
UC Irvine
UC Irvine Previously Published Works

Title

Birth/birth-death processes and their computable transition probabilities with biological 
applications

Permalink

https://escholarship.org/uc/item/5pr2s4fn

Journal

Journal of Mathematical Biology, 76(4)

ISSN

0303-6812

Authors

Ho, Lam Si Tung
Xu, Jason
Crawford, Forrest W
et al.

Publication Date

2018-03-01

DOI

10.1007/s00285-017-1160-3

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5pr2s4fn
https://escholarship.org/uc/item/5pr2s4fn#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Birth/birth-death processes and their computable

transition probabilities with biological applications

Lam Si Tung Ho

Department of Biostatistics

University of California, Los Angeles

Jason Xu

Department of Biomathematics

University of California, Los Angeles

Forrest W. Crawford

Department of Biostatistics

Yale University

Vladimir N. Minin

Departments of Statistics and Biology

University of Washington

Marc A. Suchard

Departments of Biomathematics, Biostatistics and Human Genetics

University of California, Los Angeles

1

ar
X

iv
:1

60
3.

03
81

9v
2 

 [
st

at
.C

O
] 

 7
 A

ug
 2

01
7



Abstract

Birth-death processes track the size of a univariate population, but many biological

systems involve interaction between populations, necessitating models for two or more

populations simultaneously. A lack of efficient methods for evaluating finite-time tran-

sition probabilities of bivariate processes, however, has restricted statistical inference in

these models. Researchers rely on computationally expensive methods such as matrix

exponentiation or Monte Carlo approximation, restricting likelihood-based inference to

small systems, or indirect methods such as approximate Bayesian computation. In this

paper, we introduce the birth/birth-death process, a tractable bivariate extension of the

birth-death process, where rates are allowed to be nonlinear. We develop an efficient

algorithm to calculate its transition probabilities using a continued fraction represen-

tation of their Laplace transforms. Next, we identify several exemplary models arising

in molecular epidemiology, macro-parasite evolution, and infectious disease modeling

that fall within this class, and demonstrate advantages of our proposed method over

existing approaches to inference in these models. Notably, the ubiquitous stochastic

susceptible-infectious-removed (SIR) model falls within this class, and we emphasize

that computable transition probabilities newly enable direct inference of parameters

in the SIR model. We also propose a very fast method for approximating the tran-

sition probabilities under the SIR model via a novel branching process simplification,

and compare it to the continued fraction representation method with application to

the 17th century plague in Eyam. Although the two methods produce similar maxi-

mum a posteriori estimates, the branching process approximation fails to capture the

correlation structure in the joint posterior distribution.

Keywords stochastic models, birth-death process, infectious disease, SIR model,

transition probabilities
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1 Introduction

Birth-death processes have been used extensively in many applications including evolutionary

biology, ecology, population genetics, epidemiology, and queuing theory (see e.g. Novozhilov

et al., 2006; Crawford and Suchard, 2012; Doss et al., 2013; Rabier et al., 2014; Crawford

et al., 2015). However, establishing analytic and computationally practical formulae for

their transition probabilities is usually difficult (Novozhilov et al., 2006). The state-of-the-

art method for computing the transition probabilities of birth-death processes proposed in

Crawford and Suchard (2012) enables statistical estimation for general birth-death processes

using likelihood-based inference (Crawford et al., 2014). Unfortunately, birth-death processes

inherently only track one population, and extending this technique beyond the univariate

case is nontrivial. Many applied models require the consideration of two or more interacting

populations simultaneously to model behavior such as competition, predation, or infection.

Examples of such bivariate models include epidemic models (McKendrick, 1926; Kermack

and McKendrick, 1927; Griffiths, 1972), predator-prey models (Hitchcock, 1986; Owen et al.,

2015), genetic models (Rosenberg et al., 2003; Xu et al., 2015), and within-host macro-

parasite models (Drovandi and Pettitt, 2011).

The most general extensions of birth-death processes to bivariate processes are competi-

tion processes (Reuter, 1961). These processes allow not only “birth” and “death” events in

each population, but also “transition” events where an individual moves from one population

to the other. Unlike birth-death processes, few attempts have been made to compute the

transition probabilities of competition processes or their special cases. Hence, researchers

usually rely on classical continuous-time Markov chain methods such as matrix exponentia-

tion and diffusion approximation. Unfortunately, these methods fail to leverage the specific

structure of competition processes, and have several intrinsic limitations. Matrix exponenti-

ation methods compute the transition probability matrix P(t) by solving the matrix form of

Kolmogorov’s forward equation P′(t) = P(t)Q with initial condition P(0) = I, where Q is

the instantaneous rate matrix of the process. While this equation admits a unique solution
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P(t) = exp(Qt) (Ephraim and Mark, 2012), numerical evaluation of the matrix exponential

is often troublesome (Moler and Loan, 2003). Its computational cost via eigenvalue decompo-

sition, for instance, is cubic in the size of the state-space and thus becomes computationally

prohibitive even with moderately sized state-spaces (Drovandi and Pettitt, 2011; Crawford

and Suchard, 2012). For example, Keeling and Ross (2008) demonstrate that computing

transition probabilities via matrix exponentiation for the simplest epidemic models is prac-

tical only when modeling spread of an infectious disease through a very small population

(e.g., 100 people). Moreover, matrix exponentiation can introduce serious rounding errors for

certain rate matrices even for biologically reasonable values (Schranz et al., 2008; Crawford

and Suchard, 2012; Crawford et al., 2014). Diffusion approximations, on the other hand,

require the state-space to be large in order to justify approximating a discrete process by a

continuous-valued diffusion process (Karev et al., 2005; Golightly and Wilkinson, 2005), and

can often remain inaccurate for simulation even in settings with large state-spaces (Golightly

and Wilkinson, 2005). Branching processes form another closely related class of processes,

and have been used in a likelihood-based framework to study bivariate populations (Xu

et al., 2015). Branching processes are at once more general than competition processes,

permitting events that increment populations by more than one, and also more restrictive

in that linearity is implied by an assumption that particles act independently. The latter

assumption is limiting in epidemiological applications, for instance, which commonly feature

non-linear interactions between populations.

The lack of a reliable method for computing transition probabilities in bivariate pro-

cesses forces researchers to apply alternative likelihood-free approaches such as approximate

Bayesian computation (ABC) (Blum and Tran, 2010; Drovandi and Pettitt, 2011; Owen et al.,

2015). The ABC approach uses simulated and observed summary statistics to bypass like-

lihood evaluation. Nonetheless, this is not a panacea approach that can completely replace

traditional likelihood-based methods. The ABC method itself has several sources for loss

of information such as non-zero tolerance, and non-sufficient summary statistics (Sunn̊aker
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et al., 2013). The tolerance is an ad hoc threshold to decide whether ABC accepts a new

proposal. If the tolerance is zero and the summary statistics are sufficient, ABC is guaran-

teed to return the correct posterior distribution. In practice, however, tolerance is always

positive which often leads to bias. In the context of counting processes, sufficient summary

statistics usually do not exist because the data are observed partially. Thus, credible interval

estimates under ABC are potentially inflated due to the loss of information (Csilléry et al.,

2010). Also, when sufficient summary statistics are not available, the ABC method can not

be trusted in selecting between models (Robert et al., 2011). Because of all these limitations,

direct likelihood-based methods are often more favorable.

In this paper, we develop an efficient method to compute the transition probabilities of

a subclass of competition processes with two interacting populations of particles, enabling

likelihood-based inference. We call this subclass birth(death)/birth-death processes, whose

first population is increasing (decreasing). It is worth mentioning that we do not impose

linearity condition for the rates of these processes. A rigorous characterization of this class

of processes and derivation of recursive formulae to compute their transition probabilities are

provided in Section 2. Our main tools are the Laplace transform and continued fractions that

have been successfully applied for univariate birth-death processes in Crawford and Suchard

(2012). These formulae enable accurate and computationally efficient numerical computa-

tion of transition probabilities. We implement this method in the new R package MultiBD

https://github.com/msuchard/MultiBD. In Section 3, we discuss multiple scientifically

relevant applications of birth(death)/birth-death processes including stochastic susceptible-

infectious-removed (SIR) models in epidemiology (McKendrick, 1926; Kermack and McK-

endrick, 1927; Raggett, 1982), monomolecular reaction systems (Jahnke and Huisinga, 2007),

a birth-death-shift model for transposable elements (Rosenberg et al., 2003; Xu et al., 2015),

and a within-host macro-parasite model (Riley et al., 2003; Drovandi and Pettitt, 2011). We

examine the accuracy of our method in simulation studies, including comparisons to branch-

ing process, matrix exponentiation method, and Monte Carlo approximations. Finally, we
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apply our method to estimate infection rates and death rates during the plague of Eyam in

1666 within a likelihood-based Bayesian framework in Section 4.

