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ABSTRACT OF THE DISSERTATION

The Impact of News on Monetary Policy Expectations

by

Michael Dominic Bauer

Doctor of Philosophy in Economics

University of California, San Diego, 2010

Professor James D. Hamilton, Chair

Expectations of future monetary policy are a crucial determinant of asset

prices. This dissertation provides answers to the question how newly available

information, such as news about the future stance of monterary policy or about

the macroeconomic situation, affects these expectations. The first chapter char-

acterizes how interest rates react to monetary policy actions and macroeconomic

news. The second chapter decomposes interest rate changes into revisions of mon-

etary policy expectations and changes in term premia, with the result that most

high-frequency variation in interest rates is accounted for by expectations of future

monetary policy. The third chapter targets the question what drives the revisions

of nominal short rate expectations and documents an important role for inflation

expectations.
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Chapter 1

Revisions to Short Rate

Expectations: Policy Surprises

and Macroeconomic News

Abstract

How do interest rates react to monetary policy actions and macroeconomic

news? The conventional event study approach has several shortcomings, and this

paper presents an alternative framework to answer this question, based on a dy-

namic term structure model that recognizes the heterogeneity of news events. My

approach imposes no-arbitrage, parsimoniously captures the revisions to the entire

expected short rate path, and integrates the analysis of different types of news.

Policy actions are found to affect the entire yield curve, and the impact does not

decline with maturity as suggested by previous studies. The impact of macroeco-

nomic announcements reflects the fact that policy inertia plays an important role

in how markets form expectations. Policy news lead to more varied effects than

macro news, indicating that markets are surprised along more than one dimension

by actions of the Fed.

1
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1.1 Introduction

How do monetary policy actions affect the term structure of interest rates?

Because of its high relevance to both market participants and policymakers this

question has commanded considerable interest among researchers. The Fed con-

trols the overnight interest rate, but the monetary transmission mechanism works

through changes in interest rates at all maturities. Hence the effectiveness of mon-

etary policy crucially depends on whether and how the Fed can impact interest

rates other than the short rate. In a seminal paper Kuttner (2001) employs federal

funds futures to measure monetary policy surprises. Using event study regressions

he finds a significant effect of the surprises on yields at short and medium ma-

turities, which however declines quickly with maturity. Other studies employing

similar approaches come to the same conclusions (Poole and Rasche, 2000; Rigobon

and Sack, 2004; Gürkaynak et al., 2005a; Hamilton, 2008): Policy surprises do af-

fect interest rates, but the impact seems to decline with maturity.

A related literature analyzes how macroeconomic news affect the term struc-

ture, prominent contributions being Fleming and Remolona (1997), Balduzzi et al.

(2001a) and Faust et al. (2007). These studies assess which macro announcements

affect interest rates and what the sign and size of the responses are. The empir-

ical approach is similar: Yield changes are regressed on surprise measures, and

the equation is re-estimated for several maturities. These studies find that some

macro news have an important impact on yields whereas others do not, and that

the effects vary according to the maturity of the yields considered.

The regression approach employed in both strands of literature has some

important shortcomings. Most importantly it does not uncover the effects of news

events on the entire term structure, but only the effects on individual securities.

The cross-sectional restrictions required by no-arbitrage are ignored. Imposing

no-arbitrage is more attractive theoretically, but also entails important practical

advantages such as improvements in statistical precision and the ability to predict

responses of additional securities.

For the case of monetary policy analysis, the regression approach is par-

ticularly problematic. The surprise measure, which is derived from changes in
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money market futures rates, and the dependent variable, usually the change in a

bond yield, are both determined by the average change in the forward rate curve

over a particular horizon. These regressions thus simply estimate the comovement

between changes in forward rates at different maturities. Since the short rate nat-

urally has a transitory component, the finding of decreasing explanatory power in

the yield regressions of Kuttner (2001) and others is not surprising. It does not tell

us anything substantial about the effects of monetary policy on the term structure.

Another shortcoming of the existing literature is that so far there has been

no integrated analysis of the effects of both policy and macro news on the term

structure of interest rates. The regression approach cannot be used to systemati-

cally compare different types of news in a common framework. Relevant questions

are: What are the most important sources of volatility? How are rates across

maturities affected by different types of news? What are the differences, if any, in

the effects of policy actions and macroeconomic news?

This paper proposes a new way to study how policy actions and macro news

affect interest rates. The object of interest is the revision to the expected future

path of the short rate under the risk-neutral measure, since it captures the effects of

a news event on the entire term structure. In order to parsimoniously capture the

“revision”, which is an infinite-dimensional object, I employ a three-factor affine

dynamic term structure model (DTSM). In addition to the advantages of imposing

no-arbitrage, in particular the reduction in dimensionality that the cross-sectional

restrictions achieve, this allows me to integrate in a common framework the news

about monetary policy actions and the various kinds of macroeconomic news.

The key to integrating the different types of news is to explicitly account for

the heterogeneity of these different sources of interest rate volatility. I achieve this

by allowing the second moments of the model to depend on the “news regime”,

i.e. the type of the news event that occurs on a given day. This is a simple but

effective way to assess and compare the differential impact of policy actions and

different macro news on interest rates.

In this way the paper also makes a contribution to the term structure liter-

ature: The conditional structure of my DTSM allows to identify and describe the
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different sources of interest rate volatility. News about monetary policy and about

the economy are the main drivers of changes in interest rates, however existing

DTSMs treat all trading days in the same way, for example when estimating the

“vol curve”, the term structure of volatility.1 My model provides separate esti-

mates of the vol curve for different types of news events, which reveals interesting

differences. The conditional character of the DTSM tells us what really moves the

market, and in which way it moves the market.

The DTSM used in this paper differs from conventional models in a second

way: Only the risk-neutral dynamics are made explicit, but no pricing Kernel is

specified. The reason is that the model is used to capture the changes in interest

rates, but is not required to decompose these changes into changes in risk premia

and changes in physical expectations of future short rates. It is therefore unneces-

sary to make explicit the risk-adjustment. The risk-neutral dynamics are specified

so that the factors can be identified as level, slope and curvature, in the spirit of

Christensen et al. (2007), which is convenient for estimation and interpretation of

the results.

The paper shows that monetary policy generally has strong effects on the

entire term structure. The volatility caused by policy actions reveals that long rates

move just as much as short rates. Importantly the revisions show various different

shapes: Some actions of the FOMC only move the short end of the yield curve

and barely have an impact on longer rates, some have a hump-shaped impact, yet

others leave the short end unchanged and move only long rates. My findings show

that the impact of monetary policy does not decline with maturity as suggested

by previous studies (Kuttner, 2001; Gürkaynak et al., 2005b,a), but instead that

this impact strongly depends on the individual policy event, on average is hump-

shaped, and causes significant movements in long rates.

A key result is that there is significant heterogeneity between different

sources of interest rate volatility. The hypothesis of equal second moments on

days with policy actions and on days with different types of macro news is strongly

1This also holds for regime-switching models such as Bansal and Zhou (2002) and Monfort and
Pegoraro (2007), since they do not condition on observable information, i.e. do not distinguish
between trading days.
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rejected. More specifically the differences are the following: First, on days with

macro news releases the vol curve is steeper at the short end and more back-loaded

than on policy days. This indicates that markets expect the Fed to only sluggishly

adjust the short rate in response to new information and constitutes evidence of

policy inertia. Second, among the different types of news I consider, new employ-

ment reports are by and far the most important source of interest rate volatility.

Third, revisions show much stronger comovement across horizons on macro news

days than on policy day. This makes intuitive sense because on days with macro

releases there is only one piece of new information, the data surprise. On pol-

icy days, on the other hand, there are several pieces of news – the current target

choice and the information in the FOMC statement – which independently affect

the market’s short rate expectations.

The fact that revisions in response to policy events come in various shapes

parallels the findings of Gürkaynak et al. (2005b) who use principal component

analysis to show that more than one factor is needed to describe monetary policy

actions. Based on my model we can parsimoniously capture what happens on a

policy day to the entire term structure, namely by describing the revision to the

entire expected short rate path caused by the policy action. This is an improvement

upon the target and path factors that Gürkaynak et al. (2005b) use to describe

policy events, since it incorporates no-arbitrage and thus enables us to predict

changes in yields and forward rates at any maturity. Based on this insight I

develop a horizon-specific policy surprise measure and show its empirical success

in predicting changes in the yield curve for U.S. treasury securities from near-term

money market futures.

Finally the model provides a convenient and theoretically appealing frame-

work for estimating the impact of macroeconomic announcements on the terms

structure. Importantly, my estimates of the “term structure of announcement ef-

fects” are consistent with no-arbitrage. The key empirical findings: First, the case

for policy inertia is strong. And second, the hypothesis of no response of far-ahead

forward rates, which the DTSM allows me to test, is rejected for most announce-

ments, supporting the “excess-sensitivity” evidence documented in Gürkaynak et
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al. (2005a).

The paper is structured as follows: The model is introduced and estimated

in Section 1.2. Section 1.3 presents estimates of the term structure of volatility

conditional on the type of news event. Section 1.4 assesses comovement of rate

changes in response to news events. In Section 1.5, after illustrating some specific

instances of policy actions, I develop a new measure for monetary policy surprises

and document its empirical success. Section 1.6 estimates the effects of macroeco-

nomic data surprises on the term structure. Section 1.7 concludes.

1.2 Term structure model and estimation

1.2.1 Risk-neutral dynamics

Denote the rate for an overnight default-free loan between days t and t+ 1,

the short rate, by rt.
2 It is assumed to be determined by three latent factors:

rt = X1t + X2t + X3t. Assuming absence of arbitrage implies that there exists a

risk-neutral measure Q that prices all assets. The factor dynamics under Q are

specified as follows:

X1t = X1,t−1 + εQ1t

X2t = ρX2,t−1 + εQ2t

X3t = θ1X3,t−1 + θ2X3,t−2 + εQ3t

εQt
Q∼ N(0, Vr(t)), EQ(εQr ε

Q
s

′
) = 0, r 6= s

where εQt = (εQ1t, ε
Q
2t, ε

Q
3t)
′ is a martingale difference sequence (m.d.s.) under Q,

and the parameters ρ, θ1 and θ2 satisfy stationarity restrictions.3 Conventional

DTSMs usually include three factors, since these explain the vast majority of

2I abstract from the facts that the overnight rate in the U.S., the effective fed funds rate,
deviates from the target set by the monetary authority, and that the target has a step-function
character. Both simplifications are inconsequential since I do not include observations of the
short rate – inference is based on observed futures rates, which corresponds to average forward
rates over a month (fed funds futures) or a quarter (Eurodollar futures).

3For the AR(1) process the restriction is |ρ| < 1. For the AR(2) process stationarity requires
|θ2| < 1, θ2 + θ1 < 1 and θ2 − θ1 < 1, see Marmol (1995). I also assume that the roots of the
AR(2) process are real.
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variation in bond yields (Litterman and Scheinkman, 1991; Balduzzi et al., 1996).

The specification here implies that the three factors are a priori identified as level,

slope and curvature, in the spirit of Christensen et al. (2007). The first factor,

which follows a random walk, corresponds to a level factor since shocks change

expected future short rates at all horizons by the same amount. Empirically, far-

ahead forward rates show a lot of variability (Gürkaynak et al., 2005b), which

suggests that the short rate should have a unit root under Q, since otherwise the

model would imply that these forward rates are close to constant. The second

factor serves as a slope factor since the effect of a shock declines with the horizon.

The third factor has a hump-shaped impulse-response function, provided that the

roots are sufficiently close to one. As noted by Backus et al. (1999), yield dynamics

are hump-shaped, which is also evident from the shape of the term structure of

volatility (Piazzesi, 2005). Hump-shaped dynamics can be generated either by

an AR(2) factor4 or by having a “central tendency” structure, where one factor

reverts to another (Balduzzi et al., 1998; Christensen et al., 2007). Compared to

existing models, our factor dynamics are most similar to those of Christensen et

al. (2007), with the differences that their model includes a central tendency and is

in continuous time.

The key novelty in the above specification is the inclusion of observable

variance regimes: The shocks εQt have a time-varying variance-covariance matrix

Vr(t). The function r(t) maps the calendar day t into one of R different variance

regimes, according to the type of news that take place on that day. Specifically,

we will set R = 4, the four regimes being FOMC announcement days, BLS em-

ployment report days, CPI/PPI days, and days with new retail sales data.5 This

formalizes the idea that market participants know what type of news occur on each

day, thus I speak of “observable variance regimes”. Note the difference between

this approach and “regime-switching” term structure models such as the ones of

4Another example of a term structure model that includes an AR(2) factor is the one of Startz
and Tsang (2007).

5This assumes that only one event takes place on a given day, whereas in reality some days
have more than one major news events. However these days are few in number, hence this
simplifying assumption is inconsequential. The use of intraday data is a way to improve the
precision of the estimates, however I leave this to future work.
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Bansal and Zhou (2002) and Monfort and Pegoraro (2007): Those models treat the

state variable that determines the regime as unobservable, whereas in our context

everybody can observe which type of news event takes place on a given day and

thus knows the value of the state variable. This greatly simplifies modeling and

estimation, and is an obvious modeling choice if the goal is to condition on the

different sources of news.

1.2.2 Revisions to short rate expectations

The expected path of the short rate under Q determines the entire term

structure at a specific date. For the forward rate contracted at date t for a loan

from t+n to t+n+1 we have fnt = EQt rt+n, up to Jensen inequality terms.6 Yields,

forward rates, and money market futures rates, which will be considered in more

detail below, are simply averages of these one-day forward rates. New information

that moves the term structure is captured by the revision to the expected short

rate path under Q, that is

{(EQt − E
Q
t−1)rt+n}∞n=0,

which I simply call a “revision”. Intuitively, this corresponds to the change in the

forward rate curve, since fnt − fn+1
t−1 = (EQt − EQt−1)rt+n. Changes in all interest

rates are determined by the revision on that day, which incorporates both changes

in short rate expectations under the physical measure and changes in risk premia.

The above specification of the Q-dynamics leads to a simple closed-form

solution for the revision:

(EQt − E
Q
t−1)rt+n =

 εQ1t + ρnεQ2t +
φn+1

1 −φn+1
2

φ1−φ2
εQ3t φ1 6= φ2

εQ1t + ρnεQ2t + (1 + n)φn1ε
Q
3t φ1 = φ2,

(1.1)

where φ1 and φ2 are the roots of the characteristic equation of the AR(2) process.

The derivation of these expressions is given in Appendix 1.8.1. We see that a shock

6We can safely ignore these since we exclusively consider daily changes in interest rates,
e.g. fn

t − fn+1
t−1 . Thus we ignore only the difference in the Jensen inequality terms for maturities

n and n+ 1, which is negligibly small. Furthermore for money market futures rates there are no
Jensen inequality terms, since their payoffs are linear functions of future short rates.
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to X1t leads to a parallel shift in the term structure, that shocks to X2t die out

exponentially, and that shocks to X3t lead to a hump-shaped revision. Thus the

shocks are naturally labeled level, slope and curvature shock, respectively.

1.2.3 Physical distribution of revisions

The revision is a linear combination of the risk-neutral innovations:

(EQt − E
Q
t−1)rt+n = b′nε

Q
t ,

where bn denotes the loadings on the factor shocks for the revision at horizon

n, given in equation 1.1. Thus under Q, revisions and thus rate changes are

Gaussian m.d.s. with variance b′nVr(t)bn. If we were to specify a pricing Kernel,

this would pin down the change of measure and provide us with the physical

distribution of rate changes. This paper is not concerned with identifying and

estimating risk premia, thus we can abstain from choosing a pricing Kernel and

from estimating the physical factor dynamics, which is statistically challenging

(Kim and Orphanides, 2005). However in order to estimate the model, we still

need to specify the distribution of revisions under the real-world, physical measure

P.

The presence of risk premia generally leads to predictability of rate changes.

Defining the forward risk premium Πn
t = (EQt − Et)rt+n we have

(EQt − E
Q
t−1)rt+n = (Et − Et−1)rt+n + Πn

t − Πn+1
t−1 .

Whereas the first component, the revision to P-expectations, is a m.d.s. under P,

the change in forward risk premia, Πn
t − Πn+1

t−1 , introduces drift and serial correla-

tion.7 In order to deal with the drift I allow the revisions to have non-zero mean,

which can differ across maturities.

With regard to serial correlation, first note that the autocorrelation of daily

changes in money market futures has been found to be very small and economically

7For the case of constant risk premia this term is a constant, possibly non-zero. If forward risk
premia are on average increasing with maturity, which is intuitively and empirically plausible,
we have E(Πn

t − Πn+1
t−1 ) < 0. In general we cannot assume that either mean or serial correlation

are zero.
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insignificant (Hamilton, 2007). More importantly though, the sample I use consists

only of days with particular news events. Since between any two event days there

are numerous days that are not included in the sample, rate changes in my sample

do not exhibit any significant serial correlation (evidence not shown). Thus we can

safely assume that rate changes are serially uncorrelated.8

Hence we obtain the following distributional properties of the revisions un-

der P:

(EQt − E
Q
t−1)rt+n = an + b′nεt

εt ∼ N(0, Vr(t)), E(εrεs
′) = 0, r 6= s

Note that the physical innovations εt have the same variance-covariance matrix

as the risk-neutral innovations, a consequence of the diffusion-invariance principle

(Piazzesi, 2009). In sum, under the physical measure, revisions are Gaussian with

mean an, no serial correlation and variance b′nVr(t)bn.

1.2.4 Money market futures

This paper uses money market futures, specifically federal funds futures and

Eurodollar futures, for parameter estimation and all subsequent empirical analysis.

These instruments are very liquid and provide a detailed picture of the forward rate

curve. News events are quickly reflected in futures rates, which is why these are

often quoted in the financial press. Another advantage over using treasury yields

is that we do not need to extract a zero curve and forward rates from observed

bond prices, since rates for a fixed set of maturities are directly available.

Federal funds futures, which were introduced by the Chicago Board of Trade

(CBOT) in October 1988, settle based on the average effective fed funds rate over

the course of the contract month. Denote the futures rate at time t of the i-month-

ahead contract by FF
(i)
t . Letting m(t) be the day of the month corresponding to

calendar day t, and M the number of days in a month (for simplicity assumed to

be 31), settlement is based on the average short rate from t + iM −m(t) + 1 to

t + (i + 1)M − m(t), the settlement rate. The cost to enter the contract is zero

8Even if there was some serial correlation and our model was misspecified in this respect, we
could still give a Quasi-Maximum-Likelihood interpretation to our estimates.
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and the payoff is proportional to the difference between the futures rate and the

settlement rate.9 Hence the pricing equation is

0 = EQt

FF (i)
t −

1

M

(i+1)M−m(t)∑
n=iM−m(t)+1

rt+n

 (1.2)

and the daily change in the futures rate is accordingly determined by the average

revision over the relevant horizon:

∆FF
(i)
t = M−1

(i+1)M−m(t)∑
n=iM−m(t)+1

(an + b′nεt) = µFFi + hFFi,t
′εt (1.3)

where µFFi and hFFi are the averages of an and bn, respectively. Note that µFFi is

a parameter to be estimated, whereas hFFi,t is a vector of loadings determined by

the parameters of the risk-neutral dynamics and depending on t through the day

of the month.10 An explicit expression for hFFi,t is given in Appendix 1.8.2. I use

the one- to six-month-ahead fed funds futures contracts, denoted by FF1 to FF6

– contracts of longer maturity are not sufficiently liquid.

Eurodollar futures show deep liquidity for contracts expiring several years

in the future. These contracts settle based on the 3-month LIBOR rate on the

settlement date, which is the last day of the relevant quarter.11 Denote by ED
(i)
t

the rate of the i-quarter-ahead Eurodollar futures contract.12 LettingQ be the days

in a quarter (taken to be equal to 91) and q(t) the day of the quarter for calendar

day t, the pricing equation is 0 = EQt

(
ED

(i)
t − Lt+iQ−q(t)

)
, where Lt+iQ−q(t) is the

3-month LIBOR rate at the end of the relevant quarter. If we abstract from the

9Note that we ignore the effect of marking-to-market, i.e. the fact that payments are made
before settlement, however the evidence of Piazzesi and Swanson (2008) indicates that this effect
is likely to be negligible in our context.

10Both means and loadings depend on the day of the month m(t). For µFFi it is safe to ignore
this dependence since we simply want to capture the average rate change for each contract.

11For more details on Eurodollar futures please refer to
http://www.cmegroup.com/trading/interest-rates/stir/eurodollar contract specifications.html
(accessed 09/15/09).

12To clarify my terminology: The “one-quarter-ahead” contract, ED1, is a bet on LIBOR at
the end of the current quarter, which is determined by the average expected short rate over the
next quarter. This next quarter should be understood as the settlement quarter, since it is the
expected value of the short rate over the course of this quarter that matters for the payoff.
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credit risk inherent in LIBOR loans13, we have Lt = 1
Q

∑Q−1
j=0 E

Q
t rt+j. Hence

0 = EQt

ED(i)
t −

1

Q

(i+1)Q−q(t)−1∑
n=iQ−q(t)

EQt rt+n

 (1.4)

which closely parallels equation 1.2, thus the rate changes are given by essentially

the same formula as for fed funds futures – M is replaced by Q and m(t) by q(t).14

I denote the mean rate change by µEDi and the loading for this contract by hEDi,t.

The contracts I consider are the ones that settle on the last day of the current and

the next 15 quarters, denoted by ED1 to ED16.

1.2.5 Data and Estimation Method

The sample contains days between October 1988 (when fed funds futures

started trading) and June 2007 (just before the recent turmoil in financial mar-

kets began) that fall into one of four regimes. The first regime contains days with

FOMC announcements15, and the other three regimes are BLS employment re-

ports, CPI/PPI releases, and releases of retail sales numbers. Days that would

fall into more than one category are excluded. This results in a sample with 799

days, with 148 days in the first, 215 days in the second, 316 days in the third, and

120 days in the fourth regime. I choose these specific four regimes in order to see

how policy actions and news about the employment situation, about inflation, and

about aggregate demand differ in their impact on the yield curve.

The model parameters can be estimated using Maximum Likelihood Es-

timation (MLE). The focus on rate changes and the assumed absence of serial

correlation leads to a particularly simple estimation procedure. As is common in

term structure model estimation I introduce idiosyncratic pricing errors, denoted

13The credit risk resulting from commitment to a specific counter-party for three months
instead of rolling over daily loans at the fed funds rate is measured by the LIBOR-OIS spread.
Before August 2007 this spread was small and little volatile, hence we can neglect credit risk in
our analysis.

14There is the slight difference that the relevant short rate horizon for Eurodollar futures starts
one day earlier, the reason being that this horizon starts at the end of the quarter preceding the
settlement quarter, whereas for fed funds futures it starts at the first day of the settlement month.

15Until December 2004 these are identified by Gürkaynak et al. (2005a). For the remaining
period we take the days of the FOMC press release.
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by ηt, because otherwise a low-dimensional factor model predicts a singular co-

variance matrix for higher-dimensional data. Denote by Yt the vector with daily

changes in the futures rates, measured in basis points: Yt = (∆FF
(1)
t , . . . ,∆FF

(6)
t ,

∆ED
(1)
t , . . . , ∆ED

(16)
t )′. The number of measurements is thus m = 22. The

empirical specification is

Yt
(m×1)

= µ
(m×1)

+ H ′t
(m×3)

εt
(3×1)

+ ηt
(m×1)

, (1.5)

where µ = (µFF1, . . . , µFF6, µED1, . . . , µED16)′, and Ht = (hFF1,t, . . . , hFF6,t, hED1,t,

. . . , hED16,t). The pricing errors are assumed to be a Gaussian vector m.d.s.,

independent of εt, with contemporaneous covariance matrix R which is diagonal.

Under these assumptions Yt is serially uncorrelated and multivariate normal with

mean µ and covariance matrix Σt = H ′tVr(t)Ht +R. The log-likelihood function is

L =
T∑
t=1

−1

2
{T log(2π) + log(|Σt|) + (Yt − µ)′Σ−1

t (Yt − µ)}.

For the purpose of numerical optimization I reparameterize L in order to ensure

that the estimates are within the admissible parameter space: A Cholesky decom-

position ensures positive definiteness of Vr in each regime. For the autoregressive

root I take ρ = λ2/(1 + λ2), and similarly for φ1 and φ2. For the volatilities of the

pricing errors I let ση,i = eζi .

The four shock-covariance matrices V1 to V4 each have six unique elements,

which amounts to 24 parameters. The other parameters to estimate are φ1, φ2, and

ρ, as well as the 22 error variances and 22 means. The benchmark specification

imposes φ1 = φ2 = ρ and thus has 69 free parameters. The large number of param-

eters leads to a significant but manageable computational burden when numerically

maximizing L. Optimization is performed using simplex and a gradient-based al-

gorithms in turn. I try several different starting values and each time reach the

same global optimum. Thus, despite the large number of parameters, MLE is eas-

ily feasible. This stands in contrast to the problems that come with estimating

the physical dynamics of a DTSM, which make it difficult to perform MLE in that

context, as reported for example by Kim and Orphanides (2005), Duffee and Stan-

ton (2008) and Duffee (2009). The fact that we focus on cross-sectional dynamics
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(Q) and do not try to estimate dynamic properties of the short rate (P) makes

estimation a lot easier.

1.2.6 Parameter Estimates

Table 1.1 and Figures 1.1 and 1.2 show the estimation results. The table

reports the estimates for ρ and for the shock volatilities and correlations in each

of the four regimes. It also reports the energy contents of the three principal com-

ponents for each shock covariance matrix Vr, as well as the log-likelihood values

for the benchmark version of the model and for more and less restricted versions.

I report in parentheses robust Quasi-Maximum-Likelihood standard errors as sug-

gested by White (1982), obtained using numerical approximations for gradient and

Hessian.

Figure 1.1: Estimated means of futures rate changes

Estimated means of rate changes of money market futures, together with

95%-confidence intervals based on Quasi-Maximum-Likelihood standard errors, for

benchmark specification of the model.

The shocks show important differences in variability and comovement across

regimes. The shock variances are highest on days with a new employment report,
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Figure 1.2: Estimated volatilities of pricing errors

Estimated volatilities of pricing errors together with 95%-confidence intervals based on

Quasi-Maximum-Likelihood standard errors, for benchmark specification of the model.

and lowest on days with a new CPI or PPI report. Thus the release of a new

employment report seems to have a bigger impact on short rate expectations than

any other type of news event. Section 1.3 will consider vol curves and visualize the

differences between regimes in terms of variability.

With regard to differences in comovement, the correlation between the

shocks is generally higher on days with economic news than on policy days. This

becomes particularly clear when we decompose the covariance matrix in each

regime into its principal components (PCs) and show the energy content of each

one: The first PC on policy days accounts for about 85% of the variance of the

shocks, whereas for days with macro news the first PC accounts for 92-97% of the

variability – factor shocks caused by macro news show stronger co-movement than

shocks in response to policy news. Hence the revisions across maturities are more

strongly correlated on news days, meaning that on days with macro news revisions

tend to have more similar shapes than on days with policy actions. Section 1.4

will go into more detail about the differences in comovement that are implied by
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these estimates.

Are the differences between the news regimes statistically significant? In

order to test the hypothesis V1 = V2 = V3 = V4 the model is re-estimated under this

restriction (“equal Vr’s”). Imposing this restriction leads to a significantly worse fit

for the data. The log-likelihood is lower by about 187, which implies a likelihood-

ratio statistic of 374. The number of restrictions and thus the degrees of freedom

of the relevant Chi-square distribution is 18, leading to a minuscule p-value, hence

we strongly reject the null of equal covariance matrices across regimes. The in-

novations to the term structure factors, i.e. the sources of interest rate volatility,

have significantly different properties depending on the type of news causing them.

In other words, the different sources of news show significant heterogeneity with

regard to their impact on the term structure of interest rates.

For the AR(1) coefficient ρ we obtain an estimate of 0.9973. It is close

to one because otherwise shocks to the transitory components would die out very

quickly. The restriction that the roots of the AR(2) process, φ1 and φ2, are equal

to ρ is not rejected, as is evident from the log-likelihood value for the unrestricted

version of the model (reported on the bottom as “different roots”).

