
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Exploring Programming Aptitude: Comparing the Predictive Utility of Language Aptitude
Subskills for Python and Java Learning

Permalink
https://escholarship.org/uc/item/5ps223b8

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors
Mottarella, Malayka
Mortimore, Katherine
Prat, Chantel

Publication Date
2024

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5ps223b8
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Exploring Programming Aptitude: Comparing the Predictive Utility of Language

Aptitude Subskills for Python and Java Learning

Malayka Mottarella (mmottare@uw.edu)
Department of Psychology, University of Washington

119A Guthrie Hall, Seattle, WA 98195 USA

Katherine Mortimore (kmortimore@ihmc.org)
Institute for Human & Machine Cognition

40 S Alcaniz St, Pensacola, FL 32502 USA

Chantel S. Prat (csprat@uw.edu)
Department of Psychology and Institute for Leaning and Brain Science, University of Washington

119A Guthrie Hall, Seattle, WA 98195 USA

Abstract

The present study examines how natural language aptitude

subskills predict individual differences in learning Python and

Java. Past work has demonstrated that overall performance on

the Modern Language Aptitude Test (MLAT), a standardized

measure of language aptitude, is a strong predictor of both the

speed and accuracy with which individuals learn Python.

However, language aptitude is a broad multidimensional

construct made up of individual subskills. In the present study,

we examine how two of these subskills - sensitivity to form

and meaning mapping - relate to programming outcomes in

both Python and Java. Results indicate that both sensitivity to

form (MLAT IV) and meaning mapping (MLAT V) are related

to programming acquisition in both languages - this

relationship remains even after controlling for fluid

intelligence. We also examined how programming skills tied

to semantics and syntax related between Python and Java in a

subset of learners who learned both languages. These results

demonstrated that proficiency in Python predicted individual

differences in both syntactic and semantic knowledge in Java.

Taken together, these results further elucidate the role of

natural language aptitude in programming learning and suggest

that semantic and syntactic content may transfer across

programming languages.

Keywords: programming; learning; language aptitude;

individual differences

Introduction

The ability to code in a computer programming language is

an increasingly desirable skill in both the workforce and in

educational settings. However, learning to program is

notoriously difficult, and learners vary greatly in both the

speed and accuracy with which they acquire programming

skills. Empirical work dedicated to understanding the factors

that drive success in modern programming languages has

been on the rise (e.g., Floyd, Santander, & Weimer, 2017;

Parkinson & Cutts, 2022; Prat et al., 2020; Ivanonva et al.,

2020); but much is still unknown about the cognitive factors

underpinning acquisition of a programming language.

By comparison, an extensive body of research has

investigated the factors that drive acquisition of a second

natural language (for reviews see Chalmers et al., 2021;

Wen, Biedroń, & Skehan, 2017). This research may function

well as a starting framework for understanding individual

differences in learning programming languages, as the

cognitive parallels between the two skills have been well laid

out (Fedorenko et al., 2019). At least two studies have shown

that the Modern Language Aptitude Test (MLAT: Carrol &

Sapon, 1959), a classic predictor of natural language learning,

showed strong predictive utility for explaining variation in

Python learning (Kuo et al., 2022; Prat et al., 2020).

Natural language aptitude is an umbrella term used to

describe a set of language-related subskills that characterize

one’s potential to successfully acquire a new language in the

future. Individually, these subskills assess factors such as

phonetic coding, grammatical sensitivity, rote memory, and

inductive learning (Carroll, 1981). The MLAT is a

standardized measure comprised of five subtests, which

differentially draw on the underlying subskills that contribute

to natural language aptitude (Carroll & Sapon, 1959). The

MLAT has been reliably used as the “gold standard”

assessment of natural language aptitude for over 60 years

(Chalmers et al., 2021; Sasaki, 2012). To the best of our

knowledge, Prat and colleagues’ (2020) study demonstrating

that MLAT performance explains ~30% of the variability in

Python acquisition marks the first use of the MLAT as a

predictor of programming learning skills. However, Prat and

colleagues (2020) only used the total cumulative score on the

MLAT to predict Python learning, making it difficult to

determine the specific language aptitude subskills that may

be driving this effect. Examining how performance on MLAT

subtests that have clear theoretical relevance for

programming language acquisition predict subsequent

2553
In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Conference of the Cognitive
Science Society. ©2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).

learning may provide a more nuanced account of which

specific facets of language aptitude are implicated in learning

a programming language.

