such a collection of 

design entities is called a design hierarchy. The bindings necessary to identify a design 

hierarchy can be specified in a configuration of the top-level entity in the hierarchy. 

The design hierarchy concept is illustrated in Figure 1. 
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A VHDL description which represents such a design hierarchy is shown in Figure 

2. Each design entity description is composed of two major sections: the entity block 

and the architecture body. The entity block contains the specification of external 
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input/output port connections to the hardware to be designed. The architecture body 

defines the body (structure and/or behavior) of a design entity. It specifies the 
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relationships between inputs and outputs of the design entity, and may be expressed 

using a mixture of the three styles mentioned previously (structural, datafl.ow, 

behavioral). 

2.2. Design, Model 

Figure 3 illustrates the underlying design model assumed for a VHDL description 

[Preas88]. A design is composed of communicating processing elements (PEs). Each 

PE consists of a Control Unit (CU) and Datapath (DP). Because a process statement 

may require one or several machine cycles (states) to execute the desired function, the 

microarchitecture implementation uses the DP to perform computations and the CU to 

OONTROLUNI 

i....+--+tLU.NTRO 

WGIC 
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sequence the machine through the necessary states and control the operations 

performed in the DP for each state. The CU contains a state register for storing the 

current state of the machine and control logic which controls the DP and communicates 

with other PEs. The DP consists of storage elements (registers, counters, memories) 

and functional units (AL Us, shifters, multiplexers) connected through sets of buses. 

Access to registers, units or 1/0 ports is controlled by the CU. If several buses are 

used as sources to a storage or functional unit, a selector controlled by the CU must be 

added to the input. Some DP models use only point-to-point connection with selectors 

only and no buses. Processes also communicate via global signals. PEs communicate 

through DP ports to the CU or DP (nets a and bin Figure 3) or through CU ports to 

the CU or DP (nets c and d). 

Note that in this model, an adder may be represented as a PE with no CU but 

with a DP (having one output port, two input ports, and no storage elements). 

Similarly, a :flip-flop can be modeled as a DP with no functional units or as a CU with 

no DP and no control logic. Thus, this model is complete in the sense that it can model 

any synchronous digital system. 

2.3. Design Model Representation 

The three description styles (behavioral, datafiow, structural) use concurrent 

statements to describe a portion of the complete design model shown above. Each 

concurrent statement in a VHDL description may be used to describe a piece (one or 
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more components) of a design. Alternatively, more than one statement can be used to 

describe the functionality of the same design section if the behaviors are non­

overlapping (exclusive). 

The design sections represented by the concurrent statements communicate via 

global signals. These signals are defined in the declaration section of the architecture 

body. A global signal may be read (input) to several blocks or processes, but should be 

written to (updated by) only one block or process at any given time. In the event that 

it is desirable to have more than one active driver for a signal simultaneously (to model 

a bus, for example), a. resolution function must be written and associated with the 

signal to determine its proper value for simulation. 

2.3.1. Behavior 

A VHDL description using the behavioral style consists of process statements and 

concurrent procedure calls. Usually, process statements represent programs to be 

implemented in a microarchitecture which uses the complete control unit/data path 

design model. Variables within a process may represent storage components or 

interconnect wires. Local signals are used to communicate between the CU and DP. 

Interprocess communication follows these conventions: 

(1) The following subtypes are defined for descriptions to be used for synthesis: 

subtype data is BIT; 
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subtype control is BIT; 

Signals of type data are used to interface with the data path. Signals of type 
control interface with the CU. 

(2) By default the following signal types/ accesses are allowed: 

Input 
signal/port reads within the data path description 
conditional bit signals input to the descriptions of control logic 

Output 
constant signals output from control logic (boolean, binary, integer) 
computed signals output from DP 

Timing is expressed as a part of the output signal assignments. Data computations 

within the process are made with variable assignment statements. 

2.3.2. Dataflow 

Datafiow descriptions consist of concurrent signal assignment statements. They 

describe only the data path portion of the VHDL design model. The data path is a 

structure of components, where each component is described by one or more 

statements. 

2.3.3. Structure 

The VHDL structural design style utilizes component instantiation and generate 

statements. Here, the data path portion of the design model is described through the 

instantiation and interconnection of component primitives or previously defined design 

en ti ties. 

June 11, 1989 Page 11 



2.4. :Mixture of VHDL Design Styles 

This section illustrates a mixture of the VHDL structural, data:fiow and behavioral 

description styles in a single description. Figure 4 shows a block diagram for a 

controlled counter functional description adapted from [Arms89). 

The operation of the controlled counter can be described as follows. On the rising 

edge of the STRB signal, an internal control register CONREG is loaded with the value 

on CON. The CONREG value is decoded to perform one of four functions: clear the 

counter, load a limit register, count up to a limit, or count down to a limit. The counter 

runs synchronously under an input clock, and the counting functions are enabled by the 

.-------------, 
: LOAD_LIMIT : r · iiMIT:CifK 1 
I I I I 
I I I 

DATA I LIM ..... --.-----"!--1... : I I __ ....., _ _.I 

STRB 

CON 

I I 

L---- -- ----.1 
.----- ------------------ --, 1 
I 
I 
I 
I 
I 
I 

CONREG_OUT 

3 

2 

I 
I 
I 
I 
I 

...-~ CONREG .....,..,... DEC 1 
I 
I 
I 

: DECODE 

--------0 I CNT_CLR 

L--------------------------~ 

EN 

.----------- -, I I 
I I 

CNT 

I 
I 
I 

..... -~t---CNT_OUT 
I 
I 
I 

I I 
I I 
I CNT_UP _ORJ)OWN I 
L------------~ 

Figure 4: Controlled Counter Block Diagram 
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internal signal EN. The DATA value is loaded into the limit register LIM on the falling 

edge of STRB if the control register contains the value 'OO'. 

The VHDL description is shown in Figure 5. This description consists of four 

block statements, each of which describes a portion of the design: the decoding of the 

CONREG value, the loading of the limit register (LIM), the asynchronous clear the 

synchronous up/down count of the counter (CTR), and a limit test. 

The DECODE block statement describes the functionality of more than one 

functional block (the CONREG register and the decoder). A structural description 

style is used which specifies component declarations, interconnect signal declarations, 

component instantiations, and component interconnection (via the port map clause of 

the component instantiation statement). 