Previous work on computing the transition probabilities: Analytic expressions

of the transition probabilities have only been found for some special cases such as linear

birth-death processes (see e.g. Novozhilov et al., 2006) and monomolecular reaction sys-

tems (Jahnke and Huisinga, 2007). Therefore, matrix exponentiation is still the most com-

mon method for computing the transition probabilities of general Markov processes. The

state-of-the-art software package for exponentiating sparse matrices is Expokit (Sidje, 1998;

Moler and Loan, 2003), which uses Krylov subspace projection method. van den Eshof and

Hochbruck (2006) propose a modified version using a simple preconditioned transformation

to improve the convergence behavior of this method. Although matrix exponentiation has

the advantage of generality in that it can be applied to any Markov process, it is not the

most efficient method in many scenarios. Recently, Crawford and Suchard (2012) propose an

efficient method for evaluating the transition probabilities of general birth-death processes

using Laplace transform and continued fraction. However, efficient methods that extend this

result to general bivariate birth-death processes have yet to be found.

2 Birth(death)/birth-death processes

2.1 Birth/birth-death processes

A birth/birth-death process is a bivariate continuous-time Markov process X(t) = (X1(t), X2(t)),

t ≥ 0, whose state-space is in N×N, the Cartesian product of the non-negative integers. We

can describe a birth/birth-death process as governing dynamics of a system consisting two

types of particles, where one out of four possible events can happen in infinitesimal time:

(1) a new type 1 particle enters the system; (2) a new type 2 particle enters the system;

(3) a type 2 particle leaves the system; or (4) a type 2 particle becomes a type 1 particle.
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In this system, X1(t) and X2(t) track the number of type 1 and type 2 particles at time t

respectively. Mathematically, there are five possibilities for X(t) during a small time interval

(t, t+ dt):

Pr

 X1(t+ dt) = a+ 1 X1(t) = a

X2(t+ dt) = b X2(t) = b

 = λ
(1)
ab dt+ o(dt)

Pr

 X1(t+ dt) = a X1(t) = a

X2(t+ dt) = b+ 1 X2(t) = b

 = λ
(2)
ab dt+ o(dt)

Pr

 X1(t+ dt) = a X1(t) = a

X2(t+ dt) = b− 1 X2(t) = b

 = µ
(2)
ab dt+ o(dt)

Pr

 X1(t+ dt) = a+ 1 X1(t) = a

X2(t+ dt) = b− 1 X2(t) = b

 = γabdt+ o(dt)

Pr

 X1(t+ dt) = a X1(t) = a

X2(t+ dt) = b X2(t) = b

 = 1− (λ
(1)
ab + λ

(2)
ab + µ

(2)
ab + γab)dt+ o(dt), (1)

where a, b ∈ N, λ
(1)
ab ≥ 0 is the birth rate of type 1 particles given a type 1 particles and

b type 2 particles, λ
(2)
ab ≥ 0 is the equivalent birth rate of type 2 particles, µ

(2)
ab ≥ 0 is the

death rate of type 2 particles, and γab is the transition rate from type 2 particles to type

1 particles. We fix λ
(1)
−1,b = λ

(2)
a,−1 = µ

(2)
a0 = γ−1,b = γa0 = 0.

Letting P a0b0
ab (t) = Pr{X(t) = (a, b) | X(0) = (a0, b0)}, the forward Kolmogorov’s equa-

tions for the birth/birth-death process are

dP a0b0
ab (t)

dt
= λ

(1)
a−1,bP

a0b0
a−1,b(t) + λ

(2)
a,b−1P

a0b0
a,b−1(t) + µ

(2)
a,b+1P

a0b0
a,b+1(t)

+ γa−1,b+1P
a0b0
a−1,b+1(t)− (λ

(1)
ab + λ

(2)
ab + µ

(2)
ab + γab)P

a0b0
ab (t), (2)

for all (a, b). In practice, we can usually only observe the process discretely. In this scenario,

the likelihood function is the product of transition probabilities between consecutive obser-
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vations. Therefore, computing P a0b0
ab (t) is an important step for any direct likelihood-based

analysis.

In general, a birth/birth-death process is a special case of a competition process (Reuter,

1961) with rate matrix Q = {qij} where i, j ∈ N× N and

j Competition process Birth/birth-death

(a+ 1, b) q(a,b)(a+1,b) λ
(1)
ab

(a− 1, b) q(a,b)(a−1,b) 0

(a, b+ 1) q(a,b)(a,b+1) λ
(2)
ab

(a, b− 1) q(a,b)(a,b−1) µ
(2)
ab

(a+ 1, b− 1) q(a,b)(a+1,b−1) γab

(a− 1, b+ 1) q(a,b)(a−1,b+1) 0

(a, b) −
k 6=l∑

k,l∈{−1,0,1}

q(a,b)(a+k,b+l) −(λ
(1)
ab + λ

(2)
ab + µ

(2)
ab + γab)

other 0 0

for i = (a, b). Competition processes are the most general bivariate Markov processes that

only allow transitions between neighboring states. Many practical models in biology are

special cases of these processes such as epidemic models (McKendrick, 1926; Kermack and

McKendrick, 1927; Griffiths, 1972) and predator-prey models (Hitchcock, 1986; Owen et al.,

2015).

2.1.1 Sufficient condition for regularity

Definition 1. A birth/birth-death process is regular if there is a unique set of transition

probabilities P a0b0
ab (t) satisfying the system of equations (2).

Here, we establish the sufficient condition for regularity of a birth/birth-death process.
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For k ∈ N, we denote:

Dk = {(a, b) : a+ b = k} ∈ N× N, and

λk = max
(a,b)∈Dk

{λ(1)ab + λ
(2)
ab }. (3)

Theorem 1. The sufficient condition for regularity of a general birth/birth-death process is∑∞
k=1 1/λk =∞.

Proof. We will apply the following Reuter’s condition (Reuter, 1957):

Lemma 1. Let Q = {qij} be a conservative matrix, such that −qii =
∑

j 6=i qij < ∞. A

continuous-time Markov chain associated with Q is regular if and only if for some ζ > 0,

the equation Qy = ζy subject to 0 ≤ yi ≤ 1 has only trivial solution y = 0.

For a general birth/birth-death process, states i and j are in N× N. Let {yab}a,b∈N be a

solution of Qy = ζy such that yab ∈ [0, 1] for any a and b. Then, we have

(ζ + λ
(1)
ab + λ

(2)
ab + µ

(2)
ab + γab)yab = λ

(1)
ab ya+1,b + λ

(2)
ab ya,b+1 + µ

(2)
ab ya,b−1 + γabya+1,b−1. (4)

Defining yk = max(a,b)∈Dk
{yab} and (ak, bk) = argmax(a,b)∈Dk

{yab}, we deduce that

(ζ + λ
(1)
akbk

+ λ
(2)
akbk

+ µ
(2)
akbk

)yk ≤ (λ
(1)
akbk

+ λ
(2)
akbk

)yk+1 + µ
(2)
akbk

yk−1, and

ζyk + µ
(2)
akbk

(yk − yk−1) ≤ (λ
(1)
akbk

+ λ
(2)
akbk

)(yk+1 − yk). (5)

Since µ
(2)
a−1b−1

= 0, yk is an increasing sequence. Thus,

ζ

λk
yk ≤ yk+1 − yk. (6)
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Assuming that there exists k0 such that yk0 > 0, we obtain

yk ≥ yk0 + ζ
k−1∑
i=k0

yi
λi
≥ yk0(1 + ζ

k−1∑
i=k0

1

λi
), (7)

that is larger than 1 if k is big enough. Hence yk = 0 for every k. Then, the theorem is

proved by applying Lemma 1.

Note that the condition in Theorem 1 generalizes the classical regularity condition of

a pure birth process (Feller, 1968). From now on, we assume that our birth/birth-death

processes are regular.

2.1.2 Recursive formula for transition probabilities

In this section, we establish a recursion to calculate the transition probabilities P a0b0
ab (t) of

a birth/birth-death process. Since we assume that our birth/birth-death process is regular,

these transition probabilities are unique.

We first note that P a0b0
ab (t) = 0 for all a < a0. Let fab(s), s ∈ C, be the Laplace transform

of P a0b0
ab (t), that is

fab(s) = L[P a0b0
ab (t)](s) =

∫ ∞
0

e−stP a0b0
ab (t)dt. (8)

From (2), we have

sfab(s)− P a0b0
ab (0) = λ

(1)
a−1,bfa−1,b(s) + λ

(2)
a,b−1fa,b−1(s) + µ

(2)
a,b+1fa,b+1(s)

+ γa−1,b+1fa−1,b+1(s)− (λ
(1)
ab + λ

(2)
ab + µ

(2)
ab + γab)fab(s), (a, b) ∈ N2. (9)

Note that fab(s) is the unique solution of (9) by the uniqueness of P a0b0
ab (t). We construct the

recursive approximation formulae for fab(s) using continued fractions. Appendix A provides
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necessary background on continued fractions and their convergents. Denote

xa1 = − 1

µ
(2)
a1

; xab = −
λ
(2)
a,b−2

µ
(2)
ab

, b ≥ 2

yab = −
s+ λ

(1)
a,b−1 + λ

(2)
a,b−1 + µ

(2)
a,b−1 + γa,b−1

µ
(2)
ab

, b ≥ 1, (10)

and consider the following continued fraction

φ
(0)
a0 (s) =

xa1

ya1 +
xa2

ya2 +
xa3

ya3 + · · ·
.