Two candidate subskills that seem particularly relevant in

programming are the ability to learn and remember the

meanings of new informational units (i.e., rote memory or

“meaning mapping”) and the ability to parse the functional

role of an informational unit within a larger context (i.e.,

grammatical sensitivity or “form”). This distinction in

processing is supported by recent work demonstrating that

skilled programmers show canonical N400 and P600 event-

related potentials (ERPs) when reading code with

manipulations to meaning and form, respectively, and that

neural sensitivity to form violations increases with

programming skill (Kuo & Prat, 2023). This work suggests

that programmers show similar progressions in sensitivity to

meaning and form aspects of code during skill acquisition as

learners of second natural languages do (McLaughlin et al.,

2010). Thus, we hypothesize that sensitivity to form and

meaning may be important language aptitude subskills

underpinning successful programming acquisition.

Taken together, previous work demonstrates that language

aptitude measures predict individual differences in

programming learning, and that sensitivity to form and

meaning may be of specific importance for understanding the

interplay between second language learning and learning

programming languages. The present study extends this work

in several novel ways. First, we examine how individual

differences in sensitivity to form and meaning mapping,

assessed respectively using the MLAT IV and V subtests,

predict performance on a comprehensive set of programming

outcome measures. Second, we will use a much larger and

more diverse sample of Python learners compared to past

studies (Kuo & Prat, 2023; Prat et al., 2020). Third, we will

assess whether the relation between language aptitude

subskills and programming outcomes generalizes from one

programming language (Python) to another (Java), which is

notoriously more difficult to learn and less “reader friendly”.

Finally, if meaning and form sensitivity do relate to learning

outcomes in both Python and Java, we will explore whether

outcomes tied to semantics and syntax relate within an

individual across programming languages, using a subset of

participants who learned both languages.

Methods
Participants

All participants were healthy, right-handed, young adults

between the ages of 18 and 35. Native English fluency was a

requirement for participation in both studies, although

recruitment was not solely limited to monolingual English

speakers as has been done in prior work (Prat et al., 2020).

All participants provided informed consent before

completing any experimental tasks and received

compensation for their participation.

Python Group. Ninety-eight participants with no prior

programming experience were recruited for the Python

group. Three participants withdrew from the study before

completing all learning sessions, resulting in a final group

size of 95 participants (M = 20.66 years; 72 female).

Java Group. Fifty-four participants were recruited for the

Java group. Participants were required either to have no prior

programming experience or to have prior experience solely

in Python. Three participants withdrew from the study before

completing all learning sessions, and two participants were

dismissed for not meeting the inclusion criteria (e.g. having

previous experience in C). Thus, the final Java sample

included 49 participants (M = 22.16 years, 37 females).

Within the Java group, 24 participants had prior Python

experience, and 16 of these participants learned Python

specifically in our previous study and are included in the

Python group.

Materials

Modern Language Aptitude Test (MLAT). The MLAT is

a 1-hour long, paper-and-pencil measure of natural language

aptitude consisting of five subtests (Carol & Sapon, 1959).

Given our prediction that sensitivity to form and meaning

mapping may be particularly important for programming, we

focused our analyses on the MLAT IV and V subtests. In

MLAT IV: Words in Sentences, participants were presented

with a sample sentence and asked to identify the word in a

second sentence that most closely performed the same

function as the one indicated in the first. In MLAT V: Paired

Associates, participants learned and were then tested on

twenty-four Kurdish-English word associations. MLAT IV

and MLAT V were used as our indices of form and meaning

mapping sensitivity, respectively. Performance on each

subtest was quantified as the number of correct items in that

section.

Ravens Advanced Progressive Matrices (RAPM). The

RAPM is a standardized measure of fluid intelligence in

which participants are tasked with determining which option

of eight possible choices completes a presented pattern.

