
UC Irvine
ICS Technical Reports

Title
VHDL design representation in the VHDL synthesis system (VSS)

Permalink
https://escholarship.org/uc/item/5ps6501g

Authors
Lis, Joseph S.
Gajski, Daniel D.

Publication Date
1989-06-11

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5ps6501g
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

VHDL Design Representation

in the

VHDL Synthesis System (VSS)

by

Joseph S. ~is=_
Daniel D. Gajski

Technical Report 89-15

Information and Computer Science
University of California at Irvine

Irvine, CA 92717
(714) 856 7063

)J 0 I

Abstract: This report describes the use of the VHSIC Hardware Description
Language (VHDL) for synthesis in the VHDL Synthesis System
(VSS). The corresponding internal representation of VHDL used in
VSS will be described. We will illustrate the use of this represen­
tation to capture characteristics of four different design models
(combinational, functional, register transfer, behavioral). Algo­
rithms for compiling the VHDL description into the design
representation will be discussed.

TABLE OF CONTENTS

1. Introduction .. . 1
1.1. Motivation 3

2. VHDL Design Models 5
2.1. Design Hierarchy ... 5

2 .2. Design Model ... ·~·. 8
2.3. Design Model Representation ... 9
2.3.1. Behavior ... 10

2.3.2. Datafl.ow ... 11
2.3.3. Structure 11
2.4. Mixture of VHDL Design Styles ... 12

3. VHDL Design Representation in VSS ... 15
3.1. Structural Description Style ... 15

3.2. Datafl.ow Description Style ... 16

3.2.1. Concurrent Statements .. .'....... 16

3.2.1.1. Block Statement .. 16

3.2.1.2. Signal Assignment ... 19
3.2.1.2.1. Conditional Signal Assignment .. 19

3.2.1.2.2. Selected Signal Assignment ... 24

3.3. Behavioral Description Style .. 26
3.3.1. Process Statement .. 26

3.3.2. Sequential Statements .. 29

3.3.2.1. Signal Assignment ... 29

3.3.2.2. Variable Assignment ... 30
3.3.2.3. If Statement ... ~30

3.3.2.4. Case Statement ... 31

3.3.2.5. For Loop .. 32
3.3.2.6. While Loop .. 33

3.3.2.7. Procedure Call ... 34
3.3.2.8. Wait Statement ... 36

3.4. Graph Construction Algorithm .. 38

3.4.1. Block Statement Compilation .. 38

3.4.2. Process Statement Compilation ... 41
3.5. Annotations ... 47

June 11, 1989 Page i

4. Conclusion 48
5. References 49

Appendix A. VHDL Statement Syntax .. 50

Appendix B. VHDL Structural Netlist Specification ... 53

1. Introduction ... 53

2. N etlist Format 57
2.1. Entity Declaration .. 57

2.2. Component Declarations .. 57
2.3. Component Attributes .. 58

2.4. Internal Signal Declarations ... 58
2 .5. Timing Assertions 59
2.6. Component Instantiations .. 61

June 11, 1989 Page ii

LIST OF FIGURES

Figure 1: VHD L Design Hierarchy 6

Figure 2: VHDL Design Entity Block Structure .. 7
Figure 3: VHD L Design Model 8
Figure 4: Controlled Counter Block Diagram .. 12
Figure 5: VHDL Description of Controlled Counter .. 14
Figure 6: Block Statement Flowgraph Representation .. 18
Figure 7: A Simple Conditional Signal Assignment ... 20
Figure 8: Guarded Signal Assignment .. 23
Figure 9: Conditional Signal Assignment ... 23
Figure 10: Selected Signal Assignment ... 25
Figure 11: Process Statement Flowgraph Representation 28
Figure 12: If Statement ... 31
Figure 13: Case Statement .. 32
Figure 14: For Loop Statement .. 33
Figure 15: While Loop Statement ... 34
Figure 16: Procedure Call Statement ... 35
Figure 17: Wait Statement ... 37
Figure 18: Block Statement Compilation ... 39
Figure 19: Block Compilation Algorithm.. 40
Figure 20: Process Compilation Algorithm ... 45
Figure 21: Compilation of Variable Assignments in a Process 46
Figure 22: VHDL Generic Component Netlist Format .. 54
Figure 23: Example Circuit Schematic ... 54
Figure 24: Example VHDL Structural Description .. 55
Figure 25: Example VHDL Structural Description (cont'd) 56

June 11, 1989 Page iii

1. Introduction

Behavioral synthesis involves the translation of a behavioral description into a

structural description. A behavioral description models the design as a "black box",

describing its outputs as a function of its inputs and time. A hardware description

language (HDL) provides a method of specification for the designer so that a synthesis

tool can be supplied with sufficient information about the intended functionality of a

design. Usually, the HDL consists of high-level, programming language statements

which allow for the specification of the design's fl.ow of control as well as assignment

statements which specify operations and data transfers to be performed. In addition, a

true hardware description language should be able to describe the structure of a design

implementation in terms of a set of interconnected components from a given library.

Simulation languages classified as HDLs are used to model hardware. One such

language is the VHSIC Hardware Description Language (VHDL) [VHDL87], an IEEE

and DoD standard. The goals of simulation are to predict accurately the voltage values

on all nets of a design at any given time and to verify timing relationships between

changes on these nets. The description used for simulation does not have to be

minimal, elegant or implementable as long as it produces correct behavior.

Since designs can be described in several ways and at several different levels of

abstraction using languages such as VHDL, a synthesis tool must know the intent or

semantics of the description in order to produce hardware which performs the desired

function. A consistent modeling practice is required if the same description is to be

June 11, 1989 Page 1

used for synthesis and simulation. A structured rmdeling methodology has been

proposed [LisGa89b] which recommends practices for writing synthesizable descriptions

using VHDL. Adherence to these standards will result in a high quality design.

A design representation or data base is the internal representation used by a

synthesis tool. It organizes information extracted from the input specification necessary

for synthesis. This representation is created, manipulated, and optimized by the system

so that a netlist or other output specification can be produced.

One common design representation used in several synthesis systems is the

control/data flow graph [OrGa86]. The control flow graph represents sequencing

information. Each "state" in the behavioral description is represented as a sequence of

actions to be performed, and based on the evaluation of a condition, the next state to

which execution is to be advanced is indicated. Control dependencies implied in the

semantics of the behavioral description (for example, loop and if-then-else constructs)

are preserved in the control flow graph.

The sequence of actions to be performed (arithmetic, logical, shifting operators) is

represented using data flow graphs. A data flow graph indicates data dependencies

that exist between variable accesses· in assignment statements. The data flow graph

exposes the parallelism in the input description. A control flow node representing a

state will have a data flow graph associated with it.

June 11, 1989 Page 2

1.1. Motivation

In synthesis, we are interested in generating a structural description of components

from a given library from a behavioral description. Here, we are interested in properly

connecting all pins on all components instead of observing signal values on some of the

pins. The behavioral description must be parsed into a design representation which can

be operated on by a variety of synthesis tools. This design representation should be well

defined and should capture uniquely the functionality and intention of several

equivalent behavioral descriptions in a format appropriate for synthesis. The

representation must allow for the transformation of behavioral information (simulatable

functionality) to structural information (library components and their attributes).

In this report, we will describe a control/ data fl.ow graph representation used in

the VHDL Synthesis System (VSS) [LisGa88] [LisGa89a]. We will identify how the

VHDL language can be used for synthesis in VSS. Through the use of signal typing and

attribute annotations, we will show how a VHDL description for simulation can be

enhanced to provide necessary information for synthesis. The structural, datafiow and

behavioral description styles of VHDL will be investigated.