A datafl.ow description style is used for the LOADJJMIT and 

CNT_UP _OR_DOWN blocks. The block guard is used to enable an update of the LIM 

and CNT register values. Nate that these descriptions carry no information about the 

structure of the components to be used in the implementation, only the behavior. 

The LIMIT_CHK block is described behaviorally with a process statement. This 

particular description involves only the data path portion of the design model. 
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entity CONTROLLED_CTR is 
port ( 

CLK,STRB: in BIT; 
CON: in BIT_VECTOR(l downto O); 
DATA: in BIT_VECTOR(3 downto O); 
CNT_OUT: out BIT_VECTOR(3 downto O)); 

end CONTROLLED_CTR; 

architecture MIXED of 
CONTROLLED_CTR is 

subtype nibble is BIT_VECTOR(3 downto O); 
signal CONSIG: nibble:= B"OOOO"; 
signal LIM: nibble regista- := B "0000 "; 
signal ENIT: BIT := '0'; 
signal EN: BIT:= '0'; 
signal CNT: nibble register:= B"OOOO"; 
signal CNT_CLR: BIT; 

begin 

DECODE: block (STRB = 'l') 

component reg 
port (D: in BIT_VECTOR(l downto O); 

CLK: in BIT; 
Q: out BIT_VECTOR(l downto O)); 

end component; 
component decoder 

port (D: in BIT_VECTOR(l downto O); 
Q: out BIT_VECTOR(3 downto O)); 

end component; 
component or2 

port (A,B: in BIT; 
0: out BIT); 

end component; 
signal CONREG_OUT: BIT_VECTOR(l downto O); 

begin 

CONREG: register 
port map (CON,CLK, CONREG_OUT); 

DEC: decoder 
port map (CONREG_OUT,CONSIG); 

OR..1: or2 
port map (CONSIG(2),CONSIG(3),ENIT); 

CNT_CLR < = CONSIG(O); 

end block DECODE; 

LOAD_LIMIT: block (CONSIG(l)='l' and STRB='O' 
and not STRB'STABLE) 

begin 

LIM < = guarded DAT A after 10 ns; 

end block LOAD_LIMIT; 

CNT_UP _OR...DOWN: block ((CLK = '1' and 
not CLK'STABLE) or (CNT_CLR = 'l')) 

begin 

CNT <=guarded 
B"OOOO" after 5 ns when CNT_CLR = 'l' else 
CNT when EN = 'O' else 
CNT + B"OOOl" after 12 ns 

when CONSIG(2) = '1' else 
CNT - B "0001" after 12 ns 

when CONSIG(3) = '1' else 
CNT; 

end block CNT_UP_OR.J)OWN; 

LIMIT_CHK: process (ENIT,CNT) 
begin 

if ((CNT /=LIM) and (ENIT = 'l')) then 
EN<= '1' after 12 ns; 

else 
EN<= 'O' after 5 ns; 

end if; 

end process LIMIT_CHK; 

CNT_OUT <= CNT; 

end MIXED; 

Figure 5: VHDL Description of Chntrolled Chunter 
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3. VHDL Design Representation in VSS 

This section of the report describes how each VHDL statement is processed by the 

VHDL Synthesis System (VSS) in order to generate and maintain an internal 

representation appropriate for synthesis. The control/data flow graph (CDFG) which is 

used as this internal representation is constructed as each statement is parsed. The 

portions of data and control flow graphs corresponding to the statements in a block or 

process are appropriately interconnected according to the design style used in the 

VHDL description. 

3.1. Structural Description Style 

A designer can specify an initial design, fully or partially, using a structural 

description mixed with behavior. When sections of the design are described using 

structural VHDL (for example, previously synthesized modules), these portions are 

copied intact to the output produced by the VSS system. The partial structural 

description is enhanced with additional components necessary to implement the sections 

of the design described using the data flow and behavioral styles. 

When synthesis is completed, the VSS system produces a VHDL structural 

description of the design, using component declarations and instantiations derived from 

an Intelligent Component Data Base (ICDB) [Chen89]. VHDL behavioral models for 

these components are available from the data base. The use of VHDL as a netlist 

format in the VSS system is described in Appendix B. 
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3.2. Dataflow Description Style 

The dataflow description style emphasizes the flow of information between storage 

and gating elements. 

3.2.1. Concurrent State:rrents 

Concurrent statements are used to define interconnected blocks (components, 

possibly of different complexity) that jointly describe the overall behavior or structure of 

a design. Concurrent statements execute asynchronously with respect to each other. 

The following concurrent statements are found in VHDL: 

concurrent_statement ::= 
block_statement 

I process_statement 
I concurrent_procedure_call 
I concurrent_assertion_statement 
I concurren t_signaLassignmen t_statemen t 
I componen t_instan tiation_statemen t 
I generate_statement 

3.2.1.1. Block State:rrent 

The primary VHDL construct used for the dataflow description style is the block 

statement. A block statement defines an internal block representing a portion of a 

design. It has the following syn tax: 
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block_statement ::= 
block [ (guard_expression)] 

block_header 
block_declarative_part 

begin 
block_sta temen t_part 

end block; 

block_header : := 
[ generic_clause 
[ generic_map_aspect; ] ] 
[ port_clause 
[ port_map_aspect; ] ] 

block_declarative_part ::= 
{ block_declarative_item} 

block_statement_part ::= 
{ concurrent_statement } 

The optional guard_expression defines an implicit signal GU ARD of time 

BOOLEAN for simulation. If the guard_expression evaluates to TRUE, all signal 

assignments with a guarded qualifier appearing in the block_statement_part will have 

their RHS evaluated, and a driver is placed on the event queue to update the signal 

values at the appropriate time. For synthesis, the guard_expression is used to specify a 

synchronous or asynchronous event which results in a signal update. 

The block_header explicitly identifies certain values or signals that are to be 

imported from the enclosing environment into the block and associated with formal 

generics or ports. 

The block_declarative_part defines all local signals, types and subtypes, constants, 

components and attributes. 

June 11, 1989 Page 17 



One or more concurrent statements constitute the block_statement_part. Blocks 

may be hierarchically nested to support design decomposition [VHDL87). The block 

statement groups together other concurrent statements such as signal assignments 

which assign values to signals. Nested blocks are flattened for synthesis to facilitate 

resynthesis with optimization. 