Figure 1.1 shows estimates of the elements of µ, the mean rate changes

for each contract, together with 95%-confidence intervals. All are significantly

negative, ranging from -0.2 to -1. This negative drift in forward risk premia makes

sense based on the intuition that term premia are on average increasing with

maturity, because rate changes imply a decrease in maturity by one day and thus

a decrease in the average risk premium. The restriction that the mean rate change

across futures contract is the same (“equal means”) leads to a likelihood-ratio

statistic of 50 and hence is rejected. The restriction that µ = 0 (“zero means”)

leads to a test statistic of 58 and is also rejected.16

Figure 1.2 shows point estimates and 95%-confidence intervals for the vola-

tilities of the pricing errors. They generally decrease with maturity: The model

fits the observed rate changes increasingly well for longer maturities.

16The 5%-critical values are 32.7 and 33.9, respectively, corresponding to degrees of freedom
of 22 and 23.
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1.2.7 Reality check: Persistence of the federal funds rate

Does the specification of the short rate as difference stationary make em-

pirical sense? Do the parameter estimates imply dynamic properties for the short

rate that accord with the evidence? As a reality check for the plausibility of model

specification and estimation results I compare the model’s implications with the

empirical properties of the effective federal funds rate. The empirical autocovari-

ance function of quarterly changes in the average fed funds rate, measured in basis

points, is calculated over the sample horizon Oct-1988 to Jun-2007 – using quar-

terly averages avoids the problems that come with the discrete nature of changes

in the target. The model-implied autocovariance function of quarterly changes in

the average short rate is calculated by means of a simulation based on the model

specification and estimates.17

Figure 1.3 shows the result. It turns out that the model-implied variability

and persistence properties correspond well to those of the actual short rate. The

variance is roughly the same, around 2000. The first autocovariance is a bit higher

in the data, but in the ball-park of the one implied by the model – both are

between 1000 and 1500. Both autocovariance series remain positive until five lags

and then turn negative. Since signs and even magnitudes of autocovariances are in

accordance with data on the federal funds rate, my specification for the short rate

and its model-implied properties based on estimates using money market futures

appear to be plausible.

1.3 Term structures of volatility

The term structure of volatility, or “vol curve”, captures the volatility of

rate changes across maturities. By allowing for heterogeneity in the sources of

17There are some caveats, neither of which undermine the usefulness of this exercise: First the
model needs to be estimated on all trading days. The slight serial correlation of rate changes
that was mentioned above is ignored in this estimation – its magnitude is very small and not
economically significant anyways. Furthermore when re-estimating the model I only use one
variance regime for simplicity, since here we only care about the average short rate dynamics
across regimes. Finally the change of measure is ignored: The short rate process is simulated as
if the risk-neutral and physical measure coincide.
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Figure 1.3: Empirical vs. model-implied autocovariances of the short rate

Autocovariances of changes in the average quarterly short rate. Empirical

autocovariances are for the effective federal funds rate from Oct-1988 to Jun-2007.

Theoretical autocovariances are based on the model-implied short rate process.

interest rate volatility, the model in this paper allows for a conditional assessment

of the term structure of volatility: We can estimate different vol curves for each

news regime, since the shock covariance matrix is allowed to vary depending on

the news regime. The covariance matrix of futures rate changes is given by Σt =

HtVr(t)H
′
t + R. Denote the covariance matrix of futures rate changes in regime r

by Σr.
18 The model-implied vol curve corresponds to the square root of Σr.

Figure 1.4 shows for each of the four different news regimes the empirical

and model-implied volatilities of money market futures rates. The first row shows

vol curves for Eurodollar futures and the second row for fed funds futures. Each

of the four columns corresponds to a specific news event. The panels show sample

standard deviations of daily rate changes in basis points for each contract, together

with 95%-confidence intervals based on a Chi-square approximation. The thick

black lines are the model-implied volatilities.

18Since the loadings Ht and thus Σt depend on the day of the month and on the day of the
quarter, these need to be averaged out in order to obtain Σr.
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The term structure model successfully captures the empirical volatilities:

The shapes of the vol curves are closely replicated by the model, with model-

implied vol curves generally within the confidence intervals and close to the point

estimates of the empirical vol curves. The model specification allows enough flex-

ibility to capture the hump shape of the vol curve (the back and the tail of the

snake, see Piazzesi, 2001) and high volatilities of long forward rates (Gürkaynak

et al., 2005b).

1.3.1 The effects of monetary policy

On the days in the first news regime policy actions by the Federal Reserve

were the only major source of news. Interest rates moved when the FOMC’s de-

cision about the target or the content of the FOMC statement surprised market

participants. The vol curves in the first column of Figure 1.4 visualize the vari-

ability of revisions caused by policy actions and thus inform us about the effects

of monetary policy.

The Fed’s actions clearly had a significant impact on interest rates across

the entire maturity spectrum, which is evident from the large variability of revisions

at all maturities on policy days. Particularly striking is that the Fed, by means

of its actions and words, can affect the long end of the term structure as much as

it can affect the short end: The longest Eurodollar futures contract (ED16) has a

maturity of about four years and shows similar variability (about 7 basis points)

as the fed funds futures contracts, which represent the short end of the vol curve.

The impact of policy actions on short rate expectations is strongest at a horizon

of one to two years, resulting in a distinct hump-shape.

These findings contrast with the conclusion suggested by Kuttner (2001)

and Gürkaynak et al. (2005a) that the impact of monetary policy declines with

maturity. These authors perform regressions of yield changes at different maturities

on policy surprise measures, and find that regression coefficients and explanatory

power (R2) decline with maturity. However, this regression approach does not

describe the impact of policy actions on the term structure, but instead estimates

the correlation of rate changes at different maturities. Section 1.4.2 will show that
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my model reproduces these results, for which I will provide a new interpretation.

The bottom line is that Fed actions were highly effective in changing interest

rates at all maturities. Since it is crucial for the transmission mechanism that the

monetary authority can affect not only the overnight rate but also longer-term

rates, the results indicate that monetary policy had potentially important effects

on the economy.

1.3.2 Policy actions vs. macro news

Comparing interest rate volatility across news regimes, some important

differences with regard to the level and the shape of the vol curves emerge. With

regard to the level of volatility, futures rates are most volatile on days with a new

employment report, evidenced by the high level of the vol curves in the second

column. Evidently new information about the labor market is the biggest source

of interest rate volatility, more important than news about monetary policy, the

price level, or aggregate demand.

Considering the shape of the vol curves there is a striking difference between

volatility caused by policy actions and volatility caused by macroeconomic news:

On days with macroeconomic data releases the vol curves are steeply increasing at

the short end and very back-loaded (the long end is at a higher level than the short

end), resulting in a pronounced hump shape. On policy days however, futures rates

at near-term and far-ahead horizons have similar volatility, and the hump shape is

much less pronounced.

The shape of the vol curves corresponding to macro news constitutes evi-

dence for policy inertia, the concept that changes in the stance of monetary policy

are implemented by the Fed by slowly adjusting the target rate towards the new

desired level. Intuitively the hump shape is related to policy inertia because evi-

dently market participants revise their short rate expectations by much less over

the coming months than over longer horizons, indicating that they expect the Fed

to act slowly in response to the news. Furthermore Piazzesi (2001) showed how

the back of the snake, i.e. the hump shape, can be attributed to policy inertia in

the context of a term structure model that incorporates monetary policy. Thus
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my evidence, the fact that macro news cause hump-shaped volatility, is distinctly

in favor of policy inertia.

Notably my evidence stands in contrast to findings by Rudebusch (2006).

We start from the same premise, namely that “changes in the path of expected

future interest rates following the release of news about the state of the economy

should reveal the degree of interest rate smoothing19 because financial markets will

expect an inertial central bank to distribute the policy rate changes over several

periods” (p.26). The vol curves I estimate thus support the notion of policy inertia.

Rudebusch however, based on a different empirical approach, concludes that the

data speaks against policy inertia. Appendix 1.8.3 shows additional evidence in

favor of policy inertia based on an approach more directly comparable to the one

of Rudebusch and discusses possible reasons for the differences in our results.

The fact that vol curves on policy days are flatter and less hump-shaped

than on days with macro news makes intuitive sense: On policy days, the Fed every

so often surprises market participants with its choice of the target, as evidenced

by Kuttner (2001), creating variability at the very short end of the term structure.

This source of volatility pushes up the short end of the vol curve and accounts for

the much flatter shape on policy days. My empirical analysis shows that the Fed

not only creates volatility at the short end, but also has a significant impact on

rates with longer maturities.

1.4 Comovement of forward rates

My framework allows us to compare the effects of news events also in terms

of the comovement of rates at different maturities, since covariances are regime-

dependent just like the vol curve. Stronger or weaker correlations across maturities

tell us whether the revisions caused by a specific news event always look similar

or whether they are rather varied in shape, and thus indicates whether there seem

19Rudebusch uses the terms “interest rate smoothing” and “policy inertia interchangeably”,
whereas others, such as Piazzesi (2005) denote by “interest rate smoothing” the fact that the
short rate is persistent, and use the term “policy inertia” to describe autocorrelated changes in
the target federal funds rate, i.e. an inertial adjustment to the level desired by the Fed.
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to be one or more independent sources of new information.

1.4.1 Principal component analysis

The comovement of the shocks to the term structure factors, measured by

the off-diagonal elements of Vr, was shown in Section 1.2.6 to be stronger on days

with macro news than on days with policy actions. The first PC accounts for the

majority of variation in the shocks in the former case, whereas in the latter case

the second PC contributes considerably to the variation.

Considering futures rates instead of shocks, note that the off-diagonal ele-

ments of the variance-covariance matrix of futures rate changes, Σr, measure the

model-implied comovement of rates at different maturities, conditional on the news

regime. A principal component analysis of this matrix20 leads to the same conclu-

sion as an analysis of the shock covariance matrix Vr. Stopping rules that help to

determine the number of components describing common variance (Peres-Neto et

al., 2005) imply that one component suffices on days with macro news, but that

we need at least two components on policy days.21

The strong comovement of rate changes across the maturity spectrum im-

plies that revisions caused by macro news usually come in similar shapes. Thus

there seems to be one underlying source of volatility – a single factor is causing

revisions. On the other hand the lower comovement on policy days indicates more

varied shapes of revisions and thus independent sources of interest rate movements.

This is consistent with the results of Gürkaynak et al. (2005a), who find that two

factors are required to describe the variation in yields on days with policy actions.22

However my analysis goes further in that it contrasts the effects of policy actions

with the effects of macro news.

What causes the differences in comovement between regimes? If a particular

news event usually has several pieces of new information which affect different parts

20I also performed a principal component analysis of the empirical covariance matrix of the
futures rate changes, conditional on the same news regimes. The same conclusions applied.

21The results are omitted for sake of brevity but can be obtained from the author upon request.
22These authors use a PCA of the empirical covariance matrix of changes in money market

futures.
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of the term structure, then comovement in rate changes will be lower than for a

news event with only one piece of information. On policy days markets learn the

new target rate chosen by the Fed, as well as infer the Fed’s intentions about future

policy from the FOMC statement. The target decision affects the short end of the

term structure, whereas the information in the statement affects medium and long

maturities. This can create a variety of possible revisions to the expected short

rate path, as I will further exemplify in Section 1.5.1, leading to lower comovement

than on days with macro news.

1.4.2 The regression approach reconsidered

The term structure model can be used to shed new light on the Kuttner-type

regression approach common in the literature (Kuttner, 2001; Poole and Rasche,

2000; Gürkaynak et al., 2005b,a). I show that the model’s implications are con-

sistent with the regression results. Furthermore I provide a re-interpretation of

the regression approach and use it to get another perspective on the differences

between news regimes.

Let’s consider regressions of rate changes in Eurodollar futures on a fed

funds futures contract. I will use the FF3 contract, since it always has at least

one FOMC meeting before delivery23 and generally is a stronger measure of near-

term policy surprises than the shortest contracts. This measure of the near-term

policy surprise is closely related to the “Kuttner-shock”, which is a scaled change

in the spot-month fed funds futures contract. As is common in the literature, I

separately regress, for each Eurodollar futures contract, the futures rate change on

the surprise measure.

Figure 1.5 shows, separately for each news regime and for each contract,

the estimated response coefficients with 95%-confidence intervals based on White

standard errors, together with model-implied response coefficients. Also shown

are empirical and model-implied R2 for each regression. Appendix 1.8.4 shows the

calculations underlying model-implied coefficients and R2.

23Because the fed funds rate has a step-function character and only changes its level essentially
every six weeks, the specification for the shortest fed funds futures contracts suffers from the
problem that no rate change might occur until delivery.
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The model-implied results closely correspond to the empirical results –

model-implied regression coefficients are within the empirical confidence intervals,

and model-implied and empirical R2 are very close to each other.24 Thus, by cap-

turing the second moments of revisions, the model in a sense encompasses the

regression approach common in the literature.

The correlation between the near-term policy surprise and other rates al-

ways decreases with maturity. This makes intuitive sense: The surprise measure

corresponds to the average revision of expected short rates over a specific horizon

at the short end of the term structure. The dependent variables measure the aver-

age revision over longer horizons. Since the short rate has transitory components,

revisions to expectations generally are less correlated the further apart the hori-

zons are. Hence the finding of Kuttner-type regressions that explanatory power

decreases with maturity are not surprising at all.

That R2 decreases more quickly for revisions caused by policy actions than

for macro news reflects our previous finding of generally lower comovement on

policy days.

With regard to the regression coefficients, an interesting difference between

policy news and macro news emerges. In the case of policy surprises the regression

coefficients are generally decreasing with maturity, whereas for macro news they

show a distinct hump-shape. We saw above that vol curves to some degree are

hump-shaped. For the policy news regime this hump shape is not reflected by the

response coefficients. This indicates that the near-term policy surprise does not

capture the effect of policy actions on the term structure, corresponding to our

result that one factor is not enough to capture policy news. However, the near-

term surprise measure apparently does a decent job in signaling the entire revision

resulting from macro news.

24This holds for regressions not only for Eurodollar futures rates but also for yields (as in
Kuttner, 2001) and forward rates (as in Gürkaynak et al., 2005b), as evidenced by additional
calculations which I do not report here for sake of brevity.
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1.5 Measuring monetary policy surprises

This section considers in more detail the revisions to short rate expectations

that are caused by policy actions, i.e. monetary policy surprises.25

First the consideration of some specific days will show the variety of possible

policy surprises. Then I undertake the task of predicting changes in long-term in-

terest rates using short-term money market futures, which has been at the heart of

numerous previous studies, using a new measure of policy surprises that naturally

follows from the framework of this paper.

1.5.1 Specific examples of monetary policy surprises

To capture a monetary policy surprise we need to describe the revision to

the expected short rate path. The model allows to parsimoniously describe the

revision in terms of the values of the innovations to the term structure factors.

Based on observed rate changes we can infer these factor shocks using a linear

projection, as described in Appendix 1.8.5.

Figure 1.6 shows the impact of policy actions on four different dates. It

shows actual changes in Eurodollar futures rates and fitted changes implied by

the revision on that day. The dotted horizontal line indicates how the long-run

expectation of the short rate has changed in response to the policy action. On all

four days the target federal funds rate was increased by 25 basis points. On the

dates shown in the top row, the FF1 rate increased by 10 and 8 bps respectively,

whereas on the dates shown in the bottom row it did not change at all.

The revisions have very different shapes, indicating that the impact of mon-

etary policy on the term structure differed significantly, which fits in with the evi-

dence from above. Since Kuttner (2001) we know that the target rate change is not

a useful measure for the policy surprise, and our graphs confirm this. Furthermore,

the change in a near-term fed funds futures contract is not a good indication of

what happens to the term structure either, evidenced by the differences between

25The difference between “policy surprise” and a “policy shock” is that while both are unan-
ticipated, the latter is also exogenous. Clearly the changes in interest rates caused by policy
actions are endogenous to the current economic situation.
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the left and right column. This exemplifies the conclusion of Gürkaynak et al.

(2005a) and our evidence from the previous section.

The bottom line is that the entire revision needs to be considered in order

to understand the effect of the policy action on a particular day. The strength

of the model is that it provides a detailed yet parsimonious description of the

policy surprise, imposing the absence of arbitrage. This is achieved by having an

underlying factor model for the short rate and imposing that rate changes must

be due to revisions to the expected short rate path.

1.5.2 A horizon-specific measure for policy surprises

Although we can describe the revision resulting from policy actions graph-

ically, many situations will require a numeric measure that summarizes the pol-

icy surprise. The state of the art is the approach of Gürkaynak et al. (2005a),

henceforth GSS, namely providing two numbers, the “target factor” and the “path

factor”, which are derived from near-term money market futures. These are sim-

ply the first two principal components of the futures rate changes, rotated such

that the target factor has a unit impact on the nearest-term futures contract and

that both factors have the same impact on the furthest-out futures contract. This

approach has several shortcomings: First, by being simply a statistical summary

of rate changes at the short end, it lacks the advantages of a term structure model.

In particular, it does not imply changes of rates at arbitrary maturities that follow

from no-arbitrage. Second, the measure is hard to interpret – it is not at all obvi-

ous what a specific number for the path factor means intuitively. Third, it leaves

open the question of how we can construct a univariate summary of the policy

surprise for a certain purpose.

The regression approach commonly employed in previous studies evaluates

the predictive power of policy surprise measures, derived from near-term money

market futures, for changes in yields and forward rates. There is a natural way

to construct such a policy surprise measure based on the framework in this paper:

First the entire revision to short rate expectations is inferred from changes in near-

term money market futures. Then the predicted change in the relevant interest rate
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can be calculated for any desired maturity. Importantly, this is possible because

the no-arbitrage assumption allows us to predict changes in any security price

that depends on the future path of the short rate. The predicted change can be

interpreted as a horizon-specific policy surprise measure.

I construct this measure of monetary policy surprises for each day in the

sample with a policy action. In order to back out the latent shocks and thus the

revision I use the contracts FF1 to FF6 and ED1 to ED4. To compare the results

with those of previous studies, I calculate the target and path factor of GSS, based

on the same information set. The dependent variables are daily changes in the

FF1 and ED4 futures contracts (to show the characteristics of target and path

factor), changes in constant-maturity treasury bond yields at maturities two, five

and ten years, as well as changes in six-month forward rates for loans maturing in

two, five and ten years. Note that for each dependent variable a different horizon

of the revision matters and thus a different surprise measure is constructed.

My sample contains the FOMC announcement dates from October 1988 to

June 2007, excluding as before observations with employment reports, CPI/PPI

news or new retail sales, and now also those that do not have yield data available.

This leaves us with 148 observations. Data on yields and forward rates are those

of Gürkaynak et al. (2006b).

Table 1.2 shows the results. Numbers in parentheses are White standard

errors. The first three columns provide regression coefficients and R2 for for re-

gressions using only the target factor. The next four columns show the same for

regressions using both target and path factors. These results are comparable to

table 5 of GSS – differences result from the sample choice and the information set

used to construct the factors. The first section of the table shows that in fact the

target factor has a one-for-one impact on the one-month-ahead fed funds futures

contract, that the factors are orthogonal, and that both factors have the same

impact on the longest futures contract.

In the last three columns we see the predictive power of the horizon-specific

policy surprise measure. First and foremost, the slope coefficients are all statis-

tically significant at the 1% level, and larger than those on either target or path
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factor. Treasury yields show a strong and significant response to policy surprises

when the surprise is measured as I suggest. Furthermore the explanatory power

of the univariate policy surprise measure that I constructed is about as large as

that of target and path factors taken together: A univariate regression with my

horizon-specific measure for policy surprises as explanatory variable explains the

same about of variation in yields and forward rates as a multivariate regression

using the target and path factors of GSS. This results from the fact that my policy

surprises are constructed specifically for the horizon under consideration.

The horizon-specific surprise measure proposed in this section can be used

to predict changes in other securities, based on the fact that it captures the impact

of the policy action on the expected short rate path. It does not only have intuitive

appeal, but also is empirically successful when compared to target and path factors

of GSS in terms of predictive power.

1.6 The impact of macroeconomic data surprises

Although it is well known that macroeconomic announcements have an

important impact on interest rates, “few studies examine their impact on the yield

curve as a whole,” as noted by Fleming and Remolona (1999b, p. 1). These authors

fill this gap by estimating the impact of announcements on yields of different

maturities, in order to estimate the “term structure of announcement effects.”26

They find hump-shaped responses and attribute this to policy inertia. Gürkaynak

et al. (2005b) perform a similar analysis, using forward rates instead of yields. The

hump shape is clearly visible in their results as well, furthermore long forward rates

react significantly to announcements. This is puzzling in the context of modern

macro-models, and is thus termed “excess-sensitivity puzzle”.

Regressing rate changes for different maturities separately on the macro

surprise measure is unsatisfactory because it does not impose absence of arbitrage.

26In the same paper the authors also develop a term structure model that incorporates the
macro surprises and thus provides estimates of announcement effects that are consistent with
no-arbitrage. My approach is fundamentally different in that no term structure factor is a priori
identified with macro announcements.
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This is not only a theoretical shortcoming, but also has two major practical dis-

advantages: First, without a term structure model that imposes no-arbitrage we

cannot say anything about instruments other then the ones included in the regres-

sions. Second, the separate regressions ignore cross-sectional restrictions which

can help improve statistical precision.

My framework can provide estimates of the term structure of announcement

effects based on a simple two-step procedure. The first step is to estimate the

impact of a specific macro surprise, say a one standard deviation positive surprise in

total payroll employment, on the latent factors. This is easily done by inferring the

shocks for each day with macro news from futures rate changes (see Appendix 1.8.5)

and regressing each of the three shocks on the macro surprises.27 The coefficients

on the surprise measure in each of the three equations tell us the values of the three

shocks that are typically associated with the specific macro surprise. In the second

step we use these values to calculate the revision that is implied by these shock

values. This “typical” revision corresponds to the term structure of announcement

effects. Importantly, it is consistent with the absence of arbitrage.

I use data on six different macroeconomic data releases: Non-farm payroll

employment, the unemployment rate, hourly earnings, Core CPI and Core PPI

(Bureau of Labor Statistics, BLS) as well as retail sales (Department of Com-

merce). The sample consists of all days with at least one data release between

October 1988 and June 2007, which did not have a policy action, i.e. an FOMC

announcement. The surprise component in the data release is calculated as the

difference between the actually released number and the value expected by the

market. To measure the market expectation I take the median market forecast,

which is compiled by Money Market Services the Friday before the announce-

ment.28 The impact of the data surprises is estimated by including a constant and

all six surprise measures on the right-hand-side of the regressions, thus if there are

27The regressions of all three shocks on the macro surprises constitute a system of Seemingly
Unrelated Regressions (SUR). Since the explanatory variables are the same in each regression,
equation-by-equation least squares is efficient in this case.

28Rigobon and Sack (2006) advance some points why this surprise measure might be contami-
nated with a considerable amount of noise. It might pay off to use intra-day data in this context,
and possibly to address the measurement bias problem with new econometric tools. I relegate
both issues to possible future work.
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several news releases on one day, their impact is singled out by estimating partial

effects.

Table 1.3 shows the numerical results, including the response coefficients

for the futures contracts FF2 and ED4 as well as for the two-year yield. Numbers

in parentheses are White standard errors. All announcements have a significant

effect on the short end of the term structure, evidenced by the response of the

FF2 contract. Also, all announcements with the exception of Core PPI lead to

significant responses of ED4 and the two-year yield. Based on these securities

alone, the evidence suggests that there is a significant impact of all of these macro

news on the term structure.

A more detailed and accurate answer requires consideration of the term

structure of announcement effects. This is captured numerically by the responses

of the shocks, shown in the last three columns of Table 1.3. The response of ε̂1t

measures the long-run response of short rate expectations, or “level impact” of

the news, the response of ε̂2t measures the “slope impact”, and the response of

ε̂3t measures the “curvature impact.” Figure 1.7 shows a graphical representation

of these result: It plots the model-implied responses for all Eurodollar futures

contracts, as well as the estimated long-run response. It also includes the esti-

mated response coefficients and confidence intervals for separate regressions for

each contract, corresponding to the conventional regression approach.

Comparing model-implied and unrestricted responses we see again that

the model’s restrictions seem empirically plausible: The no-arbitrage-restricted

responses closely correspond to the unrestricted estimates of the response coeffi-

cients.

One obvious pattern in the responses is a distinct hump-shape. Most an-

nouncements show this pattern, leading to increasing responses up to maturities

of one to two years, with a decreasing response thereafter. A curvature shock ε3t

leads to a hump-shaped revision, hence we see a hump shape in the term structure

of announcement effects in those cases where this shock responds significantly to

the data surprise.

Increasing response coefficients at the short end are evidence for policy
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inertia: The Fed is expected to act in response to the news, but not to immediately

and fully adjust the target. Rather it will implement the new stance of monetary

policy over a number of FOMC meetings, thus near-term responses are increasing

in the horizon. The results here about the impact of macro news on short rate

expectations add to the evidence on the term structures of volatility in Section 1.3

and make our case for policy inertia stronger.

Notably this analysis does not allow to distinguish between intrinsic and

extrinsic policy inertia, as defined by Rudebusch (2006): The fact that markets

expect a gradual response of the short rate to the macro news could be due either

to an intentionally gradual adjustment on the part of the Fed (intrinsic inertia),

or to persistence in the macroeconomic data (extrinsic inertia). If macroeconomic

news is likely to be followed by news in the same direction, then even if the Fed

immediately adjusts the fed funds rate to the new information, current macro news

will predict subsequent changes in the short rate. In a recent study Hamilton et al.

(2009) construct forecast of macro variables based on the news releases and in this

way find some evidence for a deliberately measured pace of target rate changes on

the part of the Fed, i.e. for intrinsic policy inertia.

The other important question is whether announcements move the long

end of the term structure. My model allows us to assess this systematically by

considering whether the release has a significant level impact. As we see in the

right-most column of Table 1.3 this is the case for all announcements but the

unemployment rate and hourly earnings. These two releases only move short rate

expectations up to medium maturities, then their impact dies out. The unrestricted

responses in Figure 1.7 also give some indication about the long-run impact of a

specific announcement, however my approach allows us to actually test whether

there are are long-run effects.

That most releases have a significant level impact is consistent with the

excess-sensitivity puzzle of (Gürkaynak et al., 2005b). Our finding corroborates

the evidence of these authors that forward rates do not revert to a natural rate, or

differently put that the short rate under Q is not mean-reverting.
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1.7 Conclusion

This paper introduces a coherent framework to describe and understand the

impact of news on the term structure. The key question is: What are the effects of

monetary policy surprises and macroeconomic announcements on interest rates?

The framework integrates different types of news allowing for heterogenous sources

of volatility. It is based on characterizing the revisions to the expected short rate

path under the risk neutral measure that are caused by different news events.

The take-aways are: (1) The conventional regression approach of separately

estimating the impact of some surprise measure on the rate of each instrument is

not the right apparatus to assess the impact of news on the term structure. (2)

Monetary policy actions affect the entire term structure, with the strongest impact

at medium maturities. (3) Different policy actions vary greatly in their impact on

interest rates, with these differences intuitively resulting from the independent

pieces of information that markets receive. When measuring policy surprises, we

thus need to take into account the relevant horizon. (4) Macroeconomic announce-

ments differ in their impact on short rate expectations, but most lead to a strongly

hump-shaped response and a significant long-run revision. (5) The evidence is

clearly in favor of policy inertia: Market participants revise their expectations of

the short rate in accordance with the Fed sluggishly adjusting its policy rate. (6)

The hypothesis that far-ahead forward rates do not move in response to macro

announcements is rejected for almost all data releases.

A valuable extension to this paper would be the use of intraday data in

order to improve the precision of the estimates. In particular for monetary policy

surprises we would like to make sure that the revision we estimate is the one

caused by the policy action, and that there are no other confounding impacts.

Considering tight windows around the policy announcements would corroborate

our results about the effects of monetary policy on the term structure.