We will show the corresponding internal representation (control and/ or data

:flowgraph) produced as the VSS input compiler parses each VHDL statement. The

various interpretations of VHDL statements used to represent characteristics of each of

the design models mentioned in our structured modeling methodology (combinational,

functional, register transfer, behavioral) will be illustrated. Algorithms for compiling

June 11, 1989 Page 3

the VHDL input description into this representation will be discussed.

June 11, 1989 Page 4

2. VJIDL Design Models

2.1. Design Hierarchy

The design entity is the primary hardware abstraction in VHDL. It represents a

portion of the hardware design that has well-defined inputs and outputs and performs a

well-defined function. A design entity may represent an entire system, a sub-system, a

board, a chip, a macro-cell, a logic gate, or any level of abstraction in between. A

configuration can be used to describe how design entities are put together to form a

complete design as shown in Figure 1.

A design entity may be described in terms of a hierarchy of blocks, each of which

represents a portion of the whole design. The top-level block in such a hierarchy is the

design entity itself; such a block is an external block that resides in a library and may

be used as a component of other designs. Nested blocks in the hierarchy are internal

blocks, defined by process or block statements. A structural, dataflow or behavioral

description style can be used to express the functionality of an internal block.

Successive decomposition of a design entity into components, and binding of those

components to other design entities that may be decomposed in like manner, results in

a hierarchy of design entities representing a complete design. Such a collection of

design entities is called a design hierarchy. The bindings necessary to identify a design

hierarchy can be specified in a configuration of the top-level entity in the hierarchy.

The design hierarchy concept is illustrated in Figure 1.

June 11, 1989 Page 5

CONFIGURATION

DESIGNE

DESIGNE

DESIGNE

DESIGN ENTITY

Data:flow Block: Process Block:
Component behavior

described using
concurrent statements

Sequential Behavior

BUS

Structure Block
Instantiated components

and connections

Figure 1: VHDL Design Hierarchy

~

A VHDL description which represents such a design hierarchy is shown in Figure

2. Each design entity description is composed of two major sections: the entity block

and the architecture body. The entity block contains the specification of external

June 11, 1989 Page 6

input/output port connections to the hardware to be designed. The architecture body

defines the body (structure and/or behavior) of a design entity. It specifies the

June 11, 1989

DESIGN ENTITY
(external block)

/
Entity Block Architecture Body

inta-nal
blocks

[Structure
[Dataflow (concurrent)

[Process (sequential)

Figure 2: VHDL Design Entity Block Structure

Page 7

relationships between inputs and outputs of the design entity, and may be expressed

using a mixture of the three styles mentioned previously (structural, datafl.ow,

behavioral).

2.2. Design, Model

Figure 3 illustrates the underlying design model assumed for a VHDL description

[Preas88]. A design is composed of communicating processing elements (PEs). Each

PE consists of a Control Unit (CU) and Datapath (DP). Because a process statement

may require one or several machine cycles (states) to execute the desired function, the

microarchitecture implementation uses the DP to perform computations and the CU to

OONTROLUNI

i....+--+tLU.NTRO

WGIC

June 11, 1989

c
d

CONTROL UNI DATA PATH

a
b

Figure 3: VHDL Design Model

Page8

sequence the machine through the necessary states and control the operations

performed in the DP for each state. The CU contains a state register for storing the

current state of the machine and control logic which controls the DP and communicates

with other PEs. The DP consists of storage elements (registers, counters, memories)

and functional units (AL Us, shifters, multiplexers) connected through sets of buses.

Access to registers, units or 1/0 ports is controlled by the CU. If several buses are

used as sources to a storage or functional unit, a selector controlled by the CU must be

added to the input. Some DP models use only point-to-point connection with selectors

only and no buses. Processes also communicate via global signals. PEs communicate

through DP ports to the CU or DP (nets a and bin Figure 3) or through CU ports to

the CU or DP (nets c and d).

Note that in this model, an adder may be represented as a PE with no CU but

with a DP (having one output port, two input ports, and no storage elements).

Similarly, a :flip-flop can be modeled as a DP with no functional units or as a CU with

no DP and no control logic. Thus, this model is complete in the sense that it can model

any synchronous digital system.

2.3. Design Model Representation

The three description styles (behavioral, datafiow, structural) use concurrent

statements to describe a portion of the complete design model shown above. Each

concurrent statement in a VHDL description may be used to describe a piece (one or

June 11, 1989 Page 9

more components) of a design. Alternatively, more than one statement can be used to

describe the functionality of the same design section if the behaviors are non­

overlapping (exclusive).

The design sections represented by the concurrent statements communicate via

global signals. These signals are defined in the declaration section of the architecture

body. A global signal may be read (input) to several blocks or processes, but should be

written to (updated by) only one block or process at any given time. In the event that

it is desirable to have more than one active driver for a signal simultaneously (to model

a bus, for example), a. resolution function must be written and associated with the

signal to determine its proper value for simulation.

2.3.1. Behavior

A VHDL description using the behavioral style consists of process statements and

concurrent procedure calls. Usually, process statements represent programs to be

implemented in a microarchitecture which uses the complete control unit/data path

design model. Variables within a process may represent storage components or

interconnect wires. Local signals are used to communicate between the CU and DP.

Interprocess communication follows these conventions:

(1) The following subtypes are defined for descriptions to be used for synthesis:

subtype data is BIT;

June 11, 1989 Page 10

subtype control is BIT;

Signals of type data are used to interface with the data path. Signals of type
control interface with the CU.

(2) By default the following signal types/ accesses are allowed:

Input
signal/port reads within the data path description
conditional bit signals input to the descriptions of control logic

Output
constant signals output from control logic (boolean, binary, integer)
computed signals output from DP

Timing is expressed as a part of the output signal assignments. Data computations

within the process are made with variable assignment statements.

2.3.2. Dataflow

Datafiow descriptions consist of concurrent signal assignment statements. They

describe only the data path portion of the VHDL design model. The data path is a

structure of components, where each component is described by one or more

statements.

2.3.3. Structure

The VHDL structural design style utilizes component instantiation and generate

statements. Here, the data path portion of the design model is described through the

instantiation and interconnection of component primitives or previously defined design

en ti ties.

June 11, 1989 Page 11

2.4. :Mixture of VHDL Design Styles

This section illustrates a mixture of the VHDL structural, data:fiow and behavioral

description styles in a single description. Figure 4 shows a block diagram for a

controlled counter functional description adapted from [Arms89).

The operation of the controlled counter can be described as follows. On the rising

edge of the STRB signal, an internal control register CONREG is loaded with the value

on CON. The CONREG value is decoded to perform one of four functions: clear the

counter, load a limit register, count up to a limit, or count down to a limit. The counter

runs synchronously under an input clock, and the counting functions are enabled by the

.-------------,
: LOAD_LIMIT : r · iiMIT:CifK 1
I I I I
I I I

DATA I LIM --.-----"!--1... : I I __, _ _.I

STRB

CON

I I

L---- -- ----.1
.----- ------------------ --, 1
I
I
I
I
I
I

CONREG_OUT

3

2

I
I
I
I
I

...-~ CONREG,..,... DEC 1
I
I
I

: DECODE

--------0 I CNT_CLR

L--------------------------~

EN

.----------- -, I I
I I

CNT

I
I
I

..... -~t---CNT_OUT
I
I
I

I I
I I
I CNT_UP _ORJ)OWN I
L------------~

Figure 4: Controlled Counter Block Diagram

June 11, 1989 Page 12

internal signal EN. The DATA value is loaded into the limit register LIM on the falling

edge of STRB if the control register contains the value 'OO'.