The fl.ow graph representation for a block statement in shown in Figure 6. It 

consists of BLK_BEG and BLK_END demarcation nodes, and a STMT_BLK node 

which represents the body of the block statement. The data :flow graphs generated for 

BLK_BEG 

STMTJ3LK 

BLK_END 

Figure 6: Block StatenEnt Flowgraph Representation 
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each concurrent statement appearing in the block are associated with the STMT_BLK. 

3.2.1.2. Signal Assignment 

A signal assignment statement is used to assign or update values for a signal 

driver. The basic format of an assignment statement is the following: 

target < = [ guarded ] < RHS-expression> 

Each assignment made to a target or left hand side (LHS) signal/variable is represented 

by a WRITE node in the fl.ow graph. Similarly, each access of a signal or variable 

appearing as a part of the right hand side (RHS) expression of an assignment statement 

is represented by a READ node. 

READ and WRITE nodes for signals of can be of type PORT, REGISTER or 

WIRE (WIRE is the default for any variable declared as a SIGN AL). If a signal is of 

mode internal (that is, it was declared locally within some block statement) and a 

WRITE and READ node for that signal are connected when DFG sections are merged, 

the nodes can be coalesced, producing a signal net of type WIRE. 

3.2.1.2.1. Conditional Signal Assignment 

The conditional signal assignment statement has the following syntax: 

signal<= [ guarded ] { <waveform> when <condition> else} 
<waveform> ; 

<waveform> ::= <expression> [ after <delay> ] 
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The conditional signal assignment will occur in one of the following forms: 

a) signal < = <waveform> ; 

This is the simplest form of assignment statement. The VHDL simulator interprets this 
· statement as a directive to compute the value of <expression> and schedule the 

activation of this driver for the signal value at time <current-simulation-time> + 
<delay> (if no delay is specified, the driver is activated immediately). 

From the CDFG perspective, a data:flow graph is constructed for the RHS 
expression, and the result is input to a WRITE node for the signal. Associated with 
each graph arc (connection) is a signal type (bus, register, port, wire), ItDde 
(in/out/inout (for ports only), internal), number of bits, and representation (integer, 
:floating point, 1 's complement, 2's complement, sign/magnitude). The optional delay 
specification indicates the time which elapses between the READ of all signals/variables 
which appear on the RHS of the assignment statement and the appearance (WRITE) of 
the updated expression value at the register/port/wire represented by the signal. 
Figure 7 shows a typical signal assignment statement and the corresponding :flowgraph 
with delays. 1 

entity EXAMPLE is 
port (A,B: in BIT_VECTOR(O to 3); 

architecture EX of EXAMPLE 
is 

signal C: BIT_VECTOR(O to 3); 

A < = B + C after 3 ns; 

end EX; 

Figure 7: A Silll>le Conditional Signal Assigmrent 
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b) signal < = guarded <waveform> ; 

The guarded assignment involves the conditional assignment of the evaluated 
<waveform> to the signal based on the value of the guard expression which appears at 
the beginning of the enclosing VHDL block statement. When the guard expression 
evaluates to TRUE, the VHDL simulator activates the signal driver and places its value 
on the simulator event queue so that the signal is updated at the specified simulation 
time. 

For the purposes of CDFG generation and synthesis, a guarded signal assignment 
is used for signals declared with the bus or register qualifier. A data :flow graph is 
generated for the RHS expression and is connected to the true input of a CHOOSE­
V AL UE node. The CHOOSE-VALUE node represents the selection of a data element 
based on the value of a guard (select) input. The guard input is a data flow graph 
representing the block guard expression. The output of the CHOOSE-VALUE node is 
used as the input to a WRITE node for the signal. Figure 8 shows an example of this 
construct. 

If the signal is declared as a bus, the CHOOSE-VALUE will be mapped to a tri­
state driver for the bus signal. If the signal is a register under a guard expression of type 
CLOCK, the CHOOSE-VALUE will be removed, and the select line will be connected 
to the clock input of the WRITE_REG node. The function of each signal appearing in 
the guard expression is determined by its signal type. In the case of multiple signals in 
the guard expression (clock and set, for example), an optimization step will connect 
each signal to the appropriate control input. 

c) signal < = [ guarded ] 
waveforml when conditionl else 
waveform2 when condition2 else 

waveformN when conditionN else 
waveformN; 

This statement corresponds to a nested if arrangement of assignments to the same 
signal based on different boolean conditions. The VHDL simulator will evaluate 
waveform/ condition pairs in the order in which they appear and will schedule the 
assignment of the first waveform value to the signal when its associated condition 
evaluates to true. 
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entity CONTROLLED_CTR is 
port (CLK: in CLOCK; 

DATA: in BIT_VECTOR(3 downto O); 

architecture CONCURRENT of 
CONTROLLED_CTR is 

signal CNT: BIT_VECTOR(3 downto 0) register; 

CNT_UP: block (CLK = '1' and not CLK'STABLE) 
begin 

CNT <=guarded CNT + "0001" after 10 ns; 

end CONCURRENT; 

ATTRIB 
STABLE 

READ 
CLK 

CONST 
1 

READ 
CNT 

Figure 8: Guarded Signal Assigmmnt 
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block (CLEAR= 'O' or PRESET= '1' or CLK = '1') 
begin 

reg_A < = guarded 
'O' after 20 ns when CLEAR = 'O' else 
'1' after 20 ns when PRESET = '1' else 
DATA after 35 ns when CLK = '1' else 
reg_A.; 

end block; 

READ 
DATA 

Figure 9: C.Onclitional Signal Assignment 

June 11, 1989 

READ 
reg_A 

Page 23 



The conditional assignment statement can be useful in representing an assignment 
to a signal based on prioritized conditions. For example, the statement in Figure 9 
might be used to represent a register for which the CLEAR is of highest priority, 
followed by PRESET and CLOCKed assignment. Figure 9 shows the :flowgraph 
generated for the statement. 

A chain of CHOOSE-VALUES is constructed to form the data :flow graph for the 
nested if construct. The bottom most CHOOSE-VALUE is guarded by the first 
condition encountered, the CHOOSE-VALUE above the bottom one is guarded by the 
next condition, etc. The output of the bottom most CHOOSE-VALUE is connected to 
the WRITE node input. 

