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Physics-based numerical simulation remains challenging as the complexity of today’s 

high-fidelity models has dramatically increased. Model order reduction (MOR) and data-driven 

modeling, based on the emerging techniques of data learning and physical modeling, present a 

promising way to tackle the computational bottleneck related to the computational intensity and 

model complexity. 

Nevertheless, MOR has proven to be significantly more difficult for parameterized 

mechanics systems that exhibit a wide variety of parameter-dependent nonlinear behaviors or 

that involve localized essential features. The first objective of this work is to develop robust, 

physics-preserving MOR methods. As constructing a low-dimensional MOR model can be 

considered as the hybrid data-physics approach, one can optimize it through a learning process 



 

xxiv 

using both data and physical models. As such, we first propose a MOR method based on 

decomposed reduced-order projections that well preserve the essential near-tip characteristic for 

fracture mechanics. Moreover, we develop an enhanced reduced-order basis to construct a low-

dimensional subspace, deriving from a generalized manifold learning framework that allows the 

employment of local information in the data structure during the learning phase. This approach 

can yield a robust reduced-order model against noise and outliers and is well suited for 

parameterized nonlinear physical systems. Finally, a nonlinear MOR for a meshfree Galerkin 

formulation with the stabilized conforming nodal integration (SCNI) scheme is developed to 

yield a pure node based MOR that is particularly effective for hyper-reduction techniques. A 

numerical example of two-phase hyperelastic solid with perturbed loading conditions is used to 

validate the effectiveness of the proposed reduction method. 

 The second goal of the dissertation is to develop a robust data-driven computational 

framework, which provides an alternative to conventional scientific computing for complex 

materials. This framework aims at performing physical simulation by directly interacting with 

material data via machine learning procedures instead of employing phenomenological 

constitutive models, and especially addressing the robustness issue associated with noisy and 

scarce data. To this end, we propose to search data solutions from a locally reconstructed convex 

hull associated with the k-nearest neighbor points, which leads to robustness to noisy data and 

ensures convergence stability. The accuracy and robustness of the proposed data-driven approach 

are demonstrated in the modeling of linear and nonlinear elasticity problems. In addition, we 

present a preliminary result of data-driven modeling of biological tissue using material data 

collected from laboratory testing on heart valve tissue, showing the potential of data-driven 

simulation by integrating physical modeling and machine learning techniques.
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Chapter 1                                                                 

Introduction 

 

In this chapter, the motivation for the present research work is introduced in Section 1.1, 

followed by the strategies and objectives in Section 1.2. An outline of this dissertation is given in 

Section 1.3. 

 

1.1   Motivation 

1.1.1  Skeletal muscle modeling 

The human musculoskeletal system composed of about 700 muscles provides support, 

stability, and movement to the body. It plays a very essential role in people’s daily life. However, 

the performance or functioning of skeletal muscles suffers from ageing and various diseases due 

to the change of properties, microstructures, and morphologies of muscle tissues. For example, 

as we age, we progressively lose muscle mass in a process termed sarcopenia (Matthews et al. 

2011), and we may suffer from dynopenia (Goodpaster et al. 2006), that is, the muscle strength is 

disproportionately greater reduced during this process. It has reported that 50 million people are 

currently affected by sarcopenia and this will rise to 200 million in the near future (Wang & Bai 

2012). As a commonly disease on skeletal muscles, deep tissue injury (also known as pressure 

ulcer (PU)) that is a localized degeneration of skin and underlying muscle tissue, arises in the 

muscle layers adjacent to bony prominences as a result of sustained loading (NPUAP/EPUAP 

2009). PUs are usually found in situations when a prolonged mechanical load is applied to soft 
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biological tissues, such as subjects who are bedridden and wheelchair bound, or wearing a 

prosthesis or orthosis for prolonged periods (Stekelenburg et al. 2007). PUs not only severely 

affect the patient’s quality of life since they are painful but also become a financial burden for 

the nation. There are 2.5 million pressure ulcers are treated in US and cost 11 billion for 

treatment per year (Sen et al. 2009). Thus, it is desirable to understand the roles of different 

musculoskeletal factors (such as properties, microstructures, and morphologies of muscle tissues) 

in the functioning of skeletal muscles as well as the physiological causes of the change in those 

factors. Computational simulation and modeling of skeletal muscle has been considered as a 

powerful tool to enhance our understanding of the mechanism underlying the etiology and to 

achieve real-time detection and prediction for guiding better treatments.  

 

 

(a) (b) 

Figure 1.1: Skeletal muscle structure: (a) The entire muscle is surrounded by the epimysium, 

which develops as perimysium covering the fascicles, and finally as endomysium which 

surrounds the individual muscle fibers (Gray & Carter 1995); (b) the honeycomb-like structure 

of endomysium in fiber level (Gillies & Lieber 2011). 
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Figure 1.2: Description of multiscale and multi-physics simulation of skeletal muscle (Zhang 

2015) ( ( )V t : action potential in neural system to yield an impulse; ( )t : pulse solved by the 

Fitzhugh-Nagumo equation to control the calcium concentration; ( )t : activation factor solved 

by the calcium dynamics to control dynamic fiber force; ( )fiberf t : fiber force obtained from 

Huxley’s cross-bridging model in sub-cellular scale). 

 

A whole piece of muscle is usually composed of skeletal muscle tissue, connective 

tissues, nerve tissue and blood tissue or vascular tissue, as shown in Figure 1.1. To properly 

represent the across-scale process that electro-chemical excitation in neural system leading to 

mechanical contraction in muscle fibers, a coupled elector-chemical-mechanical multiscale 

computational framework based on image-based meshfree framework has been developed for 

modeling skeletal muscles (Basava 2015; Chen et al. 2016; Zhang 2015), and the proposed 

framework is summarized in Figure 1.2. Obviously, simulating skeletal muscles is extremely 
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complicated, computationally expensive, and sometimes even impractical due to the following 

Facts (i), (ii), and (iii): 

(i) The physics models governing electoral, chemical, and mechanical state variables are 

parameterized nonlinear partial differential equations (PDEs) that could exhibit a wide 

variety of parameter-dependent nonlinear behaviors. For example, the FitzHugh-Nagumo 

model (FHN) used to describe the propagation of potential actions in neural system is a 

nonlinear reaction-diffusion equation depending on an exterior electrical input parameter.  

(ii) The interact of different physical models arises at different length scales (subcellular, 

cellular, and component/tissue scales), and the parameter-dependent information need to 

transmit across scales. Thus, tedious upscale/downscale modeling is required. For 

example, computational homogenization methods  (Feyel 2003; Kouznetsova, 

Brekelmans & Baaijens 2001)  are used for multiscale mechanical analysis of muscle 

tissue, that can be considered as a simplified honey honeycomb-like structure (see Figure 

1.1(b)) consisting of densely-distributed thin hyperelastic extensible fibers and a 

homogeneous tissue matrix (Humphrey & Yin 1987). 

(iii) Although numerous phenomenological and structural constitutive models (Chagnon, 

Rebouah & Favier 2015; Sacks & Sun 2003) have been developed, it remains challenging 

to effective represent heterogeneous and anisotropic behavior of skeletal muscles with 

physical intuition and empiricism based models. Moreover, using complex material 

models brings about numerical difficulties to parameter identification and simulation in 

conventional numerical methods. 
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As a result, the potential of physics-based numerical simulation for providing a deeper 

understanding of complex skeletal systems and achieving time-critical prediction is restricted by 

the computational complexity and intensity.  

 

1.1.2  Reduced-order modeling 

To bridge the gap between the using high-fidelity models for accurate physics 

representation and the rapid time-to-solution demands of time-critical applications, model order 

reduction (MOR) has been considered as one promising strategy to tackle the computational 

burden problems related to the Facts (i) and (ii), given that most physical systems representing 

skeletal muscle behaviors are parameterized PDEs suited for reduced-order modeling (Benner, 

Gugercin & Willcox 2015). MOR is one approximation technique aiming at generating a low-

dimensional, low-complexity model while accurately captures the map between system inputs 

(e.g., electro-chemical excitation, material parameters) and outputs represented by the original 

high-fidelity model (e.g., calcium concentration, force generation) in the regions of interest.  

MOR has gained significant progress in a broad range of challenging engineering 

applications over the past two decades, including structures dynamics (Amsallem et al. 2009; 

Carlberg & Farhat 2011; Krysl, Lall & Marsden 2001; Lall, Krysl & Marsden 2003), system 

engineering (Antoulas & Sorensen 2001), fluid mechanics (Amsallem & Farhat 2008; Lieu, 

Farhat & Lesoinne 2006; Sirovich 1987), solid mechanics (Kerfriden et al. 2011; Millán & 

Arroyo 2013; Niroomandi et al. 2010; Radermacher & Reese 2016; Ryckelynck, Benziane & 

Paristech 2010), fracture mechanics (Akbari Rahimabadi, Kerfriden & Bordas 2015; He, Chen & 

Marodon 2018; Kerfriden et al. 2013), molecular dynamics (Lee & Chen 2013), and biological 
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modeling (Cueto & Chinesta 2014; Niroomandi et al. 2008; Rama & Skatulla 2018). Nonetheless, 

many outstanding challenges face the community, especially with respect to applying model 

reduction to parameterized nonlinear mechanics systems. The major challenges are listed as 

follows: 

 Applicability to nonlinear systems: Since MOR methods usually realize computational 

savings by performing computations on a small subset of the underlying high-

dimensional computational model when nonlinearities appear in the physical systems, 

one need to ensure the reduction procedures yielding sufficiently small error and 

applicable to original simulation code. 

 Physics preservation: As most MOR methods are constructed based on spectral analysis, 

it is difficulty to preserve the essential characteristics of the physical system of interest in 

the reduced-order model, especially for the localized characteristics, e.g., singularities 

and discontinuities in fracture mechanics. 

 Robustness: It is difficulty to ensure accurate and robust reduced-order solutions when a 

parameterized physical system exhibits a wide variety of nonlinear behaviors in terms of 

parameter changes. 

Therefore, the development of a robust, physics-preserving MOR method for reduced-order 

modeling of parameterized PDEs is essential.  
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1.1.3  Data-driven computational modeling 

Traditionally, the geometry model, physical models, and constitutive models that relate 

the kinematic and kinetic variables of the system are used to perform numerical simulation and 

predict a system response. However, one long-lasting debate is whether the constitutive models 

based on physical intuition and empiricism is still a good representation, especially for material 

that exhibits across-scale complex behaviors and sample-wise randomness. 

On the other hand, with the significant advances in digital technologies and data-driven 

algorithms, and the proliferation of high-resolution datasets over the past decades, an emerging 

idea to enhance traditional scientific computing and engineering design procedures is becoming 

possible. This idea relies on utilizing both data and physical models simultaneously to provide 

more accurate representations of engineering or physical systems. Thus, it fosters an 

interdisciplinary research that fuses data processing, machine learning, and scientific computing 

that are apparently disparate research fields. 

 As machine learning models (Jordan & Mitchell 2015) have attained spectacular success 

in fields such as pattern recognition, language translation, and bioinformatics, it is natural to 

conjecture that we could abandon the traditional ways of physical-intuition driven model creation 

and instead use data directly for scientific simulation. Although the question is under debate, 

preliminary attempts to use inference and machine learning have been reported in many 

engineering and physical applications (Brunton, Proctor & Kutz 2016; Peherstorfer & Willcox 

2016; Raissi & Karniadakis 2018; Raissi, Perdikaris & Karniadakis 2017; Schmidt & Lipson 

2009; Williams, Kevrekidis & Rowley 2015). 
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 We are particularly interested in addressing the difficulties cause by the employment of 

conventional constitutive models related to Fact (iii) in Section 1.1.1, by adopting the idea of 

blending data-driven models with the existing well-accepted mechanics models (Ibañez et al. 

2016; Kirchdoerfer & Ortiz 2016; Lefik & Schrefler 2003; Matouš et al. 2017). It allows to 

perform simulation directly based on material data, bypassing phenomenological material 

models, and avoiding the associated issues of model construction, identification, and 

implementation. However, this novel but undeveloped computational paradigm of model-data 

fusion, called data-driven computational modeling, may suffer from lack of robustness and the 

“curse of dimensionality” as well as other data challenges due to the primitive data-driven 

techniques and the random nature of experimental data. Nevertheless, current research on the 

development of robust data-driven computational paradigm is still rare and deserves 

investigation. 

 

1.2  Strategies and Objectives 

The objective of this work is to further advance the current state of hybrid data-physics 

approaches in computational mechanics to address the computational limitations when dealing 

with nonlinear mechanics system and complex constitutive models, as presented in Section 1.1.2 

and 1.1.3. This dissertation, thus, is divided into two parts, developing physics-preserving, robust 

MOR methods for parameterized PDEs, and data-driven computational framework for complex 

material modeling.  

To accomplish this objective and avoid the drawbacks of currently used methods 

enumerated above, dimensionality reduction as well as other machine learning techniques are 
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introduced. Hence, these two topics are organically related since both are fundamentally based 

on the data learning and data-driven techniques. The specific developments are summarized as 

follows: 

1) Development of an SVD-based MOR approach for reduced-order modeling of fracture 

mechanics that allows the preservation of essential characteristic, singularities and 

discontinuities of the original full-order model. In this approach, the reduced-order model 

is constructed based on the integrated singular basis function method (ISBFM) with 

meshfree approximation enriched by crack-tip basis functions. This framework allows a 

lower order integration of the Galerkin equation, but also yields a discrete system 

containing sparse sub-matrices for effective MOR procedures. As such, a decomposed 

reduced-order basis is developed to preserves the discontinuity and singularity 

characteristics of fracture. Several numerical examples are presented to examine the 

effectiveness of the proposed method for fracture modeling. 

2) Development of a robust reduced-order model for parameterized nonlinear systems 

characterized by a wide variety of nonlinear behaviors in terms of parameter changes. 

The reduced-order basis used to construct the low-dimensional subspace is derived from 

a generalized manifold learning framework, called graph embedding, in conjunction with 

linearization techniques. This general framework allows to take a priori statistical 

knowledge of given data into account during the data learning phase. Thus, it yields a 

robust reduced-order model less sensitive to noise and outliers and well suited for 

nonlinear physical systems.   

3) Development of nonlinear MOR for a meshfree Galerkin formulation based on the 

stabilized conforming nodal integration (SCNI) scheme, which has been demonstrated 
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effective for image-based modeling skeletal muscles. To extend the standard proper 

orthogonal decomposition (POD) method to nonlinear solid mechanics, an additional 

system approximation level achieved by interpolation-type methods based on the SCNI 

discretization is proposed. The procedures of applying the nonlinear MOR method for 

quasi-static analysis based on meshfree framework are presented and its effectiveness is 

demonstrated by solving a two-phase hyperelastic solid with perturbed loading 

conditions. 

4) Development of a robust data-driven computational framework for small-deformation 

elastostatics problems, termed locally convex data-driven (LCDD) computing, that 

integrates machine learning techniques. This framework aims at performing physical 

simulation directly interacting with material data instead of employing constitutive 

models, especially tackling the robustness issue associated with such data sets of noise, 

outliers, and high-dimension. Specifically, LCDD searches for optimum data solutions 

from a locally reconstructed convex hull associated to the k-nearest neighbor (k-NN) 

points, which leads to less sensitivity to noisy data and ensures convergence stability. The 

numerical examples of structural and elasticity problems demonstrate the performance of 

the proposed LCDD method. 

5) Development of the proposed robust data-driven computational framework for finite 

kinematics such that it allows to simulate biological materials under the same meshfree 

framework used for reduced-order modeling. The effectiveness of the proposed data-

driven solver for nonlinear solids is verified by using two academic tests with synthetic 

material data. A preliminary study of applying data-driven simulation for a realistic 
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biological tissue with realistic material data collected by biaxial experiment testing is also 

given. 

 

1.3  Outline 

The remainder of this dissertation is organized as follows. In the next chapter, an 

overview on machine learning, model order reduction (MOR), and data-driven engineering 

science is given, along with the comparative discussion to show their intrinsic relation under the 

concept of model-driven and data-driven approaches. In Chapter 3, a detailed review of 

projection-based model order reduction techniques and their extensions to nonlinear mechanics 

systems is presented. In Chapter 4, a physics-preserving MOR method is proposed for fracture 

mechanics where solutions exhibit singularities and discontinuities. Moreover, a novel approach 

based on manifold learning to construct robust reduced order models for nonlinear partial 

differential equations is presented in Chapter 5. In Chapter 6, we develop a robust data-driven 

computational framework, which directly linking experimental data to physics laws for 

numerical simulation. In Chapter 7, a nonlinear MOR method for nonlinear solids is formulated 

under the SCNI (Stabilized Conforming Nodal Integration) framework. Furthermore, the 

proposed manifold learning-based data-driven solver is extended to nonlinear kinematics and 

applied to biological tissues modeling via directly utilizing material data measured by biaxial 

mechanical experiments, which are elucidated in Chapter 8. Finally, conclusions and discussions 

on future research directions are given in Chapter 9. 
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Chapter 2                                                                 

Literature Review  

  

We review several important concepts and methods related to machine learning, model 

reduction or surrogate modeling, and data-driven computational modeling. This chapter is, by no 

means, an exhaustive exposition of these topics. Its purpose is rather to provide enough 

background and the foundations for the developments of reduced-order modeling and data-

driven modeling in the following chapters. Moreover, we provide a comparative discussion that 

lend insights to the intrinsic relation among them and potential advantages and disadvantages in 

applying each of the methods.  

 

2.1  Machine Learning: Data Mining and Dimensionality Reduction 

Machine learning has progressed dramatically over the past two decades, from laboratory 

curiosity to a practical technology in many real-world applications (Jordan & Mitchell 2015). It 

is motivated by the mission of extracting and processing information from massive data which 

challenges scientists and engineers in various fields such as data mining, image processing, 

speech recognition, computer vision, biological informatics, and medical diagnostics. Tasks of 

machine learning include regression, classification, clustering, dimension reduction, and feature 

selection. Machine learning algorithms aim at learning the underlying function relations (input 

and output) from collected data and making data-driven predictions or decisions through building 

a learning model from sample inputs. Due to the huge sample size and high dimensionality of 
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variables, achieving reliable machine learning models for real-life problems heavily relies on 

suitable statistical modeling and optimization methods to tackle the large-size problems.  

 

Figure 2.1: Types of machine learning. (http://www.cognub.com/index.php/cognitive-platform/) 

 

In terms of tasks, there are essentially two main types of machine learning problems (see 

Figure 2.1): supervised learning, aiming to learn a mapping from inputs to target values, and 

unsupervised learning, whose goal is to find “interesting patterns” in the data. They are 

sometimes called data mining and knowledge discovery, respectively. Obviously, unsupervised 

learning is a much less well-defined problem since we have no idea of what kinds of patterns to 

look for and which error metric and criterion should be used. Machine learning is a huge 

research area and involves a very broad tasks ranging from data processing, learning, to 

interpretation of the results. We are only interested in the learning stage where systems are 

trained on the given data samples to generalize to new, unseen samples. In this section, we 

briefly review the basic concept of supervised and unsupervised learning and provide a few 

http://www.cognub.com/index.php/cognitive-platform/
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learning methods that are used in the following sections. For a comprehensive understanding of 

this filed, we refer (Bishop 2006; Hastie, Tibshirani & Friedman 2009; Murphy 2012). 

 

2.1.1  Supervised learning 

Given an input space d  for a learning problem, there is an underlying function 

:g   mapping an element x  to an point in the output space . Assume we have 

sampled the function at the data points 1{ ,..., }M x x  and measured the corresponding outputs 

1{ ,..., }My y  , where the sampling process could be disturbed by noise.  A supervised learning 

algorithm is to find a function ˆ :g   approximating the unknown function g  to make 

prediction on unseen samples. The function ĝ  is obtained by considering only the training data 

set {( , ), 1,..., }ii i My  x , but it should generalize to new data. The set of outputs iy  

might be a set of quantitative measurements, i.e.  , for regression problems (we consider 

only univariate regression for demonstration, but it is easy to extend to multivariate regression), 

or a finite set of qualitative labels or classes, i.e. {1,..., }iy C  (e.g., species of fish), for 

classification problems, with C being the number of classes. Compared to quantitative outputs 

used in regression, there is no explicit ordering in the qualitative outputs, and they are discrete 

variables.  

The prediction accuracy of a function ĝ  can be measured quantitatively by means of a 

loss function: :L    as ˆ( ( ), )L f yx  for an input-output pair {( , )y x , where 

  denotes a set of non-negative real numbers. For regression, the squared error loss 
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2ˆ ˆ( ( ), ) ( ( ) )L f y f y x x  is most often used and it gives the least squares error when the 

predicted value ˆ ( )f x  approximates the true output value y . Thus, one very fundamental type of 

supervised learning algorithm can be stated as empirical risk minimization (ERM): 

 
1

1ˆ ˆargmin ( ( ), ).
M

i i

i

f L f y
M 

  x   (2.1) 

The extension of the standard ERM in (2.1) can be achieved by using regularization methods and 

reproducing kernel Hilbert spaces (RKHS) (Hastie, Tibshirani & Friedman 2009). For example, 

a general class of regularization problems has the form 

 
ˆ

1

1ˆ ˆ ˆargmin ( ( ), ) ( ),
M

i i
f

i

f L f y J f
M






  x   (2.2) 

where 0   is a regularization parameter, ˆ( )J f  is a penalty function, and  is a space of 

functions on which ˆ( )J f  is defined. It is noted that the regularized problem in (2.2) is a 

powerful algorithm for learning, and constitutes the building block for many advanced learning 

methods, such as multilayer neural network (Haykin 2009) and support vector machines (SVM) 

(Hastie, Tibshirani & Friedman 2009). Since it is very technical and beyond the scope of this 

these, we refer the interested readers to (Bishop 2006; Hastie, Tibshirani & Friedman 2009) and 

the references therein.  

 A simple but powerful prediction method is the linear model fit by the least squares. That 

is, the function f̂  is defined by a linear model 

 ˆ ˆ( ) ,Tf x x β   (2.3) 
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where ˆ dβ  are the coefficient vector to be solved. Then, inserting (2.3) into the ERM system 

(2.1), the coefficient β̂  can be obtained by solving a standard linear least square problem.  

 

k-nearest neighbor (k-NN)  

 Another powerful classification and regression technique but based on totally different 

philosophy from the linear model is the k-nearest-neighbor (k-NN) method (Cover & Hart 1967). 

It is one of the most fundamental non-parametric methods in pattern recognition and machine 

learning. Owing to its simplicity and flexibility, k-NN procedures had become the methods of 

choice in many scenarios (Anava & Levy 2016; Wu et al. 2008), especially in the case where the 

underlying model is complex. Moreover, it is fairly robust to errors given good cross-validation 

procedures (Ni & Nguyen 2009). 

 To approximate ˆ( )g x , the k-NN prediction method simply uses those observations in the 

training set  closest to x  in the input space  to form ˆ ( )f x , that is 

 
( )

1ˆ( ) ,
k

if y
k 

 
x x

x   (2.4) 

where ( )k x  is the neighborhood of x  defined by k  nearest points ix  in the training set. 

Compared to the linear model, the k-NN procedure does not rely on any stringent assumptions 

about the underlying data. Usually, a successful application of the k-NN algorithms requires a 

careful choice of the number of nearest neighbors k  and the distance metric. 

 Remark 2.1: Following the discussion under the statistical perspective (Hastie, 

Tibshirani & Friedman 2009), both the linear model with least squares and the k-NN method 
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result in approximating conditional expectations by averages while their model assumptions are 

dramatically different. The former one assumes a global linear function to approximate ˆ( )g x  

whereas the latter one conjectures it can be well approximated by a locally constant function. 

Moreover, under mild regularity conditions on the joint probability distribution ,( )rP , one 

can show k-NN is a universal approximator for large training sample size.   

However, k-NN suffers from the “curse of dimensionality (Bellman 1961)”. As the 

dimension d  gets large, the metric used to measure neighborhood becomes problematic and the 

rate of convergence decreases significantly. 

 

2.1.2  Unsupervised learning 

We now consider unsupervised learning, where the training data contains only data points 

and no target values.  The goal is to discover the hidden structures in the data. There are three 

major applications of unsupervised learning, including density estimation, clustering, and 

dimensionality reduction. We briefly review dimensionality reduction as it is closely related to 

the work of the thesis, and refer to (Murphy 2012) for the other two topics. 

 

Linear and nonlinear dimensionality reduction 

When dealing with high-dimensional data, it is desired to reduce the dimensionality by 

projecting the data to a lower dimensional subspace and find the latent variables that characterize 

the intrinsic structure of data. Although dimensionality reduction itself is an unsupervised 

problem, it plays an important role in data-mining, computer vision, and machine learning to 
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circumvent the “curse of dimensionality” and reduce computational burdens. Dimensionality 

reduction algorithms are usually based on spectral analysis (Zhang et al. 2009) to generate the 

mappings between the high- and low-dimensional spaces. Depending on whether the resulting 

mapping is linear or not, the algorithms can be classified into two groups: conventional linear 

dimensionality reduction algorithms and manifold learning-based algorithms. 

 Among the linear algorithms, principal component analysis (PCA) (Jolliffe 2002; 

Martinez & Kak 2001) and linear discriminant analysis (LDA) (Martinez & Kak 2001) are the 

two most popular ones and both are proposed based on Gaussian assumptions on the data 

distributions. PCA finds the low-dimensional embedding by constructing a linear representation 

of largest possible variance. This is a linear approach because it is a linear transformation from 

high-dimensional data to the embedding. 

 Assuming that data points are distributed in a nonlinear pattern, manifold learning 

techniques (also called nonlinear dimensionality reduction), such as kernel-PCA (Schölkopf, 

Smola & Müller 1998), locally linear embedding (LLE) (Roweis & Saul 2000), Laplacian 

eigenmap (LE) (Belkin & Niyogi 2001), and local tangent space alignment (LSTA) (Zhang & 

Zha 2004), among many other approaches, have been proposed to discover the low-dimensional 

manifold and remove correlations in data (Lee & Verleysen 2007; Van Der Maaten, Postma & 

Van Den Herik 2009). To construct the global low-dimensional representation without explicitly 

formulating the (nonlinear) mapping, most of these techniques are based on clustering neighbor 

data points and approximating the geometry (pairwise distances, local linear relationships, etc.) 

of the associated local manifold. Compared with linear approaches that usually apply global 

spectral analysis, local spectral analysis is used for manifold learning.  
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 The techniques for dimensionality reduction have also been wildly applied to many 

research areas in engineering science, such as model order reduction (Amsallem & Farhat 2011; 

Bhattacharjee & Matouš 2016; González et al. 2018; Millán & Arroyo 2013), data-driven 

computational mechanics (Ganapathysubramanian & Zabaras 2008; Ibañez et al. 2016) and 

computational materials engineering (Lopez et al. 2018).  

 

2.2  Model Reduction and Surrogate Modeling for Time-Critical Prediction 

Many modern mathematical models of real-world applications pose challenges when 

used in numerical simulations, due to the inherent complexity and large-scale (dimension) 

nature.  Model reduction is a general strategy to construct a simplification of the original large-

scale model, aiming to reducing solution time and reduce the computational burden, yet 

accurately preserve the essential behavior and dominant effects of the high-fidelity physics. 

In fact, model reduction falls into a more general research area, called surrogate 

modeling, where the system complexity is alleviated by constructing approximation modes. 

Surrogate modeling is widely used to achieve time-critical prediction in applications such as 

design, control, optimization, and uncertainty quantification (see Figure 2.2). Specifically, the 

time-critical prediction is usually required in the following two relevant scenarios: 

1. Real-time or near-real-time simulation: the objective is to compute outputs in a time less 

than certain critical value. Examples include embedded control and patient-specific 

simulator (Cueto & Chinesta 2014; González, Cueto & Chinesta 2016). 

2. Many-query applications: the objective is to minimize the computational resources for 

each evaluation such that we can evaluate the model at as many points in the input 
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parameter space as possible given a fixed amount computing resource. Examples include 

uncertainty quantification, optimization problems, and design exploration (Amsallem et 

al. 2015). 

As summarized in (Benner, Gugercin & Willcox 2015; Eldred & Dunlavy 2006), 

surrogate modeling is usually categorized into three primary strategies: hierarchical (physics 

simplification) type, data-fit type, reduced-order modeling. Based on the extent of exploitation of 

domain knowledge and data, the first one is considered as a physics-based approach, and the 

second one is a purely data-driven approach that directly constructs a model for the input–output 

map based on existing data using learning algorithms such as supervised learning. The last one, 

reduced-order modeling, can be viewed as a mixture of data-driven and physics-based 

approaches.  

In this section, we first review the three general strategies of surrogate modeling. Then, 

we provide more discussion of reduced-order modeling in Chapter 3 as it is the main topic of the 

thesis. 

 

2.2.1  Hierarchical model 

Hierarchical surrogate models essentially are the corresponding low-fidelity models 

derived from high-fidelity models using approaches such as simplifying physics assumptions or 

neglecting physics, lower order or alternative basis approximation, coarser discretization or 

larger time step, and looser residual tolerances. It is also referred as to simplified physics 

approach, analogous to the traditional mathematical modeling approach. Thus, this approach is 
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not often the topic of discussion in the context of model reduction as it is a long-standing method 

in science, engineering and mathematics. 

Hierarchical models have been applied to design optimization systems (Booker et al. 

1999; Lewis & Nash 2000, 2005; March & Willcox 2012), solving linear inverse problem 

(Arridge et al. 2006), and so on. Because lower-fidelity models remain physics-based, this type 

can be expected to generate more accurate predictions than data-fitting techniques and not suffer 

from the curse of dimensionality. Moreover, this type does not require an offline training stage 

(refer to Section 2.2.3) to generate solution data for data learning since this approach is 

independent of system inputs. Thus, the simplified physics approach can also be categorized into 

the a priori approach that utilizes only existing domain knowledge. 

However, this hierarchical type suffers from a major drawback that the resulting 

surrogate model is very difficult to achieve a reasonably accuracy with orders of magnitude 

speedup by simply neglecting some physics or coarsening the discretization (Carlberg 2011). 

Another challenge is how to maintain the physical consistency between low- and high-fidelity 

modes is not always clear, especially considering the variety of input. It requires a lot of domain 

knowledge that may not be available in many real-world problems.  

 

2.2.2  Data-fit model 

One the other hand, the data-fit type is a pure data-driven approach that applies 

supervised learning methods (interpolation, regression, or classification) to simulation data to fit 

a model for system output as a function of the input parameters and bypass the computation of 

the internal state entirely (Forrester 2008; Gorissen et al. 2010; Xiao et al. 2016), such as 
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response surface methods, black-box system identification techniques (Leontaritis & Billings 

1985). In the statistical literature, Gaussian processes (Kennedy & O’Hagan 2001), polynomial 

response surfaces (Venter, Haftka & Starnes 1998), radial basis functions (Wild, Regis & 

Shoemaker 2008), Kriging models (Simpson et al. 2001), stochastics spectral approximations 

(Ghanem & Spanos 1991; Xiu & Karniadakis 2002), and other statistical and Bayesian inference 

techniques, have been used extensively as data-fit surrogates for complex computational models 

(Benner, Gugercin & Willcox 2015). Recently, the neural network-based techniques (Hambli, 

Katerchi & Benhamou 2011; Lefik & Schrefler 2003; Milano & Koumoutsakos 2002; Oishi & 

Yagawa 2017; Tracey, Duraisamy & Alonso 2015) are also receiving increasing attention due to 

its universal approximation and generalization properties. 

 The key feature of the data-fit type is that the online evaluations run in “black-box” 

mode, regardless of the underlying problem itself. Thus, this approach is code non-intrusive and 

able to achieve very low-complexity data-fitting models for problems where the input-output 

relation is relatively linear and continuous. However, the date-fit approach loses the flexibility to 

extract more known attributes of the system since it is ‘blind’ to the physics of the problem after 

the surrogate is built. Due to the ignorance of physics it can also lead to unacceptable prediction 

errors when the physics is sensitive to the input parameters, for example, handling dynamical 

evolution with a data-fit model is more challenging. Additionally, this approach may suffer from 

the curse of dimensionality (Queipo et al. 2005).  
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2.2.3  Reduced-order model (ROM) 

The third type of surrogate modeling is reduced-order modeling (see Figure 2.2), which is 

based on a mathematical tool often called model order reduction (MOR). MOR seeks to achieve 

near real-time prediction by projecting the high-dimensional model (HDM) onto an associated 

low-dimensional subspace that spanned by properly constructed bases and solving the resulting 

low-dimensional system on that subspace. As the low-dimensional system is constructed by 

reducing the physical model’s associated state dimension or degrees of freedom, it is commonly 

referred to as a reduced-order model (ROM). The terms reduced-order modeling and model order 

reduction are used interchangeably in literature. 

On one hand, reduced-order modeling is a data-driven approach because the dimension 

reduction is achieved by learning the data usually collected from the precomputation of the HDM 

(see online/offline splitting). But it is also physics-based since ROM is built upon the governing 

equations that contain information about the underlying physics in terms of the input parameters. 

Thus, this hybrid approach is expected to generate online predictions of higher accuracy and 

robustness than the data-fit models that is a pure data-driven approach, especially for systems 

with a large variety of input parameters and rapidly changing physics within their range of 

applicability. In addition, it enables physical insight into the surrogate system and makes it more 

understandable to users compared to the data-fit system. Moreover, reduced-order modeling is 

potentially able to achieve much greater speedups than using hierarchical models (Carlberg 

2011). If projection-based approaches are adopted for constructing ROM, i.e. projection-based 

MOR methods in Section 3.3, another advantage is that they permit a rigorous framework for 

deriving system-theoretic error bounds and error estimates (Benner, Gugercin & Willcox 2015; 

Hesthaven, Rozza & Stamm 2015; Quarteroni, Manzoni & Negri 2015).  
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However, one major disadvantage in the reduced-order models is that they tend to be 

code-intrusive since they typically require access to the system operators (e.g. residual, Jacobian) 

for the problem (refer to Chapter 3). Besides, reliable reduced-order models are often non-trivial 

to generate, especially in the case of highly nonlinear systems. Moreover, special techniques 

such as system approximation are needed for the extension to nonlinear systems, as shown in the 

next chapter. 

Nevertheless, reduced-order modeling offers a promising mean to handle time-critical 

problems while preserving essential physics (Eldred & Dunlavy 2006). This thesis focuses on 

this approach and gives further review in Chapter 3. Before going to the next Chapter, some 

basic concepts for reduced-order modeling are given as follows. 

 

Online/offline splitting  

Generally, most MOR techniques admit an offline-online splitting, as shown in Figure 

2.2. In the offline phase it might require solving the HDM for some chosen parameters to 

produce sufficient solution data, and the desired reduced-order basis and other reduced quantities 

used for constructing the associated ROM are computed based on the collected data. Apart from 

solving the HDM, in the offline stage the computation of determining the “suitable” parameters 

to be tested (known as sampling) is also an important issue in reduced-order modeling. Although 

the offline phase is computationally expensive, it is typically acceptable to consume time and 

effort constructing a model before deploying it in the online simulation. In the online phase, a 

rapid evaluation with new parameters can be obtained by the ROM. Under the context of 

machine learning, the offline phase is to generate training data and to construct the statistical 
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model learned from data, whereas the online phase is to perform the prediction based on test 

data.  

 

 

Figure 2.2: Schematic of general projection-based model order reduction for parameterized 

physical systems. 

 

The a priori and a posteriori approaches 

Depending on whether the offline stage is used to construct reduced basis and reduced 

model, MOR methods are categorized into two types (Galland et al. 2011): the a posteriori and a 

priori approaches. In the a posteriori approach, preliminary computations of the fine-scale model 

are performed in the offline phase to build the basis of a reduced subspace based on the 

precomputed solution data, and the reduced model constructed on the subspace is then used 

repeatedly in the online phase to obtain accelerated solution. The snapshot proper orthogonal 

decomposition (POD) method (Sirovich 1987), also called Karhunen-Loève expansion 

(Karhunen 1946; Loève 1955) or principal components analysis in other fields, and the reduced-

basis method (RBM) (Prud’homme et al. 2002; Quarteroni, Rozza & Manzoni 2011; Rozza, 

Huynh & Patera 2008) are typical a posteriori approaches. On the contrary, the a priori approach 
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doesn’t need the preliminary computations of solutions, and therefore no offline/online 

computational decomposition. The reduced basis is constructed by using some a priori 

knowledge about the particular problem. Examples include the a priori hyperreduction method 

(Ryckelynck 2005; Ryckelynck et al. 2006), the spectral decomposition (or known as model 

analysis) (Craig 1981; Dickens, Nakagawa & Wittbrodt 1997), component mode synthesis 

(CMS) methods (Hurty 1960, 1965), and the proper generalized decomposition (PGD) method 

(Chinesta, Ammar & Cueto 2010; Ladevèze, Passieux & Néron 2010; Nouy 2010) based on the 

reduced solution space by separation of variables. 

 

Machine-learning enhanced reduced-order modeling 

 As pointed out before, reduced-order modeling intrinsically integrates the data-driven 

methodology as it applies statistical learning techniques to extract important physical features out 

of the precomputed data. Take the snapshot-based proper orthogonal decomposition (Sirovich 

1987) as an example, a standard dimension reduction method equivalent to principal component 

analysis is used to construct low-dimensional solution subspace. While significant advances have 

been made in reduced-order modeling over the past fifteen years, there are still many outstanding 

challenges, especially with respect to applying MOR to parameterized nonlinear dynamical 

systems. To address these issues, some machine learning techniques like greedy algorithm 

(Barrault et al. 2004; Chaturantabut & Sorensen 2010), clustering (Peherstorfer et al. 2014), 

manifold learning (Millán & Arroyo 2013), and so on, were introduced to the MOR community.  