Another important task is to disentangle changes in short rate expecta-

tions from changes in term premia. This provides answers to other policy-relevant

questions: How much of the volatility of observed rate changes is due to changes

in short rate expectations? In response to specific news events, how did market
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participants revise their expectations of monetary policy? Do risk premia system-

atically respond to macro news, and if yes in which way? In Chapter 2 I perform

this exercise, and I find that at high frequencies changes in forward rates are mainly

due to changing short rate expectations. This substantiates that the observed rate

changes in response to news events in fact do predominantly signal changes in the

expected path of the policy rate.

1.8 Appendix

1.8.1 Revision to short rate expectations

We need to find (EQt −E
Q
t−1)rt+n = (EQt −E

Q
t−1)(X1,t+n +X2,t+n +X3,t+n).

For the level factor, which follows a random walk without drift, we simply have

(EQt − E
Q
t−1)X1,t+n = εQ1t.

For the slope factor, which follows an AR(1) process, the moving-average (MA)

representation is X2t =
∑∞

j=0 ρ
jεQ2,t−j, hence we have

(EQt − E
Q
t−1)X2,t+n = ρnεQ2t.

The curvature factor follows an AR(2) process, X3t = θ1X3,t−1 + θ2X3,t−2 + εQ3t,

which we rewrite as (1 − φ1L)(1 − φ2L)X3t = εQ3t, where L is the Lag-operator.

Denote by φ1 and φ2 the roots of the characteristic equation y2 − θ1y − θ2 = 0,

which are related to the parameters by θ1 = φ1 + φ2 and θ2 = −φ1φ2. We want to

find the MA-representation of X3t,

X3t =
∞∑
j=0

ψjε
Q
3,t−j,

and for the Wold-coefficients ψj we have the difference equation ψj = θ1ψj−1 +

θ2ψj−2 with initial conditions ψ1 = θ1 and ψ2 = θ2
1 + θ2 (see Brockwell and Davis,

2006, p. 92). For the case that we have distinct real roots φ1 and φ2 the solution

to this initial value problem is given by ψj = (φn+1
1 − φn+1

2 )/(φ1 − φ2) so that we

obtain

(EQt − E
Q
t−1)X3,t+n =

φn+1
1 − φn+1

2

φ1 − φ2

εQ3t.
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In the case that the roots are real and equal we get ψj = (1 + n)φn1 and thus

(EQt − E
Q
t−1)X3,t+n = (1 + n)φn1ε

Q
3t.

1.8.2 Loadings of futures rate changes on factor shocks

Consider the loadings on the physical innovations εt of the rate change in

the i-month-ahead fed funds futures contract, denoted by hFFi,t = (h1
FFi,t, h

2
FFi,t,

h3
FFi,t)

′. The loading on the level shock is of course unity, i.e. h1
FFi,t = 1. The

loading on the slope shock is

h2
FFi,t = M−1

(i+1)M−m(t)∑
n=iM−m(t)+1

ρn

=
ρiM−m(t)+1(1− ρM)

M(1− ρ)
.

For the loading on the curvature shock – we consider here only the case of equal

roots – the average we need to calculate is

h3
FFi,t = M−1

(i+1)M−m(t)∑
n=iM−m(t)+1

(1 + n)ρn

In order to find this average first consider the well-known summation formula for

the geometric progression,

n∑
k=m

rk =
rm − rn+1

1− r
,

and take the first derivative with respect to r to obtain

n∑
k=m

krk−1 =
mrm−1 − (n+ 1)rn

1− r
+
rm − rn+1

(1− r)2
.

This can be applied to our summation to yield

h3
FFi,t =

(iM −m(t) + 2)ρiM−m(t)+1 − [(i+ 1)M −m(t) + 2]ρ(i+1)M−m(t)+1

M(1− ρ)

+
ρiM−m(t)+2(1− ρM)

M(1− ρ)2
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The loadings for Eurodollar futures follow by analogy – simply replace M by Q,

replace m(t) by q(t), and take the first and last period of the relevant horizon for

the summations to be one day earlier than in the case for fed funds futures (see

footnote 14).

1.8.3 Additional evidence for policy inertia

One of the pieces of evidence presented in Rudebusch (2006) against the

hypothesis of policy inertia is based on the following approach: Rudebusch calcu-

lates the ratio of 3-by-3-month forward rate to 3-month yield, based on intraday

data on U.S. Treasury securities, for days with either a new employment report or

new CPI data. In the case of policy inertia, the forward rate should move more

strongly than the yield, and hence the ratio should usually be above one. Since

the median and mean of this ratio are essentially equal to one in his sample, he

concludes that “the case of little or no inertia is the relevant one” (p.29).

The above table presents comparable evidence, using the rate changes in

the Eurodollar futures contracts ED2 to ED4 relative to the change in the contract

ED1. The median and mean of this ratio is in all subsamples far above one. Hence

for the futures rate changes in my sample, the evidence is strongly in favor of

policy inertia also using Rudebusch’s approach, indicating that policy inertia is a

fact rather than fiction.

How can the differences in our evidence be explained? Adjusting the sample

window to the one used by Rudebusch does not change the qualitative results. The

use of intraday data as opposed to my daily data is no likely candidate explanation,

since the rate variation on the days under consideration is certainly caused to

a large extent by the news event. The features of the yield data is the most

likely explanation: Possibly 3-month and 6-month U.S. treasury securities move

much more in lock-step than indicated by the expectations hypothesis, because of

phenomena such as flight-to-security or hedging motives. The use of money market

futures appears more likely to deliver reliable results.
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1.8.4 Regression coefficients and R2 implied by the model

The population parameters for regressions of rate changes in Eurodollar

futures contracts on rate changes in the FF3 contract are equal to the covariance

between the two variables, divided by the variance of the fed funds futures rate

changes. The coefficient of determination is simply the squared correlation. The

model parameters imply both variances and covariances, and hence predict the

regression coefficients and R2. Importantly, these depend on the news regime

through the factor covariance matrix Vr. In regime r, the model-implied regression

coefficients and coefficients of determination for a regression of Eurodollar futures

contract i on the contract FF3 are

βi =
Cov(∆ED

(i)
t ,∆FF

(3)
t )

V ar(∆FF
(3)
t )

=
Cov(h′EDiεt, h

′
FF3εt)

V ar(h′FF3εt + ηFF3
t )

=
h′EDiVrhFF3

h′FF3VrhFF3 + σ2
η,FF3

, and

R2
i =

(Cov(∆ED
(i)
t ,∆FF

(3)
t ))2

V ar(∆ED
(i)
t )V ar(∆FF

(3)
t )

=
(hEDi

′VrhFF3)2

(hFF3
′VrhFF3 + σ2

η,FF3)(hEDi
′VrhEDi + σ2

η,EDi)
.

Here i = 1, . . . , 16, and ηFF3
t stands for the pricing error of FF3, which has a

variance of σ2
η,FF3, the square of the third diagonal element of R. The pricing error

variances for the Eurodollar futures σ2
η,EDi correspond to the squares of the 7th to

22nd diagonal elements of R.

The above notation ignores that the loadings of the futures depend on the

day of the month and the day of the quarter, and hence the regression coefficient is

a different one for each combination of these. To obtain an unconditional regression

coefficient, I simply average out the day of the month/quarter.

1.8.5 Inference about latent shocks and the revisions

Given estimates of the model parameters the values of the latent shocks

and thus the entire revision can be inferred from observed rate changes. Optimal

inference about the latent shocks implies finding the conditional expectation of
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the shock vector given the data on day t, E(εt|Yt). Because of the normality

assumption it can be calculated from a linear projection:

ε̂t = E(εt|Yt) = Cov(εt, Yt)[V ar(Yt)]
−1(Yt − µ̂)

= Vr(t)Ht(H
′
tVr(t)Ht +R)−1(Yt − µ̂) (1.6)

The fitted values for the futures rate changes are µ̂+H ′tε̂t. The estimated revision

to the Q-expected short rate path is given by equation 1.1, where we substitute the

estimated shocks for the unobserved errors. Note that we also have an estimate

for the long-run revision lim
n→∞

(EQt − E
Q
t−1)rt+n = ε1t, which is simply equal to the

level shock.



39

Table 1.1: Estimation results for benchmark model

Parameter policy days empl. report CPI/PPI retail sales
σε,1 6.5434 10.0468 6.3384 8.2916

(0.4992) (0.6740) (0.3060) (0.9709)
σε,2 9.9291 11.3830 7.2834 9.9564

(1.3795) (0.9379) (0.3755) (1.3312)
σε,3 0.0415 0.0648 0.0379 0.0419

(0.0038) (0.0056) (0.0028) (0.0050)
corr(ε1t, ε2t) -0.6390 -0.8437 -0.8877 -0.9394

(0.0962) (0.0301) (0.0223) (0.0201)
corr(ε1t, ε3t) +0.2676 +0.5035 +0.2358 +0.2505

(0.0883) (0.0651) (0.0565) (0.0856)
corr(ε2t, ε3t) -0.3662 -0.5426 -0.4273 -0.3312

(0.0662) (0.0752) (0.0596) (0.0949)
Energy content
1st PC 85.37% 92.32% 94.50% 97.07%
2nd PC 14.63% 7.68% 5.50% 2.93%
3rd PC < 0.01% < 0.01% < 0.01% < 0.01%
ρ 0.9973

(0.0001)
Log-likelihood -31,422
Other models
different roots -31,422
equal Vr’s -31,609
equal means -31,447
zero means -31,451

I use fed funds futures contracts FF1 to FF6 and Eurodollar futures contracts ED1 to

ED16 to estimate the model. The sample consists of days with news events from

Oct-1988 to Jun-2007. The number of days is 799, with 148, 215, 316, and 120 days in

each of the four news regimes. Numbers in parentheses are robust standard errors.

Also reported is the energy content of each principal components for each of the shock

covariance matrices V 1 to V 4, as well as the log-likelihood for the benchmark version of

the model and for more and less restricted versions. For details please refer to text.



40

Figure 1.5: Empirical and model-implied results for the traditional regression
approach

Regressions of changes in Eurodollar futures rates on changes in near-term federal

funds futures rates (FF3) in different news regimes: Empirical response coefficients

(squares) with 95% confidence intervals based on White standard errors, and

model-implied response coefficients (thick line). Also shown are empirical coefficients of

determination (circles) and the model-implied counterparts (crosses).
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Figure 1.6: Policy surprises: Examples of revisions resulting form policy actions

Actual changes in Eurodollar futures rates (crosses) and fitted changes implied by

revisions (squares) on four days with monetary policy actions. Also shown are the

estimated long-run revisions (dotted lines). Note: The Fed increased the target by 25

bps on all of these days. On the dates shown in the top row, the FF1 rate increased by

10 and 8 bps respectively, whereas on the dates shown in the bottom row it did not

change at all.
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Table 1.3: Effects of macroeconomic announcements

News release FF2 ED4 2y yield ε̂1t ε̂2t ε̂3t

Non-farm payroll 3.09** 8.11** 5.82** 3.76** -3.48** 0.04**
employment (0.35) (0.88) (0.59) (0.67) (1.00) (0.01)
Unemployment rate -1.30** -1.91* -1.44** -0.33 -0.89 -0.01

(0.33) (0.74) (0.51) (0.62) (0.80) (0.00)
Hourly earnings 0.85** 2.42** 1.86** 1.34 -1.64 0.01**

(0.26) (0.81) (0.58) (0.73) (0.95) (0.00)
Core CPI 1.02** 2.58** 2.08** 1.83** -1.51** 0.01**

(0.23) (0.63) (0.48) (0.52) (0.57) (0.00)
Core PPI 0.45* 1.06 0.54 1.27** -0.86 -0.00

(0.19) (0.59) (0.48) (0.47) (0.56) (0.00)
Retail sales 0.84** 3.14** 2.38** 1.62** -2.14** 0.02**

(0.23) (0.65) (0.50) (0.55) (0.62) (0.00)

Responses of instrument rates and term structure shocks to a one-standard-deviation

surprise in six different macroeconomic data releases. Sample: Days with at least one

macroeconomic announcement but without policy action, Oct-1988 to Jun-2007,

N = 647. Numbers in parentheses are White standard errors. * and ** denote

significance at 5% and 1% level, respectively.

Table 1.4: Summary statistics for ratio of near-term rate changes

News ∆ED(2)
t /∆ED(1)

t ∆ED(3)
t /∆ED(1)

t ∆ED(4)
t /∆ED(1)

t

med. mean (s.e.) med. mean (s.e.) med. mean (s.e.) obs.
Empl. report 1.83 2.30 (0.20) 2.25 3.08 (0.30) 2.32 3.35 (0.38) 136
CPI/PPI 1.63 1.98 (0.16) 2.00 2.74 (0.27) 2.33 3.30 (0.33) 185
Retail sales 2.11 2.46 (0.22) 3.33 3.80 (0.45) 3.75 4.33 (0.57) 61
Pooled 1.78 2.17 (0.11) 2.26 3.03 (0.19) 2.50 3.48 (0.23) 382

Medians, means, and standard errors for the means for relative rate changes. Sample:

10-1988 to 06-2007. I include only observations for which the denominator rate change

is non-zero (using unity for the ratio when the denominator is zero still results in

medians and means far above one).
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Figure 1.7: Term structure of announcement effects

Responses to a one-standard-deviation surprise in six different macroeconomic data

releases: Empirical responses of futures rates with 95% confidence intervals (error-bars)

and model-implied responses of futures rates (solid lines). Units are basis points.



Chapter 2

Term Premia and the News

Abstract

How do short rate expectations and term premia respond to news? Dy-

namic term structure models typically imply that the term premium accounts for

most of the procyclical response of long-term interest rates, which is at odds with

the conventional wisdom about bond risk premia. Bias and lack of precision in the

estimated short rate dynamics make it difficult to interpret this evidence. This

paper solves these problems by imposing plausible zero restrictions on the mar-

ket prices of risk. The no-arbitrage assumption becomes useful for estimation,

because information in the cross section helps to pin down the dynamics of the

short rate. Inference about term premia is performed in a Bayesian framework

based on Markov Chain Monte Carlo methods. This allows the researcher to se-

lect plausible restrictions and to correctly quantify statistical uncertainty. The

main empirical result is that under the restrictions favored by the data the ex-

pectations component, and not the term premium, accounts for the majority of

high-frequency movements of long rates and for essentially all of their procyclical

response to macroeconomic news.

45
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2.1 Introduction

Policy makers and academic researchers have keen interest in the estimation

of term premia in long-term interest rates. Different approaches have been used

for this purpose, such as return regressions,1 no-arbitrage dynamic term structure

models2 (DTSMs) and more recently macro-finance term structure models.3 Pre-

vious studies established that there is a sizeable term premium which varies over

time. Thus the expectations hypothesis, which posits a constant term premium,

is at odds with the data. Moreover the term premium seems to vary at business-

cycle frequencies and this variation is countercyclical (Cochrane and Piazzesi, 2005;

Piazzesi and Swanson, 2008).

An important question in this context is how the response of the term struc-

ture of interest rates to news events, such as macroeconomic announcements and

policy actions, decomposes into revisions of short rate expectations and changes

in term premia. More generally, how do term premia change at high frequencies?

This question is of relevance both to policy makers, who need up-to-date infor-

mation about market participants’ expectations of the future policy path, and to

investors, since optimal asset allocation requires knowing how new information

changes expected returns. A recent attempt to answer this question was made

by Meredith Beechey (2007), who uses the DTSM of Kim and Wright (2005) to

decompose rate changes into expectations and term premium components. Her

study finds that the procyclical response of long-term interest rates is mainly due

to changes in term premia – short rate expectations seem to hardly react to the

news. However, this strong procyclical response of term premia at high frequencies

is a puzzle in light of the conventional term premium wisdom cited above.

This puzzling evidence results from two general problems with the estima-

tion of DTSMs and term premia that are caused by the high persistence4 of the

1See for example Fama and Bliss (1987), Cochrane and Piazzesi (2005) and Piazzesi and
Swanson (2008).

2The standard reference for affine no-arbitrage term structure models is Duffie and Kan (1996),
applications to term premium estimation include Dai and Singleton (2002) and Kim and Wright
(2005).

3Studies that incorporate macro-factors into no-arbitrage models and study term-premium
properties include Ang and Piazzesi (2003); Rudebusch et al. (2006); Joslin et al. (2008).

4The null of a unit root can usually not be rejected for the short rate, see for example Rose
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short rate: lack of precision and bias in estimates of the short rate’s dynamic prop-

erties. At high frequencies the persistence is particularly strong, so the resulting

problems are even more severe. The literature has documented these issues, for

example in Duffee and Stanton (2004) and Kim and Orphanides (2005), but so

far has offered no solution. The present paper, which focuses on high-frequency

changes in interest rates and risk premia, solves both of these problems.

Persistence leads to imprecise estimates of the unconditional mean and the

speed of mean reversion of the short rate intuitively because the short rate does not

revert to its mean very often. Term premium estimates rely on forecasts of the short

rate, thus the high estimation uncertainty about short rate dynamics translates into

equally large uncertainty about the term premium. Empirical results that proceed

by using term premium estimates without accounting for their uncertainty (e.g.

Beechey, 2007) should therefore be taken with a grain of salt. Unfortunately, as

John Cochrane (2007, p. 278) puts it,

we are usually treated only to one estimate based on one a priori spec-
ification, usually in levels, and usually with no measure of the huge
sampling uncertainty.

An indication of the magnitude of estimation and specification uncertainty are the

strikingly different term premium estimates in the literature (Swanson, 2007). I

will quantify this statistical uncertainty and show its relation to the pricing of risk.

A closely related problem is an upward bias in the estimated speed of mean

reversion of the short rate: The largest root of a persistent variable is generally

under-estimated. This results in short rate forecasts that revert to the uncon-

ditional mean too quickly. As a consequence, changes in term premia are usu-

ally found to be the dominant source of the variation in long-term interest rates

(e.g. Kim & Wright, 2005). This is implausible since we think that the term

premium moves slowly.

Estimation of a DTSM requires inference about the short rate dynamics

under both the risk-neutral (Q) measure and the physical (P) measure. The Q-

dynamics determine the loadings of the cross section of interest rates on the term

(1988) and Jardet et al. (2009). Whereas the short rate is not literally I(1), since it is bounded
from below and usually remains in a certain range, its largest root is certainly very close to one.
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structure factors and can be pinned down very precisely. The P-dynamics de-

scribe the evolution of the factors over time and estimation is difficult for the

above-mentioned reasons. Can we use the information in the cross section to im-

prove our estimates of the P-dynamics? No-arbitrage requires consistency between

cross-sectional and dynamic properties of the term structure, allowing for a risk

adjustment. If market prices of risk are unrestricted, then the parameters under

the Q measure and under the P measures are estimated independently of each

other – no-arbitrage has no bite in this case. The solution is to impose restrictions

on the prices of risk. Whereas this fact has been recognized in the literature (Kim

and Orphanides, 2007; Cochrane and Piazzesi, 2008), the important question about

which restrictions we should impose has so far not been satisfactorily answered. A

commonly employed approach is to restrict some risk sensitivity parameters with

large standard errors to zero and then to re-estimate the model. This ad-hoc pro-

cedure, unsatisfactory for several reasons, usually leads to very few restrictions and

does not solve the bias and uncertainty problems.5

This paper develops a new statistical framework for the estimation of

DTSMs which allows the researcher to impose sensible restrictions on the prices of

risk. The question posed by Cochrane (2007, p. 276), “Can statistics help us?”, is

answered with a strong affirmative. The physical dynamics of the short rate are

estimated more accurately and more precisely. The resulting decompositions of

rate changes are more reliable, and they also turn out to be more plausible than

those of conventional DTSMs. My approach opens up a new road for estimation of

term structure models, where parsimony and no-arbitrage play a more prominent

role than they currently do in the term structure literature.

Estimation and inference is performed using Markov Chain Monte Carlo

(MCMC) methods. A Bayesian framework is necessary not only for correctly quan-

tifying statistical uncertainty but more importantly for appropriately restricting

the market prices of risk: The tools of Bayesian model selection allow me to select

those zero restrictions on the risk sensitivity parameters that are most strongly sup-

5Prominent studies that employ this two-step approach are Dai and Singleton (2002); Ang and
Piazzesi (2003); Kim and Wright (2005). None of these restrict more than three risk sensitivity
parameters to zero.
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ported by the data. I develop a new algorithm related to Gibbs Variable Selection,

using latent indicator variables that represent the restrictions, in order to identify

plausible models. For this smaller subset of candidate models I can then precisely

estimate posterior model probabilities and assess their economic implications.

The DTSM used in this paper belongs to the affine Gaussian class. Its

key distinguishing characteristic is that the Q-dynamics are specified in a way that

identifies the latent factors a priori as level, slope and curvature. This is crucial for

two reasons: First, the presence of a level factor, an empirical necessity, requires a

unit root for the short rate under Q. Because the model is parameterized in terms

of Q-dynamics and prices of risk, it then depends on the restrictions on the prices

of risk whether there is a unit root under P. Hence I let the data choose between

a stationary or integrated specification for the short rate, instead of imposing this

a priori. Second, having labeled factors allows for an economic interpretation of

risk premia, based on the inference about, for example, the importance of level

vs. slope risk. The DTSM in this paper parallels the Dynamic Nelson-Siegel model

in Christensen et al. (2007), but gives rise to new Nelson-Siegel-type factor loadings

since it is set in discrete time.

I also differ from most previous studies in basing the analysis on Eurodol-

lar futures, which have several practical advantages over Treasury bonds in this

context: First the futures rates directly reflect the forward rate curve, whereas

forward rates derived from bond prices depend on the algorithm used to infer zero

rates from observed bond prices (smoothed vs. unsmoothed, etc.). Second, the liq-

uidity is very high, in fact Eurodollar futures are the most liquid futures contracts

worldwide (in terms of open interest). Third, the most liquidly traded govern-

ment bonds, on-the-run Treasury securities, do not cover the maturity spectrum

at a similar detail. Last, the futures contracts are not affected by flight-to-quality

effects or other extraordinary forces affecting supply and demand of Treasury secu-

rities. A conceptual advantage is that the payoffs of money market futures depend

linearly on future short rates, thus convexity terms, which necessarily arise for

yields and forward rates implied by bond prices, are absent in the pricing formulas
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for these securities.6

I decompose rate changes into three components: Revisions of short rate

expectations, surprise changes in the term premium and expected returns. The

usual decomposition into predictable and unpredictable components overlooks that

unpredictable changes have two different sources. Since the predictable component

is negligible at high frequencies, the question is how much changes in short rate ex-

pectations vs. surprise term premium changes contribute to observed rate changes.

Because of the bias problem unrestricted models wrongly attribute the majority

of long-maturity rate changes to the term premium.

The paper also introduces some new ways to represent the implications of

different models visually. I derive a “risk-neutral volatility curve”, which captures

the volatility of short rate expectations across maturities. Based on the analytical

decompositions I graphically summarize the contribution of short rate expectations

to rate changes on individual days, to the level of volatility, and to the systematic

response of forward rates to macroeconomic news.

Turning to the empirical findings of the paper, a key result is that the data

support strongly restricted prices of risk. This is plausible if we believe in no-

arbitrage: physical and risk-neutral dynamics should be close to each other. As

a consequence of the restrictions the physical dynamics are estimated with higher

precision, and our inference about the term premium becomes more reliable. This

is the key contribution of the paper: by imposing sensible zero restrictions on risk

sensitivity parameters we can overcome the bias and uncertainty problems that

most DTSMs suffer from. Those restrictions that imply a unit root for the short

rate receive particularly strong empirical backing – a stochastically trending short

rate evidently is a good approximation to the true data-generating process, at least

at the daily frequency.

Changes in short rate expectations account for most of the daily volatility

in forward rates across all maturities. Thus the procyclical response of long forward

rates to macro news is mainly due to revisions of short rate expectations – I over-

turn the result that this response primarily reflects changes in the term premium.

6Hence Nelson-Siegel loadings without any convexity adjustments are consistent with no-
arbitrage.
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The contribution of risk premia to variation in long rates is found to be much

smaller than implied by most DTSMs in the literature. My results accord with

our intuition in two ways: First, we think that term premia move in a countercycli-

cal fashion, thus their contribution to procyclical interest rate changes caused by

news should be small. Second, since most macroeconomists would agree that term

premia probably move at business cycle frequencies, we would not expect them to

account for much variability at the daily frequency. The decompositions of daily

forward rate changes into risk premium and expectations components proposed in

this paper are thus more plausible than those implied by the largely unrestricted

DTSMs that are common in the literature.

These results remain robust when I account for specification uncertainty.

The decompositions obtained using Bayesian model averaging (BMA) confirm an

important role of short rate expectations for variation in long rates. Importantly

the use of BMA solves the “discontinuity problem”, the stark difference between

forecasts for the short rate depending on whether its largest root is less than or

equal to one (Cochrane and Piazzesi, 2008; Jardet et al., 2009), since estimates

effectively are averages of stationary and non-stationary specifications.

The paper is structured as follows: Section 2.2 describes the DTSM and

shows how it can be used to decompose observed rate changes and the term struc-

ture of volatility. In Section 2.3 the model is estimated without restrictions on

the prices of risk, revealing dramatic uncertainty and bias in decompositions of

rate changes. Section 2.4 develops and applies a new framework for estimation of

DTSMs, based on restrictions on the prices of risk. Section 2.5 concludes.

2.2 Dynamic Term Structure Model

In this section I introduce the affine Gaussian DTSM with its particular

specification of the risk-neutral dynamics, present a new decomposition of changes

in forward rates, introduce the “risk-neutral vol curve” and discuss the pricing of

Eurodollar futures.
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2.2.1 Affine Gaussian DTSMs

Denote by Xt the (k × 1) vector of term structure factors which represent

the new information that market participants obtain at time t. Generally it can

contain both latent and observable factors, but this paper uses only latent factors.

Assume that Xt follows a first-order Gaussian vector autoregression under the

physical measure P:

Xt = µ+ ΦXt−1 + Σεt, (2.1)

with εt ∼ N(0, Ik) and E(εrεs
′) = 0, r 6= s. The frequency of the model is daily.

The short rate rt, the overnight rate, is specified to be an affine function of the

factors:

rt = δ0 + δ′1Xt. (2.2)

This short rate is the policy instrument of the Federal Reserve, thus expectations

under the physical measure of its future values correspond to expectations about

future monetary policy.7

Assuming absence of arbitrage there exists a risk-neutral probability mea-

sure, denoted by Q, which prices all financial assets. Equivalently, there is a

stochastic discount factor (SDF) that defines the change of probability measure

between the physical and the risk-neutral world. The one-period SDF, Mt+1, is

specified as

− logMt+1 = rt +
1

2
λ′tλt + λ′tεt+1, (2.3)

with the (k×1) vector λt, the prices of risk, being an affine function of the factors,

λt = λ0 + λ1Xt. (2.4)

The risk sensitivity parameters λ0 (k × 1) and λ1 (k × k) determine the behavior

of risk premia. Under these assumptions the risk-neutral dynamics (see Appendix

2.6.1) are given by

Xt = µQ + ΦQXt−1 + ΣεQt , (2.5)

7I abstract from the facts that the overnight rate in the U.S., the effective fed funds rate,
deviates from the target set by the monetary authority, and that the target has a step-function
character. Both simplifications are inconsequential since I do not include observations of the
short rate – inference is based on Eurodollar futures rates, which correspond to average forward
rates over an entire quarter.
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where εQt
Q∼ N(0, Ik), EQ(εQr ε

Q
s
′
) = 0, r 6= s, and the parameters describing the

physical and risk-neutral dynamics are related in the following way:

µQ = µ− Σλ0, ΦQ = Φ− Σλ1. (2.6)

This discrete-time affine Gaussian DTSM was introduced by Ang and Piazzesi

(2003) and is now widely used. While it does not allow for stochastic volatility it

is rather flexible in matching risk premia (Dai and Singleton, 2003).8

No-arbitrage requires the consistency of dynamic properties (determined

by µ and Φ) and cross-sectional properties (determined by µQ and ΦQ) of interest

rates, allowing for a risk-adjustment, and (2.6) makes this risk-adjustment explicit.

Note however that if λ0 and λ1 are left unrestricted, then (2.6) is not restrictive

at all: Any estimates for the physical dynamics are consistent, for some prices

of risk, with a given choice of risk-neutral dynamics. Most studies impose no or

only minimal restrictions on λ0 and λ1. This paper will show that strong zero-

restrictions on λ1 are supported by the data, and that imposing these restrictions

provides us with more precise and more plausible term premium estimates.