3.2.1.2.2. Selected Signal Assigmmnt 

The format of the selected signal assignment is shown in Figure 10. This is 
equivalent to the case statement available as a sequential statement within the process 
construct. The choices are exclusive conditions (either integer or boolean values) such 
that only the waveform matching the value of the <expression> is evaluated and 
scheduled for assignment by the VHDL simulator. Figure 10 shows the :flowgraph 
generated for the general form of this statement. 

The data :flow graph construct associated with this statement is the multiple input 
CHOOSE-VALUE guarded by the <expression>. Each waveform will have a 
corresponding data :flow graph generated for its expression value, and the guard test for 
each input will be stored in the input net. 
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with <expression> select 
signal < = { guarded } 

waveforml when choicel , 
waveform2 when choice2 , 

waveformN when choiceN; 

< waveform.._2> 
< wavefonn.-1> < waveform....n> 

<expression> ,.----------- ... I I 
I READ I 
I .,.:""'.,.l I 
I ~KU I 
I I 

'-•••••T•••••"' 
I 
I 
I 

¢ 
I 

r•••••••••••"' 
<guard expression> I 

I 

I •-• -----.&.--· 
I ", 1 E;;" 0-----------.. , ,; ' , .. , ' , 

WRITE 
signal 

Dashed lines represent flowgraph created for guarded selected signal assignment. 

Figure 10: Selected Signal Assigmrent 
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3.3. Behavioral Description Style 

A behavioral description is a sequentially executed, procedural style of code typical 

of common programming languages. A behavioral specification specifies, with any 

desired degree of precision, what a device does (its function) without specifying how it 

doe it (its structure) [CLSI87]. 

3.3.1. Process Statement 

The primary VHDL construct used for the behavioral description style is the 

process statement. A process statement defines an independent sequential process 

representing the behavior of some portion of the design. It has the following syntax: 

process_.statement ::= 
process [ (sensitivity _list)] 

process_declarative_part 
begin 

process_.sta temen t_part 
end process; 

process_declarative_part : := 
{ process_declarative_item} 

process_.statement_part ::= 
{ sequential_.statement} 

The execution of a process statement consists of the repetitive execution of its sequence 

of sequential statements. After the last statement in the sequence of statements of a 

process statement is executed, execution will immediately continue with the first 

statement in the sequence of statements [VHDL87]. 
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A sensitivity list may be specified for each process. By specifying a sensitivity list 

of one or more signals, the process statement is assumed to contain an implicit wait 

statement as the last in the sequence of statements. This wait statement will suspend 

execution of the process statement until an event (change) occurs involving one of the 

signals in the sensitivity list. The sensitivity list is ignored by the VSS synthesis tool. 

The process_declarative_part defines all local signals, variables, types and 

subtypes, constants and attributes. 

One or more sequential statements comprise the process_statement_part. The 

sequential statements which may appear in the description are listed in the next section. 

The fl.ow graph representation for an example process statement is shown in Figure 

11. Note that a STMT_BLK node is a control node which has an associated data fl.ow 

graph. These data fl.ow graphs are constructed for sequential signal and variable 

assignment statements. 
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process 
begin 

while (stop = 'O') 
PI := M(CR)(O to 15); 
S := PI(3 to 15); 
case PI(O to 2) is 

when 0 => CR := M(S); 
when 1 => Ace := Ace - M(S); 

when 6 => if (Ace< 0) then 
CR:= CR+ 1; 

when 7 => stop<= '1'; 
end case; 

end loop; 
end process; 

STMl'....BLK 

\ \ \ 

\ ' \ 

\ 

\\ l~I 

Figure 11: Process Statement Flowgraph Representation 
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3.3.2. Sequential Statements 

The sequence of statements within a process statement may contain one or more of 

the following statement types: 

sequentiaLstatement ::= 
wait_statement 

I signal_assignment_statement 
I varia ble_assignmen t_sta temen t 
I procedure_call_statement 
I iLstatement 
I case_statemen t 
I loop_statement 
I next_statemen t 
I exit_statement 
lreturn_statement 
I null_statement 

As mentioned above, data :flow graph sections for assignments of values to signals 

and variables are created as in the case of concurrent signal assignments and associated 

with STMT_BLK nodes. Control :flow graph sections are created for each of the 

behavioral control constructs. These control flow graph sections are nested and 

interconnected to model the flow of control implicit in the sequential, behavioral 

description. 

3.3.2.1. Signal Assignment 

The syntax of the signal assignment statement for a sequential process is identical 

to form (a) of the conditional signal assignment in a concurrent block. A data flow 

graph similar to the representation generated for a concurrent signal assignment (see 

Figure 7) is created. 
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3.3.2.2. Variable Assignment 

A variable assignment statement replaces the current value of a variable with a 

new value specified by an expression. The statement has the following syntax: 

target := <expression> 

This statement cannot use the after clause to specify timing relationships as in the 

signal assignment statement. A data flow graph is generated to represent the variable 

assignment. 

3.3.2.3. If Stateirent 

One construct used to model conditional execution in the VHDL process statement 

is the if statement. The if statement performs a conditional branch based on the value 

of a boolean signal. 

The control flow graph section created to represent the if statement consists of 

three parts: (1) a TEST (or SELECT) node which selects the control branch to be 

taken based on the test signal; (2) for each control branch, one or more control nodes 

representing a sequence of statements to be performed in that branch; (3) a JOIN node 

which signifies the end of each conditional branch and connects to the flowgraph 

section for the next sequential statement. Figure 12 shows the control flow graph 

sections created for the if construct. 
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if boolean_expression 
then 

seq_of__staternents_l 
else 

seq_of_staternen t s-2 
end if; 

Figure 12: If StatenEnt 

3.3.2.4. Case Statemmt 

seq. of 
statements! 

STMT_BLK 
(evaluate 
t~t signal) 

seq. of 
statemmts2 

The case statement selects between two or more conditional branches based on the 

value of an integer select signal. Figure 13 shows the flowgraph representation for the 

case statement. 
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case integer _expression is 
when choice_l => 

seq_of_st atemen ts_l 

when choice_n => 
seq_of_statements_n 

end case; 

3.3.2.5. For Loop 

seq. of 
statements 1 

Figure 13: Case Statermnt 

STMl'_BLK 
(evaluate 

test signal) 

A loop statement includes a sequence of statements that is to be executed 

repeatedly, zero or more times. 