Recently, the integration of data-driven or machine learning techniques with MOR has 

received increasing attention, yielding the potential to derive generalizable reduction models to 
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achieve time-critical prediction. Some exemplary studies are presented in (Bhattacharjee & 

Matouš 2016; Carlberg, Ray & van Bloemen Waanders 2015; Peherstorfer & Willcox 2015; 

Swischuk et al. 2018), to name a few. In (Swischuk et al. 2018), four different machine learning 

techniques (neural networks, multivariate polynomial regression, k-NN, and decision trees) were 

introduced into the proper orthogonal decomposition (POD), and the performance of prediction 

and preservation of physical constraints in their ROMs are compared.  

 More importantly, it is noted that the combination of data-driven techniques and physical 

models (data-model fusion) fosters a new appealing discipline in modern computational 

engineering science (Hambli, Katerchi & Benhamou 2011; Lefik & Schrefler 2003; Liu, Bessa & 

Liu 2016; Milano & Koumoutsakos 2002; Oishi & Yagawa 2017; Tracey, Duraisamy & Alonso 

2015). In next section, we will briefly review the recent advances in data-driven techniques for 

physical modeling, and we can see a lot of similarities shared by both reduced-order modeling 

and data-driven modeling. 

 

2.3  Data-Driven Engineering Science 

The explosion of data has radically reformed the nature of science and engineering into 

data-rich environment in recent years. Data science together with methodologies such as 

machine learning (Hastie, Tibshirani & Friedman 2009; Murphy 2012) permit the extraction of 

“knowledge” and relevant insightful information from large volumes of unstructured data 

(Larose 2014). The machine learning techniques have been widely applied to computational 

biological and medical image analysis (Angermueller et al. 2016; Litjens et al. 2016, 2017). One 

of the most appealing applications in engineering is material informatics, which employs the 
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principles of informatics and machine learning regression techniques to obtain predictive 

quantitative models (Olson 2000; Rajan 2005). These approaches have been extended to the 

extraction of constitutive correlations between microscopic and macroscopic material properties 

in multi-scale modelling (Gupta et al. 2015; Kalidindi, Niezgoda & Salem 2011). Another 

emerging application of machine learning is the extraction of physical models or governing 

equations purely from the collected data of system (Brunton, Proctor & Kutz 2016; Schmidt & 

Lipson 2009). Machine learning methods have also been adopted to develop data-driven 

surrogate models in fluid mechanics (Milano & Koumoutsakos 2002; Tracey, Duraisamy & 

Alonso 2015; Zhang & Duraisamy 2015) and advanced constitutive models in solid mechanics 

(Ghaboussi, Garrett & Wu 1991; Ghaboussi & Sidarta 1998; Lefik & Schrefler 2003). In 

conjunction with machine learning techniques such as manifold learning (Lee & Verleysen 2007) 

or neural networks (Haykin 2009), the recent studies (Bhattacharjee & Matouš 2016; Le, 

Yvonnet & He 2015) offer a new paradigm for the design of materials at larger scales under the 

data-driven computational homogenization framework. There is a vast body of literature devoted 

to these subjects, including the recent developments based on nonlinear dimensionality reduction 

(Bhattacharjee & Matouš 2016), nonlinear regression, deep learning (Oishi & Yagawa 2017; 

Stoecklein et al. 2017; Wang & Sun 2018), among others. 

 

2.3.1  Hybrid approach: data-enhanced physics-based modeling paradigm 

However, in the area of simulation-based engineering sciences (SBES) (Oden et al. 2006) 

where the mathematical models and the corresponding numerical tools are well established, the 

potential of data science has yet to be fully explored while it is commonly considered to 
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constitute a potential change of paradigm in SBES. One of the key debates when developing 

data-driven techniques for SBES is to what extent domain knowledge can and should be 

introduced into the simulation algorithms. One school of thought in machine learning community 

is that even with very little domain knowledge the algorithm should be capable of extracting 

patterns or governing laws on its own given sufficient data (Brunton, Proctor & Kutz 2016; Ling, 

Jones & Templeton 2016; Michalski 1986; Raissi & Karniadakis 2018; Schmidt & Lipson 2009). 

This is because if the domain knowledge contains imperfect knowledge and model arbitrariness, 

it can lead to diminished performance in the data-driven model  

Nevertheless, in many physical systems, well-accepted and definitive domain knowledge 

deriving from physical laws does exist in the form of rigorous mathematical theory. On the other 

hand, useful data in SBES is actually not as rich as in the fields such as computer vision, image 

process and speech recognition, and they are very expensive to acquire (Ibañez et al. 2017; 

Raissi & Karniadakis 2018). As such, purely data-driven techniques present difficulties when the 

data is scarce relative to the complexity of the system. Since data cannot be an alternative for 

physical modeling, it is necessary to develop data-driven simulation approaches that can leverage 

the physical principles with limited data for highly complex systems.  

Overall, a pragmatic solution to develop effective predictive models for complex real-

world problems is to combine physics-based models with data-driven techniques under a hybrid 

computational framework. There are three hybrid approaches proposed as the data-enhanced 

physics-based modeling paradigm. The first approach enforces known physical constraints into 

data-driven models (Ling, Jones & Templeton 2016). This belongs to the data-fit type surrogate 

models in Section 2.2.2. In the second approach, the existing physical models are enriched by the 

information learned from data. This genearl framwork can be used for obtaining data enhanced 
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physical models (Koscianski & De Cursi 2005), online updating dynamical system in a manner 

similar to data assimilation (Evensen 2010), or performing model reduction (Bessa et al. 2017; 

Liu, Bessa & Liu 2016; Matouš et al. 2017; Peherstorfer & Willcox 2015). The third approach is 

to apply data-driven models and physical models separately to approximate different aspects of 

the physical system and be connected to perform numerical simulation, as illustrated in Figure 

2.3. More details of this approach for computational mechanics are given as follows. 

 

Data-driven computational modeling 

In the context of computational mechanics, it is crucial to distinguish two very different 

types of knowledge (Ibañez et al. 2017; Kirchdoerfer & Ortiz 2016). The first one is related to 

conservation laws of physics (momentum, mass, energy, etc.) that are axiomatic or epistemic. 

The second one consists of empirical models (e.g., material constitutive laws) based on 

experimental observation. Traditional methods for developing and tuning empirical models 

usually combine physical intuition with simple regression techniques on limited data sets. But 

the empirical models inevitably involve incomplete experimental information (Kirchdoerfer & 

Ortiz 2016, 2017), and the process of material parameter identification (Avril et al. 2008; Ben 

Azzouna, Feissel & Villon 2015; Bonne & Constantinescu 2005) remains numerically 

intractable.  

However, under the hybrid framework the material relation can be described by data-

driven models while the well-established partial differential equations (PDEs) are still used to 

represent conservation laws (see Figure 2.3). As the second main topic of this thesis, we focus on 

this third hybrid approach in order to overcome the issues of employing phenomenological 



 

31 

models in computational mechanics, with an particular emphasis on improving model robustness 

and consistency when dealing with nosy and high-dimensional material data, which will be 

further elaborated in Chapter 6. 

 

 

Figure 2.3: Schematics of data-driven computational mechanics, where data-driven models 

instead of empirical models are used together with physics-based models to perform simulation.  

 

2.4  Summary of Reduced-Order and Data-Driven Modeling 

This chapter provides a review of three general approaches for approximating a 

complicated simulation model: model-driven, data-driven, and the hybrid approaches. The 

model-driven approach uses the knowledge and empiricism about the physics of the phenomena 

involved, whereas the data-driven approach obtains a model representation by using data from 

observations. Apart from having different degrees of physics details and data volume, the 

advantages and shortcomings of these two approaches are summarized in Table 2.1. The hybrid 

approach is a mixture of the physical model with experimental data, aiming at optimizing the 

combination of the two approaches.  
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Table 2.1: Comparison of data-driven and model-driven approaches (+: good performance; -: bad 

performance) 

 Physics agreement 
Experimental data 

agreement 
Extrapolation Online prediction 

Model-driven (MD) + - + - 

Data-driven (DD) - + - + 

 

MOR and data-driven modeling to be investigated in this thesis are closely related to the 

general machine learning and data-driven techniques. The dimensionality reduction technique 

serves as the basis in both applications due to its capability of reducing dimensions of data. To 

preserve the essential physics while make the best of use of data, our strategy to develop the 

enhanced MOR and data-driven modeling methods is based on the hybrid philosophy. 

Particularly, their robustness and accuracy are improved significantly by integrating proper 

machine learning techniques, as will be demonstrated in the following chapters. 
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Chapter 3                                                                        

Reduced-Order Modeling of Parameterized Systems 

 

This chapter presents a detailed review of model reduction techniques and their 

extensions to nonlinear systems. First, in next section an introduction is given, followed by a 

model problem for reduced-order modeling. In Section 3.2, we briefly review the classification 

of the model reduction techniques traditionally used in dynamical systems to motivate the SVD-

based approaches, including proper orthogonal decomposition (POD). In Section 3.3, we 

introduce several widely-used projection-based model reduction methods for parametrized 

systems, such as POD and the reduced basis method (RBM) and discuss their basic properties. 

System approximation methods for addressing the bottleneck of standard projection-based 

methods when dealing with nonlinear systems are reviewed in Section 3.4. 

 

3.1  Introduction 

Reduced-order modeling techniques generate surrogate models from a high-dimensional 

model (HDM) via the use of a reduced basis (e.g., eigenmodes for modal analysis (Craig 1981; 

Dickens, Nakagawa & Wittbrodt 1997) or left singular vectors for proper orthogonal 

decomposition (POD) (Berkooz, Holmes & Lumley 1993; Rathinam & Petzold 2003; Sirovich 

1987)). The construction of reduced-order model (ROM) relies on a key assumption: while the 

solution associated with a parametrized system, in theory, belongs to an infinite-dimensional 

space, it resides on a much lower-dimensional and typically very smooth manifold induced by 
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time evolution and parametric dependence. Since projection-based techniques are commonly 

used for constructing the reduced-order system, this type of reduction techniques is called 

projection-based model reduction.  

While the application of model reduction to linear, time-dependent systems has reached a 

considerable level of maturity, effective methods for parameterized boundary value problems are 

limited (Antoulas & Sorensen 2001; Carlberg & Farhat 2011). This is because data in boundary 

value problems are computationally expensive to acquire, and only a small amount of 

information is available from each sample configuration. The utility of model reduction methods 

is also limited for time-critical analysis (real-time simulation or repeated analyses). However, 

numerous engineering problems demanding time-critical static analysis have received increasing 

attention and become an important and vibrant research area, such as fracture modeling, 

multiscale constitutive modeling under various loading conditions, and real-time surgical 

simulation. This chapter provides a review of some state-of-art model order reduction 

methodologies for static systems. 

 

3.1.1  Problem formulation  

In this chapter, we consider the discrete equilibrium equation of a general parameterized 

mechanical problem for demonstration: 

 int ext( ( )) ( ) ,  0f fμ μu   (3.1) 

where the vector u  represents the state solution of the mechanical system, typically representing 

displacement in solid mechanics, and μ  are generic parameters the physics system depends on, 
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such as time, material coefficients, boundary conditions, etc. The vector field int f  

represents the internal forces driven by the state u   and ext f  the external forces applied on 

the system. Since the dimension of the system can be large, the concept of reduced-order 

modeling is to construct a surrogate system of smaller dimension, i.e.  

 
sur sur

int ext( ( )) ( ) ,r   0f fμ μu   (3.2) 

that preserves the important features of (3.1) as well, where superscript “r” is used to denote the 

reduced quantities in this chapter. 

  

3.2  Model Order Reduction Methods for Linear Dynamical System 

Traditionally, for linear dynamical systems, projection-based model reduction is broadly 

classified into three different methods with regard to the way in obtaining the reduced basis 

vectors (Benner, Gugercin & Willcox 2015): rational interpolation methods, balanced truncation, 

and proper orthogonal decomposition (POD). Similarly, (Antoulas 2005; Antoulas & Sorensen 

2001) suggest that model reduction techniques can be distinguished as SVD-based, Krylov-

based, and the SVD-Krylov-based approximation methods. Generally, the SVD-based methods 

employ the singular value decomposition (SVD) based on balanced approximation and optimal 

Hankel-norm approximation techniques, such as balanced truncation (Gugercin & Antoulas 

2004), leading to the stability preservation of the full-order system and providing global error 

bounds. The second type of methods are based on either moment matching techniques (Astolfi 

2010) via Krylov iteration or Padé approximation that are relatively inexpensive 

computationally. They can be applied to very large dynamical system but usually lack global 
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error bounds and stability preservation as the SVD-based methods. The third approach, SVD-

Krylov-based approximation, seeks to combine the best attributes of the first two. One should 

note that the POD method based on SVD could be added to the first category. We refer 

(Antoulas 2005; Antoulas & Sorensen 2001; Baur, Benner & Feng 2014; Benner, Gugercin & 

Willcox 2015) for more details of these model reduction techniques applied to linear dynamical 

equations.  

 

3.3  Selective Projection-Based Model Order Reduction Methods 

In this section, we review various projection-based methods commonly used in the 

reduced order modelling community, including (snapshot-based) POD, RBM, component mode 

synthesis, and some variants of the POD method. These methods are used to construct a set of 

basis vectors to approximate the state variables of interest on a low-dimensional subspace. This 

is not intended to be an exhaustive review and some other methods, such as the a priori proper 

generalized decomposition (PGD) method (Chinesta, Ammar & Cueto 2010; Ladevèze, Passieux 

& Néron 2010; Nouy 2010) based on the reduced solution space by separation of variables are 

not discussed in this work.  

 

3.3.1  Proper orthogonal decomposition  

 Proper orthogonal decomposition (POD), also called Karhunen-Loève expansion 

(Karhunen 1946; Loève 1955) or empirical orthogonal functions, is a method to construct the 

reduced basis vectors 1{ ,..., }k v v  that span the reduced space (or reduced manifold) via 
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SVD of a set of snapshots taken from training tests computed during the offline stage, see 

(Berkooz, Holmes & Lumley 1993; Rathinam & Petzold 2003; Sirovich 1987). It is also referred 

to as principal components analysis (PCA) (Jolliffe 2002). 

 Note that POD is a posteriori approach, and the quality of the reduced space depends on 

the set of snapshots. There are many ways to construct snapshots, yielding different types of 

basis, such as Lagrange basis, Hermite basis, and Taylor basis. But the choice of snapshots is a 

separate issue and will not be discussed here. We refer the interested readers to (Benner, 

Gugercin & Willcox 2015; Carlberg 2011) and references therein for more details.  

 For general parameterized mechanical problems, the snapshots are usually sampled from 

the displacement solutions (the state solutions) at a series of parameter values, i.e. 

1{ ( ),..., ( )}
sNμ μu u , where )( i u μ  denotes the discrete displacement solution solved by any 

full-order numerical methods, such as finite element method (FEM), at the input parameter iμ  , 

 is the number of degrees of freedom, and sN  is the number of solutions (parameters) 

collected.  

Let 1[ ( ),..., ( )]
s

s

s N

N
X = u μuμ  be the snapshot matrix and rank( )sr  X  ( r  is also 

the dimension of the space  spanned by the snapshots, i.e. 1( ),..spa ., ( )n{ }
sNs  u uμ μ ). Note 

that usually the snapshot matrix has been centered by subtracting the mean of the columns 

(Chatterjee 2000), called mean-centered snapshots. It removes one trivial mode due to the mean 

value, and in practice it helps to deal with the essential boundary condition and give a compact 

form for error estimate (Liang et al. 2002).  
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The POD method constructs a set of orthonormal basis vectors 1{ ,..., }k v v  whose 

linear span, 1,...,span{ } ( )k k r v v , best approximates the snapshot space s  in an 2-norm  

sense by solving the following minimization problem 

 1

2

{ }
1 1 2

( ) ( ( ) ) ,

subject to     

min  

,   , 1,..., .

s

k
i i

N k
T

i i

j i

T

i j

j j

ij i j k

  







 
v

u μ v v

v v

μu
  (3.3) 

POD can also be interpreted as to find the optimal basis matrix 1[ ,..., ]k

k=V v v  that 

allows the reconstruction : sNT

s s


 X VV X  on the reduced space 1span{ },...,s k v v best 

approximating the snapshot matrix sX  in the Frobenius norm, i.e. 
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s

k T T
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i i s s
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T T

s s

  
 



   
I I

I

v V V V V

V V

u u v v X V V X

V X X V

μ μ
  (3.4) 

where the last equality uses the orthonormal property of V . Thus, it is easy to show by the 

Eckert-Young-Minsky theorem (low-rank approximation) that the basis vectors solution to (3.3) 

and (3.4) is provided by the left singular vectors of the snapshot matrix sX  corresponding to the 

k  largest singular values (Liang et al. 2002). Suppose the SVD of sX  is 

 

1 1 2

,

diag( ..., ) ,  with ..., 0,

T

s r r r

r r r

r r    



    

X V Σ W

Σ
  (3.5) 

where 1,..., r   are the singular value of sX , and 1[ ,..., ]r r

rV = v v  is the matrix composed 

of left singular vectors. Then, the POD basis matrix V  is obtain by simply truncating the left 
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singular vectors rV . Moreover, the approximation (reconstruction) error of the POD 

representation of the snapshots is given by an a priori error estimate 

 
2

2

2

1 1 2 1

( ) ( ( .) )
s r

j j i

N k
T

F
i

T

i i s s

j i k


  

    u u v vμ X Xμ V V   (3.6) 

We have shown that POD is essentially the same as singular value decomposition (SVD) 

in a finite dimensional space or in Euclidean space. In addition, POD is equivalent to PCA 

(Jolliffe 2002; Kerschen et al. 2005; Liang et al. 2002), as revealed in (3.4), but the name POD is 

usually used in the context of model reduction whereas PCA is used in the field of machine 

learning and statistics. Thus, the subspace 1,..span{ }., kv v  constructed by POD is not only the 

subspace with minimum reconstruction error but also the subspace with maximum variance. 

As the POD method provides us with the reduced basis 1{ ,..., }kv v , the high-dimensional 

solution ( )u μ  for a parameter μ  is approximated by the reduced approximation 

( )u μ  as follows 

 
1

( ) ( ) ( ) ( ),
k

r r

i i

i

u


  u u V μu vμ μ μ   (3.7) 

where kr u  is the reduced solution (or reduced coefficients) of k  dimension solved from the 

surrogate system (3.2) where Galerkin projection is usually applied. 

 

Galerkin projection using POD 

To solve the reduced solution kr u  by the low-dimensional system, a dual reduced 

basis W  is also constructed such that Galerkin (or Petrov-Galerkin) projection can be used to 
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construct the parametric ROM by projecting the given parametric HDM (3.1) onto the global 

reduced basis (and its dual counterpart) as follows   

 int ext( ( )) ( ) .T r T  0W f V μu W fμ   (3.8) 

Usually W = V  is selected as the standard Galerkin projection POD method (Berkooz, Holmes 

& Lumley 1993; Krysl, Lall & Marsden 2001; Sirovich 1987). But W  different from V  based 

on the Petrov-Galerkin concept has also been used to achieve real speedup or structure-

preserving properties of ROM when dealing with nonlinear systems (Bui-Thanh, Willcox & 

Ghattas 2008; Carlberg, Barone & Antil 2017; Carlberg 2011). The Petrov-Galerkin projection is 

often applied together with greedy algorithms for reducing nonlinear systems, which is to be 

discussed in Section 3.4. 

To achieve minimal marginal computational cost per input-output evaluation, the POD-

Galerkin method is usually split into a computationally expensive offline and an efficient online 

stage. It works well for the linear operator or the operators that admits an affine decomposition 

(Grepl et al. 2007). For example, if intf  is a linear operator, it means 

 int ( ( )) ( ),f u A μuμ   (3.9) 

where A  is the Jacobian of intf  independent of the input parameters μ . On the other hand, an 

affine decomposition for parameter-dependent operator should permit, 

 
int

1

( ( )) ( ) ( ) ( ) ( ),
Q

q q

q




 
   

 
μ μ μu μf A u μu A   (3.10) 
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where ( )q μ  are the given scalar functions of the parameters μ . The key benefit is that, under 

this assumption, qA  does not depend on μ , which means the reduced operators can be 

computed during the offline stage once and for all. That is, the snapshot matrix sX  and the POD 

basis V , as well as the reduced operator 
kT kV AV  (or ,  1,..., ,kT kq q Q V A V  under the 

affine decomposition condition) are computed and stored in the offline phase. Then the reduced 

operator is directly used for the online evaluations of the associated ROM 

 ext( ) ( ) ( ) .T r T  0V AV u V μfμ   (3.11) 

Note that the above reduced system assumes a parameterized linear system. Once ru  is solved 

from (3.11), the reduced approximation for ( )u μ  is retrieved by ( ) ( )ru Vuμ μ  in (3.7). 

 

Error analysis for projection-based reduced order model (ROM) 

 Let ( )u μ  be the high-fidelity solution solved by (3.1), ( )r
u μ the reduced solution of the 

projection-based ROM (3.8), and kV  a reduced projection matrix. Following (Rathinam 

& Petzold 2003), the ROM error of ( ) ( )ru Vuμ μ  can be decomposed into two contributions  
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where ,

T   V V VV . Note that 
1

, ( )T T W V W V W V  denotes a projector that projects a 

vector in  onto the column space of W  ( range( ) W ) along the direction normal to V . 
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As we can see, the first error  ( ) V
μ  is caused by the choosing of reduced projection 

basis V , which means the exact solution trajectory with respect to μ  does not strictly resides on 

the subspace range( ) V . This error consists of two components: the first component is 

related to the quality of the snapshots (the sampling parameters) during the offline stage; the 

second one is due to the truncation error of the basis used in reduced approximation (see (3.6)). 

Thus, if the snapshot space is rich enough to cover the HDM solution space, and the POD basis 

vectors of full-rank order are used, the error  ( ) V
μ  is expected to vanish. Usually reducing the 

projection error  ( ) V
μ  is the key to decrease the total error of reduced-order modeling. One 

can either use better sampling strategies or more accurate projection basis. Moreover,  ( ) V
μ  is 

used to provide a lower bound for the reduced system, and it can be related to the upper bound if 

the Galerkin method is applied (Barrault et al. 2004; Porsching 1985).  

The second error ( )
V

μ  is caused by the fact that one is solving a different dynamical 

system (3.8) from (3.1) after the projection. It depends on how the reduced order model is 

constructed. For some dynamical system applications, Tröltzsch & Volkwein (Tröltzsch & 

Volkwein 2009) developed a posteriori error estimates for POD method. 

 

3.3.2  Reduced-basis method 

The reduced-basis methods (RBM) are widely used in the context of parameterized 

partial differential equations. They have been studied for both steady (Prud’homme et al. 2002; 

Rozza, Huynh & Patera 2008) and time dependent problems (Grepl & Patera 2005; Haasdonk & 

Ohlberger 2008). Compart to POD that requires to compute sN  solutions of the high-



 

43 

dimensional system and conduct SVD analysis of the large snapshot matrix sX , RBM follows a 

different approach and constructs the reduced basis vectors directly from the high-fidelity 

solutions. This means, the reduced approximation of the high-fidelity solution ( )u μ  is 

defined as the linear combination of the orthogonal basis 1{ ,..., }kζ ζ  which is obtained by 

orthogonalizing the precomputed solutions 1{ ( ),..., ( )}
sNμ μu u , i.e. 

 
1

( )
k

i

i

i


μ ζu   (3.13) 

The key idea of RBM is to find the optimal set of parameters 1{ ..., , }
sNμ μ  that leads to the 

most accurate approximation of the original high-fidelity solution. This is achieved through a 

greedy algorithm using an a posteriori error estimator ( )k μ , where the subscript k shows the 

dependency on the order of the reduced basis approximation. The estimator ( )k μ  gives an 

upper bound for the error || ( ) ( ) ||uμ μu  of the reduced approximation solution 

1( ) span{ ,..., }kμ ζ ζu  with respect to the high-fidelity solution ( )u μ  in a certain norm. 

The error estimator is supposed to be valid for all chosen parameters 1{ ..., , }
sNμ μ  and all 

dimensions 1,...,i k .  

A simple procedure to construct RBM basis vectors is provided as follows. Let a set of 

parameters be 1{ ..., },
sN  μ μ  with the parameter domain l . Given an arbitrary 

starting parameter value 1μ , the first vector of the reduced basis  1( )u μ  is computed. In the 

greedy algorithm, the basis is iteratively enriched by finding the parameter value j μ  in  

that maximizes the error estimator k , assuming it corresponds to the most informative solution 
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( )ju μ . The chosen parameter is stored in a subset   of the parameter space  as a discrete 

surrogate of the continuous space . For example, at step j of the greedy algorithm, a new high-

fidelity solution ( )ju μ  is evaluated at the parameter given by 

 argmax ( ),j j



μ

μ μ   (3.14) 

and the reduced basis is enriched with ( )ju μ .  For conditioning purposes, the new introduced 

solution basis ( )ju μ  is often orthogonalized to the existed basis vectors by performing the 

Gram-Schmidt orthogonalization. 

One goal of the reduced basis community is to derive such error estimators for all kind of 

parameterized systems (Peherstorfer 2013) but it is still an open issue. For example, a posteriori 

error estimator (Grepl & Patera 2005) for parabolic problems with a affine parameter 

dependence has been proposed. The key idea of this work is to treat time as an additional 

parameter. Since the derivation of the error estimate ( )k μ  relies on the coercivity constant of 

the PDE systems. It is not straightforward to compute the coercivity constant if the associated 

weak form does not admit an affine expansion. We refer  (Grepl et al. 2007; Nguyen 2007; 

Prud’homme et al. 2002; Quarteroni, Manzoni & Negri 2015; Quarteroni, Rozza & Manzoni 

2011) and the references therein.  

Although the reduced basis of RBM can also be constructed without this greedy approach 

and without using error estimators, a poor selection of the parameters might result in a set of 

reduced basis vectors with poor-representation, yielding disastrous approximation results. 

Compared to POD embedded with SVD procedure as an a priori error estimator, the success of 
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RBM relies on the rigorous, sharp, and efficient a posteriori error estimators as well as on the 

greedy strategy to select the reduced basis vectors. 

 

3.3.3  Component mode synthesis 

Component mode synthesis (CMS) methods (Hurty 1960, 1965) are widely used in finite 

element analysis of structural dynamics (Craig 1981; Klerk, Rixen & Voormeeren 2008). A 

given structure is subdivided into components or substructures, for each of which the associated 

natural frequencies and modes are independently analyzed and an approximation is made by 

projecting the state variables onto the pre-computed modes. The substructure mode shapes are 

then assembled to approximate the frequencies and mode shapes of the original structure.  

The CMS methods can be seen as domain decomposition techniques or sub-structuring 

techniques which in fact date back to much earlier work (Klerk, Rixen & Voormeeren 2008).  

These methods are effective for the predictions of frequencies and mode shapes of complex 

structures without constructing the HDM. Additionally, parallelization is easily implemented due 

to the independence of each subdomain. However, it is noted that interface boundary handling 

between substructures has been an important issue in the CMS methods (Kim et al. 2017). 

Various other improved CMS methods have been proposed according to the compatibility of the 

interface DOF. Furthermore, CMS methods can be employed with other model reduction 

methods, such as dynamic condensation (Kim et al. 2017) and interpolation methods (Lee & Cho 

2017), and the basis model can be enriched by static modes coming from constraints or 

attachments (Bathe & Dong 2014). 
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3.3.4  Enhanced POD 

The standard POD introduced in Section 3.3.1 computes state vectors from snapshots and 

constructs the truncated bases that capture the dominant modes. This approach is referred to as 

Lagrange POD to distinguish from other model reduction methods that use the Taylor (Peterson 

1989; Porsching 1985) and Hermite subspaces (Ito & Ravindran 1998), where the sensitivity 

derivatives of the state are included in the reduced bases. As pointed out in (Carlberg & Farhat 

2008, 2011), Lagrange POD model reduction for static systems has several disadvantages. First, 

the POD bases are simply computed to minimize the average 2L  reconstruction error (see (3.3)) 

of the snapshots onto the subspace spanned by the bases, without using any information related 

to the input-output behavior of the system. Thus, the resulting POD bases might not be optimal 

in the sense of preserving the input-output map and representing the specific goal of model 

reduction. Additional knowledge about the system or data can be incorporated into the basis 

construction. Another shortcoming of POD is that it utilizes snapshot data that are 

computationally expensive to collect. Thus, extracting more data information from its derivatives 

in addition to the state variable is preferable in learning process. However, POD cannot be 

applied directly to the Taylor or Hermite bases due the different scaling of quantities. 

 A so-called compact POD method has been proposed in (Carlberg & Farhat 2008, 2011) 

to address the above problems. It essentially relies on a weighted version of POD method, where 

the snapshots, including the state vectors (0-order derivative) and the associated derivatives, are 

weighted appropriately to optimally represent the outputs of interest in a certain sense. Thus, the 

resulting reduced-order bases and ROM are goal-oriented. The weighted scheme of POD 

(Bistrian & Susan-Resiga 2016; Carlberg & Farhat 2011; Peng & Mohseni 2016) shares a similar 

mathematical framework as the generalized (or weighted) PCA (Jolliffe 2002; Vidal, Ma & 



 

47 

Sastry 2016) that has been widely explored in the area of data mining and computer vision. More 

discussion about enhancing POD will be presented in Chapter 5. 

 

3.4  Hyper-Reduction Techniques for Nonlinear Systems 

In the previous sections, various projection-based reduction methods have proven 

effective in reducing the computational cost of a linear model by reducing the dependence of the 

state approximation on the large mesh discretization of the associated HDM. However, they all 

fail to achieve computational cost reduction (or speedup) when applying to nonlinear models 

(Chaturantabut & Sorensen 2010), as the cost of evaluation of the reduced nonlinear terms at 

each solver iteration still scales with the size of the underlying HDM rather than with that of the 

reduced subspace. 

 

3.4.1  Lifting bottleneck 

For demonstrating the inefficiency of projection-based methods, we assume the POD-

Galerkin method has been applied for a general parameterized mechanical system in (3.1) and it 

results in the following reduced system 

 int ext( ( )) ( ) ,T r T  0V f V μu V fμ   (3.15) 

where kV  is the reduced basis matrix and kr u  is the reduced variables, and let intf  be 

a combination of a linear term and a nonlinear term, i.e., 

 int ( ( )) ( ) ( ( )), f u Au u μfμ μ   (3.16) 
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where A  is a linear operator, and ( ( ))u μf  denotes the nonlinear term. During the 

online reduced-order modeling (see (3.15)) the computational cost associated to the evaluation of 

the linear term scales only with the order of reduced basis k , since the corresponding reduced 

operators can be pre-computed offline, as discussed in Section 3.3.1. However, this is not the 

case for the evaluation of the reduced nonlinear term ˆ ( ) ( ( ))r T rf u V f μVu . Take FE based 

solver as an example, the online computation of the reduced nonlinear term is carried out in the 

following manner 

 
1

ˆ ( ) : ( ) ( ) ,
g

gN

r T r T r

g g

g

w


 f u V f Vu V f Vu   (3.17) 

where gN  is the total number of Gauss integration points in the structure, gw  is the associated 

weights, g  is the set of the indices of the degree of freedoms (DOFs) corresponding to the 

Gauss point g ,  | |g  is the cardinality of the set g , | |e

g f  is the contribution of the point 

g  towards the vector f , and the subscript g  of 
| |g

g

k
V  means the restriction of  

kV  to the rows indexed by g . It is then easy to see from (3.17) that the computation 

complexity of the reduced nonlinear term ˆ ( )r kf u  is proportional to the total number of 

evaluation points gN  of the HDM discretization, regardless of the reduction of the number of 

state variables. This is known as the lifting bottleneck, and it degrades the performance of 

reduced models for nonlinear systems.  

The above-mentioned scalability issue can be alleviated by introducing hyper-reduction 

techniques (i.e., another layer of reduced approximation on the underlying system in additional 

to the reduction of state solution), which aims to significantly reduce the cost in evaluating the 
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nonlinear terms by computing them at few, selected element or nodes of the discrete system, and 

effectively approximate the missing information. Depending on the selection strategy used to 

extract information from the nonlinear snapshots and the approximation strategy for 

reconstructing the nonlinear function, we classify the main methods found in the literature into 

two types: the interpolation-type and the cubature-type strategy. 

 

3.4.2  Interpolation-type strategy 

As previously highlighted, the direct projection-based MOR approach still depends on the 

dimension of full-scale spatial discretization. The essential idea of the interpolation-type hyper-

reduction strategy is to optimally select some “important” grid points or DOFs of the original 

discrete system by using greedy algorithm, and to reconstruct the high-dimensional nonlinear 

function by only using those few selected points and an oblique projection.  

The “gappy” POD method (Everson & Sirovich 1995), first introduced for image 

reconstruction and later applied in dynamical systems (Carlberg et al. 2013; Carlberg, Bou-

Mosleh & Farhat 2011; Willcox 2006), was one of the first schemes of the interpolation-type 

hyper-reduction. The “empirical interpolation” method (EIM) (Barrault et al. 2004; Grepl et al. 

2007), whose discrete variants are known as DEIM (Chaturantabut & Sorensen 2010), reduces 

the computational cost associated with the nonlinear terms by interpolating the nonlinear 

function at a few entries using an empirically derived basis. The variants includes the missing 

point estimation (MPE) (Astrid et al. 2008) and the “best” points interpolation method (Nguyen, 

Patera & Peraire 2008), to cite a few, which relies on the employment of POD basis. The term 

“hyper-reduction”, however, was coined in (Ryckelynck 2005), where the optimal reduced basis 
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is adaptively enriched by using the Krylov’s subspaces generated by the governing equation 

residual, and few spatial integration points of the finite element model are selected to forecast the 

evolution of the reduced state variables. These different approaches are distinguished by using 

different measurements (norms) or regression form to select the small selected set of spatial grids 

or entries. Note that this technique is heavily related to the so-called sparse sampling (Sargsyan, 

Brunton & Kutz 2015).  

Given the POD reduced nonlinear function in (3.17), the general form of the 

interpolation-type hyper-reduction is  

 
supp( )

ˆ ( ) ( ) ( ) ( ) ( ) ,
g g g

r T r T r T T r T T r

g g

g

w


    f u V f Vu V Mf Vu V MP f Vu V M P f Vu  (3.18) 

where n̂M  is a matrix that maps a vector of dimension n̂  to the space ,  is the set 

of the indices of the DOFs to be selected, | |P  is the associated selection matrix with one 

non-zero entry per column to select the set of chosen interpolation DOFs, and supp( )g  

means only the Gauss points within the support of the selected DOFs need to be evaluated. The 

construction of the projection M  and the interpolation indices  is the key task in the 

interpolation-type hyper-reduction methods.  

 

Discrete empirical interpolation method (DEIM) 

DEIM (Chaturantabut & Sorensen 2010) is one of the most popular “Gappy”-type 

empirical interpolation methods (EIM) (Barrault et al. 2004; Everson & Sirovich 1995) 

developed to overcome the weakness of the POD-Galerkin when the nonlinear operators exist. 

DEIM combines POD projection with interpolation. Specifically, the DEIM uses selected 



 

51 

interpolation indices to specify an interpolation-based projection for a nearly optimal 2l  

subspace approximating the nonlinear vector.  

In DEIM the collateral POD basis 
ˆ

ˆ1
ˆ[ ,..., ]  )(k

k
kZ = z z  is constructed based 

on the snapshot matrix of the nonlinear function 1[ ( ( )),..., ( ( ))] s

sf N

N
X = f f u μu μ , where 

( ( ))jf u μ  denotes the nonlinear vectors solved in HDM for the parameter jμ  “offline”, see (3.1) 

and (3.16). As such, the nonlinear function at μ  is approximated by the linear combination of 

POD basis vectors  

 

ˆ

1

( ( )) ( ) ( ).
k

i i

i

c


 f u Zc zμ μ μ   (3.19) 

Since the system ( ( )) ( )f u Zcμ μ  to determine the coefficients 
ˆ

( ) kc μ  is highly over-

determined, an additional selection matrix 
ˆ1

ˆ
[ ,..., ]

n

n

  P e e  is used to restrict a vector of 

dimension  onto its n̂  entries. In the offline stage, the DEIM interpolation points ˆ1,..., n   

are selected with a greedy algorithm, see Table 3.1. Suppose 
ˆˆT n kP Z  is nonsingular (set 

ˆn̂ k ), ( )c μ  can be uniquely defined from 

 ( ( )) ( ),T TP P Zcμ μf u   (3.20) 

that is, 
1( ) ( ) ( ( ))T Tc P Z P f uμ μ , and then the DEIM approximation f  of the original high-

dimensional nonlinear vector f  is given by 

 1 1ˆ( ( )) ( ( )) ( ) ( ) ( ( )) ( ( )),T T T    f u f u Zc Z P Z P f u ZZ P f uμ μ μ μ μ   (3.21) 
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where 
ˆ ˆˆ ( )T k k Z P Z . Let ˆ1,...,span{ }

k
 z z  and 

ˆ1
,...,span{ }

k
 

  e e . It is 

clear that 
1

, ( )T T Z P Z P Z P  is an oblique projector that projects an arbitrary vector in  

onto  along . Compared with (3.18), we can see in DEIM 
ˆ1( ) kT   M Z P Z . 

