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mEAK-7 (mammalian EAK-7 or MTOR-associated protein, eak-7 homolog), is an

evolutionarily conserved lysosomal membrane protein that is highly expressed in

several cancer cells. Multiple recent studies have identified mEAK-7 as a positive

activator of mTOR (mammalian/mechanistic target of rapamycin) signaling via an

alternative mTOR complex, implying that mEAK-7 plays an important role in the

promotion of cancer proliferation and migration. In addition, structural analyses

investigating interactions between mEAK-7 and V-ATPase, a protein complex

responsible for regulating pH homeostasis in cellular compartments, have

suggested that mEAK-7 may contribute to V-ATPase-mediated mTORC1

activation. The C-terminal a-helix of mEAK-7 binds to the D and B subunits of

the V-ATPase, creating a pincer-like grip around its B subunit. This binding

undergoes partial disruption during ATP hydrolysis, potentially enabling other

proteins such as mTOR to bind to the a-helix of mEAK-7. mEAK-7 also promotes

chemoresistance and radiation resistance by sustaining DNA damage-mediated

mTOR signaling through interactions with DNA-PKcs (DNA-dependent protein

kinase catalytic subunit). Taken together, these findings indicate that mEAK-7

may be a promising therapeutic target against tumors. However, the precise

molecular mechanisms and signal transduction pathways of mEAK-7 in cancer

remain largely unknown, motivating the need for further investigation. Here, we

summarize the current known roles of mEAK-7 in normal physiology and cancer

development by reviewing the latest studies and discuss potential future

developments of mEAK-7 in targeted cancer therapy.
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Introduction

mEAK-7 (mammalian EAK-7 or MTOR-associated protein,

eak-7 homolog), also known through genomics and proteomics

studies as KIAA1609 (1, 2), LOC57707 (3), and TLDC1 (TBC/

LysM-associated domain-containing 1) (4), is an evolutionarily

conserved lysosomal membrane protein that promotes cell

proliferation and migration (5). The mEAK-7 protein, first cloned

and sequenced from a human fetal brain cDNA library, contains

473 amino acids and is ubiquitously expressed in all human adult

and fetal tissues, with highest levels in the brain, kidney, spleen, and

ovaries (1). The human ortholog MEAK7 gene (NCBI Gene ID:

57707) is located at chromosome 16q24.1, and an average of 89% of

amino acids are conserved in the mEAK-7 protein across

eukaryotes (5). In Caenorhabditis elegans, EAK-7 (enhancer-of-

akt-1-7), the mEAK-7 homologue in nematodes, nonautonomously

controls both dauer arrest and longevity by negatively regulating the

nuclear activity of the DAF-16/FoxO transcription factor in parallel

to the insulin receptor signaling serine/threonine kinase AKT-1 (6).

It has been shown that the mEAK-7 protein is expressed in the

hippocampi of mouse brains, and while overexpression of mEAK-7

in N2a (Neuro 2a) cells does not reduce the level of oxidative stress

in vitro, expression in mice reduces N2a cell death under oxidative

stress conditions through an unknown mechanism (2).

Human mEAK-7 contains two domains: the TLDc (Tre2/Bub2/

Cdc16 (TBC), lysine motif (LysM), domain catalytic) domain near

the C-terminus and the N-myristoylation motif at the N-terminus

(5). The TLDc domain is a highly conserved protein motif which

plays an essential role in normal human brain development and is

found in a family of five proteins which share protective functions

against oxidative stress: NCOA7, TBC1D24, mEAK-7 (TLDC1),

OXR1, and C20ORF118 (TLDC2) (2, 7, 8). Computational analysis

predicts that mEAK-7 folds into a/b + b sheets to facilitate its

enzymatic activity (5). In zebrafish, the crystal structure of the TLDc

domain of oxidation resistance protein 2 forms two antiparallel b-
sheets sandwiched between two helices and two one-turn helices

(9). In humans, the 3-dimensional structure of the TLDc domain is

globular and consists of two a-helices at the N-terminus and ten b-
strands forming two antiparallel b-sheets (10). The structure of the
TLDc domain does not resemble any other enzymes engaged in the

protection against reactive oxygen species, and the intricate

molecular mechanism underlying its antioxidant attributes

remains unknown (11). The N-myristoylation motif anchors

proteins to lipid bilayers and endomembrane compartments by

irreversibly binding to myristate (12, 13).