The VHDL description is shown in Figure 5. This description consists of four

block statements, each of which describes a portion of the design: the decoding of the

CONREG value, the loading of the limit register (LIM), the asynchronous clear the

synchronous up/down count of the counter (CTR), and a limit test.

The DECODE block statement describes the functionality of more than one

functional block (the CONREG register and the decoder). A structural description

style is used which specifies component declarations, interconnect signal declarations,

component instantiations, and component interconnection (via the port map clause of

the component instantiation statement).

A datafl.ow description style is used for the LOADJJMIT and

CNT_UP _OR_DOWN blocks. The block guard is used to enable an update of the LIM

and CNT register values. Nate that these descriptions carry no information about the

structure of the components to be used in the implementation, only the behavior.

The LIMIT_CHK block is described behaviorally with a process statement. This

particular description involves only the data path portion of the design model.

June 11, 1989 Page 13

entity CONTROLLED_CTR is
port (

CLK,STRB: in BIT;
CON: in BIT_VECTOR(l downto O);
DATA: in BIT_VECTOR(3 downto O);
CNT_OUT: out BIT_VECTOR(3 downto O));

end CONTROLLED_CTR;

architecture MIXED of
CONTROLLED_CTR is

subtype nibble is BIT_VECTOR(3 downto O);
signal CONSIG: nibble:= B"OOOO";
signal LIM: nibble regista- := B "0000 ";
signal ENIT: BIT := '0';
signal EN: BIT:= '0';
signal CNT: nibble register:= B"OOOO";
signal CNT_CLR: BIT;

begin

DECODE: block (STRB = 'l')

component reg
port (D: in BIT_VECTOR(l downto O);

CLK: in BIT;
Q: out BIT_VECTOR(l downto O));

end component;
component decoder

port (D: in BIT_VECTOR(l downto O);
Q: out BIT_VECTOR(3 downto O));

end component;
component or2

port (A,B: in BIT;
0: out BIT);

end component;
signal CONREG_OUT: BIT_VECTOR(l downto O);

begin

CONREG: register
port map (CON,CLK, CONREG_OUT);

DEC: decoder
port map (CONREG_OUT,CONSIG);

OR..1: or2
port map (CONSIG(2),CONSIG(3),ENIT);

CNT_CLR < = CONSIG(O);

end block DECODE;

LOAD_LIMIT: block (CONSIG(l)='l' and STRB='O'
and not STRB'STABLE)

begin

LIM < = guarded DAT A after 10 ns;

end block LOAD_LIMIT;

CNT_UP _OR...DOWN: block ((CLK = '1' and
not CLK'STABLE) or (CNT_CLR = 'l'))

begin

CNT <=guarded
B"OOOO" after 5 ns when CNT_CLR = 'l' else
CNT when EN = 'O' else
CNT + B"OOOl" after 12 ns

when CONSIG(2) = '1' else
CNT - B "0001" after 12 ns

when CONSIG(3) = '1' else
CNT;

end block CNT_UP_OR.J)OWN;

LIMIT_CHK: process (ENIT,CNT)
begin

if ((CNT /=LIM) and (ENIT = 'l')) then
EN<= '1' after 12 ns;

else
EN<= 'O' after 5 ns;

end if;

end process LIMIT_CHK;

CNT_OUT <= CNT;

end MIXED;

Figure 5: VHDL Description of Chntrolled Chunter

June 11, 1989 Page 14

3. VHDL Design Representation in VSS

This section of the report describes how each VHDL statement is processed by the

VHDL Synthesis System (VSS) in order to generate and maintain an internal

representation appropriate for synthesis. The control/data flow graph (CDFG) which is

used as this internal representation is constructed as each statement is parsed. The

portions of data and control flow graphs corresponding to the statements in a block or

process are appropriately interconnected according to the design style used in the

VHDL description.

3.1. Structural Description Style

A designer can specify an initial design, fully or partially, using a structural

description mixed with behavior. When sections of the design are described using

structural VHDL (for example, previously synthesized modules), these portions are

copied intact to the output produced by the VSS system. The partial structural

description is enhanced with additional components necessary to implement the sections

of the design described using the data flow and behavioral styles.

When synthesis is completed, the VSS system produces a VHDL structural

description of the design, using component declarations and instantiations derived from

an Intelligent Component Data Base (ICDB) [Chen89]. VHDL behavioral models for

these components are available from the data base. The use of VHDL as a netlist

format in the VSS system is described in Appendix B.

June 11, 1989 Page 15

3.2. Dataflow Description Style

The dataflow description style emphasizes the flow of information between storage

and gating elements.

3.2.1. Concurrent State:rrents

Concurrent statements are used to define interconnected blocks (components,

possibly of different complexity) that jointly describe the overall behavior or structure of

a design. Concurrent statements execute asynchronously with respect to each other.

The following concurrent statements are found in VHDL:

concurrent_statement ::=
block_statement

I process_statement
I concurrent_procedure_call
I concurrent_assertion_statement
I concurren t_signaLassignmen t_statemen t
I componen t_instan tiation_statemen t
I generate_statement

3.2.1.1. Block State:rrent

The primary VHDL construct used for the dataflow description style is the block

statement. A block statement defines an internal block representing a portion of a

design. It has the following syn tax:

June 11, 1989 Page 16

block_statement ::=
block [(guard_expression)]

block_header
block_declarative_part

begin
block_sta temen t_part

end block;

block_header : :=
[generic_clause
[generic_map_aspect;]]
[port_clause
[port_map_aspect;]]

block_declarative_part ::=
{ block_declarative_item}

block_statement_part ::=
{ concurrent_statement }

The optional guard_expression defines an implicit signal GU ARD of time

BOOLEAN for simulation. If the guard_expression evaluates to TRUE, all signal

assignments with a guarded qualifier appearing in the block_statement_part will have

their RHS evaluated, and a driver is placed on the event queue to update the signal

values at the appropriate time. For synthesis, the guard_expression is used to specify a

synchronous or asynchronous event which results in a signal update.

The block_header explicitly identifies certain values or signals that are to be

imported from the enclosing environment into the block and associated with formal

generics or ports.

The block_declarative_part defines all local signals, types and subtypes, constants,

components and attributes.

June 11, 1989 Page 17

One or more concurrent statements constitute the block_statement_part. Blocks

may be hierarchically nested to support design decomposition [VHDL87). The block

statement groups together other concurrent statements such as signal assignments

which assign values to signals. Nested blocks are flattened for synthesis to facilitate

resynthesis with optimization.

The fl.ow graph representation for a block statement in shown in Figure 6. It

consists of BLK_BEG and BLK_END demarcation nodes, and a STMT_BLK node

which represents the body of the block statement. The data :flow graphs generated for

BLK_BEG

STMTJ3LK

BLK_END

Figure 6: Block StatenEnt Flowgraph Representation

June 11, 1989 Page 18

each concurrent statement appearing in the block are associated with the STMT_BLK.

3.2.1.2. Signal Assignment

A signal assignment statement is used to assign or update values for a signal

driver. The basic format of an assignment statement is the following:

target < = [guarded] < RHS-expression>

Each assignment made to a target or left hand side (LHS) signal/variable is represented

by a WRITE node in the fl.ow graph. Similarly, each access of a signal or variable

appearing as a part of the right hand side (RHS) expression of an assignment statement

is represented by a READ node.