 

Table 3.1: Greedy Algorithm (Chaturantabut & Sorensen 2010) 

INPUT:  1{ }m

l lz
 
linearly independent POD basis 

OUTNPUT: 1[ ,..., ]T

m

m     

1. 1 1[| |, ] max{| |}   z  

2. 
11 1[ ],  [ ],  [ ]   Z z P e  

3. for 2 to l m  do 

    

solve ( )  for 

[| |, ] max{| |}

[  ],  [  ],  
l

T T

l

l

l

T
T

l l







 

 

      

P Z c P z c

r z Zc

r

Z Z z P P e

 

4. end for 

 

 Following the Lemma 3.2 in (Chaturantabut & Sorensen 2010), the error bound for the 

DEIM approximation is given as follows: 

Lemma: Let ˆ1[ ,..., ] n m

k

Z = z z  be a given orthonormal matrix ( ,  T

m m n IZ Z ) and P  the 

index matrix computed by the greedy algorithm in Table 3.1. The DEIM approximation of an 

arbitrary vector f  is 1( )T T f Z P Z P f . An error bound for f is then given by 

 2|| | ( ),| c  
Z

f f f   (3.22)  
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where 
2|| ||) ( )( T   I

Z
f ZZ f  and 1

2= || ( ) ||Tc 
P Z  . An a priori estimate for the magnification 

factor c  is  

 
ˆ ˆ1 1 1

1(1 2 ) || || (1 2 ) .k kc n n n  

   z   (3.23) 

As shown in the error bound, the lower bound of the DEIM error is the reconstruction 

error  Z
 that measures the error of the optimal 2-norm approximation for f  on the range

( ) Z . Therefore, DEIM inevitably introduces extra projection error than the orthogonal 

projector ,

T Z Z ZZ  for approximating the snapshot data of nonlinear terms. The matrix norm 

1

2|| ( ) ||T 
P Z  depends on the selection matrix P  computed by the greedy algorithm, where each 

iteration aims to select an index to minimize the stepwise growth of the error bound. A 

hypothesis is that the range of given Z  is able to capture the system nonlinearity ( )f μ  over the 

entire parameter space . As reported in (Drmac & Gugercin 2016) that the error bound in 

(3.22) is rather pessimistic, a new, robust selection procedure for DEIM based on the pivoted QR 

has been recently introduced therein.  

 

Gappy-POD 

 Contrary to the interpolation in (3.21) the Gappy-POD (Carlberg et al. 2013; Carlberg, 

Bou-Mosleh & Farhat 2011; Everson & Sirovich 1995; Willcox 2006) uses regression to 

approximate the nonlinear function. That is, given the collateral POD basis k̂Z ,  

determine an index matrix n̂P  such that 

 
ˆ 2

argmin .
k

T T



 
c

c P f P Zc   (3.24) 
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With ˆn̂ k  as a necessary condition to guarantee a unique solution, the solution is given by 

†( )T Tc P Z P f , and the Gappy-POD approximation results in   

 
†( ) .T T f Zc Z P Z P f   (3.25) 

Here, there are more sampling points than POD modes, i.e. ˆn̂ k , ‘ † ’ denotes the pseudo-

inverse, and the indices of P  is computed by the same greedy algorithm in Table 3.1.  

Other interpolation-type methods are based on a very similar idea that combining the 

POD with greedy algorithm to select some “important” grid points or DOFs in the discrete 

system, such as the EIM, MPE, and the Gauss-Newton with approximated tensors (GNAT) 

method (Carlberg, Bou-Mosleh & Farhat 2011). For FE applications, Tiso and Rixen (Tiso & 

Rixen 2013) reported that the unassembled DEIM (UDEIM), by treating each displacement DOF 

separately without considering the element connectivity, is more efficient to approximate 

nonlinear force vector. However, it increases the storage burden in the offline phase. 

 

1D nonlinear parametrized function 

Consider a 1D nonlinear parametrized function (Chaturantabut & Sorensen 2010; Nguyen, 

Patera & Peraire 2008): :  f    defined by 

 
(1 )( ; ) (1 )cos(3 ( 1)) xf x x ex         (3.26) 

where [ 1,1]x   and [1, ]   . The grid points of 100n   are equidistantly positioned 

in the spatial domain  , denoted as 1[ ,..., ]T n

nx x x . Then, the nonlinear vector is defined 

as 1 2( ) [ ( ; ), ( ; ), ( ; )] n

nf x f x f x    f . Given 51sN   parameters uniformly taken from 
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the parameter domain , i.e. 1{ } sN

i i  , we collected 51 snapshots ( )if  to construct POD basis 

ˆ

1{ }k n

i i z . Figure 3.1 and Figure 3.2 show the differences of POD modes between the raw 

snapshots and the mean-centered snapshots. The plot of singular values in Figure 3.1 shows that 

the singular values of the mean-centered snapshots vanish as the number of POD basis increases. 

Figure 3.2 shows that by subtracting the mean value, the resulting POD modes represent the 

homogeneous boundary conditions. The mean vectors can be used to capture correct boundary 

conditions (Gunzburger, Peterson & Shadid 2007). 

 

 

Figure 3.1 Singular values between raw snapshots (left) and mean-centered snapshots (right). 
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Figure 3.2 Comparison of DEIM between raw snapshots (left) and mean-centered snapshots 

(right). 

 

2D nonlinear parametrized function 

Following (Peherstorfer et al. 2014), a nonlinear parametrized function 
1 :  g    

defined in 
2 2[0,1]   , where 

2 2[0,1]   is a parameter domain, is given by 

 1

2 2 2

1 221 1

1
( ) .

((1 ) (0.99 )) ((1 ) (0.99 )) 0.11
g

x x


 


     
x;   (3.27) 

The parameter 1 2( , )     controls the gradient of the peak near the corner (1,1)  of the 

spatial domain  . The nonlinear functions 
1g  are discretized by a 20 20  equidistant grid 

( 400 ) in   and sampled on a 25 25  ( 625sN  ) equidistant grid in . From the 625 

snapshots of nonlinear function, stored in a snapshot matrix sX , we build the associated POD 

basis and DEIM approximations.   
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Figure 3.3 The normalized singular value 2 2( )i ii
   (left) and the first six POD basis vectors 

(right) of the of the snapshot matrix sX  corresponding to the nonlinear function 
1g . 

 

 

Figure 3.4 First 12 DEIM points (left) selected by the greedy algorithm for the nonlinear function 
1g , and the comparison of average 2L  errors of POD and DEIM approximations (right) for the 

training data. 

 

Figure 3.3 shows the singular value and the first 6 POD basis vectors obtained by using 

SVD on the snapshot matrix of the nonlinear function 
1g . The singular value decays rapidly 

because the given function 
1g  only exhibits a localized peak near the corner [1,1]x  and the 

first several POD basis vectors are able to well capture the localized features, as shown in Figure 

3.3. Accordingly, the “sensor” points chosen by DEIM (see Figure 3.4 (left)) are primarily 
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distributed near the region with localized features as if the greedy algorithm is “aware” of the 

most crucial region and assign more sensors on that region. In consequence, the DEIM 

approximation shows a good reconstruction results as shown in Figure 3.4 (right) while only 

need ˆ ˆ/ 3% ( 12)k k   evaluations compared to POD method.  

 

3.4.3  Cubature-type strategy 

Instead of directly approximating the assembled nonlinear vector f  with the 

interpolation indices and the empirical basis, an alternative hyper-reduction strategy to reduce 

the associated evaluation cost is to approximate the integral forming the nonlinear vector as a 

weighted sum of the integrand evaluated at optimal sampling points. Since it follows the 

classical recipe of Gaussian quadrature of polynomial functions, this type of hyper-reduction 

referred to as the cubature strategy. Recall the POD reduced term in (3.17), the idea here can be 

expressed as: 

 
ˆ1

ˆ ˆ( ) ( ) ( ) ( ) ,
g

g g

N

r T r T r T r

g g g g

g g

w 
 

   f u V f Vu V f Vu V f Vu   (3.28) 

where ˆ  ( ˆ ˆ| | m ) is the subset of the whole set of Gauss integration points  to be selected, 

and ˆ
g  are the associated positive weights. The other notations have been presented before. 

The main idea behind the cubature hyper-reduction method is due to an important 

observation that each row of the reduced vector ˆ kf  can be interpreted as the virtual work 

done by the force f  acting on each column of kV , seen as a virtual displacement. 

In the light of considering f̂  as global energy of only k  dimension ( gk N ), one can 
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approximate it by the sum of the energy contributions of only a small subset of Gauss points, i.e. 

ˆ , weighted by positive scalar accordingly. 

To the best of the author’ knowledge, the first instance of this type of model reduction 

was proposed in (An, Kim & James 2008) for the computer graphics applications, and Farhat and 

co-workers (Farhat et al. 2014; Farhat, Chapman & Avery 2015) recently introduced the similar 

idea in dynamic systems called energy-conserving mesh sampling and weighting (ECSW) hyper 

reduction. The cubature-type methods have also been applied to computational multiscale 

problems (Hernández, Caicedo & Ferrer 2017; Oliver et al. 2017; van Tuijl, Remmers & Geers 

2018), where they are called empirical cubature or reduced optimal quadrature (ROQ) methods. 

The main idea of these methods is given as follows. 

 

Optimal quadrature: a special least square problem 

The indices ˆ  and the associated weights ˆ
ˆ{ }g g



 are the unknowns need to be 

determined. Let the integrand of the reduced nonlinear function ˆ ( ) ( ( ))T rf V f u μVμ  be a k -

dimensional parameterized function 
2( ; ) [ ( )] kkL  g μx , such that by using the Gaussian 

quadrature scheme the domain integration of 1( ; ) [ ( ; ) ... ( ; )]T

kg gx xμ μg x μ  yields 

 
1

ˆ ( ) ( ; ) : ( ; ) ,
gN

I I I g g

g

f g d g w


   x xμ μ μ   (3.29) 

where ( )If μ  denotes the I-th component of the integral output ˆ ( ) kf μ , 1{ } gN

g gw   are the 

weights of Gaussian quadrature, and μ  denotes generic parameters that influence the 
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function. If we consider a set of training parameters 1{ }P

i iμ , and denote ( ) ( ; )i

I iIg g x μx and 

( )i

I I if f μ  for brevity, we have 

 
1

( ) ( ) ,
gN

i i i

I I I g g

g

f g d g w


   x x   (3.30) 

1,...,i P  and 1,...,I k . These kP  equalities can be obtained during the offline phase. As 

pointed out before, the idea of Cubature integration proposed by (An, Kim & James 2008) 

consists in approximating the integral of any :  i

Ig  as the sum of positive, scalar weights 

multiplied by the function evaluated at appropriately chosen points, i.e., 

 
ˆ

ˆ( ) ( ) ,  1,...,  and 1,..., .i i i

I I I g g

g

f g d g I k i P


     x x   (3.31) 

The locations of the integration points ˆ{ }g g
x  and their associated positive weights 

ˆ

ˆ
ˆ{ } m

g g
   , where ˆ ˆ| | m , are determined such that the integration error for all components 

is minimized. If we augment the cubature weights 
ˆ

ˆ
ˆ{ } m

g g
    with ˆ( )gN m  zero 

components and define those weights by a vector gN

ζ , the regression problem in (3.31) to 

determine ˆ
ˆ{ }g g



 with only m̂ non-zero coefficients can be cast in a non-negative least squares 

(NNLS) problem as follow: 

Given a matrix  (usually )gkP N

gN kP


G  and a vector kPb , find a nonnegative vector 

gN

ζ  to minimize the following functional, i.e.   

  

arg min || ||,

subject to 0,  1, .., , .

Ng

i gi N









ζ

Gζ b

  (3.32) 



 

61 

where || ||  stands for the standard Euclidean norm, and 

 

1 1 1
1

1 2

2 2 2 2
1 2

1 1

( ) ( ) ( )

,  :
( ) ( ) ( )

:

( ) ( ) ( )

,

g

g

g

N

N

PP P P

N

 
 
 

  
 

 
 
 
 
 
 

 


b

g x g x g x f

g x g x g x f
G

fg x g x g x

  (3.33) 

in which 
1 2[ , , , ]i i i i T

kg g gg  and 
1 2[ , , , ]i i i i T

kf f ff = , 1,...,i P . The indices of the non-zero 

entries of ζ  is stored in a set ˆ .  

It should be noted that since the NNLS problem in (3.32) is underdetermined system due 

to gN kP , non-unique solutions are expected. An exact solution to (3.32) is given by the 

Gaussian weights 1{ } gN

g gw  , i.e. g gw  , 1,..., gg N  , but it is of no interest as it implies that the 

reduced integration set ˆ  just match the full integration set . However, the NNLS problem 

with non-negative constraints yields a sparse solution with only a few non-zero entries.  

In practice, we also want to impose an additional constrain 
1 1

g gN N

g gg g
w

 
     for 

satisfying the volume conservation, which is important to maintain structure-preserving 

properties, such as the conservation of energy, momentum, and mass. To this end, the 

minimization problem in (3.32) is modified as 

 

2 2arg min || || || || ,

subject to 0,  1,.. ., ,

Ng

i

T

gi N







  







ζ

Gζ b 1 ζ

  (3.34) 

where [1,1,...,1] gT N
 1 ,   is a constant denoted as the volume of the physical domain, and 

  is a penalty coefficient. The penalized minimization (3.35), in fact, can be recast as a standard 

NNLS by augmenting G  and b  with an additional row, i.e. 
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2arg min || || ,

subject to  0,  1,..., ,

Ng

i

aug g

g

au

i N



 


ζ

G ζ b
  (3.36) 

where 

 
( 1) 1,  : : .gkP N augaug kP

T 

  
 

   
 

 
  
 

b

1
b

G
G   (3.37) 

The algorithm for solving the NNLS problem (3.37) and determining the sparse solution 

gN

ζ  with ˆ ) ( ˆ
gm m N  non-zero entries is presented in Appendix B. 

A detailed comparison about accuracy and efficiency between interpolation-type and 

cubature-type hyper-reduction techniques in the context of micro-structural analyses has been 

made recently (van Tuijl, Remmers & Geers 2018). It shown that the interpolation-type approach 

usually yields less error and higher online efficiency due to the extra POD information from the 

nonlinear contribution, but the cubature-type approach naturally preserves the stability of the 

HDM without any additional stabilization needed for the interpolation-type approach. Moreover, 

the latter one is less sensitive to the extrapolation of the snapshot space. 

 

3.4.4  Linearization-type strategy 

There is, in fact, another strategy to overcome the computational inefficiency in reduced-

order modeling of nonlinear system by approximating nonlinear function in conjunction with the 

POD-Galerkin projection method. This strategy can be viewed as approximating the parametric 

nonlinear function by using Taylor expansion, or assuming multilinear forms of polynomial 

nonlinearities (Bai 2002; Cardoso & Durlofsky 2010; Chen & White 2000; Phillips 2000). The 
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typical methods include the trajectory piecewise-linear approach (TPWL) (Rewienski & White 

2003; Rewieński & White 2006), which is based on approximating a nonlinear function by a 

weighted combination of linearized models at selected parameter points along a state trajectory. 

These points are selected using prior knowledge from the training data of the high-dimensional 

nonlinear system. However, because the resulting ROM simply uses low degree piecewise 

polynomials (Chaturantabut & Sorensen 2010) and ignores the HDM information away from the 

linearization points, this method in principle lacks robustness for highly nonlinear problems such 

as the parametric systems arising from CFD applications and solid mechanics. 

 

3.5  Summary 

This chapter has reviewed the two key concepts of model order reduction, the projection-

based reduction methods and the hyper-reduction techniques. The projection-based methods are 

mainly used for reduced approximation of state variables, and the reduced system associated to 

the original PDEs can be obtained by using Galerkin or Petrov-Galerkin method with the dual 

projection. The latter ones are used for conducting additional level of approximation, i.e. system 

approximation, when dealing nonlinear system. By combining these two-level approximations as 

well as taking the underlying discretization into account, many nonlinear model reduction 

methods have been developed for a variety of applications.  
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Chapter 4                                                                            

Model Order Reduction for Fracture Mechanics via 

Decomposed Projection 

 

The preservation of physical characteristic in reduced-order models remains challenging 

for most MOR methods, especially dealing with engineering problems where solutions exhibit 

singularity and discontinuities. In this chapter, we propose a SVD-based model order reduction 

(MOR) approach (He, Chen & Marodon 2018) for reduced-order modeling of fracture mechanics 

based on the integrated singular basis function method (ISBFM) with reproducing kernel 

approximation enriched by crack-tip basis functions. The reduced basis vectors used in the 

proposed MOR method is properly constructed based on the decomposition of the subspaces that 

characterize smooth and non-smooth solutions, respectively, and thus, it is called a 

decomposition subspace reduction (DSR) method.   

 

4.1  Introduction 

Repeated simulations of the problem of interest under various conditions are required in 

many engineering applications but are computationally unaffordable. Model order reduction 

(MOR) methods (Antoulas & Sorensen 2001; Schilders, van der Vorst & Rommes 2008) offer 

effective means in resolving the complexity issue while minimizing the loss of accuracy. 

However, for fracture problems with a large ratio between the scale of the structure and the scale 
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of cracks, the application of MOR methods remain difficult in preserving the local features in the 

reduced-order space. 

The MOR strategies based on the projection of the fine-scale finite dimensional space 

onto a low-dimensional subspace have undergone significant development in recent years. They 

have been extensively studied in, for example, system engineering (Antoulas & Sorensen 2001), 

fluid mechanics (Amsallem & Farhat 2008; Lieu, Farhat & Lesoinne 2006; Sirovich 1987), and 

structures dynamics (Carlberg & Farhat 2011; Krysl, Lall & Marsden 2001; Lall, Krysl & 

Marsden 2003). Attempts were also made for highly nonlinear structural problems (Kerfriden et 

al. 2011; Millán & Arroyo 2013; Niroomandi et al. 2010; Ryckelynck, Benziane & Paristech 

2010). These strategies rely on an assumption that the solution of the fine-scale discretization can 

be properly approximated in the low-dimensional subspace spanned by well-chosen projection 

bases (called Ritz vectors). Within this framework, the projection-based MOR methods have 

been proposed under two categories (Galland et al. 2011): the a posteriori and a priori 

approaches. In the a posteriori approach, preliminary computations of the fine-scale model are 

performed in the offline phase to build the basis of a reduced subspace based on the precomputed 

solution data, and the reduced model constructed on the subspace is then used repeatedly in the 

online phase to obtain accelerated solution. The snapshot proper orthogonal decomposition 

(POD) method, also called Karhunen-Loeve expansion, principal component analysis (PCA), 

and empirical orthogonal eigenfunctions, is a typical a posteriori approach (Everson & Sirovich 

1995; Krysl, Lall & Marsden 2001; Sirovich 1987). On the contrary, the a priori approach 

doesn’t need the preliminary computations of solutions, and therefore no offline/online 

computational decomposition. The reduced basis is constructed by using some a priori 

knowledge about the particular problem. Examples include the a priori hyperreduction method 
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(Ryckelynck 2005; Ryckelynck et al. 2006), the modal truncation method (Craig 1981; Dickens, 

Nakagawa & Wittbrodt 1997), and the proper generalized decomposition method (Chinesta, 

Ammar & Cueto 2010) based on the reduced solution space by separation of variables. 

For fracture problems, the level of reducibility depends strongly on the size of the region 

of interest (Kerfriden et al. 2013), but this contradicts the fundamental approach of the reduced-

order modeling. To circumvent the difficulties, the sub-structuring methods (Barbič & Zhao 

2011; Kim & James 2012; Rixen 2004) based on the idea of domain partitioning, together with 

the projection based MOR methods, have been developed for fracture problems. The hybrid 

local/global MOR methods (Galland et al. 2011; Kerfriden et al. 2011; Kerfriden, Passieux & 

Bordas 2012; Niroomandi et al. 2012) were proposed for the simulation of localized failure, 

where the global (slave) problem is solved in a reduced subspace constructed by the classical 

POD method while the local (master) damage behavior are resolved in a fine-scale level. 

Kerfriden et al. (Kerfriden et al. 2013) developed a partitioned MOR approach using multiple 

reduced subspaces based on the Schur-based domain decomposition and adopted “gappy” 

approximations (Chaturantabut & Sorensen 2010; Everson & Sirovich 1995) to reduce the 

computational burden. Other methods based on the computational multiscale framework (Akbari 

Rahimabadi, Kerfriden & Bordas 2015; Oliver et al. 2017) to simulate fracture have also been 

proposed. 

Different from the idea of domain decomposition in the above strategies, the present 

approach explicitly represents the crack characteristics by a decomposition of solution into 

smooth and non-smooth parts, and constructs a projection-based MOR framework to preserve 

the discontinuity and singularity characteristics of fracture in the reduced-order model (ROM). In 

this study, the integrated singular basis function method (ISBFM) (Chen, Marodon & Hu 2015; 
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Georgiou, Olson & Smyrlis 1996; Olson, Georgiou & Schultz 1991) is introduced to obtain the 

fine-scale solution of the fracture problem. Under the ISBFM framework, a set of enrichment 

functions are derived from a local asymptotic solution near the crack tip to meet the equilibrium 

and traction-free conditions on the crack surfaces, leading to a weak formulation where the 

domain integral involving the near-tip enrichment functions is transformed to the boundary 

integrals without containing the crack surfaces. As such, the need of high-order quadrature 

scheme for domain integration and boundary integration on crack surfaces is avoided, and it 

results in a sparser discrete matrix system to allow effective MOR procedures. More specifically, 

the proposed reduction method considers two decomposed projections constructed based on the 

Schur decomposition of the fine-scale system, allowing the low-rank representation of the 

smooth subspace while optimally preserving the non-smooth subspace, termed the decomposed 

subspace reduction (DSR) method. It is shown that the standard model reduction technique, 

whose reduced-order projection is obtained directly from the modal analysis of the fine-scale 

discrete system (also called the mode displacement method in dynamics (Craig 1981; Dickens, 

Nakagawa & Wittbrodt 1997)), performs poorly due to the loss of singularity and discontinuity 

characteristics. The error analysis also shows that the modal basis of the standard reduction 

method is sensitive to the scaling of the enrichment functions, whereas the DSR reduced 

approximation is invariant to the scaling effect and the non-smooth behavior can be robustly 

captured. 
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4.2  Fine-Scale Modeling of Fracture Mechanics 

In this section, the solution decomposition scheme together with the integrated singular 

basis function method (ISBFM) (Chen, Marodon & Hu 2015; Georgiou, Olson & Smyrlis 1996; 

Olson, Georgiou & Schultz 1991) are introduced to construct the full-order model and obtain the 

fine-scale solution of linear elastic fracture mechanics (LEFM).  

 

4.2.1  Problem formulation based on decomposed solution scheme 

The LEFM problem as illustrated in Figure 4.1 is described by a boundary value problem as 

follows 

 
,  0   in 

       on 

   on 

i

i

ij j

i i g

ij j i h

u g

n h





 

 

 

    (4.1) 

In above equations, iu  is the displacement vector component, ij  is the stress tensor component 

expressed as ( , )ij ijkl k lC u  , ijklC  is the elasticity tensor component, ( , ) , ,( ) / 2i j i j j iu u u   is the 

strain tensor component, , /i j i ju u x   ,   is the problem domain, 
ig  and 

ih  are the Dirichlet 

and Neumann boundaries, respectively, and ig  and ih  are the associated prescribed 

displacement and traction components, respectively. Noted that in Figure 4.1, the crack surfaces 

C  and C  are traction free and 
iC C C h       . 
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Figure 4.1: Geometry of a cracked domain 

 

The potential energy functional corresponds to (4.1) with Nitsche’s method (Fernández-

Méndez & Huerta 2004; Nitsche 1971) employed for imposing Dirichlet boundary conditions on 

ig  is expressed as 
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 (4.2) 

where 

 

is a positive parameter to ensure the coercivity. The variational form of (4.2) is  
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d d d
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 (4.3) 

Let h

iu  be the approximation of 
iu , which is decomposed into a smooth part h

iu  and a non-

smooth part ˆh

iu

 

as 

 ˆ h h h

i i iu u u  (4.4) 

In this work, the reproducing kernel (RK) approximation is employed to discretize the 
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smooth part of the solution h

iu  as follows 

 
1 1

( ) ( )  or ) (
 

  x x u x d
N N

h h

i I Ii I

I

I

I

u d  (4.5) 

where N  is the number of discrete points, 
Iid  is the nodal coefficient for the smooth 

approximation associated with node I, and  I  is the RK shape function. The cubic B-spline with 

2C  continuity is used as the kernel function in this work. To properly account for the non-

convex geometry and introduce the discontinuities across crack surfaces, visibility criterion 

(Belytschko et al. 1996) is used to truncate the kernel function supports.  

In general, the non-smooth solution ˆh

iu  can be approximated by a set of near-tip basis 

functions 
ˆs as

1{ , } 

N

Ji Ji JF F , 

 
s s as a

ˆ

1 1
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ˆ ˆ
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ˆ ˆˆ   or  ˆˆ
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h

Ji J

N N N
h

i Ji J J

J J
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where 
T

s asˆ ˆˆ
J J Jd d 

 
d  and 

s as

J J J
   F F F  with superscripts “s” and “as” denote the symmetric 

and anti-symmetric properties, respectively. Here, the near-tip basis functions are required to 

satisfy the homogeneous equilibrium and the traction free conditions on crack surfaces, i.e., 

 

s as

( , ), ( , ),

s as

( , ) ( , )

0   and  0     in 

0  and  =0     on 

  

 
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 (4.7) 

To fulfill these conditions, the local asymptotic basis functions derived from William’s solution 

(Williams 1952, 1957) are introduced here as follows 
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where ˆ1,2,...,J N , and   is the Kolosov’s constant for plane problems. These local 

asymptotic basis functions are employed for the non-smooth approximation (4.6) under the 

ISBFM framework to be introduced in Section 4.2.2.  

Note that the near-tip basis functions corresponding to even integers of J  in (4.8) can be 

reproduced by the monomial bases and thus are not considered in approximation since they are 

linearly dependent with the smooth part basis functions in (4.5). Moreover, the first symmetric 

and anti-symmetric near-tip basis functions, i.e. s as

1 1 and F F , represent exactly the crack opening 

displacements of Mode I and the sliding Mode II. In general, both symmetric and anti-symmetric 

basis functions are considered in the non-smooth solution ˆh

iu . However, if the symmetry 

characteristic of the solution is known a priori, only the basis functions with proper symmetry 

are employed in the non-smooth approximation. 

 

4.2.2  ISBFM based Galerkin formulation 

With the solution decomposition in (4.4) and considering arbitrary variation of h

iu  and 

ˆh

iu , the standard Galerkin formulation of (4.3) can be obtain as follows  
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where ( , )

h h

ij ijkl k lC u   and ( , )
ˆ ˆh h

ij ijkl k lC u  . Following  (Chen, Marodon & Hu 2015; Georgiou, 

Olson & Smyrlis 1996; Olson, Georgiou & Schultz 1991), if the near-tip basis functions, such as 

those given in (10), for the non-smooth solution ˆh

iu  are so selected to satisfy the homogeneous 

equilibrium equation, i.e. , ( , ),
ˆ ˆ 0h h

ij j ijkl k l jC u  
 
in  , the domain integral involving the non-

smooth approximation functions ˆh

iu  can be transformed to a boundary integral by means of 

integration by parts and divergence theorem to yield 
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If the non-smooth solution ˆh

iu  further satisfies the homogeneous Neumann boundary 

conditions on crack boundaries accordingly, i.e. ( , )
ˆ 0h

ijkl k l jC u n   on C , such as those in (4.8), 

equations (4.9) and (4.10) can be rearranged as 
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where \
i ih h C    . In the above two equations, the domain integral simply involves the 

derivatives of the smooth solution h

iu , whereas the non-smooth solution ˆh

iu  and its derivatives 

only need to be integrated on the boundaries away from the crack tip that exhibits singularities. 

As a result, this ISBFM Galerkin formulation can be numerically integrated using a much lower-

order quadrature scheme compared with that needed for the standard Galerkin formulation in 

(4.9) and (4.10). The comparison between the standard Galerkin and ISBFM Galerkin 

formulations with different orders of Gauss quadrature scheme in fracture modeling is made in 

Section 4.2.3.  

By introducing the RK approximation in (4.5) enriched with the near-tip basis functions 

in (4.6) into the ISBFM Galerkin equations in (4.12) and (4.13), the ISBFM discrete system is 

obtained as 

 
T ˆˆ ˆ

    
      
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dK K
Kd

K

f

dK
f

f
 (4.14) 

where 
2d

N
 and 

2 ˆˆ Nd  are the coefficient vectors to be determined. The components of the 

stiffness matrix and the force vector in (4.14) are shown in the Appendix 4.7. The stiffness 

matrix 
NNK  is a symmetric positive definite (SPD) matrix, where ˆ2( )NN N  . The sub-

matrix 
22N NK  is a sparse SPD matrix due to the compactness of RK shape functions, while 

the sub-matrix 
ˆ2 ˆ2ˆ N NK  is a dense SPD matrix but low-dimensional, i.e. N̂ N . Note that 
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due to the treatment of the domain integral with the non-smooth near-tip bases, the coupling sub-

matrix 
2 ˆ2N NK  becomes much sparser under the ISBFM Galerkin framework compared with 

the counterpart obtained from the standard Galerkin formulation. This sparsity of ISBFM 

discrete system allows effective MOR methods as introduced in the following sections. 

 

4.2.3  Comparison of standard Galerkin and ISBFM Galerkin methods for LEFM 

We first verify the performance of ISBFM Galerkin formulation for the line crack 

fracture problem in Figure 4.4. The fine-scale solution u
h
 of the standard Galerkin and ISBFM 

Galerkin methods are obtained using a uniform discretization of 48 48  ( 4)230N   nodes. 

Gaussian quadrature with uniform 48 48  domain integration cells is employed for the 

integration of the Galerkin methods. To evaluate the performance of the ISBFM fine-scale 

solutions for fracture problems, the normalized errors in 
  
L

2
 norm, semi- 1H  norm of the 

solution u
h
, and the relative absolute error of the Mode I stress intensity factor (SIF) h

IK , are 

defined as 

 2 2
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where  
2

1/2

d


 u i iL
u u  and  

2

1/2

, , d


 u
s

i j i jL
u u . 

Figure 4.2 and Figure 4.3 present the errors 0e , 1e  and KIe  of the approximations 

obtained from the standard Galerkin and ISBFM Galerkin formulations under different orders of 

Gaussian quadrature rule and near-tip basis functions. Figure 4.2 shows that when the first order 
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near-tip basis function ( ˆ 1N  ) is used, the standard Galerkin method requires up to 12
th

 and 8
th

 

order quadrature rules for displacement and strain solutions, respectively, to attain a similar 

accuracy as that solved by the ISBFM Galerkin method with just 2
nd

 order quadrature rule. With 

the employment of higher order near-tip basis functions, e.g. ˆ 2N   and ˆ 3N  , the increased 

superiority of the ISBFM Galerkin solution over the standard Galerkin solution indicates the 

need of using quadrature rule. On the other hand, by using the ISBFM Galerkin method the non-

smooth solution is integrated only at the boundaries away from the crack tip, allowing a 

sufficiently accurate result to be achieved by using 4
th

 order quadrature rule. Due to the enhanced 

capability of capturing the singularity and discontinuity of fracture, the ISBFM Galerkin 

formulation also gives better SIF solution as shown in Figure 4.3. 

 

Figure 4.2: Normalized error in 2L  norm (left) and semi-
1H  norm (right) of the loaded line 

crack solution under different orders of Gaussian quadrature rule. The standard Galerkin and the 

proposed ISBFM Galerkin methods are compared under different orders of enrichment functions, 

i.e. ˆ 1,2,3N  . 
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Figure 4.3: Relative error of the Mode I stress intensity factor of the loaded line crack solution 

under different orders of Gaussian quadrature rule. The standard Galerkin and the proposed 

ISBFM Galerkin methods are compared under different orders of enrichment functions, i.e. 

ˆ 1,2,3N  . 

 

4.3  Reduced-Order Modeling of Fracture Mechanics 

In this section, a projection-based MOR approach using the basis vectors obtained by 

standard modal analysis is first reviewed. We then introduce the proposed decomposed 

projection bases such that the low-rank representation of the smooth subspace is properly 

constructed while preserving the non-smooth subspace. The following notations will be used 

throughout this section. The variable k  denotes the subspace rank, the subspace reduced 

quantities are denoted with a superposed tilde “~”, and the reduced-order approximation is 

denoted by a superscript “ r ”. 
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4.3.1  Generic projection based MOR 

For a given fine-scale solution 
Nd  to the ISBFM discrete system (4.14), an optimal 

reduced-order solution 
Nr  d Pα  can be obtained by minimizing the defined energy error 

norm 

 
T( ) ( ) ( )r r  d d K d dα   (4.16) 

where 
kNP  ( k N ) spans the k -rank subspace to approximate the fine-scale solution. The 

stationary condition to (4.16) leads to the projection based reduced-order model (ROM) as 

follows 

 
T TP Pα PK f  (4.17) 

where the equality 
T TP Kd P f  is used. The above equation (4.17) can be written in a compact 

form of ROM 

 Kα f  (4.18) 

where 
kα  is the reduced coefficient vector that minimizes  in (4.16), 

T: k k KK P P  is 

the reduced stiffness matrix, and 
T: k f P f  is the reduced force vector. After solving the 

ROM problem (4.18), the reduced-order approximation can be obtained by relating the reduced 

coefficient vector to the high-dimensional space 

 
r d Pα  (4.19) 

where T 2T 2T ˆˆ Nr r Nr 
   d d d , T T T 2T

1 2

r r r r

N

N
   d d d d , T T T T

ˆ1

ˆ

2

2ˆ ˆ ˆ ˆr r r r

N

N
   d d d d , and 

 2

T

1  α  k  is to be solved from the reduced-order discrete equation (4.18). By means of 

the decomposition into the smooth and non-smooth approximations in (4.5) and (4.6), 
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respectively, the reduced-order displacement u
r  associated with the reduced coefficient 

rd  in 

(4.19) can be obtained as follows 

 

ˆ

11

ˆ( )


  u dx F d
N N

r r r

J

JII J

I

  (4.20) 

The remaining issue is how to define the reduced-order projection P  for the ISBFM discrete 

system of interest. 

 

4.3.2  MOR based on standard modal analysis 

The selection of the reduced-order projection P  can be based on modal analysis or 

singular value decomposition (SVD) of the fine-scale system, which is also referred to as the 

mode displacement method in dynamics (Craig 1981; Dickens, Nakagawa & Wittbrodt 1997). 

We denote the employment of the reduction method based on the standard modal analysis 

together with the ISBFM discrete system (4.14) as ISBFM-MA. In this manner, 

1,...,[ ] N k

k

 P    is composed of the orthonormal eigenvectors of the stiffness matrix K  

corresponding to the first k  smallest eigenvalues that are in ascending order, i.e. 

1 2 ... k     . Then, the reduced stiffness matrix in the corresponding ROM in (4.18) 

becomes 

 1 2diag([   ... ])k  K  (4.21) 

And the reduced-order solution dr
 is given with respect to the selected eigenpairs 

1{ }, k

jj j   and the input data force vector f , 



 

79 

 
T

1 1

 
 

 d = Pα f
k k

r

j j j j j

j j

    (4.22) 

Note that the following relationship has been used, 

 ,  1,...,   f
T

j j j j k  (4.23) 

Consequently, the energy error defined in (4.16) for ISBFM-MA becomes 

 

T

2

1 1 1 1

21 2 2 1

1 1

1

2  ( )

     || || || ||

   

 

       

 


 

   
    

  


 

   



K f

f f

N N N N
T

j j l l j j j

j k l k j k j k

N

j j k

j

j

k

C

  



 (4.24) 

where 1 ( )C N N k  . It can be observed that the error is related to the smallest eigenvalues of 

the discarded eigenmodes not considered in the projection P . This is consistent to the fact that 

the energy of the system is primarily carried by the low modes (Shabana 1991). In addition, as 

the norm 


f  represents the largest component of the force vector T T Tˆ [ ]f f f , it indicates that 

the performance of ISBFM-MA could be influenced radically by the scale of the near-tip basis 

functions (4.8) used for constructing the non-smooth part of the force vector f̂  in (4.46). In next 

section, we will discuss the susceptibility of modal analysis and show how it fails to preserve the 

near-tip characteristics in reduced-order approximation. 

 

  Difficulties in the standard modal analysis for fracture mechanics 

We examine the reduced-order displacements r
u  in (4.20) associated with each 

projection basis vector T T ˆT 2 2[ ]ˆ N

j j

N

j

     (the j-th eigenmode of K) as given by 
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1

( )
k

r r

j j

j




u w    (4.25) 

where ( )r

jw   is the generalized shape function associated with each reduced coefficient j , 

which is also called the reduced-order basis (ROB) functions (Barrault et al. 2004) and expressed 

as 

 

ˆ

11

ˆ(( ))
N

r

j Ij Jj

J

N

I J

I 

  x Fw      (4.26) 

where 
2

Ij   and 
T

2ˆ ˆˆ s as

Jj JJj j   
 

  are the components of 
2N

j   and 
ˆ2ˆ N

j  , 

respectively.  

For demonstration purpose we consider a symmetric line crack model subjected to a far-

field hydrostatic tension load 1  . The corresponding half model used for numerical study is 

shown in Figure 4.4, where traction is prescribed on 1 3 4    and displacement is imposed 

on 2  
according to the analytical solution in (England 2003). A uniform discretization of 

24 24  nodes (2 1152)N   with ˆ 2N   near-tip basis functions are used to construct the 

ISBFM discrete system (4.14) based on 5
th

 order and 8
th

 order quadrature rules for domain 

integrals and boundary integrals, respectively. Note that only the symmetric part of the near-tip 

basis functions s
FJ  in (4.8) is employed for the non-smooth approximation due to the Mode I 

symmetry. 
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Figure 4.4: A finite dimensional model of a line crack subjected to a far-field hydrostatic tension, 

where traction is prescribed on 1 3 4    and displacement is imposed on 2  according to 

the analytical solution of (England 2003). The adopted material properties of borosilicate glass 

are 
264,000 N mmE  and 0.2v . 

 

Some representative ROB functions ( )r

jw   associated with low-frequency and high-

frequency modes are plotted in Figure 4.5. As can be seen, for this line crack model, the ROB 

functions representing part of the near-tip behaviors are associated with two highest modes (i.e. 

EV 1153-1154) resulting from the two local asymptotic basis functions s

JF  in (4.8). As such, the 

reduced-order approximation by ISBFM-MA misses the near-tip behavior as shown in Figure 

4.7(b). 