(11)

We can construct the sequence {φ(0)
ab (s)}∞b=0 (Definition A.3, Appendix A) as follows:

(s+ λ
(1)
a0 + λ

(2)
a0 )φ

(0)
a0 (s)− µ(2)

a1 φ
(0)
a1 (s) = 1, and

(s+ λ
(1)
a,b−1 + λ

(2)
a,b−1 + µ

(2)
a,b−1 + γa,b−1)φ

(0)
a,b−1(s)− λ

(2)
a,b−2φ

(0)
a,b−2(s)− µ

(2)
ab φab(s) = 0, b ≥ 2.

(12)

Comparing the sequences in (12) with (9), we deduce that L−1
[
φ
(0)
ab (s)

]
= P a00

ab (t). Since

P a00
ab (t) is a probability distribution, we have

∑
(a,b)∈N×N P

a00
ab (t) = 1. Taking the Laplace

transform of the previous equation, we get
∑

(a,b)∈N×N φ
(0)
ab (s) = 1/s. Hence, limb→∞ φ

(0)
a0b

(s) =

0 for every s > 0. By Lemma A.1 (Appendix A), φ
(0)
a0 (s) converges for every s > 0, and

φ
(0)
ab (s) =

b∏
i=1

xai
xa,b+1

Ya,b+1 +
xa,b+2Yab

ya,b+2 +
xa,b+3

ya,b+3 +
xa,b+4

ya,b+4 + · · ·
,

(13)
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where Yab is the denominator of the bth convergent of φ
(0)
a0 (s).

From (9), we note that

(s+λ
(1)
a0b

+λ
(2)
a0b

+µ
(2)
a0b

+ γa0b)fa0b−λ
(2)
a0,b−1fa0,b−1(s)−µ

(2)
a0,b+1fa0,b+1(s) = 1{b=b0}, b ∈ N. (14)

By Lemma A.2 (Appendix A), fa0b(s) = φ
(b0)
a0b

(s) where

φ
(m)
ab (s) =


(−1)m−b+1Yab

µ
(2)
a,m+1

∏m+1
i=1 xai

φ
(0)
am(s), if b ≤ m

−Yam
µ
(2)
a,m+1

∏m+1
i=1 xai

φ
(0)
ab (s), if b ≥ m.

(15)

Next, we obtain formulae for approximating fab(s) recursively assuming that we already

have evaluated fa−1,b(s). Again, from (2), we have

(s+λ
(1)
ab +λ

(2)
ab +µ

(2)
ab +γab)fab(s)−λ(2)a,b−1fa,b−1(s)−µ

(2)
a,b+1fa,b+1(s) = λ

(1)
a−1,bfa−1,b(s)+γa−1,b+1fa−1,b+1(s),

(16)

for b ∈ N. We approximate fab(s) by solving a truncated version of (16) for 0 ≤ b ≤ B,

where B is sufficiently large. The intuition of how to choose B follows from the observation

that we want
∑∞

a=a0

∑∞
b=B+1 P

a0b0
ab (t) to be small. By Lemma A.2 (Appendix A), we have

the following approximation:

fab(s) ≈
B∑

m=0

[
λ
(1)
a−1,mfa−1,m(s) + γa−1,m+1fa−1,m+1(s)

]
φ
(m)
ab (s). (17)

Therefore, the transition probabilities of a birth/birth-death process can be computed re-

cursively using the following Theorem:

Theorem 2. Let φ
(m)
ab (s) be defined as in (11), (13), and (15). We have

P a0b0
ab (t) =


0, if a < a0

L−1 [fab(s)] (t), if a ≥ a0,

(18)
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where fa0b(s) = φ
(b0)
a0b

(s) and

fab(s) ≈
B∑

m=0

[
λ
(1)
a−1,mfa−1,m(s) + γa−1,m+1fa−1,m+1(s)

]
φ
(m)
ab (s), a > a0. (19)

Here, L−1(.) denotes the inverse Laplace transform and B is the truncation level.

If the number of type 2 particles is bounded by B∗, we choose B = B∗. In this case,

the approximation in Theorem 2 is exact. We prove that the output of our approximation

scheme (19) converges to fab(s) as B goes to infinity in Appendix C. Further, the transition

probability returned by Theorem 2 converges to the true transition probability. This trunca-

tion error can be bounded explicitly by extending the coupling argument in Crawford et al.

(2016) to multivariate processes. However, we leave it as a subject of future work because a

complete treatment is beyond the scope of this paper.

2.1.3 Numerical approximation of the transitions probabilities

To approximate P a0b0
ab (t) using Theorem 2, we need to compute two quantities: the continued

fractions φ
(m)
ab (s), and the inverse Laplace transform L−1 [fab(s)] (t). We efficiently evaluate

the continued fractions φ
(m)
ab (s) through the modified Lentz method (Lentz, 1976; Thompson

and Barnett, 1986); see Appendix B for more details. This algorithm enables us to control

for and limit truncation error. To approximate the inverse Laplace transform L−1 [fab(s)] (t),

we apply the method proposed in Abate and Whitt (1992) using a Riemann sum:

L−1 [fab(s)] (t) ≈ eH/2

2t
R
[
fab

(
H

2t

)]
+
eH/2

t

∞∑
k=1

(−1)kR
[
fab

(
H + 2kπi

2t

)]
. (20)

Here R[z] is the real part of z and H is a positive real number. Abate and Whitt (1992)

show that the error that arises in (20) is bounded by 1/(eH − 1). Moreover, we can use the

Levin transform (Levin, 1973) to improve the rate of convergence because the series in (20)

is an alternating series when R{fab[(H + 2kπi)/(2t)]} have the same sign. These numerical
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methods have been successfully applied by Crawford and Suchard (2012) to compute the

transition probabilities of birth-death processes.

In practice, to handle situations where µ
(2)
ab can possibly equal to 0 for some (a, b), we

re-parametrize xab and yab as follows:

xa1 = 1; xab = −λ(2)a,b−2µ
(2)
a,b−1, b ≥ 2, and

yab = s+ λ
(1)
a,b−1 + λ

(2)
a,b−1 + µ

(2)
a,b−1 + γa,b−1, b ≥ 1. (21)

With this new parametrization, we obtain

φ
(m)
ab (s) =



(
∏m

i=b+1 µ
(2)
ai )Yab

Ya,m+1 +
xa,m+2Yam

ya,m+2 +
xa,m+3

ya,m+3 +
xa,m+4

ya,m+4 + · · ·

, if b ≤ m

(
∏b

i=m+1 λ
(2)
ai )Yam

Ya,b+1 +
xa,b+2Yab

ya,b+2 +
xa,b+3

ya,b+3 +
xa,b+4

ya,b+4 + · · ·

, if b ≥ m.

(22)

Our complete algorithm to compute the transition probabilities of birth/birth-death pro-

cesses is implemented in the function bbd prob in a new R package called MultiBD. The

function takes t, a0, b0, λ
(1)
ab , λ

(2)
ab , µ

(2)
ab , γab, A, B as inputs and returns the transition prob-

ability matrix {P a0b0
ab (t)}a0≤a≤A,0≤b≤B. Here, there is no requirement for A while B needs to

be large enough such that
∑A

a=a0

∑∞
b=B+1 P

a0b0
ab (t) is small. We can check to see if B is large

enough by checking if
∑A

a=a0
P a0b0
aB (t) is sufficiently small.

In practice, the computational complexity of evaluating each term (fab(s))a0≤a≤A,0≤b≤B
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is O((A − a0)B
2) because the Lentz algorithm terminates quickly. Let K be the number

of iterations required by the Levin acceleration method (Levin, 1973) to achieve a certain

error bound for the Riemann sum in (20). Then, the total complexity of our algorithm is

O((A− a0)B2K). However, evaluation of {fab[(H + 2kπi)/(2t)]}Kk=1 can be efficiently paral-

lelized across different values of k, and we exploit this parallelism via multicore processing,

delegating most of the computational work to compiled C++ code.

2.2 Death/birth-death processes

Similar to the birth/birth-death process, a death/birth-death process is also a special case

of competition processes. The only difference is that the number of type 1 particles is

decreasing instead of increasing. Mathematically, possible transitions of a death/birth-death

process X(t) = (X1(t), X2(t)) during (t, t+ dt) are:

Pr

 X1(t+ dt) = a− 1 X1(t) = a

X2(t+ dt) = b X2(t) = b

 = µ
(1)
ab dt+ o(dt)

Pr

 X1(t+ dt) = a X1(t) = a

X2(t+ dt) = b+ 1 X2(t) = b

 = λ
(2)
ab dt+ o(dt)

Pr

 X1(t+ dt) = a X1(t) = a

X2(t+ dt) = b− 1 X2(t) = b

 = µ
(2)
ab dt+ o(dt)

Pr

 X1(t+ dt) = a− 1 X1(t) = a

X2(t+ dt) = b+ 1 X2(t) = b

 = γabdt+ o(dt)

Pr

 X1(t+ dt) = a X1(t) = a

X2(t+ dt) = b X2(t) = b

 = 1− (µ
(1)
ab + λ

(2)
ab + µ

(2)
ab + γab)dt+ o(dt), (23)

where µ
(1)
ab ≥ 0 is the death rate of type 1 particles given a type 1 particles and b type 2

particles, λ
(2)
ab ≥ 0 is the birth rate of type 2 particles, µ

(2)
ab ≥ 0 is the death rate of type
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2 particles, and γab is the transition rate from type 1 particles to type 2 particles. Again,

we fix µ
(1)
0,b = λ

(2)
a,−1 = µ

(2)
0,b = γ0,b = γa,−1 = 0.