READ and WRITE nodes for signals of can be of type PORT, REGISTER or

WIRE (WIRE is the default for any variable declared as a SIGN AL). If a signal is of

mode internal (that is, it was declared locally within some block statement) and a

WRITE and READ node for that signal are connected when DFG sections are merged,

the nodes can be coalesced, producing a signal net of type WIRE.

3.2.1.2.1. Conditional Signal Assignment

The conditional signal assignment statement has the following syntax:

signal<= [guarded] { <waveform> when <condition> else}
<waveform> ;

<waveform> ::= <expression> [after <delay>]

June 11, 1989 Page 19

The conditional signal assignment will occur in one of the following forms:

a) signal < = <waveform> ;

This is the simplest form of assignment statement. The VHDL simulator interprets this
· statement as a directive to compute the value of <expression> and schedule the

activation of this driver for the signal value at time <current-simulation-time> +
<delay> (if no delay is specified, the driver is activated immediately).

From the CDFG perspective, a data:flow graph is constructed for the RHS
expression, and the result is input to a WRITE node for the signal. Associated with
each graph arc (connection) is a signal type (bus, register, port, wire), ItDde
(in/out/inout (for ports only), internal), number of bits, and representation (integer,
:floating point, 1 's complement, 2's complement, sign/magnitude). The optional delay
specification indicates the time which elapses between the READ of all signals/variables
which appear on the RHS of the assignment statement and the appearance (WRITE) of
the updated expression value at the register/port/wire represented by the signal.
Figure 7 shows a typical signal assignment statement and the corresponding :flowgraph
with delays. 1

entity EXAMPLE is
port (A,B: in BIT_VECTOR(O to 3);

architecture EX of EXAMPLE
is

signal C: BIT_VECTOR(O to 3);

A < = B + C after 3 ns;

end EX;

Figure 7: A Silll>le Conditional Signal Assigmrent

June 11, 1989

si.gn.al_type: port
mode: in

nlllll...oLbits: 4
rep: magnitude

signaLtype: wire
mode: internal
ntmLoLbits: 4
rep: magnitude

Page 20

b) signal < = guarded <waveform> ;

The guarded assignment involves the conditional assignment of the evaluated
<waveform> to the signal based on the value of the guard expression which appears at
the beginning of the enclosing VHDL block statement. When the guard expression
evaluates to TRUE, the VHDL simulator activates the signal driver and places its value
on the simulator event queue so that the signal is updated at the specified simulation
time.

For the purposes of CDFG generation and synthesis, a guarded signal assignment
is used for signals declared with the bus or register qualifier. A data :flow graph is
generated for the RHS expression and is connected to the true input of a CHOOSE­
V AL UE node. The CHOOSE-VALUE node represents the selection of a data element
based on the value of a guard (select) input. The guard input is a data flow graph
representing the block guard expression. The output of the CHOOSE-VALUE node is
used as the input to a WRITE node for the signal. Figure 8 shows an example of this
construct.

If the signal is declared as a bus, the CHOOSE-VALUE will be mapped to a tri­
state driver for the bus signal. If the signal is a register under a guard expression of type
CLOCK, the CHOOSE-VALUE will be removed, and the select line will be connected
to the clock input of the WRITE_REG node. The function of each signal appearing in
the guard expression is determined by its signal type. In the case of multiple signals in
the guard expression (clock and set, for example), an optimization step will connect
each signal to the appropriate control input.

c) signal < = [guarded]
waveforml when conditionl else
waveform2 when condition2 else

waveformN when conditionN else
waveformN;

This statement corresponds to a nested if arrangement of assignments to the same
signal based on different boolean conditions. The VHDL simulator will evaluate
waveform/ condition pairs in the order in which they appear and will schedule the
assignment of the first waveform value to the signal when its associated condition
evaluates to true.

June 11, 1989 Page 21

June 11, 1989

entity CONTROLLED_CTR is
port (CLK: in CLOCK;

DATA: in BIT_VECTOR(3 downto O);

architecture CONCURRENT of
CONTROLLED_CTR is

signal CNT: BIT_VECTOR(3 downto 0) register;

CNT_UP: block (CLK = '1' and not CLK'STABLE)
begin

CNT <=guarded CNT + "0001" after 10 ns;

end CONCURRENT;

ATTRIB
STABLE

READ
CLK

CONST
1

READ
CNT

Figure 8: Guarded Signal Assigmmnt

Page 22

block (CLEAR= 'O' or PRESET= '1' or CLK = '1')
begin

reg_A < = guarded
'O' after 20 ns when CLEAR = 'O' else
'1' after 20 ns when PRESET = '1' else
DATA after 35 ns when CLK = '1' else
reg_A.;

end block;

READ
DATA

Figure 9: C.Onclitional Signal Assignment

June 11, 1989

READ
reg_A

Page 23

The conditional assignment statement can be useful in representing an assignment
to a signal based on prioritized conditions. For example, the statement in Figure 9
might be used to represent a register for which the CLEAR is of highest priority,
followed by PRESET and CLOCKed assignment. Figure 9 shows the :flowgraph
generated for the statement.

A chain of CHOOSE-VALUES is constructed to form the data :flow graph for the
nested if construct. The bottom most CHOOSE-VALUE is guarded by the first
condition encountered, the CHOOSE-VALUE above the bottom one is guarded by the
next condition, etc. The output of the bottom most CHOOSE-VALUE is connected to
the WRITE node input.

3.2.1.2.2. Selected Signal Assigmmnt

The format of the selected signal assignment is shown in Figure 10. This is
equivalent to the case statement available as a sequential statement within the process
construct. The choices are exclusive conditions (either integer or boolean values) such
that only the waveform matching the value of the <expression> is evaluated and
scheduled for assignment by the VHDL simulator. Figure 10 shows the :flowgraph
generated for the general form of this statement.

The data :flow graph construct associated with this statement is the multiple input
CHOOSE-VALUE guarded by the <expression>. Each waveform will have a
corresponding data :flow graph generated for its expression value, and the guard test for
each input will be stored in the input net.

June 11, 1989 Page 24

with <expression> select
signal < = { guarded }

waveforml when choicel ,
waveform2 when choice2 ,

waveformN when choiceN;

< waveform.._2>
< wavefonn.-1> < waveform....n>

<expression> ,.----------- ... I I
I READ I
I .,.:""'.,.l I
I ~KU I
I I

'-•••••T•••••"'
I
I
I

¢
I

r•••••••••••"'
<guard expression> I

I

I •-• -----.&.--·
I ", 1 E;;" 0-----------.. , ,; ' , .. , ' ,

WRITE
signal

Dashed lines represent flowgraph created for guarded selected signal assignment.

Figure 10: Selected Signal Assigmrent

June 11, 1989 Page 25

3.3. Behavioral Description Style

A behavioral description is a sequentially executed, procedural style of code typical

of common programming languages. A behavioral specification specifies, with any

desired degree of precision, what a device does (its function) without specifying how it

doe it (its structure) [CLSI87].

3.3.1. Process Statement

The primary VHDL construct used for the behavioral description style is the

process statement. A process statement defines an independent sequential process

representing the behavior of some portion of the design. It has the following syntax:

process_.statement ::=
process [(sensitivity _list)]

process_declarative_part
begin

process_.sta temen t_part
end process;

process_declarative_part : :=
{ process_declarative_item}

process_.statement_part ::=
{ sequential_.statement}

The execution of a process statement consists of the repetitive execution of its sequence

of sequential statements. After the last statement in the sequence of statements of a

process statement is executed, execution will immediately continue with the first

statement in the sequence of statements [VHDL87].