A simple scaling approach can be applied to the near-tip basis functions to mitigate this 

issue, where the basis functions FJ
 in (4.8) are scaled by / 12( )J

cl    as follows 

 /2 /2

/2
ˆ( ) ( ),   1,2,...,

1J J

J J JJ

cl
r r J N


  F F F

.

 (4.27) 
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Here the characteristic length cl  is chosen as the domain dimension and the parameter   is a 

scaling constant. Using the scaled basis functions in (4.27) with 50   for the non-smooth 

approximation, the primary near-tip behavior is captured by the low modes, as shown by EV 4 

and EV 6 in Figure 4.6. As a result, a more reasonable reduced-order deformation is obtained in 

Figure 4.7(c). Clearly, the ISBFM-MA reduced-order solution corrected by the scaling of near-

tip enrichment functions is still not very satisfactory in representing the crack-tip behavior and 

the inhomogeneous Dirichlet boundary conditions on 2 . These issues can be improved by the 

decomposed subspace reduction method to be discussed in the next section. 
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(a) 

 

(b) 

 

Figure 4.5: Shapes of ROB functions of ISBFM-MA for the line crack model using ˆ 2N  non-

scaled near-tip basis functions: (a) ( )r

x jw   and (b) ( )r

y jw  . (The subtitle EV n of each plot 

denotes the n-th eigenfunction of the ISBFM discrete system K ) 
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(a) 

 

(b) 

 

Figure 4.6: Shapes of ROB functions of ISBFM-MA for the line crack model using ˆ 2N  scaled 

non-smooth basis functions with 50  : (a) ( )r

x jw   and (b) ( )r

y jw  . (The subtitle EV n of each 

plot denotes the n-th eigenfunction of the ISBFM discrete system K ) 
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(a) (b) (c) 

Figure 4.7: Deformation of the line crack model approximated by (a) fine-scale approximation, 

(b) ISBFM-MA ( 40k  ) using non-scaled near-tip basis functions, and (c) ISBFM-MA ( 40k  ) 

using scaled non-smooth basis functions with 50  . The blue circles denote the undeformed 

configuration and the red dots denote the deformed configuration (The displacement solution is 

magnified by 
35 10  times for visualization). 

 

4.3.3 MOR based on decomposed projection 

To robustly preserve the near-tip non-smooth characteristics, we adopt a decomposed 

projection approach proposed in (Chen, Marodon & Hu 2015) where the reduced-order 

approximation is expressed as 

 
ˆˆ2( ) ( )

ˆ
,  

ˆ
Nr k

r

N

r

k  
 

  
 

 
  
  

d
d

d

P 0
Pα P

0 P
 (4.28) 

where 
T T Tˆ[  ]α α α , 

2N kP  and 
ˆˆ2ˆ N kP  are the smooth part and the non-smooth part of 

the projection, respectively, and 
kα  and 

ˆ
ˆ kα  are the associated reduced coefficient 

vectors. The total reduced dimension in the decomposed reduction is ˆk k k  . In this manner, 

the ROM of the fine-scale system (4.14) is given as  
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T ˆˆ ˆ ˆ ˆˆ

T T
        

 
 

 
        

                

P 0 P 0 P 0 fK K

0 P 0 P 0 P fK K

α

α
 (4.29) 

which is rewritten as 

 
T ˆ

: :
ˆˆ

   
    
   



 


 
 
 

α

α

fK K
Kα f

fK K

  (4.30) 

where the sub-matrices K , K , and K̂  of the reduced stiffness matrix K  are 

 
ˆ ˆ ˆT T Tˆ ˆ ˆ ˆ ˆ,  ,         K P KP K P KP K P KP

k k k k k k   (4.31) 

Similarly, the sub-vectors ˆ and f f  of the reduced force vector f  are 

 
ˆT Tˆ ˆˆ,     f P f f P f

k k   (4.32) 

Since the motivation of the decomposed reduction is to optimally preserve near-tip 

characteristics of fracture in the solution subspace, the dimension reduction for non-smooth 

quantities can be ignored given the employment of very small number of enrichment functions, 

i.e. N̂ N . Thus, we let ˆ ˆ2k N , ˆ2
ˆ

N
P I , and ˆˆ rα d . The reduced system (4.29) becomes 

 

TT T

T ˆ ˆˆ

   
   
   

 
 

    

P fP KP P K

K P K

α

d f
r

  (4.33)  

Remark 4.1: One feature inherited from ISBFM Galerkin formulation in equations (4.12) 

and (4.13) is that it yields a sparse sub-matrix K  in (4.14) due to minimal interaction between 

the near-tip basis functions and the smooth RK functions on the boundaries that are not 

connected to the crack tip, while the standard Galerkin formulation in (4.9) and (4.10) yields a 
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fully dense K . As such, the complexity of operations involved with TP K  is significantly 

reduced using the ISBFM formulation. 

 

  Decomposed subspace reduction (DSR) 

The reduced system (4.33) can be expressed as 

 
T

T

ˆ

ˆ ˆˆ

 

 

K P K f

K

d

dPα f

α

K

r

r

  (4.34) 

where K  and f  are defined in (4.31) and (4.32), respectively. By static condensation we have 

the following condensed system for the non-smooth degrees of freedom (DOF),   

 ˆ ˆˆ r

c c

 dK f   (4.35) 

where 

 T T1T1T ˆ ˆˆ ˆ ,       K K K P P K f f KK P fK Pc c   (4.36) 

The matrix ˆ
c


K  is the Schur complement which is SPD by the Schur complement lemma.  

After solving for ˆ r
d , the smooth DOF can be retrieved by the supplement equation 

 T1( ˆ  dfα PK K )
r    (4.37) 

In this condensation procedure, only the reduced matrix 
k kK  needs to be inverted, which is 

operated in the low-dimensional subspace of P . Considering that K  is sparse and the non-

smooth dimension is low, the construction effort of the condensed system (4.35) is low. 
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It is observed that the expression 
T 21 2  PK P

N N
 behaves like the low-rank 

approximation of 1K . Thus, we construct the projection P  by using the smallest k  

eigenvectors of the smooth sub-matrix K , whose eigenpairs are denoted as 
2

1{ },j

N

j j γ . 

Consequently, the reduced smooth sub-matrix becomes 
1 2diag([   ... ])

k
  K . Since the 

decomposed reduced system (4.34) has been projected onto the subspace of P  and remains in 

low dimension, we can directly solve this reduced system as the alternative of solving the 

decoupled condensed system given in (4.35) and (4.37). We term this reduction method the 

decomposed subspace reduction (DSR) to distinguish the decomposed reduction (DR) used in 

(Chen, Marodon & Hu 2015) based on a different projection. 

Remark 4.2: As presented in (4.34), ISBFM-DSR only reduces the smooth subspace 

while preserves the non-smooth features. Since the associated eigenmodes of P  are obtained 

from the smooth sub-matrix K  instead of the Schur complement 
1 Tˆ  K K KK Kc  used in 

(Chen, Marodon & Hu 2015), it yields a better low-rank approximation for the smooth subspace. 

It can be also easily shown that the reduced-order solution ur
 from ISBFM-DSR is invariant to 

arbitrary scaling of enrichment functions since the construction of P  is independent of the non-

smooth quantities. Moreover, the computational complexity of ISBFM-DSR is in the same order 

as that of the ISBFM-DR proposed earlier (Chen, Marodon & Hu 2015). 

In last section we showed that a proper scaling is needed in ISBFM-MA to preserve the 

near-tip characteristics in the reduced order solution for fracture mechanics. Re-examining the 

line crack problem in Figure 4.4, the ISBFM-DSR method, on the other hand, correctly preserves 
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the near-tip modes in the reduced-order subspace as shown in Figure 4.8(b) due to the 

employment of decomposed projection. 

  

(a) Fine-scale approximation (b) ISBFM-DSR with 40k   

Figure 4.8: Deformation for the line crack model obtained by (a) fine-scale approximation and (b) 

ISBFM-DSR ( 40k  ). The blue circles denote the undeformed configuration and the red dots 

denote the deformed configuration (The displacement solution is magnified by 
35 10  times for 

visualization). 

 

  Issues resulting from the inhomogeneous Dirichlet boundary conditions 

In addition to the failure in preserving the near-tip behavior, the standard modal analysis 

may also suffer from errors in representing the inhomogeneous Dirichlet boundary conditions 

(IDBC), i.e. 0ig  in (4.1) as shown in Figure 4.7(c) where a non-zero Dirichlet boundary 

condition on 2  
in Figure 4.4. are not properly represented in the ISBFM-MA reduced-order 

solution. This is due to the penalty coefficient   used in Nitsche’s method, which yields high 

ROB modes associated with IDBC while the low modes correspond to homogeneous Dirichlet 

boundary conditions. This issue in ISBFM-MA cannot be resolved by the scaling technique as 
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used for the near-tip modes. ISBFM-DSR, on the other hand, correctly represents IDBC in the 

reduced-order solution as shown in Figure 4.8. This is because the non-smooth basis functions 

are inhomogeneous on the problem boundaries and they are fully preserved in the decomposed 

subspaces reduction.  

Remark 4.3: Loss of mechanical constrains in projection based reduced-order models 

(ROMs) is a common issue and needs to be addressed carefully (Lall, Krysl & Marsden 2003). 

The imposition of IDBC in ROM has been investigated (Cosimo, Cardona & Idelsohn 2016; 

Gunzburger, Peterson & Shadid 2007). However, these techniques were developed under the 

POD-based MOR and were applied to the problems without singularities and discontinuities.  

 

4.4  Numerical Examples: Reduced-Order Modeling of Fracture Mechanics 

Several numerical examples are analyzed to illustrate the effectiveness of the proposed 

ISBFM based MOR method for fracture problems. In the following study, RK functions using 

the linear basis and cubic B-spline kernel function with a normalized support size of / 1.71a h  

are selected for the smooth part of the solution. For Nitsche’s treatment of Dirichlet boundary 

conditions (Fernández-Méndez & Huerta 2004), the penalty parameter 100 /  E h  is 

employed, where E  is the Young’s modulus and h  is the minimal spacing of the discretization 

nodes. 
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4.4.1  Comparison of MOR methods for a cracked beam Poisson’s problem 

  

(a) (b) 

Figure 4.9: (a) Model of the cracked beam Poisson’s problem; (b) fine-scale discretization. 

 

To compare the proposed DSR method with modal analysis (MA) and decomposed 

reduction (DR) introduced in (Chen, Marodon & Hu 2015), we consider a cracked beam 

Poisson’s problem in Figure 4.9(a), where the discontinuity of boundary condition at (0,0)  

yields a singularity of order 
1/2( )O r . The non-smooth basis functions of this problem are given as 

 
2 1

2
2 1 ˆ( , ) cos ,  1,2,...,

2

J

J

J
F r r J N 


 

  
 

 (4.38) 

where 
2 2

0 0( ) ( )r x x y y     and 1

0 0tan (( ) ( ))y y x x    . These basis functions satisfy 

the conditions required for ISBFM method, i.e. the homogeneous equilibrium equation 0JF  , 

the conditions 0JF   on 1 , and 0JF y    on 2 . Since this is a scalar value problem, we 

only have one set of N̂ non-smooth basis functions and ˆN N N  . The interested readers can 

refer to (Chen, Marodon & Hu 2015; Li, Mathon & Sermer 1987) for more details. The fine-

scale solution is obtained using a non-uniform discretization 21 11  ( 231N  ) with random 

coefficient 0.1  for the interior points as shown in Figure 4.9(b). The same normalized norm 
0e  
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defined in (4.15) is used to measure the error between the fine-scale displacement solution 
hu  

and the reduced-order displacement solution 
ru . 

The error 0e  of different MOR methods for the cracked beam problem with various 

orders of enrichment functions, ˆ 1,2,5N  , are compared in Table 3.1. As discussed in Section 0, 

the standard modal analysis (ISBFM-MA) with direct employment of the enrichment functions 

yields worst results. When using the scaled enrichment functions in (4.27) with 50  , the error 

0e  is reduced by one order. The remaining error is primarily due to the inaccurate representation 

of IDBC at the boundary 3  in the reduced-order solution (see 
ru  in Figure 4.11).  

The performances of the proposed ISBFM-DSR method (Section 0) and the ISBFM-DR 

method introduced in the earlier study (Chen, Marodon & Hu 2015) are compared in Table 3.1. 

Overall, both ISBFM-DSR and ISBFM-DR yield satisfactory reduced-order results compared to 

the ISBFM-MA approach. It is noticed that ISBFM-DR with two enrichment functions ( ˆ 2N ) 

does not necessary yield a better accuracy than the case with one enrichment function ( ˆ 1N ), 

and the errors decrease slowly as the reduced dimension increases. On the hand, the errors in 

ISBFM-DSR decrease quickly as the order of near-tip basis functions ( N̂ ) or the ratio of 

reduced dimension ( /k N ) increases.  

Figure 4.11 to Figure 4.13 show the absolute error distributions of different MOR 

methods against the fine-scale solution (Figure 4.10) under different ratios of reduced dimension 

/k N  along 0.001y  near the singularity point. ISBFM-MA yields largest errors among all 

methods under consideration especially on the Dirichlet boundary 3  (Figure 4.11). On the other 
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hand, ISBFM-DR (Figure 4.12) and ISBFM-DSR (Figure 4.13) both work well in this problem 

in capturing the singularity in derivative fields ( /rdu dx  and /rdu dy ) with less than 5% error. 

Nevertheless, ISBFM-DSR yields the best reduced-order approximation overall, and the error is 

reduced uniformly with increasing the dimension reduction ratio.  

 

Table 4.1: Normalized error in 2L  norm ( 0e ) of the reduced-order solutions for the cracked beam 

problem. ISBFM-MA, ISBFM-DR and ISBFM-DSR are compared under different ratios of 

reduced dimension /k N  and different orders of enrichment functions ˆ 1,2,5N  . 

  ( / )k k N  10 (4%)  20 (8%)  40 (16%)  80 (32%)  

ISFBM-MA 

(non-scaled) 

ˆ 1N                                       

ˆ 2N                                       

ˆ 5N                                          

ISFBM-MA 

(scaled 50  ) 

ˆ 1N                                           

ˆ 2N                                           

ˆ 5N                                           

ISFBM-DR 

ˆ 1N                                           

ˆ 2N                                           

ˆ 5N                                           

ISFBM-DSR 

ˆ 1N                                           

ˆ 2N                                           

ˆ 5N                                           
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Figure 4.10: Fine-scale solutions 
hu , /hdu dx  , and /hdu dy  along 0.001y   for the cracked 

beam problem solved with ˆ 2N . 

 

 

  

Figure 4.11: Absolute error distribution along 0.001y  of the reduced-order solutions 
ru , 

/rdu dx , and /rdu dy  by scaled ISBFM-MA ( 50  ) for the cracked beam problem solved 

with ˆ 2N  under different ratios of reduced dimension /k N . 
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Figure 4.12: Absolute error distribution along 0.001y  of the reduced-order solutions 
ru , 

/rdu dx , and /rdu dy  by ISBFM-DR for the cracked beam problem solved with ˆ 2N  under 

different ratios of reduced dimension /k N . 

 

 

 

  

Figure 4.13: Absolute error distribution along 0.001y   of the reduced-order solutions 
ru , 

/rdu dx , and /rdu dy  by ISBFM-DSR for the cracked beam problem solved with ˆ 2N  under 

different ratios of reduced dimension /k N . 
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4.4.2  Reduced-order modeling of a mode I line crack model 

Here we perform a more detailed analysis of the mode I line crack problem given in 

Figure 4.4, with a uniform discretization 36 36  nodes ( 1296)N   employed to obtain the fine-

scale solutions based on the ISBFM Galerkin formulation with 5
th

 order and 8
th

 order quadrature 

rules for domain integrals and boundary integrals, respectively. 

 

 

Figure 4.14: Normalized error in 2L  norm ( 0e ) of the reduced-order solutions of ISBMF-MA 

under different scaling for the loading crack model with ˆ 2N . ISBFM-DR and ISBFM-DSR 

are also given for comparison. 

 

In this problem, ISBFM-MA employs the scaled basis functions defined in (4.27) with 

the characteristic length cl  = 50 2 mm  (the maximum distance of material points to the crack 

tip). For different scaling cases, such as non-scaled, 10  , 50  , and 100  , the associated 

condition numbers of the stiffness matrix are 
139.27 10 , 

72.53 10 , 
75.63 10 , and 

81.76 10 , 
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respectively. In this problem, using 50   is most effective to obtain improved reduced-order 

solutions of ISBFM-MA while keeping a well-conditioned stiffness matrix. As shown in Figure 

4.14, while ISBFM-MA requires proper scaling of the enrichment functions for an enhanced 

accuracy, the ISBFM-DR and ISBFM-DSR results appear to be fairly independent to the scaling 

of near-tip enrichment functions. 

Table 4.2 summarizes the errors 
0e  of the ISBFM-MA, ISBFM-DR and ISBFM-DSR 

solutions under different orders of enrichment functions. Taking ˆ 5N  as an example, the 

reduced-order solution from ISBFM-DSR yields 2 orders of magnitude reduction in errors 

compared to that of the ISBFM-MA approach and with less than 50% error compared to the 

ISBFM-DR approach. Moreover, ISBFM-DSR consistently gives improved results with 

increasing as the ratio of reduced dimension or the order of enrichment basis functions, whereas 

ISBFM-DR yields worse reduced-order approximation using ˆ 2N  than using ˆ 1N . This 

inconsistency in ISBFM-DR may be due to the suboptimal selection of the decomposed 

projection. Thus, hereafter, we only consider the comparison of ISBFM-DSR method and the 

ISBFM-MA method with the scaled near-tip basis functions with 50   for the remaining 

numerical studies. 

 Figure 4.15 shows the error distribution in Euclidian error norm, ( ) | ( ) ( ) | x u x u x
h r

Ee , 

of the reduced-order solutions obtained by the ISBFM-MA and the ISBFM-DSR methods under 

the same reduced dimension 80k   ( / 3.1%)k N  and with different orders of symmetric 

near-tip basis functions ( ˆ 1,2,5N  ). Similar to the cracked beam problem in Figure 4.9, the 

ISBFM-MA method poorly approximates the behaviors near the crack tip at ( , ) (50,0)x y  , 

whereas ISBFM-DSR yields a much better accuracy due to the preservation of the near-tip 
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characteristics. As the order of enrichment functions increases from ˆ 1N  to ˆ 5N , the error of 

the ISBFM-DSR solution reduces significantly but the ISBFM-MA solution gives nearly the 

same level of error without improvement (See Table 4.2). Moreover, we observe that ISBFM-

MA exhibits large errors near the right edge where the inhomogeneous Dirichlet boundary 

conditions are imposed as have been discussed in Section 4.3. On the other hand, ISFBM-DSR 

gives a better accuracy on that boundary, especially when using higher order enrichment 

functions (Figure 4.15(c)). 

 

Table 4.2: Normalized error in 2L  norm ( 0e ) of the reduced-order solutions for the loading crack 

model. ISBFM-MA, ISBFM-DR and ISBFM-DSR are compared under different ratios of 

reduced dimension /k N  and different orders of enrichment functions ˆ 1,2,5N . 

 /k N  0.77%  1.54%  3.09%  6.17%  

ISFBM-MA 

(scaled 

50  ) 

ˆ 1N                                       

ˆ 2N                                       

ˆ 5N                                       

ISFBM-DR 

ˆ 1N                                       

ˆ 2N                                       

ˆ 5N                                       

ISFBM-DSR 

ˆ 1N                                       

ˆ 2N                                       

ˆ 5N                                       
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(a) ISBFM-MA (left) and ISBFM-DSR (right) with 80,  ˆ 1k N   

  

(b) ISBFM-MA (left) and ISBFM-DSR (right) with 80,  ˆ 2k N   

  

(c) ISBFM-MA (left) and ISBFM-DSR (right) with 80,  ˆ 5k N   

Figure 4.15: Error distribution in Euclidian norm of the reduced-order solutions for the loading 

line crack model with the reduced dimension 80 ( / 3.1%)k k N  . ISBFM-MA ( 50  ) and 

ISBFM-DSR are compared under different orders of enrichment functions ˆ 1,2,5N  . 
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The closer observations on the reduced-order solutions 2

ru  along 49.65 mmx  and the 

derivative 2 /rdu dy  along 50.35 mmx   under different ratios of reduced dimension (

/ 0.8%k N  , 3.1% , and 6.2% ) are presented in Figure 4.16 and Figure 4.17, respectively. 

Compared to the ISBFM-MA approach, ISBFM-DSR produces better results in capturing the 

displacement discontinuity across the crack surfaces (Figure 4.16) and the strain singularity near 

the crack tip (Figure 4.17), as well as approximating the solution near boundaries. The error 

distributions of the reduced-order solutions near the crack tip region (indicated by the red box, 

i.e. [ 15,15]y  ) are also provided in Figure 4.17. It shows that the reduced-order solutions of 

ISBFM-DSR converge quickly while the ISBFM-MA reduction does not guarantee improved 

results as the reduced dimension increases. Moreover, it is observed that by using ISBFM-DSR 

the near-tip error is well-controlled by the non-smooth bases and less sensitive to the smooth 

subspace approximation. Thus, using the higher order enrichment functions (e.g., ˆ 5N  ) in 

ISBFM-DSR significantly improves the near-tip accuracy in the reduced-order approximation 

even with a very low ratio of reduced dimension (e.g., / 0.8%k N  ). The ISBFM-MA reduction, 

however, does not show increased near-tip solution improvement when using higher order 

enrichment functions.  
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Figure 4.16: Comparison of the fine-scale solution and the reduced-order solutions of 2u  along 

49.65 mmx   for the loading line crack model are shown in the left column. The corresponding 

error distributions of the reduced-order solutions against the fine-scale solution near the crack tip 

region (denoted by the red box) are shown in the right column. 
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Figure 4.17: Comparison of the fine-scale solution and the reduced-order solutions of 2 /du dy  

along 50.35 mmx   for the loading line crack model are shown in the left column. The 

corresponding error distributions of the reduced-order solutions against the fine-scale solution 

near the crack tip region (denoted by the red box) are shown in the right column. 

 

4.4.3  Reduced-order modeling of the mixed mode problem 

Here, we consider a plane-strain mixed-mode problem with an edge crack, and the top 

surface is subjected to a shear load as shown in Figure 4.18. The reference stress intensity factor 

(SIF) solutions (Yau, Wang & Corten 1980) are 34.0 psi inIK 
 
and 4.55 psi inIIK  . The 

fine-scale solution is obtained from the ISBFM Galerkin formulation using a uniform 

discretization with 30 48 ( 1440)N   nodes. Considering the mixed-mode situation, the first 
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order symmetric and anti-symmetric near-tip basis functions in (4.8) are used. The SIFs are 

computed by a mixed mode J-integral formulation (Shih & Asaro 1988; Yau, Wang & Corten 

1980) that uses the near crack tip fields as auxiliary fields. The following relative errors of SIFs 

are used to measure the performance of reduced-order solutions, 

 ,  

h r h r

I I II II

KI KIIh h

I II

K K K K
e e

K K

 
   (4.39) 

where h

IK  and h

IIK  are the Mode I and Mode II SIFs solved by fine-scale approximation, 

respectively, and r

IK  and r

IIK  are the Mode I and Mode II SIFs solved by reduced-order 

approximation, respectively.  

 

Figure 4.18: Schematic model of the mixed-mode crack problem. The adopted material 

properties are 10,000 psiE   and 0.3v  . 

 

The errors KIe  and KIIe  of the reduced-order solutions under different ratios of reduced 

dimension are presented in Table 4.3. The ISBFM-MA approach yields large errors of 
2(10 )O 

 

for r

IK  and of 
1(10 )O 

 for r

IIK  even when the ratio of reduced dimension /k N  reaches 90% . 
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Compared to ISBFM-MA, the SIF results computed by ISBFM-DSR show better agreement with 

the fine-scale approximation. Moreover, as shown in Figure 4.19, while ISBFM-MA using the 

properly scaled near-tip basis functions ( 50  ) gives an acceptable results (
1(10 )O 

), the 

reduced-order solutions from ISBFM-DSR not only have better accuracy but also converge faster 

to the fine-scale solution as the reduced dimension increases. 

 

Table 4.3: Relative errors of SIFs of the reduced-order solutions for the mixed-mode crack 

model solved with ˆ 1N . ISBFM-MA and ISBFM-DSR are compared under different ratios of 

reduced dimension /k N . 

Reference stress intensity factors: 34.0 psi in,  4.55 psi in I IIK K  

 KIe  KIIe  

/k N  ISBFM-MA ISBFM-DSR ISBFM-MA ISBFM-DSR 

2.8%  26.0 10  
21.7 10  14.1 10  

11.2 10  

38.2%  25.3 10  
34.3 10  29.8 10  

24.0 10  

90.2%  21.5 10  
68.9 10  29.5 10  

44.1 10  
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Figure 4.19: Normalized error in 2L  norm ( 0e ) of the reduced-order solution for the mixed-

mode crack model solved with ˆ 1N . ISBFM-MA ( 50  ) and ISBFM-DSR are compared 

under different ratios of reduced dimension /k N . 

 

4.5  Summary 

The development of the decomposed subspace reduction (DSR) method for ISBFM based 

Galerkin meshfree solution of linear elastic fracture mechanics have been presented. The 

employment of ISBFM based Galerkin Meshfree method for the fine-scale fracture model not 

only allows a lower order integration of the Galerkin equation, it also yields a discrete system 

containing sparse sub-matrices for effective MOR procedures. With this computational 

framework for solving the fine-scale solution of fracture problems, the proposed ISBFM-DSR 

low-rank representation optimally preserves the discontinuity and singularity characteristics of 

fracture. 

In this work, the properties of various MOR methods have been investigated and 

compared. It has been shown that the standard modal analysis approach for constructing reduced-

order approximation of ISBFM fine scale model is ineffective with a direct employment of the 
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near-tip basis functions due to its inappropriate scaling effect to the stiffness matrix. As such, the 

low energy eigenmodes do not properly capture the near-tip responses. Further, it is also shown 

that the inhomogeneous Dirichlet boundary conditions (IDBC) are not correctly represented by 

the modal analysis approach. On the other hand, by means of the decomposed projection, the 

proposed DSR method preserves the essential crack-tip behaviors as well as IDBC in the low-

rank approximation.  

This study also shows that ISBFM-DSR performs better than the decomposed ISBFM-

DR method previously proposed for scalar cracked beam problem (Chen, Marodon & Hu 2015). 

The difference in performance in these two methods is due to the employment of projection 

matrix for the smooth solution. In ISBFM-DSR, the projection is based on the sub-matrix of 

stiffness associated with the smooth degrees of freedom instead of the Schur complement 

obtained from the condensed sub-matrix of stiffness associated with both smoothed and non-

smooth degrees of freedom in ISBFM-DR. It also shows that the reduced-order solution from 

ISBFM-DSR is not affected by the arbitrary scaling of enrichment functions since the project 

matrix P  is independent of the non-smooth bases. 

Although this study focuses on the static linear elastic fracture mechanics problems, the 

proposed ISBFM-DSR framework can be extended to crack propagation problems by further 

introducing techniques such as the local/global strategy (Kerfriden, Passieux & Bordas 2012; 

Passieux et al. 2013) or the subdomain method (Kerfriden et al. 2013; Radermacher & Reese 

2014). For fracture problems with material and geometric nonlinearities, while the same near-tip 

basis functions can be employed, the reduced-order basis will need to be updated at certain load 

steps based on some nonlinearity measures, and suitable hyperreduction schemes (Chaturantabut 
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& Sorensen 2010; Kerfriden et al. 2013; Ryckelynck, Benziane & Paristech 2010) could be 

applied to further reduce computational cost. 
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4.7  Appendix 

The discrete ISBFM matrix equation is obtained by introducing RK approximation 

together with enrichment functions into the ISBFM Galerkin weak formulations (4.12) and 

(4.13): 

 
T ˆˆ ˆ

    
    
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dK K

dK

f

K f
  (4.40) 

The components of 
22N NK , 

ˆ2 ˆ2ˆ N NK   and 
2 ˆ2N NK  in 2-dimension are defined as 

follows 
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where IB , ˆ
JB , and N  are 
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and ke  represents the unit normal outward vector on the boundary. Accordingly, the components 

of the force vectors 
2Nf  and 

ˆ2ˆ Nf  are 
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Chapter 5                                                                                               

Development of Manifold Learning Based Model Order 

Reduction for Nonlinear Mechanics 

   

This chapter presents a new approach to construct a robust reduced order model for 

nonlinear partial differential equations (PDEs) using a manifold based projection, called linear 

graph embedding (LGE) projection. The LGE projection is derived from a generalized manifold 

learning framework, called graph embedding, in conjunction with linearization techniques. The 

employment of LGE allows to introduce a priori statistical knowledge as well as local 

information of data in the projection construction. This study shows that the proposed projection 

better preserves the underlying data structure than the canonical POD projection for systems 

characterized by a wide variety of nonlinear behaviors, and it yields a robust reduced-order 

model less sensitive to noise and outliers. It also shows that the manifold learning technique used 

to determine robust projections can be viewed as a generalization of the weighted POD method. 

 

5.1  Introduction 

 In Chapter 3, we introduce a typical nonlinear model order reduction method based on 

POD and DEIM for nonlinear parameterized systems. The POD-DEIM scheme or the similar 

variant has been widely applied to reduced-order modeling in fluid mechanics (Carlberg et al. 

2013; Carlberg, Bou-Mosleh & Farhat 2011) and solid mechanics, such as fracture problems 
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(Goury et al. 2016; Kerfriden et al. 2013), hyperelastic structure (Radermacher & Reese 2016), 

elasto-plastic structure (Ghavamian, Tiso & Simone 2017; Ryckelynck, Lampoh & Quilicy 

2016), and computational multiscale modeling (Goury et al. 2016; Hernandez et al. 2014; 

Soldner et al. 2017). However, since the truncated POD basis is very sensitive to the magnitude 

of the snapshots, the POD-DEIM scheme lacks robustness for many other applications that 

typically involve a wide range of parameter changes (Amsallem & Farhat 2008; Carlberg & 

Farhat 2008), such as design optimization, control and data-driven systems. Intuitively, the 

online computations of such systems call for adaptively using new reduced-order modes (ROMs) 

each time a sensitive physical or modeling parameter is varied. However, reconstructing a ROM 

online is usually computationally expensive, and might compromise the gain from using MOR 

methods.   

There are at least three approaches that have been proposed to address the 

aforementioned adaptation issue in the context of the POD method (Peng & Mohseni 2016): 

global POD (GPOD), local POD, and adaptive POD. Global POD approximates the solution of 

interest using a global basis obtained based on the idea of data weighting to enhance robustness 

(Carlberg & Farhat 2011; Christensen, Brøns & Sørensen 1999; Schmit & Glauser 2004; Taylor 

& Glauser 2004). In the local POD approach, the precomputed snapshots usually can be 

clustered into multiple subdomains, either through parameter (or time) domain partitions (Eftang 

& Stamm 2012; Haasdonk, Dihlmann & Ohlberger 2011; Peng & Mohseni 2014), or space 

domain partitions (Amsallem, Zahr & Farhat 2012; Burkardt, Gunzburger & Lee 2006; Kerfriden 

et al. 2013; Peherstorfer et al. 2014). Then POD is performed at each subdomain of the snapshots 

to construct the local reduced-order basis to project the original system onto the associated 

subspace. During the online computation, an appropriate subdomain along with its local 
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subspace is selected for reduced modeling, depending on the current state (parameters) of the 

system. In contrary to local POD, adaptive POD utilizes all the precomputed snapshot data and 

constructs adaptive reduced basis through subspace interpolation methods, such as angle 

interpolation (Lieu, Farhat & Lesoinne 2006; Lieu & Lesoinne 2004) and differential geometry-

based interpolation (Amsallem & Farhat 2008, 2011). 

The local approach based on partitions of snapshots (Amsallem, Zahr & Farhat 2012) or 

parameter space (Peherstorfer et al. 2014), however, could encounter difficulties such as unstable 

clustering behavior for large numbers of clusters if the clustering method and its classification 

parameters are not carefully chosen (Von Luxburg 2007). Thus, it may still need a large number 

of subdomains due to the poor division or clustering. Furthermore, numerical instabilities during 

the online reduced order computing could be introduced when the selected reduced model is 

switched from one to another (Amsallem, Zahr & Farhat 2012; Idelsohn & Cardona 1985) if the 

state solution lies just between two partitions. If there are strong bifurcation within the solution 

or parameter space (Brunton et al. 2014; Sargsyan, Brunton & Kutz 2015), information across 

several neighbor partitions may be needed. On the other hand, the subspace interpolation 

approach is usually a low-order interpolation method and might be restricted to the interpolation 

between two precomputed reduced-order bases corresponding to two parameters that are 

sufficiently close. Moreover, adaptive POD usually requires constructing a reduced system 

during the online stage rather than the offline stage such that it is less efficient compared to the 

other two strategies. 

 Given only a few sets of snapshots are provided in most solid mechanics problems of 

interest compared to time-dependent systems, we prefer to take advantage of all data and thus, 

the clustering is not an appropriate solution. To handle the issue of irregular distribution of 
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snapshots, we present a new model reduction method inspired from the Graph embedding 

framework (Belkin & Niyogi 2003; Yan et al. 2005, 2007) to constructed robust reduced-order 

projections. The proposed method can be related to the so-called weighted POD technique, 

which has been demonstrated effective in the tests of some parameter-dependent systems 

(Bistrian & Susan-Resiga 2016; Carlberg & Farhat 2011; Christensen, Brøns & Sørensen 1999). 

 This chapter is organized as follows. The formulations of standard nonlinear model order 

reduction based on POD and DEIM are briefly summarized in Section 5.2. To over the limitation 

of POD (or known as principal component analysis (PCA) in machine learning area) for linear 

manifold, manifold learning techniques used to discover nonlinear data structure are reviewed in 

Section 5.3. Then, a general framework based on graph embedding is introduced to develop the 

proposed LGE projection by using local information of data, which is shown less sensitive to 

outliers or other irregular data. Section 5.4 presents examples to demonstrate the effectiveness of 

LGE. Section 5.5 gives the concluding remarks of this Chapter. 

 

5.2  Problem Formulation: Nonlinear Model Order Reduction 

5.2.1  High-dimensional parameterized nonlinear discrete model 

We consider a generic parameterized partial differential equations (PDEs), where the 

parameters may represent different physical quantities the system depends on, for example, 

material properties, system configuration, initial conditions, and boundary conditions. Let   

denote the problem spatial domain, l  denote a predefined parameter domain, and 

  denote a solution manifold embedded in -dimensional Euclidean space, where  

is the number of degree of freedoms (DOFs) of the associated discretized system. By spatial 
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discretization (e.g., finite difference, finite element, or meshfree methods), a parameterized 

steady PDE in discrete manner can be expressed as 

 ( ) , 0,Au + f u =  (5.1) 

where 
A  and :  f  correspond to the linear and the nonlinear term of the 

PDE, respectively. A  is a constant matrix, but the function f  evaluated at all spatial grid points 

nonlinearly depends on the parameters   and the current state u . The solution (or state vector) 

: u  is implicitly defined by Equation Online/offline splitting  given any fixed input 

parameters  . Thus, the state is dependent on the input parameters, and we denote ( )=u u  

with some abuse of notation. 

Similarly, a spatial discretization of a time dependent PDE results in a system of ordinary 

differential equation (ODE) as follows 

 ( , ,)t  u u f ,A u   (5.2) 

with an initial condition 0(0, ) μu u , where :   f  denotes the discretized 

nonlinear term, where [0, ] T  denotes a time domain. For formulating both time 

dependent and steady parameterized PDEs under the same computational framework,   is 

also used to represent the Cartesian product ( , )t     in (5.2) with some abuse of notation. 

As such,   denotes generic parameters that could be time, material coefficients, boundary 

conditions, etc. 

The Jacobian of the above parameterized systems in Online/offline splitting  and (5.2) 

is given by 
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 ( ) ), ( ,,f  J u A J u  (5.3) 

where ( ), J u  is a function of   and u . 

 

5.2.2  Proper orthogonal decomposition 

The POD method introduced in Chapter 3 is used to construct the reduced-order basis 

matrix V  for the dimensionality reduction of the state unknown. The collection of discrete 

snapshots (Sirovich 1987) are precomputed by the original high-dimensional system (either 

Online/offline splitting  or (5.2)). Let 1[ ,..., ] s

ss N

N
X = u u  be a snapshot matrix, where each 

column ( )ii u u  is the solution corresponding to input parameters i . The key idea of POD is 

to find a k -dimensional subspace 1span{ },...,s k v v  that best fits the snapshot space 

1,span{ . }.. ,
ss N u u . As such, the solution ( )u  is approximated on the k -dimensional 

subspace given by the ROB basis 

 ( ) ( ),r  u u Vu   (5.4) 

where 
kr u  denote the reduced coefficients (the state variable in the subspace coordinate 

system), u  is usually the mean value of snapshots in boundary value problems (Chatterjee 2000) 

or the initial condition 0u  in initial-value problems (Amsallem, Zahr & Farhat 2012). A debating 

point in the community is whether the “ensemble” mean should be subtracted from the snapshot 

matrix for the application of POD. Most previous studies in literature adopted the mean 

subtraction. A discussion of this point is given in (Chatterjee 2000). In this study, POD is applied 

to the centered state snapshot matrix sX  by subtracting u . 
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Following Galerkin projection and projecting the steady system Online/offline splitting  

onto s , it yields the corresponding reduced-order model 

 ( ) .,T r T r  0V AVu V f Vu   (5.5) 

Analogously, a reduced system of a time dependent PDE (5.2) is 

 ,( ).r T r T r u V AVu V f Vu   (5.6) 

The associated reduced Jacobian is 

 ( ) ( ), ,r T T r

f  J u V AV V J Vu V.   (5.7) 

 As pointed out in Chapter 3, despite its low dimension, the resulting nonlinear ROM does 

not guarantee computational efficiency. This is because the online evaluation of the nonlinear 

function not only scales with the dimension of the reduced state variable, but also the size of the 

underlying high-dimensional model (HDM). This is called lifting bottleneck.   