Following a similar argument as in Section 2.1.1, we obtain a sufficient condition for

regularity of a death/birth-death process. Denote

Dk = {(a, b) : a+ b = k, a ≤ a0} ∈ N× N

λk = max
(a,b)∈Dk

{λ(2)ab }

µk = min
(a,b)∈Dk

{µ(1)
ab + µ

(2)
ab }

σ0 = 1, σk =
λ0 . . . λk−1
µ1 . . . µk

, (24)

where a0 is the number of type 1 particles at time t = 0. The following Theorem is a direct

application of Theorem 1 in Iglehart (1964)

Theorem 3. A sufficient condition for regularity of a death/birth-death process is

∞∑
k=0

(
1

λkσk

k∑
i=0

σi

)
=∞. (25)

We note that if we do a transformation for a death/birth-death process X(t) = (X1(t), X2(t))

as follows:

Y1(t) = a0 −X1(t)

Y2(t) = B −X2(t). (26)

Then, Y(t) = (Y1(t), Y2(t)) can be considered as a birth/birth-death process. Therefore,

the transition probabilities of a death/birth-death process can also be computed using the

R function bbd prob and the transformation (26). Again, we want to choose B such that∑a0
a=0

∑∞
b=B+1 P

a0b0
ab (t) is small. We implement this procedure in the function dbd prob in

our R package MultiBD. The function takes t, a0, b0, µ
(1)
ab , λ

(2)
ab , µ

(2)
ab , γab, A, B as inputs and
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returns the transition probability matrix {P a0b0
ab (t)}A≤a≤a0,0≤b≤B. As for birth/birth-death

processes, there is no requirement for A.

3 Applications

Birth(death)/birth-death processes are appropriate for modeling two-type populations where

the size of the first population is monotonically increasing (decreasing). Here we examine our

methods in four applications: a within-host macro-parasite model, a birth-death-shift model

for transposable elements, monomolecular reaction systems, and the stochastic SIR epidemi-

ological model. We demonstrate that a birth (death)/birth-death process well captures the

dynamics of these common biological problems, and inference using its transition probabil-

ities often outperforms existing approximations. In particular, we emphasize that the birth

(death)/birth-death process approach allows us to compute finite-time transition probabil-

ities in the stochastic SIR model that were previously considered unknown or intractable

without model simplification (Cauchemez and Ferguson, 2008).

3.1 Monomolecular reaction systems

We illustrate the performance of our computational method by considering the following

monomolecular reactions:

Reaction Rab : A
rab−→ B

Reaction Rba : B
rba−→ A

Outflow Ob : B
ob−→ ∗

(27)

where rab, rba is the reaction rates, and ob is the outflow rate. Denote

Q =

−rab rba

rab −rba − ob

 , p(a) = eQt

1

0

 , p(b) = eQt

0

1

 .
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By Theorem 1 in Jahnke and Huisinga (2007), the transition probabilities of the reaction

system (27) at time t > 0 is

P a0b0
ab (t) =M( . , a0, p

(a)) ?M( . , b0, p
(b)) (28)

whereM(x,N, p) is the multinomial distribution and ? denotes the convolution operator. As

analytic expressions for transition probabilities exist for this class of reactions, this example

serves as a baseline for comparison to assess the accuracy of our method.

To study these processes in our framework, let A(t) denote the total number of particle

A at time t and L(t) be the total number of particle B leaving the system up to t. Then,

{L(t), A(t)} is a birth/birth-death process with the following possible transitions during

(t, t+ dt):

Pr

 L(t+ dt) = i+ 1 L(t) = i

A(t+ dt) = j A(t) = j

 = ob(a0 + b0 − i− j)+dt+ o(dt),

Pr

 L(t+ dt) = i L(t) = i

A(t+ dt) = j + 1 A(t) = j

 = rba(a0 + b0 − i− j)+dt+ o(dt),

Pr

 L(t+ dt) = i L(t) = i

A(t+ dt) = j − 1 A(t) = j

 = rabjdt+ o(dt), and

Pr

 L(t+ dt) = i L(t) = i

A(t+ dt) = j A(t) = j

 = 1− [rabj + (ob + rba)(a0 + b0 − i− j)+]dt+ o(dt).

Here x+ = max(0, x). Therefore, P a0b0
ab (t) can be computed using our method implemented

in the R function bbd prob.

We use bbd prob to calculate {P 20,0
ab (1)}0≤a≤20,0≤b≤20 of the reaction system (27) with

rab = 2, rba = 0.5 and ob = 1. The L1 distance between our result and the analytic result
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(28) is less than 4.7×10−9, thus confirming the accuracy of our method compared to explicit

analytic solutions.

3.2 Birth-death-shift model for transposable elements

Transposable elements or transposons are genomic sequences that can either duplicate, with

a new copy moving to a new genomic location, move to a different genomic location, or

be deleted from the genome. Rosenberg et al. (2003) model the number of copies of a

particular transposon using a linear birth-death-shift process; a birth is a duplication event,

a death is a deletion event, and shift is a switching position event. Xu et al. (2015) propose

representing this birth-death-shift process by a linear multi-type branching process X(t) =

(Xold(t), Xnew(t)) tracking the number of occupied sites where Xold(t) is the number of initially

occupied sites and Xnew(t) is the number of newly occupied sites. Let λ, µ, and ν be the

birth, death, and shift rates respectively. The transitions of X(t) during a small time interval

occur with probabilities

Pr

 Xold(t+ dt) = xold − 1 Xold(t) = xold

Xnew(t+ dt) = xnew Xnew(t) = xnew

 = (µxold)dt+ o(dt),

Pr

 Xold(t+ dt) = xold Xold(t) = xold

Xnew(t+ dt) = xnew − 1 Xnew(t) = xnew

 = (µxnew)dt+ o(dt),

Pr

 Xold(t+ dt) = xold Xold(t) = xold

Xnew(t+ dt) = xnew + 1 Xnew(t) = xnew

 = λ(xold + xnew)dt+ o(dt),

Pr

 Xold(t+ dt) = xold − 1 Xold(t) = xold

Xnew(t+ dt) = xnew + 1 Xnew(t) = xnew

 = (νxold)dt+ o(dt), and

Pr

 Xold(t+ dt) = xold Xold(t) = xold

Xnew(t+ dt) = xnew Xnew(t) = xnew

 = 1− (µ+ λ+ ν)xold − (µ+ λ)xnewdt+ o(dt).

(29)
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Equivalent to the branching process representation, notice that in this case X(t) is also a

death/birth-death process. Hence, we can effectively compute its transition probabilities. In

contrast, Xu et al. (2015) consider the probability generating function

Φa0b0(t, s1, s2) = E
(
s
Xold(t)
1 s

Xnew(t)
2 |Xold(0) = a0, Xnew(0) = b0

)
=
∞∑
a=0

∞∑
b=0

P a0b0
ab (t)sa1s

b
2, (30)

where

P a0b0
ab (t) = Pr

 Xold(t) = a Xold(0) = a0

Xnew(t) = b Xnew(0) = b0

 . (31)

Because of the model-specific linearity in terms of a and b of the birth and death rates, one

can evaluate Φjk(t, s1, s2) by solving an ordinary differential equation. Further transforming

s1 = e2πiw1 , s2 = e2πiw2 , the generating function becomes a Fourier series

Φa0b0(t, e
2πiw1 , e2πiw2) =

∞∑
a=0

∞∑
b=0

P a0b0
ab (t)e2πiaw1e2πibw2 . (32)

Therefore, Xu et al. (2015) retrieve the transition probabilities through approximating the

integral as a Riemann sum

P a0b0
ab (t) =

∫ 1

0

∫ 1

0

Φa0b0(t, e
2πiw1 , e2πiw2)e−2πiaw1e−2πibw2dw1dw2

≈ 1

H2

H−1∑
u=0

H−1∑
v=0

Φjk(t, e
2πiu/H , e2πiv/H)e−2πiau/He−2πibv/H , (33)

and show that choosing H as the smallest power of 2 greater than max(a, b) produces accu-

rate estimates of the true transition probabilities of the model. The authors implement this

method in the R package bdsem. Using their method, evaluating {P a0b0
ab (t)}0≤a,b≤H requires

numerically solving H2 linear ordinary differential equations (ODEs). We perform a simu-

lation to compare the performance between bdsem and our function dbd prob. Because Xu

et al. (2015) already provide a thorough empirical validation that bdsem produces accurate

transition probabilities compared to Monte Carlo estimates from the true model, we con-
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sider a comparison to their method and omit a complete reproduction of their simulation

study. Using both routines to compute the transition probabilities of a birth-death-shift

process with rates λ = 0.0188, µ = 0.0147, ν = 0.00268 (estimated from the IS6110 data by

Rosenberg et al. (2003)) repeatedly over one hundred trials leads to a negligible difference in

estimated probabilities. Specifically, we computed {P 10,0
ab (t)}0≤a≤10,0≤b≤50 at three different

observation period lengths t = 1, 5, 10, and found that the L1 distance between probabili-

ties estimated by each method is less than 4 × 10−8 across all cases. Here, the L1 distance

between two matrices U = (uij) and V = (vij) are defined as ‖U−V‖ =
∑

i,j |uij − vij|.