June 11, 1989 Page 26

A sensitivity list may be specified for each process. By specifying a sensitivity list

of one or more signals, the process statement is assumed to contain an implicit wait

statement as the last in the sequence of statements. This wait statement will suspend

execution of the process statement until an event (change) occurs involving one of the

signals in the sensitivity list. The sensitivity list is ignored by the VSS synthesis tool.

The process_declarative_part defines all local signals, variables, types and

subtypes, constants and attributes.

One or more sequential statements comprise the process_statement_part. The

sequential statements which may appear in the description are listed in the next section.

The fl.ow graph representation for an example process statement is shown in Figure

11. Note that a STMT_BLK node is a control node which has an associated data fl.ow

graph. These data fl.ow graphs are constructed for sequential signal and variable

assignment statements.

June 11, 1989 Page 27

process
begin

while (stop = 'O')
PI := M(CR)(O to 15);
S := PI(3 to 15);
case PI(O to 2) is

when 0 => CR := M(S);
when 1 => Ace := Ace - M(S);

when 6 => if (Ace< 0) then
CR:= CR+ 1;

when 7 => stop<= '1';
end case;

end loop;
end process;

STMl'....BLK

\ \ \

\ ' \

\

\\ l~I

Figure 11: Process Statement Flowgraph Representation

June 11, 1989 Page 28

3.3.2. Sequential Statements

The sequence of statements within a process statement may contain one or more of

the following statement types:

sequentiaLstatement ::=
wait_statement

I signal_assignment_statement
I varia ble_assignmen t_sta temen t
I procedure_call_statement
I iLstatement
I case_statemen t
I loop_statement
I next_statemen t
I exit_statement
lreturn_statement
I null_statement

As mentioned above, data :flow graph sections for assignments of values to signals

and variables are created as in the case of concurrent signal assignments and associated

with STMT_BLK nodes. Control :flow graph sections are created for each of the

behavioral control constructs. These control flow graph sections are nested and

interconnected to model the flow of control implicit in the sequential, behavioral

description.

3.3.2.1. Signal Assignment

The syntax of the signal assignment statement for a sequential process is identical

to form (a) of the conditional signal assignment in a concurrent block. A data flow

graph similar to the representation generated for a concurrent signal assignment (see

Figure 7) is created.

June 11, 1989 Page 29

3.3.2.2. Variable Assignment

A variable assignment statement replaces the current value of a variable with a

new value specified by an expression. The statement has the following syntax:

target := <expression>

This statement cannot use the after clause to specify timing relationships as in the

signal assignment statement. A data flow graph is generated to represent the variable

assignment.

3.3.2.3. If Stateirent

One construct used to model conditional execution in the VHDL process statement

is the if statement. The if statement performs a conditional branch based on the value

of a boolean signal.

The control flow graph section created to represent the if statement consists of

three parts: (1) a TEST (or SELECT) node which selects the control branch to be

taken based on the test signal; (2) for each control branch, one or more control nodes

representing a sequence of statements to be performed in that branch; (3) a JOIN node

which signifies the end of each conditional branch and connects to the flowgraph

section for the next sequential statement. Figure 12 shows the control flow graph

sections created for the if construct.

June 11, 1989 Page 30

if boolean_expression
then

seq_of__staternents_l
else

seq_of_staternen t s-2
end if;

Figure 12: If StatenEnt

3.3.2.4. Case Statemmt

seq. of
statements!

STMT_BLK
(evaluate
t~t signal)

seq. of
statemmts2

The case statement selects between two or more conditional branches based on the

value of an integer select signal. Figure 13 shows the flowgraph representation for the

case statement.

June 11, 1989 Page 31

case integer _expression is
when choice_l =>

seq_of_st atemen ts_l

when choice_n =>
seq_of_statements_n

end case;

3.3.2.5. For Loop

seq. of
statements 1

Figure 13: Case Statermnt

STMl'_BLK
(evaluate

test signal)

A loop statement includes a sequence of statements that is to be executed

repeatedly, zero or more times.

The for loop construct uses an index variable whose value steps through a a

specified range for each iteration of the loop. The index variable is set to the first value

in the range prior to entering the loop. A test is made to determine if the index value is

within the range; if so, the loop body is entered. Once the loop body statements are

executed, the index variable assumes the next value in the specified range, and control

June 11, 1989 Page 32

seq. of
statements n

is returned to the loop entry test. If the test returns FALSE, control passes to the next

sequential statement. Figure 14 shows the for loop representation.

for ident in discrete_range loop
seq_outatements

end loop;

Figure 14: For Loop Statemmt

3.3.2.6. While Loop

seq. of
statements

STMTJlLK
(set loop
index)

next
statement

The while loop construct tests a boolean condition, and if it is TRUE, passes

control to the first control node of the flowgraph section implementing the sequence of

statements for the loop body. Once the loop body stateme~ts are executed, control

returns to the condition test which is repeated. If the condition evaluates to FALSE,

control passes to the sequential statement following the while loop. Figure 15 shows the

June 11, 1989 Page 33

representation corresponding to a while loop.

while boolean_expression loop
seq_of_statements

end loop;

Figure 15: While Loop State:mmt

3.3.2. 7. Procedure Call

The procedure call has the following syntax:

procedureJlame (< parameterJist>);

seq. of
statements

STMTJ3LK
(evaluate

test signal)

next
statement

Procedure calls are used in a VHDL description to invoke a procedure body consisting

of sequential statements which are used one or more times in the description. Figure 16

shows the flow graph representation for a procedure call.

June 11, 1989 Page 34

procJiame (<parameter_list>);
CALL

proc_name

Figure 16: Procedure Call Statemmt

The procedure call may be processed in one of two ways:

(1) In-line expansion of each call may be performed, where the statements of the

procedure body are substituted for the procedure call statement. A template

flowgraph created for the procedure body is inserted, with actual parameters

replacing occurrences of formal parameters. When this description is synthesized,

each procedure call invocation can be mapped to available hardware in the data

path, or a microcode implementation in control can be implemented. Annotations

in the VHDL description will determine the implementation style.

(2) The procedure body is treated as a description of a block in the design. A

flowgraph is created for the procedure body. Hardware is synthesized for this

description, and each procedure call supplies the values of actual parameters as

inputs to the procedure body hardware.

June 11, 1989 Page 35

3.3.2.8. Wait Statermnt

The wait statement has the following syntax:

wait [< condition_clause>] [< timeout_clause>] ;

< condition_clause> ::= until< boolean_expression>

< timeout_clause> ::= for < time_expression>

A wait statement is used to suspend the execution of a process statement until a

specified condition is TRUE, or a timeout period elapses. Figure 17 shows the control

flow graph sections created for a wait statement with condition and timeout clauses.

This statement is implemented in control and is synchronized with the system clock;

time is measured in multiples of the clock period.

June 11, 1989 Page 36

wait until cond_expr for time;

C < = cond_expr;
TIMER:=O;

next
statement

Figure 17: Wait Statement

June 11, 1989

:rvrER := TI:rvrER + 1 •
C < = concLexpr;

Page 37

3.4. Graph C-Onstruction Algorithm

3.4.1. Block Statemmt C-OrrJ>ilation

For signal assignments appearing in a block statement, flowgraph sections

generated for each statement are interconnected once all statements have been

processed. This corresponds to the concurrent data flow style where all operations are

assumed to be executed in parallel. Variables appearing on the LHS of an assignment

statement are assigned the value of the variable prior to the execution of the block

statement. Figure 18 shows a VHDL code fragment consisting of several concurrent

assignment statements, the flow graphs created for each statement, and the final

interconnected :flow graph.