 

5.2.3  Discrete empirical interpolation method (DEIM) 

Many nonlinear MOR methods equipped with a hyper reduction technique have been 

proposed to tackle this lifting bottleneck at the cost of introducing an additional layer of 

approximation. Because the proposed manifold-based projection can be combined with DEIM to 

solve nonlinear systems, we briefly review DEIM in this section. More details about DEIM can 

be found in Section 3.4.2. The key idea behind DEIM is to compute the nonlinear term at a small 

selected set of spatial grid points and extrapolate its value at all the other points. Introducing 

DEIM, the nonlinear vector can be approximated by 
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† †ˆ( ( )) ( ( )) ( ) ( ( )) ( ( )),T T T     f u f u Z P Z P f u ZZ P f u   (5.8) 

where 
ˆ

ˆ1[ ,..., ] k

k

Z = z z  denotes the collateral POD basis of the nonlinear term snapshot 

( ( ), ) f u  and n̂P  is the selection matrix obtained by a greedy algorithm (Chaturantabut 

& Sorensen 2010). It is aware that when ˆn̂ k  it is also referred to as Gappy-POD (see Section 

3.4.2).  

  As a result, we can obtain the POD-DEIM reduced systems of the two PDEs in 

Online/offline splitting  and (5.2) as follows 

 
†ˆ ( ) ,,T r T T r  0V AVu V ZZ P f Vu   (5.9) 

 
†ˆ ,( ),r T r T T r u V AVu V ZZ P f Vu   (5.10) 

and the associated reduced Jacobian is 

 †ˆ ˆ( ) ,( ), .r T T T r

f  J u V AV V ZZ P J Vu V   (5.11) 

Notice that 
kT kV AV  and † ˆˆ kT nV ZZ  are calculated only once at the offline stage, and 

ˆ
,( )T nr P f Vu  requires evaluation only at n̂  entries online of ( ), rf Vu . 

 

5.2.4  Potential limitations of POD based model reduction methods 

It has been reported that if the nonlinear system exhibits a wide variety of behaviors over 

the range of parameter domain, the local features are hard to be represented in a single global 

basis constructed by POD learning approach (Amsallem, Zahr & Farhat 2012; Peherstorfer et al. 

2014; Peng & Mohseni 2016; Sargsyan, Brunton & Kutz 2015). This is because POD based on 

least squares minimization tends to preserve the faraway data information and is easily mislead 
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by the “outliers”. From statistical perspective, POD method only works well for data that is 

Gaussian or lying on a “flat” manifold. The drawbacks of POD will be further explained in 

Section 5.3. 

Compared to the POD approximation of state solutions, it is even worse for the DEIM 

approximation of nonlinear functions because those nonlinear data in PDEs usually are less 

smooth and nonlinear over the parameter domain than the state solution. Take the one-

dimensional Burgers’ problem in Section 5.4.3 as example, the state solution over the parameter 

of time  exhibits as a moving “step” function along the spatial domain, whereas the nonlinear 

solution behaves like a traveling Dirac Delta function. Therefore, for DEIM approximation a 

relatively large number of POD basis vectors and associated interpolation points are needed in 

order to accurately represent ( )f  over all possible situations of interest. It may lead to a more 

time-consuming evaluation in the reduced system than the full system.  

This difficulty motives the present study to develop an alternative subspace learning 

method to preserve better nonlinear structure of data than the standard POD method and provide 

an outlier-insensitive projection for nonlinear model reduction via DEIM. 
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5.3  Manifold Learning via Graph Embedding Framework 

5.3.1  Manifold learning 

 

(a) (b) (c) 

Figure 5.1: (a) Two-dimensional manifold structure represented by the three-dimensional S-

curve data set; (b) Two-dimensional embedding obtained by PCA; (c) Two-dimensional 

embedding obtained by a nonlinear dimensionality reduction technique, e.g. LSTA (Zhang & 

Zha 2004). 

 

POD is essentially identical to Principal Component Analysis (PCA) (Jolliffe 2002), 

which is a classical dimensionality reduction technique for manifold learning. PCA is designed 

to find a set of mutually orthogonal basis functions representing the directions of maximum 

variance of the original n -dimensional data so that the pairwise Euclidean distances can be best 

preserved in the  ( )d n -dimensional linear subspace. If the data is embedded linearly or almost 

linearly in the ambient space, PCA is guaranteed to discover the dimensionality of the manifold 

and provide a “best” low-dimensional representation. In many real-world problems, however, 

data may be not sampled from a linear subspace. For example, it is always believed that the face 

images are sampled from a nonlinear low-dimensional manifold (He et al. 2005), or the 

snapshots gathered from nonlinear PDEs in this study. PCA has difficulty in discovering the 
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underlying nonlinear structure in these cases. For example, the S-curve (Figure 5.1(a)) 

represented by data is a two-dimensional nonlinear manifold embedded in 3D Euclidean space 

and can be characterized by two global internal coordinates, as shown in Figure 5.1(c). But the 

covariance matrix of data has full-rank, and thus, PCA is unable to find the exact two-

dimensional embedding (Figure 5.1(b)). 

Many nonlinear dimensionality reduction (NLDR), or called manifold learning 

techniques have been proposed to discover the nonlinear structure of the manifold (e.g., Figure 

5.1(c)), including locally linear embedding (LLE) (Roweis & Saul 2000), ISOMAP (Tenenbaum, 

de Silva & Langford 2000), Laplacian eigenmaps (LE) (Belkin & Niyogi 2001), and local 

tangent space alignment (LTSA) (Zhang & Zha 2004), to name a few. Although the manifold 

learning methods were motivated and formulated differently, they can be unified in a general 

framework: graph embedding (Yan et al. 2005, 2007). These manifold learning methods are 

distinct in using different local information of data, such as pairwise distances, local 

neighborhoods, local linear relationships, but they all form a final optimization to search directly 

for a global low-dimensional coordinates through the integration of all local information based 

on the alignment trick (Zhang et al. 2009; Zhang & Zha 2004). For a more comprehensive 

review of other manifold learning methods, we refer the reader to (Lee & Verleysen 2007; Van 

Der Maaten, Postma & Van Den Herik 2009).  

In the following sections, we first briefly review the graph embedding framework, which 

is developed based on Laplacian Eigenmap. Then, we introduce the linearization techniques (He 

& Niyogi 2004; Min, Lu & He 2004; Park et al. 2004; Xiaofei He et al. 2005; Yan et al. 2005) 

that lead to the graph-based projections that is used for robust reduced order modeling. 
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5.3.2  Laplacian eigenmaps (LE) 

Laplacian eigenmaps (LE) (Belkin & Niyogi 2001) aims to capture the local information 

of the manifold by finding a low-dimensional representation in a way that nearby points in the 

manifold are mapped to nearby points in the low-dimensional embedding. Note that in this 

section, we follow the conventional notations in manifold learning community.  

More specifically, if given a data matrix 1[ ,..., ] n N

N

=X x x  with column centering, 

where 
n

i x , n  is the feature dimension, and N  is the sample number, LE finds a low-

dimensional ( )d n  embedding 1[ ,..., ] d N

N

=Y y y  (i.e., the reduced coefficients in the field 

of model order reduction) such that if ix  and jx  are close to each other, then so are iy  and jy . 

This can be achieved by minimizing the Hall’s energy (Koren, Carmel & Harel 2002): 

 
2

,

( ,)
N

ij i j

i j

w Y y y   (5.12) 

subject to appropriate constraints on Y  that ensure the nontrivial solution. Letting N NW  be 

the matrix of weights whose entries ijw  measure the affinity between two points ix  and jx , and 

D  be a diagonal matrix with diagonal entries jj iji
d w , the objective function can be 

rewritten as 

 

22

, ,

( )

2trace( )-2trace( ) 2trac

(

e(

2 ) 2

)

2

        ,

N N N
T T T

ij i j i j jj j j ij i j

i j j i

T T

j

T

w d w    

 

  Y

YDY YW

y y y y y y

Y YLY

y y
  (5.13) 
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where  L D W  is called the Laplacian matrix that is a symmetric, positive semidefinite 

matrix. The optimal Y  that minimizes the objective function subject to the constraints 

T  IYDY  and  0YD1  is given by the 2
nd

 to 
th( 1)d   minimum eigenvalue solution to the 

generalized eigenvalue problem (5.13), where [1,1,...,1]T1 . The constraint T  IYDY  removes 

an arbitrary scaling factor in the embedding, and  0YD1  avoids the constant embedding, which 

can be interpreted as removing a translation invariance in Y .  

The standard LE algorithm is summarized in Table 3.1. An alternative approach to 

construct the adjacency graph is by -neighborhoods, where nodes i  and j  are defined as 

connected if 
2|| ||i j x x  via the usual Euclidean norm. Since it is difficult to choose a proper 

parameter  and easily leads to disconnected graph (Belkin & Niyogi 2001), we adopt the k-NN 

in the algorithm. It is known that based on spectral graph theory (Chung & Graham 1997), the 

embedding obtained by the LE algorithm optimally preserves local information. Moreover, 

Belkin and Niyogi (2003) pointed out that the Laplacian matrix L is analogous to the Laplace 

Beltrami operator on compact Riemannian manifolds, and the choice of the Gaussian weighted 

matrix (5.14) is related to the Green’s function for the standard heat equation. Thus, the LE 

algorithm capable of discovering the optimal low-dimensional representation of nonlinear 

manifold structure has been justified. 
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Table 5.1: Laplacian Eigenmaps Algorithm (Belkin & Niyogi 2001) 

Input: A set of points 1{ }N

j jx  in a manifold , integers k  and d . 

Output: A set of points (embedding) 1{ }N

j jy  lying in 
d

. 

1. Constructing the adjacency graph by k  nearest neighbors (k-NN): For each data point jx , search the k  

nearest neighbors, which are clustered into { },  ( ),i jkix x  according to some distance measurement 

:  dist  .  

2. Choosing the weights: Define a matrix of weight 
N NW  whose entries ijw  measure the affinity 

between two connected points ix  and jx . For example, ijw  can be defined as a heat kernel (with a given 

parameter 0  ): 

 

2

2

( , )
exp ,   if 

2

0                         

( ) or ( ),

els       . e, 

k k

i j

i j

ij

dist
j i

w 

  
        




x x
x x

  (5.14) 

3. Eigenmaps: Find a matrix 1[ ,..., ] d N

N

=Y y y  whose rows are the d  generalized eigenvectors of the 

pair ( , )L D  associated with its 2
nd

 to 
th( 1)d   smallest generalized eigenvalues. That is, solve for Y  

from: 

 ,YL ΛYD   (5.15) 

where Λ  is a diagonal matrix with the generalized eigenvalues. 

 

5.3.3  Graph embedding and linearization approach 

One of the major limitations of most NLDR methods is that they do not generally provide 

a functional mapping between the high and low dimensional spaces, which are applicable both 

on the training data and the novel test data. There are some approaches that attempt to address 

this issue by either the linearization techniques (Cai et al. 2007; He & Niyogi 2004; Min, Lu & 

He 2004; Park et al. 2004; Xiaofei He et al. 2005) or providing an out-of-sample extension 

(Bengio et al. 2003; Strange & Zwiggelaar 2010) of the NLDR methods.  
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 Graph embedding (Yan et al. 2005, 2007) is a general framework along with its 

linearization and kernelization, which theoretically unifies most previous algorithms. The 

essence of the graph embedding is to represent each vertex (each data points) of a graph by 

preserving the similarities of vertex pairs measured by the graph weight matrix, which 

characterizes desired statistic or geometry property of the data set. Graph embedding is 

developed based on LE starting with an undirected weighted graph { , }G  X W , where  

1[ ,..., ]N=X x x  is a set of N  vertices and W  is a similarity matrix. Recalling LE in (5.13), the 

optimal graph embedding that preserves the similarity of a graph is obtain by minimizing the 

graph preserving criterion as follows 

 
2

,

arg min arg min trace( ),
T T

N

ij

T

i j

i j

w
 

  
YBY C YBY C

Y y y YLY   (5.16) 

where B  and C  are the constraint matrices that impose certain conditions on the embedding 

Y . Although the minimization problem provides the graph embedding for the data set, it cannot 

directly present the low dimensional representation for new testing data due to the lack of 

explicit mapping.  

 The linearization technique is introduced by assuming the low dimensional representation 

can be obtained from linear projections as TY Z X . Thus, the minimization problem is changed 

to 

 
2

,

arg min arg min trace( ).
T TT T

N
T T T

ij i j

i j

Tw






  
B C B CZ X X Z Z X X Z

Z Z x Z x Z X ZLX   (5.17) 

If T   IXBX C  is used, the constraint ensures Z  an orthonormal projection. To extend the 

linear projections to nonlinear case, one can utilize the kernel trick (Schölkopf, Smola & Müller 
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1998; Yan et al. 2005), which maps the data from the original input space to a higher 

dimensional Hilbert space and then the algorithm is performed in this new feature space. More 

details about kernelization can be found in (Ham et al. 2004; Yan et al. 2005). But the current 

study is limited to the standard linearization technique for simplicity. 

It has been shown in (Yan et al. 2005) that many NLRD methods, such as ISOMAP, 

LLE, and LE, and the associated linear versions are just special cases of the graph-based 

formulation (5.16) and (5.17) with specific similarity and constraint matrices. Many other 

frameworks that unified different dimensionality reduction approaches have also been developed 

in statistics (machine) learning community, such as weighted or generalized PCA (Jolliffe 2002; 

Koren & Carmel 2004; Vidal, Ma & Sastry 2016), kernel methods (Ham et al. 2004), maximum 

entropy unfolding (Lawrence 2012), and patch alignment (Zhang et al. 2009). 

 

Link to standard PCA/POD 

PCA (refer to Section 3.3.1) can be written within the graph embedding framework as 

follows 

 *

PCA arg max trace( ),
T

TT




IZ Z

Z XHZ X Z   (5.18) 

where 
1 T

N
 IH 11  is a mean operator to ensure the sum of columns of X XH  is a zero 

vector (note that HH H  and XH X ). Thus, we can see that when the weight of all pair of 

points are chosen as a constant, i.e. 1/ijw N  for all i j  (thus, L H ), and the constraint is 

defined as T   IXBX C , the linearization of graph embedding in (5.17) can be used to find the 

standard PCA (or POD) projection in Section 3.3.1. It should be also noted that maximizing of 
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the objective is used in (5.18) because PCA/POD seeks for projection directions with maximal 

variance. Moreover, according to the formulation in (5.17) PCA can be expressed as 

 
2

*

PCA

1
arg max .

T

N
T T

i j

i j N


 
IZ Z

Z Z x Z x   (5.19) 

It indicates that the PCA projection is the one that maximally preserves the pairwise distances of 

data in the low-dimensional representation. 

 

5.3.4  Linear graph embedding projection 

The graph embedding framework along with its linearization allows to recover most 

popular NLRD and linear dimensionality reduction methods (Belhumeur, Hespanha & Kriegman 

1997; Wright et al. 2010; Zhang et al. 2009) by properly adjusting the weight matrix and the 

graph locality. It has also been shown to achieve impressive performance superior to the standard 

PCA (or POD) in computer vision and pattern recognition applications (He et al. 2005; Yan et al. 

2007) for non-Gaussian distributed data. Inspired by the graph embedding framework, we 

develop a linear graph embedding (LGE) projection as a more optimal candidate for nonlinear 

MOR as the priori knowledge of the data system can be utilized during the projection 

construction. 

Let X  be a centered snapshot matrix of the quantities of interest (the column centering is 

not necessary to conduct beforehand because it could be achieved by using uniform weighting in 

LGE). Following the graph embedding framework in Section 5.3.3, the LGE projection 

1[ ,..., ] n d

d

Z = z z  that maps the high n -dimensional features to the low d -dimensional 

embedding is formally obtained by the following graph embedding framework 
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2

*

LGE

,

arg max arg max trace( ),
T T

N
T T T T

ij i j

i j

w
 

  
I IZ Z Z Z

Z Z x Z x Z XLX Z   (5.20) 

where  L D W , and W  is a user-defined similarity matrix that better represents the nonlinear 

structure of input data with components defined as 

 
( ) or ( ),( ( , )),   if 

0                     ,  e  lse. 

n ni i jk kj

ij

w dist j i
w

 
 


x x x x
  (5.21) 

As we can see, LGE is to find a projection to construct an affine subspace where the weighted 

pairwise distances of the low-dimensional data representation are maximally preserved. In LGE, 

there are three adjustable functions and parameters, which allow one to design a better projection 

for reduced order modeling. First, nk  denotes the number of neighbors to construct the adjacent 

graph, which controls the locality of the projection. Second, the distance function ( , )i jdist x x  is 

usually defined as 2l  norm in Euclidean space, i.e. 2( , ) || ||i j i jdist  x x x x . In many 

engineering applications, the data 
ix  is extracted from a parametrized system with respective to 

certain parameters  , i.e. ( )ii x x . In this manner, ( , )i jdist    can be used as the distance 

function to replace ( , )i jdist x x . Lastly, :w   is a function of distance to assign proper 

affinity between two neighbor data points, which has significant impact on constructing a 

projection that preserves the localities and nonlinearities of the data structure. Some optional 

choices of weight function are 

1. Inverse distance weighting: 
1

( ( , )) ,
( , )

i j p

i j

w dist
dist

x x
x x

     (5.22) 

2. Gaussian weighting: 

2

2

( , )
( ( , )) exp( ),

2

i j

i j

dist
w dist


 

x x
x x      (5.23) 
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where   can be defined as the maximum distance to normalize the pairwise distance.  

 

Link to weighted POD method 

Here, we show that the proposed LGE approach can be related to the weighted POD 

approaches recently used in reduced-order modeling (Bistrian & Susan-Resiga 2016; Carlberg & 

Farhat 2011; Peng & Mohseni 2016) for better capturing local information with respective to 

parameter variations in the snapshot data. Essentially, the weighted POD approaches search for 

the best projection based on either goal-oriented least squares (Carlberg & Farhat 2011) or 

weighted snapshot matrix (Peng & Mohseni 2016). They all lead to the same weighted version of 

PCA (Zhang & Zha 2003): Given a data set 1[ ,..., ] n N

N

=X x x  and weights 1{ }N

j j  , we want 

to best fit the data set in a weighted sense using an affine mapping 

 ,  1,..., ,i i i N  x x Zy   (5.24) 

where n dZ  denotes the orthonormal basis of the affine subspace, 
n

 x  is the constant 

shift vector of the affine space, and 
iy  represent the low-dimensional embedding coordinates of 

the points 
ix . To this end, the following weighted least squares problem is given 

  
2

2

2, ,
1

min  ,
T

N

j j j

j






 
IY Zx Z

x yZx   (5.25) 

where 1{ }N

j j   weight on the snapshot reconstruction. The optimal solution can be easily shown 

as 

 
2 2

1,   [ ,..., ],   ( ),T

i i i d i i

i i

      x x Z v v y Z x x   (5.26) 
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where x  is the weighted mean of snapshot data, and 
1,..., dv v  are the largest singular vectors of 

( )T

X x 1 Γ  with 1diag([ ,..., ])N Γ . Let ( )T

   1X X x , the weighted PCA in (5.25) can 

be also formulated in the graph embedding framework by derivations as follows 
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where 
2 2T T

  I 1 1H γ γ  and 
2 2 2

1[ ,..., ]T

N γ . Thus, the Laplacian matrix L  in (5.20) 

corresponding to the weighted PCA is defined as  

 
2 2 2 2 2( ) ,TT T

    1L H Γ H Γ γ γ γ   (5.28) 

 and the associated similarity matrix W  becomes 
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  (5.29) 

Conversely, if a symmetric matrix W  with a full graph (i.e., all components are non-zero except 

for the diagonal ones) are defined in (5.21), 1/2( )j ij

i

w    is defined to ensure an equivalent 

weighted PCA. Therefore, compared to weighted POD (Bistrian & Susan-Resiga 2016; Carlberg 

& Farhat 2011; Peng & Mohseni 2016), the proposed LGE seems to be a more generalization 

approach since it allows to control the local support of neighbor graphs 
nk . 
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LGE: a robust projection 

As pointed out before, the POD learning methods based on least squares estimation are 

known for its sensitivity to “outliers”, yet outliers are common in realistic training sets. The term 

outlier refers to data that does not conform to the assumed statistical model. In some realistic 

applications, however, outliers are not necessary “noise” in a traditional sense but rather are 

violations of highly simplified mathematical models of the world, such as in computer vision 

(Torre & Black 2003). It motives the development of LGE projection to improve the outlier 

robustness. It is also shown that outlier removal and noise reduction help to better preserve the 

topological structures of the nonlinear manifold in a neighborhood graph constructed from a 

finite set of sample points (Zhang & Zha 2003). Note that different from using weighted local 

learning techniques to remove outlier (Zhang & Zha 2003), this chapter focuses on developing a 

“robust” projection for reduced-order modeling that can tolerate some percentage of outlying 

data without having the solution severely skewed from the desired solution. 

To illustrate the improvement of LGE over POD, a simple synthetic example is given in 

Figure 5.2, where a two-dimensional data set with 50N   points, comprising 48 normally-

distributed points and two outlying points. As can be seen in the figure, the first POD basis 

projects the data in a direction that emphasizes the outliers while ignoring almost the whole 

structure. This is because POD strives to maximize the sum of all squared distances and the 

pairwise distances involving outliers are significantly larger than the other pairwise distances, as 

suggested by (5.19). In contrast to the POD projection deceived by the outliers, the LGE 

projection is less sensitive to outliers while able to capture the global structure of the data, by 

underweighting distant data elements and using adjacent graphs with local support. Moreover, 

LGE yields lower reconstruction error measured in the average relative error defined as 
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where x  denote the low-rank reconstruction of the original data x  using reduced-order basis. 

 

   

(a) original data (b) POD reconstruction (c) LGE reconstruction 

Figure 5.2: (a) Original dataset (contains two outliers) and the first principal component 

directions of POD (blue arrow) and LGE (red arrow). (b) The reconstruction solution by POD 

using one basis (the reconstruction error 
23.57 10r
  ). (c) The reconstruction solution by 

LGE using one basis, the inverse distance weighting with 2p   and 20nk   (the reconstruction 

error 
23.09 10r
  ). 

 

5.4  Robust Nonlinear Model Reduction Based on LGE 

The application of the LGE projection for dimensionality reduction is the same as the 

standard POD projection. For example, the projection basis V  for subspace approximation of the 

state variables (see (5.4)) and Z  for the nonlinear vectors (see (5.8)) can be constructed based on 

LGE in (5.20) instead of POD in (5.19). It should be borne in mind that if the solution manifold 

exhibits nearly Gaussian distribution, POD yields an optimal low-rank approximation. Therefore, 

in the following numerical examples, the conventional POD basis is still chosen for the reduced-
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order approximation of state solution because its manifold is not as severely nonlinear or 

localized as the nonlinear counterpart. But if the state data can be told by domain expertise to be 

non-Gaussian or with some outlying information, LGE basis is also suggested for state solution 

reduction. 

We take the reduced-order modeling of elliptic PDEs in (5.9) to illustrate the procedures 

of using LGE for DEIM for nonlinear MOR, as shown in Table 5.2. The implementation for time 

dependent dynamic problem can be easily achieved by modifying the online stage to a time 

integration scheme. In the offline stage, the POD basis and the reduced linear operator are 

computed in step 1 and 2, respectively. The LGE basis of nonlinear snapshots used for the DEIM 

approximation is obtained in step 3. In the online stage, steps 5.1-5.3 form the main loop of the 

online computation using the reduced coordinates, and their computational complexity is 

independent of the underlying discretization.  Here, we apply the LGE basis to the analysis of 

parameterized systems to compare its quality with that of the standard POD basis.  
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Table 5.2: Reduced order modeling of elliptic partial differential equations using linear graph 

embedding projection for DEIM 

Input: Precomputed solution snapshots sN

s


X , nonlinear snapshots fN

f


X  

Output: The approximation solution in the original coordinate system ( ) ( )r  u u Vu  

Offline: 

1. Compute the POD basis matrix kV  for the solution snapshots matrix 
sX . 

2. Use the Galerkin projection to compute T
V AV  for the linear operator.  

3. Create DEIM approximation for nonlinear operator 

3.1 Construct the similarity matrix f fN N
W  by choosing the distance function ( , )dist   , 

weighting function w , and the neighbor number 
nk , as (5.21). 

3.2 Compute the LGE basis matrix 
k̂Z  by solving the generalized eigenvalue 

decomposition problem ( )T

f f X LX Z ZΛ  induced from (5.20). 

3.3 Use the Greedy algorithm based on Z  to obtain the DEIM indices . 

3.4 Compute 
ˆ†( )T T kk M V Z P Z  for the nonlinear term and Jacobian. 

Online: 

4. Given 0

r
u  as the starting point in the reduced coordinate system for a new input  . 

5. for 1,....,j  (until convergence in certain criterion) do 

5.1 By only evaluating the selected component related to , compute the DEIM approximation 

of the reduced residual vector and the reduced Jacobian,  

 
( ) ( ) ( )

( )

ˆ ( ) ( ),

ˆ(

, ,

, ,) ( ) .

r T r r

j j j

r T T r

j f 





  

 

R u V AVu Mf Vu

J u V AV MP J Vu V
  (5.31) 

5.2 Solve  ( ) ( ), ,ˆ ˆ( ) ( )r r r

j j   J u u R u .    

5.3 Update ( 1) ( )

r r r

j j   u u u . 

      end 
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5.4.1  Benchmark problem: 2D Parametrized function 

  

(a) (0.1,0.1)   (b) (0.9,0.9)   

Figure 5.3: Function 2g  has a sharp peak in one of the two corners of the spatial domain. 

 

If the system exhibits a wide range variation of behaviors, many DEIM basis vectors and 

interpolation points are required to accurately approximate the nonlinear term. This is because 

the global subspace spanned by POD basis tries to preserve the global structure of the snapshot 

data at the expense of losing the local varieties over a range of bifurcation parameters. On the 

other hand, POD is not robust in the sense that outlying measurement can significantly skew the 

solution from the desired solution (Ruppert 1987; Torre & Black 2003), as illustrated in Figure 

5.2. The lack of robustness may lead to a POD projection basis that over-emphasizes certain 

“abnormal” data and loses the representation of more general solution behavior.  

We demonstrate these issues on an example modified from the 2D nonlinear 

parametrized function 1g  in Section 3.4.2 as follows  

 
2 1 1

1 2 1 2 1 2 1 2( ; ) ( , ; , ) (1 ,1 ;1 ,1 ).g g x x g x x         x   (5.32) 

The same parameter setting in Section 3.4.2 is used here, i.e. 2g  are discretized by a 20 20  

( 400 ) equidistant grid in   and sampled on a 25 25 ( 625sN  ) equidistant grid in . 
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Depending on the parameter  , the function  may trigger a high-gradient localization in one 

of the two corners of   near to [0,0]x  or [1,1]x , as shown by the examples in Figure 5.4.  

 

 

Figure 5.4: The normalized singular value 2 2( )i ii
   (left) and the first six corresponding 

POD basis vectors (right) of the of the snapshot matrix 
sX  corresponding to the nonlinear 

function 2g . 

 

  

Figure 5.5: The distribution of first 12 DEIM points (left) selected by the greedy algorithm for 

the nonlinear function 2g  and the comparison of average relative errors of POD and DEIM 

approximations (right) for the training data. 

 

2g
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Figure 5.6: The normalized singular value 2 2( )i ii
   (left) and the first six corresponding 

LGE basis vectors (right) of the of the matrix 
T

s sX LX  corresponding to the nonlinear function 

2g , where the quadratic inverse distance weighting and 40nk   are adopted. 

 

Although 2g  is simply combination of 1g  functions with variable transformations, we 

observe a much slower decay of the singular values of the snapshot matrix corresponding to 2g , 

as shown in Figure 5.4, implying the overall snapshot behavior across the sampled parameters is 

difficult to capture by the POD basis. Similar to the previous example in Section 3.4.2, the DEIM 

points learned from training data of 2g  function are majorly positioned near the two corners 

where a sharp peak may occur (see Figure 5.5). However, this nature may cause the lack of 

robustness as the DEIM algorithm overly favor the data exhibits extreme localizations such that 

it simply places the sensing points locally at the sensitive region and leave the remaining large 

are undetected and ignored. Unless sufficiently large size of basis and interpolation points are 

used, this is dangerous for reduced-order modeling of real engineering applications since new 

test parameters are usually not a priori known and they may trigger critical mechanical response 

in the area unseen by the DEIM-points.     



 

136 

Now we examine the quality of the proposed LGE projection. The corresponding 

normalized singular values and LGE basis vectors are plot in Figure 5.6, where we can observe 

the singular values of LGE decay much faster than POD in Figure 5.4 due to the weighting 

operator in 
T

s sX LX  (refer to (5.20)). To measure the approximation performance by DEIM 

based on different projection basis (POD or LGE), the average relative error defined in (7.19) is 

also used. To distinguish from the standard DEIM based on POD basis (see Section 5.2.3), the 

one based on the LGE projection to identify interpolation points and perform DEIM 

approximation for nonlinear functions is named as Graph-DEIM or G-DEIM. 

 

Table 5.3: The average relative error of the reconstruction of training data by the LGE 

approximation and the corresponding DEIM (G-DEIM) approximation using 12 projection basis 

under different weight functions and neighbor numbers nk .  (The reconstruction errors of the 

standard POD and DEIM approximation are also given as reference) 

 LGE approximation G-DEIM approximation 

   20 40 80 20 40 80 

Constant,                                                                   

Inverse distance,                                                                 

Inverse distance,                                                                 

Reference POD:           DEIM:           

 

A parameter study of LGE approach is present in Table 5.3, where LGE and the LGE-

based DEIM (G-DEIM) are used to approximate the training data (or called reconstruction) using 

ˆ 12k   projection basis (also 12  DEIM points). It can be seen from Table 5.3 that as more 

neighbor points, e.g., from 20nk   to 80nk  , are used to construct the LGE projection, higher 

reconstruction accuracy can be obtained by both directly projection approximation, i.e. 
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T

s sX ZZ X  and G-DEIM approximation, 1 1ˆ( )T T

s s

 X Z P Z Z P X . This is can be explained 

by the fact that more information of data used for learning helps to better capture the global 

structure. Moreover, we observe that the approximation by LGE with quadratically inverse 

weight function (i.e., 
2|| ||ij i jw  x x ) yields better results than the cases using constant weight 

function and linearly inverse weight function (i.e., 
1|| ||ij i jw  x x ), which indicates stronger 

weighting is effective to subside the outlying effect and better preserve the global structure. The 

distribution of DEIM points selected by the greedy algorithm corresponding to some LGE 

projections used in Table 5.3 are exemplified in Figure 5.7. It shows that with larger 
nk  and 

more heavily penalized weight function, the employment of LGE projection allows DEIM to 

place interpolation points more evenly over the whole domain compared to the Figure 5.5, and 

thus, it enhances the robustness. Essentially, the robustness is restored in LGE by 

underweighting the data points that are significantly different from others (outliers), i.e. faraway 

from others in a geometric sense. 

Lastly, we compare the average relative errors of the approximation obtained by POD 

and LGE, as well as their associated DEIM approximation, for new test dataset shown in Figure 

5.8 (left). This data points are chosen particularly outside the critical parameter region that leads 

to sharp peaks. The comparison in Figure 5.8 shows that the proposed LGE projection with 

quadratically inverse weight function and its G-DEIM yield better results than the standard POD 

projection and DEIM, respectively. It should be noted that the performance of DEIM 

approximation is highly correlated with the quality of projection basis. That is, when a better 

projection basis is designed by LGE, the associated DEIM approximation also achieves better 

representation of the data structure. Thus, through introducing local data information by weight 
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function, the LGE projection is expected to be more robust and able to prevent DEIM points 

from overly localizing due to sensitivity to “abnormal” data, leading to better representation of 

overall solution behavior. 

 

  

(a) G-DEIM points with inverse distance     and       (left) and       (right)  

  

(b) G-DEIM points with inverse distance     and       (left) and       (right)  

Figure 5.7: The distribution of first 12 DEIM points selected by the greedy algorithm for the 

nonlinear function 2g  based on the LGE projection using inverse distances (a)     and 

(b)     as the weight function. 
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Figure 5.8: The new test data obtained by evaluating the nonlinear function 2g  at the (128 

points) parameter distribution (left) is used to compare the performance (right) of POD and LGE 

projections, as well as the corresponding DEIM approximation with different dimensions of 

basis. 

 

5.4.2  Parameterized elliptic PDE 

 The DEIM based on LGE (G-DEIM) is used for reduced-order modeling of an elliptic 

PDE problem (Chaturantabut & Sorensen 2010; Grepl et al. 2007) given by 

 212

2

( , ) ( 1) 100cos(2 )cos(2 ),    ( , ,)
u

u x y e x yx y


 


       (5.33) 

where the spatial domain 2(0,1)  , the parameters satisfy 2

1 1( , ) [0.01,10]     , with 

homogeneous Dirichlet boundary conditions, i.e., (0, ) (1, ) ( ,0) ( ,1) 0u y u y u x u x    . The 

reference full-scale solution is solved by applying Newton’s method with a finite difference 

discretization. The spatial grid points ( , )i ix y  are equally spaced in   for , 1,...,51i j  , and the 

full dimension of state variable is then 2601 . Let 2

1 2 ( 1)
u

f e
    be the nonlinear 

function to be collected. With using 12 12  uniformly selected parameters from , the snapshot 
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matrices for state solution ( )u   and ( , ( ))f u   can be obtained, and denoted as sN

s


X  

and  ( )f

f

N

f sN N


 X , respectively, where 144sN  .  

 As shown in Table 5.2, the POD-DEIM approach is used for reduced-order modeling of 

the system in (5.33), where the state variable is approximated by POD while the nonlinear 

function is approximated by either POD or LGE for comparison. That is, in the online stage, the 

DEIM approximation based on the associated POR or LGE basis for nonlinear snapshots is used 

to construct reduced systems. The selection of first ˆ 20k    DEIM points based on POD and 

LGE basis vectors are shown in Figure 5.9. The average relative errors of the associated DEIM 

reconstruction for the snapshot matrix fX  are 45.45 10  and 41.98 10 , respectively, 

indicating the better performance of LGE in approximating the training data. 

 

  

(a) DEIM (based on POD basis) (b) G-DEIM (based on LGE basis) 

Figure 5.9: The distribution of first 20 DEIM points selected by the greedy algorithm based on 

(a)  POD basis and (b) LGE basis using linearly inverse distances and 20nk   as the weight 

function. 
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(a) (b) 

Figure 5.10: (a) The average relative error of the reduced-order approximation solved by 

different reduced systems for the elliptic PDE. (b) The average CPU time of each reduced 

Newton iteration for different reduced systems, which are normalized by the average CPU time 

for each Newton iteration in the full-scale model. 

 

Based on 225 uniformly selected parameters that were not used to obtain the sample 

snapshots, Figure 5.10(a) plots the relative errors of the reduced-order approximation solved by 

different reduced systems for the elliptic PDE in (5.33), where the subspace dimension of 

nonlinear term is fixed as ˆ 24k   to provide a good approximation. Several observations can be 

gleaned from this figure. First, when the reduced dimension of nonlinear term is sufficiently 

large compared to that of state variable (e.g. 10k  ), all DEIM approximations achieve nearly 

same accuracy as the POD-Galerkin system. Second, although all DEIM approximations obtain 

the same accuracy, it seems enlarging neighbor graph of LGE improves the performance of the 

associated DEIM reduced-order modeling. But it should be noted that the goal of the 

development of LGE is to enhance robustness against outliers or other unexplored test data rather 

than simply improving accuracy. Moreover, it provides a more general framework where one can 

introduce a priori knowledge of data for projection construction. 
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Figure 5.10(b) provides the normalized running times of each reduced Newton iteration 

for different reduced systems. By using the hyper-reduction by DEIM, the reduced-order systems 

achieve speedups of more than 100 times. Since reduced-order methods may affect convergence 

properties, more iterations are usually required. But overall the computational effort is greatly 

reduced.  Note that the proposed LGE projection has the same computational complexity as POD 

in the online stage.  

 

5.4.3  One-dimensional Burgers’ problem 

Consider the following one-dimensional Burgers’ problem that describes the movement 

of a shock 

 

( )
( ),   [0,100],  [0,50],

( ,0) 1,

(0, ) 5,

u F u
s x x t

t x

u x

u t

 
   

 





  (5.34) 

where ( , )u t x  is the unknown representing a conserved quantity, the flux function is defined as 

2( ) 0.5F u u , and the source term is 
0.02( ) 0.02 xs x e . The HDM reference solution to (5.34) is 

solved by the Godunov-type finite volume method (LeVeque 2002) with a spatial discretization 

of size 201  and a time step 0.1t s   for time integration. For constructing DEIM 

approximation, the gradient flux, i.e. ( , ) ( )f x t F u x   , is considered as the nonlinear function 

to be sampled for nonlinear snapshot matrix. Figure 5.11 plots six snapshots of the state solution 

and the nonlinear function, respective, solved by the HFM model at six different time instances. 
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(a) (b) 

Figure 5.11: Snapshot of (a) the state solution ( , )u x t  and (b) the nonlinear function ( , )f x t  of 

the Burgers’ problem obtained by a high-dimensional finite volume model of size 201 . 

 

 In offline stage, the HFM solution at every 5 time-steps is collected, and thus, it results in 

a total number of 100sN   snapshots. The first six POD modes for the state snapshot matrix sX  

and the nonlinear snapshot matrix fX  are given in Figure 5.12. Note that the 1
st
 POD model is 

representing a sharp peak at the boundary as it is an outlying behavior. Compared to the POD 

modes for state snapshots (Figure 5.12(a)), the POD modes for nonlinear snapshots (Figure 

5.12(b)) are more localized at the side where the shock starts to propagate, which represents the 

bias of the POD approach in capturing the overall behavior of the nonlinear function in a large 

time range as it travels as a singular function, as shown in Figure 5.11(b). This could be an issue 

for the associated reduced-order modeling when the shock wave marches into the region that the 

POD modes are unable to represent, leading to erroneous results and even unstable responses.    
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(a) POD of state snapshot matrix (b) POD of nonlinear snapshot matrix 

Figure 5.12: First six POD basis modes of (a) the state snapshot matrix sX  and (b) the nonlinear 

snapshot matrix fX . 