Having validated the accuracy of our approach, we turn to a runtime comparison. The

ratios of CPU time required using bdsem compared to dbd prob are summarized in Figure 1,

and note that this result is obtained using a single-thread option for dbd prob. We see that

dbd prob is about 15 to 30 times faster than the bdsem implementation, while producing

very similar results.

While there is a large performance difference in wall clock time, we cannot immediately

conclude that our method is faster then the method in Xu et al. (2015) because computation

time may depend heavily on implementation. Nonetheless, we can make some remarks

about the performance of both methods that are platform-independent. Notably, the bdsem

implementation grows slower as t increases while dbd prob does not. This is expected because

solving ODEs is slower when the domain increases. However, it is worth mentioning that

we can use the solution paths to get the solutions of these ODEs at other time points in

the domain. For example, when we solve the ODEs at t = 10, we also get the solutions

at t = 1 and 5 for free. This point becomes important in applications where we need to

compute the transition probabilities at several time points. Another downside of bdsem is

that it computes {P 10,0
ab (t)}0≤a,b≤50 instead of evaluating {P 10,0

ab (t)}0≤a≤10,0≤b≤50 directly as is

done by dbd prob.
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Figure 1: CPU compute time ratios of bdsem to dbd prob over 100 replications.

3.3 Within-host macro-parasite model

Riley et al. (2003) posit a stochastic model to describe a within-host macro-parasite pop-

ulation where Brugia pahangi is the parasite and Felis catus is the host. Brugia pahangi

is closely related to Brugia malayi which infects millions of people in South and Southeast

Asia. The model tracks the number of B. pahangi larvae L(t), the number of mature parasites

M(t), and hosts experience of infection I(t) at time t. The dynamics of {L(t),M(t), I(t)}

follow a system of differential equations:

dL

dt
(t) = −µLL(t)− βI(t)L(t)− γL(t),

dM

dt
(t) = γL(t)− µMM(t), and

dI

dt
(t) = νL(t)− µII(t) (34)

where µL is the natural death rate and γ is the maturation rate of larvae; β is the death

rate of larvae due to the immune response from the host; µM is the death rate of mature

parasites; ν is the acquisition rate and µI is the loss rate of immunity.
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Drovandi and Pettitt (2011) propose a simplification of this model by applying a pseudoe-

quilibrium assumption for immunity, such that the immunity is constant over time. Under

this pseudoequilibrium assumption, the dynamics of {L(t),M(t)} becomes

dL

dt
(t) = −µLL(t)− η[L(t)]2 − γL(t), and

dM

dt
(t) = γL(t)− µMM(t) (35)

where η = βν/µI . We illustrate the dynamic of (35) in Figure 2. The corresponding

stochastic formulation of this model is:

Pr

 L(t+ dt) = i− 1 L(t) = i

M(t+ dt) = j + 1 M(t) = j

 = (γi)dt+ o(dt),

Pr

 L(t+ dt) = i− 1 L(t) = i

M(t+ dt) = j M(t) = j

 = (µLi+ ηi2)dt+ o(dt),

Pr

 L(t+ dt) = i L(t) = i

M(t+ dt) = j − 1 M(t) = j

 = (µMj)dt+ o(dt), and

Pr

 L(t+ dt) = i L(t) = i

M(t+ dt) = j M(t) = j

 = 1− (γi+ µLi+ ηi2 + µMj)dt+ o(dt). (36)

Notably, {L(t),M(t)} follow a death/birth-death process.

For this model, γ and µM has been estimated at 0.04 and 0.0015 previously (see Drovandi

and Pettitt, 2011, for more details). To estimate the remaining parameters, Drovandi and

Pettitt (2011) examine the number of mature parasites at host autopsy time (at most 400

days) of those injected with approximately 100 juveniles, assume a priori µL and η are

uniform[0,1) and apply ABC to draw inference because the traditional matrix exponentiation

method is computationally prohibitive here. The basic idea of ABC involves sampling from
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Figure 2: The dynamic of {L(t),M(t)} under the deterministic model (35) with µL =
0.0682, µM = 0.0015, η = 0.0009, γ = 0.04 and {L(0),M(0)} = {100, 0}.

an approximate posterior distribution

f(θ, Y |ρ(Y, Ys) ≤ ε) ∝ f(Ys|θ)π(θ)1ρ(Y,Ys)≤ε, (37)

where θ is the vector of unknown parameters, ε > 0 is an ad hoc tolerance, and ρ(Y, Ys) is a

discrepancy measure between summary statistics of the observed data Y and the simulated

data Ys. Because the sufficient statistics are not available for this problem, the authors

use a goodness-of-fit statistic. However, the ABC method suffers from loss of information

because of non-zero tolerance and non-sufficient summary statistics (Sunn̊aker et al., 2013).

Therefore, credible intervals obtained by the ABC approach are potentially inflated (Csilléry

et al., 2010).

In contrast, our method makes direct likelihood computation and in turn evaluation of the

posterior density feasible. Figure 3 displays a visualization of the posterior density surface

of (log µL, log η) computed using our method, given the collection of numbers of mature

parasites M(t) at autopsy under this model (see Drovandi and Pettitt, 2011, for more details
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about the data). Importantly in this example, we are able to efficiently integrate out the

unobserved larvae counts L(t) at autopsy. The approximate estimate obtained by Drovandi

and Pettitt (2011) using ABC is overlaid on this density surface for comparison, and does not

align with the highest density region of our computed posterior. Note that the posterior is

flat when η is close to 0, and has an unusual tail toward the region where the ABC estimate

lies. This suggests that the previous ABC approach fails to explore the region with high

posterior probability well, likely due to loss of information incurred by the method, resulting

in a poor estimate from the data.

−11

−10

−9

−8

−7

−6

−3.0 −2.7 −2.4 −2.1
log (µL)

lo
g 

(η
)

Figure 3: Posterior density surface of (log µL, log η) under within-host macro-parasite model.
The “×” symbol represents the estimate from Drovandi and Pettitt (2011) using the ABC
method.

Finally, we consider this example toward a second runtime comparison between our

method and Expokit, a state-of-the-art matrix exponentiation package with efficient imple-
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mentation. In particular, we compute the transition probability matrix {P 100,0
ij (t)}0≤i≤100,0≤j≤100

of {L(t),M(t)} with µL = 0.0682, µM = 0.0015, η = 0.0009, γ = 0.04 at t = 100, 200, 400 us-

ing our function dbd prob and the function expv in expoRkit, an R-interface to the Fortran

package Expokit. Both methods produce similar results: the L1 distance between the two

estimated transition probability matrices is less than 3 × 10−9 across all cases. In terms of

speed, we see that dbd prob is roughly twice as fast as expv when t = 100, 200, but about

9-fold faster when t = 400 (Figure 4). It is worth mentioning that dbd prob can be further

accelerated via parallelization.
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Figure 4: CPU compute time ratios of expv to dbd prob over 100 replications.

3.4 Stochastic SIR model in epidemiology

McKendrick (1926) models the spread of an infectious disease in a closed population by

dividing the population into three categories: susceptible persons (S), infectious persons (I)

and removed persons (R). Since the population is closed, the total population size N obeys

the conservation equation N = S(t) + I(t) +R(t) for all time t. The deterministic dynamics

of these three subpopulations follow a system of nonlinear ordinary differential equations
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(Kermack and McKendrick, 1927):

dS

dt
(t) = −βS(t)I(t),

dI

dt
(t) = βS(t)I(t)− αI(t), and

dR

dt
(t) = αI(t), (38)

where α > 0 is the removal rate and β > 0 is the infection rate of the disease. This system

of equations cannot be solved analytically, but we can obtain its solution numerically. An

important quantity for the SIR model is the basic reproduction number R0 = βN/α (Earn,

2008). This quantity determines whether a spread of an infectious disease becomes an

epidemic. In particular, an epidemic can only occur when R0 > 1.