The sections of DFG representing each signal assignment will be appropriately

interconnected based on the signal type. It is the signal type that will define whether a

VHDL signal (container) represents a memory element, port or wire. The signal type

will also determine the interconnect protocol (wired-or, bus) which results when

multiple sources for the same VHDL signal are encountered.

Multiple WRITEs (sources) to a signal of type WIRE indicate that a WIRED-OR

node should be created with each WRITE node as an input. Any READ nodes for this

signal should be connected to the output of the WIRED-OR node. This DFG construct

will be mapped to a wired-or connection during design compilation.

June 11, 1989 Page 38

A

A

A<=B+C;
D <=A* E;
X<=D-A·

'
VHDL Concurrent Stateimnts

D

Individual Stateimnt Flow Graphs

D

Interconnected Flow Graphs

x

Figure 18: Block Stateimnt C.Ofil>ilation

x

Similarly, recognition of multiple WRITEs to a signal of type BUS should produce

a BUS node to which all WRITE nodes are connected. Since each WRITE node for a

signal of type bus was created when a guarded signal assignment was made, each input

is controlled by some guard. This flow graph pattern will be mapped to a bus

connection, where each CHOOSE-VALUE controlling a WRITE input becomes a tri-

state bus driver.

June 11, 1989 Page 39

Accesses to signals of ~ype register are merged into a single WRITE access node.

The inputs are muxed on the data input if they are synchronous, or are applied to

different inputs (e.g., load and clear) if they are asynchronous.

The compilation algorithm for concurrent statements is summarized in the

procedure interconnect_concur_stmts shown in Figure 19 below.

interconnect_concur_stnmts ()
{
merge duplicate READ nodes

merge duplicate READ_CONST nodes

for (each WRITE node)
switch (signal type)

case WIRE : if (WIRED-OR node does not exist)
create WIRED-OR node

attach data input of WRITE node as input
to WIRED-OR

case BUS : if (BUS node does not exist)
create BUS node

attach data input of WRITE node (from a CH-VALUE
node) as input to BUS node

case REGISTER: if (another WRT_REG node for the same var exists)
merge WRT_REG nodes, connecting appropriate

control lines

look at all WRITE nodes and appropriately connect them to READ
nodes for the same signal

}

Figure 19: Block Ciompilation Algorithm

June 11, 1989 Page 40

3.4.2. Process Statement C-Ompilation

Unlike concurrent statements which are interconnected once all statements in the

block have been processed, sequential statements appearing within a process statement

are interconnected as they are encountered. Each control flow graph section

corresponding to a sequential statement (STMT_BLK, if, case, loop, wait and procedure

call) has a single entry point and single exit point. As these statements are processed,

the exit point of the previous statement is connected to the entry point of the current

statement. Since the control flow graph sections of most sequential statements are

hierarchically constructed from other sequential statements, a stack is used to maintain

the control flow node to which the current control flow node is to be attached.

Assignment statements are associated with the current STMT_BLK. Thus, a

sequence of assignment statements is grouped initially into the same STMT_BLK

control node until state binding is performed by the synthesis tool. A STMT_BLK is

created if no current STMT_BLK exists when an assignment statement is encountered.

The compilation algorithm for sequential statements appearing in a process is

summarized in Figure 20.

June 11, 1989 Page 41

compile_process ()
{
curr_node = create_node(PROC_BEG);
process_seq_stmnts();
curr_node = create_node(PROC_END);
}

process_seq_stnmts ()
{
token = get_input_token();
switch (token) {

case IF
case ELSIF : if (top_node()-> type != STMT_BLK)

curr_node = create_node(STMT_BLK);
create data flow graph for condition
curr_node = create_node(IF _TEST);
token = get_input_token();/* THEN keyword * /
process_seq_stmn ts();
if (top_node->type == STMT_BLK)

associate current data flow nodes with STMT_BLK;
curr_node = create_node(IF _JOIN);
else_branch = FALSE;/* global flag * /

case ELSE : process_seq_stmnts();
if (top_node-> type == STMT_BLK)

associate current data flow nodes with STMT_BLK;
case CASE : if (top_node()->type != STMT_BLK)

curr_node = create_node(STMT_BLK);
create data flow graph for case select
curr_node = create_node(CASE-8ELECT);
token = get_input_token();/* IS keyword * /

case WHEN : /* case statement alternative * /
associate guard value with current CASE alternative
token= get_input_token();/* => keyword*/
process_seq_stmnts();
if (top_node->type == STMT_BLK)

associate current data flow nodes with STMT_BLK;
set ptr in CASE_SELECT node so that last node of

this alternative can be attached to the CASE_JOIN
case FOR
case WHILE : if (top_node()->type != STMT_BLK)

curr_node = create_node(STMT_BLK);
create data flow graph for condition test
curr_node = create_node(LOOP _TEST);
token = get_input_token();/* LOOP keyword * /
loop_type = token;/* global flag * /

June 11, 1989 Page 42

case WAIT : token = get_input_token();
if (top_node()-> type != STMT_BLK)

node2 = create_node(STMT_BLK);
if (token== UNTIL)

{
create dfg for cond_expr;
cond_expr =TRUE;/* local flag * /
}

token = get_input_token();
if (token == FOR)

{
create dfg for TIMER initialization;
time_expr = TRUE;/* local flag * /
}

associate dfg with STMT_BLK;
wait_test = create_node(IF _TEST);
if (cond_expr && time_expr)

{
node2 = create_node(IF _JOIN);
curr_node = create_node(IF _TEST);
connect_nodes(curr_node,node2);
}

node2 = create_node(STMT_BLK);
if (cond_expr)

create dfg to evaluate condition;
if (time_expr)

create dfg to increment TIMER;
connect_nodes(node2,wait_test);
curr_node = pop_node();/* STMT_BLK * /

case identifier: /* signal or variable assignments * /
if (top_node()-> type != STMT_BLK)

curr_node = create_node(STMT_BLK);
create data :flow graph for assignment statement

case END : token= get_input_token();
switch (token) {

case IF: if (else_branch == TRUE)
{
if (top_node()->type == STMT_BLK)

associate current df nodes
curr_node = pop_node();
if (top_node()->type ==IF _JOIN)

{
connect_nodes(curr_node, top_node());
curr_node = pop_node();
}

June 11, 1989 Page 43

} ;
else

{
curr_node = pop_node();/* IF_JOIN * /
if (top_node()->type == IF_TEST)

{
node2 = pop_node();/* IF _TEST * /
connect_nodes(node2,curr_node);
}

}
while (top_node()->type == IF_JOIN)

{
node2 = pop_node();
connect_nodes(curr_node ,node2);
curr_node = node2;
}

push_node(curr_node);

}

case CASE: curr_node = create_node(CASE_JOIN);
for (all CASE alternative branches)

connect_node(altJast_node,curr_node);
node2 = pop_node();/* CASE_SELECT * /
push_node(curr_node);

case LOOP: if (top_node()-> type != STMT_BLK)
curr_node = create_node(STMT_BLK);

create data :flow graph to update FOR
index, evaluate WHILE condition

associate current df nodes
node2 = pop_node();/* STMT_BLK * /

/* make loop back connection * /
connect_nodes (node2,top_node());