The for loop construct uses an index variable whose value steps through a a 

specified range for each iteration of the loop. The index variable is set to the first value 

in the range prior to entering the loop. A test is made to determine if the index value is 

within the range; if so, the loop body is entered. Once the loop body statements are 

executed, the index variable assumes the next value in the specified range, and control 
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is returned to the loop entry test. If the test returns FALSE, control passes to the next 

sequential statement. Figure 14 shows the for loop representation. 

for ident in discrete_range loop 
seq_outatements 

end loop; 

Figure 14: For Loop Statemmt 

3.3.2.6. While Loop 

seq. of 
statements 

STMTJlLK 
(set loop 
index) 

next 
statement 

The while loop construct tests a boolean condition, and if it is TRUE, passes 

control to the first control node of the flowgraph section implementing the sequence of 

statements for the loop body. Once the loop body stateme~ts are executed, control 

returns to the condition test which is repeated. If the condition evaluates to FALSE, 

control passes to the sequential statement following the while loop. Figure 15 shows the 
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representation corresponding to a while loop. 

while boolean_expression loop 
seq_of_statements 

end loop; 

Figure 15: While Loop State:mmt 

3.3.2. 7. Procedure Call 

The procedure call has the following syntax: 

procedureJlame ( < parameterJist> ); 

seq. of 
statements 

STMTJ3LK 
(evaluate 

test signal) 

next 
statement 

Procedure calls are used in a VHDL description to invoke a procedure body consisting 

of sequential statements which are used one or more times in the description. Figure 16 

shows the flow graph representation for a procedure call. 
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procJiame ( <parameter_list> ); 
CALL 

proc_name 

Figure 16: Procedure Call Statemmt 

The procedure call may be processed in one of two ways: 

(1) In-line expansion of each call may be performed, where the statements of the 

procedure body are substituted for the procedure call statement. A template 

flowgraph created for the procedure body is inserted, with actual parameters 

replacing occurrences of formal parameters. When this description is synthesized, 

each procedure call invocation can be mapped to available hardware in the data 

path, or a microcode implementation in control can be implemented. Annotations 

in the VHDL description will determine the implementation style. 

(2) The procedure body is treated as a description of a block in the design. A 

flowgraph is created for the procedure body. Hardware is synthesized for this 

description, and each procedure call supplies the values of actual parameters as 

inputs to the procedure body hardware. 
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3.3.2.8. Wait Statermnt 

The wait statement has the following syntax: 

wait [ < condition_clause>] [ < timeout_clause>] ; 

< condition_clause> ::= until< boolean_expression> 

< timeout_clause> ::= for < time_expression> 

A wait statement is used to suspend the execution of a process statement until a 

specified condition is TRUE, or a timeout period elapses. Figure 17 shows the control 

flow graph sections created for a wait statement with condition and timeout clauses. 

This statement is implemented in control and is synchronized with the system clock; 

time is measured in multiples of the clock period. 
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wait until cond_expr for time; 

C < = cond_expr; 
TIMER:=O; 

next 
statement 

Figure 17: Wait Statement 

June 11, 1989 

:rvrER := TI:rvrER + 1 • 
C < = concLexpr; 
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3.4. Graph C-Onstruction Algorithm 

3.4.1. Block Statemmt C-OrrJ>ilation 

For signal assignments appearing in a block statement, flowgraph sections 

generated for each statement are interconnected once all statements have been 

processed. This corresponds to the concurrent data flow style where all operations are 

assumed to be executed in parallel. Variables appearing on the LHS of an assignment 

statement are assigned the value of the variable prior to the execution of the block 

statement. Figure 18 shows a VHDL code fragment consisting of several concurrent 

assignment statements, the flow graphs created for each statement, and the final 

interconnected :flow graph. 

The sections of DFG representing each signal assignment will be appropriately 

interconnected based on the signal type. It is the signal type that will define whether a 

VHDL signal (container) represents a memory element, port or wire. The signal type 

will also determine the interconnect protocol (wired-or, bus) which results when 

multiple sources for the same VHDL signal are encountered. 

Multiple WRITEs (sources) to a signal of type WIRE indicate that a WIRED-OR 

node should be created with each WRITE node as an input. Any READ nodes for this 

signal should be connected to the output of the WIRED-OR node. This DFG construct 

will be mapped to a wired-or connection during design compilation. 
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A 

A 

A<=B+C; 
D <=A* E; 
X<=D-A· 

' 
VHDL Concurrent Stateimnts 

D 

Individual Stateimnt Flow Graphs 

D 

Interconnected Flow Graphs 

x 

Figure 18: Block Stateimnt C.Ofil>ilation 

x 

Similarly, recognition of multiple WRITEs to a signal of type BUS should produce 

a BUS node to which all WRITE nodes are connected. Since each WRITE node for a 

signal of type bus was created when a guarded signal assignment was made, each input 

is controlled by some guard. This flow graph pattern will be mapped to a bus 

connection, where each CHOOSE-VALUE controlling a WRITE input becomes a tri-

state bus driver. 
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Accesses to signals of ~ype register are merged into a single WRITE access node. 

The inputs are muxed on the data input if they are synchronous, or are applied to 

different inputs (e.g., load and clear) if they are asynchronous. 

The compilation algorithm for concurrent statements is summarized in the 

procedure interconnect_concur_stmts shown in Figure 19 below. 

interconnect_concur_stnmts () 
{ 
merge duplicate READ nodes 

merge duplicate READ_CONST nodes 

for (each WRITE node) 
switch (signal type) 

case WIRE : if (WIRED-OR node does not exist) 
create WIRED-OR node 

attach data input of WRITE node as input 
to WIRED-OR 

case BUS : if (BUS node does not exist) 
create BUS node 

attach data input of WRITE node (from a CH-VALUE 
node) as input to BUS node 

case REGISTER: if (another WRT_REG node for the same var exists) 
merge WRT_REG nodes, connecting appropriate 

control lines 

look at all WRITE nodes and appropriately connect them to READ 
nodes for the same signal 

} 

Figure 19: Block Ciompilation Algorithm 
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3.4.2. Process Statement C-Ompilation 

Unlike concurrent statements which are interconnected once all statements in the 

block have been processed, sequential statements appearing within a process statement 

are interconnected as they are encountered. Each control flow graph section 

corresponding to a sequential statement (STMT_BLK, if, case, loop, wait and procedure 

call) has a single entry point and single exit point. As these statements are processed, 

the exit point of the previous statement is connected to the entry point of the current 

statement. Since the control flow graph sections of most sequential statements are 

hierarchically constructed from other sequential statements, a stack is used to maintain 

the control flow node to which the current control flow node is to be attached. 