2.2.2 Forward rates

With this framework we can price any asset with payoff depending on the

future path of the short rate, the price being given by the discounted expected

future payoff under Q. Instead of considering bonds, this paper focuses on money

market futures, which pay off according to the average short rate over a future

time horizon. Thus the main object of interest is the expected future short rate

under the risk-neutral measure, fnt = EQt (rt+n). I will refer to this object as a

forward rate, although by this term one would usually mean the rate that can be

contracted today for a loan from t + n to t + n + 1 by entering the appropriate

bond positions and which includes Jensen inequality terms.9

8Examples of studies that assess the behavior of the term premium using this affine Gaussian
framework are Duffee (2002); Ang and Piazzesi (2003); Kim and Orphanides (2005); Kim and
Wright (2005); Rudebusch and Wu (2008); Joslin et al. (2008).

9The actual forward rate based on bond positions is equal to log P n
t

P n+1
t

=

log EQ
t exp(−rt−rt+1−...−rt+n−1)

EQ
t exp(−rt−rt+1−...−rt+n)

where Pn
t is the time-t price of a discount bond with n days until
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Solving for these forward rates is straightforward because of the linearity

of the short rate and the availability of analytical expressions for the conditional

expectation of Xt. We obtain

fnt = EQt (δ0 + δ′1Xt+n)

= δ0 + δ′1

[
n−1∑
i=0

(ΦQ)iµQ + (ΦQ)nXt

]
(2.7)

= An +B′nXt

An = δ0 + δ′1

[
n−1∑
i=0

(ΦQ)iµQ

]
, B′n = δ′1(ΦQ)n.

These loadings correspond to those for one-period forward rates common in the

bond pricing literature, as derived for example in Cochrane and Piazzesi (2008),

with the difference that Jensen inequality terms resulting from convexity effects

are absent in our case.

2.2.3 The arbitrage-free Dynamic Nelson-Siegel model

Since not all parameters of the DTSM are identified, some normalization re-

strictions need to be imposed (Dai and Singleton, 2000). A DTSM is called “canon-

ical” or “maximally flexible” if there are no over-identifying restrictions, which for

the case k = 3 amounts to 22 free parameters in (δ0, δ1, µ
Q,ΦQ, µ,Φ,Σ). A partic-

ularly convenient normalization is the canonical form of Joslin et al. (2009) (JSZ),

who impose the restrictions µQ = 0, δ1 = ιk and parameterize the Q-dynamics in

terms of δ0 and the eigenvalues of KQ = ΦQ − Ik, which is taken to be in real

ordered Jordan form.10

In canonical DTSMs with only latent factors the role of each factor is a priori

left unidentified. On the other hand the widely used yield-curve parametrization of

Nelson and Siegel (1987) posits a simple factor structure for forward rates involving

three factors that correspond to level, slope and curvature. The dynamic version

maturity.
10All normalizations are imposed on the Q-dynamics, hence for given (observable or filtered)

factors and absent restrictions on the prices of risk, consistent estimates of (µ,Φ) can be obtained
using ordinary least squares, as shown by JSZ.
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of the original Nelson-Siegel forward rate curve,

fnt = X
(1)
t + e−λnX

(2)
t + λne−λnX

(3)
t ,

is implied by a continuous-time three-factor affine DTSM with a specific choice for

the risk-neutral dynamics, as shown by Christensen et al. (2007). My discrete-time

analogue to their model, using a discretization scheme with one-period increments,

is given by the following specification:

δ0 = 0, δ1 =


1

1

0

 , µQ =


0

0

0

 , ΦQ =


1 0 0

0 ρ 1− ρ
0 0 ρ

 (2.8)

where the parameter ρ is restricted to be less than one in absolute value. This is

the Dynamic Nelson-Siegel (DNS) specification in discrete time. Straightforward

algebra based on equation (2.7) leads to a Nelson-Siegel-type forward rate curve

given by

fnt = X
(1)
t + ρnX

(2)
t + n(1− ρ)ρn−1X

(3)
t . (2.9)

Notably there is no convexity term since I consider fnt = EQt (rt+n).

The DNS specification in (2.8) is equivalent to the JSZ normalization with

three over-identifying restrictions (JSZ, Section 4.2). The first restriction is the

unit eigenvalue of ΦQ, i.e. a zero eigenvalue of KQ. The empirical evidence (e.g.

Gürkaynak et al., 2005b) overwhelmingly calls for a unit root under Q since oth-

erwise long-horizon forward rates would be constant. The yield curve cannot have

a level factor unless ΦQ has a unit eigenvalue. The second restriction is the zero

long-run mean of the short rate under Q (δ0 = 0). Given that X
(1)
t serves as a

level factor there is no need for a non-zero unconditional mean. The unit root and

zero mean under Q are highly plausible and empirically necessary restrictions on

the JSZ normalization.

The third restriction of the DNS model is that the two other eigenvalues

of ΦQ are equal, which identifies the third factor as curvature. This somewhat

restrictive assumption is useful because now the factors are a priori identified as

level, slope and curvature. One advantage of this is that it enables us to provide
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an economic interpretation of risk premia.11 Labeling the factors by means of a

particular choice of the risk-neutral dynamics, as well as introducing a unit root

under Q, are the two major advantages of the DNS specification.

An important remark about the consequence of a unit root under Q: Be-

cause I will estimate the model based on a parametrization in terms of (λ0, λ1)

and not in terms of (µ,Φ), and since Φ = ΦQ + Σλ1, it will depend entirely on the

restrictions imposed on λ1 whether Φ has a unit eigenvalue. Absent any restric-

tions, estimates will generally imply a stationary short rate. By having the data

choose plausible zero restrictions on λ1 the possibility of a unit root under P will

be explicitly allowed for.

2.2.4 Risk-neutral rates and forward risk premia

The term premium can be defined in different ways, and I focus on the

forward risk premium, which I relate later to the return risk premium.12 If the

marginal investor was risk-neutral, the forward rate fnt would be equal to the

expected future short rate under the physical measure. This is usually called the

“risk-neutral forward rate”, here denoted by f̃nt . We have

f̃nt = Et(rt+n) = δ0 + δ′1Et(Xt+n) = Ãn + B̃′nXt,

with loadings given by

Ãn = δ0 + δ′1

[
n−1∑
i=0

Φiµ

]
, B̃′n = δ′1Φn.

Risk-neutral rates embody the expectations about future short rates and thus

about future monetary policy. They are not observable and have to be inferred

by constructing forecasts for the short rate. The forward risk premium, denoted

11Specifically we would like to know whether level risk or slope risk causes time-variation in the
term premium, since this provides some hints about the role of different macroeconomic shocks,
as pointed out by Cochrane and Piazzesi (2008).

12Specifically, the term premium can be defined equivalently as a yield risk premium (the
difference between a bond yield and the average expected future short rate), a forward risk
premium (the difference between a forward rate and the expected future short rate), or a return
risk premium (the expected excess return on a bond or futures contract). For a detailed discussion
of how these are related see Cochrane and Piazzesi (2008).
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by Πn
t , is defined as the difference between the forward rate and the risk-neutral

forward rate:

Πn
t = fnt − f̃nt = An − Ãn + (Bn − B̃n)′Xt.

Importantly, the statistical uncertainty about µ and Φ translates into uncertainty

about risk-neutral rates and forward risk premia.

2.2.5 Decomposing rate changes

The main question asked in this paper is to what extent daily changes in the

forward rate curve are driven by changing short rate expectations. By definition,

rate changes decompose into changes in risk-neutral rates and changes in forward

risk premia, fnt+1 − fn+1
t = f̃nt+1 − f̃n+1

t + Πn
t+1 −Πn+1

t . The DTSM can be used to

provide a more detailed decomposition:

fnt+1 − fn+1
t = An +B′nXt+1 − An+1 −B′n+1Xt

= B′nΣεQt+1

= B̃′nΣεt+1 + (Bn − B̃n)′Σεt+1 +B′nΣλt. (2.10)

This rate change corresponds to the one-period return of a hypothetical futures

contract which pays the difference between the realized future short rate and the

contracted rate.13 Notably it is an excess return, because the risk-neutral expected

return, EQt (fnt+1 − fn+1
t ) is zero. Expression (2.10) decomposes this return into

three components:

Revisions to short rate expectations – The first component corresponds to

the change in the expectation of the short rate for t+ n+ 1:

(Et+1 − Et)rt+n+1 = δ′1(Et+1Xt+n+1 − EtXt+n+1)

= δ′1ΦnΣεt+1 = B̃′nΣεt+1.

This component, which equals the change in the risk-neutral rate f̃nt+1 − f̃n+1
t ,

13Specifically it is the absolute return if one enters at t into a long position in a contract that
pays rt+n+1 − fn+1

t at maturity, and liquidates the position at t + 1. Note that money market
futures usually pay the difference between contracted rate and short rate, in which case the above
rate change corresponds to the return on a short position.
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captures how market participants revise their expectations of future monetary

policy.

Surprise changes in the forward risk premium – The second component is

equal to the unexpected change in the forward risk premium:

(Πn
t+1 − EtΠ

n
t+1) = (Bn − B̃n)′(Xt+1 − EtXt+1)

= (Bn − B̃n)′Σεt+1.

Expected returns – The third component is equal to the expected change in

the forward risk premium:

EtΠ
n
t+1 − Πn+1

t = Etf
n
t+1 − fn+1

t = An +B′nEtXt+1 − An+1 −B′n+1Xt

= B′nEtε
Q
t+1 = B′nΣλt = B′nΣ(λ0 + λ1Xt)

This term captures the predictable part of the daily return and corresponds to the

return risk premium.14 For daily rate changes this component is negligibly small.

How large it is for longer holding periods is an important question which I consider

in Section 2.4.6.

Using equation (2.10) changes in forward rates can be decomposed into

expectations and risk premium components. Importantly this decomposition will

inherit the statistical uncertainty from the inference about the unknown parame-

ters and factors. I will show below the dramatic uncertainty in DTSMs that lack

the appropriate restrictions on the prices of risk.

To foreshadow a key empirical result: Typically DTSMs imply that for long

maturities the first component is small and the second component accounts for

most of daily rate changes. This is puzzling given the conventional wisdom about

bond risk premia. If restrictions are imposed on the prices of risk a much larger

share of rate changes is attributed to the first component, changes in expectations,

implying little daily variability of the term premium.

14In the language of Cochrane and Piazzesi (2005), B′nΣλ1Xt is the return-forecasting factor,
which generally differs across maturities. It differs across maturities only by a factor of propor-
tionality if only one element in the vector λt is non-zero, see for example the model of Cochrane
and Piazzesi (2008).
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2.2.6 Term Structure of Volatility

The term structure of volatility, the “vol curve”, describes the volatility

of changes in yields or forward rates across maturities, either in the sample or in

population. Given the decomposition in (2.10) the variance of forward rate changes

is given by

V ar(fnt+1 − fn+1
t ) = B′nΣ(Ik + Var(λt))Σ

′Bn

The term structure of volatility is the square root of this expression for varying

n. Variability of forward rates is driven both by an unpredictable component, the

innovations to the factors, and by a predictable component, the variation in the

prices of risk. It will turn out that the predictability of daily changes is very small,

thus V ar(fnt+1 − fn+1
t ) ≈ B′nΣΣ′Bn.

Our framework allows us to assess the importance of changes in short rate

expectations and forward risk premia for variability in forward rates. Specifically,

we can calculate the term structure of volatility that would prevail if forward rates

were only driven by changes in short rate expectations, i.e. if term premia were

constant. The variance of changes in risk-neutral forward rates is

V ar(f̃nt+1 − f̃n+1
t ) = V ar(B̃′nΣεt+1) = B̃′nΣΣ′B̃n

and I will call the square root of this expression for varying n the “risk-neutral vol

curve”.

2.2.7 Eurodollar futures

In order to estimate the term structure model and for all subsequent em-

pirical analysis, this paper uses Eurodollar futures contracts.15 These instru-

ments settle based on the 3-month LIBOR rate at some future date (the set-

tlement day). This settlement rate can safely be taken to be the average ex-

pected short rate (under Q) for the 3-month period following the settlement day:

St = N−1
∑N−1

h=0 EQt (rt+h), where N is the number of days in the quarter, taken

15For detailed information on Eurodollar futures contracts please refer to the
Chicago Mercantile Exchange’s web site at http://www.cmegroup.com/trading/interest-
rates/stir/eurodollar.html (accessed 08/29/2009).
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to be 91 throughout this paper.16 Eurodollar futures contracts involve no cost

today and have payoff proportional to the difference between contracted rate and

settlement rate.17 For the Eurodollar futures contract that settles at the end of

quarter i, where i = 1 corresponds to the current quarter, we have the following

fundamental pricing equation:

0 = EQt (ED
(i)
t − ST (i,t)),

where ED
(i)
t is the futures rate and T (i, t) denotes the settlement day that cor-

responds to contract i on day t. Settlement takes place on the last day of the

quarter, therefore T (i, t) = t+ iN − d(t), where d(t) is the day within the quarter

of calendar day t. The futures rate is thus given by

ED
(i)
t = EQt (ST (i,t))

= N−1

(i+1)N−d(t)−1∑
n=iN−d(t)

EQt rt+n

= N−1

(i+1)N−d(t)−1∑
n=iN−d(t)

(An +B′nXt) (2.11)

= ai + h′iXt.

Note that the futures rate is simply the average of the N relevant forward rates

for the three-month period starting on the settlement day. The scalar ai and the

vector hi are the averages of An and Bn, respectively, over the relevant period.18

If market participants were risk-neutral, the futures rates would be equal

16The LIBOR rate is usually very closely related to the average expected effective federal funds
rate. The difference between the two, which is measured by the so-called LIBOR-OIS spread,
stems from a small term premium and a credit risk premium due to the three-month commitment
at a specific rate with a particular counter-party when lending at LIBOR. This spread was very
small (around 8 basis points) and showed little variability throughout the period of our data set,
which ends before the start of the recent financial turmoil.

17We abstract from the fact that in reality payments are made every day because of marking-
to-market. Evidence in Piazzesi and Swanson (2008) indicates that this effect is likely to be
negligible in our context.

18The last equality is an approximation due to the fact that instead of having different ai’s and
hi’s depending on the day of the quarter, I set d(t) equal to the constant 45 (approximately the
average of d(t)), which leads to only a very small approximation error and significantly lowers
the computational burden.
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to expected average future short rates. This risk-neutral futures rate is given by

ẼD
(i)

t = ãi + h̃iXt (2.12)

where ãi and h̃i are the averages of Ãn and B̃n. The corresponding forward risk

premium for contract i is given by Π
(i)
t = ED

(i)
t − ẼD

(i)

t . The decomposition for

changes in forward rates in (2.10) analogously holds for changes in futures rates:

ED
(i)
t+1 − ED

(i)
t = h̃′iΣεt+1 + (hi − h̃i)′Σεt+1 + h′iΣλt. (2.13)

The term structure of volatility and the risk-neutral vol curve for Eurodollar futures

are analogous to those for forward rates, with Bn and B̃n replaced by hi and h̃i.

We now have the necessary theoretical foundations and can proceed by estimating

the model.

2.3 Estimation of the unrestricted model

Turning to the estimation of the model, I first focus on a specification of the

DTSM without any restrictions on the prices of risk. This serves as a benchmark

and will reveal the bias and the large uncertainty underlying conventional term

premium estimates.

The data set consists of daily observations on the rates for Eurodollar fu-

tures contracts maturing at the end of the current and the following 15 quarters,

denoted by ED1 to ED16, thus covering the forward rate curve up to a maturity

of about four years. The sample starts on 1 January 1990 and ends on 29 June

2007, before the start of the financial crisis. The number of days in the sample is

T = 4401.

2.3.1 Econometric methodology

A state-space representation of the DTSM forms the basis for estimation.

Equation (2.1) is the transition equation for the k × 1 state vector, which I repro-

duce here for convenience:

Xt = µ+ ΦXt−1 + vt, vt ∼ N(0, Q), E(vtv
′
s) = 0, t 6= s,
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introducing the notation vt = Σεt and Q = ΣΣ′. The observation equation is

Yt = a+H ′Xt + wt, wt ∼ N(0, R), E(wtw
′
s) = 0, t 6= s, (2.14)

where Yt is an m × 1 vector of observations at time t. We have m = 16, the

observations being the rates of the 16 Eurodollar futures contracts, Yt = (ED
(1)
t ,

. . . , ED
(16)
t )′. The vector a stacks the intercepts a1 to a16, and given the normal-

ization µQ = 0 we have a = 0. The k × m coefficient matrix H = (h1, . . . , h16)

is determined by (µQ,ΦQ). The vector wt contains measurement errors, included

to avoid stochastic singularity as is common in the DTSM literature, which are

serially uncorrelated and orthogonal to Xt. The variance-covariance matrix of wt,

denoted by R, is diagonal, and for the sake of parsimony I impose R = σ2
wIm.

I parameterize the model in terms of the Q-dynamics and the risk sensi-

tivity parameters, which Bertholon et al. (2008) call the back-modeling strategy,

for two reasons: First, the Q-dynamics are chosen according to the DNS spec-

ification in order to a priori identify the factors as level, slope and curvature.

Second, the focus of this paper is on inference and restrictions on the prices of

risk, thus the parameters of the model need to explicitly include λ0 and λ1. The

parameters of our model, under the aforementioned normalization restrictions, are

θ = (ρ, λ0, λ1,Σ, σ
2
w). The parameter ρ determines ΦQ, µQ=0, and together with

the prices of risk and Σ the parameters of the physical dynamics are determined.

The model could in principle be estimated using classical statistical methods

such as maximum likelihood (ML) estimation, but there are several shortcomings

of this approach for estimation of DTSMs. The likelihood function generally has

many dimensions (there are 20 parameters in our case) and is highly non-linear,

which makes numerical optimization expensive and finding the global maximum

difficult (Duffee and Stanton, 2004; Duffee, 2009). More specifically, the likelihood

function of a DTSM oftentimes has “multiple inequivalent local maxima which

have similar likelihood values but substantially different implications for economic

quantities of interest” (Kim and Orphanides, 2005, p.10). Attempts to estimate the

model with ML confirmed this: the likelihood function has several local maxima

with different prices of risk, which confirms that the physical dynamics are hard
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to pin down.19 Joslin et al. (2009) have shown that for their canonical model the

estimates of the P-dynamics are given by ordinary least squares, which simplifies

estimation and can solve some of the above problems. However, their approach

is based on the separation of risk-neutral and physical dynamics and thus is only

applicable if the prices of risk are unrestricted.

Another important shortcoming of classical methods in the context of

DTSM estimation is that one cannot correctly quantify the estimation uncertainty

inherent in the calculations that use the model output. If for example we obtain

ML estimates and calculate the risk-neutral volatility curve, which is a highly non-

linear function of the model parameters, quantifying the estimation uncertainty

requires approximation based on the delta-method, which would likely be unre-

liable. More importantly, quantifying the uncertainty that results from inference

about both parameters and latent factors is not possible with classical methods,

since latent factors are inferred conditional on given point estimates of the model

parameters (Kim and Nelson, 1999, chap. 8).20

Bayesian estimation of the model by means of Markov Chain Monte Carlo

(MCMC) methods overcomes these challenges.21 It has numerous advantages:

Computationally it is less challenging since it amounts to successively drawing

parameters (from their conditional posterior distributions) instead of numerically

maximizing a high-dimensional and strongly non-linear likelihood function. We

can diagnose whether the MCMC algorithm is likely to have converged, whereas

for MLE it is rather difficult to assess whether a solution is a global maximum or

not. Instead of leading to multiple local maxima, the fact that the risk sensitivity

parameters are hard to estimate is appropriately reflected in a rather flat posterior.

The two biggest advantages of the MCMC approach in the present context are

19Christensen et al. (2007) claim that the a priori identification of the factors as level, slope
and curvature solves this problem, however my own experience with the DNS model of this paper
indicates that this is not the case – troublesome local maxima are still present.

20As an example consider the decomposition of rate changes according to equation (2.10): The
uncertainty underlying the decomposition is due to uncertainty both in our estimates of latent
factors (which determine εt+1 and εQt+1) and of the parameters (which determine Bn, B̃n and Σ).

21For surveys on the use of MCMC methods in econometrics see Chib and Greenberg (1996)
and Chib (2001). On estimation of asset pricing models using MCMC see Johannes and Polson
(2009). Other authors that have used MCMC methods in the estimation of DTSMs are Ang et
al. (2007) and Boivin et al. (2009).
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the possibility to correctly account for estimation uncertainty, since the algorithm

provides a sample from the joint posterior of the model parameters and the latent

factors, and the fact that it will allow us to flexibly handle the issues of model

choice and model uncertainty (Section 2.4).

The algorithm used to estimate the model is a block-wise Metropolis-

Hastings (M-H) sampler, the details of which are described in Appendix 2.6.2.

It provides us with a sample from the joint posterior distribution of model param-

eters and latent factors.

2.3.2 Parameter estimates

Table 2.1 presents the parameter estimates of the DTSM without any re-

strictions on the prices of risk. For each parameter I report the posterior mean

and a 95% credibility interval (CI), obtained by taking the sample mean and ap-

propriate quantiles from the MCMC sample.

The risk-neutral dynamics are estimated very precisely, as was to be ex-

pected: The loadings in H are determined by ρ, and the information in the cross-

section of futures rates pins down this parameter very precisely.

The risk sensitivity parameters on the other hands are estimated very im-

precisely. The CIs are large relative to the magnitudes of the estimates and for

most parameters the CIs contain zero. The reason is the high persistence of the

short rate: Intuitively, because the short rate does not revert to its mean very of-

ten it is hard to estimate its unconditional mean and its speed of mean reversion.

Hence µ and Φ are estimated very imprecisely (see for example Duffee & Stanton,

2004). Since for given (µQ,ΦQ) the P-dynamics are determined by λ0 and λ1, there

is large estimation uncertainty about the risk sensitivity parameters.

Since the factors are a priori identified as level, slope and curvature, these

estimates can help to understand the sources of time-variation in risk premia. The

driving force seems to be changes in the prices of slope risk and curvature risk –

only elements in the second and third row of λ1 are significantly different from

zero. The price of level risk on the other hand does not seem to change over time.

This contrasts with the results of Cochrane and Piazzesi (2008) who find that in
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Table 2.1: Parameter estimates for unrestricted model

Risk-neutral dynamics
ρ .9973 [.9973, .9973]
Risk sensitivity λ0 λ1

parameters constant level slope curvature
level risk .1210 -.0164 .0103 .0014

[-.03, .28] [-.04, .01] [-.01, .03] [-.02, .02]
slope risk .3042 -.0444 -.0190 .0296

[.15, .46] [-.07, -.02] [-.04, .00] [.01, .05]
curvature risk .1273 -.0239 .0052 -.0009

[-.02, .28] [-.05, -.00] [-.02, .03] [-.02, .02]
Factor shocks
SD(level shock) .0589 [.0572, .0605]
SD(slope shock) .0814 [.0787, .0840]
SD(curv. shock) .1538 [.1483, .1599]
Corr(level, slope) -.7450 [-.7673, -.7208]
Corr(level, curv.) .2611 [.2189, .3043]
Corr(slope, curv.) -.4217 [-.4613, -.3809]
Measurement errors
σ2
w .0039 [.0039, .0040]

Posterior means and 95% Bayesian credibility intervals (based on 2.5 and 97.5

percentiles of draws from the posterior distribution) in squared brackets for each model

parameter. Estimates of risk sensitivity parameters are boldfaced if the credibility

interval does not straddle zero.

their data set and model only the level factor seems to carry risk. This issue will

be discussed further below (Section 2.4.1).

With regards to the shock covariance matrix Q = ΣΣ′ standard deviations

and correlations of the factor shocks are shown.22 The shock covariance matrix is

estimated rather precisely. There is strong correlation between the factor shocks.

The measurement error variance is relatively small – it implies that the error is

less than 12 basis points 95% of the time.

22An advantage of MCMC is that inference on non-linear functions of model parameters is just
as precise as the inference on the original parameters. One simply calculates the parameters of
interest (here standard deviations and correlations) from the fundamental parameters (Σ in this
case) for each draw in the MCMC sample, which delivers a sample from the marginal posterior
for these derived parameters.



66

2.3.3 Term premium estimates

Our estimation results now allow us to decompose futures rates into risk-

neutral rates and forward risk premia. First we consider average levels: Figure 2.1

shows for each of the 16 contracts the average level of the empirical and model-

implied futures rates together with posterior means and 95%-CIs for the average

level of the risk-neutral rates.23 The posterior mean of the average risk-neutral rate

curve is flat at about 4.5%, which indicates that the short rate was, on average in

our sample, expected to remain about constant. The horizontal distance between

risk-neutral rate curve and futures rate curve corresponds to the forward risk pre-

mium, and the point estimate for the average forward risk premium in the ED16

rate is about 200 basis points. This seems reasonable for a four-year forward risk

premium in light of the existing evidence, see for example Kim and Orphanides

(2007). However, the graph reveals that estimates of average risk-neutral rates,

and hence of average forward risk premia, are extremely imprecise: The CI for

the risk-neutral rate at the long end extends from about 2.5% to almost 7%. The

large amount of uncertainty implies that the true average four-year forward risk

premium could be anywhere between about -20 and +400 basis points.

How does the risk-neutral rate behave over time? Figure 2.2 plots for the

ED16 contract time series of the fitted rates (these are indistinguishable from the

actual rates) and the risk-neutral rates, for which point-wise posterior means and

95%-CIs are shown. The risk-neutral rate is much less variable than the actual

rate and hovers around 3.5% to 5.5%. The resulting forward risk premium thus

accounts for most of the variability of the actual futures rate. The actual rates

have declined over the period in the sample, and based on the point estimate

for the risk-neutral rate series it seems that this trend was entirely accounted for

by a decline in the forward risk premium. But the CIs show a large amount of

uncertainty underlying this point estimate. Looking at recent values for example,

we cannot say whether the forward risk premium was +150 or -200 in the first

23For given values for the parameters and latent factors, I calculate the risk-neutral rates using
equation (2.12) and average them across time. This is repeated for each draw in the MCMC
sample, so that for each contract we have a sample from the posterior distribution of the average
risk-neutral rate.



67

Figure 2.1: Average levels of actual, fitted and risk-neutral rates for unrestricted
model

Average actual futures rates (crosses), average fitted futures rates (squares) and

average risk-neutral rates (dashed line) with 95% credibility intervals (dotted lines).

Units are percentage points.

half of 2007. In the words of Cochrane (2007, p. 278), “when a policymaker says

something that sounds definite, such as ‘[...] risk premia have declined,’ he is

really guessing”. The approach presented in Section 2.4 will be able to reduce this

uncertainty.

Turning to high-frequency changes in risk premia, the focus of this paper,

it is instructive to first consider some specific days with news events. We will

consider four days, two with large positive payroll surprises (03/08/1996, +408,500

and 04/02/2004, +208,000) and two with monetary policy surprises (04/18/1994

and 03/22/2005). The effects of these news events on the term structure are

best visualized by showing changes of actual futures rates across maturities, as

well as changes in risk-neutral rates, which represent the revisions to short rate

expectations in response to the news events. Figure 2.3 shows the actual and

model-implied rate changes together with posterior means and 95%-CIs for the
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Figure 2.2: Time series of fitted rates and risk-neutral rates for unrestricted
model

Time series of fitted rates (black line) for ED16 contract and posterior mean of

corresponding risk-neutral rate (thick grey line) together with 95% point-wise

credibility intervals (thin grey line). Units are percentage points.

changes in risk-neutral rates across contracts. This is, to my knowledge, a new

way to graphically analyze the effects of news events on the term structure of

interest rates.

According to the point estimates changes in the short-maturity contracts

are mostly due to changing short rate expectations, whereas for long maturities the

changes are attributed entirely to changing term premia. Since revisions to short

rate expectations are estimated to be close to zero at the long end of the term

structure, changing forward risk premia alone account for the procyclical changes

in long rates. Also evident from the figure is the dramatic estimation uncertainty

for changes in risk-neutral rates – the CIs are very large. We cannot say with any

confidence what happened to term premia in response to these news events when

we appropriately account for the estimation uncertainty.