}
}
if (token !=PROCESS)

{
if (token != ';')

token = get_input_token();/* ; keyword * /
process_.seq_stmts();
}

create_node (type)
{
curr_node = create_node_structure();
prev _node = top_node();

June 11, 1989 Page 44

switch (prev_node-> type) {

{

case IF JOIN : if (prev_node->nurn_inputs == 2)
prev_node = pop_node();

else
{
prev_node = pop_node();
if (top_node()->type == IF_TEST)

node2 = pop_node();
push_node(prev _node);
}

}
case STMT_BLK : if (prev_node->type != BLK_START)

{
associate current df nodes;
prev_node = pop_node();
}

case PROC_BEG :
case LOOP _TEST :
case IF_TEST : if (prev_node->fg_num_outputs == 1)

prev _node = pop_node();
case CF_START : if (type== BLK_END)

prev_node = pop_node();
case CASE_SELECT: break;
default : prev_node = pop_node();
}

connect_nodes(prev _node,curr_node);
push_node(curr_node);
}

Figure 20: Process Co~ilation Algorithm

For signal or variable assignments appearing in a process statement, data flow

graph sections are generated for each statement. The location of the last update

(WRITE) of all signals and variables is maintained. Variables appearing on the LHS of

an assignment statement are assigned this last update value. If a value is updated and

subsequently accessed within the same STMT_BLK, the data flow WRITE and READ

nodes, respectively, are interconnected. Figure 21 shows the same VHDL code fragment

June 11, 1989 Page 45

from the previous section as it would appear in a process statement consisting of several

variable assignment statements. Notice that the sequential nature of the process imposes

data dependencies on the variable accesses, resulting in a different interconnected flow

graph.

A:= B + C;
D :=A* E;
X := D - A;

VHDL Variable Assignment StatenEnts

x

Interconnected Sequential Statemmts

Figure 21: Coi:q>ilation of Variable Assignments in a Process

June 11, 1989 Page 46

3.5. Annotations

In some instances, it is necessary to indicate to the VSS system which design

process should be used for a given VHDL description. This is accomplished through the

. use of annotations in the form of special VHDL comments as shown below:

--VSS: functional description

Annotations are used in the following situations:

(1) To indicate the structured modeling style used in the VHDL description.

(2) To indicate loop unwinding, where iterations are :flattened into a sequence of

assignments, rather than implementing indexing or conditional tests in control.

(3) To denote a next state in process descriptions. This can be used to define state

boundaries for a register transfer description consisting of a sequence of assignment

statements.

June 11, 1989 Page 47

4. Conclusion

We have described an intermediate representation which is used for synthesis from

VHDL. The representation generated for the VHDL constructs has been presented,

along with algorithms for construction of the complete description. This intermediate

representation can be used by a variety of synthesis tools and allows for the description

of several design styles. The use of signal typing and attribute annotations incorporates

the necessary design information for synthesis into a simple and complete representation

which can be easily maintained and manipulated by synthesis tools.

June 11, 1989 Page 48

5. References

(Arms89] Armstrong, J ., Chip Level Modeling with VHDL, Prentice-Hall, 1989.

[Chen89] Chen, G.D., Intelligent Component Data Base (ICDB), Technical Report (in
preparation), University of California at Irvine, June 1989.

(CLSI87] VHDL Tutorial for IEEE Standard 1076 VHDL, CAD Language Systems Inc.,
1987.

(LisGa88] Lis, J. and Gajski, D., Synthesis from VHDL, ICCD88, 1988.

(LisGa89a] Lis, J. and Gajski, D., VHDL Synthesis Using Structured Modeling, 26th
DAC, 1989.

(LisGa89b] Lis, J. and Gajski, D., Structured Modeling for VHDL Synthesis, Technical
Report (in preparation), University of California at Irvine, June 1989.

(OrGa86] Orailoglu, A., Gajski, D., Flow Graph Representation, 23rd DAC, 1986.

(Preas88] Preas, B. and Lorenzetti, M., Physical Design Automation of VLSI Systems,
Benjamin/Cummings, 1988.

(VHDL87] VHDL Language Reference Manual, Draft Standard 1076/ B, IEEE, June
1987.

June 11, 1989 Page 49

APPENDIX A
VHDL Statement Syntax

1. C-Oncurrent State~nts

1.1 Signal Assignmmt

1.1.1 C-Onclitional Signal Assigmmnt

signal < = { <waveform> when <condition> else}
<waveform> ;

<waveform> ::= <expression> { after <delay> }

1.1.2 Selected Signal Assignment

with< expression> select

signal < = { guarded }

<waveforml> when <choicel>,

<waveform2> when <choice2>,

< waveformN> when < choiceN>

1.1.3 Guarded Signal Assignment

signal < = guarded < waveform>

2. Sequential Statermnts

2.1 Signal Assignment

target < = <waveform>

2.2 Variable Assignrmnt

target := <expression>

June 11, 1989 Page 50

2.3 If Stateirent

if< expression>

then

sequence_oLstatements

else

sequence_of_statemen ts

end if;

2.4 Case Statement

case < discrete_expression> is
when choice_l = >

sequence_of_statements

when choice_N = >

sequence_of_statements

end case;

2.5 For Loop

for <ident> in< discrete_range> loop

sequence_of_statements

end loop;

2.6 While Loop

while < boolean_expression> loop

sequence_oLstatements

end loop;

2.6 Procedure Call

procedure_name (< parameterJist>);

June 11, 1989 Page 51

2. 7 Wait Statemmt

wait [< condition_clause>] [< timeout_clause>] ;

< condition_clause> ::= until < boolean_expression>

< timeout_clause> ::= for < time_expression>

June 11, 1989 Page 52

APPENDIXB
VHDL Structural Netlist Specification

1. Introduction

The types of information contained in the design representation after the Graph

Compilation, Graph Critic, and Node Compilation phases have completed can be

classified as follows: component instances, connectivity, instance para11Eters, and

timing. The generic component netlist representation which is the output of the

synthesis system must express this information as well. A standard format for this

netlist is desirable so that interfacing to other design tools can be more easily

accomplished.

The VHDL structural style of description seems suited to this purpose. The

general form of this netlist is shown in Figure 22. A simple circuit schematic is shown

in Figure 23. Figure 24 shows an example VHDL structural description using this

format. Nate that this netlist conforms to IEEE Standard VHDL 1076B [VHDL88]

language. The following sections describe how the various types of design information

are represented in this netlist format.