Participants are given 20-minutes to complete 18 test items

which increase in difficulty as the test progresses.

Programming Learning Rate. The speed of programming

learning for each participant was determined by fitting a

regression line, with a fixed intercept at zero, to the data

modeling the programming lesson each participant had

finished at the end of each learning session. The slope of the

2554

regression line was operationalized as the participant’s

learning rate.

Declarative Knowledge Tests. The declarative knowledge

tests consisted of 50 multiple-choice items, half designed to

assess semantic knowledge (e.g., what is concatenation?) and

the remaining half evaluating syntax knowledge (e.g., which

line of code will NOT run?). Participants were allotted 30

minutes to complete the test. Accuracy on the test was

quantified separately for the semantic and syntax portions by

calculating the number of correct items for each question type

out of 25.
Java participants with prior Python knowledge completed

both declarative knowledge tests. As part of their pre-learning

battery, they were given the Python declarative knowledge

test to evaluate their proficiency in Python before learning

Java. Subsequently, following their Java learning, they

completed the Java declarative knowledge test along with the

other post-learning assessments.

Coding Tests. The coding tests measured participants’

ability to generate code correctly. The tests were adapted

from free-form projects included in the appropriate

Codecademy course. Python coding accuracy was computed

using the score on Codecademy’s Rock, Paper, Scissors

project in the Learn Python 2 course (Score/51 points).
Java coding accuracy was computed by averaging

performance on two projects adapted from Codecademy’s

Learn Java course - the Build a Droid (Score/59 points) and

the Simple Car Loan Payment Calculator (Score/41 points)

projects. Participants were given 30 minutes to program the

projects as specified in the projects’ instructions. Following

similar methods to those used by Prat et al. (2020),

performance was assessed using a rubric developed by

programming experts. Participants received full credit if they

correctly coded a step, partial credit for minor errors, and no

credit for missed or largely incorrect steps. All programming

tests were independently scored by two reviewers using the

appropriate rubric.

Debugging Tests. The debugging tests assessed participants’

ability to identify and correct programming errors. All

debugging tests were based on incorrect versions of the

previously discussed coding tests. Participants were given 15

minutes to correct as many errors as possible towards the goal

of getting the code to run as specified in the project

instructions. The debugging tests were independently

reviewed by two reviewers using a rubric created by

programming experts. Participants received full credit for

corrected errors, partial credit for identified but uncorrected

errors, and no credit for errors they did not identify.

Additionally, participants were penalized for “correcting” a

line of code with no errors. Accuracies were determined as

the number of errors corrected, minus any penalties, out of

the total number of points possible (Python: 22, Java Droid:

22, Java Car Loan: 20). The final Java debugging score

averaged together performance on the Droid and Car Loan

projects.

Procedure

Pre-learning Sessions. Before programming learning,

participants completed three 1.5-2.0 hour long sessions

during which we collected a comprehensive battery of

demographic, general cognitive, and language assessments.

The MLAT and RAPM were administered during these

sessions.

Learning Sessions. Next, participants underwent eight one-

hour, online learning sessions during which they worked

through either Codecademy’s Learn Python 2 course or

Learn Java course at their own pace. To advance to the next

lesson, participants were required to achieve a minimum

score of 50% on Codecademy’s end-of-lesson quizzes. At the

end of each learning session, we recorded which lesson

number the participant reached, which was subsequently used

to compute each participant’s learning rate.

Post-learning Assessment Sessions. Following the eight

hours of programming learning, participants took the

declarative multiple-choice knowledge test, coding test(s),

and debugging test(s).

Results

Correlating Language Aptitude Subskills with
Programming Outcomes

To examine the relation between individual differences in

sensitivity to form and meaning mapping and programming

learning outcomes, MLAT IV and V scores were separately

correlated with programming outcomes for the Python and

Java learning groups (see Figure 1; for descriptive statistics

see Table 1). Significance levels are reported using a False

Discovery Rate correction. We also compared the

magnitudes of the correlation coefficients between the

MLAT and programming outcome measures between the

Python and Java groups (Soper, 2024) and ran partial

correlations to control for individual differences in RAPM.
Our results indicated that the MLAT IV measure of

sensitivity to form was a significant predictor of

programming success for all Java and Python learning

outcomes. Specifically, MLAT IV was positively correlated

with learning rate in both Java [r(48) = 0.50, pfdr < 0.001]

and Python [r (94) = 0.40, pfdr <0.001]. In both programming

languages, MLAT IV was also positively correlated with

performance on the declarative knowledge test. These

correlations were significant, for both questions testing

semantic knowledge [Java: r(48) = 0.42, pfdr = 0.002;