Figure 2.4 shows the empirical vol curve, i.e. the sample standard devia-
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tions of daily futures rate changes, and the model-implied vol curve. Furthermore

it shows posterior means and 95%-CIs for the risk-neutral vol curve. The well-

known hump shape (Dai and Singleton, 2003) is clearly present in the vol curve

of Eurodollar futures. The vol curve of only the unpredictable component of rate

changes (not shown) is virtually indistinguishable from the actual vol curve, indi-

cating that the predictable component of daily rate changes in very small.

What is the relative importance of variation in short rate expectations and

forward risk premia for the volatility of futures rates? According to the posterior

mean of the risk-neutral vol curve, while changes in risk-neutral rates alone drive

the volatility at the short end, they account for only less than half of the volatility

at the long end. Notably the estimation uncertainty for the risk-neutral vol curve

is extraordinarily large.

The above results show two important problems with the term premium

estimates of conventional, unrestricted DTSMs. The first one is obvious: The

estimation uncertainty underlying estimates of levels and changes in risk-neutral

rates is tremendous. This is due to the lack of precision in our estimates of the

physical dynamics. I term this the “uncertainty problem”. My approach allows

to quantify the uncertainty, which constitutes a challenge for most DTSMs but is

hardly ever explicitly recognized.

The second issue is that the decompositions are implausible: The unre-

stricted model implies that forward risk premia account for the majority of rate

changes at the long end of the term structure. The case studies showed that the

entire procyclical response of long forward rates to the news events is attributed

to forward risk premia. The risk neutral vol curve implies that for daily changes

in long forward rates forward risk premia are a more important source of volatility

than short rate expectations. However, we think that the term premium moves

slowly, at business cycle frequencies, thus it should not account for a lot of daily

movements of interest rates. Also we expect term premium movements to be

countercyclical, hence its strong procyclical response to the news events comes as

a surprise. The reason for the implausible decompositions is what I term the “bias

problem”: Unrestricted DTSMs with stationary P-dynamics imply a high esti-
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mated speed of mean reversion for the short rate. Hence shocks die out quickly,

far-ahead expectations of the short rate hardly move at all, and most variation in

long rates is attributed to risk premia. But since the short rate is very persistent,

the speed of mean-reversion is likely to be significantly over-estimated. The closer

the largest autoregressive root of a time series is to one, the more pronounced is

the downward bias in its estimate – see Kendall (1954) or, more recently, Jardet

et al. (2009) and the references therein. Hence the close-to-zero long-run revisions

cannot be taken at face value, since they are due to biased estimates of the physical

dynamics.

The uncertainty problem and the bias problem have been recognized by

other researchers, particularly by Duffee and Stanton (2004), Kim and Orphanides

(2005) and Kim (2007). Before presenting a new statistical framework to overcome

these problems, I now turn to the systematic response of short rate expectations

and term premia to macroeconomic news.

2.3.4 The impact of macroeconomic news

Studies of the response of the term structure of interest rates to macroeco-

nomic announcements (Fleming and Remolona, 1999b; Gürkaynak et al., 2005b)

have found strong procyclical responses, with a distinct hump shape and a signif-

icant sensitivity of far-ahead forward rates. The common approach is to regress

changes in yields or forward rates on a measure of the surprise in the announce-

ment, usually taken to be the difference between released and forecast values.

Estimates of a DTSM can be used to assess how much of these responses are due

to changing short rate expectations and changes in risk premia, respectively, by

using model-implied changes in risk-neutral rates or risk premia as the dependent

variables in these regressions. This approach is employed by Beechey (2007), who

uses estimates of risk-neutral rates from Kim and Wright (2005) and finds that the

forward risk premium in long forward rates responds strongly procyclical to macro

news and seems to account for the majority of the total response of forward rates.

There are two important problems with this approach: First, it does not

account for the uncertainty underlying estimates of risk-neutral rates and forward
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risk premia. In this section I perform inference that appropriately incorporates this

estimation uncertainty and show that Beechey’s point estimates cannot be taken

at face value. Second, the results are driven by the fact that Kim & Wright’s

decomposition leads to implausibly high variability of term premia (see Beechey’s

figure 1), typical for DTSMs without or with only minimal restrictions on the

prices of risk. Section 2.4 will present an approach that overcomes both of these

problems and leads to different conclusions.

The term structure innovations under the physical measure on a given day

can be calculated as vt = Xt − µ− ΦXt−1, based on a set of parameter estimates

and values for the latent factors. In order to assess the impact of macro news on

the term structure we simply project the factor innovations on measures of the

macro surprises using the following system:

vt = α + β(1)s
(1)
t + . . .+ β(r)s

(r)
t + ηt, (2.15)

where s
(1)
t to s

(r)
t are scalars that contain the surprise component on day t for

each of r different macroeconomic data releases, α and β(1) to β(r) are k × 1

vectors of unknown parameters, and ηt is a vector of innovations.24 Equation-by-

equation least squares is efficient, despite the innovations ηt being correlated across

equations, because the regressors are the same in each equation (Zellner, 1962).

The resulting estimates β̂(j) show the response for each of the k innovations to a

one unit surprise in release j. If a specific piece of news tends to always have a

similar impact on the term structure, then this will be reflected by the value of

the corresponding β̂(j) vector. The change in the risk-neutral rate for contract i

caused by a unit surprise in a specific news release is h̃′iβ̂
(j), corresponding to the

first term in equation (2.13).

The approach of Beechey amounts to calculating the innovations based on

the DTSM’s point estimates for the parameters and smoothed estimates for the

factors, and then performing the regression in equation (2.15) taken as given these

innovations.25 However, this ignores the fact that the physical innovations vt are

24It is necessary to include all data release series in the regression in order to partial out the
impact of releases that occur on the same day.

25Beechey regresses changes in implied risk-neutral rates and forward risk premia on the sur-
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not known but instead estimated in a first step. We can appropriately account for

this uncertainty using the posterior sample for parameters and factors, as detailed

in the following algorithm:

1. Obtain parameters and latent factors for the current draw from the joint

posterior.

2. Calculate the loadings hi and h̃i from the parameters, and the innovations

from the factors and parameters using the fact that vt = Xt − µ− ΦXt−1.

3. For each of the k factor innovations, sample the regression coefficients, corre-

sponding to the relevant equation of the system in (2.15), from the conjugate

normal posterior.26

4. Calculate the predicted response of model-implied futures rates (h′iβ̂
(j)) and

of risk-neutral rates (h̃′iβ̂
(j)) for each futures contract to each of the r different

news releases.

5. Unless the end of the MCMC sample is reached return to step 1.

This provides a distribution of response coefficients for actual and risk-neutral rates

to any of the r news releases. This distribution importantly takes into account the

different sources of uncertainty: the first-step uncertainty underlying estimates of

vt as well as the second-step uncertainty from the regression analysis.

Figure 2.5 shows the results obtained for six different macroeconomic re-

leases: Non-farm payroll employment, the unemployment rate, hourly earnings,

Core CPI and Core PPI (Bureau of Labor Statistics, BLS) as well as retail sales

(Department of Commerce). The surprise component in the data release is calcu-

lated as the difference between the actually released number and the value expected

by the market, which is then standardized to have unit variance in order to make

the different news releases comparable. To measure the market expectation I take

prise measure, which is equivalent to the approach outlined above since model-implied rate
changes are driven by just k underlying term structure factors.

26I specify the prior for the regression parameters to be independently normal with mean zero
and large variance. The prior for the error variance is taken to be inverse gamma.
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the median market forecast, which is compiled by Money Market Services the Fri-

day before the announcement. The figure shows the empirical responses of futures

rates to macro news with 95% confidence intervals, the responses of model-implied

rates, and the posterior means and 95%-CIs for the responses of risk-neutral rates.

Note that the model satisfactorily captures the response of futures rates to the

news – the model-implied responses are within the confidence intervals for the

empirical responses in all cases.

The responses of risk-neutral rates to macro announcements, while signif-

icant at the short end of the term structure, are estimated to decrease to zero

quickly with maturity for all six news releases. Thus at the long end of the term

structure short rate expectations seem to not respond at all. This replicates the

Beechey-result that the procyclical responses of long rates are mainly attributed

to changes in forward risk premia. However, this neglects the two problems of

uncertainty and bias in the estimates of the risk-neutral rates.

With regard to the uncertainty problem, the graphs reveal that because of

the estimation uncertainty we cannot say with much confidence how strongly short

rate expectations at long horizons respond to macro news: The CIs for the revisions

caused by news are very large. The conclusion that “movements in term premia,

not expected future short rates, account for most of the reaction” (Beechey, 2007,

p. 2) is not warranted when we appropriately account for the uncertainty in the

estimates of risk-neutral rates. The bias problem is reflected in the implausibly

small responses of short rate expectations at the long end of the term structure.

2.4 Restrictions on prices of risk

An unrestricted DTSM has unsatisfactory implications for estimates of the

term premium: The estimation uncertainty is dramatic, due to a lack of precision

in estimates of the physical dynamics. Furthermore term premia have implausibly

high volatility, since the short rate’s speed of mean reversion is over-estimated.

Most DTSMs, such as the ones in Dai and Singleton (2002), Ang and Piazzesi

(2003) and Kim and Wright (2005), suffer from these issues.
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The remedy against both of these problems is to incorporate additional

information to pin down the term premium, taking the form of either additional

data or constraints on the model.27 This paper suggests to impose constraints

on the market prices of risk. In their absence the physical dynamics and the

cross-sectional dynamics are estimated independently of each other, hence the no-

arbitrage assumption does not restrict the estimates at all. However if we restrict

prices of risk then the information in the cross section of interest rates, which pins

down the risk-neutral dynamics very precisely, is brought to bear on our estimates

of the physical dynamics.28 The big question of course is: Which restrictions are

reasonable?

Common practice in the term structure literature is to first estimate a

DTSM without restrictions, and then in a second step to re-estimate the model by

imposing zero restrictions on those risk sensitivity parameters which are insignifi-

cantly different from zero or have the largest relative standard errors.29 There are

several problems with this approach. Choosing restrictions based on individual

standard errors ignores the off-diagonal elements in the covariance matrix of the

estimates – a joint restriction is chosen without considering joint significance. A

related problem (and probably the reason why it is uncommon to test joint restric-

tions on the parameters of risk) is that the MLE standard errors for the parameters

of a DTSM are rather unreliable.30 Moreover, the choice of a significance level re-

quired for inclusion of the parameter or of a cutoff for the relative standard error is

necessarily arbitrary. Most importantly, alternative sets of restrictions lead to eco-

nomically significant differences in results, as I will show below, and this approach

offers no guidance on which set of restrictions is more credible.31

27Examples of studies that use additional data are Kim and Orphanides (2005), who include
interest rate forecasts from surveys, and Campbell et al. (2009), who proxy for the price of risk
using a dividend/price ratio.

28This fact has been noted for example by Kim and Orphanides (2005) and Cochrane and
Piazzesi (2008).

29Among the numerous studies employing this approach are the influential papers of Duffee
(2002), Dai and Singleton (2002), Ang and Piazzesi (2003) and Kim and Wright (2005).

30There are several reasons to doubt these standard errors: There are multiple local maxima,
the asymptotic approximation might not be valid, and the numerical approximations to gradient
and Hessian of the likelihood function are imprecise.

31Kim and Orphanides (2005) report that in the context of their DTSM some of the “differ-
ent choices of parameters to be set to zero [...] exhibited economically significant quantitative
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So far the literature has not developed an econometric approach to select

restrictions on the prices of risk.32 This paper provides a new framework for

choosing plausible restrictions, which is based on Bayesian model selection.33 One

challenge is that there are many possible restrictions, which is overcome by first

identifying plausible candidates using a new MCMC algorithm that involves latent

indicator variables (Section 2.4.1). For the smaller set of candidate specifications

we can then estimate the parameters and posterior model probabilities more pre-

cisely (Section 2.4.2). This shows the economic implications of each model (Section

2.4.3), and how much support each specification receives from the data. Since no

single model clearly dominates all other candidates, I employ, in a third step,

Bayesian model averaging (BMA) in order to perform inference that incorporates

model uncertainty (Section 2.4.4).

The resulting estimates turn out to be both more precise and more plausible

than those of the unrestricted model. In particular far-ahead short rate expecta-

tions are found to be significantly more variable, implying a slow-moving term

premium. Furthermore the pro-cyclical response to news is found to be mainly

due to changing short rate expectations, and there is no puzzling pro-cyclical term

premium response. These results accord well with the conventional wisdom about

bond risk premia.

The model-implied decompositions into expectations and risk premium

components are independently verified by assessing forecast accuracy of the models

(Section 2.4.5), as well as model-implied return-predictability (Section 2.4.6), with

encouraging results.

2.4.1 Identifying candidate specifications

We would like to know which zero restrictions on λ1 are supported most

strongly by the data – since this paper is concerned with the time variation in

differences” (p.11).
32Cochrane and Piazzesi (2008) have taken the question of risk-price restriction more seriously,

however they choose their restrictions based on very specific evidence on expected excess returns
for a particular frequency and data set, thus their approach is not generally applicable.

33For review articles on the topic of Bayesian model selection see for example Kass and Raftery
(1995) and Clyde and George (2004).
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risk premia, we will leave the vector λ0 unrestricted. The problem of selecting a

particular restriction is related to the variable selection problem in multivariate

regression analysis: In both cases we can introduce a vector of indicator variables

that summarizes which parameters are allowed to be nonzero. For the regression

context Dellaportas et al. (2002) developed the method of “Gibbs variable selec-

tion” (GVS) which delivers a sample from the joint posterior distribution of the

regression coefficients and indicators. I adapt this method to the context of DTSM

estimation.

Let γ be a k2 × 1 vector of indicator variables, each of which is equal to

one if the corresponding element of vec(λ1) is allowed to be nonzero. The goal is

to obtain the joint distribution of (γ, θ,X). Since the conditional posterior of γ

given θ and X can be derived, block-wise M-H can be used to obtain draws from

this distribution. To assess the plausibility of a joint restriction on λ1, represented

by a specific value of γ, say γ̄, we can consider the posterior probability P (γ = γ̄),

which is easily estimated by counting the number of draws for which γ = γ̄. The

algorithm is developed in Appendix 2.6.3, and I will refer to it as GVS, although it

shares only the idea of latent indicator variables with the original GVS algorithm.

The matrix λ1 has k2 elements thus there are 2k
2

possible specifications, a

large number even for the case of only a few factors. Thus a very large MCMC

sample would be necessary to precisely estimate the posterior model probabilities

of all models. However, those specifications with high posterior probability are

likely to appear quickly in the GVS algorithm. Our goal is to identify the most

promising specifications, and running the sampler for a limited number of iterations

will achieve this goal.34

With the sample from the joint posterior for (γ, θ,X) at hand I select those

models with a Bayes factor in comparison to the most plausible model of at most

20. The Bayes factor is equal to the ratio of posterior model probabilities, and a

value larger than 20 can be considered strong evidence against the model (Kass

and Raftery, 1995). This leads to inclusion of six models, which together account

for a total posterior model probability of 75.8%. To be clear: of the 29 = 512

34This point was made by George and McCulloch (1993).
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possible specifications in the model space of the GVS sampler, the six most frequent

specifications plus the unrestricted model are the only ones that the subsequent

analysis will consider – from now on the model space will consist only of these

seven models.

Table 2.2: Model specifications

Model Freq. Specification Eigenv. LR Rev. PGV SMj
PLaplMj

PCandMj
PRJMj

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
M1 0.0% 111 111 111 0.99 0 0.0% 0.0% 0.0% 0.0%
M2 46.3% 010 000 000 1.00 0.95 61.1% 58.2% 56.1% 48.8%
M3 9.4% 011 000 000 1.00 -0.34 12.4% 10.7% 13.9% 15.9%
M4 8.4% 010 000 010 1.00 0.96 11.1% 9.4% 12.1% 18.2%
M5 6.5% 000 000 000 1.00 1.00 8.6% 18.4% 12.9% 4.1%
M6 2.9% 110 000 000 0.99 0 3.8% 2.4% 3.3% 6.3%
M7 2.3% 011 000 010 1.00 -0.34 3.0% 0.9% 1.8% 6.6%

Alternative model specifications and estimated posterior model probabilities. Columns

two: frequency of specification in GVS algorithm (cumulative: 75.8%). Columns three

to five indicate which elements in the respective columns of λ1 are restricted (0) and

unrestricted (1). Column six: largest eigenvalue of Φ. Column seven: long-run revision

of short-run expectations in response to a unit level shock. Columns eight to eleven:

estimates of the posterior model probabilities based on rescaled GVS frequencies,

Laplace approximation to marginal likelihood, Candidate’s estimate of the marginal

likelihood, and Reversible-Jump MCMC.

Table 2.2 shows the candidate models. The unrestricted model is denoted

by M1 and the restricted models M2 to M7. The second column shows for the re-

stricted models the frequency of each model in the GVS sampler – the unrestricted

model is not visited by the sampler. Since these estimated model probabilities add

up to 75.8% and not to 100%, I report the normalized numbers in column eight.

Columns three to five indicate which elements in the respective columns of λ1 are

restricted (0) and unrestricted (1), e.g. for model M2 only the element in the second

row of the first column is unrestricted.

Importantly, the sample from the posterior distribution of γ allows us to

perform inference on the determinants of time-variation in risk premia. Cochrane
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and Piazzesi (2008) find, based on an analysis of excess returns, that only the

price of level risk seems to vary. Since monetary policy mainly has slope effects on

the term structure they conclude that it cannot be the risk associated with policy

shocks that varies over time. We can assess whether this finding is supported by

our sample. Time-variation in the price of level risk corresponds to the presence of

non-zero elements in the first row of λ1. The posterior probability of this hypothesis

is estimated to be 17.3%, indicating that it is rather unlikely that level risk varies.35

The price of slope risk varies if the second row of λ1 is non-zero, and the posterior

probability of this hypothesis is estimated to be 89.3%. Thus, in contrast to

Cochrane and Piazzesi (2008), I find that the price of slope risk and not the price

of level risk seems to vary over time. Further analysis is necessary to reconcile this

difference, which could be due to the sample choice, the frequency of the model,

or the method of inference. My results suggest that the compensation for slope

risk, and thus possibly for the risk associated with policy shocks, seems to play an

important role for variation in excess returns and term premia.

2.4.2 Within-model simulation and posterior model prob-

abilities

Having identified the candidate models I proceed by estimating each model

individually. The purpose of this second step of my estimation approach is to esti-

mate the parameters of each model more precisely. Their posterior distributions are

needed for estimating posterior model probabilities by marginal likelihood meth-

ods, for a precise assessment of the different specifications’ economic implications,

and for constructing efficient proposals for the joint model-parameter sampling

by means of RJMCMC (Section 2.4.4). The MCMC algorithm for estimating the

restricted models closely corresponds to the one for the unrestricted model, with

the only difference that the each element of λ0 and λ1 is sampled separately.

After performing within-model estimation, posterior model probabilities

can be estimated based on marginal likelihood approximations. I use two different

35This is the relative frequency of draws with at least one element of the first row of λ1 being
non-zero.
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approximations, a Bartlett-adjusted Laplace estimator and a version of Candi-

date’s estimator, both of which are described in detail in DiCiccio et al. (1997).36

The resulting estimates are given in column nine and ten of Table 2.2. Compar-

ing these probabilities to the ones obtained from the GVS algorithm in column

eight we see that they provide a similar ranking and weighting of the models: The

unrestricted model is extremely unlikely, model M2 is strongly preferred, M3 to

M5 receive about 10-20% probability each, and M6 and M7 are least likely. The

correspondence between the results from GVS and from marginal likelihood ap-

proximations is reassuring – numerical differences are due to the above-mentioned

imprecision of GVS and to the different approximations employed to estimate

marginal likelihoods.

The unrestricted model’s posterior probability is estimated to be zero. In-

stead, strongly restricted specifications are supported by the data – none of the

preferred models have more than three unrestricted elements in λ1. The fact that

the data clearly supports tight restrictions on the prices of risk is very plausible if

we believe in the absence of arbitrage: Long rates should have some relation to

expected future short rates, meaning that the physical and risk-neutral dynamics

should be close to each other, but unrestricted prices of risk completely disconnect

the two. Only when prices of risk are restricted does the no-arbitrage assumption

have any bite. My results clearly speak in favor of such restrictions.

A crucial characteristic of the candidate models is whether they imply a

stationary or an integrated short rate. The largest eigenvalue of Φ for each model

is shown in column six. If for a particular model this is unity, then the physical

dynamics are non-stationary, the short rate contains a unit root, and far-ahead

expectations of the short rate are affected by current factor shocks. On the other

hand for stationary P-dynamics the short rate is mean-reverting and far-ahead

short rate expectations are constant (in the limit). Remember that ΦQ has a unit

36The first approximation, Ĉ∗B in those authors’ notation, is a localized (i.e. volume-corrected)
version of the Bartlett-adjusted Laplace estimator (see DiCiccio et al., 1997, Section 2.2). The
second approximation, ĈC , a Candidate’s estimator, is based on a simple Kernel density estimate
of the posterior distribution (see DiCiccio et al., 1997, Section 2.5). For the volume I use 5%
in both cases and I estimate the mode by taking that parameter draw which maximizes the
posterior.
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eigenvalue, that Φ = ΦQ + Σλ1, and that we impose non-explosive dynamics (no

eigenvalue of Φ can be larger than one). Hence whether the system is stationary

or not depends entirely on the restrictions on λ1: For unrestricted λ1 and for

most restrictions the system will be stationary, however some strongly restricted

specifications lead to non-stationary dynamics. Importantly, most preferred models

exhibit a unit root for the short rate. In particular model M2, which is strongly

favored by the data, implies non-stationary physical dynamics. The support in

the data for a stochastic trend in the short rate stands in stark contrast to the

implication of the unrestricted model that the short rate relatively quickly reverts

to its unconditional mean. While the true short rate process cannot literally have a

unit root, since it is bounded from below and usually remains in a certain range, its

largest root is certainly very close to one. My evidence suggests that in a DTSM of

daily frequency an integrated specification approximates the true data generating

process better than a stationary specification.

In those restricted models that contain a unit root shocks to the level factor

lead to revisions of far-ahead short rate expectations. Column seven shows these

long-run revisions, lim
h→∞

(Et+1 − Et)rt+h, in response to a unit level shock – details

about this calculation are given in Appendix 2.6.4. The models have very different

implications for this long-run revision: For M2, M4 and M5 the long-run revision

is positive and close to or equal to unity, implying that far-ahead short rate ex-

pectations move about as much as far-ahead forward rates. In models M3 and M7

on the other hand the long-run revision is negative, i.e. the forward risk premium

increases by more than one in response to a unit level shock. Evidently there is

specification uncertainty about this important aspect of the model.

2.4.3 Economic implications of alternative models

The previous analysis has revealed that model M2 receives strong support

from the data. What exactly does this model imply for the properties of short

rate expectations and risk premia? Figures 2.6 and 2.7 graphically summarize

the implications of the unrestricted model (M1) and the favorite model (M2).37

37Note that Figure 2.6 simply pulls together what was shown in Figures 2.3, 2.4 and 2.5.
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The first panel of each figure shows the model-implied changes in actual and risk-

neutral rates on 8 March 1996, where markets saw a strong positive payroll surprise

of +408,500. The second panel shows the actual and risk-neutral term structure of

volatility. The third panel shows the responses of actual and risk-neutral futures

rates to a one-standard-deviation positive payroll surprise. Credibility intervals for

the changes, volatilities and responses of risk-neutral rates indicate the estimation

uncertainty.

Model M2 implies that changes in short rate expectations play a domi-

nant role for changes in actual futures rates across the entire maturity spectrum.

According to the point estimates for risk-neutral rate changes, the employment

surprise in March 1996 caused futures rates to increase mainly because the ex-

pected future short rate path was revised upwards, and forward risk premia hardly

changed on this day. The risk-neutral vol curve implied by M2 shows that most of

the daily variability in futures rates results from changing short rate expectations.

Furthermore model M2 attributes the pro-cyclical response of futures rates to pay-

roll surprises mainly to revisions of the expected short rate path. The differences

between models M1 and M2 are dramatic, with the implications of the latter model

being more plausible in light of the conventional term premium wisdom.

The figure also reveals that the decomposition obtained using the restricted

model exhibits low estimation uncertainty, indicated by the narrow credibility in-

tervals. A policy-maker that believes in this model would not be guessing but

instead could make confident statements about changes in policy expectations and

risk premia. The strongly restricted prices of risk lead to high precision in the

inference about short rate expectations.

If we were convinced that model M2 is the right specification, then we

could stop here. However the other candidate models also receive some support

from the data, hence we should consider their implications with regard to short

rate expectations and risk premia. Figure 2.8 compares the models by showing in

the first panel what happened on 8 March 1996, in the second panel actual and

risk-neutral vol curves, and in the third panel the responses to payroll surprises.

The models have identical implications for the changes in actual futures rates,
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since the estimated risk-neutral dynamics are essentially the same for all models.

However they differ significantly in their implications for risk-neutral rates.38

According to models M2, M4 and M5, the volatility of futures rates across

all maturities (second panel) as well as their pro-cyclical response to macro news

(first and third panel) are mainly due to changes in short rate expectations. Since

these models account for about 70-80% of the posterior model probability mass

this constitutes evidence that far-ahead short rate expectations are quite variable,

respond significantly to the news, and hence play an important role for determining

rate changes.

However, models M1, M3, M6 and M7 imply that changes in forward risk

premia account for most or all of the volatility and pro-cyclical responses of long

rates – for the stationary models M1 and M6 this is due to the fact that shocks die

out in the limit and do not affect far-ahead short rate expectations, whereas for the

non-stationary models M3 and M7 the explanation is that a positive level shock

is associated with a negative long-run revision. Since the candidate models have

economically different implications, there remains some specification uncertainty.

2.4.4 Accounting for model uncertainty using reversible-

jump MCMC

When a model indicator is included as a parameter to be sampled using

MCMC we speak of “joint model-parameter sampling.” Another approach than

the product-space sampling introduced by Carlin and Chib (1995), of which GVS

is a special case, is Reversible-jump MCMC, initially developed by Green (1995).

This method is characterized by the ability to “jump” between models with pa-

rameter spaces of different dimensionality. Sampling simultaneously across model-

and parameter-space using RJMCMC constitutes the third step of my estimation

approach, the goal being to deal with specification uncertainty.

38The graph shows the posterior means for changes (first panel), volatilities (second panel) and
responses (third panel) for the risk-neutral rates, as in previous figures. Calculating these objects
of interest at the posterior means of the parameters leads to slightly different results (not shown)
because of the non-linearity in the parameters – e.g. the posterior mean volatility is different
from the volatility at the posterior mean. This aspect of estimation uncertainty is ignored in
classical estimates of term premium characteristics.
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A model indicator j ∈ {1, . . . , J} is included as an additional parameter,

and the sampler, which is detailed in Appendix 2.6.5, approximates the joint pos-

terior P (j, θj, X|Y ). Because we have previously estimated all candidate models

separately, we can use our previous results to choose very efficient proposal distri-

butions.

Table 2.2 shows in the last column the estimated posterior model probabil-

ities obtained using RJMCMC. The finding of model M2 being strongly favored

by the data is confirmed, with its posterior probability estimated to be around

50%. The unrestricted model is never visited by the sampler; probabilities for the

other models are estimated to be between 4% and 18%. These results support our

previous conclusions.39

The sample obtained using the RJMCMC algorithm allows us to perform

inference that accounts for specification uncertainty. This is crucial given the

economically important differences between the models, and since we cannot be

100% sure that model M2 is the correct one, rather only about 50-60%, simply

put. Bayesian model averaging (BMA) is the appropriate theoretical framework

to incorporate specification uncertainty into our inference about risk premia: The

posterior distribution of some object of interest, say the risk-neutral vol curve, con-

ditional on only the data and not on a specific model, is obtained by averaging out

the model indicator using posterior probabilities.40 The RJMCMC sample conve-

niently delivers draws from the relevant posterior distribution of the parameters –

the model indicator is “averaged out” if we simply ignore its value for each draw.