June 11, 1989 Page 53

A

B

Select

Enable

Clock

June 11, 1989

-- interface portion

entity <entity-name> is
<port-declarations>
<external-timing-assertions>

end <entity-name>;

-- architectural body (structural description style)

architecture Structure_View of <entity-name> is
<component-declarations>
<component-attributes>
<internal-signal-declarations>
<internal-timing-assertions>

begin
<component-instantion-statements>

end Structure_ View;

Figure 22: VHDL Generic Corr.ponent Netlist Format

MUX2_l6b
IO AUr16b
11 0

a
A

b s Cl SUM RGdnnte16b
d

11 0
c

I co
C5

s C3 s 0
C2 c C4

sb16-1
GND

Figure 23: Example Circuit Schematic

Page 54

Regout

-- interface portion

entity Examplel is
port (A,B: in: BIT_VECTOR(O to 15);

Select,Enable: in BIT;
Clock: in CLOCK;
Regout: out BIT_VECTOR(O to 15));

-- external timing assertions

--T NA to N Regout: 20 ns average
--T t Clock to N Regout: 5,10 ns

end Examplel;

-- architectural body (structural description style)

architecture Stru<:ture_View of Examplel is

-- component declarations

Component MUX2_16b
port (IO,Il: in: BIT_VECTOR(O to 15);

SO: in BIT;
00: out BIT_VECTOR(O to 15));

Component AUrl6b
port (A,B: in: BIT_VECTOR(O to 15);

CI: in BIT;
S: in BIT_VECTOR(O to 1);
SUM: out BIT_VECTOR(O to 15);
CO: out BIT);

Component RGdnntel6b
port (I: in: BIT_VECTOR(O to 15);

S: in BIT;
C: in CLOCK;
0: out BIT_VECTOR(O to 15));

Figure 24: Example VHDL Structural Description

June 11, 1989 Page 55

Component sb16J
port (I: in: BIT_VECTOR(O to 15);

0: out BIT);

Component GND
port (0: out BIT);

- component attributes

type FUNC_TYPE is (ADD,SUB,INC,DEC);
type CARRY is (RIPPLE,LOOKAHEAD);
attribute FUNCTION: FUNC_TYPE;
attribute ADDEILTYPE: CARRY;
attribute ENBL: BOOLEAN;

attribute FUNCTION of AUrl6b: oomponent is ADD;
attribute ADDEILTYPE of AUr16b: component is RIPPLE;
attribute ENBL of C4: label is TRUE;

- internal signal declarations

signal a,b,c: BIT_VECTOR(O to 15);
signal d,Gnd: BIT;

- in tern al timing assertions

--T Na to Nb: 20,25,35 ns
-T +A to Nb: 40 ns max

- component instantiations

begin
CO: GND port map (Gnd);
Cl: MUX2J6b port map (A,B,d,a);
C2: AUrl6b port map (a=> A,Regout => B,Gnd => CI,Gnd => S(O),

Gnd => S(l),b => SUM);
C3: MUX2J6b port map (b,B.,Select,c);
C4: RGdnntel6b port map (c,Enable,Clock,Regout);
C5: sb16J port map (Regout,d);

d < = Regout(15);
end Structure_ View;

Figure 25: Exalq>le VHDL Structural Description (cont'd)

June 11, 1989 Page 56

2. Netlist Fornnt

2.1. Entity Declaration

The entity declaration portion of the VHDL structural description specifies the

design name and defines the design's interface to the outside world. Port declarations

are used to define input and output connections. VHDL assertion statements are used

to specify timing constraints from input to output ports of the design. See the section

on timing assertions below for the format of these statements.

2.2. C.Omponent Declarations

For each unique compone~t in the netlist, a component declaration must exist.

This declaration defines a template containing input and output pin specifications via

port declarations. The type and bit width of the signals (nets) to be attached to the

component ports is specified in these declaration statements.

In order to generate a generic netlist using a set of generic components, a table of

available components and their component declarations must exist. This table should

identify the function of each input and output pin and the pin naming conventions for

each component. It should also specify the operand port mappings for multiple

operation units. If this component declaration table is available to interface programs

which accept the netlist as input, it would not be necessary to include component

declarations in the netlist.

June 11, 1989 Page 57

2.3. C-Omponent Attributes

In order to specify parameters particular to a component such as ALU functions,

control input codes, etc., the VHDL attribute declaration and specification features can

be used. Enumeration types can be used to specify the allowable values of an attribute.

Attributes may be associated with the template component declaration, or with specific

labelled instances of a component. For example, the statements

type FUNC_TYPE is (ADD,SUB,INC,DEC);
attribute FUNCTION: FUNC_TYPE;
attribute FUNCTION of AUr16b: component is ADD;

will associate the FUNCTION attribute ADD with every instance of an AUr16b

component, while the attribute specification

attribute ENBL of C4: label is TRUE;

will associate the ENBL attribute with RGdnntel6b instance C4 only.

2.4. Internal Signal Declarations

Internal connection of components is accomplished by defining each internal net of

the generic component netlist using signal declaration statements. These signal (net)

names are used in the port map specification of component instantiations described

below in order to identify uniquely the net connections between component ports.

June 11, 1989 Page 58

2.5. 'llni.ng Assertions

It is often ·necessary and useful when specifying timing constraints of a circuit to

have the capability of specifying relationships between signals. For example, a common

requirement is that the data input to a clocked register be stable a duration of time

prior to the clock transition that strobes the data into the register (sometimes known as

set up time) [Arms87]. The following signal transitions should be representable:

1. t Stransition from 0 to 1 of signal S (rising)
2. ' Stransition from 1 to 0 of signal S (falling)
3. u Sany transition of signal S (change)

The timing relationship is expressed as follows:

< transitionl> to < transition2> : <duration>

where < transitionl> and < transition2> are of the form specified above. The

<duration> specification is used to specify the minimum, maximum and/or average

time interval(s) between two events. A single time period specification must be followed

by a qualifier (max, min, or average). For example:

--T ' A to U b: 40 ns max

A list of two time intervals specifies a minimum/maximum timing specification, such as:

--T t Clock to u Regout: 5,10 ns

A triplet of time intervals denotes minimum, average, and maximum, as in:

June 11, 1989 Page 59

--T U a to U b: 20,25,35 ns

VHDL uses the assertion mechanism to represent this information with the

following syn tax:

assert <boolean-expression>
report <error-message>;

When the assertion is executed during simulation, the boolean expression is evaluated.

If it evaluates to FALSE (indicating that the timing specification is not satisfied), the

error message (a text string) is printed. The VHDL STABLE and DELAYED signal

attributes would be used to express the signal transitions as follows:

1. S and not S 'STABLE
2. not Sand not S'STABLE
3. not S'STABLE

The timing relationship tSl to IS2: 20 ns would be expressed as follows:

(Sl and not Sl'STABLE) and
(not S2'DELAYED(20 ns) and not S2'DELAYED(20 ns)'STABLE))

The VHDL assertion statement is considered a sequential statement; consequently,

it would not appear in a valid VHDL structural description. However, the language can

be extended so that assertion statements may appear in the entity and block

declaration parts. The entity assertions could specify input to output port timing, while

the block assertions denote internal signal timing relationships.

June 11, 1989 Page 60

A better method of expressing this information which conforms to the VHDL

language definition would be to use comments. For example, the statements

--T u A to U Regout: 20 ns average
--T t Clock to u Regou t: 5 ,10 ns

would be parsed as comments by the VHDL Analyzer, but the netlist parser could

recognize the --T timing assertion delimiter and record the specified timing information.

2.6. Component Instantiations

A component is instantiated through the use of a VHDL component instantiation

statement within the block of the architectural body. This statement has the form:

<label>: <component-name> <port-map>;

The <label> is a unique id for the component. A component declaration statement for

<component-name> 1must exist, defining the ports (mode, bit width) to be found in the

<port-map> list. The <port-map> is a list of previously defined port or internal

signal names which defines the interconnection of components. This list may be of

named or positional format. Named format is an unordered list of association of signals

to ports. For example, if net Nl is attached to port Pl (as defined in the port list of

the component declaration), Nl => Pl would appear in the <port-map> list.

Positional format assigns elements of the <port-map> to ports with the corresponding

position in the port list of the component declaration.

June 11, 1989 Page 61

Concurrent assignment statements may be used to specify necessary behavior

characteristics of a component. Examples of this type of specification include the

concatenation of input signals to form output signals for the switchbox component of

Figure 24, or the specification of the functionality of a random logic component using

boolean equations.

June 11, 1989 Page 62