Python: r(94) = 0.36, pfdr < 0.001] and those testing syntactic

2555

Table 1. Descriptive Statistics for Measures of Interest

 Descriptive Statistics

Language Aptitudea Group N Mean SDd Mind Maxd

MLAT IV
Python 95 19.14 4.84 8.00 38.00

Java 49 18.59 6.34 7.00 38.00

MLAT V
Python 95 18.57 5.20 4.00 24.00

Java 49 17.78 5.48 3.00 24.00

Fluid Intelligenceb

RAPM
Python 95 0.68 0.16 0.28 1.0

Java 49 0.67 0.18 0.22 1.0

Learning Outcomesc

Learning Rate
Python 95 1.33 0.35 0.73 2.65

Java 49 1.16 0.42 0.49 2.36

Declarative Knowledge

Semantics
Python 95 0.72 0.13 0.40 1.00

Java 49 0.64 0.12 0.32 0.88

Syntax
Python 95 0.68 0.14 0.28 0.96

Java 49 0.66 0.19 0.24 1.00

Coding Test(s)
Python 95 0.51 0.18 0.06 0.87

Java 49 0.60 0.21 0.07 0.99

Debugging Test(s)
Python 95 0.49 0.20 0.08 0.96

Java 49 0.61 0.23 0.00 0.98
aMLAT scores are the total number of correct items on the respective subtest.
bRAPM scores are the percentage of correct items
cAll learning outcomes, except learning rate, are accuracies reported as decimals.
dSD = Standard Deviation, Min = Minimum score, Max = Maximum score.

knowledge [Java: r(48) = 0.55, pfdr < 0.001; Python: r(94) =

0.47, pfdr < 0.001].

Finally, we examined how MLAT IV predicted measures

of coding and debugging in both languages. Results indicated

that MLAT IV showed a significant positive correlation with

coding performance in the Java group [r(48) = 0.66, pfdr <

0.001] and in the Python group [r(94) = 0.37, pfdr < 0.001].

A similar pattern was observed for the correlation between

MLAT IV and debugging performance. While both groups

showed a significant positive correlation between MLAT IV

and debugging, the magnitude of the correlation was slightly

stronger for the Java group [r(48) = 0.64, pfdr < 0.001] than

the Python group [r(94) = 0.45, pfdr < 0.001]. The tests for

differences in correlation coefficient strength between the

groups found that only the magnitude of the MLAT IV and

coding performance correlation was significantly stronger in

the Java group than in the Python group (z = 2.24, p = 0.03).

The other correlation coefficient magnitudes were not

significantly different between groups (ps > 0.10).

MLAT V, meaning mapping, also predicted success in

some programming outcomes, but these results were not as

consistent across outcome measures or as robust as those seen

with MLAT IV, form sensitivity. MLAT V did not correlate

significantly with learning rate in the Java group [r(48) =

0.19, pfdr = 0.18] and was only marginally positively

correlated in the Python group [r(94) = 0.20, pfdr = 0.05].

MLAT V was positively correlated with the portions of the

declarative knowledge test measuring semantic knowledge,

marginally in the Java group [r(48) = 0.26, pfdr = 0.07] and

significantly in the Python group [r(94) = 0.35, pfdr < 0.001].

For syntax knowledge, MLAT V was a significant positive

predictor in both groups [Java: r(48) = 0.33, pfdr = 0.02;

Python: r(94) = 0.26, pfdr = 0.01]. Next, we examined the

relation between MLAT V and real-time coding and

debugging skills. MLAT V was positively correlated with

coding performance significantly in the Java group [r(48) =

0.44, pfdr = 0.002] and marginally in the Python group [r(94)

= 0.20, pfdr = 0.07]. While for debugging, MLAT V was

significantly positively correlated in both groups [Java: r(48)

= 0.47, pfdr = 0.001; Python: r(94)= 0.27, pfdr = 0.01]. None

of the correlation coefficient magnitudes were significantly

different between the Java and Python groups (ps > 0.10).