Unfortunately, the deterministic model is not suitable when the community is small

(Britton, 2010). In these situations, the original stochastic SIR model (McKendrick, 1926)

becomes more appropriate. Moreover, Andersson and Britton (2000) argue that stochastic

epidemic models are preferable when their analysis is possible because (1) stochastics are

the most natural way to describe a spread of diseases, (2) some phenomena do not satisfy

the law of large numbers and can only be analyzed in the stochastic setting (for example,

the extinction of endemic diseases only occurs when the epidemic process deviates from

its expected value), and (3) quantifying the uncertainty in estimates requires stochastic

models. Nonetheless, one can bypass Andersson and Britton’s third argument by imposing

random sampling errors around the deterministic compartments. Therefore, it is important

to distinguish between the deterministic SIR model with sampling errors and the stochastic

SIR model.

Without loss of generality, the stochastic SIR model needs only track S(t) and I(t)

because S(t) + I(t) + R(t) remains constant. All possible transitions of {S(t), I(t)} during
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a small time interval (t, t+ dt) occur with probabilities

Pr

 S(t+ dt) = s S(t) = s

I(t+ dt) = i− 1 I(t) = i

 = (αi)dt+ o(dt),

Pr

 S(t+ dt) = s− 1 S(t) = s

I(t+ dt) = i+ 1 I(t) = i

 = (βsi)dt+ o(dt), and

Pr

 S(t+ dt) = s S(t) = s

I(t+ dt) = i I(t) = i

 = 1− (αi+ βsi)dt+ o(dt). (39)

We see that {S(t), I(t)} is a death/birth-death process with µ
(1)
si = λ

(2)
s,i = 0, µ

(2)
s, = αi,

γsi = βsi.

Due to the interaction between populations and nonlinear nature of the model, mechanis-

tic analysis of the stochastic SIR model is difficult, and the lack of an expression for transition

probabilities has been a bottleneck for statistical inference. Renshaw (2011) remarks that

while one can write out the Kolmogorov forward equation for the system, the “associated

mathematical manipulations required to generate solutions can only be described as heroic.”

Instead, the majority of efforts involve either simulation based methods or simplifications

and tractable approximations to the SIR model. For instance, the stochastic SIR model can

be analyzed using ABC (McKinley et al., 2009), but we have already mentioned limitations

of this approach. Particle filter methods can be used to analyze SIR models within maximum

likelihood (Ionides et al., 2006, 2015) and Bayesian frameworks (Andrieu et al., 2010; Dukic

et al., 2012), but these methods are computationally very demanding and often suffer from

convergence problems. When examining large epidemics, to make the likelihood tractable

it is reasonable to apply a continuous approximation to the large populations, modeled as

a diffusion process with exact solutions (Cauchemez and Ferguson, 2008). However, such

an approach is a poor proxy for the SIR model when observed counts are low. When data

are collected at regular intervals and coincide with disease generation timescales, it is also
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possible to study discrete-time epidemic models— the time-series SIR (TSIR) model is one

well-known example (Finkenstädt and Grenfell, 2000). However, these simplifications also

have their shortcomings, relying on the relatively strong assumption that populations are

constant over each interval between observation times.

In the death/birth-death framework, our method enables practical computation of these

quantities without any simplifying model assumptions. In Section 4, we will apply our

method to analyze the population of Eyam during the plague of 1666 (Raggett, 1982) to es-

timate the infection and the death rates of this disease, using the death/birth-death transition

probabilities within a Metropolis-Hastings algorithm. Here, we first examine the accuracy

of these transition probabilities themselves. We compare the continued fraction method to

empirical transition probabilities obtained via simulation from the true model as ground-

truth, and to a new two-type branching approximation to the SIR model introduced below.

The branching process approximation is appropriate when transition probabilities need to

be computed for short time intervals, and its simple expressions for transition probabili-

ties enable much more efficient computation. However, we show that as transition time

intervals increase, the branching approximation becomes less accurate, while the transition

probabilities computed under the death/birth-death model remain very accurate.

While branching processes fundamentally rely on independence of each member of the

population, we can nonetheless make a fair approximation by mimicking the interaction

effect of infection over short time intervals. In the branching model, let X1(t) denote the

susceptible population and X2(t) denote the infected population at time t, with details and

derivation included in Appendix D. Over any time interval [t0, t1), we use the initial popu-

lation X2(0) as a constant scalar for the instantaneous rates. This branching process model

has instantaneous infection rate βX2(0)X1(t) and recovery rate αX2(t) for all t ∈ [t0, t1),

closely resembling the true SIR model rates, with the exception of fixing X2(0) in place of

X2(t) in the rate of infection. This constant initial population fixes a piecewise homoge-

neous per-particle birth rate to satisfy particle independence while mimicking interactions,
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but notice that both populations can change over the interval, offering much more flexibility

than models such as TSIR that assume constant populations and rates between discrete

observations.

This branching model admits closed-form solutions to the transition probabilities that can

be evaluated quickly and accurately. The transition probabilities of the two-type branching

approximation to the SIR model over any time interval of length t are given by

Pr {X(t+ τ) = (k, l)|X(τ) = (m,n)} := Pmn
kl (t) =

l∑
i=0

(
l

i

)
A(l − i)B(i), (40)

where

B(i) = 0 for all i ≥ n, otherwise,

B(i) =
n!

(n− i)!
(1− e−αt)n−ie−iαt (41)

and

A(l − i) = 0 for all (l − i) ≥ (m− k), otherwise,

A(l − i) =
m!

(m− k − (l − i))!
e−kβnt

[
1− βn

βn− α
e−αt −

(
1− βn

βn− α

)
e−βnt

]m−k−(l−i)
×
[

βn

βn− α
(e−αt − e−βnt)

]l−i
. (42)

The sum over products of expressions (41) and (42) in equation (40) may look unwieldy,

but this sum is computed extremely quickly with a vectorized implementation, and with

high degrees of numerical stability. In settings when such a model is appropriate and

(X1(t), X2(t)) ≈ (S(t), I(t)), the branching approximation can offer a much more computa-

tionally efficient alternative to the continued fraction method.
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Figure 5: The plot above displays the values of the nine largest transition probabilities when
t = 0.5 as we vary t from 0.1, . . . , 1.0. Parameters used to generate data are initialized at
I0 = 15, S0 = 110, α = 3.2, β = 0.025. Empirical Monte Carlo 95% confidence intervals over
150, 000 simulations from the true model are depicted in orange. Probabilities computed
using the continued fraction expansion are depicted by purple triangles, while probabilities
computed under the branching approximation are denoted by green squares.
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3.5 Transition probabilities of the SIR model

Figure 5 provides a comparison between methods of computing transition probabilities. In-

cluded are transition probabilities corresponding to the nine pairs of system states {(m,n), (k, l)}j,

j = 1, . . . , 9, such that Pmn
kl (0.5) is largest. Fixing these indices, we plot the set of proba-

bilities {Pmn
kl (t)} while varying t between 0.1 and 1.0. We see that transition probabilities

computed using the continued fraction method under the death/birth-death model very

closely match those computed empirically via simulation from the model, taken to be the

ground truth. Almost all such probabilities in Figure 5 fall within the 95% confidence inter-

val, while the branching process transitions follow a similar shape over time, but fall outside

of the confidence intervals for many observation intervals. An additional heatmap visual-

ization comparing the support of transition probabilities is included in the Appendix, and

shows that the branching approximation is accurate with similar support to the empirical

transition probabilities for a shorter time interval of length t = 0.5, but becomes visibly

further from the truth when we increase the observation length to t = 1.0.

4 The Plague in Eyam revisited

We revisit the outbreak of plague in Eyam, a village in the Derbyshire Dales district, England,

over the period from June 18th to October 20th, 1666. This plague outbreak is widely

accepted to originate from the Great Plague of London, that killed about 15% of London’s

population at that time. To prevent further spread of the plague after infestation, the Eyam

villagers did not escape the village, instead isolating themselves from the outside world. At

the end of this horrific event, only 83 people had survived out of an initial population of

350. We summarize data recording the spread of the disease (Raggett, 1982) in Table 1. As

mentioned in Raggett (1982), this data are obtained by counting the number of deaths from

the dead list and estimating the infective population from the list of future deaths assuming

a fixed length of illness prior to death. Then, the susceptible population can be computed

32



easily because the the town is isolated.

Time (months)
0 0.5 1 1.5 2 2.5 3 4

Susceptible population 254 235 201 153 121 110 97 83
Infective population 7 14 22 29 20 8 8 0

Table 1: Susceptible and infectious population size in Eyam from June 18th to October 20th,
1666.

Raggett (1982) analyzes these data using the stochastic SIR model (39). In this model, α is

the unknown death rate of infective people and β is the unknown infection rate of the plague.

The author uses a simple approximation method for the forward differential equation and

comes up with a point estimate (α̂, β̂) = (3.39, 0.0212). We take a Bayesian approach to

re-analyze these data.