I denote by BMA the model estimates obtained in this way.

Figure 2.9 shows the properties of the risk-neutral rates inferred using

BMA. It corresponds to figures 2.6 and 2.7 except that now we do not condi-

tion on a specific model but instead average across models. The point estimates

for changes and responses of risk-neutral rates and for the risk-neutral vol curve

39Note that the GVS and RJMCMC algorithms use the same priors and thus, despite the
different model spaces, should deliver the same weightings of the candidate models. The differ-
ences indicate lack of convergence, the reason being, as mentioned above, that the large number
of possible models in the GVS algorithm would require a huge number of iterations to achieve
complete convergence.

40For an introduction to BMA see Hoeting et al. (1999).
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obtained using BMA confirm the earlier conclusion: Short rate expectations are

the more important driving force for the daily volatility of the entire term structure

and its pro-cyclical responses to macro news – forward risk premia move very little

at the daily frequency. This result stands in stark contrast to the implications of

an unrestricted DTSM, where risk-neutral rates hardly move at all at the long end

of the term structure and all daily variation is due to changing risk premia, as

was shown in Section 2.3. The model in Kim and Wright (2005), being largely

unrestricted, leads to the same implications, as shown by Beechey (2007), despite

being augmented by survey forecasts. The decomposition of rate changes I obtain

under sensible restrictions on the market prices of risk are more plausible: Since

the term premium seems to move mainly at business cycle frequencies we would not

expect it to account for much variability at the daily frequency. Furthermore the

conventional wisdom, empirically and theoretically founded, has it that the term

premium moves in a countercyclical way. Thus its contribution to the procyclical

interest rate changes caused by news should be small. This is exactly what we find

if we impose the restrictions on the prices of risk that are suggested by the data.

The previous conclusion was based on the point estimates obtained using

BMA. Figure 2.9 also shows that averaging across models, instead of choosing a

favored restricted model a priori, increases the uncertainty about short rate expec-

tations and risk premia. This was of course to be expected. However, when com-

paring figures 2.6 and 2.9 it becomes evident that averaging across our restricted

DTSM specifications leads to slightly lower overall uncertainty about changes in

risk-neutral rates than for the unrestricted model, in particular when considering

the risk-neutral vol curve. Restricting the prices of risk, even after accounting for

model uncertainty, improves the precision of estimates of the short rate dynamics.

Another advantage of the approach developed in this section is that it solves

the “discontinuity problem” documented by Cochrane and Piazzesi (2008) and

Jardet et al. (2009): The implications of a DTSM for risk premia dramatically

differ depending on whether the largest root of the short rate is equal to or less than

unity. In reality this root is very close to but slightly less than one. A stationary

model will underestimate this root as argued above, but a root of unity implied by
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an integrated specification is not the literal truth either. The discontinuity problem

is thus tantamount to the bias problem. Jardet et al. (2009) solve it using a “near-

cointegrated VAR” based on the averaging estimators proposed by Hansen (2009).

Effectively they average a stationary and a non-stationary specification. While this

overcomes the discontinuity problem it does not solve the uncertainty problem –

no restrictions are imposed on the prices of risk, so no-arbitrage is not brought

to bear on estimation of the P-dynamics. The estimation uncertainty, which is

not reported by the authors, is likely to be very large, as usual for unrestricted

DTSMs. Using BMA on restricted specifications of a DTSM also amounts to

averaging between stationary and non-stationary specifications, thus solving the

discontinuity problem, but at the same time it solves the uncertainty problem.

The result is that we obtain more precise and more plausible decompositions of

interest rate levels and changes into expectations and risk premium components.

2.4.5 Forecast accuracy

Claiming that specific risk premium estimates are more plausible than oth-

ers is equivalent to saying that the model more accurately captures the market’s

short rate expectations. One way to evaluate this claim, based on the notion that

market participants construct the best possible forecasts, is to assess the forecast

accuracy of the model’s predictions for the short rate (e.g. Duffee, 2002; Dai et al.,

2006).

As a simple reality check for the model’s forecasts, I construct in-sample

forecast errors for the model-implied short rate rt = X
(1)
t + X

(2)
t . The choice of

in-sample forecasts is made for simplicity and data-availability – because of the

parsimony of the restricted DTSMs we would expect these models to perform

even better out-of-sample. I compare root mean squared forecast errors (RMSEs)

across model specifications, including the forecasts based on BMA. To construct

forecasts of the term structure factors, filtered values for Xt are used. As a point

of reference, I include the RMSEs based on forecasts using a random walk for the

short rate. Since we are mainly interested in long-horizon forecasts of several years,

the horizons considered are 900, 1200 and 1500 days.
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Table 2.3: Forecast accuracy

Horizon RW M1 M2 M3 M4 M5 M6 M7 BMA
900 3.00 2.25 2.19 2.09 2.19 2.28 2.08 2.09 2.11
1200 2.80 2.22 1.84 2.08 1.82 1.86 1.90 2.12 1.84
1500 2.66 2.14 1.61 2.05 1.60 1.60 1.80 2.13 1.65

Root mean squared errors for in-sample forecasts of the model-implied short rate, using

alternative model specifications, compared to a random walk.

Table 2.3 shows the results. All models perform better than a random walk

for the short rate. The restricted models produce superior forecasts of the short

rate compared to the unrestricted model, particularly at longer horizons.41 While

it is not the case that our favorite model (M2) produces the best forecasts, this was

to be expected, since the estimation and model selection procedures consider only

one-step-ahead forecast errors. Almost without exception all restricted models beat

the unrestricted model at all forecast horizons. Notably the models with stationary

P-dynamics, M1, M3 and M7, perform worse the longer the forecast horizon – the

reason is that their forecasts are close to the unconditional mean of the short

rate. The forecasts based on BMA perform very well, being a close second or

third for each horizon. Since these are averages of the individual forecasts, their

good performance reflects the generally good accuracy of forecast combinations

(Timmermann, 2006).

A more detailed assessment of the forecasting performance of DTSMs with

restricted prices of risk is warranted: The use of out-of-sample forecasts, rigorous

inference about forecast accuracy, and inclusion of other forecasting methods will

provide more detailed evidence as to whether this modeling approach can help

improve interest rate forecasts. Because of the improved precision in estimates

of the P-dynamics and the parsimony of the restricted models this seems to be a

promising direction for future research.

The results above support the claim that the term premium estimates of

41The puzzling fact that forecast errors are smaller at longer horizon is due to the fact that
the sample periods differ in each case.
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restricted specifications are more accurate than those based on unrestricted prices

of risk. Notably this analysis is about the level of short rate expectations and risk

premia. The following analysis will assess the plausibility in terms of changes in

risk premia, which have been the main focus of this paper.

2.4.6 Return predictability

In the presence of time-varying risk premia, changes in futures rates, like

bond returns, are partly predictable. Using predictive regressions, Cochrane and

Piazzesi (2005)(CP) find that one-year bond returns are explained by current for-

ward rates with R2 of up to 44%, and similar results obtain for Eurodollar futures

rates, as I will show below. On the other hand, the specification and parame-

ter estimates of a DTSM have very concrete implications for the predictability

of returns. This suggests that we can check the plausibility of model-based risk

premium estimates by comparing the model’s implications to the regression-based

findings about return-predictability. In particular, the question is whether the

restricted DTSMs imply similar predictability as we find in the data.

Which holding period should be considered? The predictable component

of daily changes in futures rates is negligibly small, as mentioned above – daily

changes are mainly driven by surprise changes in short rate expectations and risk

premia. Inference about the predictable component of returns thus needs to be

based on longer holding periods. For this reason we will consider one-year changes

in Eurodollar futures rates, which correspond to absolute returns on positions in

futures contract that are rolled over for four quarters and then liquidated. If

I denote by N the length of this holding period42 then the relevant return is

ED
(i)
t+N − ED

(i+4)
t .

To assess predictability using return regressions, the one-year changes are

projected onto current rates, using daily observations. Since the inclusion of all

16 futures contracts as explanatory variables leads to perfect multicollinearity, I

restrict attention to only three contracts, namely ED4, ED9 and ED13 – these

42In the theoretical calculations this is taken to be equal to 260, the approximate number of
business days in one year. In the data, where I take the holding period to be exactly one year,
N varies between observations, a fact that the notation ignores for simplicity.
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Table 2.4: Return predictability

Contract data M1 M2 BMA
ED4 .52 .46 [.11, .81] .21 [.02, .52] .27 [.02, .74]
ED8 .50 .44 [.12, .77] .21 [.02, .51] .25 [.02, .61]
ED12 .45 .43 [.14, .72] .22 [.02, .52] .25 [.03, .57]

R2 in projection of annual returns on current rates/factors. For details please refer to

text.

capture essentially all of the predictability.43 Hence the regression specification is

ED
(i)
t+N − ED

(i+4)
t = β0 + β1ED

(4)
t + β2ED

(9)
t + β3ED

(13)
t + u

(i)
t .

Table 2.4 shows in the first column the R2 for i = 4, 8, 12. A large share of the

variance in returns, namely 45-52%, is predictable based on current futures rates.

These numbers are in the ballpark of the results of CP.

In order to compare these regression-based results to the models’ implica-

tions, I estimate the R2 based on simulated data for futures rates, assuming that

the specific model is the true data-generating process. Specifically, for each set of

parameters in the MCMC sample, I simulate time series for futures rates of length

T = 4000 (similar to the actual data), and run the same regressions as for actual

futures rates. This leads to a sample from the posterior distribution for the R2

estimated using the typical regression approach.

The remaining columns in table 2.4 show the simulation-based R2 with

95%-CIs for models M1, M2 and BMA. The predictability in the simulated data

is similar to what we found in the data. BMA implies simulation-based R2 of

25-27%, with CIs comfortably straddling the values found in the data. Hence risk

premium estimates based on a DTSM with tight restrictions on the prices of risk

estimates are plausible from the perspective of return regressions as well.

43These contracts are selected by choosing those three contracts with the high-
est predictive power for one-year changes, considering the average across contracts,
i.e. 1

12

∑12
i=1

(
ED

(i)
t+N − ED

(i+4)
t

)
. Including more contracts as explanatory variables in ad-

dition to ED4, ED9 and ED13 hardly changes the R2.
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2.5 Conclusion

This paper shows that conventional term structure models, which do not

restrict market prices of risk, lead to unsatisfactory implications for short rate ex-

pectations and forward risk premia: The estimation uncertainty is too large for

us to make any useful statements about bond risk premia. Furthermore term pre-

mia have implausibly high variability. These issues, which are particularly serious

when we want to decompose changes at the daily frequency, are due to a discon-

nect between risk-neutral and physical dynamics. With unrestricted prices of risk

the no-arbitrage assumption, which requires consistency between cross-sectional

and dynamic properties of the term structure, does not restrict our estimates. I

develop an approach that allows us to rigorously assess which restrictions on the

market prices of risk are plausible. Estimation of restricted models brings in the

information in the cross section to improve the precision of our estimates of the

physical dynamics of the short rate. The inference about short rate expectations

is thus much more precise than in a model without restrictions. The two main

empirical results are: (1) The data supports tight restrictions on the prices of risk.

(2) Under these restrictions short rate expectations, and not changing risk premia,

account for the majority of daily volatility at the long end of the term structure

and of the response to macroeconomic news. This contrasts with existing results

and is more plausible in light of the conventional wisdom about the term premium.

A promising application of my framework is the context of macro-finance

term structure models, which, as noted by Kim (2007), face the important challenge

of putting more structure on the prices of risk: A key problem of these models

is that the number of parameters is very large and the joint dynamics of term

structure and macro variables are over-fitted. My approach can help overcome

this problem since it greatly reduces the number of free parameters. In addition to

leading to more parsimony and to more precise estimates of the factor dynamics,

my framework allows researchers to perform rigorous inference on risk premia. The

questions about which macroeconomic variables drive variation in risk premia and

which macroeconomic shocks carry risk, described as “the Holy Grail of macro-

finance” by Cochrane (2007, p. 281), can be answered by testing restrictions on
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the prices of risk. The statistical framework I present in this paper allows to assess

such restrictions, wherefore it is the right setting to tackle these questions.

2.6 Appendix

2.6.1 Change of measure

In order to show what kind of process the term structure factors follow

under Q we need to derive the conditional Laplace transform of Xt+1 under Q. We

defined the one-period SDF, or pricing Kernel, as

Mt+1 = exp

(
−rt −

1

2
λ′tλt − λ′tεt+1

)
,

which implies the change of measure based on the fact that for any one-period

pricing Kernel we have44

Mt+1 = exp(−rt)fQ(Xt+1|Xt)/f
P(Xt+1|Xt).

Thus we obtain for the risk-neutral conditional Laplace transform

EQ(exp(u′Xt+1)|Xt) =

∫
exp(u′Xt+1)fQ(Xt+1|Xt)dXt+1

=

∫
exp

(
u′Xt+1 −

1

2
λ′tλt − λ′tεt+1

)
fP(Xt+1|Xt)dXt+1

= E

[
exp

(
u′(µ+ ΦXt + Σεt+1)− 1

2
λ′tλt − λ′tεt+1

)
|Xt

]
= exp

[
u′(µ− Σλt + ΦXt) +

1

2
u′ΣΣ′u

]
which is recognized as the conditional moment-generating function of a multivari-

ate normal distribution with mean µ−Σλt + ΦXt = (µ−Σλ0) + (Φ−Σλ1)Xt and

variance ΣΣ′.

44The Radon-Nikodym derivative, which relates the densities under the physical and risk-
neutral measure, is given by

fP(Xt+1|Xt)
fQ(Xt+1|Xt)

=
(
dP

dQ

)
(Xt+1;λt) = exp

(
1
2
λ′tλt + λ′tεt+1

)
.
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Note that since Xt follows a Gaussian vector autoregression under Q the

model is in the DAQ0 (N) class of Dai et al. (2006).

The physical innovations εt, which are a vector martingale-difference se-

quence (m.d.s.) under P, are related to the innovations under Q by

εQt = εt + λt−1.

Note that the risk-neutral innovations, while being m.d.s. under Q, can have non-

zero mean and be predictable under P, depending on the prices-of-risk specifica-

tion.

2.6.2 Basic MCMC algorithm and convergence diagnostics

Likelihood functions

Denote by X the latent factors for all time periods, and by Y the full sample

of observed futures rates. The likelihood of the factors is

P (X|θ) = P (X|ρ, λ0, λ1,Σ)

=
T∏
t=2

(2π)−
k
2 |Q|−

1
2 exp

(
−1

2
v′tQ

−1vt

)

where vt = Xt−µ−ΦXt−1. Note that Σ determines not only the factor covariance

matrix Q = ΣΣ′ but also affects the physical dynamics µ and Φ (see equation

(2.6)). For the distribution of the observations Y conditional on the factors X we

have the likelihood

P (Y |θ,X) = P (Y |ρ, σ2
w, X)

=
T∏
t=1

m∏
i=1

(2πσ2
w)−

1
2 exp

(
−(ED

(i)
t − ai − h′iXt)

2

2σ2
w

)
.

Block-wise Metropolis-Hastings

The joint posterior distribution of the model parameters and the latent

factors is proportional to the product of the likelihood function for the data, the
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likelihood function for the factors, and the joint prior:

P (θ,X|Y ) ∝ P (Y |θ,X)P (X|θ)P (θ)

A block-wise Metropolis-Hastings (M-H) algorithm is used in order to obtain draws

from this posterior distribution: At each iteration one draws from the full condi-

tional posterior distribution for each block of parameters, conditional on the other

parameter values. If this distribution is not known in closed-form, a M-H step is

used in order to obtain the desired draw, otherwise we can directly draw from the

conditional posterior (this is called a Gibbs step). The latent factors are drawn us-

ing the Filter-Forward-Sample-Backward (FFSB) algorithm developed by Carter

and Kohn (1994). Iteratively drawing the blocks in this way leads to a sample

which is approximately distributed according to the posterior P (θ,X|Y ), which is

the stationary distribution of the Markov chain (Chib and Greenberg, 1995).

Iterating on this block-wise algorithm, the first B observations are discarded

(the burn-in sample) so that the effect of the starting values becomes negligible.

Of the following iterations, only every sth draw is retained, so that the number of

iterations necessary for a sample of size G is B+ s ·G. For the basic MCMC algo-

rithm used to estimate a single DTSM specification the configuration is B = 20000,

G = 5000 and s = 40. These values result from a careful inspection of convergence

plots under different configurations, given the restrictions of computational costs

and memory constraints. Notably not more than several thousand draws can be

saved since every draw contains not only the parameters but also T · k values for

the sampled paths of the latent factors.

Priors need to be specified for the parameters (ρ, λ0, λ1,Σ, σ
2
w). While for

the purpose of estimation they could be taken to be diffuse or improper this would

lead to problems when we turn to model selection – posterior distributions tend

to be much less sensitive to the choice of priors than Bayes factors (Kass and

Raftery, 1995).45 For example, improper priors lead to undefined Bayes factors.

Furthermore, very diffuse but proper priors will lead to results that necessarily

favor the restricted model (the Lindley-Bartlett paradox, see Bartlett, 1957). Given

45A Bayes factor is the ratio of the posterior model probabilities for two competing
models/hypotheses.
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the focus of this paper on selecting restrictions on λ1 (Section 2.4) this prior should

not be too diffuse.

I specify ρ to be uniformly distributed over the unit interval. The prior for

Q = ΣΣ′ is Inverse Wishart (IW) and the prior for σ2
w is Inverse Gamma (IG), both

rather dispersed. The elements of λ0 and λ1 are normally distributed, independent,

with mean zero and unit variance. The absolute magnitudes of the estimates for

these parameters are small, thus despite the unit variance the prior is not very

informative. Sensible alternative choices hardly affect the estimates I obtain. The

joint prior P (θ) also imposes the restriction that the eigenvalues of Φ are at most

one in absolute value, thus preventing explosive dynamics.

Instead of successively drawing every block in each iteration, one can ran-

domize which block is sampled next, in which case we speak of Random Scan

Metropolis-Hastings. I choose this method since one can fine tune how frequently

each block is sampled: Those blocks are sampled more frequently which are more

problematic in terms of mixing properties, and the blocks with parameters that

mix well are sampled less frequently, which increases the efficiency of the algo-

rithm. Specifically I sample only one block in each iteration, and the five blocks

X, ρ, (λ0, λ1), Σ and σ2
w are sampled with probability 10%, 20%, 50%, 10% and

10%, respectively. In the following I describe how each block is sampled.

Drawing the latent factors (X)

Given θ, draws for the latent factors are obtained by means of the FFSB

algorithm developed by Carter and Kohn (1994): Kalman filtering delivers an

initial time series of the factors, and then one iterates backward from the last

observation and successively draws values for the latent factors conditional on the

following observation. A detailed explanation of the algorithm can be found in

Kim & Nelson (1999, chap. 8).

Drawing the risk-neutral dynamics (ρ)

The risk-neutral dynamics are given by ΦQ, since we impose µQ = 0. The

prices of risk are taken as given when drawing this block, so drawing ΦQ affects

not only a and H but also the transition matrix of the physical dynamics, Φ. The

matrix ΦQ is completely determined by the root ρ, for which we have the following
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conditional posterior

P (ρ|θ−, X, Y ) ∝ P (Y |θ,X)P (X|θ)P (θ)

where θ− denotes all other parameters except ρ. Since we cannot sample directly

from this distribution – ρ enters the density in a complicated way – we need to

employ a M-H step. Since only proposal draws that are close to the value from

the previous iteration have a chance of being accepted, a Random Walk (RW)

step is the natural choice: In iteration g we draw the parameter according to

ρ(g) = ρ(g−1) + ζρt4, a fat-tailed RW with t4 being a random variable with a t-

distribution with four degrees of freedom, and ζρ being a scale factor used to

tune the acceptance probability to be around 20-50%, which is the recommended

range in the MCMC literature (see Gamerman and Lopes, 2006, p.196). Since the

proposal density is symmetric for a RW step, the acceptance probability is given

by

α(ρ(g−1), ρ(g)) = min

{
P (Y |ρ(g), θ−, X)P (X|ρ(g), θ−)P (ρ(g), θ−)

P (Y |ρ(g−1), θ−, X)P (X|ρ(g−1), θ−)P (ρ(g−1), θ−)
, 1

}
For the case that the prior restrictions (0 < ρ < 1 and non-explosive Φ) are satisfied

– the acceptance probability is zero otherwise – this is simply equal to the ratio

of the likelihoods of the new draw relative to the old draw, or one, whichever is

smaller.

Drawing the risk sensitivity parameters (λ0 and λ1)

In order to draw the risk sensitivity parameters, we recognize that for their

conditional posterior distribution we have

P (λ0, λ1|θ−, X, Y ) ∝ P (Y |θ,X)P (X|θ)P (θ)

∝ P (X|θ)P (θ),

where θ− denotes all parameters except for λ0 and λ1, since the likelihood of the

data for given risk-neutral dynamics does not depend on the prices of risk. The

parameters enter the likelihood for the latent factors in a highly non-linear fashion

thus we cannot directly sample from the conditional posterior distribution. I tried

both RW and Independence Metropolis proposals, and found the former to work
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better in this context. If there are no restrictions imposed on λ1 then I draw λ0

and each column of λ1 separately. The innovation for the RW is then a k×1 vector

of independent t4-distributed innovations (one could of course use a multivariate

t-distribution). For the case that some elements of λ1 are restricted to zero, I

draw each non-zero element of λ0 and λ1 separately, using a univariate RW with

t4-distributed innovations. The scale factors are adjusted in order to tune the

acceptance probabilities. After obtaining the candidate draw, the restriction that

the physical dynamics are non-explosive is checked, and the draw is rejected if

the restriction is violated. Otherwise the acceptance probability for the draw is

calculated as the minimum of one and the ratio of the likelihoods of the latent

factors times the ratio of the priors for the new draw relative to the old draw.

Drawing the shock covariance matrix (ΣΣ′)

For the conditional posterior of Σ we have

P (Σ|θ−, X, Y ) ∝ P (Y |θ,X)P (X|θ)P (θ)

∝ P (X|θ)P (θ),

where θ− denotes all parameters except Σ, since by the absence of convexity effects

the shock variances do not enter the arbitrage-free loadings and thus the likelihood

of the data is independent of Σ. Since we need successive draws of Σ to be close to

each other – otherwise the acceptance probabilities will be too small – independence

Metropolis is not an option. I found element-wise RW M-H to not work particularly

well. A better alternative in terms of efficiency and mixing properties is to draw

the entire matrix Σ in one step. I choose a proposal density for ΣΣ′ that is IW

with mean equal to the value of the previous draw and scale adjusted to tune the

acceptance probability, which is equal to

α(ΣΣ′
(g−1)

,ΣΣ′
(g)

) = min

{
P (X|Σ(g), θ−)P (ΣΣ′(g), θ−)q(ΣΣ′(g),ΣΣ′(g−1))

P (X|Σ(g−1), θ−)P (ΣΣ′(g−1), θ−)q(ΣΣ′(g−1),ΣΣ′(g))
, 1

}
.

Here q(A,B) denotes the transition density, which in this case is the density of an

IW distribution with mean A.

Drawing the measurement error variance (σ2
w)

The variance of the measurement error can be drawn directly from its con-

ditional posterior distribution, i.e. we have standard Gibbs-sampling for this step.
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The reason is that conditional on the latent factors, the other parameters and the

data, the measurement errors can be viewed as regression residuals, and the IG

distribution is the natural conjugate prior. Since I impose the variance to be the

same across the m measurement equations, the residuals from all measurement

equations are pooled. The conditional posterior for σ2
w is the natural conjugate IG

distribution.

Convergence diagnostics

After having obtained a sample using the described algorithm, convergence

characteristics of the chain need to be checked, in order to verify that the draws

are from a distribution that is close to the invariant distribution of the Markov

chain. Differently put, the question is whether the draws that we obtain are from

a chain that is mixing well.

A very simple and intuitive check of whether the chain is behaving well is to

look at trace plots, i.e. plots of the successive draws for each parameter. In addi-

tion to this visual inspection, one can calculate several convergence diagnostics.46

The autocorrelations of the draws for each parameter give a first indication of how

well the chain is mixing. A commonly employed method to assess convergence,

developed by Raftery and Lewis (1992), is to calculate the minimum burn-in it-

erations and the minimum number of runs required to estimate quantiles of the

posterior distribution with a certain desired precision. Moreover one can diagnose

situations where the chain has not converged, as suggested by Geweke (1992), by

testing for equality of means over different sub-samples. Gelman and Rubin (1992)

have suggested to run parallel chains from different starting values and to com-

pare within-chain to between-chain variance, which is a simple and effective way

to check for convergence. I have applied these and some other convergence checks

in order to find out how many iterations are needed for approximate convergence

and how the algorithm can be tunde in order to improve mixing. The general

conclusion is that a lot of iterations are needed because ρ and the elements of

46For surveys on convergence diagnostics see Cowles and Carlin (1996) and Brooks and Roberts
(1998).
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λ0 and λ1 traverse the parameter space only very slowly. This is a result of the

small innovations in the RW proposals, which are necessary to obtain reasonable

acceptance probabilities. Therefore I choose long burn-in samples (B = 20, 000)

and a large number of iterations (G · s = 200, 000). Under this configuration the

graphs and diagnostic statistics indicate that the chain has converged.47

2.6.3 MCMC algorithm: Latent indicator variables

The algorithm developed here is based upon the “Gibbs Variable Selection”

(GVS) method of Dellaportas et al. (2002), which is a special case of the product-

space sampling of Carlin and Chib (1995). What is particular to GVS is that the

models are nested. The idea of product-space sampling is rather simple: In each

iteration we keep track of the parameters of all models, not only of those that are

included in the current model. This implies that the dimensionality of the space

we sample from remains the same across models, which allows standard block-wise

M-H sampling, in contrast to RJMCMC where the dimensionality differs between

models. Since the models are nested, the complete set of parameters is simply the

entire λ1 matrix, in addition to the other model parameters, (ρ, λ0,Σ, σ
2
w), which

are also assumed to be shared among models. Keeping track of all parameters then

just means that λ1 always contains k2 non-zero elements, but when calculating the

likelihoods conditional on a specific set of restrictions, only those elements of λ1

that are “switched on” according to γ are taken to be non-zero.

When we sample the elements of λ1, conditional on γ, we need to distinguish

whether a particular element is currently included in the model, and thus our draw

informed by the data, or whether it is currently excluded. In the latter case the

data is not informative and we sample from a “pseudo-prior” or “linking density”,

a concept introduced to the theory of Bayesian model selection by Carlin and

Chib (1995). More precisely, the conditional posterior of an arbitrary element of

47There certainly remains room for improvement of the algorithm. In particular one could
use methods for speeding up convergence, such as the hit-and-run algorithm, adaptive direction
sampling, or simulated annealing (see Gamerman and Lopes, 2006, Section 7.4).
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λ1, which I denote by λi, is given by

P (λi|λ−i, γi = 1, γ−i, θ−, X, Y ) ∝ P (X|θ, γ)P (λi|γi = 1) (2.16)

P (λi|λ−i, γi = 0, γ−i, θ−, X, Y ) ∝ P (λi|γi = 0) (2.17)

where θ = (ρ, λ0, λ1,Σ, σ
2
w) as before, θ− denotes all parameters in θ other than λ1,

and λ−i (γ−i) contains all elements of λ1 (γ) other than λi (γi). These conditional

distributions parallel the ones in equations (9) and (10) of Dellaportas et al. (2002).

I assume prior conditional independence of the elements of λ1 given γ.

For the case that λi is currently included, we sample from (2.16). Note

that the conditional posterior only depends on the latent factors X and not on the

data Y , since all parameters that determine the likelihood of the data are in the

conditioning set. The prior for each price of risk parameter, P (λi|γi = 1), is taken

to be standard normal. A difference between the DTSM context and GVS is that

the conditional posterior in (2.16) is not known analytically. Hence we need to

employ Metropolis-Hastings to obtain the draws. I use a fat-tailed RW proposal,

with scaling chosen to tune the acceptance probability.