In summary, higher MLAT IV, form sensitivity, and

MLAT V, meaning mapping, scores consistently correlated

with better programming outcomes across programming

languages. Though the magnitudes of the correlations

2556

between programming outcomes and MLAT IV were

generally stronger than those with MLAT V, statistical

comparisons of the relative strengths of these correlation

coefficients revealed no significant differences (ps > 0.05).

To control for the possibility that a general cognitive factor

was not jointly predicting MLAT scores and programming

we computed partial correlations between the MLAT

measures of interest and the programming outcomes

controlling for individual differences in fluid intelligence

(RAPM). As depicted in Figure 1, all correlations remained

significant after controlling for RAPM with the exception of

the correlation between MLAT V and Syntax in the Java

group [r(48) = 0.25, p = 0.09]. This result suggests that both

MLAT measures explain unique variance in programming

learning that is not underpinned by individual differences in

fluid intelligence as measured by the RAPM.

Relating Individual Differences in Semantics and
Syntax Across Programming Languages

To further investigate the role of meaning mapping and form

sensitivity in programming, we examined how programming

outcomes tied to semantics and syntax related to one another

across Java and Python. To examine the convergence of these

skills across programming languages, semantic and syntactic

declarative knowledge test scores were correlated across

Python and Java. These exploratory analyses were conducted

on the subset of participants (N = 16) who learned both

programming languages. All participants in this subset

learned Python prior to Java.

The declarative knowledge outcome measures were

strongly positively correlated across programming

languages. Individual differences in Python syntax positively

correlated with both Java syntax [r(15) = 0.87, pfdr < 0.001]

and Java semantics [r(15) = 0.62, pfdr = 0.01]. Similarly,

Python semantics positively correlated with both Java syntax

[r(15) = 0.83, pfdr < 0.001] and Java semantics [r(15) = 0.53,

pfdr = 0.03]. While the magnitude of the correlations between

Python proficiency and Java syntax were stronger than those

between Python proficiency and Java semantics (see Figure

2), the differences between the correlation coefficients were

not statistically significant (ps > 0.1).

Discussion

The present study examined how individual differences in

language aptitude subskills indexing form and meaning

mapping sensitivity related to programming outcomes in both

Python and Java. Our results meaningfully extend past work

(e.g., Kuo et al., 2022; Kuo & Prat, 2023; Prat et al., 2020)

by showing that: 1) both subskills predicted some

programming outcomes in Python, 2) both subskills predicted

some programming outcomes in Java, and 3) form sensitivity

trended towards being the stronger predictor of the two

subskills. In the sections that follow we expand on these

contributions and their implications for programming

acquisition.

Our results showed that both language aptitude measures

of interest were related to programming acquisition to some

degree. Specifically, we found that MLAT IV, measuring

grammatical sensitivity correlated with all programming

outcomes across our Python and Java groups. Whereas

Figure 2. Scatterplot depicting the relation between

semantic and syntax knowledge. Left: Depicts the

correlations between Python semantics and Java semantics

(blue) and syntax (orange). Right: Depicts the correlations

between Python syntax and Java semantics (blue) and

syntax (orange).

Figure 1. Relation Between MLAT Subtests and

Programming Outcomes. Top: Correlations for the Java

group. Bottom: Correlations for the Python group. The

black boxes highlight the correlations between the MLAT

subtests and programming outcome measures. * p < 0.05;

** p < 0.05 after RAPM partial correlation

2557

MLAT V, meaning mapping, was only correlated with select

programming outcomes. These correlations remained

significant after controlling for RAPM scores, which

supports the idea that natural language skills contribute to

programming beyond what can be explained by variation in

general fluid reasoning. These findings have important

implications for understanding how language aptitude

subskills assessing meaning mapping and grammatical

sensitivity contribute to programming skill acquisition. These

two subskills were selected based on their theoretically

hypothesized importance in programming, however,

examining less intuitively important language aptitude

subskills, such as phonemic coding, is an important next step

in deriving a holistic understanding of the role of natural

language aptitude in programming. Ongoing work in our lab

plans to address this question.