With n observations {(sk, ik)}nk=1 at time {tk}nk=1, the log of the likelihood function is:

log l
(
α, β

∣∣{(sk, ik)}nk=1

)
=

n−1∑
k=1

log Pr

 S(tk+1) = sk+1 S(tk) = sk

I(tk+1) = ik+1 I(tk) = ik

. (43)

Because {S(t), I(t)} is a death/birth-death process, the individual transition probabilities

can be computed efficiently using our continued fraction method. Hence, the log of the

likelihood (43) can be computed easily. Since α and β are non-negative, we opt to use logα

and log β as our model parameters and assume a priori that logα ∼ N (µ = 0, σ = 100)

and log β ∼ N (µ = 0, σ = 100). We explore the posterior distribution of (logα, log β)

using a random-walk Metropolis algorithm implemented in the R function MCMCmetrop1R

from package MCMCpack (Martin et al., 2011). We start the chain from Raggett’s estimated

value (log(3.39), log(0.0212)) and run it for 100000 iterations. We discard the first 20000

iterations and summarize the posterior distribution of (α, β) using the remaining iterations.

We illustrate the density of this posterior distribution in Figure 6(a). The posterior mean of α

is 3.22 and the 95% Bayesian credible interval for α lies in (2.69, 3.82). Those corresponding
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quantities for β are 0.0197 and (0.0164, 0.0234). Notice that our credible intervals include

the point estimate (α̂, β̂) = (2.73, 0.0178) from Brauer (2008) using the deterministic SIR

model and Raggett’s point estimate (α̂, β̂) = (3.39, 0.0212).

We also apply the two-type branching approximation to compute the log of the likelihood

(43). Using the same random-walk Metropolis algorithm as before, we explore the posterior

distribution of (α, β) and visualize it in Figure 6(b). The posterior mean of α is 3.237 and the

95% Bayesian credible interval for α is (2.7, 3.84), while those quantities for β are 0.02 and

(0.0171, 0.023). Although the posterior means and the 95% Bayesian credible intervals are

similar to ones from the continued fraction method, we see in Figure 6(b) that this method

fails to fully capture the posterior correlation structure between α and β.
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(a) Continued fraction method
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−3.9

−3.8

1.0 1.1 1.2 1.3
log (α)
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g 

(β
)

(b) Branching approximation method

Figure 6: Posterior distributions (log scale) of the death rate α and the infection rate β
during the plague of Eyam in 1666. The “+” symbol represents the estimate from Brauer
(2008) using the deterministic SIR model, and the “×” symbol represents the Raggett’s
point estimate.

The posterior distribution of the basic reproduction number R0 from the continued frac-

tion method and from the branching approximation method are similar (Figure 7). The

posterior mean of R0 from the continued fraction method is 1.61 and from the branching
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approximation method is 1.62. The estimate for R0 from Brauer (2008) is 1.7, from Raggett

(1982) is 1.63. These estimates are similar, and in particular the branching approximation

estimate is very close to that under the continued fraction method, offering a very efficient

way to provide reasonable estimates of quantities such as R0 despite being less accurate than

the continued fraction approach.

0.0

0.5

1.0

1.5

2.0

1.0 1.5 2.0 2.5
Basic reproduction number R0

de
ns

ity

Figure 7: Posterior distribution of the basic reproduction number R0 (solid line: contin-
ued fraction method, dashed line: branching approximation method). The “+”, and the
“×” symbols represent the estimate of R0 from Brauer (2008), and from Raggett (1982)
respectively.

From the results, we can see that estimates of R0 from different methods are roughly the

same while estimates of α and β are different. Although the basic reproduction number R0

is an important quantity in the SIR model, it is not the only parameter driving the dynamic

of the epidemic. Correia-Gomes et al. (2014) demonstrated the important of accurately esti-

mating the transmission parameters between compartments of the SIR model for Salmonella

Typhimurium in pigs.
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5 Discussion

Likelihood-based inference for bivariate continuous-time Markov processes is usually re-

stricted to very small state spaces due to the computational bottleneck of transition probabil-

ity calculation. In this paper, we provide tools for likelihood-based inference for birth(death)/birth-

death processes by developing an efficient method to compute their transition probabilities.

We provide a complete implementation of the algorithms to compute these transition prob-

abilities in a new R package called MultiBD. Our functions employ sophisticated tools in-

cluding continued fractions, the modified Lentz method, the method of Abate and Whitt

for approximate inverse Laplace transforms, and the Levin acceleration method. Moreover,

these methods are naturally amenable to parallelization, and we exploit multicore processing

to speed up the algorithm. We remark that birth(death)/birth-death processes remain a lim-

ited subclass of general multivariate birth-death processes. For example, many population

biology problems require a full bivariate birth-death process including predator-prey models

(Hitchcock, 1986; Owen et al., 2015) and the SIR model with vital dynamics (Earn, 2008).

Unfortunately, efficiently computing the transition probabilities of multivariate birth-death

processes remains an open problem. Solving this problem will enable numerically stable sta-

tistical inference under birth-death processes and will be worth the “heroic” effort (Renshaw,

2011).
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A Continued fractions

In this section, we give some basic definitions and properties related to continued fractions.

Definition A.1. A continued fraction φ0 is a scalar quantity expressed in

φ0 =
x1

y1 +
x2

y2 +
x3

y3 + · · ·
,

(A.1)

where {xi}∞i=1 and {yi}∞i=1 are infinite sequences of complex numbers.

Definition A.2. The nth convergent of φ0 is

Xn

Yn
=

x1

y1 +
x2

y2 +
x3

y3 + · · ·+
xn

yn
.

(A.2)

Definition A.3. We define the corresponding sequence {φn}∞n=0 of a continued fraction (A.1)

by the following recurrence formulae

φ1 = x1 − y1φ0, and

φn = xnφn−2 − ynφn−1 for n ≥ 2.

(A.3)

Murphy and O’Donohoe (1975) provided the following sufficient condition for the con-

vergence of (A.1):

Lemma A.1. Assume that there exists N such that infn>N |Yn| > 0 and limn→∞ φn = 0.
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Then, the continued fraction (A.1) is convergent. Moreover,

φn =
n∏
i=1

xi
xn+1

Yn+1 +
xn+2Yn

yn+2 +
xn+3

yn+3 +
xn+4

yn+4 + · · ·
.

(A.4)

Now, if we consider a more general recurrence formulae

φ
(m)
1 = −y1φ(m)

0 + k11{m=0}

φ(m)
n = xnφ

(m)
n−2 − ynφ

(m)
n−1 + km+11{m=n−1} for n ≥ 2,

(A.5)

then under the assumption of Lemma A.1, we have the following lemma:

Lemma A.2. The solution for (A.5) is

φ(m)
n =


(−1)m−nkm+1∏m+1

i=1 xi
Ynφm, if n ≤ m

km+1∏m+1
i=1 xi

Ymφn, if n ≥ m.

(A.6)

B Modified Lentz method

Modified Lentz method (Lentz, 1976; Thompson and Barnett, 1986) is an efficient algorithm

to finitely approximate the infinite expression of the continued fraction φ0 in (A.1) to within

a prescribed error tolerance. Let φ
(n)
0 be the nth convergence of φ0, that is φ

(n)
0 = Xn/Yn.

The main idea of Lentz’s algorithm lies in using the ratios

An =
Xn

Xn−1
and Bn =

Yn−1
Yn

(B.1)
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to stabilize the computation of φ
(n)
0 . We can calculate An, Bn, and φ

(n)
0 recursively as follows:

An = yn +
xn
An−1

Bn =
1

yn + xnBn−1

φ
(n)
0 = φ

(n−1)
0 AnBn.

(B.2)

If φ
(n)
0 converges to φ0, then Craviotto et al. (1993) show that

∣∣∣φ(n)
0 − φ0

∣∣∣ ≤ |Yn/Yn−1|I[Yn/Yn−1]

∣∣∣φ(n)
0 − φ

(n−1)
0

∣∣∣ =
|1/Bn|
I[1/Bn]

∣∣∣φ(n)
0 − φ

(n−1)
0

∣∣∣ , (B.3)

where I[Yn/Yn−1] is the imaginary part of Yn/Yn−1 and is assumed to be non-zero. Hence,

the Lentz’s algorithm terminates when

|1/Bn|
I[1/Bn]

∣∣∣φ(n)
0 − φ

(n−1)
0

∣∣∣ (B.4)

is small enough. However, An and Bn can equal zero themselves and cause problem. Hence,

Thompson and Barnett (1986) propose a modification for Lentz’s algorithm by setting An

and Bn to a very small number, such as 10−16, whenever they equal zero. In practice, the

algorithm often terminates after small number of iterations. However, in some rare cases

where the numerical computation is unstable, it might take too long before the algorithm

terminates. So, we set a predefined maximum number of iterations H as a fallback for these

cases.