If λi is not currently included, i.e. if γi = 0, it is drawn from the pseudo-

prior P (λi|γi = 0). I choose this distribution to be normal with mean and variance

given by the sample moments of the marginal posterior draws of λi for the full,

unrestricted model. Carlin and Chib (1995) recommend to choose a distribution

for the pseudo-prior close to the actual posterior, which for the elements of λ1 is

likely to be similar between full model and restricted models.

The conditional posterior distribution of an element of the vector of indi-

cators is of course Bernoulli and the success probability is easily calculated based

on:

P (γi = 1|γ−i, θ,X, Y )

P (γi = 0|γ−i, θ,X, Y )
=
P (X|γi = 1, γ−i, θ)

P (X|γi = 0, γ−i, θ)

P (λi|γi = 1)

P (λi|γi = 0)

P (γi = 1, γ−i)

P (γi = 0, γ−i)
(2.18)

Since I use an uninformative prior, putting equal weight on γi = 1 and γi = 0, the

last term cancels out. Denoting the above ratio by q, the probability with which

we draw γi = 1 is given by q/(q + 1).48

48A subtlety, which is ignored in the above notation, is that the joint prior P (γ, θ) imposes
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The MCMC algorithm used to produce a sample from the joint posterior for

(γ, θ,X) is again random-scan block-wise Metropolis-Hastings: In each iteration

the block to be updated, either X, ρ, Σ, σ2
w, λ0, or (λ1, γ), is selected at random,

then the parameters in the block are drawn from their full conditional posterior

distribution. Only the last block needs further explanation, the others are updated

exactly like in the full model. Conditional on θ−, X and the data, (λ1, γ) is drawn

as follows: First the elements of λ1 are updated conditional on the value of γ from

the previous iteration. Second, the elements of γi are drawn conditional on γ−i,

θ, X and the data. I implement two different versions of the algorithm: In the

first version I update all elements of λ1 and γ in each step. In the second version

I randomly choose to update only one pair (λi, γi).

I run the algorithm with a burn-in sample of size B = 50, 000 and a sample

size of G = 100, 000, using every 5th draw from a longer chain. In order to get an

idea of the convergence properties of this algorithm, I run several chains and make

sure that the results are similar across chains. Since the first several models, which

account for a large share of the posterior model probability mass, are similar across

different runs of the chain and between the two algorithms, we can be confident

that we have identified the specifications with high posterior model probabilities.

The final results presented in the text are obtained from aggregating the samples

for two runs of the first algorithm and two runs of the second algorithm, i.e. are

based on a sample of size 400,000.

I assess whether the results on the plausibility of different restrictions on

λ1 are reasonable given the sample from the posterior for λ1 for the unrestricted

model. This turns out to be the case, based on individual credibility intervals, and

in particular based on highest-posterior-density regions resulting from a normal

approximation to this joint posterior. This is an important reality check for the

algorithm described above.

As mentioned previously, an important issue in this context is the prior

for λ1. I performed additional sensitivity analysis, for example changing the prior

that the physical dynamics resulting from any choice of γ and λ1 can never be explosive. This
is easily implemented in the algorithm: If including a previously excluded element would lead to
explosive dynamics then I simply do not include it, i.e. set γi = 0, and vice versa.
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variance of the elements of λ1 by orders of magnitude. My findings clearly show

that the results of the model selection exercise remain robust for different choices

of the priors.

2.6.4 Long-run revisions to short rate expectations

The changes in far-ahead expectations of the term structure factors, using

the eigendecomposition Φ = V DV −1, are

lim
h→∞

(Et+1 − Et)Xt+h = lim
h→∞

Φhεt+1

= V ( lim
h→∞

Dh)V −1εt+1

which can only be non-zero if one of the eigenvalues is unity in absolute value.

Since ΦQ has a unit eigenvalue associated with the level factor, and Φ = ΦQ+Σλ1,

if Φ has a unit eigenvalue it will be associated with the level factor. In this case

we have

lim
h→∞

(Et+1 − Et)Xt+h = V


1 0 0

0 0 0

0 0 0

V −1εt+1.

For the long-run revision of short rate expectations we thus obtain

lim
h→∞

(Et+1 − Et)rt+h = δ′1V


1 0 0

0 0 0

0 0 0

V −1


ε

(1)
t+1

0

0

 ,

where ε
(1)
t+1 is the level shock.

2.6.5 Reversible-jump Markov chain Monte Carlo

Including the model indicator as a parameter, the model is now parame-

terized as (j, θj, Xj). Since the latent variables carry over between models, we can

simply write (j, θj, X). The algorithm I implement in order to obtain draws from

the posterior distribution for (j, θj, X) randomly chooses, in each iteration, between

a “within-model” step, where the parameters of the current model are updated just

like in the algorithm to estimate each model separately, and a “model-jump” step.
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If a jump is attempted, first the candidate model indicator j′ is chosen

randomly, with equal probability for all models other than j. The question is now

how to propose values for the parameters of model j′, denoted by θj′ . I decide for

the models to share the parameters ρ, Σ, and σ2
w, denoted here by θ−, but not to

share any elements of λ0 and λ1. It might seem that the models naturally share

λ0 and those elements of λ1 that are unrestricted in both models. However this

version of the algorithm turned out to be the more efficient than to have the models

share as many as possible parameters, mainly because the posterior distribution of

some elements of (λ0, λ1) differs between models. To construct θj′ I take θ− from

the current model together with the proposed values for λj′ , by which I denote

all non-zero elements of (λ0, λ1) in model j′. To propose values for λj′ I take the

normal approximation to the posterior distribution of λj′ , which we have available

from the within-model simulation.

The idea of reversible-jump MCMC is that reversibility is ensured by match-

ing the dimensions between candidate parameter-vector and proposed parameter-

vector. The acceptance probability for the proposed jump is given by the minimum

of one and

P (Y |j′, θj′ , X)P (X|j′, θj′)P (θj′ |j′)P (j′)

P (Y |j, θj, X)P (X|j, θj)P (θj|j)P (j)
× q(u′|θj′ , j′, j)q(j′ → j)

q(u|θj, j, j′)q(j → j′)

∣∣∣∣∂gj,j′(θj, u)

∂(θj, u)

∣∣∣∣ ,
the product of model ratio (likelihood ratio times prior ratio) and proposal ra-

tio. The parameter values for the candidate model are determined using (θj′ , u
′) =

gj,j′(θj, u), a bijection that ensures the dimension-matching. In our context

(θj′ , u
′) = (θ−, λj′ , u

′) = (θ−, u, λj) = gj,j′(θj, u) – the g-function is an identity

function that simply matches the correct elements. Intuitively, u provides pro-

posal values for all parameters in model j′ that are not shared with model j,

i.e. u = λj′ , and u′ takes on the values of the parameters in model j that are not

used in model j′, i.e. u′ = λj. Thus, recognizing the uniform prior over models,

the equal jump probabilities (q(j → j′) = 1/6 for all j 6= j′), and the fact that

the likelihood of Y given X only depends on θ− (which does not change between

jumps) the above ratio simplifies to

P (X|j′, θj′)P (θj′ |j′)
P (X|j, θj)P (θj|j)

× q(u′|θj′ , j′, j)
q(u|θj, j, j′)

.
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Note that since u′ = λj, the distribution q(u′|θj′ , j′, j) = q(λj|j) is the normal

distribution with moments obtained from the sample from the posterior for model

j, and correspondingly for q(u|θj, j, j′) = q(λj′|j′). Again, the minimum of the

above expression and one is the probability with which we accept the proposed

jump (j, θj)→ (j′, θj′).

I run the sampler for B = 100, 000 burn-in iterations and then create a

sample of length G = 5, 000 by using one out of every s = 200 iterations. This is

motivated by the fact that memory constraints make it impossible to save more

draws of (j, θj, X), yet the sampler needs to be running for a considerable amount

of iterations. Separate runs based on different starting values indicate that the

chain has satisfactory convergence properties.
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Figure 2.3: Effects of specific news events (unrestricted model)

Empirical (crosses) and model-implied (solid line) rate changes in response to certain

news events, together with estimates of the revisions to short rate expectations:

posterior means (dashed lines) and 95% credibility intervals (dotted lines) for changes

in the risk-neutral rates. Units are basis points. Description of events: Apr-18 1994 –

policy action, surprise tightening 25bps; Mar-08 1996 – payroll surprise, +408,500;

Apr-02 2004 – payroll surprise, +208,000; Mar-22 2005 – policy action, surprisingly

hawkish FOMC statement.
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Figure 2.4: Term structure of volatility implied by unrestricted model

Estimates of actual and risk-neutral vol curve: Sample standard deviations (crosses)

and model-implied standard deviations (solid line) of daily futures rate changes as well

as posterior means (dashed line) and 95% credibility intervals (dotted lines) of

standard deviations for risk-neutral rate changes. Units are basis points.



105

Figure 2.5: Responses to macro news implied by unrestricted model

Responses to a one-standard-deviation surprise in six different macroeconomic data

releases: Empirical responses of futures rates with 95% confidence intervals

(error-bars), model-implied responses of futures rates (solid lines) as well as posterior

means (dashed lines) and 95% credibility intervals (dotted lines) for estimated response

of risk-neutral rates. Units are basis points.
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Figure 2.6: Implications of unrestricted specification (M1)

First panel: Empirical (crosses) and model-implied (solid line) rate changes on Mar-08 1996. Second panel:

Sample standard deviations (crosses) and model-implied standard deviations (solid line). Third panel: Empirical

responses of futures rates to a one-standard-deviation payroll surprise with 95% confidence intervals (error bars).

Model-implied responses of futures rates to the news (solid lines). All panels show posterior means (dashed

lines) and 95% credibility intervals (dotted lines) for the properties of risk-neutral rates. Units are basis points.
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Figure 2.7: Implications of favored specification (M2)

See description of Figure 2.6.
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Figure 2.8: Comparison of alternative model specifications

First panel: Empirical (crosses) and model-implied (solid line) rate changes on Mar-08 1996 (payroll surprise

+408,500), together with estimated changes in risk-neutral rates across models. Second panel: Sample standard

deviations (crosses) and model-implied standard deviations (solid line) for futures rate changes as well as

alternative risk-neutral vol curves. Third panel: Empirical responses of futures rates to a one-standard-deviation

payroll surprise with 95% confidence intervals (error-bars), model-implied responses of futures rates to the news

(solid line), and responses of risk-neutral rates implied by alternative model specifications. Units are basis points.
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Figure 2.9: Implications of Bayesian model averaging (BMA)

See description of Figure 2.6.



Chapter 3

Inflation Expectations and the

News

Abstract

How do macroeconomic news change expectations of future monetary pol-

icy? Based on the Fisher equation, changes in expected future nominal rates can be

decomposed into revisions of the expected path of the real short rate and changes

in inflation expectations. Based on the evidence in the Taylor rule literature, which

shows that changes in inflation account for a large portion of variation in policy

rates, we would expect an important role for inflation expectations in explaining

the effects of macro news on policy expectations. However the empirical evidence is

not clear on this issue: some authors, using TIPS-based inflation expectations, find

only minor effects of macro news on inflation expectations. This paper uses several

alternative measures of revisions to inflation expectations, and provides evidence

that surprises in macroeconomic data releases do in fact change inflation expecta-

tions quite significantly. This indicates that macro news change monetary policy

expectations mainly by causing market participants to revise their expectations of

future inflation.

110
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3.1 Introduction

Nominal interest rates exhibit strong responses to surprises in macroeco-

nomic announcements (Balduzzi et al., 2001b; Gürkaynak et al., 2005b). Chapter

2 has presented evidence that revisions of expected monetary policy, i.e. changes

in expected nominal short term interest rates, are likely to be the main driving

force for this phenomenon. Term premia are typically rather stable at these high

frequencies and hardly respond to macro news. Based on the Fisher decomposition

of nominal rates into real rates and expected inflation, the logical next question

is to what extent expected real short rates and inflation expectations account for

this response.

The Taylor rule literature has demonstrated that movements in policy rates

can be accurately described by a simple policy rule in which the nominal short rate

is a linear function of inflation and output.1 In estimated Taylor rules the policy

response to inflation is typically found to be stronger than responses to output

(Taylor, 1999; Clarida et al., 2000). Based on this evidence one would expect

that there exist a tight relationship between inflation expectations and short rate

expectations, and furthermore that inflation expectations show a strong response

to macroeconomic news and significantly contribute to explaining the response of

nominal short rate expectations.

However some recent evidence by Beechey and Wright (2009), based on

intra-day changes of inflation compensation, seems to indicate that inflation ex-

pectations hardly respond to macro news. Indeed the authors conclude that “the

vast majority of the sensitivity is concentrated in real rates.” On the other hand

there are studies (Gürkaynak et al., 2006a; Beechey et al., 2007) which, using

daily data, find strong responses of inflation compensation. The evidence based on

market-based measures of inflation expectations from TIPS data does not provide

a satisfactory answer to the question of interest.

The purpose of this paper is to cast some more light on the question about

the role of inflation expectations for changes in expected future monetary policy.

1After Taylor’s (1993) original paper there have been numerous studies on this topic, for a
survey see Orphanides (2008).
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The focus is to assess whether inflation expectations change significantly in re-

sponse to real-side macro news, in particular to surprises in the non-farm payroll

employment numbers. This data release is the one that leads to the strongest

revisions of expected monetary policy and hence is a major source of interest rate

volatility. Hence there is particular interest in understanding how the effects of

this release decompose into inflation and real rate compenents.

To answer the question of interest I estimate revisions of inflation expec-

tations using three alternative approaches: First, the common market-based mea-

sures are constructed using TIPS and nominal yield data. Particular attention is

paid to differences between measures using intradaily and daily windows. Second,

I use survey-based measures of inflation expectations. While these are only avail-

able at lower frequencies they can still be helpful to answer the question of interest.

Third, I develop a novel approach to estimate revisions to inflation expectations

based on macroeconomic news which is based on the concept of optimal linear

forecasts, and essentially amounts to projecting future realizations of inflation on

current macro surprises.

As it turns out the evidence speaks strongly in favor of an important role

for inflation expectations in explaining variation in policy expectations. Not only

do market-based measures of inflation expectations and short rate expectations

show a close statistical relationship. In fact all three empirical approaches show

that in response to real-side macro news inflation expectations are significantly

revised. Furthermore the magnitude of these revisions is large enough to explain

a sizeable share of the response of nominal short rate expectations.

The paper is structured as follows: Section 3.2 reviews the evidence in the

Taylor rule literature about the role of inflation in explaining variation in policy

rates, and provides some new estimates confirming large explanatory power of in-

flation in a simple univariate interest rate rule. A projection argument shows that

revisions of short rate expectations should therefore be closely related to revisions

of inflation expectations. Section 3.3 uses TIPS data and nominal yield data to

construct proxies for these revisions and test this prediction. In Section 3.4 sur-

vey data is used to estimate revisions to inflation expectations, and their response
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to macro news is estimated. Section 3.5 develops a novel empirical approach to

estimate revisions to inflation expectations caused by macro news, based on fu-

ture realizations of inflation after the release of macroeconomic data. Section 3.6

concludes.

3.2 Taylor Rules, Inflation Expectations and the

News

In this section I first review some well-known evidence on the relationship

between short-term interest rates and macroeconomic variables. Then I present

some new evidence on how the short rate is related to measures of inflation in a

univariate setting. Based on this evidence and on a projection of the policy rule

on a past information set I state testable predictions about the relation between

expected short rates and expected future inflation.

3.2.1 Taylor Rule evidence

A Taylor rule is a monetary policy rule that relates the policy rate to (past,

current or expected future) output and inflation, and was introduced by Taylor

(1993). In its most common form it is written as

it = r + βπ(πt − π∗) + βxxt + ut, (3.1)

where it is the average policy rate in period t, r is the equilibrium real rate, πt is

the inflation rate, π∗ is the Fed’s target for inflation, assumed to be time-invariant,

xt is the output gap, and ut is a policy shock. The response coefficients βπ and βx

measure how the Fed reacts to inflation gap and output gap.

Taylor (1993) set βπ = 1.5 and βx = 0.5 and showed that using this

parametrization his rule provided an accurate description of actual monetary pol-

icy. Clarida et al. (2000) estimate a forward-looking version of the Taylor rule and

find that for the Volcker-Greenspan era the inflation response coefficient is signif-

icantly larger than one. Ang et al. (2007) use term structure data together with

macro data to estimate different Taylor rules, and confirm their large explanatory
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power for interest rates. Hamilton et al. (2009) use the responses of federal funds

futures and macroeconomic forecasts to macro news in order to identify Taylor

rule parameters. They find large responses of the policy rate to inflation in such a

market-perceived monetary policy rule. The broad picture that emerges from the

Taylor rule evidence is that simple policy rules including measures of inflation and

output have large explanatory power for short-term interest rates, and that real

rates respond positively to variation in inflation during the Volcker-Greenspan era

(the Taylor principle).

In order to derive predictions about the role of inflation expectations for

changes in monetary policy expectations, I will estimate an interest rate rule where

the nominal interest rate responds only to inflation. Since such a rule has only

one regressor I refer to it as a “univariate Taylor rule”. Studies that employ

such an interest rule specification include King (2000), Cochrane (2007b) and Del

Negro et al. (2010). Such a univariate rule can be motivated by the empirically

small response of nominal rates to the output variable (Taylor, 1999) as well as by

the theoretical insight that in New-Keynesian macro models the welfare-optimal

response to the output gap in simple interest rate rules is often close to zero

(Rotemberg and Woodford, 1999). The empirical specification is

it = α + φπt + wt, (3.2)

with it denoting the average effective Federal funds rate during month t or quarter t

– I will consider both frequencies – α is an intercept, and wt is a policy disturbance

that can be serially correlated. The coefficient φ measures how sensitive the Fed’s

target is to inflation, and we typically speak of an “active” Taylor rule (or one

that satisfies the Taylor principle) if φ > 1. Estimating equation (3.2) will answer

the following questions: (i) How did policy rates react to inflation in the past? (ii)

How much variation in policy rates can be explained by variation in inflation?

Table 3.1 reports estimates of the response coefficient φ in univariate Taylor

rules based on different data sets. There are three dimensions across which the

data sets differ: the price index used to calculate inflation, the frequency of the

observations, and the interval over which price index changes are calculated. The

price indices used are: the Consumer Price Index (CPI, reported by the Bureau of
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Labor Statistics); the Core CPI, which excludes food and energy prices; the deflator

for Personal Consumption Expenditure (PCE, reported by the Bureau of Economic

Analysis); and the Core PCE. All price indices are seasonally adjusted. I consider

monthly data as well as quarterly data. For monthly data I calculate inflation

alternatively based on month-on-month (MoM), quarter-on-quarter (QoQ) and

year-on-year (YoY) changes, and for the quarterly data set I consider QoQ and YoY

changes. The table shows for each data set the estimate of φ, its t-statistic based on

Newey-West standard errors (12 lags for monthly data, 4 lags for quarterly data),

and the R2. The sample consists of the months from January 1987 (Greenspan

became Chairman in 1987) to July 2007 (before the recent crisis started).

Table 3.1: Estimated univariate Taylor rules

Monthly (N = 247) Quarterly (N = 82)
Price index MoM QoQ YoY QoQ YoY
CPI .77 1.00 1.25 .84 1.26

(2.26) (2.81) (4.15) (2.27) (3.98)
6.9% 16.0% 40.0% 13.0% 39.9%

Core CPI 2.72 2.54 1.42 2.49 1.45
(4.40) (5.57) (4.57) (5.37) (4.67)
27.9% 44.4% 47.2% 44.0% 49.1%

PCE .96 1.20 1.23 .98 1.20
(2.31) (2.88) (3.74) (2.30) (3.44)
7.0% 15.9% 34.4% 12.1% 33.2%

Core PCE 1.84 2.13 1.36 1.81 1.34
(2.83) (4.35) (4.13) (3.48) (3.98)
14.4% 29.3% 39.2% 23.8% 38.3%

Estimates of φ in a univariate Taylor rule, with t-statistics based on Newey-West

standard errors and R2, for different price indices, different frequencies, and different

ways of calculating inflation – for details please refer to text.

The big picture is, not surprisingly in light of the evidence reviewed above,

that inflation and the nominal short rate show a strong positive correlation, with

R2 up to 50%, and that the response coefficient is generally above one.

The correlation is stronger if inflation is calculated using longer intervals.

The reason is that monthly or even quarterly changes in a price index contain
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much more noise, whereas comparisons with the previous year provide a cleaner

picture of underlying inflation trends. The Fed of course does not want to react

to noise but instead counter the true inflation pressures in the economy, thus the

policy rate is more strongly correlated with those variables that better measure

these inflation pressures.

For price indices which include food and energy correlations and response

coefficients are smaller than for core price indices, because the latter reflects better

the inflation tendencies that result from behavior of economic agents in the U.S.

Interestingly, the response coefficients increase for the raw price indices going from

month-on-month to year-on-year changes, whereas the response for core indices

generally decreases the longer the change interval becomes. For YoY changes it

hardly matters which price index we use: the response coefficients are all between

1.2 and 1.5.

To sum up the take-aways from the Taylor rule literature and from the above

evidence: The coefficient on inflation in a Taylor rule is positive and generally larger

than one, and inflation has high explanatory power for variations in the short rate.

3.2.2 Projecting a Taylor rule on past information sets

The evidence discussed above has some important implications for the rela-

tion between expected inflation and expected monetary policy, if we are willing to

assume that market participants form expectations consistent with equation (3.2).

To see this shift (3.2) forward h periods and take expectations with respect to the

information set available to market participants at time t, with this conditional

expectation denoted by Et(·), to obtain

Etit+h = α + φEtπt+h + Etwt+h. (3.3)

The idea of projecting Taylor rules on past information sets is due to Hamilton et

al. (2009), who use the fact that revisions to short rate expectations are reflected

in changes in Federal funds futures rates to identify Taylor rule parameters. We

can now write

(Et − Et−1)it+h = φ(Et − Et−1)πt+h + (Et − Et−1)wt+h. (3.4)
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Hence if inflation forecasts are revised, policy expectations will also change, and the

magnitude of the revision depends on φ. Correspondingly, if we observe changes

in monetary policy expectations, these can be due to either changing inflation

expectations or changes in expectations of the future error term.

The large explanatory power of changes in inflation for variation in policy

rates suggests that observed changes in monetary policy expectations are to a

large extent due to revisions of inflation expectations. Furthermore the fact that

estimates for φ are usually larger than one implies that the sign of the revisions

of inflation expectations would typically be the same as the sign of the change in

expected policy rates, with the magnitude of the former close to but below the

magnitude of the later.2

How can we test these predictions? The first issue is how to measure re-

visions of short rate expectations and inflation expectations. Based on nominal

interest rates (from Treasury bonds) and real interest rates (from TIPS bonds),

using the assumption that risk premia move slowly, we can construct good proxies

for the two objects of interest. Alternatives are to use survey data or statistical

forecasts to construct revisions – more on this below.

The second issue is which empirical methodology to use in order to test these

predictions. One way of course is to simply regress a measure of the revisions of

short rate expectations on a measure of the revisions of inflation expectations,

and this will be done in Section 3.3.1 using market-based measures of revisions

(i.e. using TIPS and nominal yields). In addition to an unconditional analysis the

question will also be addressed whether the predictions hold in different subsam-

ples, namely for days with particular news such as payrolls vs. CPI.

Another approach is to consider the response of inflation expectations to

macro news, i.e. to surprises in macroeconomic data releases. We know that some

releases have strong systematic effects on short rate expectations, such as the non-

farm payroll numbers (Chapter 2). In light of the above discussion we would thus

2Note that this prediction is for “typical” revisions, since we are talking about population
moments: there might be some news (changes in information sets) that have effects on expecta-
tions that are not in line with this prediction. But given the close relationship between inflation
and short rates these atypical news should be rare.
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expect this news to also significantly affect inflation expectations.3 Furthermore we

would expect the response to be of the same sign as the response of short rate ex-

pectations. I will test this prediction using three alternative measures for inflation

expectations: inflation compensation from TIPS data (Section 3.3.2), survey-based

inflation expectations (Section 3.4) and optimal linear inflation forecasts based on

actual future inflation (Section 3.5).

3.3 TIPS Yields and Inflation Compensation

Treasury Inflation-Protected Securities (TIPS) are bonds that deliver pay-

offs indexed to the CPI, therefore yields correspond to real rates.4 The difference

between nominal rates and real rates for the same maturity is called “break-even

inflation” or “inflation compensation” (IC), which equals the sum of expected in-

flation and an inflation risk premium. While this paper does not address the issue

of estimating the inflation risk premium, most macroeconomists have the prior

that risk premia move slowly, at business cycle frequencies, and Chapter 2 shows

evidence that this is a reasonable assumption for the term premium. Thus changes

in nominal rates approximate well the revisions of nominal short rate expectations.

I will proceed under the assumption that the inflation risk premium also moves

slowly, such that changes in inflation compensation can be taken to be good mea-

sures of revisions of inflation expectations.

3.3.1 Correlation between nominal rates and inflation com-

pensation

How are revisions of monetary policy expectations related to revisions of

inflation expectations? One way to address this question is simple regression anal-

ysis. Consider the following regression, where t indexes business days:

fnt − fnt−1 = δ(ficnt − ficnt−1) + εt. (3.5)

3Note that payrolls are the most important source of interest rate volatility (Chapter 1) so
its effects on inflation expectations should be close to the unconditional predictions.

4For a detailed discussion of the TIPS market see Gürkaynak et al. (2010).
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fnt is the instantaneous nominal forward rate with maturity n years on day t, and

the data are taken from Gürkaynak et al. (2006b). Hence fnt − fnt−1 is a proxy

for the revision on day t of the expectation about the nominal short rate n years

ahead. The corresponding forward inflation compensation, ficnt , is calculated by

subtracting the instantaneous real forward rate from the nominal forward rate,

and the real rate data are provided by Gürkaynak et al. (2010). ficnt − ficnt−1

proxies the revision on day t of the instantaneous n-year-ahead inflation rate.

My sample starts in January 2003 (at which point the TIPS market had left its

infancy) and ends in July 2007 (before the end of the recent turmoil). Estimating

this regression for the ten-year maturity I obtain δ̂ = .94 with a standard error of

0.03 and R2 = 42.8%. This means that at a daily frequency, nominal forward rates

essentially move one-for-one with inflation compensation, and that this explains

about about 43% of the variation in nominal rates. The correlation is estimated

to be
√
.428 ≈ 0.65 and an approximate 95%-confidence interval5 is given by

[0.62, 0.69]. Clearly changes in nominal forward rates are closely associated with

changes in inflation compensation. This is in line with our expectations: the

prediction of a close association between revisions of short rate expectations and

inflation expectations is confirmed by the large R2. And while we predicted the

coefficient to be above one, an errors-in-variables bias might explain the fact that

it is estimated to be slightly smaller than one.

Is the relation between nominal rates and IC similar on days with employ-

ment reports compared to days with other news? Table 3.2 shows the results of

estimating equation 3.5 in different subsamples: days with an employment report,

days with a CPI report, and all other days. I report response coefficients and

OLS standard errors, as well as correlations with 95%-confidence intervals. For

all subsamples the response coefficients are large and close to unity, and the cor-

relations between nominal rates and IC are sizeable. On days when the CPI is

released, nominal rates response more than one for one to inflation compensation,

corresponding to the Taylor principle.

Another question is whether the relation between nominal rates and infla-

5Take r to be the empirical correlation. I calculate a confidence interval for r based on the
fact that the transformed random variable ζ = .5 log 1+r

1−r is approximately normally distributed.
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Table 3.2: Correlations across subsamples

Mat. Response Correlation
Employment report
5 0.64 (0.18) 0.43 [0.19, 0.63]
7 0.68 (0.15) 0.51 [0.28, 0.68]
10 0.90 (0.11) 0.73 [0.58, 0.84]
15 1.08 (0.13) 0.71 [0.54, 0.82]
CPI report
5 1.41 (0.27) 0.58 [0.37, 0.73]
7 1.30 (0.16) 0.75 [0.60, 0.84]
10 1.21 (0.13) 0.79 [0.67, 0.87]
15 1.27 (0.14) 0.77 [0.63, 0.86]
Other days
5 0.70 (0.04) 0.45 [0.40, 0.50]
7 0.95 (0.04) 0.57 [0.52, 0.61]
10 0.92 (0.03) 0.64 [0.60, 0.68]
15 0.85 (0.04) 0.59 [0.55, 0.63]

Relation between rate changes in nominal forward rates and changes in forward

inflation compensation across different regimes: response of nominal rates to IC in

univariate regressions (OLS standard errors in parentheses) and correlations (with

95%-confidence intervals in squared brackets) for days with employment reports, days

with CPI reports, and other days.

tion compensation documented above is special to the daily frequency. It could

certainly be the case that while at high frequencies there is a strong relation, for

monthly or quarterly changes in nominal rates the driving force is variation in real

rates, with the inflation compensation being more stable or unrelated to nominal

rate changes. Table 3.3 shows estimates for the response coefficients and corre-

lations for different frequencies: daily, weekly, monthly and quarterly changes.