Assignment statements are associated with the current STMT_BLK. Thus, a 

sequence of assignment statements is grouped initially into the same STMT_BLK 

control node until state binding is performed by the synthesis tool. A STMT_BLK is 

created if no current STMT_BLK exists when an assignment statement is encountered. 

The compilation algorithm for sequential statements appearing in a process is 

summarized in Figure 20. 
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compile_process () 
{ 
curr_node = create_node(PROC_BEG); 
process_seq_stmnts(); 
curr_node = create_node(PROC_END); 
} 

process_seq_stnmts () 
{ 
token = get_input_token(); 
switch (token) { 

case IF 
case ELSIF : if (top_node()-> type != STMT_BLK) 

curr_node = create_node(STMT_BLK); 
create data flow graph for condition 
curr_node = create_node(IF _TEST); 
token = get_input_token();/* THEN keyword * / 
process_seq_stmn ts(); 
if (top_node->type == STMT_BLK) 

associate current data flow nodes with STMT_BLK; 
curr_node = create_node(IF _JOIN); 
else_branch = FALSE;/* global flag * / 

case ELSE : process_seq_stmnts(); 
if (top_node-> type == STMT_BLK) 

associate current data flow nodes with STMT_BLK; 
case CASE : if (top_node()->type != STMT_BLK) 

curr_node = create_node(STMT_BLK); 
create data flow graph for case select 
curr_node = create_node(CASE-8ELECT); 
token = get_input_token();/* IS keyword * / 

case WHEN : /* case statement alternative * / 
associate guard value with current CASE alternative 
token= get_input_token();/* => keyword*/ 
process_seq_stmnts(); 
if (top_node->type == STMT_BLK) 

associate current data flow nodes with STMT_BLK; 
set ptr in CASE_SELECT node so that last node of 

this alternative can be attached to the CASE_JOIN 
case FOR 
case WHILE : if (top_node()->type != STMT_BLK) 

curr_node = create_node(STMT_BLK); 
create data flow graph for condition test 
curr_node = create_node(LOOP _TEST); 
token = get_input_token();/* LOOP keyword * / 
loop_type = token;/* global flag * / 
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case WAIT : token = get_input_token(); 
if (top_node()-> type != STMT_BLK) 

node2 = create_node(STMT_BLK); 
if (token== UNTIL) 

{ 
create dfg for cond_expr; 
cond_expr =TRUE;/* local flag * / 
} 

token = get_input_token(); 
if (token == FOR) 

{ 
create dfg for TIMER initialization; 
time_expr = TRUE;/* local flag * / 
} 

associate dfg with STMT_BLK; 
wait_test = create_node(IF _TEST); 
if ( cond_expr && time_expr) 

{ 
node2 = create_node(IF _JOIN); 
curr_node = create_node(IF _TEST); 
connect_nodes( curr_node,node2); 
} 

node2 = create_node(STMT_BLK); 
if (cond_expr) 

create dfg to evaluate condition; 
if (time_expr) 

create dfg to increment TIMER; 
connect_nodes(node2,wait_test ); 
curr_node = pop_node();/* STMT_BLK * / 

case identifier: /* signal or variable assignments * / 
if (top_node()-> type != STMT_BLK) 

curr_node = create_node(STMT_BLK); 
create data :flow graph for assignment statement 

case END : token= get_input_token(); 
switch (token) { 

case IF: if ( else_branch == TRUE) 
{ 
if (top_node()->type == STMT_BLK) 

associate current df nodes 
curr_node = pop_node(); 
if (top_node()->type ==IF _JOIN) 

{ 
connect_nodes( curr_node, top_node()); 
curr_node = pop_node(); 
} 
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} ; 
else 

{ 
curr_node = pop_node();/* IF_JOIN * / 
if (top_node()->type == IF_TEST) 

{ 
node2 = pop_node();/* IF _TEST * / 
connect_nodes(node2,curr_node ); 
} 

} 
while (top_node()->type == IF_JOIN) 

{ 
node2 = pop_node(); 
connect_nodes( curr_node ,node2); 
curr_node = node2; 
} 

push_node( curr_node ); 

} 

case CASE: curr_node = create_node(CASE_JOIN); 
for (all CASE alternative branches) 

connect_node( altJast_node,curr_node ); 
node2 = pop_node();/* CASE_SELECT * / 
push_node( curr_node); 

case LOOP: if (top_node()-> type != STMT_BLK) 
curr_node = create_node(STMT_BLK); 

create data :flow graph to update FOR 
index, evaluate WHILE condition 

associate current df nodes 
node2 = pop_node();/* STMT_BLK * / 

/* make loop back connection * / 
connect_nodes (node2,top_node() ); 

} 
} 
if (token !=PROCESS) 

{ 
if (token != ';') 

token = get_input_token();/* ; keyword * / 
process_.seq_stmts(); 
} 

create_node (type) 
{ 
curr_node = create_node_structure(); 
prev _node = top_node(); 
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switch (prev_node-> type) { 

{ 

case IF JOIN : if (prev_node->nurn_inputs == 2) 
prev_node = pop_node(); 

else 
{ 
prev_node = pop_node(); 
if (top_node()->type == IF_TEST) 

node2 = pop_node(); 
push_node(prev _node); 
} 

} 
case STMT_BLK : if (prev_node->type != BLK_START) 

{ 
associate current df nodes; 
prev_node = pop_node(); 
} 

case PROC_BEG : 
case LOOP _TEST : 
case IF_TEST : if (prev_node->fg_num_outputs == 1) 

prev _node = pop_node(); 
case CF_START : if (type== BLK_END) 

prev_node = pop_node(); 
case CASE_SELECT: break; 
default : prev_node = pop_node(); 
} 

connect_nodes(prev _node,curr_node ); 
push_node( curr_node ); 
} 

Figure 20: Process Co~ilation Algorithm 

For signal or variable assignments appearing in a process statement, data flow 

graph sections are generated for each statement. The location of the last update 

(WRITE) of all signals and variables is maintained. Variables appearing on the LHS of 

an assignment statement are assigned this last update value. If a value is updated and 

subsequently accessed within the same STMT_BLK, the data flow WRITE and READ 

nodes, respectively, are interconnected. Figure 21 shows the same VHDL code fragment 
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from the previous section as it would appear in a process statement consisting of several 

variable assignment statements. Notice that the sequential nature of the process imposes 

data dependencies on the variable accesses, resulting in a different interconnected flow 

graph. 