C Convergence results of increasing the truncation level

Let f
(B)
ab (s) be the output of the approximation scheme (19) in Theorem 2. In this section,

we prove that f
(B)
ab (s) converges to fab(s) as B goes to infinity. To do so, let us consider a

truncated birth/birth-death process X(B)(t) = (X
(B)
1 (t), X

(B)
2 (t)) at truncation level B such

that it executes the same process as X(t) on the state {a0, a0+1, a0+2, . . .}×{0, 1, 2, . . . , B}
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except that λ
(2)
aB = 0. Define P

a0b0,(B)
ab (t) be the transition probabilities of X(B)(t) and TB be

the hitting time at which X2(t) first reach state B + 1. For any set S ⊂ N2, we have

Pr(X(t) ∈ S) = Pr(X(t) ∈ S | TB > t) Pr(T > t) + Pr(X(t) ∈ S | TB ≤ t) Pr(TB ≤ t)

= Pr(X(B)(t) ∈ S) Pr(TB > t) + Pr(X(t) ∈ S | TB ≤ t) Pr(TB ≤ t)

= Pr(X(B)(t) ∈ S) + [Pr(X(t) ∈ S | TB ≤ t)− Pr(X(B)(t) ∈ S)] Pr(TB ≤ t)

Therefore |Pr(X(t) ∈ S)−Pr(X(B)(t) ∈ S)| ≤ Pr(TB ≤ t). Note that f
(B)
ab (s) is the Laplace

transform of P
a0b0,(B)
ab (t). Hence

|f (B)
ab (s)− fab(s)| ≤

∫ ∞
0

|P a0b0,(B)
ab (t)− P a0b0

ab (t)|e−stdt ≤
∫ ∞
0

Pr(TB ≤ t)e−stdt

By Dominated convergence theorem and the fact that limB→∞ Pr(TB ≤ t) = 0, we deduce

that limB→∞ f
(B)
ab (s) = fab(s).

D Branching SIR approximation

Here we derive and solve the Kolmogorov backward equations of the two-type branching pro-

cess necessary for evaluating the probability generating functions (PGFs) whose coefficients

yield transition probabilities.

D.1 Deriving the PGF

Our two-type branching process is represented by a vector (X1(t), X2(t)) that denotes the

numbers of particles of two types at time t. Let the quantities a1(k, l) denote the rates

of producing k type 1 particles and l type 2 particles, starting with one type 1 particle,

and a2(k, l) be analogously defined but beginning with one type 2 particle. Given a two-

type branching process defined by instantaneous rates ai(k, l), denote the following pseudo-
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generating functions for i = 1, 2 as

ui(s1, s2) =
∑
k

∑
l

ai(k, l)s
k
1s
l
2. (D.1)

We may expand the probability generating functions in the following form:

φ10(t, s1, s2) = E(s
X1(t)
1 s

X2(t)
2 |X1(0) = 1, X2(0) = 0) (D.2)

=
∞∑
k=0

∞∑
l=0

P kl
1,0(t)s

k
1s
l
2

=
∞∑
k=0

∞∑
l=0

(1k=1,l=0 + a1(k, l)t+ o(t))sk1s
l
2

= s1 + u1(s1, s2)t+ o(t).

We have an analogous expression for φ01(t, s1, s2) beginning with one particle of type 2

instead of type 1. For short, we will write φ10 := φ1, φ01 := φ2. Thus, we have the following

relation between the functions φ and u:

dφ1

dt
(t, s1, s2)|t=0 = u1(s1, s2) and (D.3)

dφ2

dt
(t, s1, s2)|t=0 = u2(s1, s2).

To derive the backwards and forward equations, Chapman-Kolmogorov arguments yield

the symmetric relations

φ1(t+ h, s1, s2) = φ1(t, φ1(h, s1, s2), φ2(h, s1, s2)) (D.4)

= φ1(h, φ1(t, s1, s2), φ2(t, s1, s2)).
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First, we derive the backward equations by expanding around t and applying (D.3):

φ1(t+ h, s1, s2) = φ1(t, s1, s2) +
dφ1

dh
(t+ h, s1, s2)|h=0h+ o(h) (D.5)

= φ1(t, s1, s2) +
dφ1

dh
(h, φ1(t, s1, s2), φ2(t, s1, s2)|h=0h+ o(h)

= φ1(t, s1, s2) + u1(φ1(t, s1, s2), φ2(t, s1, s2)h+ o(h)).

Since an analogous argument applies for φ2, we arrive at the system

d

dt
φ1(t, s1, s2) = u1(φ1(t, s1, s2), φ2(t, s1, s2)) and (D.6)

d

dt
φ2(t, s1, s2) = u2(φ1(t, s1, s2), φ2(t, s1, s2)),

with initial conditions φ1(0, s1, s2) = s1, φ2(0, s1, s2) = s2.

Recall in our SIR approximation, we use the initial population X2(0) as a constant that

scales the instantaneous rates over any time interval [t0, t1). The only nonzero rates specifying

this proposed model, in the notation above, are

a1(0, 1) = βX2(0), a1(1, 0) = −βX2(0), a2(0, 1) = −α, a2(0, 0) = α. (D.7)

For simplicity, call X2(0) := I0, the constant representing the infected population at the

beginning of the time interval. Thus, the corresponding pseudo-generating functions have a

simple form:

u1(s1, s2) = βI0s2 − βI0s1 and (D.8)

u2(s1, s2) = α− αs2 = α(1− s2).
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Plugging into the backward equations, we obtain

d

dt
φ1(t, s1, s2) = βI0

(
φ2(t, s1, s2)− φ1(t, s1, s2)

)
and (D.9)

d

dt
φ2(t, s1, s2) = α− αφ2(t, s1, s2).

The φ2 differential equation corresponds to a pure death process and is immediately solvable;

suppressing the arguments of φ2 for notational convenience, we obtain

d

dt
φ2 = α− αφ2 (D.10)

d

dt
φ2(

1

1− φ2

) = α

ln(1− φ2) = −αt+ C

φ2 = 1− exp(−αt+ C).

Plugging in φ2(0, s1, s2) = s2, we obtain C = ln(1− s2), and we arrive at

φ2(t, s1, s2) = 1 + (s2 − 1) exp(−αt) (D.11)

Substituting this solution into the first differential equation and applying the integrating

factor method provides

φ1e
βI0t =

∫
βI0e

βI0t(1 +
s2 − 1

eαt
) dt = eβI0t + βI0(s2 − 1)

∫
e(βI0−α)t dt (D.12)

= eβI0t + βI0(s2 − 1)
e(βI0−α)t

βI0 − α
+ C.

Plugging in the initial condition φ1(0, s1, s2) = s1 and rearranging yields

φ1 = 1 +
βI0(s2 − 1)

βI0 − α
e−αt + e−βI0t(s1 − 1− βI0(s2 − 1)

βI0 − α
). (D.13)
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D.2 Transition probability expressions

Transition probabilities are related to the PGF via repeated partial differentiation; note that

Pmn
kl (t) =

1

k!

1

l!

∂k

∂sk1

∂l

∂sl2
φmn(t, s1, s2)

∣∣∣∣
s1=s2=0

(D.14)

=
1

k!

1

l!

∂k

∂sk1

∂l

∂sl2
φm1 (t, s1, s2)φ

n
2 (t, s1, s2)

∣∣∣∣
s1=s2=0

=
∂l

∂sl2

k∑
i=0

(
k

i

)
∂k−i

∂sk−i1

φm1 (t, s1, s2)
∂i

∂si1
φn2 (t, s1, s2)

∣∣∣∣
s1=s2=0

.

This expression is generally unwieldy, but notice ∂i

∂si1
φn2 (t, s1, s2)

∣∣∣∣
s1=0

= 0 for all i > 0 in our

model. Remarkably, this allows us to further simplify and ultimately arrive at closed-form

expressions. Continuing, we see

Pmn
kl (t) =

∂l

∂sl2

[(
k

0

)
φn2 (t, s1, s2)

∂k

∂sk1
φm1 (t, s1, s2)

] ∣∣∣∣
s1=s2=0

(D.15)

=
∂l

∂sl2

{
φn2 (t, s1, s2) ·

m!

(m− k)!
e−kβI0t

[
1 +

βI0(s2 − 1)

βI0 − α
e−αt

− e−βI0t
(

1 +
βI0(s2 − 1)

βI0 − α

)]m−k}∣∣∣∣
s1=s2=0

:=
∂l

∂sl2
[φn2 (t, s1, s2) · h(t, s1, s2)]

∣∣∣∣
s1=s2=0

=
l∑

i=0

(
l

i

)
∂l−i

∂sl−i2

h(t, s1, s2)
∂i

∂si2
φn2 (t, s1, s2)

:=
l∑

i=0

(
l

i

)
A(l − i)B(i).

From here, it is straightforward to take partial derivatives of h(t, s1, s2) and our closed-form

expression of φn2 (t, s1, s2) to arrive at Conditions (41) and (42). A heatmap visualization of

the difference between transition probabilities under the branching approximation and those

computed using the continued fraction method for the SIR model is included below.
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Transition probabilities, t = 0.5

Continued fraction expansion

Transition probabilities, t = 1

Continued fraction expansion

Monte Carlo estimates Monte Carlo estimates

Two−type branching approximation Two−type branching approximation

Figure 8: Heatmap visualizations of transition probabilities near the region of support across
methods for t = 0.5, 1. We see that the branching approximation is noticeably different from
the Monte Carlo ground truth when we increase t to 1, while the continued fraction approach
remains accurate.
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