 

Instead of POD, the LGE method in (5.20) is adopted to construct the projection basis of 

the nonlinear snapshot matrix fX . Different weight functions and numbers of neighbor for LGE 

are tested, and the corresponding first six basis modes are presented in Figure 5.13. By weighting 

the pair-wise relation of snapshot data, the LGE construction generates the projection basis 

modes that spread widely across the spatial domain and prevent from over, e.g., the modes 

shown in Figure 5.13(b), compared to that of POD in Figure 5.12. We observe that the outlying 

effect at the boundary side is greatly suppressed and the resulting LGE modes are shifted to the 

distant end as the power of inverse weight function ( p ) or the graph neighbors ( nk ) is increased 

to exert stronger weighting, e.g., the LGE modes in Figure 5.13(a) and in Figure 5.13(f) cover 

distinct spatial regions. 
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(a) Inverse distance, 

          

(b) Inverse distance, 

          

(c) Inverse distance, 

          

   

(d) Inverse distance, 

          

(e) Inverse distance, 

          

(f) Inverse distance, 

          

Figure 5.13: First six LGE basis modes of the nonlinear snapshot matrix fX  under different 

weight functions and numbers of neighbor points.  

 

To demonstrate the approximation performance of LGE for the nonlinear function, Table 

5.4 and Table 5.5 provide the average relative error (see (7.19)) between the snapshot data fX  

and the reconstruction data fX  approximated by the direct LGE projection and the 

corresponding DEIM approximation when using the subspace dimension of ˆ 20k   and ˆ 30k  , 

respectively. The reconstruction errors by the standard POD and DEIM approximations are also 

given as reference. In these cases, the number of interpolation points is selected as ˆˆ 10n k   to 

ensure a good DEIM approximation. It shows that higher reconstruction accuracy is obtained by 

using LGE over POD for both direct projection and DEIM approximations. In contrast to the 
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results of 2D benchmark problem in Table 5.3, the LGE projection with more neighbor points 

leads to worse reconstruction results for Burgers’ problem. This could be due to the local 

characteristic of the nonlinear snapshots, as shown in Figure 5.11(b), and thus, a more local 

graph helps to preserve the global data structure. This example shows the importance of 

introducing the a priori knowledge of data to construct a better projection basis, which is the 

flexibility offered by the LGE approach. 

For reduced-order modeling of the initial-boundary-value problem (5.34) in the online 

stage, the POD-DEIM reduced-order model in (5.10) is employed. We emphasize again that 

since the state solution can be well represented by POD basis (see Figure 5.12(a)), the state 

variables follows the POD subspace approximation in (5.4) and the POD-Galerkin ROM is 

constructed based on (5.6). On the other hand, for reduced approximation of the nonlinear 

function, both POD basis and LGE basis are used for DEIM for comparison. The numerical tests 

show that the reconstruction error for nonlinear snapshots serves as an indicator of the 

performance of the constructed LGE projection basis for reduced-order modeling. The linearly 

inverse weight function (i.e., 1p  ) and 15nk  , therefore, are selected for the LGE projection 

basis. Using 30k  , ˆ 30k  , and ˆ 40n  , the snapshots of the reduced-order solution solved by 

DEIM (using POD basis) and G-DEIM (using LGE basis) are plot in Figure 5.14, where the 

approximation of POD-Galerkin is also given. Compared with the HFM solution in Figure 5.11, 

the POD-Galerkin certainly yields the best reduced-order solution because no hyper-reduction is 

performed, whereas it is computationally expensive. The nonlinear model reduction method 

based on LGE shows better results than the counterpart of POD. Especially, for the instance of 

50t s (the green line), DEIM losses the accurate representation of the tail behavior, which is 
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also reflected by the approximation of the nonlinear function, while G-DEIM robustly capture 

this nonlinear behavior.  

  

Table 5.4: The average relative error of the reconstruction of training data by different LGE 

approximations and the corresponding DEIM (G-DEIM) approximations using ˆ 20k   

projection basis and ˆ 30n  . (The reconstruction errors of the standard POD and DEIM 

approximation are also given as reference) 

 LGE approximation G-DEIM approximation 

   15 25 50 15 25 50 

Inverse distance,     5         5         5                                       

Inverse distance,     5         5         5                                       

Reference POD: 5         DEIM:           

 

Table 5.5: The average relative error of the reconstruction of training data by different LGE 

approximations and the corresponding DEIM (G-DEIM) approximations using ˆ 30k   

projection basis and ˆ 40n  . (The reconstruction errors of the standard POD and DEIM 

approximation are also given as reference) 

 LGE approximation G-DEIM approximation 

   15 25 50 15 25 50 

Inverse distance,                                                                 

Inverse distance,                                                                 

Reference POD: 4         DEIM:           

 

 Note that the subspace approximation of the state solution is critical to reduced-order 

modeling since the reduced system is solved on the low-dimension subspace constructed based 

on its projection basis. It controls the quality of representation of the reduced solution. LGE can 

be used for approximating the state solution as well. However, numerical tests show that with 

less than 20k   basis, poor overall results are given. This issue encourages to combine local 
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approaches (Amsallem, Zahr & Farhat 2012; Peherstorfer et al. 2014; Peng & Mohseni 2016) for 

further improvement. 
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(a) POD-Galerkin: Reduced approximation of u (left) and ( )f F u x    (right) 

  

(b) DEIM: Reduced approximation of u (left) and ( )f F u x    (right) 

  

(c) G-DEIM: Reduced approximation of u (left) and ( )f F u x    (right) 

Figure 5.14: Snapshot of the reduced-order approximation of the state solution ( , )u x t  and the 

nonlinear function ( , )f x t  of the Burgers’ problem obtained by (a) POD-Galerkin, (b) DEIM, 

and (c) G-DEIM reduced-order systems.  
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5.5  Summary 

In this chapter, we have developed a new technique, called linear graph embedding 

(LGE), to construct reduced projection for reduction of parameterized PDEs, based on the graph 

embedding that is a general framework to unify most manifold learning methods. The unique 

feature of this framework is that it allows to introduce a priori information of data for 

constructing a reliable projection through reweighting the relationship between pair-wise data 

points. It has also been shown that the standard POD and the weighted POD are special cases 

under this framework. In contrast to POD that is easily mislead by outlying data and ignore the 

whole data structure, LGE can extract essential information from irregular data, and therefore, 

yield more robust reduced order model (insensitive to outliers) without sacrificing much 

accuracy.  

Thus, LGE is very suited for model reduction of systems that exhibit a large range of 

variations in terms of parameters changes. In this chapter, the LGE approach has been tested for 

the elliptic PDE and hyperbolic PDE, and relatively better performance in capturing the global 

behavior of nonlinear solution has been demonstrated. However, thorough study on LGE has not 

been done yet and a real-world example is required to confirm the advantage of LGE. Moreover, 

it is interesting to study the automated strategy to select a proper weight function for the problem 

of interest. These are important topics to be further investigated in future study. 

On the other hand, while LGE is expected to be less sensitive to outliers and better reveal 

the nonlinear data structure, it may still need a relatively high-dimensional subspace to represent 

all possible solution variations well if the original system shows a severe variability. This effect 
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is considerably increased when dealing with dynamical problems with significant solution 

variations in time (e.g., Burgers’ problem). Local subspace methods (Amsallem, Zahr & Farhat 

2012; Peherstorfer et al. 2014; Peng & Mohseni 2016; Sargsyan, Brunton & Kutz 2015) may be 

good candidate to address this issue. As the weighted POD is usually used together with local 

approach for reduced-order modeling of nonlinear system (Carlberg & Farhat 2011; Peng & 

Mohseni 2016), the proposed LGE projection can be readily implemented in the same 

computational structure with data clustering for local subspace construction as well as subspace 

selection (Amsallem, Zahr & Farhat 2012; Peherstorfer et al. 2014). The combination with local 

approaches will be presented in our future research.  
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Chapter 6                                                                                                        

Data-Driven Computational Simulation Based on Locally 

Convex Reconstruction for Noisy Database 

 

Although most simulation methods for materials under large deformation, such as bio-

material, rely on representative constitutive models, the formulization of constitutive models as 

well as the calibration of material parameters for such complex biological material remain 

challenging. As the second objective of the dissertation, we develop a robust data-driven 

computational framework for scientific computing by directly linking experimental data to 

physics laws in order to perform numerical simulation. 

In this Chapter, we present a new data-driven simulation approach embedded with 

manifold learning techniques, termed locally convex data-driven (LCDD) computing, for 

elastostatics problems, aiming to enhance robustness against noise and outliers in data sets that 

are especially limited and high-dimensional. In contrast to most existing data-driven methods 

based on either the direct distance measurement to a single data point or the calculation of a 

tangent matrix, LCDD searches for optimum data solutions from a locally reconstructed convex 

hull associated to the k-nearest neighbor (k-NN) points, which leads to less sensitivity to noisy 

data and ensures convergence stability. By using the penalty relaxation for convexity constraints, 

the acquisition of optimal data within the locally convex space is related to a classical non-

negative least squares (NNLS) problem and thus, can be solved efficiently. In addition, LCDD 

performs well for high-dimensional data sets where data are scarce relative to the complexity of 
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the system, attributing to the inherent manifold learning of NNLS that admits a locally linear 

regression. Numerical tests in truss problems and 2D elasticity mechanics are given to validate 

the robustness, accuracy, and convergence properties of the proposed approach. The result shows 

that LCDD enhances nearly one order of accuracy compared to the standard distance-

minimization data-driven scheme when dealing with noisy database, and it yields a linear 

exactness to the canonical numerical reference solution when the database is well sampled from 

the graph of constitutive relations. 

 

6.1  Introduction 

The present study focuses on the development of a new data science paradigm for 

computational mechanics, referred to as data-driven computing (Kirchdoerfer & Ortiz 2016), in 

which a given material database is used to replace the constitutive relations needed in the 

conventional computational mechanics whereas the conservation laws are still utilized to avoid 

the need of learning physical models from huge amount of data. In this manner, automated 

machine learning techniques on material data are carried out during the computation of the 

initial-boundary-value problem, and it bypasses the traditional construction of constitutive 

models. Thus, data-driven computing opens a door for new approaches in computational 

mechanics, especially for modelling those complex material behaviours that are extremely 

difficult to explicitly formalizing a constitutive law.  

The pioneering work by Kirchdoerfer and Ortiz (Kirchdoerfer & Ortiz 2016) introduced 

the so called distance-minimizing data-driven computing (DMDD), where the constitutive law is 

relaxed by a minimization of distance between the computed material states (strain and stress 
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hereof) and the optimum data solution given by a material data set. A closely relevant study 

(Ibañez et al. 2016) proposed to applying manifold learning techniques (specifically, locally 

linear embedding (Roweis & Saul 2000)) to the database for constructing the local tangent 

approximation, with which the convergent solution could be attained by using directional search 

solvers such as Newton linearization technique. This idea has been recently extended to 

dynamics and nonlinear problems (González, Chinesta & Cueto 2018; Kirchdoerfer & Ortiz 

2018; Nguyen & Keip 2018). Overall, the common idea of the abovementioned methods is to 

seek the intersection of the hidden constitutive (or material) manifold and the equilibrium (or 

physical) manifold by iterative processes considering appropriate search directions. 

Despite the major advancement made in the field, one challenge is to be amenable to 

perturbations by the data inputs and enhanced the capability of handling uncertainties in input 

data (Darema & Rotea 2006). The standard DMDD paradigm (Kirchdoerfer & Ortiz 2016) is 

shown sensitive to noisy data and outliers (Ayensa-Jiménez et al. 2018; Kirchdoerfer & Ortiz 

2017), while the approaches based on manifold learning (Ibañez et al. 2016) or local regression 

(Kanno 2017) may fail to converge due to the over-relaxed manifold construction. To enhance 

robustness, the DMDD approach was extended to the max-ent data driven computing 

(Kirchdoerfer & Ortiz 2017), which utilizes entropy estimation to consider the statistics 

information of data. But the resulting optimization problem becomes intractable and need to 

employ simulated annealing schedule. Alternatively, Ayensa-Jimenez et al. (Ayensa-Jiménez et 

al. 2018) modified the standard DMDD approach by explicitly incorporating statistical quantities 

into the cost function and defined a stochastic analogous problem. However, the issue related to 

noisy experimental data hasn’t been fully addressed, especially when the available data is scarce 

relative to the complexity of the system.  
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In this work, we propose a new data-driven paradigm that integrates DMDD with a 

special local manifold learning technique, allowing to approximate the convex envelop of the 

cluster of data points to represent the underlying constitutive manifold. By means of locally 

convex reconstruction of the given material data set, the solution space for searching optimum 

data point is regularized into a bounded, continuous, and convex subset (polytope), which 

ensures robustness and convergence stability for data-driven computing. This proposed approach 

is referred to as locally convex data-driven computing (LCDD). In this approach, the data cluster 

for each local state (e.g., the pair of strain and stress) is first identified by the k-nearest neighbor 

(k-NN) algorithm. The optimum data solution to a given local state is searched within the 

associated locally convex hull instead of the discrete material set. To solve this local search 

problem efficiently, we recast it into a non-negative least squares (NNLS) problem by using a 

penalty relaxation method. Besides, because of the inherited manifold learning capacity in the 

NNLS solvers, the proposed LCDD permits the locally linear approximation for the underlying 

material manifold, which means that LCDD could reproduce the same state solutions as 

conventional computing if the material data represents a locally linear pattern. LCDD can also be 

viewed as a generalization of DMDD by equipping manifold learning techniques that naturally 

takes the probabilistic perspective into account and retains a simple computing framework. 

The objective of the present work is to study the main issues of data-driven approaches 

when dealing with noisy data in high-dimensional space. The paper is organized as follows. In 

Section 6.2, a generalized data-driven computational formalism is laid out. In this section, a close 

relation to the material parameter identification problem is outlined to provide context for the 

data-driven methodology. In Section 6.3, the proposed LCDD approach by introducing k-NN and 

formulating the manifold learning under the NNLS framework is presented. Section 4 provides 
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numerical tests of truss structures to demonstrate the effectiveness of LCDD against noisy data. 

In Section 6.5, continuum mechanics with elastic solid is considered to assess the accuracy and 

convergence properties of LCDD when the noisy data is of high-dimensional phase space. 

Finally, concluding remarks and discussions are given in Section 6.6.  

 

6.2  Data-Driven Computational Framework 

6.2.1  Governing equations  

The deformation of a solid occupying the domain   bounded by Neumann boundary 
t  

and Dirichlet boundary 
u  can be described by two basic laws:  

1. Kinetics (equilibrium) 

 
div ( ) ( ) ,  ,

( ) ( ) ( ),  ,t

  

  

σ x b x 0 x

σ x t x xnx
  (5.35) 

in which σ  is the symmetric Cauchy stress tensor, b  is a distributed body force, and t  is the 

traction applied on 
t , with surface outward unit normal vector n . 

2. Kinematics (compatibility) 

 
 

1
( ) ( ) ( ) ,  ,

2

( ) ( ),  ,

T

u

  

 

ε x u x u x x

u x u x x

 
  (5.36) 

where ε  is the strain tensor related to the displacement vector u  over  , and displacement u  is 

prescribed on 
u . In this study, the state of the system is defined by the pairs of strain and stress, 

denoted as the local state ( , )( ) ( ) ( )x x σ xs ε , and the appropriate space characterizing the local 

state over   is referred to as the phase space . For the following discussions, we define the 
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sets 


 and 
u

 for equilibrium admissible stress fields and kinematically admissible 

displacement fields, respectively, i.e.:  

 
 |  div  in ,  and  on ,t        τ τ b tn0 τ

  (5.37) 

 
 |  on ,u u u   v v u 

  (5.38) 

where 2 6[ ( )]L    is the space in which the symmetric stress field is being sought, and 

1 3([ ])u H 
 
is the space for the displacement filed.  In addition, we define an admissible set 

  (the physical set) consisting of all states ( , )s ε σ  that meet the compatibility and 

equilibrium equations in (5.35) and (5.36), respectively, and the state s  is called the 

mechanics state. 

Seeking the solution fields ( , )ε σ  over the physical set , conventional computation 

usually requires constitutive equations to relate the two fields. For instance, a generic 

constitutive equation for elastic material is:  

 ,


 


σ
ε

0   (5.39) 

where  is the strain energy density function, and (5.39) is usually called the constitutive law. 

When a relationship in (5.39) such as Hooke’s law or the hyperelasticity hypothesis is assumed, 

the solution that satisfies (5.35), (5.36) and (5.39) can be uniquely obtained. 

While (5.35) and (5.36) are well-established in mechanics, the parameters in the stress-

strain constitutive relation in (5.39) are usually characterized by experimental discrete data with 

noise and uncertainty. Errors arise during the procedures of i) determining the material functional 

form and ii) calibrating parameters in the constitutive law in (5.39) by experimental data fitting 
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(Kirchdoerfer & Ortiz 2016). Moreover, constitutive parameter identification for complex 

material systems remains challenging due to the difficulties in solving inverse problems. To 

circumvent these issues, data-driven computing that directly utilizes a material database and 

avoids a pre-defined constitutive relationship was proposed to solve boundary-value problems 

(Ibañez et al. 2016; Kirchdoerfer & Ortiz 2016). 

Different from the employment of constitutive models, in the data-driven scenario the 

material behavior is characterized by a set ˆ{( ), 1,. , }ˆ, ..i i

loc i P ε σ  of data points, called the 

local material data set, resulting from experimental measurement. The corresponding global 

material data set   is identified as the ensemble of the local material sets loc  
over  . In 

this manner, the solution of data-driven computing is essentially the intersection of the global 

material data set  and the physical constraint set , i.e. . 

 

6.2.2  Data-driven problem formulation 

Data-driven computing and many other data-enabled applications, such as DDDAS 

(Dynamics Data-Driven Application Systems) (Darema & Rotea 2006) and parameter 

identification for pre-defined material models (Avril et al. 2008; Ben Azzouna, Feissel & Villon 

2015; Bonne & Constantinescu 2005), share a similar idea that incorporating additional data into 

the modelling process of a given system. The main difference is that data-driven computing is 

developed for predictive simulation (a forward problem) while parameter identification is for 

material calibration (an inverse problem). We refer interested readers to the papers (Avril et al. 

2008; Ben Azzouna, Feissel & Villon 2015; Bonne & Constantinescu 2005) for more details of 

parameter identification. 
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Inspired by the problem setting in parameter identification, data-driven computing can be 

stated as the following generic minimizing problem:  

 
ˆ

ˆ( ) withargmiˆ nJ


 
s

s s   (5.40a) 

 
( , )

ˆ( ) (m ,n ˆ ,i , )
u

J
 


u σ

u σ ss   (6.6b) 

where ˆ ˆ( , )ˆ  ε σs  denotes the material data associated to the global material database , and 

ˆˆ ˆ( , )   ε σs
 
is the optimum material data closest to the computed state ( , )s ε σ  under a certain 

“distance” measurement defined by a given functional , which is to be elaborated in next 

section. Here, we use the “hat” symbol to distinguish the material data ŝ  from the mechanics 

state s  that is sought to satisfy the physical laws in (5.35) and (5.36). In computation, strain ε  is 

computed from the displacement 
uu  using the strain-displacement relationship in (5.36), and 

denoted by [ ]ε = ε u . With the material state ˆ ˆ( , )ˆ  ε σs  in  and the mechanics state 

( [ ], )s uε σ  in , the data-driven problem (5.40) is equivalent to two compact forms as 

follows: 

 
, ˆ),ˆ ( ) (

( )  =  (ˆ ).min min m ˆ, , , ,in min
u u      u σ us sσ

u σ s u σ s   (5.41) 

 It is worth to emphasize that the minimizer used in (5.40a) is to relax the overly-rigid 

condition of the intersection solution  since it is likely empty due to the discrete nature of 

the material data set (Conti, Müller & Ortiz 2018; Kirchdoerfer & Ortiz 2016). As shown in 

(5.41), data-driven computing is to find the mechanics states from the physical set  while 

minimizing the “distance” to the material data set  such that the data-driven solution is 

determined directly from the material data set without specifying any constitutive models such as 

(5.39). From an optimization perspective, the solution procedures of this data-driven problem 
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involve an alternate-direction search where a minimization with respect to ( , )u σ  is followed by 

a minimization with respect to ˆ ˆ( , )ˆ  ε σs , denoted as a global step and a local step, respectively. 

 

6.2.3  Data-driven solver 

For numerical implementation, state variables are presented in a discrete manner such as 

( , ) ,  1 .. ,( .) ,s s m        s x s σε , where  x  are the coordinates of the m  

integration points, and 3s  and 6s  for symmetric 2D and 3D elasticity, respectively. 

Accordingly, the material data is assumed to be available at each integration point, 

ˆ ˆ ˆ( ) ( , ˆ ) s s

     s x s ε σ , 1,...,m  . Given a homogeneous material, the material 

behavior at each x  is characterized by the same local material data set, i.e. loc  ,

1,...,m  , and thus, the discrete counterpart of the global material data set is defined as 

1

h

loc

m


 . 

 

Local step of data-driven solver 

Based on the previous work (Kirchdoerfer & Ortiz 2016), a local distance function 

( , )ˆd  s s  is used to measure the distance between the material data ˆ
s  and the mechanics state 

s  at each integration point x  , defined as 

 
2 2 2 ˆ( , ) ( ,ˆ ˆ ) ( , ),d d d

     

 s σ σs ε ε   (5.42) 

where 



 

161 

 

2

2

( , )

ˆ ˆ

1
ˆ ˆ ˆ( ) ( ),

2

1
ˆ( , ( ) )

2
) ( .

T

T

d

d

 

     



   



 

 







ε ε ε ε M ε

σMσ σ σ σ σ

ε

  (5.43) 

Note that the coefficient matrices 
s s M  and 

s s M  (usually 
1  M M ) are regarded 

as the multi-dimensional weights. They need not represent actual material properties but instead 

can be any positive-definite matrices (Ayensa-Jiménez et al. 2018; Kirchdoerfer & Ortiz 2016). 

The choice of the coefficient matrices affects the performance of data-driven computing due to 

the distance scaling effect. One approach for selecting the weighted coefficients is by computing 

the covariance of the material data set and using the so-called Mahalanobis distance for 

multivariate data, as proposed in (Ayensa-Jiménez et al. 2018). 

 With the distance function in (5.42), the functional  used in the data-driven problem 

(Equation (5.40) or (5.41)) can be defined as the following integral form 

 
2 2

1

( ) ( ( ), ( ))ˆ ˆ ( ,ˆ, , d ,)
m

d d V  





  u σ s s ss x x s   (5.44) 

where 1{ }mV   are the weights associated with the m  integration points. Considering the 

functional  is simply a summation of local operations at each integration point, the local step 

of (5.40a) can be decomposed into m  independent local minimization problems: find the 

optimum local material data ˆ
loc

 s  such that minimizes the distance to a given local 

mechanics state s , i.e. 

 
2 2

ˆ

2

ˆ

ˆ( , ) ( , ) ( , ),min miˆ ˆ ˆarg arg n
loc loc

d d d
 



     




 

  
s s

s s ε σεs σ  (5.45) 
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for 1,...,m  . Thus, the collection of optimum local material data 1
ˆ{ } hm

 



 s
 
approximates the 

solution ˆs  in (5.40a).  

 

Global step of data-driven solver 

Considering the functional  defined in (5.42) and (5.44), the global step of the data-

driven problem (5.40b) is reformulated as: 

 

 2 2

,
ˆ ˆ( ) ( , ) ( , ) ,

subject to:      div   in

ˆmin [ ]

 ,

       

d

 on .

u

t

J d d


 

 
 

  

  

u σ
s σ σ

σ b 0

                      σ n t

ε u ε

 (5.46) 

Here, the equilibrium admissible set   has been represented by the constraints explicitly. This 

global step searches for the physically admissible mechanics state ( [ ], )s uε σ  with the 

minimal distance to a material data ˆ ˆ( , )ˆ  ε σs  given by the previous local step (5.45).  

Enforcing the equilibrium constraints by means of Lagrange multipliers, the associated 

Lagrangian of (5.46) becomes 

 
 2 2 ˆ( ) ( , ) ( , )

             

ˆ, , [ ] d

 (div )d ( )d ,
t

DD d d 



 

 

        



 

λ σ σ

λ σ b η σ n t

u σ ε u ε

  (5.47) 

where λ  and η  are the Lagrange multipliers in proper function spaces. Considering  η λ  on 

t , the variational form is  

 
 ˆ( d

d ( ) d d

ˆ[ ] : : ( [ ] ) : : ( )

: [ ] [ ] : d d ,
u t

DD

   

    



    

   

          



 



    

σε u M ε u ε M

ε λ λ

σ σ

σ σ n λ λ b λ tε σ
  (5.48) 
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where 1 2( )[ ] Tλ λε λ  . It is observed that  on u λ 0  analogous to the homogeneous 

boundary condition for the test functions used in Galerkin approximation. Then, the following 

weak form variational equations associated to (5.47) are obtained as follows 

 

ˆ[ ] : : [ ] [ ] : :

[

0 d d ,

0 d d] :

: : [ ] :

d : ( ),

: ˆ0 ( )d d .

t

DD

ext

DD

u

DD

P

 



 



  

    

  

 

  

 

   

   







   

    

 

  

 

λ λ b

ε u M ε u ε u M ε

λ t λ

σ σ σ σ

ε σ

M ε λ M

 (5.49) 

The solutions to (5.49) can be approximated by using mixed-form numerical methods with 

respect to the field variables ( , , )u σ λ . 

 By employing proper approximation functions based on Galerkin method in conjunction 

with an integration scheme for (5.49), we obtain the following discrete equations 

 
1 1 1

ˆ , 1,..., ,
N m m

T T

I J J I

J

V V I N   

 

 
   

 
  

 
  B M B d B M ε  (5.50a)  

 
1

, 1,..., ,
m

T

I IV I N  
 

  B fσ    (6.16b) 

 
1

,  1,...ˆ , ,
N

II

I

m  

 

 


  M B Λ Mσ σ    (6.16c) 

where N  is the number of discretization nodes, 1{ } d
N

I I  are the nodal displacement vectors, 

1{ } Λ
N

I I  are the nodal Lagrange multiplier vectors implying the displacement adjustment, 1{ } f
N

I I  

are the nodal force vectors, 
IB  is the strain-displacement matrix that encodes the connectivity 

and geometry corresponding to the adopted numerical discretization method. The last equation in 

(5.50) takes advantage of that the stress approximation is evaluated by a integration scheme such 
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that the third equation in (5.49) can be disassembled into a point-wise system at the integration 

points 1{ }m

 x . Then, the coupled system (5.50b) and (5.50c) can be equivalently recast as 

 1

1 1 1

, 1,... ,ˆ ,
N m m

T T

I J I I

J

JV V I N    




 



  

 
   

 
   σB M B Λ f B  (5.51a)  

 
1

1

,  1,...ˆ , ,
N

I

I

I m

   



 M+ Bσ Λσ    (6.17b) 

in which the unknowns 
1{ } Λ

N

I I
 and 

1{ }m

 σ  are solved in sequence. 

It can be seen from (5.50a) and (5.51b) that the displacement solution 1{ } d
N

I I  is solved to 

comply with compatibility provided by the strain data 1
ˆ{ }m

 ε , while the the displacement 

adjustment 1{ } Λ
N

I I  is driven by the force residuals between the external force and the internal 

force given by the stress data 1{ }ˆ m

 σ . Thus, Equations (5.50a), (5.51a) and (5.51b) solve the 

global step of the data-driven problem in (5.40b) (or (5.46)) with the material data 1
ˆ{ }m

 s  as 

input, yielding the discrete solution of the mechanics state, 1{ }m

  s , that conforms to the physical 

constraints. 

While the procedures for solving the data-driven problem in (5.40) have been presented 

in a similar way in literature (Ayensa-Jiménez et al. 2018; Kirchdoerfer & Ortiz 2016), we 

provide a simple sketch here for completeness of the study. Given a material data solution 

( )

1
ˆ }{ m

 s  of the v -th previous iteration, iterate the following global step and local step until 

convergence:  

1) Global Step. Input: 
( )

1
ˆ }{ m

 s    Output: 
( )

1}{ m

 s  
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1.1 Solve Equations (5.50a) for 
( )

1{ }N

I I



d  and (5.51a) for 
( )

1{ }N

I I



Λ . 

1.2 Update mechanics states for 
(( )

1

) ( )

1 ,{ } {( })m m

    

 

  εs σ  via 

( ) ( )

1

N

I

I

I 

 



ε B d  and 
( ) ( ) 1 ( )

1

ˆ
N

I I

I

  





 





 M B Λσ σ +  in (5.51b) 

2) Local Step. Input: 
( )

1}{ m

 s   Output: 
( 1)

1
ˆ }{ m

 


s  

for 1,...,m  , solve Equation (5.45) for 
( 1)ˆ 




s  

Remark 6.1: While the distance-minimizing relaxation in (5.45) ensures the existence of 

data-driven solution, it is observed that this standard distance-minimizing data-driven computing 

(DMDD) solver proposed in (Kirchdoerfer & Ortiz 2016) is sensitive to data noise and outliers 

(Ayensa-Jiménez et al. 2018; Kirchdoerfer & Ortiz 2017) because the local minimization stage in 

(5.45) simply finds the nearest data point from the given material data set regardless of any latent 

data structure. For instance, the data-driven solution could be overwhelmingly influenced by the 

outliers who locate near to the physical manifold  but do not conform to the overall material 

data pattern (or the latent statistical model) of . Due to the lack of knowledge of the underlying 

data manifold, it requires a large amount of data to achieve sufficiently accurate predictions. The 

useful data, however, is expensive to collect in the area of SBES. 

 To address these issues, a new data-driven method is developed in next section, where the 

data-driven local solver is integrated with manifold learning techniques in order to remedy the 

non-convex and non-smooth properties in material data sets and reduce the susceptibility to noise 

and outliers in the material data set. 
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6.3  Locally Convex Data-Driven Scheme 

In this section, we introduce a locally convex data-driven computing (LCDD) approach 

which utilizes the clustering technique and a local reconstruction of convex envelop based on 

manifold learning techniques. The proposed approach is based on the assumptions that there 

exists an underlying low-dimensional manifold, and that the relationship between the material 

data and the manifold coordinates is locally linear and smoothly varying. 

 

6.3.1  Local convex hull construction based on k-nearest neighbors 

In the subsequent discussion, the local state ( , ) s s

   s σε  is recast into a vector 

format for ease of exposition, i.e. 2[ ]T sT T

   σs ε  . Accordingly, an induced norm “ ||| ||| ” 

based on (5.42) is defined as  

 
2 1

||| ||| ( ][ , ) .
2

T diag  

  s s M M s   (5.52) 

Given a local mechanics state s , the k nearest neighbor (k-NN) material data points in 

loc  are first identified using the same metric induced by the given norm “ ||| ||| ”, and collected 

as ( )
ˆ{ }

k

i

i N   ss , in which the indices are stored in a set ( )kN s . Note that specifying the number 

of k-NN points, in general, provides an opportunity to incorporate a priori knowledge about the 

material database and therefore, enhance the robustness of data learning (Saul & Roweis 2003). 
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 To recover the convexity, we extend the associated k-NN data points ( )
ˆ{ }

k

i

i N   ss  to a local 

convex se ( )s , i.e., ( )
ˆConv :{ } ( )

k

i

i N loc   ss s , where 

 ( )

( ) ( )

ˆ ˆ( ) Conv({ } ) 1 and 0 ,
k

k k

i i

i N i i i

i N i N

w w w


 

  

 

  
    

  
 s

s s

s s s   (5.53) 

or concisely denoted as 


. Accordingly, the minimization problem for the local step in (5.45) is 

modified as: Given ( )
ˆ{ }

ki c

i

N lo  ss  for s , solve ˆ



s  such that 

 
2

ˆ
ˆ ˆarg min ||| ||| ,

 
  




 

s
s s s   (5.54) 

for 1,...,m  . By comparing (5.45) and (5.54), we can observe that the solution space 
loc

 

used in the standard data-driven schemes in (Ayensa-Jiménez et al. 2018; Kirchdoerfer & Ortiz 

2016) is simply replaced by the associated convex hull 


 that is locally reconstructed around 

the input s  by learning techniques, allowing to capture the local material manifold. As a result, 

the optimum local material data ˆ



s  is sought from the reconstruction set 


 that enjoys 

convexity and smoothness. With the definition in (5.53), the solution of the minimization 

problem (5.54) is given by solving an equivalent form as follows: 

 

* 2

( )

( )

ˆarg min ||| ||| ,

subject to:  1,

                     0,  ( ),

k

k

k

i

i

i N

i

i N

i k

w

w

w i N





 








 



  





w
s

s

w s s

s

 (5.55a) 

and then the optimum data solution ˆ



s  can be retrieved by using the convex combination of 

( )
ˆ{ }

k

i

i N   ss  with the computed weight vector 
* kw , i.e. 
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 ˆˆ , 

 
s = S w  (6.21b) 

where 
2ˆ s k



S  is the corresponding matrix composed of the k-NN data points ( )
ˆ{ }

k

i

i N   ss . 

Remark 6.2: Equation ( range( ) W a) is a constrained regression or constrained 

least-squares problem under a invariance constraint and a non-negative constraint. The 

invariance constraint imposes the partition of unity on the weight array w , i.e. 
1

1
k T

ii
w


  1 w

, where [1,1,...,1] 1 T k . It ensures the invariance of the reconstruction weights 
*w  to 

rotations, rescaling, and translations of the same k-NN data points, and thus, the weights 

characterize geometric properties independent of a particular frame of reference (Roweis & Saul 

2000; Saul & Roweis 2003). Moreover, the constraint guarantees the linear approximation 

property such that ˆ



s  is in the affine space spanned by ( )

ˆ{ }
k

i

i N   ss . When we further consider the 

non-negative constraint, the approximation ˆ



s  is restricted to the convex hull of its neighbors 

( )
ˆ{ }

k

i

i N   ss  (see Figure 6.1). The imposed convexity tends to enhance the robustness of linear 

regressions to outliers (Cevikalp & Triggs 2010; Saul & Roweis 2003), and overcome numerical 

instability across different clusters of neighbor points during data-driven iterations. Moreover, it 

is well known that the non-negative constraint naturally imposes sparseness on the coefficient 

solution 
*w . 

Essentially, the local minimization problem in (5.54) or (5.55) is an application of 

manifold learning involving locally linear embedding (LLE) (Roweis & Saul 2000) in 

conjunction with convex reconstructions (Saul & Roweis 2003), which aims to identify the low-

dimensional manifold of high-dimensional datasets. So the modified local step of data-driven 
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problem in (5.54) can be interpreted as a process of seeking the data approximation based on the 

low-dimensional manifold   associated to the given input mechanics state 
s . From a 

geometrical point of view, it searches the projection (i.e. the optimum local material data ̂ 

 s

) of the given point 
s  onto the associated convex set  . If 

s  locates inside  , the projection 

is represented by 
s  itself (Figure 6.1(a)). Otherwise, the projection is attained at a boundary 

point of   closest to the local state 
s  (Figure 6.1(b)). 

 

(a) 

 

(b) 

 

Figure 6.1: Sketch of the projection ˆ



s  (the blue square) on a convex hull   (the region is 

depicted by red dashed lines) of k-NN points (the solid circles in black) when a local state 
s  

(the red star) locates (a) inside and (b) outside  . Neighbor points of 6k   are used for 

demonstration.  

 

6.3.2  Solving non-negative least squares 

This section shows that the minimization problem in (5.55a) is related to a non-negative 

least squares (NNLS) problem, and thus can be solved by efficient NNLS solvers. Let us recall a 

standard NNLS problem (Appendix B): given a matrix  (usually > )A n p p n  and a observed 

vector z
n
, find a nonnegative vector 

y
p
 to minimize the following function, 
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argmin || ||,

subject to: 0,  1,. .., ,

p

iy i p







 



x

y Ay z
  (5.56) 

where || ||  stands for the standard Euclidean norm. 

However, to solve the optimization problem (5.55) under the NNLS framework (5.56), 

the partition of unity constraint need to be taken into account. Thus, we propose to employ the 

quadratic penalty method (Boyd & Vandenberghe 2004) such that the minimization (5.55) is 

reformulated by penalizing the residuals of the partition of unity constraint in the auxiliary 

objective as follows 

 

* 2 2ˆarg min ||| ||| || 1|| ,

s 0,  1,..ubject ., ,to:  

k

T

iw i k

  


   

 

w

w s S w 1 w
  (5.57) 

where 0   is a regularized coefficient to impose the associated constraint. Note that to 

conform with the Euclidean metric used in the standard NNLS solver in (5.56), the local state s  

and  the data matrix ˆ
S  are rescaled to s  and 

1 22[ , ,..., ] kk s



 S s s s , respectively, under the 

transformation with a kernel matrix ([ ], )diag 

  W M M
 
induced by the given norm “ ||| ||| ”, 

e.g. 2 2||| ||| || ||T

     s s W s s . As a result, the optimization problem (5.57) can be recast into a 

NNLS form as shown in (5.56) by augmenting S  and s  with an additional row, i.e. 

 

* aug aug 2arg min || || ,

subject to:  0,  1,..., ,

k

i i kw

 


 

 
w

w S α s
 (5.58) 

where 

 
(2aug a1) 2 1ug,  : .:

T

s k s

 


  
 


 

   
  

 
  

sS
S s

1
  (5.59)  
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To properly imposed the penalty term, we set tr( )T k   S S , where   is a large parameter.  