The intention of using a large battery of programming

outcome measures was to tap into different components of

learning a programming language, which may rely more or

less strongly on distinct cognitive abilities. However, our

results indicated that by and large, each MLAT measure

showed relatively similar predictive utility across

programming outcomes, particularly when these outcomes

were considered within a programming language. This

pattern highlights a central challenge in complex skill

learning research. Namely, it is difficult to determine the

extent to which a complex skill, like programming, should be

broken into separate components, especially when these

components are interrelated or build on one another

hierarchically (e.g., Federenko et al., 2019). This finding is

also in line with theories suggesting programming skills are

highly interconnected, such that proficiency in one

programming skill is strongly related to proficiency in

another programming skill (Robins, 2010). Future work

using approaches such as factor analysis may help

disentangle how much unique information is collected in

these programming outcomes.

Our results demonstrated a persistent trend of

programming outcomes relating more robustly to

grammatical sensitivity than meaning mapping. In our

correlations between the MLAT subtests and programming

outcomes, MLAT IV was a stronger predictor than MLAT V

for all programming outcomes across both Python and Java.

While the magnitudes of the correlation coefficients were

only statistically different between MLAT IV and V for the

coding test in Java, this general pattern held across every

measure in both programming languages. Our follow-up

analysis of the subset of participants with both Python and

Java experience further highlights the importance of syntactic

information in programming acquisition. These results

demonstrated that greater Python proficiency predicted Java

syntax more strongly than Java semantics. While the

conclusions that can be drawn from these analyses are limited

due to the sample size, they do raise the important discussion

of which underlying components may transfer across

programming languages.

Prior work examining transfer, has primarily focused on

the idea that programming concepts (e.g., loops, conditionals,

etc.) are used in multiple languages, resulting in semantic

transfer of these concepts across languages (e.g., Kao,

Matlen, & Weintrop, 2022; Tshukudu & Cutts, 2020).

However, our results suggest that even when the surface-level

syntactic features may change, one’s ability to parse and

understand syntactic features in context may be an

overlooked ability supporting programming aptitude. This

idea is consistent with Kuo & Prat’s (2023) finding that

greater programming skill was associated with a canonical

shift from an N400 to a P600 ERP deflection when viewing

syntactic violations in code. In the second-language

literature, this ERP shift is referred to as

“grammaticalization” and has been used as a neural index

corresponding to behavioral second-language proficiency

(McLaughlin et al., 2010).

The results of the present study and those of Kuo & Prat

(2023) suggest that grammaticalization may serve as a similar

inflection point in programming learning. It is an open

question whether the timescale of grammaticalization may

look fundamentally different in programming languages. One

speculation is that grammaticalization may be even more

central to programming than it is in natural language learning.

In natural language learning, syntax is typically learned

through slower procedural memory systems relative to

vocabulary learning (e.g., Ullman, 2001; Walker et al., 2020).

This makes sense considering that humans are highly skilled

at parsing meaning even when the syntax of the speaker may

not be perfect (e.g., Fairchild & Papafragou, 2018). In

contrast, syntax in programming languages is learned through

rigid binary reinforcement such that the code will not compile

if the syntax is incorrect. Thus, it is plausible that an earlier

grammaticalization shift may be even more advantageous in

programming than in natural language. This idea is in line

with the results reported herein showing that greater

sensitivity to syntactic elements may underpin both the

success of learning a first programming language and the

degree of transfer between programming languages.

Taken together the results of the present study demonstrate

that language aptitude subskills tied to meaning mapping and

form sensitivity show strong predictive utility for explaining

variance across multiple outcomes when learning two distinct

programming languages. These results have implications for

further informing our understanding of the cognitive

computations that contribute to both programming aptitude

and transfer between programming languages.

Acknowledgments

This research was supported by an award from the Office of

Naval Research (GR010970) to Chantel S. Prat.