A:= B + C; 
D :=A* E; 
X := D - A; 

VHDL Variable Assignment StatenEnts 

x 

Interconnected Sequential Statemmts 

Figure 21: Coi:q>ilation of Variable Assignments in a Process 
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3.5. Annotations 

In some instances, it is necessary to indicate to the VSS system which design 

process should be used for a given VHDL description. This is accomplished through the 

. use of annotations in the form of special VHDL comments as shown below: 

--VSS: functional description 

Annotations are used in the following situations: 

(1) To indicate the structured modeling style used in the VHDL description. 

(2) To indicate loop unwinding, where iterations are :flattened into a sequence of 

assignments, rather than implementing indexing or conditional tests in control. 

(3) To denote a next state in process descriptions. This can be used to define state 

boundaries for a register transfer description consisting of a sequence of assignment 

statements. 
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4. Conclusion 

We have described an intermediate representation which is used for synthesis from 

VHDL. The representation generated for the VHDL constructs has been presented, 

along with algorithms for construction of the complete description. This intermediate 

representation can be used by a variety of synthesis tools and allows for the description 

of several design styles. The use of signal typing and attribute annotations incorporates 

the necessary design information for synthesis into a simple and complete representation 

which can be easily maintained and manipulated by synthesis tools. 
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APPENDIX A 
VHDL Statement Syntax 

1. C-Oncurrent State~nts 

1.1 Signal Assignmmt 

1.1.1 C-Onclitional Signal Assigmmnt 

signal < = { <waveform> when <condition> else} 
<waveform> ; 

<waveform> ::= <expression> { after <delay> } 

1.1.2 Selected Signal Assignment 

with< expression> select 

signal < = { guarded } 

<waveforml> when <choicel>, 

<waveform2> when <choice2>, 

< waveformN> when < choiceN> 

1.1.3 Guarded Signal Assignment 

signal < = guarded < waveform> 

2. Sequential Statermnts 

2.1 Signal Assignment 

target < = <waveform> 

2.2 Variable Assignrmnt 

target := <expression> 
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2.3 If Stateirent 

if< expression> 

then 

sequence_oLstatements 

else 

sequence_of_statemen ts 

end if; 

2.4 Case Statement 

case < discrete_expression> is 
when choice_l = > 

sequence_of_statements 

when choice_N = > 

sequence_of_statements 

end case; 

2.5 For Loop 

for <ident> in< discrete_range> loop 

sequence_of_statements 

end loop; 

2.6 While Loop 

while < boolean_expression> loop 

sequence_oLstatements 

end loop; 

2.6 Procedure Call 

procedure_name ( < parameterJist> ); 
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2. 7 Wait Statemmt 

wait [ < condition_clause>] [ < timeout_clause>] ; 

< condition_clause> ::= until < boolean_expression> 

< timeout_clause> ::= for < time_expression> 
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APPENDIXB 
VHDL Structural Netlist Specification 

1. Introduction 

The types of information contained in the design representation after the Graph 

Compilation, Graph Critic, and Node Compilation phases have completed can be 

classified as follows: component instances, connectivity, instance para11Eters, and 

timing. The generic component netlist representation which is the output of the 

synthesis system must express this information as well. A standard format for this 

netlist is desirable so that interfacing to other design tools can be more easily 

accomplished. 

The VHDL structural style of description seems suited to this purpose. The 

general form of this netlist is shown in Figure 22. A simple circuit schematic is shown 

in Figure 23. Figure 24 shows an example VHDL structural description using this 

format. Nate that this netlist conforms to IEEE Standard VHDL 1076B [VHDL88] 

language. The following sections describe how the various types of design information 

are represented in this netlist format. 
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-- interface portion 

entity <entity-name> is 
<port-declarations> 
<external-timing-assertions> 

end <entity-name>; 

-- architectural body (structural description style) 

architecture Structure_View of <entity-name> is 
<component-declarations> 
<component-attributes> 
<internal-signal-declarations> 
<internal-timing-assertions> 

begin 
<component-instantion-statements> 

end Structure_ View; 

Figure 22: VHDL Generic Corr.ponent Netlist Format 
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Figure 23: Example Circuit Schematic 
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-- interface portion 

entity Examplel is 
port (A,B: in: BIT_VECTOR(O to 15); 

Select,Enable: in BIT; 
Clock: in CLOCK; 
Regout: out BIT_VECTOR(O to 15)); 

-- external timing assertions 

--T NA to N Regout: 20 ns average 
--T t Clock to N Regout: 5,10 ns 

end Examplel; 

-- architectural body (structural description style) 

architecture Stru<:ture_View of Examplel is 

-- component declarations 

Component MUX2_16b 
port (IO,Il: in: BIT_VECTOR(O to 15); 

SO: in BIT; 
00: out BIT_VECTOR(O to 15)); 

Component AUrl6b 
port (A,B: in: BIT_VECTOR(O to 15); 

CI: in BIT; 
S: in BIT_VECTOR(O to 1); 
SUM: out BIT_VECTOR(O to 15); 
CO: out BIT); 

Component RGdnntel6b 
port (I: in: BIT_VECTOR(O to 15); 

S: in BIT; 
C: in CLOCK; 
0: out BIT_VECTOR(O to 15)); 

Figure 24: Example VHDL Structural Description 
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Component sb16J 
port (I: in: BIT_VECTOR(O to 15); 

0: out BIT); 

Component GND 
port ( 0: out BIT); 

- component attributes 

type FUNC_TYPE is (ADD,SUB,INC,DEC); 
type CARRY is (RIPPLE,LOOKAHEAD); 
attribute FUNCTION: FUNC_TYPE; 
attribute ADDEILTYPE: CARRY; 
attribute ENBL: BOOLEAN; 

attribute FUNCTION of AUrl6b: oomponent is ADD; 
attribute ADDEILTYPE of AUr16b: component is RIPPLE; 
attribute ENBL of C4: label is TRUE; 