The problem in 
d  can be used by the NNLS solver in Appendix B. After obtaining 

w , 

the optimum local data solution is given by 
*ˆ

̂ 


s = S w , and the local cost function is obtained 

 
2 2 * 2

ˆ

ˆˆ ˆmin ||| ||| |ˆ || ||| ||| ||( ) | .F
 

       




     

s
s s s s s s S w   (5.60) 

Nevertheless, the constrained least squares in (5.58) may still suffer numerical instability 

due to rank deficiency when the number of neighbors is larger than the rank of the neighborhood, 

i.e. 
augrank( )k  S . Some further regularization should be introduced to the NNLS problem. In 

this study, a commonly used ridge regression (Hoerl & Kennard 1970), or called Tikhonov 

regularization, is applied to address the ill-posed issues, and the NNLS problem (5.58) is 

modified as  

 

* aug aug 2 2arg min || || || || ,

subject to:  0,  1,..., ,

k

i i kw

  


  

 

w

w S w s w
 (5.61) 

where the regularized coefficient is 

 tr( ) ,T k   S S   (5.62) 

where   is a small constant (set as 
410

) such that the regularization affects negligibly the 

solution 
w  and the reconstruction ˆ




s . It is also shown that (Hastie, Tibshirani & Friedman 

2009) this regularization imposes certain smoothness on the solution and guarantees a unique 

solution. 

It has been shown (Tropp & Gilbert 2007; Yaghoobi & Davies 2015) that the Lawson-

Hanson method used for the NNLS solver converges in a finite number of iterations less than the 
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size of the output coefficient vector, which is the size of k-NN in LCDD. Moreover, considering 

the small size of the local matrix 
2ˆ s k



S , where , min( , )k s N m , the additional 

computational cost in solving the NNLS problem in (5.58) or (5.61) is negligible compared to 

solving the linear system (5.50). 

Remark 6.3: As discussed in (Saul & Roweis 2003), the size range of k-NN points 

depends on various features of the data, such as the manifold geometry and the sampling density. 

In principle k   should be greater than the underlying manifold dimensionality of the material 

data set 
loc

 in order to explore the data structural and prevent overwhelming influence from 

outliers/noise. Moreover, the resultant neighborhoods should be localized enough to ensure the 

validity of locally linear approximation. 

 

6.3.3  Locally convex data-driven algorithm 

Given two high-dimensional sets, i.e. the physical set 
h
 and the global material data set 

1

h

loc

m

 
  are the discrete counterpart of  and , the main idea of the proposed LCDD is 

to use the k-NN clustering and the NNLS for locally approximating the convex hull, allowing the 

data-driven iterative solver to search a reliable intersection of the physical set 
h
 and the convex 

approximation of the global material data set h . A simple algorithm for the proposed LCDD 

solver is listed in Table 3.1. 
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Table 6.1: Flow of the proposed LCDD solver 

Given a convergence tolerance TOL and material databases 
e

, 1,...,e m , then 

1. Initialize 
(0) (0) (0)ˆ ˆ[ ,  1,..ˆ ., ]   σs ε

T T

e e

T

e e m  randomly, and 0v . 

2. While 
( ) ( 1)

1,...,

ˆ ˆmax ||| |||v v

e e
e m

TOL  


 s s  

a. Solve equations (5.50), and output 
( )

1}{ 

se

m

e
 

b. Construct k-NN neighborhood 
( )( )

sekN  for each local state
( )

se
, and obtain ˆ

eS . 

c. Solve NNLS (5.58) (or the stabilized NNLS (5.61)) by Algorithm 1 in Appendix B  

d. Output 
( 1)ˆ v

e

 
s . 

e. Update: 1    

3. Solution is 
( ) ( ) ( )[  ]  ][ ,  1,...,T T T T

e e

T

e e e

T

e e m    s σ s σε ε . 

 

6.4  Application to Truss Structures 

The proposed locally convex data-driven (LCDD) approach against the distance-

minimizing data-driven (DMDD) approach (Kirchdoerfer & Ortiz 2016) are compared for truss 

structures in this section and for elastic solid in Section 6.5. To show the basis qualities, we use 

synthetic noisy data instead of real data in order to avoid potential issues linked to data 

generation from experimental tests. For the sake of simplicity, we assume the material databases 

1{ }m

    for all material/integration points are the same in the following numerical study in 

Section 6.4 and 6.5, i.e. 2

1
ˆ,ˆ ˆ{ ( ) }i i i s P

i   σs ε .  

For truss structures, the material behavior of the e-th bar member is characterized by a 

simple relation between the uniaxial strain   and uniaxial stress  . As such, the local state 
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vector is defined as 2[  ]T

   s , i.e. 1s  , and the associated norm to measure the 

distances of local states is defined as 

 

1/2

2 211 1
||| |||

2 2
M M     

 
  
 

s , (5.63) 

where M
 is the a certain positive constant analogous to the Young’s modulus of the linear 

reference material. 

 

6.4.1  Example I: One-dimensional truss 

As discussed in Remark 6.1, the main issues of data-driven computing appear when 

dealing with irregular material data that exhibits noise and outliers. To exemplify these 

pathologies, a basic one-bar truss problem is used for the first numerical study, as schematized in 

Figure 6.2, where a force of 10 kN  is applied at the end and the cross-section area is 

2200 cmA .  

  

Figure 6.2: One-bar truss structure under uniaxial load. 
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Database with different level of random noise or outliers 

We first consider two different databases 1
ˆ,ˆ{( )}i i P

i    with mild Gaussian random 

noise ( 0.05  ) and strong Gaussian random noise ( 0.15  ), as shown in Figure 6.3 and 

Figure 6.4, respectively. Data generation is as follows 

 

max

max

(0, ),  1,..., ,

ˆ (0,

ˆ

),  1,..., ,



  

  

 

  



i i

i i

i P

i P   (5.64) 

where max 0.01  , max max( , )  i , i iM  , max maxM  , and the coefficient constant 

100 MPaM   is used for data-driven solvers. The external force is incrementally loaded via 

five equal steps, such that there are five incremental data-driven solutions (i.e. 5 consecutive 

time steps for the local state  [ ]T

  s ) as depicted by the star points in the result plots. And 

the associated 5 optimum data solutions (i.e. ˆ ˆ  ]ˆ[ T

     s ) are denoted by the square points. 

As shown in Figure 6.3, both DMDD and LCDD can converge to the final equilibrium 

state point at the physical manifold of 0.5 Mpa   where it is close to the given data set 

(denoted by the circle points) in the ( ),   phase space. Although the randomness is mild, 

DMDD seems to converge to a local minimum. However, LCDD allows the data-driven solution 

to attain the intersection of the physical manifold and the conjectural material graph (see Figure 

6.3(b)), which is a preferable solution. It suggests that LCDD is a more robust scheme to capture 

the local data structure and overcome local-minimum wells. 

When the given material database presents much stronger randomness, as shown in 

Figure 6.4, DMDD is severely sensitive to the noisy data as the incremental solutions are 

susceptibly arrived at some local minimum points (Figure 6.4(a)). It is shown in Figure 6.4(a) 
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that DMDD converges to a suboptimal solution outside the data set, while we can observe from 

this 1D case that there exist some better data solutions locating at the physical manifold that lead 

to less distances or lower material costs. Again, LCDD yields more desirable incremental results 

(see Figure 6.4(b)), where the local state solutions move consistently to an intersection of the 

equilibrium manifold and the underlying material submanifold as the applied load linearly 

increases. 

 

  

(a) DMDD (b) LCDD: 6k  

Figure 6.3: Comparison of the DMDD and LCDD solvers for database with mild noise ( 100P , 

0.05  ).  
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(a) DMDD (b) LCDD: 6k  

Figure 6.4: Comparison of the DMDD and LCDD solvers for database with strong noise 

( 100P , 0.15  ). 

 

The comparison of results in Figure 6.3 and Figure 6.4 shows that LCDD is robust 

against large noise and can yield similar pattern of convergence for material databases under 

different random level, whereas the solution path of DMDD is strongly affected by the strength 

and distribution of noise. It is also observed that the optimum data solutions ˆ,ˆ( )     obtained 

from LCDD usually overlap with the data-driven solutions ( , )    even though no experiment 

data in 


 is exactly at those locations. It indicates that LCDD implicitly constructs a local 

material graph (the convex hull) associated to the k-NN points and allows the graph to be the 

solution space (interpolation) for searching the optimum local data points. This unique feature 

provides not only more robustness against noise due to clustering analysis, but also the 

reproducibility to a locally linear manifold if the data is well sampled, which will be further 

discussed in following examples. 
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(a) DMDD (b) LCDD: 6k  

  

(c) LCDD: 12k   (d) LCDD: 6k , 0.01   

Figure 6.5: Comparison of the DMDD and LCDD solvers for database with an outlier ( 100P ). 

 

Now consider a material database, as shown in Figure 6.5, approximating to an 

underlying linear graph, i.e. ˆ ˆ( , )ˆ 0ˆi i i iF M      with a slope of 100 MpaM  , except 

for an outlier positioned near to the equilibrium manifold. The data-driven results show that the 

DMDD solutions are strongly misled by the outlier (Figure 6.5(a)), whereas the LCDD solutions 

converge to a reasonable location at the material manifold (Figure 6.5(b)). The LCDD solver is 

also tested under different procedure parameters and two typical results are presented in Figure 

6.5(c) and (d). As shown in Figure 6.5(c), the data-driven solutions using more neighbor points 
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( 12k  ) appears to be slightly influenced by the outlier during iterations, it remains robust 

against the outlier and yields consistent solutions as the one using 6k  . This robustness is 

gained from the clustering analysis in LCDD based on multiple data points that prevents the 

dominance of outliers. The study of the effect of the regularization coefficient   on LCDD is 

also shown in Figure 6.5(d). It shows that with larger   the optimum data solution constructed 

within the associated convex hull favors the region with higher data density due to the stronger 

penalization of the large reconstruction weights (refer to (5.61)). Thus, increasing the 

regularization coefficient can enhance the robustness. There are many other regularization 

methods or robust penalty functions that allow further suppressing the influence of noise or 

outliers, e.g. the Huber penalty function. But the investigation of regularization is out of the 

scope of the current paper and interested readers are encouraged to consult the reference (Hastie, 

Tibshirani & Friedman 2009). 

 

Database associated with a nonlinearly elastic material 

To show another pathology caused by the discrete nature of data set for distance-

minimizing approaches, consider a “nonlinear” database 


 generated by a sigmoid function. As 

shown in Figure 6.6, the plot of data points in phase space transits from a nearly linear stage of 

slope 100 MpaM   to a plateau of 0.51 Mpa  , approximating an uniaxial perfect plasticity 

behavior.  

Although no noise is presented, DMDD still converges to a suboptimal solution (see 

Figure 6.6(a)). It indicates a limitation of DMDD that the data-driven solver purely uses the 

discrete information from database. Since the solution is close to the flat plateau of the material 
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graph, the corresponding gradient descent (linearly scaled with the coefficient matrix M ) 

associated with the data-driven iterations approaches to a direction normal to the plateau and 

becomes very stiff. Hence, the resulting displacement adjustment in (5.51) is not sufficient to 

drive the local solver to find the neighbor material data points, and the DMDD solver would just 

converge to this suboptimal location. This issue is attributed to the non-continuous nature of 

discrete data, resulting in a susceptibility to the selection of weighted coefficient M  and the 

metric norm used to measure distance in phase space, and the density and the underlying 

structure of data. 

Nevertheless, LCDD converges to a preferable solution (Figure 6.6(b)) where the 

physical and material manifolds intersect. This because the locally linear approximation provided 

by the LCDD solver can learn the data structure and implicitly construct a smooth constitutive 

submanifold (i.e. the convex envelop) based on the cluster of discrete material data, allowing the 

iterative scheme to find the data-driven solution in accordance with the classical solution using 

the corresponding material model. It is rooted in the manifold learning technique introduced in 

(Roweis & Saul 2000). Thus, LCDD is able to reproduce a locally linear material model based 

on the sampled data points. It should be emphasized that this reproducibility is very attractive in 

dealing with higher-dimensional phase space (such as elasticity problems in Section 6.5) when a 

limited amount of data is available. 

 Moreover, the proposed LCDD approach also overcomes the non-convergence issue that 

usually appears in regression based data-driven methods (Ibañez et al. 2016; Kanno 2017). This 

is because the introduction of local convexity prevents the solution space of searching optimum 

local data from being over-large. 
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(a) DMDD (b) LCDD: 6k  

Figure 6.6: Comparison of the DMDD and LCDD solvers for noiseless sigmoid database 

( 100P ). 

 

6.4.2  Example II: Truss system 

 

Figure 6.7: Schematic of a 15-bar truss structure with essential boundary conditions and 

externally applied loads, where 4 ma , 2 mh , 0.01 mxu , and 100 kNF  . 

 

To examine the convergence behavior with respect to the material data set size, we 

consider a 15-bar truss structure ( 15m  ), illustrated in Figure 6.7, with unity cross-sectional 

area. A displacement 0.01 mxu  is applied at one support such that the structure is 

indeterminate. The solution obtained from different data-driven solver (DMDD or LCDD) are 

compared against the referent solution under the following normalized root-mean-square 

(%RMS) state errors 
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where 
1{ }ml    are the length of the bars, 

1{( , )}m

    
 are the data-driven solutions for all bar 

members, ref ref

1{( , )}m

      are the strain and stress reference solutions solved by FEM with the 

corresponding synthetic material law, and ref ref

max max( , )   are the largest absolute values of strain 

and stress among all bar members. 

 

Figure 6.8: Three noisy material databases with different data sizes 
2 3 410 ,10 ,10P   for truss 

members. 

 

Three material data sets with different sizes (i.e. 
2 3 410 ,10 ,10P  ) used for numerical 

tests are shown in Figure 6.8. The data sets uniformly converge to a linear curve with a slope of 

100 MpaM  , but include random noise in inverse proportion to the date set size P . The same 

Gaussian noise generation in (5.64) with 
12P   is used to perturb the data. 
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(a) (b) 

Figure 6.9: Truss structure case. (a) Convergence plot of the normalized RMS strain error 

(%RMS)  against increasing number of sampling points. (b) The number of convergence steps 

against increasing number of sampling points. 

 

The convergence results of different data-driven solvers in terms of the normalized RMS 

strain error (%RMS)  are shown in Figure 6.9(a), where the data-driven solutions converge towards 

the classical solution with a rate close to 1 in accordance with the estimate in (Conti, Müller & 

Ortiz 2018; Kirchdoerfer & Ortiz 2016). Although it has been shown that DMDD can converge 

to the classical solution when the data set approximates a limiting constitutive law with 

increasing fidelity, the accuracy of DMDD is less than satisfaction. However, it shows that the 

solutions of LCDD are generally better with up to nearly 1 order accuracy. It is also observed 

that the LCDD solver is stable over a range of neighborhood sizes, i.e. from 6k   to 18k  , 

obtaining the solutions under a similar level of accuracy (Figure 6.9(a)) and converged in a 

similar amount of steps (Figure 6.9(b)). Surprisingly, the analysis in Figure 6.9(b) suggests that 

the LCDD solutions converge in fewer steps when the data set size increases as the random noise 
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reduces. This is significantly distinct from the DMDD solver (Kirchdoerfer & Ortiz 2016) and 

the max-ent data-driven solver (Kirchdoerfer & Ortiz 2017) that require more iterations for 

larger data sets. It is due to the capability of local manifold learning of LCDD that allows a better 

representation of the underlying manifold if the data points are well sampled. Moreover, when 

using 2k  , the intrinsic dimension of the data sets, LCDD appears to lose high accuracy and 

yields solutions approaching to that from DMDD (shown in Figure 6.9(a)), implying that LCDD 

would recover DMDD in the limit of using few neighbors. 

 

  

(a)  (b) 

Figure 6.10: Truss structure case. Convergence plot of the normalized RMS errors, (%RMS)  and 

(%RMS) , against increasing number of sampling points for data-driven solvers using (a) the data 

sets with Gaussian random noise and (b) the corresponding noiseless data sets.  

 

To show the effect of noise on data-driven solutions, the convergence results of data-

driven solvers using the corresponding noiseless data sets (i.e. no random perturbation applied on 

the uniformly distributed data points that are given by ˆ ˆi iM  ) are provided in Figure 6.10(b) 

for comparison. For noiseless databases, DMDD still yields an approximately linear convergence 
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under the same level of accuracy as for noisy databases in Figure 6.9(a). Differently, LCDD 

(with 12k  ) exactly approximate, up to the level of the convergence tolerance, to the classical 

FEM solutions irrespective of the data set size, suggesting the reproducibility of locally linear 

model due to manifold learning. As shown in Figure 6.10(b), by only using 20 data points LCDD 

obtains a desirable solution as accurate as that of DMDD using 
410  data points. We argue that 

this inherent manifold learning ability also contributes to the improved accuracy against noisy 

data (Figure 6.10(a)) when using LCDD. 

A close comparison between the data-driven solutions of DMDD and LCDD using the 

data set with 100 material points (see Figure 6.8) are conducted in Figure 6.11, where the 

reference solution computed by FEM are also plotted in the ( ),  phase space. Since the FEM 

solver utilizes the synthetic linear model ( ˆM  ), the reference solutions (red triangles) of 

the 15 bar members locate exactly at the synthetic graph (dashed line) in the phase space. As can 

be seen from Figure 6.11(a), the variations of the noisy data set substantially influent the DMDD 

performance as several local state solutions (the star points in a dashed box) are badly sought 

such that deviate from the linear graph. They converge to some local minima caused by data 

noise, resulting in a poor overall performance of DMDD that is also suggested in the 

convergence study. By contrast, the LCDD solver overcomes such issues and the solutions agree 

well with the references as indicated in Figure 6.11(b). It demonstrates that the proposed data-

driven solver can robustly capture the underlying data manifold against the superimposed noise 

and attain preferable solutions close to the material manifold.  

 



 

186 

 

(a) DMDD 

 

(b) LCDD: 12k   

Figure 6.11: Truss structure case. Plots of the data-driven solutions of (a) DMDD and (b) LCDD 

when using the noisy material data set ( 100P  ). 

 

6.5  Application to Elasticity Problems 

In this section, we test a two-dimensional elasticity problem ( 2 6s  ). The dimensionality 

of the associated phase space is high enough to start raising the “curse of dimensionality”, which 
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challenges the accuracy and robustness of data-driven solvers in measuring and approximating 

local states under such high-dimensional space while the material data is relatively sparse.  

 

6.5.1  Discretization for elasticity problem 

 

 

(a) (b) 

Figure 6.12: Schematic of (a) Voronoi diagram and (b) discretization of a beam model. 

 

In this study, we employ a meshfree method (See Appendix A) for the field 

approximation, where the displacement is approximated by reproducing kernel (RK) shape 

functions (Liu, Jun & Zhang 1995), and a stabilized conforming nodal integration (SCNI) 

approach (Chen, Wu & Yoon 2001) is used for the integration of the weak form (5.49). Note that 

other numerical methods such as FEM for boundary value problems of continuum mechanics can 

also be applied. We apply the particle-based meshfree method is due to the simple nodal 

representation of both displacement and state field variables, i.e. N m . As such, the continuum 

domain is partitioned by a Voronoi diagram (see Figure 6.12), and both the nodal displacement 

vectors 1 1{ } { ( )}N N

I I I I u u x  and the state variables 1 1{( , )} {( ( ), ( ))}N N

      ε ε xσxσ  are carried 
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by the set of nodes at 1{ }N

  x . Besides, the weight V
 in (5.50) is just the volume of each 

Voronoi cells   under this integration scheme.  

It should be emphasized that the data-driven formulations (5.49) can be applied for 

nonlinear-elastic solid directly, whereas for finite strain problems the compatibility constraint 

and the strain-displacement matrix need modifications. 

 

6.5.2  Example III: Elastic beam subjected to a shear load 

 

Figure 6.13: Schematic of a beam model subjected to a shear load, where 48 mL  , 12 mH   

and 1000 NF  . 

 

We consider a plane stress beam model composed of homogeneous elastic solid material 

and subjected to a shear load, as given in Figure 6.13. The synthetic elastic material model is 

given by the classical Hook’s law in two dimensional solid with Young’s modulus 30 MpaE   

and Poisson’s ratio 0.3v  . Therefore, the coefficient matrix used for norm  (5.52) at each 

integration point is defined as 
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To evaluate the performance of data-driven solvers, the following normalized root-mean-square 

(%RMS) state error is re-defined for high-dimensional state (i.e. 3s   in this problem),  
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where ref ref ref[ ]T T T

   σs ε   denotes the nodal strain and stress reference solutions solved by the 

meshfree method (Chen, Wu & Yoon 2001) using the synthetic material model, [ ]T T T

   σs ε   

denotes the solutions solved by data-driven solvers using a given material data set. The 

discretization shown in Figure 6.12(b) is employed for the following numerical study. 

 The procedures of the noiseless and noisy data generation are given as follows. First, the 

uniformly distributed strain vectors [   ] , 1,...,i i i i T

xx yy xy i P   ε = , are generated, e.g. the case in 

Figure 6.14(a) where 10 points are evenly distributed along each axis. The associate noiseless 

stress vector   [ ]i i i i

xx yy xy

T  σ  is obtained by left-multiplying the strain vector 
iε  by the 

coefficient matrix 
M  in (5.66). Then, the correlated strain and stress vectors are paired as 

[  ]s ε σ
i iT iT T  and stored into a noiseless data set noiseless

 . To generate the noisy data points 

1
ˆ{ }i P

is  in a data set noisy

 , the uniformly distributed random perturbations scaled by a factor 

3

max0.4 P s  are independently superimposed on each component of the noiseless data points 

1{ }i P

is , where 
maxs  is the maximum value for each component among the data set 1{ }i P

is . 

Four material data sets in various size (i.e. 3 3 3 310 ,20 ,40 ,80P  ) are considered for the 

beam model. For illustration of the randomness, one of the data sets with 
310P   points is 
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provided in Figure 6.14(b) as an example, where the strain components and the stress 

components of data points are plotted separately in two phase spaces for the sake of 

visualization. 

 

  

(a) Noiseless data points 
noiseless

 : strain components (left); stress components (right) 

  

(b) Noisy data points 
noisy

 : strain components (left); stress components (right) 

Figure 6.14: Exemplary material data sets (
310P  ) used for data-driven solvers. (a) Noiseless 

data set; (b) Data set with random noise. 
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The performance of the data-driven solvers using the noiseless data sets and the noisy 

data sets shown in Figure 6.15 and Figure 6.16, respectively, is demonstrated herein. Again, 

consistent to the convergence estimate in (Conti, Müller & Ortiz 2018; Kirchdoerfer & Ortiz 

2016), the DMDD solutions converge linearly to the reference solution against the cubic root of 

the number of data points, regardless of using noiseless or noisy databases. On the other hand, 

LCDD (e.g. with 6,9k  ) using noiseless data sets yields almost accurate solutions (Figure 

6.15(a)) up to the error tolerance defined in the iteration scheme. It implies that LCDD perfectly 

capture the underlying linear material graph even in such a high dimensional phase space. The 

convergence study with noisy data sets (Figure 6.16(a)) shows that the LCDD solution using the 

sparse data set (
310P  ) is able to achieve higher accuracy than the DMDD solution using very 

dense data set (
380P  ), suggesting the superiority of LCDD over DMDD. Considering the 

difficulty to obtain a database with sufficiently dense data for high-dimensional spaces, the 

proposed LCDD approach appears to be even more attractive when solving mechanics problems 

and overcoming the potential “curse of dimensionality”. As it is known that the intrinsic 

dimensionality of a linear elastic database is 2d  , it is interesting to observe from Figure 

6.15(a) and Figure 6.16(a) that the LCDD solutions obtained by using 3k   ( 2d k s  ) present 

a blending phenomenon between the DMDD solution (i.e. 1k  ) and the other LCDD solutions 

(when using 2 6k s  ). It indicates that one need to use large enough neighborhood to fully 

preserve the manifold learning capacity in LCDD. 

The associated analyses of number of convergence steps for the data-driven solvers are 

also presented in Figure 6.15(b) and Figure 6.16(b), respectively. In contrast to data size that 

dramatically increases with a cubic power due to 3s , the number of iterations for the 
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convergence of the LCDD solver does not evidentially increase. Moreover, the comparison of 

the LCDD results in Figure 6.15(b) and Figure 6.16(b) shows that only few more convergence 

steps are needed for data-driven computing when applying the noisy data sets than the noiseless 

data sets. The above results suggest that the convergence property of LCDD is not sensitive to 

the database size as well as the data sampling quality, and thus, it has a good scalability in terms 

of increasing data set. Nevertheless, the iteration step to attain convergence by DMDD 

substantially changes in accordance to the size of data sets, and the solutions are much worse 

than the counterparts obtained from the LCDD solver. 

 

 

(a) 

 

(b) 

Figure 6.15: Shear beam model with noiseless data sets. (a) Convergence plot of the normalized 

RMS state error (%RMS)  against increasing number of sampling points. (b) The number of 

convergence steps against increasing number of sampling points. 
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(a) 

 

(b) 

Figure 6.16: Shear beam model with noisy data sets. (a) Convergence plot of the normalized 

RMS state error (%RMS)  against increasing number of sampling points. (b) The number of 

convergence steps against increasing number of sampling points. 

 

The displacement solutions computed by the data-driven solvers are also compared in 

Figure 6.17 and Figure 6.18. In this case, DMDD performs poorly (Figure 6.17(a) and Figure 

6.18(a)) due to the susceptibility to noise and local minimum issues as pointed out in Section 6.4. 

The nature of high-dimensional phase space in elasticity problems aggravates these issues. 

However, the LCDD nodal displacement solutions, with 6k   for the k-NN as an example, 

seem to exactly agree with the reference solutions when using noiseless database (Figure 

6.17(b)), while only show negligibly deviations from the reference when using the noisy 

database (Figure 6.18(b)). Figure 6.19 presents the stress component (
xx  and xy ) results of the 

LCDD solution and the reference, showing LCDD can obtain desirable local state solutions 

across the problem domain for a noisy database. It demonstrates that the LCDD approach 

remains robust against noise for solving elasticity problems. 
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(a) (b) 

Figure 6.17: Shear beam model. (a) DMDD displacement solution using the noiseless data set 
380P  . (b) LCDD displacement solution ( 6k  ) using the noiseless data set 

310P  . 

 

  
(a) (b) 

Figure 6.18: Shear beam model. (a) DMDD displacement solution using the noisy data set 
380P  . (b) LCDD displacement solution ( 6k  ) using the noisy data set 

310P  . 
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Figure 6.19: Shear beam model. The comparison of xx  and xy  stress components between the 

reference solution and the LCDD solutions with 6k   using the noisy data set 
310P  . 

 

6.6  Summary 

We have formulated a locally convex data-driven (LCDD) solver, a new data-driven 

computing paradigm integrated with manifold learning techniques that generalizes the distance-

minimizing data-driven (DMDD) computing proposed in (Kirchdoerfer & Ortiz 2016), in order 

to enhance robustness and accuracy of data-driven solvers against noise/outliers. The proposed 

method selects some nearest data points adaptively and searches for optimum data solutions from 

a bounded solution space constructed by a convex combination of the selected k-NN data points. 

This local data searching procedure has been related to a standard non-negative least squares 
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(NNLS) solver and can be solved efficiently in few iterations. By means of the clustering 

analysis based on k-NN and the reconstruction of convex envelop for data points, LCDD 

guarantees enhanced robustness and convergence stability. 

From the pure data-driven approach point of view (refer to (Ayensa-Jiménez et al. 

2018)), LCDD is inspired by measuring the distance to a nearest neighbor convex set 
e

 instead 

of a discrete data set 
e

, aim to enhance the robustness against noise and prevent undesirable 

local minima. From the fitted data-driven (or linearization) approach point of view (Ayensa-

Jiménez et al. 2018), on the other hand, LCDD relies on the approximation of locally linear 

material graph by using manifold learning methodologies (Lee & Verleysen 2007; Saul & 

Roweis 2003) in order to capture the global structure via local data information, but it takes the 

additional convexity condition on the material graph into account. LCDD is distinguished from 

the other manifold learning based data-driven approach (Ibañez et al. 2016) in that the iteration 

process of LCDD neither explicitly uses the constitutive manifold nor suffers from any 

convergence issues due to non-convexity. Lastly, it is easy to show that LCDD can be reduced to 

the standard DMDD approach (Kirchdoerfer & Ortiz 2016) when using only one neighbor data 

point, i.e. 1k . 

It has also been shown that the embedded NNLS solver essentially seeks for the 

projection point of a given computed state onto a nearby material graph that is implicitly 

constructed based on the selected neighbor points, allowing achieving the reproducibility of 

locally linear approximation. Hence, LCDD not just achieve significantly improved robustness 

and accuracy when dealing with noisy database, but also yield nearly exact approximation to the 

numerical reference solution when the database is well sampled for a constitutive relation that 

shows locally linear behavior. The proposed method has been developed for truss problems and 
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continuum elasticity problems in order to demonstrate the effectiveness of LCDD in terms of 

robustness, convergence, accuracy, and the generalization to non-trivial computational 

mechanics cases with high-dimensional phase space. 

This paper has been intended to introduce manifold learning techniques, or 

dimensionality reduction (Lee & Verleysen 2007), into the data-driven computing framework 

while remaining a simple computational structure as (Kirchdoerfer & Ortiz 2016). Our numerical 

studies show that it is very crucial to possess manifold learning capability when dealing with 

high-dimensional database, because the “curse of dimensionality” makes data points extremely 

sparse in high-dimensional spaces and the acquisition of sufficient data is not practical. Thus, it 

demands dimensionality reduction to identify and extract the essential information from 

database. The elasticity example in Section 6.5 demonstrates that LCDD really outperforms 

DMDD due to the inherent manifold learning.  

 In general, we envision that the proposed data-driven framework could be most useful in 

cases where one would like to learn from noisy experimental data and a governing equation is 

known. Since the present work is a preliminary study, there are a number of possible 

enhancements as well as worthwhile applications that ask for further research. For example, 

some other robust techniques or advanced clustering algorithms (Vidal, Ma & Sastry 2016) to 

suppress outliers that are well established in machine learning area can be applied under the 

proposed LCDD framework. The way to identify the optimal number of neighbors in the k-NN 

algorithm is still an open question (Anava & Levy 2016). Moreover, to consider uncertain or 

stochastic nature of experimental data, reliability based quantities (Ayensa-Jiménez et al. 2018) 

that reflect the statistics of data variations need to be taken into account. Due to the merit of 

manifold learning that implicitly constructs the local tangent space of the underlying material 
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manifold, it seems promising to extend the proposed method for nonlinear elasticity (Nguyen & 

Keip 2018) under finite deformation. And the effectiveness of LCDD for high-dimensional data 

may contribute to the inverse problems (Ibañez et al. 2017; Leygue et al. 2018) that aims to 

identify the strain-stress relation of nonlinear solid by data-driven computing without any 

underlying constitutive model.  
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Chapter 7                 

Nonlinear Model Order Reduction Based on Meshfree Nodal 

Integration Framework 

 

In this chapter nonlinear model order reduction, which combines POD and a system 

approximation approach, is developed under a meshfree nodal integration framework for 

hyperelasticity. 

 

7.1  Introduction 

Many simulations in computational science and engineering are parameterized input-

output problems formulated under a state space. For example, consider a computational 

homogenization problem of a heterogeneous material, the inputs are the parameters, e.g. the 

boundary conditions and the elasticity coefficients of the material, the state is the displacement 

field, and the output of interest is the macroscopic material response. Although the nonlinear 

model order reduction based on the POD-Galerkin method together with the interpolation-type 

hyper-reduction (e.g., DEIM) has been widely applied to fluid systems (Chaturantabut & 

Sorensen 2011; Hochman, Bond & White 2011), its application in the field of nonlinear solid 

mechanics is quite rare (Radermacher & Reese 2016).  

To the best of the author’s knowledge, most nonlinear model order reduction of static 

solid systems are based on FEM (Ghavamian, Tiso & Simone 2017; Radermacher & Reese 
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2016; Ryckelynck & Missoum Benziane 2016) while the meshfree approximation-based 

applications remains unexplored. The aim of this section is to apply the POD-DEIM based 

nonlinear MOR method to solid mechanics with nonlinearities under the meshfree framework 

proposed for hyperelasticity (nonlinear elasticity) and to study its performance and efficiency of 

the proposed method. Meshfree approximation offers higher-order continuity, and generally for 

smooth systems it is effective to construct the reduced order models (Haller & Ponsioen 2017; 

Szalai 2015). This can also be conceptually explained by the implicit function theorem that a 

system of equations with a mild requirement on the partial derivatives locally defines a graph of 

a function. 

In this section, we first introduce the meshfree Galerkin formulation based on the 

stabilized conforming nodal integration (SCNI) scheme, which has been demonstrated effective 

in many engineering applications (Chen et al. 1996, 1997; Chen, Wu & Yoon 2001; J S Chen et 

al. 2000; Jiun Shyan Chen et al. 2000). Next, we introduce the procedures of applying nonlinear 

MOR (POD-DEIM) to quasi-static large deformation analysis based on meshfree framework. 

Last, we test the performance of POD-DEIM by modeling a two-phase hyperelastic solid with 

perturbed loading conditions. 

 

7.2  Meshfree Galerkin Formulation for Hyperelasticity 

Total Lagrangian formulation is usually adopted for simulation of biological material 

characterized by hyperelastic models. Let the d-dimensional problem domain in the undeformed 

configuration be denoted by X , with the corresponding displacement boundary and traction 

boundary denoted by g

X  and h

X , respectively. Let 1{ ( ) |  on }d g

u XH   v v = g  be the 
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kinematically admissible trial space, where g  is the displacement enforced on g

X , and 0  be the 

associated test space. The displacement-based Galerkin weak form for solving quasi-static 

problems is given by: find uu  such that 

 
0d d d ,  for ,

h
X X X

ij ij i i i iF P u b u h   
  

       u   (7.1) 

where ijP  is the first Piola-Kirchhoff stress deriving from the strain energy density function  

( )W u , i.e. d ( ) dij ijP W F u , ij ij i jF u X     is the deformation gradient, ib  is the body force 

per unit undeformed volume, and ih  is the prescribed traction on the natural boundary h

X . Due 

to the geometric or material nonlinearities, Newton’s method is introduced and the solution to 

the nonlinear equation (7.1) is obtained by iteratively solving a sequence of linear models. Let n  

and v  denote n -th load step and the v -th iteration step, respectively, the linearized equation of 

(7.1) is given by:  

 
1 1 1 1( ) d ( ) d ( ) d ( ) d ,

h
X X X X

v v

ij ijkl n kl i i n i i n ij ij nF C F u b u h F P      
   

           (7.2) 

where ijklC  is the first elasticity tensor. The displacement is iteratively updated by  

1

1 1( ) ( )v v

i n i n iu u u

     until convergence.  

 To avoid the complexity related to meshing in FE method, the meshfree modeling 

technique based on a reproducing kernel particle method (RKPM) (Chen et al. 1996; Liu, Jun & 

Zhang 1995) is used for biological material modeling, for example, using images directly from 

CT scans (Basava et al. 2014; Chen et al. 2016). Moreover, the application of RK approximation 

allows for a smooth transition of material properties without exhibiting sharp discontinuities at 

the interfaces between different material components in the muscle (Basava et al. 2014; Chen et 
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al. 2016), which is consistent to the observations in many studies (Tidball 1984) that the change 

of material properties from skeletal muscle to tendon is a smooth transition. To this end, the 

displacement, its variation and the incremental displacement are approximated by the RK shape 

functions as follows 

 
1 1 1

( ) ( ) , ( ) ( ) , ( ) ( ) ,
N N N

i I iI i I iI i I iI

I I I

u d u d u d  
  

       x x x x x x   (7.3) 

where N  denotes the number of RK nodes, and the construction of RK shape functions I  is 

presented in Appendix A. The number of total DOFs of the system is denoted as dN .  

 With the RK approximation for displacement solutions given in (7.3) the Galerkin weak 

form in (7.1) leads to the following discrete vector equation 

 
int ext ,f f   (7.4) 

where 
int ext, f f  are expressed as 

 

int

ext

d ,

d d ,

X

h
X X

T

I I

I I I



 

 

   



 N

f B P

f b N h
  (7.5) 

where T

IB  is the gradient matrix associated to the incremental deformation gradient in vector 

form, i.e. 

 
1

,
N

I I

I 

  F B d   (7.6) 

and I I d d IN . Similarly, the linearized equation (7.2) yields 

 ext int

1 1 1( ) ( ),v v

n n n    K d d f f d   (7.7) 

where 
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1 1

int

1 1

ext

1 1 1

( ) ( ) d ,

d ,

(

( )

) d d

(

.

)

X

X

h
X X

v T v

n I n J

v T v

I n I n

I n I n I

IJ

n

 


 


  
 



 

 



 





 N

d B C d B

f d B P d

f b N h

K

  (7.8) 

C  is a matrix form corresponding to the elasticity tensor ijklC , and 1

v

n d  is the vector of 

nodal displacements at ( 1n  )-th time step and v -th Newton iteration step. We refer to (Chen et 

al. 1996, 1997, 2016; J S Chen et al. 2000; Jiun Shyan Chen et al. 2000) for more details of the 

nonlinear formulations. 

 

7.2.1  Stabilized conforming nodal integration (SCNI) 

The method of stabilized conforming nodal integration (SCNI) (Chen, Yoon & Wu 2002; 

Chen, Wu & Yoon 2001) is used for integrating the discrete equation in (7.7) to achieve 

computational efficiency and accuracy. Based on the smoothed derivative of the approximation 

function together with a nodal integration scheme, SCNI ensures the linear consistency of the 

meshfree Galerkin approximation and reduces greatly computational cost under its numerical 

integration scheme compared to the conventional Gauss quadrature rule. The key idea of SCNI is 

to approximate the deformation gradient in (7.6), or other derivatives of displacement, by using  

smoothed derivative instead of direct derivative, which is given by 

 
1 1

( ) ,

L L

L

L

h h h

L

u u d u d
A A

 

      x n   (7.9) 

where  
L

LA d


   is the volume of a conforming smoothing domain associated to the node 
Lx . 