2558

References

Carroll, J. B. (1981). Twenty-five years of research on

foreign language aptitude. In K. C. Diller (Ed.),

Individual differences and universals in language

learning aptitude. Rowley, MA: Newbury House.

Carroll, J. B., & Sapon, S. M. (1959). Modern Language

Aptitude Test (MLAT). New York: Psychology

Corporation.

Chalmers, J., Eisenchlas, S. A., Munro, A., & Schalley, A.

C. (2021). Sixty years of second language aptitude

research: A systematic quantitative literature review.

Language and Linguistics Compass, 15(11), e12440.

Fairchild, S., & Papafragou, A. (2018). Sins of omission are

more likely to be forgiven in non-native speakers.

Cognition, 181, 80–92.

Fedorenko, E., Ivanova, A., Dhamala, R., & Bers, M. U.

(2019). The language of programming: A cognitive

perspective. Trends in Cognitive Sciences, 23(7), 525–

528.

Floyd, B., Santander, T., & Weimer, W. (2017). Decoding

the Representation of Code in the Brain: An fMRI Study

of Code Review and Expertise. 2017 IEEE/ACM 39th

International Conference on Software Engineering

(ICSE), 175–186.

Ivanova, A. A., Srikant, S., Sueoka, Y., Kean, H. H.,

Dhamala, R., O’Reilly, U.-M., Bers, M. U., & Fedorenko,

E. (2020). Comprehension of computer code relies

primarily on domain-general executive brain regions.

eLife, 9, e58906.

Kao, Y., Matlen, B., & Weintrop, D. (2022). From one

language to the next: Applications of analogical transfer

for programming education. ACM Transactions on

Computing Education, 22(4), 1–21.

Kuo, C.-H., Mottarella, M., Haile, T., & Prat, C. S. (2022).

Predicting Programming Success: How Intermittent

Knowledge Assessments, Individual Psychometrics, and

Resting-State EEG Predict Python Programming and

Debugging Skills. 2022 International Conference on

Software, Telecommunications and Computer Networks

(SoftCOM), 1–6.

Kuo, C.-H., & Prat, C. (2023). Programmers show distinct,

language-like brain responses to violations in form and

meaning when reading code [Preprint].

McLaughlin, J., Tanner, D., Pitkänen, I., Frenck‐Mestre, C.,

Inoue, K., Valentine, G., & Osterhout, L. (2010). Brain

potentials reveal discrete stages of L2 grammatical

learning. Language Learning, 60(s2), 123–150.

Parkinson, J., & Cutts, Q. (2022). Relationships between an

early-stage spatial skills test and final CS degree

outcomes. Proceedings of the 53rd ACM Technical

Symposium on Computer Science Education, 293-299.

Prat, C. S., Madhyastha, T. M., Mottarella, M. J., & Kuo,

C.-H. (2020). Relating natural language aptitude to

individual differences in learning programming

languages. Scientific Reports, 10(1), 3817.

Robins, A. (2010). Learning edge momentum: a new

account of outcomes in CS1. Computer Science

Education, 20(1), 37-71.

Sasaki, M. (2012). The Modern Language Aptitude Test

(Paper-and-Pencil Version). Language Testing, 29(2),

315–321.

Soper, D.S. (2024). Significance of the Difference between

Two Correlations Calculator (Version 4.0). Publisher.

https://www.danielsoper.com/statcalc

Tshukudu, E., & Cutts, Q. (2020). Semantic Transfer in

Programming Languages: Exploratory Study of Relative

Novices. Proceedings of the 2020 ACM Conference on

Innovation and Technology in Computer Science

Education, 307–313.

Ullman, M. T. (2001). A neurocognitive perspective on

language: The declarative/procedural model. Nature

Reviews Neuroscience, 2(10), 717–726.

Walker, N., Monaghan, P., Schoetensack, C., & Rebuschat,

P. (2020). Distinctions in the acquisition of vocabulary

and grammar: An individual differences approach.

Language Learning, 70(S2), 221–254.

Wen, Z. (Edward), Biedroń, A., & Skehan, P. (2017).

Foreign language aptitude theory: Yesterday, today and

tomorrow. Language Teaching, 50(1), 1–31.

2559