Importantly, the close association between nominal rates and the IC holds up

across all frequencies. In fact if we go from daily to lower frequencies, the response

coefficients are even higher and the correlations even stronger.6

6Note that for lower frequencies changes in risk premia come into play, thus rate changes are
less accurate measures of the underlying changes in expectations. The higher response coefficients
and R2 thus partly reflect the comovement of term premia and inflation risk premia.
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Table 3.3: Correlations across frequencies

Daily changes Weekly changes
Mat. Response Correlation Response Correlation
5 0.72 (0.04) 0.46 [0.41, 0.50] 0.78 (0.09) 0.50 [0.40, 0.59]
7 0.95 (0.04) 0.58 [0.54, 0.61] 0.95 (0.09) 0.58 [0.49, 0.66]
10 0.94 (0.03) 0.65 [0.62, 0.69] 0.91 (0.07) 0.66 [0.58, 0.72]
15 0.88 (0.03) 0.61 [0.57, 0.64] 0.86 (0.07) 0.64 [0.56, 0.71]

Monthly changes Quarterly changes
Response Correlation Response Correlation

5 1.48 (0.18) 0.75 [0.61, 0.85] 1.51 (0.38) 0.70 [0.34, 0.88]
7 1.23 (0.14) 0.77 [0.63, 0.86] 1.56 (0.23) 0.86 [0.65, 0.95]
10 0.94 (0.12) 0.71 [0.55, 0.82] 1.34 (0.20) 0.85 [0.63, 0.94]
15 0.79 (0.16) 0.55 [0.33, 0.71] 1.10 (0.29) 0.66 [0.29, 0.86]

Relation between rate changes in nominal forward rates and changes in forward

inflation compensation for different frequencies: response of nominal rates to IC in

univariate regressions (OLS standard errors in parentheses) and correlations (with

95%-confidence intervals in squared brackets) for daily, weekly, monthly and quarterly

changes.

I have shown that changes in nominal rates are highly correlated with

changes in inflation compensation, and that this holds across subsamples and at

various frequencies. The regression coefficients are mostly close to and often above

unity. This evidence indicates that revisions of monetary policy expectations are

to a large extent driven by changes in inflation expectations.

3.3.2 Responses to payroll surprises

An alternative approach to assess the relation between revisions to short

rate expectations and revisions to inflation expectations is to consider the response

to macroeconomic news. Based on the discussion in Section 3.2 and in light of the

fact that expected short rates strongly respond to some macro news, such as non-

farm payrolls, we would expect inflation compensation strongly respond to such

news as well. However, Beechey and Wright (2009), henceforth BW, find that

in intraday data inflation compensation hardly responds to real-side news. This
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section first revisits the evidence of BW, zooming in on the response to payroll

surprises, qualifying some of their results. I argue that we should be using daily

windows to assess the response of inflation compensation to macro news, because

in some cases the information gets processed more slowly. Then I provide evidence

based on a new data set which shows a rather strong response of the inflation

compensation to payroll surprises.

The effects of macro announcements on financial markets are typically esti-

mated by means of an event study, where changes in asset prices around the time

of a data release are regressed on a measure of the surprise component in this

release (see e.g. Balduzzi et al., 2001b):

∆pt = β′st + εt, (3.6)

where t indexes days with announcements, ∆pt is the change in an asset price

or interest rate around the announcement, and st is a k × 1 vector containing the

surprise component for each of the k announcements – the kth element of st is zero

if there was no release for this announcement on day t. Multivariate regression is

used in order to partial out the effects of different announcements that occur on the

same day. The surprise component is calculated as the difference between released

number and (survey-based) expected number, standardized to have unit variance

for the sake of comparability of different releases. Throughout this section the

focus is on the impact of surprises in non-farm payrolls, thus I will use only those

days with a new employment report, and st will contain the surprise component of

non-farm payroll employment, the unemployment rate, and hourly earnings. The

estimate of β1 can thus be interpreted as the impact of a one standard deviation

surprise in payrolls in asset prices.

Revisiting the Beechey-Wright evidence

Table 3.4 shows estimates of the responses (in basis points) to a surprise in

non-farm payrolls for nominal rates, real (TIPS) rates, and inflation compensation.

The sample corresponds exactly to the one used in BW, with the exception that

only days with an employment report are used. As in BW I consider the ten-

year yield, the five-year yield and the five-to-ten-year forward rate. The first two
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rows show the estimated response (and White standard errors) over a 30-minute

interval around the announcement. Thus the dependent variable is the change

from 8:15am to 8:45am, since the release is at 8:30am. This is comparable to the

results in BW’s table 3, numerical differences stem from the fact that I only use the

employment report data. The third and fourth row show the results for a longer

intraday window, spanning four hours. The fifth and sixth row show results using

daily windows as in BW’s table 4 (that is the change from 4pm on the previous

day to 4pm on the day of the announcement).

Table 3.4: Intra-daily and daily responses to non-farm payroll surprise

10y yield 5y yield 5-to-10y forward rate
Nom. TIPS IC Nom. TIPS IC Nom. TIPS IC
30-minute window
6.61 5.18 1.43 8.58 6.27 2.31 4.02 4.03 -0.01

(0.63) (0.46) (0.33) (0.79) (0.66) (0.42) (0.58) (0.52) (0.50)
four-hour window
6.55 4.95 1.59 7.99 6.05 1.94 4.65 3.87 0.79

(0.91) (0.78) (0.24) (1.00) (0.92) (0.33) (0.88) (0.70) (0.26)
daily window
6.70 5.03 1.66 8.23 6.25 1.98 4.70 3.76 0.94

(0.92) (0.80) (0.29) (1.02) (0.93) (0.37) (0.86) (0.78) (0.28)

Response to a one-standard-deviation surprise in non-farm payrolls of nominal rates,

real rates and IC, using a 30-minute window around the announcement (8:15am to

8:45am), a 4-hour window (8:15am to 12:15pm) and a daily window (4pm previous day

to 4pm on the announcement day). White standard errors in parentheses. Sample

period: March-2004 to June-2008.

The responses of the IC to payroll surprises are rather small. Even more

surprisingly, the forward IC does not respond at all to payrolls when using the

30-minute window. Generally the responses of the IC become larger for longer

windows.

The striking difference between the short and long windows for the case of

the forward IC warrants closer investigation of the adjustment over the course of

the day. Figure 3.1 shows the response of the nominal forward rate (top row), the

real forward rate (middle row), and the forward IC (bottom row) for different intra-
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daily windows. The left panel shows the response coefficients and 95% confidence

intervals for windows that start 15 minutes before the release and end 15 minutes to

four hours after the release (12:30p) – this parallels what BW show in their Figures

2 and 3 for the ten-year nominal and real yields. It represents the cumulative

response over the course of the morning. The right panel shows estimates of the

responses (with 95% confidence intervals) for non-overlapping windows: the first

error bar is for the 30-minute window around the release, the following ones are

for the subsequent 15-minute windows until 12:30p.

While at first sight the top left and middle left panels seem to indicate that

all new information is incorporated immediately into nominal and real rates and no

further adjustments occur after the first 30 minutes (the conclusion of BW), this

is not the whole story. The top panels in fact show that the nominal forward rate

exhibits a small but significant response in the two following 15-minute intervals.

This is not the case for the real forward rate (middle panels), and thus this delayed

response occurs in the forward IC, as is evident in the bottom panels: The forward

IC does not respond at all during the 30-minute window around the announcement,

but over the subsequent periods adjusts upward.

One can only speculate as to the reasons for the delay of this response.

It seems that a delayed adjustment should be arbitraged away, since such a pre-

dictable pattern would in principle generate a profitable trading opportunity: after

observing a positive payroll surprise, a trader could (at 8:45am) comfortably en-

ter into a long 5-to-10-year forward position based on nominal bonds and into a

corresponding short position in TIPS bonds. This forward IC position would on

average generate a positive payoff. However this is not necessarily an arbitrage

opportunity for at least two reasons: First, the expected payoff might be too small

to warrant the riskiness of such a trade. Second, the expected movement of about

one basis point could be practically irrelevant given the prevailing bid-ask spreads

in Treasury and TIPS markets – Fleming and Remolona (1999a) show that af-

ter announcements the spreads in the Treasury market significantly widen. There

is evidence that even in highly liquid markets delayed adjustments of prices to

macroeconomic announcements is not always arbitraged away. For example Tay-



125

Figure 3.1: Intraday responses of nominal rates, real rates and IC to payroll
surprises

Left panel: cumulative responses to one-standard-deviation surprise in non-farm

payrolls from 15 minutes before the release until 15 to 240 minutes after the release.

Right panel: responses during non-overlapping windows, the first one spanning 30

minutes around the release and the following each spanning 15 minutes. Top row:

nominal yield. Middle row: real yield. Bottom row: inflation compensation. Also

shown are 95%-confidence intervals based on White standard errors.
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lor (2010) shows that Federal funds futures adjust even until two hours after the

announcement.

So should we be using tight intra-daily windows or daily changes to assess

the impact of macro surprises? If the effect of macro news on asset prices is

processed quickly, say within minutes, and no more processing takes place over

the rest of the day, then “sizeable efficiency gains can be obtained from running

these regressions with intra-daily data, rather than data at the daily frequency”

(Beechey and Wright, 2009, p.536). In this case the daily change is equal to the

intra-daily change (related to the surprise in the release) plus noise (unrelated to

the surprise). Using daily changes would thus lead to lower explanatory power

and less precise estimates, and one should instead use tight windows around the

announcement. However, if for certain asset prices the information processing

takes longer than several minutes, a tight intra-daily window will miss part of the

announcement effect. Table 3.4 showed that the estimated response of the inflation

compensation does not disappear or become insignificant with longer windows, but

instead generally increases. The reason is the delayed adjustment of the forward

IC to payroll surprises documented in Figure 3.1. Thus, in order to capture the

full effect of payroll surprises on IC, we need to use longer windows.

New evidence

Based on a larger data set including both more maturities and a longer

sample period, I now present new evidence on how non-farm payroll surprises

affect the nominal term structure and the term structure of inflation compensation.

Daily windows are to allow for slow information processing. For the nominal term

structure I use instantaneous forward rates from Gürkaynak et al. (2006b). To

calculate the inflation compensation I subtract from these the instantaneous real

forward rates, taken from Gürkaynak et al. (2010). Nominal rates and IC are taken

to be in basis points. For both cases and for each maturity I estimate equation

(3.6) separately, taking st to include the standardized surprises in the employment

report. My sample starts in January 2003 and ends in July 2007, which amounts

to 55 employment reports.
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Figure 3.2: Responses of nominal rates and inflation compensation to non-farm
payroll surprise

Response to a one standard deviation surprise in non-farm payrolls of instantaneous

nominal forward rates (maturities one year to 15 years) and instantaneous forward

inflation compensation (maturities five to 15 years), including 95%-confidence intervals.
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Figure 3.2 shows the responses to a payroll surprise of nominal rates and

IC across maturities, including 95%-confidence intervals based on OLS standard

errors. Table 3.5 presents the numerical results for selected maturities, with t-

statistics in parentheses. The inflation compensation shows a significant response

for essentially all maturities. The response is hump-shaped: inflation expectations

five years out respond less than those eight to ten years out, and for the longest

maturities the response is smaller than for short and medium maturities.

Table 3.5: Responses to payroll surprises

6y 8y 10y 12y 14y
nominal 4.96 4.22 3.73 3.30 2.90

(7.25) (6.27) (5.45) (4.93) (4.63)
IC 1.70 1.98 1.86 1.48 0.98

(4.10) (4.56) (3.88) (3.10) (2.25)
IC/nom. 34.2% 46.9% 50.0% 44.8% 33.7%

Responses to a one-standard-deviation payroll surprise of instantaneous nominal

forward rates and the corresponding forward IC, with t-statistics based on OLS

standard errors in parentheses. Last row: ratio of the response of the inflation

compensation to the response of nominal forward rates.

To assess the importance of IC response for changes in nominal rate, con-

sider the ratio of the two response coefficients. The last row of table 3.5 shows this

ratio as a percentage number. Between 25% and 50% of the response of nominal

rates is explained by the inflation compensation. This stands in marked contrast

with the conclusion of Beechey & Wright (2009, p. 541) that “the sensitivity of

nominal forward rates to news about the real side of the economy is heavily concen-

trated in real forward rates”. Let me clarify the reasons for the different evidence

and conclusion: (i) My evidence is based on daily changes, allowing me to capture

the full effect of payroll surprises on the inflation compensation, which adjusts

slowly to the news. (ii) I focus on non-farm payrolls, the macro release that causes

the biggest movements in nominal rates, where the difference between estimates

using intra-daily and daily windows is particularly large. (iii) My sample period

is different: I start my sample earlier and end it before the crisis. The financial
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crisis has made some markets function less efficiently, and the liquidity premium in

the TIPS market has markedly increased during that time (Lehnert et al., 2009).

Excluding this extraordinary period is therefore preferable. (iv) While BW only

consider two maturities – the five-year yield and the five-to-ten year forward rate

(the 10-year yield is just the average of the two) – I include a broader set of ma-

turities. This shows the role of the inflation compensation across the whole term

structure.

In sum, the evidence based on TIPS data indicates that the impact of real-

side macro news on inflation expectations is sizeable and contributes significantly

to explaining the strong procyclical responses of monetary policy expectations.

3.4 Survey-Based Measures of Inflation Expec-

tations

A natural way to measure inflation expectations is to survey market par-

ticipants on a regular basis about their subjectively expected future inflation.7 In

this section I assess whether macroeconomic data surprises are followed by sys-

tematic changes in survey-based inflation expectations. There are three popular

sources: Blue Chip Economic Indicators has conducted monthly surveys of business

economists since 1976, which asks about respondents’ price level expectations for

each future quarter up until the end of the year following the survey. The Survey

of Professional Forecasters (SPF), conducted on a quarterly basis since 1968, man-

aged by the Federal Reserve Bank of Philadelphia since 1990, also targets business

economists and asks them about their one year and ten year inflation expectations.

The monthly survey of the University of Michigan’s Survey Research Center has

polled households since 1977 about their expectations for one year and ten year

CPI inflation.

The empirical methodology is the following: Denote by π̂et the median of

the reported inflation expectations in basis points in month t (for Blue Chip and

7Important studies using survey-based inflation expectations are, among others, Mankiw et
al. (2003) and Branch (2004). For a review on this type of survey data see Lloyd (1999).
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Michigan) or quarter t (for SPF) for a particular horizon (which is suppressed in the

notation). Let st be a vector containing for each release the sum of the surprises

over the month or quarter, standardized to have unit variance. The particular

releases I include are non-farm payrolls, the unemployment rate, hourly earnings

(the three major numbers in the employment report) as well as the Consumer

Confidence Index released by the Conference Board and the CPI. These are all

released once per month. Thus for the monthly frequency st simply contains the

standardized surprise components of the releases in month t, whereas for the quar-

terly frequency st contains standardized cumulative surprises for quarter t. The

following regression specification allows to estimate the responses of survey-based

inflation expectations to macro news:

π̂et − π̂et−1 = α + γ0st + γ1st−1 + εt,

where α is an intercept, one lag of st is included to allow for delayed effects of macro

news on survey expectations, and εt is an error term. The choice of the releases to

be included is guided by the insight that while the surprises are orthogonal to each

other, including additional relevant releases will increase efficiency by decreasing

the residual variance. However I do not include all available releases since this

would decrease the degrees of freedom by too much. The sample starts in January

1990 and ends in July 2007.

Results using the Michigan survey do not show any notable systematic

response of inflation expectations to macro news (results not shown). Pescatori

and Bianco (2009) have noted about this survey, “median forecast quite often lags

actual inflation, which suggests that current inflation plays an important role in

determining inflation expectations”. Thus a possible explanation for this finding is

that the inflation expectations of the average consumer hardly react to macro news,

in contrast to those of bond traders and business economists, because consumers

pay less attention to current macro releases and base their expectations mainly on

individual observations of prices and current inflation.

Focusing thus on the Blue Chip and SPF surveys, I present results for

the following survey expectations: The six-quarter8 Blue Chip forecast for CPI

8I extrapolate inflation expectations for those quarters where only four-quarter or five-quarter
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inflation (BC-CPI) and for inflation based on the GDP deflator (BC-PGDP), the

one year SPF forecast for inflation based on the GDP deflator (SPF-PGDP1),

and the one year SPF forecast for CPI inflation (SPF-CPI1). Table 3.6 shows the

estimated values for γ0 and γ1 for each survey-based expectations measure, as well

as R2 and number of observations.

Table 3.6: Responses of survey-based inflation expectations to macro news

BC-PGDP BC-CPI SPF-PGDP1 SPF-CPI1
Lag 0 1 0 1 0 1 0 1
Payrolls -.42 1.24 -.35 -.29 -1.13 3.61 -3.87 5.43

(-.84) (2.46) (-.66) (-.54) (-.53) (1.65) (-1.64) (2.24)
Unempl. -.55 .22 .27 -.36 -3.41 -5.54 -1.73 -1.49

(-1.11) (.44) (.52) (-.68) (-1.66) (-2.67) (-.76) (-.65)
Earnings -.91 -.05 -.32 -.35 -1.38 2.93 2.99 2.52

(-1.80) (-.10) (-.61) (-.66) (-.71) (1.51) (1.39) (1.18)
Cons. .35 1.24 .51 1.18 5.97 -1.89 7.74 -.33
Conf. (.69) (2.44) (.96) (2.20) (2.80) (-.94) (3.28) (-.15)
CPI -.55 1.20 .12 .57 -.94 2.41 2.74 -1.90

(-1.11) (2.44) (.24) (1.10) (-.48) (1.18) (1.26) (-.84)
R2 11.4% 4.5% 36.4% 34.4%
N 211 211 70 70

Response coefficients (t-statistics in parentheses) for survey-based expectations. Bold

face indicates significance at the 5% level.

Surprises in the non-farm payroll numbers do lead to a significant increase

in inflation expectations for both BC-PGDP and SPF-CPI1. However the response

is delayed: not the current surprises but the lagged surprises have this effect on

expectations. Notably the timing is such that the surprises are in fact observed

by market participants before they provide the survey responses, so it is surprising

that the response is delayed. For SPF-PGDP1 there is a barely significant delayed

response.

For the BC survey all macro news have a delayed impact on expectations,

if they have any significant impact. For the SPF survey the evidence is mixed with

some significant contemporaneous responses and some delayed responses. One

expectations are available.
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problem with the SPF measures is that the number of observations is rather small

(70). Given the small degrees of freedom (59) and the rather large R2 there might

be a problem of over-fitting, and the SPF results should be taken with more cau-

tion.

The overall conclusion is that several survey-based measures of inflation

expectations show a significant positive response to payroll surprises. Interestingly,

survey-based inflation expectations do not respond as quickly as we would expect,

based on the timing of the employment report data and of the survey collection.

3.5 Projecting Future Inflation on Macro News

The previous sections used market-based and survey-based measures of in-

flation expectations and estimated their relationship with macro news. An alter-

native is to ask how optimal forecasts of inflation should be revised in response to

the new information in a data release. Since this new information is orthogonal to

the information used to forecast inflation, this simply amounts to a projection of

future inflation on current economic news.

Consider the monthly time series of inflation, πt, as well as the surprise

component in a particular monthly release, standardized to have unit variance,

st. The object of interest is the revision to the expected future path of inflation

that is caused by observing st, E(πt+h|st,Ωt−1)− E(πt+h|Ωt−1), where Ωt−1 is the

information set available to agents before the release.9 Since st and Ωt−1 are

orthogonal, the marginal revision

δo(st, h) =
∂[E(πt+h|st,Ωt−1)− E(πt+h|Ωt−1)]

∂st
=
∂E(πt+h|st,Ωt−1)

∂st
,

is independent of Ωt−1. Here δo(st, h) denotes the true marginal revision. If we

assume that E(πt+h|st,Ωt−1) is linear in st then δo(st, h) = δo(h). Under this

assumption a linear projection of πt+h on st will recover the conditional expectation.

9In a slight abuse of notation Ωt−1 is taken to include all information that is available to
agents when they form expectation of the payroll release, although of course the date of the
Bloomberg survey that is used to construct st does not necessarily coincide with the last day of
month t− 1.
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Using the demeaned values for inflation, denoted by π̃t, we can run the regression

π̃t+h = δhst + εt,h (3.7)

for each horizon h and the estimates δ̂h will be consistent for δo(h).10

The sample I use extends from March 1985 (the first month for which I

have the payroll release data) to July 2007 (before the beginning of the crisis).

I consider forecast horizons extending out to five years: h = 1, . . . , H, where

H = 60. Thus each regression includes 209 observations, from March 1985 to

July 2002, the last month for which 60-month-ahead inflation is available. As

the inflation measure I use month-on-month11 CPI inflation (seasonally adjusted)

measured in basis points. The surprise measure st is taken to be the standardized

surprise component in the non-farm payroll number.

Figure 3.3 shows the estimated δ̂h across horizons, together with 95% con-

fidence intervals. There is a clear tendency for future inflation to be higher after a

positive payroll surprise: By far most of the δ̂h are positive, several are significantly

positive, and none are significantly negative. There is a hump-shaped pattern, with

forecasts for horizons of one to three years being revised upward the most.

The estimated revision of inflation forecasts caused by a payroll surprise is

a high-dimensional object. The point estimates show a very jagged pattern across

horizons, and the individual confidence intervals are rather large. Clearly there is a

lot of noise underlying these estimates. We can improve the precision by imposing

a more parsimonious structure on the revision: instead of leaving the δh entirely

unrestricted we can impose a smooth parametric structure. Assume that a k-

dimensional parameter vector θ determines the marginal revision: δo(h) = δ(θo, h).

If we choose k < H then we have a parsimonious structure: instead of estimating H

different δh, each using one orthogonality condition, we estimate only k parameters

which are tied down by H moment conditions

E[(π̃t+h − δ(θo, h) · st)st] = 0 h = 1, . . . , H.

10Including additional predictors in (3.7) such as lagged inflation could potentially reduce the
error variance and improve precision. It turns out that augmenting the regression by lagged
inflation has essentially no impact on the results because forecast errors remain large.

11The use of month-on-month changes avoids the overlap that would result from the use of a
monthly series of year-on-year changes.
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Figure 3.3: Revision of optimal inflation forecast following a payroll surprise

Error bands show unrestricted projection coefficients δ̂h for h = 1, . . . , 60 including 95%

confidence intervals. Solid line shows parsimoniously parameterized revision of inflation

expectations following a payroll surprise, δ(θ̂, h). Dashed line shows point-wise 95%

confidence intervals for parsimonious revision.

The parameter vector θ is easily estimated using GMM. Let

h(θ, wt) =


(π̃t+H − δ(θ,H) · st)st

...

(π̃t+1 − δ(θ, 1) · st)st


so that the H moment conditions can be written as E[h(θ, wt)] = 0. The GMM

estimator of θ minimizes the objective function

Q(θ) =

[
T−1

T∑
t=1

h(θ, wt)

]′
W

[
T−1

T∑
t=1

h(θ, wt)

]
,

where W is a weighting matrix. If the vector process h(θo, wt) is serially uncorre-

lated the optimal weighting matrix is the inverse of S = E{[h(θo, wt)][h(θo, wt)]
′}.

Since st is a martingale difference sequence12 this is indeed the case. To see this

12The definition of st as the surprise component in the release, i.e. the difference between the
release and its conditional expectation, implies that E(st|st−1) = 0.
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let εt = (εt,1, . . . , εt,H)′ so that h(θo, wt) = εtst, and consider

E[h(θo, wt+1)|h(θo, wt)] = E(εt+1st+1|εtst)

= E[E(εt+1st+1|st, εt+1)|εtst]

= E[εt+1E(st+1|st, εt+1)|εtst]

= E[εt+1 · 0|εtst] = 0

The second and third line follow from the law of iterated expectations, and the last

line follows from E(st+1|st) = 0. To construct the optimal GMM estimator I use

an iterative scheme as described in Hamilton (1994, p. 413), where first an identity

weighting matrix is used to obtain an initial estimate of θ, then S is estimated

and a new estimate of θ is obtained using W = Ŝ−1. This is repeated until the

Euclidean distance between consecutive estimates of θ is small.

As a parametric specification for the revision I use

δ(θ, h) = θ1 + θ2e
−θ4h + θ3θ4he

−θ4h,

which parallels the Nelson-Siegel parametrization in the term structure literature

(Diebold and Li, 2006), and is motivated by the desire to allow for a flexible hump

shape while retaining parsimony.

Figure 3.3 shows the resulting parsimoniously parameterized revision of

inflation expectations following a one standard deviation payroll surprise. The

solid line shows the parsimoniously specified marginal revision δ(θ, h) evaluated at

the optimal GMM estimates. The dashed line shows point-wise 95% confidence

intervals, obtained using the delta method.

The key result is that in response to a payroll surprise, inflation expectations

are revised significantly upward over horizons from six months to about three years.

The maximum revision is about five basis points and occurs at about a two-year

horizon.

What we have achieved here is that we obtained a smooth and more pre-

cisely estimated revision object. This allows much more clear cut conclusions

about changes in inflation forecasts across horizons than we can make based on

separate estimates for each horizon, where precision is low and a clear pattern not

necessarily evident.
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Since the number of moment conditions exceeds the number of parameters

to be estimated, we can test whether these overidentifying restrictions are valid

using Hansen’s J-test (Hamilton, 1994, p. 415). The value of the test statistic is

51.85, while the 5% critical value of a χ2-distribution with H−dim(θ) = 60−4 = 56

degrees of freedom is 74.47. Thus we do not reject the parametric model chosen

to restrict the shape of the revision.

In sum, based on linear projections of future realizations of inflation on cur-

rent payroll surprises, inflation forecasts should be significantly revised upwards

following a positive surprise in the payroll numbers. The magnitude of these re-

vision is quite sizeable at horizons of about two years. This is in line with the

evidence from the previous sections, confirming that changing inflation expecta-

tions likely play an important role in the strong pro-cyclical response of nominal

rates to real-side macro news.

3.6 Conclusion

In this paper I have shown that revisions to inflation expectations are an

important source for variation in nominal short rate expectations, i.e. for revisions

of the expected path of future monetary policy. Market-based measures of revi-

sions of inflation expectations and of policy expectations show strong correlations,

independent of the particular sub-sample or frequency considered. Furthermore I

showed that real-side macro news, such as surprises in non-farm payroll employ-

ment, cause significant revisions in inflation expectations. Alternative ways to

measure changes in inflation expectations, based on market data, survey data and

optimal forecasts, all lead to this conclusion.

There are some interesting possible extensions to this work. Market-based

measures of inflation expectations, based on TIPS and nominal yields, can be

improved by taking into account variation in inflation risk premia and liquidity

premia (see for example D’Amico et al., 2010). With regard to the survey-based

measures, it seems desirable to combine the different available survey estimates,

possibly incorporating additional sources, to obtain one single survey-based mea-
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sure of the expected path of inflation expectation. And for the estimates based

on future realizations of inflation, a successful forecast model could improve the

precision of the estimates by reducing the projection error variance. While these

extensions are unlikely to alter the rather robust empirical conclusion of this paper,

they might well improve the quality of the estimates. In particular these extensions

might help to improve the quantitative consistency of the results of the different

approaches, in terms of the magnitude and the shape of the revisions of inflation

expectations that are caused by particular macro news.
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