As shown in Figure 7.1, the continuum domain X  is partitioned into N  conforming cells by 
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Voronoi diagram, and both the nodal displacement vectors and the state variables (e.g., stress, 

strain) are carried by the set of nodes at 1{ }N

L Lx . Since the smoothed derivative computation in 

(7.9) in conjunction with the Voronoi discretization, as shown in Figure 7.1, naturally satisfies 

the so called integration constraint (Chen, Wu & Yoon 2001), the linear patch-test is passed and 

a quadratic rate of convergence is achieved for linear solid problems solved by meshfree 

Galerkin methods. 

 

 

Figure 7.1 Illustration of Voronoi diagram for SCNI. 

 

7.3  Nonlinear MOR Based on Meshfree Galerkin Formulation 

This section will demonstrate how to apply nonlinear MOR for hyperelasticity problem. 

Based on the meshfree computational framework introduced in Section 7.2, the equilibrium of a 

generic parameterized quasi-static system of a solid is given by the following discrete nonlinear 

vector equation 

 
ext int( ; ) ( ) ( ; ) , := 0R d μ f μ f d μ   (7.10) 
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where the parameters μ  can be any physical quantities the system depends on. Thus, the nodal 

displacement solution d  relies on the given input parameters μ , denoted as ( )d μ .  

 To reduce the HDM system (7.10), the displacement u  as well as the nonlinear term 
int

f  

are approximated by a reduced order projection onto a low-dimensional subspaces 

 ( ) ( ) ( ),r d d Vdμ μ μ   (7.11) 

and 

 int int (( ),( )) ( ( )) d df μ Zcμ f μ   (7.12) 

where kV  consists of k  basis vectors representing the displacement field, whereas  

k̂Z  contains k̂  basis vectors characterizing the nonlinear term 
int

f . The vectors 

( )r kd μ   and 
ˆ

( ) kc μ  are the low-dimensional unknows to be determined in the reduced 

system. The POD approach (Section 3.3.1) is employed to construct V  and Z , as shown in 

Section 3.4.2. To collect snapshot data, the problem (7.10) without any reduction is precomputed 

in terms of different parameters. The precomputations can be performed for different material 

parameters, geometry, or loading conditions. The snapshot matrices containing the precomputed 

displacement vectors and nonlinear vectors are denoted as sX  and as fX , respectively.  

 Recall the classical POD-Galerkin reduction model in (3.8) using the reduced 

approximation of the displacements together with a Galerkin projection is given 

 
ext int( ; ) ( ) ( )( ) .r T T r := 0dR μ f μ f μV V Vd   (7.13) 

Following the Newton-Raphson method in (7.7), the POD-Galerkin reduced system is solved by 

the iterative scheme as follows  
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ext int

1 1 1

1

1 1                       

( ) ( ,

.

) ( )v v

n n n

T

v v

n n

r T T

r

  



 

 

 

=V d V V VK d f μ f

d d

d

d = V
  (7.14) 

Although this POD-Galerkin reduced system only involves k  unknowns, the computation of 

(7.14) depends still on the original dimension  due to the lifting bottleneck discussed in 

Section 3.4. This limits the possible reduction in computational cost. To overcome this issue, the 

idea of DEIM or Gappy-POD (refer to Section 3.4.2) is introduced to approximate the nonlinear 

term (7.12) by means of an empirical interpolation. 

 To this end, an additional selection matrix 
ˆ1

ˆ
[ ,..., ]

n

n

  P e e  is constructed offline 

by applying the Greedy algorithm to the POD matrix Z . Recall Equation (3.21) or (3.25), the 

reduced approximation of nonlinear function in (7.12) can be further expressed as 

 
int int t1 in( ) (( ( )) ( ( )) )).(T T d d Z P Z P df μ f μ f μ   (7.15) 

This is called the DEIM approximation of the nonlinear term. For simplicity, we denote 

ˆ1( ) kT   M Z P Z . Note that if the number of selected interpolation points is greater than 

the basis dimension in Z , i.e. ˆn̂ k , it is also referred to as “Gappy” POD, where 

† ˆ
( ) nT  M Z P Z . But we don’t distinguish these two ideas in this study. 

 By introducing the POD approximation of the displacement (7.11) and the DEIM 

approximation (7.15) into the nonlinear vector and using a Galerkin projection, we obtain a 

POD-DEIM reduced system of the HDM in (7.10): 

 
ext int( ; ) ( ) ( )) ,(r T T T r := 0d V V MP VR μ f μ df μ   (7.16) 

where T
V M  is constant matrix and can be precomputed. The corresponding iterative scheme is 

given 
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ext int

1 1 1

1

1 1

( ) ( ) ( ),( ) ( )

                                .

T T v v

n n n

v

r T

n

T

v

n

T

r

  



 

 

 

=V M P d V V V M P d

d = d

K d f μ f

dV
  (7.17) 

Due to the selection matrix P , less evaluations are needed to assemble the reduced tangent 

stiffness matrix and reduced internal force vector compared with the POD approach.  

It is noted that the DEIM approximation leads to a non-symmetric reduced stiffness 

matrix 1(( ))T v

n

T

V P d VKM . Moreover, to avoid singular stiffness matrices, the unphysical 

restriction k̂ k  would be needed. Besides, the interpolation point must not be less than the 

basis dimension, i.e. ˆn̂ k  , to prevent singular of M . It has also been shown that using more 

sampling points than the basis order benefits the conditioning of reduced tangent, leading to a 

more stable reduced system (Cosimo, Cardona & Idelsohn 2014). A few studies  (Hochman, 

Bond & White 2011; Radermacher & Reese 2016) have been conducted to enhance the stability 

of DEIM reduced system by adding a linearized stabilization term.      

 

7.4  Numerical Example 

Consider a representative volume element (RVE) of two-phase hyperelastic material 

described by St. Venant-Kirchhoff model, as depicted in Figure 7.2. The material parameters for 

the matrix and the inclusion are provided in Table 7.1. The matrix and inclusion are used to 

mimic connective tissues and muscle fibers that constitutes the cellular structure of  skeletal 

muscle tissue (Zhang 2015). The RVE domain is discretized by Voronoi diagram and the 

computations are carried out by meshfree approximation with SCNI under a plane strain 

configuration. As shown in Figure 7.2, 441N   nodes are used for domain discretization. 
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Figure 7.2 Meshfree RVE model of two-phase hyperelastic material. The integration cells of 

matrix material and inclusion material are depicted by while and blue, respectively. 

 

Table 7.1: Material parameters for matrix and inclusion. 

 Matrix Inclusion 

Young’s Modulus (Pa) 73.0 10mE  
  

61.5 10  PaiE  
 

Poisson’s ratio 0.49mv   0.4iv   

 

 As mentioned in Section 7.3, a snapshot POD is used to construct the reduced-order basis 

for both the displacement field and the nonlinear term selected from the HDM system. Hence, a 

training set train   is necessary for which the HDM simulation is performed to obtain 

snapshot data. In this case, we define 

 
4 4 5 5 2

( , ) ,

[ 1 10 ,1 10 ] [ 2 10 ,2 10 ] ,

x yt t 

       


  (7.18) 
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where xt  and yt  denote the components of traction applied on the right edge of RVE. The train 

set train  is constructed by randomly selecting 20  points from . The intermediate solutions 

which do not satisfy balanced state during the Newton-Raphson procedure can also be collected 

into the snapshot data to enrich the representation of the solution space.  

 Based on the training set the POD basis matrices, V  and Z , used for the approximation 

of displacement (7.11) and nonlinear term (7.12) are obtained, and the distribution of the selected 

interpolation DOFs are depicted in Figure 7.3. As shown in Figure 7.3, the DEIM algorithm 

applied to SCNI based meshfree model selects the interpolation DOFs (denoted by red stars) and 

the neighboring integration cells (denoted by black circles) for assembling the reduced tangent 

stiffness matrix and the internal force vector. The ratio between the number of integration cells 

used for assembling the DEIM reduced system and the total number of integration cells is 

denoted as DEIM DEIMr N N . For this case, the 13%DEIMN N   as shown in Figure 7.3.  
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Figure 7.3 Interpolation points given by DEIM based on Meshfree model. The red star denotes 

the selected degree of freedoms and the black circle denotes the integration cell that contributes 

to the selected degree of freedoms. 

 

 The aforementioned POD-DEIM reduction in (7.17) and POD reduction in (7.14) are 

tested for various dimensionalities of V  and Z  using a test set test  composed of 10 loading 

cases selected from , which is different to the set train . Define an average relative error 

measure as 

 
test

1test

1 || ( ) ( ) ||
,

|| ( ) ||

N

i i
r

i iN

 





 

d d

d
  (7.19) 

where testN  denotes the total number of snapshots collected from the numerical test using test  

(for each loading case, multiple snapshots can be obtained if the load is applied incrementally), 

d  denotes the reference solution solved original high-dimensional system, and d  denote the 

approximation obtained from the reduced order system by POD or POD-DEIM. Table 7.2 gives 
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the average relative errors of POD reduction and POD-DEIM reduction, and the associated ratio 

of CUP time normalized by the cost of HDM. It shows that increasing the dimensions of the 

POD basis, V  and Z  significantly improves the reduced-order approximation. Moreover, it is 

observed that the employment of DEIM further reduces the computational cost because less 

integration cells need to be evaluated. Since the cost reduction by DEIM is correlated to the ratio 

DEIMr , the support size in meshfree approximation is also a factor affecting the performance.  

 

Table 7.2: The accuracy and efficiency performance of POD and POD-DEIM reduction methods. 

      ̂          ⁄           ̂           ⁄      

 Normalized CPU 

time 

Average relative 

error 

Normalized CPU 

time 

Average relative 

error 

POD 38.3%           38.7%           

POD-DEIM 15.2%           19.9%           

 

7.5  Summary 

In this chapter, we focus on the development of nonlinear model reduction method based 

on a meshfree framework for hyperelasticity. In the numerical example, the meshfree based 

nonlinear model order reduction framework is used to simulation the two-phase hyperelastic 

material and satisfactory results have been obtained. We want to point out that this framework is 

not limited to DEIM. Since the SCNI based meshfree framework is carried out by nodal 

integration and both nodes and integration points are represented by a same set of points, the 

cubature-type hyper-reduction techniques are expected to suit well the meshfree framework as 

well. This is because these techniques rely on the selection of integration points instead of DOFs 
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of the state nodal vector. The unique feature of nodal integration offers convenience in 

constructing the hyper-reduction model. Thus, introducing meshfree approximation into 

cubature-type hyper-reduction techniques is a promising way for nonlinear model order 

reduction. 
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Chapter 8                                                                                               

Application of Data-Driven Modeling to Biological Tissues 

 

In this chapter, the proposed robust, manifold learning-based data-driven solver is 

extended to finite deformation kinematics for biological tissues modeling via directly utilizing 

the material data. It is noted that the use of experimental data as a basis for developing 

constitutive models of biological materials is classical and remains important, and enormous 

progress has been made during recent years in the phenomenological modeling of biological 

tissues (Fung & Skalak 1981; Holzapfel, Gasser & Ogden 2000; Humphrey 2003; Zhou & Fung 

1997). However, constitutive models are difficulty to construct for complex biological material, 

and the employment of data-driven approach in minimizing material modeling empiricism and 

preventing the loss of experimental information offers an alternative for this class of problems. 

 

8.1  Data-Driven Computational Framework for Nonlinear Solids 

To consider large deformation response of biological material, we reformulate the data-

driven computational framework based on finite strain theory. Let us consider the Green strain 

tensor E  and the 2
nd

-PK stress tensor S  as the state variables due to their symmetry. Given 

ˆˆ( , )E S  as material data provide by the local step, the global step of data-driven solver in Section 

6.2.3 is rewritten as 
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where b  and t , respectively, are the body force and the traction under initial configuration, and 

the superscript “X” denotes the initial configuration. Following the same procedures conducted 

in Chapter 6 for linear kinematics, the following Lagrangian is obtained by using Lagrange 

multipliers: 
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By means of the integration by parts, we obtain an equivalent form as follows 
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For the sake of simplicity, we set  on X

u 0λ . The variational form of (8.3) becomes  
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Then, the following weak form variational equations are obtained:  
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ext

DD P    
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 : : ˆ0 ( d : d .[ ] ) :
X X

T

S DD

   
 

      S M S F Su Mλ S   (8.5c) 

Compared to (6.15) in Section 6.2.3, an additional term appears in the first equation of  (8.5a) 

due to the nonlinear kinematics, while the Equations (8.5b) and (8.5c) characterizing 

equilibrium are similar except for using different strain and stress measures.   

 Again, if the stress approximation under numerical discretization is evaluated by either 

static condensation at the element level or nodal integration schemes, Equation (8.5c) can be 

disassembled into independent element-wise or point-wise systems given as 

 
1 : (ˆ ),[ ]T  FS uS λM+   (8.6) 

By inserting the equation (8.6) into Equations ((5.49)a) and ((5.49)b), we obtain 
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 (8.7) 

In contrast to the data-driven system in (6.16), the weak form system in (8.7) need to be solved 

by Newton’s method.  

 Once the convergent state solutions ( , )E S  are solved from (8.7) by a iterative scheme, 

the local step of the data-driven solver in (6.11) is readily used to update the material data.  

 
* * 2 2

( , )

ˆ ˆˆ ˆ( , ) ( , ) ( , ),  1,..., ,minarg d d m
  



   



  


 
SE

E S E E S S  (8.8) 

where the material solution space is denoted as  , suggesting that the proposed Locally Convex 

Data-Driven (LCDD) solver can be applied. Similar to Chapter 6, the coefficient matrices 
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s s M  and 
s s M  (usually 

1  M M ) are used in the metrics, d   and d , 

respectively, to measure distance.  

 

8.2  Numerical Examples: Data-Driven Modeling for Nonlinear Solids 

In this section, two demonstration examples are used to examine the capability and 

reliability of the data-driven computational framework for modelling nonlinear solids. Since the 

focus of the present work is to verify the proposed mathematical structure, in this section we 

generate the material database for data-driven solvers through the phenomenological constitutive 

models that are used to compute the reference solutions. We will then employ the experimental 

data for the data-driven modeling of biological materials in the next section. 

 

8.2.1  Large deflection of a cantilever beam subjected to a tip shear load 

 

Figure 8.1: Schematic of a beam model subjected to a shear load, where 20 mmL  , 1 mmH  . 

 

Consider a cantilever beam model subjected to a shear load (Chen, Yoon & Wu 2002), as 

shown in Figure 8.1. The beam is made of an elastic material (Saint Venant-Kirchhoff model), 

where Young’s modulus 
3 24.8 10  N mmE    and Poisson’s ratio 0.0v  . A 41 5  randomly 

spaced nodes are used to discretise the domain. The analysis is carried out using 10 equal loading 
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steps under plane strain condition, and the model-based reference solution to this problem can be 

computed by using the meshfree method introduced in Section 7.1. On the other hand, the 

coefficient matrix at each integration point is defined as 

 
1

1 0 0

0 1 0 .

0 0 1 2

E 

  



 
 

  
 
  

M M M   (8.9) 

 

 

Figure 8.2: An exemplary noiseless material data set (
320P  ) used for data-driven solvers: 

strain components. (Note: The axis labels denote the Green strain components) 

 

Following the same procedure of data generation in Section 6.5.2, a noiseless material 

data set (e.g., Figure 8.2) is provided for data-driven computing. The solutions obtained from the 

distance-minimizing data-driven (DMDD) approach and the proposed locally convex data-driven 

(LCDD) approach are provided in Figure 8.3, where the reference solution by the canonical 

numerical solver based on constitutive models is also given. As shown in Figure 8.3, LCDD 

(with 6k  ) obtains satisfactory results at every loading step, while DMDD diverges badly at 
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some steps. However, the results suggest that distinct from model-based numerical simulations, 

data-driven computing is relatively insensitive to solving process, and it may still arrive at a 

reasonable final solution regardless of misleading intermediate results. This may be because 

data-driven solution relies on the discrete material data instead of continuous function forms of 

material model. 

 

Figure 8.3: Comparison of model-based (black), DDCM (blue) and LCDD (red) solutions, where 

w is the tip-deflection. 

 

8.2.2  Uniaxial tension of hyper-elasticity material 

 

Figure 8.4: Schematic of a specimen of hyper-elasticity material subjected to uniaxial tension. 
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 Figure 8.4 shows the initial configuration of a specimen to be stretched in x  direction. In 

this case, we adopt an incompressible polynomial hyperelastic model (the generalized Mooney-

Rivlin model) such that the strain energy density per unit volume is expressed as 

 
2

1 2 3 1 2 3

1

( , , ) ( 3) ( 3) ,  1,i j

ij

i j

W I I I A I I I
 

      (8.10) 

where  ( 1,2,3)jI j   are the invariants of the right Cauchy-Green tensor, and the material 

parameters are chosen as 10 0.373C  , 20 0.031C   , and 20 0.005C  . For analysis, plane 

stress condition is assumed. The analytical solution for incompressible material was given in 

(Rivlin 1948; Rivlin & Saunders 1951), 
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1

1

12( )( ),xx

W W

I I
     

  
 

  (8.11) 

where xx  is the normal Cauchy stress component along x  direction and   is the associated 

stretch ratio in x  direction. With simple derivation, we have the 2
nd

 Piola-Kirchhoff (2
nd

-PK) 

stress component 2

xx xxS   . The stress-strain plots given by the analytical solution and the 

RKPM simulation solution are given in Figure 8.5. The agreement demonstrates the accuracy 

of the model-based simulation solution. In the following study, the model-based simulation 

solution is used as the reference for the data-driven solutions.  
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Figure 8.5: Comparison of analytical solution and the model-based simulation solution (RKPM). 

  

Figure 8.6: Exemplary noiseless material data sets (
320P  ) used for data-driven solvers: strain 

components (left); stress components (right). (Note: The axis labels denote the Green strain 

components (left) and the 2
nd

 PK stress components (right)) 
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Figure 8.7: Comparison of the proposed data-driven ( 6k  ) displacement solution against the 

model-based simulation solution by using the noiseless dataset.  

 

 Based on the hyperelastic model in (8.10), we produce the material database (Figure 8.6) 

for data-driven simulation. As shown in Figure 8.7, the displacement result given by the 

proposed LCDD solver agree well with the model-based reference solution. The absolute errors 

of the 2
nd

 PK stress components are also provided in Figure 8.8. Although the standard data-

driven solver, DDCM, yields acceptable prediction of xxS , it performs poorly in approximating 

yyS  that is supposed to be vanishing under this uniaxial tension condition. On the other hand, the 

proposed LCDD approximates both xxS  and yyS  accurately and yields negligible errors. 
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(a) DMDD: the error of 2nd PK stress xxS  and yyS    

 
 

(b) LCDD: the error of 2nd PK stress xxS  and yyS    

Figure 8.8: The absolute errors of stress components xxS  and yyS  solved by DMDD and LCDD 

against the model-based simulation solution. 
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8.3  Data-Driven Modeling: Porcine Atrioventricular Heart Valve Tissue 

 

Figure 8.9: Schematic of Mitral Valve (MV) and Tricuspid Valve (TV) leaflets for biaxial 

mechanical testing (Jett et al. 2018). Courtesy of Professor Chung-Hao Lee at The University of 

Oklahoma. 

 

As the proposed data-driven solver has been verified in last section, here it is used to 

simulate a biological tissue with realistic experimental data, provided by our collaborators in 

Biomechanics and Biomaterials Design Laboratory at the University of Oklahoma (Jett et al. 

2018). The material data set was collected by performing biaxial mechanical experiments with 

extensive testing protocols to examine the mechanical behaviors of the mitral valve and tricuspid 

valve leaflets (see Figure 8.9).  

 

8.3.1  Biaxial mechanical experiments 

As most of the constitutive models calibrated from uniaxial tension tests cannot 

accurately characterize the material responses under complex deformation states (Sacks 2000), it 

is a long-standing challenge to predict the general constitutive behaviors of biological tissues 
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under finite deformation. Hence, planar biaxial testing experiments with multiple loading ratios 

is utilized to investigate the anisotropic material response of each mitral and tricuspid valve 

leaflet. A simple description of the biaxial testing experiments is provided as follows. More 

information of the experiment setting is referred to (Jett et al. 2018). 

 For biaxial mechanical testing, a square specimen (8 mm × 8 mm) was dissected from the 

central region of each valve leaflet, as shown in Figure 8.10(a) an Figure 8.10(b). The thickness 

of the specimen was measured at three different locations to obtain the average value. Then, the 

square tissue specimen (Figure 8.10(c)) was mounted on a commercial biaxial mechanical testing 

system, BioTester (CellScale, Waterloo, ON, Canada), for various loading tests. 

 

   

(a) (b) (c) 

Figure 8.10: Experimental Images of the Experimental Setups for Biaxial Mechanical Testing, 

where C denotes circumferential direction and R denotes radial direction (Jett et al. 2018). 

Courtesy of Professor Chung-Hao Lee at The University of Oklahoma. 

 

 To measure the in-plane deformation and strain of the specimen under loading, a non-

contact digital image correlation (DIC) based techniques (Pan et al. 2009) is employed. As 

shown in Figure 8.11, four fiducial markers (with diameters of 300-500 µm) were attached in the 

interior region of the specimen to prevent the Saint-Venant effects on tissue deformations during 
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biaxial mechanical testing (Humphrey, Vawter & Vito 1987). The schematics of the force-

controlled and displacement-controlled biaxial mechanical testing protocols are illustrated in 

Figure 8.12 and Figure 8.13, respectively. Before performing loading testes, the tissues are 

loaded and unloaded 10~15 cycles as a “preconditioning” step to bring the tissue back to its 

functional state because the heart valve tissue just excised from the heart were typically not 

chosen as the reference configuration. Under the process of loading, a series of images of the 

deformed tissue specimen were collected by the high-resolution CCD camera (The Imaging 

Source LLC, Charlotte, NC), and the time-dependent positions of the four markers were tracked 

based on the acquired images. Applying finite element discretization, the in-plane deformation 

gradient F  associated to the tissue specimen can be computed by using the displacements of the 

four markers. As a result, the right Cauchy-Green deformation tensor 
TC F F  and the Green 

strain tensor 1 2( )  IE C  can be obtained. On the other hand, the first Piola-Kirchhoff  (1
st
-

PK) stress tensor P  was computed from the applied membrane tensions, CT  and RT  in two 

orthogonal directions, as follows 

 
01

,
0

c

R

T

Tt

 
  

 
P  (8.12) 

where t  is the tissue undeformed thickness. 
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Figure 8.11: Experimental Photos of Digital Image Correlation Based Tracking – Strain 

Calculation (Jett et al. 2018). Courtesy of Professor Chung-Hao Lee at The University of 

Oklahoma. 

 

 

Figure 8.12: Schematic of the force-controlled biaxial mechanical testing protocol (Jett et al. 

2018). Courtesy of Professor Chung-Hao Lee at The University of Oklahoma. 
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Figure 8.13: Schematic of the displacement-controlled biaxial mechanical testing protocol. 

Courtesy of Professor Chung-Hao Lee at The University of Oklahoma. 

 

8.3.2  Data-driven modeling 

For data-driven modeling, we generate a material database acquired from experiment 

tests introduced in Section 8.3.1 for mitral valve anterior leaflet (MVAL) under all 5 loading 

protocols ( ,max ,max: 1:1C RT T  , 0.75:1,1: 0.75 , 0.5 :1, and 1: 0.5  as shown in Figure 8.12) and 4 

displacement protocols (2
nd

 -5
th

 protocols as shown in Figure 8.13). The biaxial mechanical 

testing results under the 5 loading protocols are given in Figure 8.14 as an example. The stress 

components of the combinatorial material dataset are plotted in Figure 8.15. Compared to the 

previous synthetized material data sets, the data collected from experimental measurement seems 

more irregular in the phase space. To validate data-driven method, a specimen of heart valve 

tissue (Figure 8.16(a)) under the 1
st
 displacement-controlled testing protocol is not used in 

training data. 
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Figure 8.14: Experiment results for mitral valve anterior leaflet (MVAL) under 5 different force-

controlled biaxial mechanical testing protocols. Courtesy of Professor Chung-Hao Lee at The 

University of Oklahoma. 

 

 

Figure 8.15: Stress components of the material dataset collected by biaxial testing experiments 

under the 5 force-controlled loading and 4 displacement-controlled loading. (Note: The axis 

labels denote the 2
nd

 PK stress components) 
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(a) (b) 

Figure 8.16: (a) Schematic of a specimen of heart valve tissue subjected to the 1
st
 displacement-

controlled testing protocol and (b) the associated mechanics model for data-driven modeling. 

 

 The proposed LCDD solver using the given material data is employed to simulate the 

response of the model subjected to the biaxial tension defined in Figure 8.16(b). The data-driven 

prediction of the 2
nd

-PK stress components xxS  and yyS  is given in Figure 8.17. Despite the 

irregularities in the material dataset, the proposed data-driven solver yields nearly homogeneous 

stress distributions over the specimen domain except for the boundary areas. By taking average 

of the data-driven strain and stress results over the domain, we compare the data-driven 

prediction to the experimental data for the mitral valve anterior leaflet (MVAL) under 1
st
 

displacement-controlled biaxial mechanical testing protocol, as shown in Figure 8.18.  
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(a) xxS  (b) yyS  

Figure 8.17: Predictions of 2
nd

 PK Stresses by the proposed data-driven (LCDD) solver. 

 

 

Figure 8.18: Comparison of the experiment data and data-driven prediction for mitral valve 

anterior leaflet (MVAL) under 1
st
 displacement-controlled biaxial mechanical testing protocol. 

 

As shown in Figure 8.18, the data-driven prediction of stretch against 1
st
 PK stress 

generally agrees well with experimental data in both the circumferential and radial direction. The 

mismatch observed in the radial direction could be due to the different boundary conditions 

applied to the simulation model (Figure 8.16(b)) and the experimental set-up, and the boundary 

could have strong influence on the behavior of biological tissues (Humphrey, Vawter & Vito 

1987). Moreover, it should be noted that the mechanical behavior of biological tissues is 
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sensitive to loading ratios, fiber orientation, temperature, etc., and it has a great variety from 

specimen to specimen. Thus, it is expected that the material database collected from different 

specimens of MVAL for training purposes could be different from the materials selected for 

validation. 

The sensitivity of data-driven solutions to the size of material database is analyzed by 

varying the number of force-controlled protocols used to constitute the database for data-driven 

modeling while remaining all the datasets obtained from the four displacement-controlled 

protocols in the database. As shown in Figure 8.19, the data-driven solver yields worse 

predictions as more force-controlled datasets are removed from the material database. The data-

driven predictions with less force-controlled datasets cannot capture the turning point well, and 

result in large errors especially for the large strain region. For example, the data-driven 

prediction given by database #5 (P4), where only the dataset of the 4
th

 force-controlled protocol 

(see Figure 8.14) is collected into the material database, shows large discrepancies at the large 

strain range even though it agrees with the experimental results at the early stage of loading. The 

results suggest that a rich data with respect to more loading scenarios is essential for reliable 

data-driven solutions, which is the fundamentals of any data-driven approaches. Lastly, due to 

the scattering distribution of data (see Figure 8.15), a learning technique with better conditioning 

on data (e.g., a better selection of coefficient matrix M ) may help to improve the results. 
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(a) Circumferential direction (b) Radial direction 

Figure 8.19: Comparision of data-driven solutions using different number of force-controlled 

datasets for the numerical modeling of the mitral valve anterior leaflet (MVAL) under 1
st
 

displacement-controlled biaxial mechanical testing protocol. 

 

8.4  Summary 

In this chapter, we showed the extension of the locally convex data-driven (LCDD) 

solver for nonlinear kinematics such that it allows to simulate biological materials under finite 

deformation. Several demonstration tests with synthetic material data have been conducted to 

verify the effectiveness of the proposed data-driven solver for nonlinear solids. Furthermore, we 

presented a preliminary study of applying data-driven simulation for a realistic biological tissue, 

where the material data is collected by biaxial experiment testing. It shows that data-driven 

computing is a promising predictive simulation tool for complex materials, although its 

performance is subjected to the quality of data. More investigations on data collection, data 

processing, and physics-informed machine learning are essential to advance this field.  
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Chapter 9                                                                                               

Conclusions and Future Work 

 

9.1  Conclusions 

In this dissertation, we investigated the applications of model order reduction (MOR) and 

data-driven computational modeling to a variety of linear and nonlinear mechanics problems. 

These two methodologies are shown closely related since they are both based on a hybrid 

approach that integrates physical models with statistical learning techniques, e.g. dimensionality 

reduction. The objective of this work is to further advance the current state of hybrid data-model 

approaches in computational mechanics to address the computational limitations when dealing 

with nonlinear mechanics system and complex constitutive models. Thus, we proposed to 

enhance the performance of MOR and data-driven modeling by introducing suitable machine 

learning techniques as well as physics-preserving methods. This work includes two parts, the 

development of robust, physics-preserving MOR methods for parameterized PDEs, and the 

development of data-driven computational framework for complex material modeling.  

 In the context of MOR, we first proposed a decomposed subspace reduction (DSR) 

method to preserve the essential near-tip characteristics, singularities and discontinuities, of the 

original full-order model for fracture mechanics. In this approach, the reduced-order model is 

constructed based on the integrated singular basis function method (ISBFM) with meshfree 

approximation enriched by crack-tip basis functions, which allows a lower order integration of 
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the Galerkin equation, but also yields a discrete system containing sparse sub-matrices for 

physics-preserving MOR procedures.  

Next, we developed a robust reduced-order model for parameterized nonlinear systems 

characterized by a wide variety of nonlinear behaviors in terms of parameter changes. The 

reduced-order basis used to construct the low-dimensional subspace is derived from a 

generalized manifold learning framework in conjunction with linearization techniques, coined as 

linear graph embedding (LGE). This general framework allows the utilization of a priori 

statistical knowledge, such as local geometry, of given data during the construction of reduced-

order basis vectors. Thus, it yields a robust reduced-order model less sensitive to noise and 

outliers and is well suited for nonlinear physical systems. The advantages of the proposed LGE 

based MOR has been demonstrated by testing the parameterized elliptic PDE and Burgers’ 

problem.  

Furthermore, a nonlinear MOR for a meshfree Galerkin formulation based on the 

stabilized conforming nodal integration (SCNI) scheme is developed, which yields a pure node 

based MOR that is particularly effective for hyper-reduction techniques. A numerical example of 

two-phase hyperelastic solid with perturbed loading conditions is used to validate the 

effectiveness of the proposed reduction method. 

In the context of data-driven modeling, we developed an accurate, robust data-driven 

computational framework to provides an alternative to conventional physical modeling of 

complex materials. This framework allows physical simulation to directly interact with material 

data through machine learning procedures instead of employing phenomenological constitutive 

models. To address the “curse of dimensionality” and the robustness issue associated with noisy 
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and limited data, we proposed a manifold learning enhanced data-driven solver where it searches 

data solutions from a locally reconstructed convex hull associated to the k-nearest neighbor (k-

NN) points, resulting in robustness in dealing with noisy data and ensuring stability. It has shown 

that the proposed data-driven solver yields a linear exactness to the canonical numerical 

reference solution when the database is well sampled from the graph of constitutive relations.  

The proposed data-driven computational framework has also been extended to finite 

deformation mechanics for simulating biological materials under the same meshfree framework 

used for reduced-order modeling. The accuracy and robustness of the proposed data-driven 

approach are demonstrated in the modeling of linear and nonlinear elasticity problems. In 

additional, a preliminary result of data-driven modeling of biological tissue has been presented 

utilizing material data collected from laboratory testing on heart valve tissue, showing the 

potential of data-driven simulation by integrating physical modeling and machine learning 

techniques.  

 

9.2  Recommendations for Future Research 

This work is a first step in the direction of using the hybrid data-physics approach to 

address the computational limitations in engineering applications when dealing with nonlinear 

mechanics system and complex constitutive models. There are a number of possible 

enhancements as well as challenging applications that ask for further study. Some potential 

topics for future research are summarized as follows: 

1. The proposed LGE is robust and suitable for model reduction of systems that exhibit a 

wide range of variations in terms of parameters changes. However, the weight function is 
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selected empirically for the demonstration problems. Thus, it is of interest to study the 

automated strategy to select a proper weight function for the problem of interest based on 

iterative approaches, such as the expectation-maximization (EM) algorithm (Vidal, Ma & 

Sastry 2016). Moreover, for nonlinear systems with a severe variability, the introduction 

of local subspace methods (Amsallem, Zahr & Farhat 2012; Peherstorfer et al. 2014; 

Peng & Mohseni 2016; Sargsyan, Brunton & Kutz 2015) into the proposed LGE 

projection can be used to construct a more effective MOR model. 

2. The data-enhanced physics-based computational paradigm can be further enhanced. For 

example, some other robust techniques or advanced clustering algorithms to suppress 

outliers that are well established in machine learning area can be applied under the 

proposed LCDD framework. The way to identify the optimal number of neighbors in the 

k-NN algorithm is still an open issue (Anava & Levy 2016). 

3. The proposed data-driven framework is inspired by manifold learning techniques that 

utilize the local information of material data to form the local manifold. But this 

framework is not limited to the manifold learning structure. The neural network-based 

techniques (Ghaboussi, Garrett & Wu 1991; Goodfellow et al. 2016; Haykin 2009; 

MacKay & Mac Kay 2003) can also be applied to the material data stage and carry out 

the simulation together with physics-based models. 
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Appendix A                                                                

Reproducing Kernel Particle Method (RKPM) 

 

Since the reproducing kernel paritile method (Chen et al. 1996; Liu, Jun & Zhang 1995) 

is adopted for numerical discretization and solution approximation in most of the numerical 

studies of this thesis, we briefly review the construction of the reproducing kernel (RK) shape 

functions and its properties in this section.  

 The RK approximation of a function u , denoted as hu , is expresssed as a linear 

combination of N  RK shape functions as follows   

 
1

( ) ( )
N

h

I I

I

u d


x x   (A.1) 

where Ix  are the nodal coordinates of the N RK particles, Id  are the nodal coefficients, and I  

are the RK shape functions expressed as a corrected version of a compactly supported kernel 

 ( ) ( ; ) ( )I I a IC    x x x x x x   (A.2) 

The kernel function a  with a compact support size “ a ” defines the locality of the shape 

functions I . In this manner, the shape function associated with a node interacts only with a 

small group of neighboring nodes, yielding better sparseness as well as conditioning in the 

stiffness matrix for solving linear system. The kernel function a  also determines the 

smoothness of the RK shape function. For example, the cubic-B splines commonly used as 

kernel functions provides 2C  continuity, defined as 
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where || ||Iz a x x . 

 To impose the n-th order of completeness in the approximation (A.2), the correction 

function ( ; )IC x x x  is defined as 

 
| |
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I I I
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
 

    x x x x x x H x x b x   (A.4) 

in which ( )IH x x  is a vector consisting of nth-order monomial basis functions. The coefficient 

vector b  is solved by enforcing the following reproducing conditions 
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After some mathematical derivation, the coefficient vector is given by 

 
1( ) ( ) ( ) 0b x M x H   (A.6) 

where 
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is the moment matrix. The RK shape functions are then obtained as  

 
1 || ||
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I I a
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x x
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The construction based on reproducing conditions allows the RK approximation to exactly 

reproduce monomials up to degree n and therefore, the partition of unity property holds.  
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 It should be noted that the RK shape functions do not possess the Kronecker delta 

property, i.e. ( )I J IJ x , and thus, ( )h

I Iu dx . Special treatment is needed for the imposition 

of essential boundary conditions while solving boundary value problems based on Galerkin 

method. A number of methods have been proposed to address this issue, such as Lagrange 

multipliers method (Belytschko, Lu & Gu 1994), Nitsche’s method (Fernández-Méndez & 

Huerta 2004; Nitsche 1971), boudary singular kernel method (Chen & Wang 2000), and 

transformation methods (Chen et al. 1996; Chen & Wang 2000). More discussions on the 

mathematical properties of the reproducing kernel approaximation and the imposition of 

essential boundary conditions can be found in the recent review paper (Chen, Hillman & Chi 

2017).  
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Appendix B                                                               

Nonnegative Least Squares (NNLS) Solver 

 

Let us recall a standard NNLS problem: given a matrix n pA  (usually >p n ) and a 

observed vector z
n
, find a nonnegative vector 

y
p
 to minimize the following function, 

 
arg min || ||,

subject to: 0,  1,... , ,







 



x

y Ay z
p

iy i p
  (B.1) 

where || ||  stands for the standard Euclidean norm. 

A variety of methods have been applied to tackle the NNLS problem since 1980s. Those 

algorithms in general can be roughly categorized into active-set methods and iterative 

approaches (Chen & Plemmons 2010). Lawson and Hanson (Lawson & Hanson 1987) seems to 

propose the first standard algorithm to solve NNLS problem (B.1). Their method is essentially an 

active set method (Gill, Murray & Wright 1981), which is based on the observation that only a 

small subset of the non-negative constraints are usually active at the solution. It shows in 

(Lawson & Hanson 1987) that the iteration in the active set method converges and terminates 

without any cutoff in iterations. Since most research studies in computational mechanics are 

based on the active-set method (Lawson & Hanson 1987) to solve the Cubature problem, we 

only review this method in Algorithm 1.    



 

242 

Algorithm 1 Non-negative least squares solver: ( ,, ) y A zNNLS TOL  

Input: n pA , z
n
, TOL 

Output: 
  0y  such that 2arg min || ||  y Ay z  

Initialization:  , {1,2, , }p , y = 0 , r z  

WHILE || || || || r z TOL  and  , DO 

( ) A zq AyT , 
1,...,

arg max( )i
i p

j q


  

Include the index j  in  and remove it from  

1( ) A A As z
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y y s  

( )  y y s y  

Update  with zero value indices of y  and  with the positive indices of y  
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Return 
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