- internal signal declarations 

signal a,b,c: BIT_VECTOR(O to 15); 
signal d,Gnd: BIT; 

- in tern al timing assertions 

--T Na to Nb: 20,25,35 ns 
-T +A to Nb: 40 ns max 

- component instantiations 

begin 
CO: GND port map (Gnd); 
Cl: MUX2J6b port map (A,B,d,a); 
C2: AUrl6b port map (a=> A,Regout => B,Gnd => CI,Gnd => S(O), 

Gnd => S(l),b => SUM); 
C3: MUX2J6b port map (b,B.,Select,c); 
C4: RGdnntel6b port map (c,Enable,Clock,Regout); 
C5: sb16J port map (Regout,d); 

d < = Regout(15); 
end Structure_ View; 

Figure 25: Exalq>le VHDL Structural Description (cont'd) 
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2. Netlist Fornnt 

2.1. Entity Declaration 

The entity declaration portion of the VHDL structural description specifies the 

design name and defines the design's interface to the outside world. Port declarations 

are used to define input and output connections. VHDL assertion statements are used 

to specify timing constraints from input to output ports of the design. See the section 

on timing assertions below for the format of these statements. 

2.2. C.Omponent Declarations 

For each unique compone~t in the netlist, a component declaration must exist. 

This declaration defines a template containing input and output pin specifications via 

port declarations. The type and bit width of the signals (nets) to be attached to the 

component ports is specified in these declaration statements. 

In order to generate a generic netlist using a set of generic components, a table of 

available components and their component declarations must exist. This table should 

identify the function of each input and output pin and the pin naming conventions for 

each component. It should also specify the operand port mappings for multiple 

operation units. If this component declaration table is available to interface programs 

which accept the netlist as input, it would not be necessary to include component 

declarations in the netlist. 
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2.3. C-Omponent Attributes 

In order to specify parameters particular to a component such as ALU functions, 

control input codes, etc., the VHDL attribute declaration and specification features can 

be used. Enumeration types can be used to specify the allowable values of an attribute. 

Attributes may be associated with the template component declaration, or with specific 

labelled instances of a component. For example, the statements 

type FUNC_TYPE is (ADD,SUB,INC,DEC); 
attribute FUNCTION: FUNC_TYPE; 
attribute FUNCTION of AUr16b: component is ADD; 

will associate the FUNCTION attribute ADD with every instance of an AUr16b 

component, while the attribute specification 

attribute ENBL of C4: label is TRUE; 

will associate the ENBL attribute with RGdnntel6b instance C4 only. 

2.4. Internal Signal Declarations 

Internal connection of components is accomplished by defining each internal net of 

the generic component netlist using signal declaration statements. These signal (net) 

names are used in the port map specification of component instantiations described 

below in order to identify uniquely the net connections between component ports. 
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2.5. 'llni.ng Assertions 

It is often ·necessary and useful when specifying timing constraints of a circuit to 

have the capability of specifying relationships between signals. For example, a common 

requirement is that the data input to a clocked register be stable a duration of time 

prior to the clock transition that strobes the data into the register (sometimes known as 

set up time) [Arms87]. The following signal transitions should be representable: 

1. t Stransition from 0 to 1 of signal S (rising) 
2. ' Stransition from 1 to 0 of signal S (falling) 
3. u Sany transition of signal S (change) 

The timing relationship is expressed as follows: 

< transitionl> to < transition2> : <duration> 

where < transitionl> and < transition2> are of the form specified above. The 

<duration> specification is used to specify the minimum, maximum and/or average 

time interval(s) between two events. A single time period specification must be followed 

by a qualifier (max, min, or average). For example: 

--T ' A to U b: 40 ns max 

A list of two time intervals specifies a minimum/maximum timing specification, such as: 

--T t Clock to u Regout: 5,10 ns 

A triplet of time intervals denotes minimum, average, and maximum, as in: 
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--T U a to U b: 20,25,35 ns 

VHDL uses the assertion mechanism to represent this information with the 

following syn tax: 

assert <boolean-expression> 
report <error-message>; 

When the assertion is executed during simulation, the boolean expression is evaluated. 

If it evaluates to FALSE (indicating that the timing specification is not satisfied), the 

error message (a text string) is printed. The VHDL STABLE and DELAYED signal 

attributes would be used to express the signal transitions as follows: 

1. S and not S 'STABLE 
2. not Sand not S'STABLE 
3. not S'STABLE 

The timing relationship tSl to IS2: 20 ns would be expressed as follows: 

(Sl and not Sl'STABLE) and 
(not S2'DELAYED(20 ns) and not S2'DELAYED(20 ns)'STABLE)) 

The VHDL assertion statement is considered a sequential statement; consequently, 

it would not appear in a valid VHDL structural description. However, the language can 

be extended so that assertion statements may appear in the entity and block 

declaration parts. The entity assertions could specify input to output port timing, while 

the block assertions denote internal signal timing relationships. 
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A better method of expressing this information which conforms to the VHDL 

language definition would be to use comments. For example, the statements 

--T u A to U Regout: 20 ns average 
--T t Clock to u Regou t: 5 ,10 ns 

would be parsed as comments by the VHDL Analyzer, but the netlist parser could 

recognize the --T timing assertion delimiter and record the specified timing information. 

2.6. Component Instantiations 

A component is instantiated through the use of a VHDL component instantiation 

statement within the block of the architectural body. This statement has the form: 

<label>: <component-name> <port-map>; 

The <label> is a unique id for the component. A component declaration statement for 

<component-name> 1must exist, defining the ports (mode, bit width) to be found in the 

<port-map> list. The <port-map> is a list of previously defined port or internal 

signal names which defines the interconnection of components. This list may be of 

named or positional format. Named format is an unordered list of association of signals 

to ports. For example, if net Nl is attached to port Pl (as defined in the port list of 

the component declaration), Nl => Pl would appear in the <port-map> list. 

Positional format assigns elements of the <port-map> to ports with the corresponding 

position in the port list of the component declaration. 
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Concurrent assignment statements may be used to specify necessary behavior 

characteristics of a component. Examples of this type of specification include the 

concatenation of input signals to form output signals for the switchbox component of 

Figure 24, or the specification of the functionality of a random logic component using 

boolean equations. 
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