Growing evidence indicates that mEAK-7 mediates the

activation of the mTOR (mammalian/mechanistic target of

rapamycin) pathway through an alternative mTOR complex (5,

14). mTOR regulates many fundamental cell processes including

autophagy, apoptosis, cellular growth, proliferation, survival,

metabolism, angiogenesis, transcription, and translation.

Dysregulation and alterations in mTOR pathways lead to cancer

development and advancement (15, 16). The mTOR complex

involving mEAK-7 regulates S6K2 and 4E-BP1 in response to

insulin, amino acids, and growth factors (5) and has also been

shown to interact with V-ATPases (vacular-type adenosine
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triphosphatases, also known as the H+-ATPase) (8, 17, 18).

Recent studies have found that human MEAK7 mRNA is

overexpressed in cancers such as hepatocellular carcinoma (19),

lymph node-positive breast cancers (20), and non-small-cell lung

cancer (14). Here, we present a concise overview of the latest

significant discoveries concerning the physiological roles of

mEAK-7 and current understanding in the context of

carcinogenesis and the advancement of cancer.
mEAK-7 and V-ATPase interaction

Recent findings demonstrate that all five members of the TLDc-

containing proteins interact with V-ATPases (11). V-ATPases are

conserved protein complexes that regulate pH homeostasis of

intracellular compartments and organelles by catalyzing ATP

hydrolysis to actively transport protons across biological

membranes (21–24). V-ATPase-regulated pH acidification is

essential for the normal physiological function of cells. Canonical

roles attributed to V-ATPase include endocytic trafficking, protein

processing and degradation, plasma membrane functions, and

synaptic vesicle loading and coupled transport. Non-canonical

functions of V-ATPase include membrane fusion, pH sensing,

activation of mTORC1, and scaffolding protein-protein

interactions (21). Dysregulated expression, misplacement, and

genetic alterations affecting V-ATPases are intricately linked to

cancer development and progression, making V-ATPases a central

therapeutic target in translational medicine (22). Mammalian V-

ATPases are composed of a cytosolic V1 domain (consisting of three

copies each of the A, B, G, and E subunits and single copies of C, H,

D, and F subunits), responsible for ATP hydrolysis, and a

transmembrane V0 subcomplex (containing a single isoform of

subunit a, 9 copies of c, and one copy each of d, e, and c’’) embedded

in the lipid bilayer that participates in proton translocation (23).

The c’ subunit within the V0 domain is only observed in fungi. The

A3B3 subcomplex allows rotation of the rotor subcomplex,

composed of subunits D, F, d, and the membrane-embedded c-

ring (25). Rotation of the c-ring, comprised of nine c subunits and a

single c″ subunit, against subunit “a” drives proton translocation

through the membrane, and the reversible dissociation of the V1

and V0 regions stops the proton pumping (8, 26). The stationary

component, relative to the rotor, has three peripheral stalks each

composed of E and G heterodimers, enabling its ‘stator’ function

primarily through the binding of C and H subunits of the V1

domain to subunits a of the V0 complex in a cohesive manner (26).

In mammalian cells, there are several different isoforms of V-

ATPase subunits (27); isoforms of the “a” subunit of the V0

domain contain location-specific information which is essential

for directing V-ATPases to their target cellular compartments and

creating specific pH values within them (22, 27).

Immunoprecipitation targeting the B subunit of V-ATPase

mixed with the lysates from HEK293T cells overexpressing

mEAK-7 revealed an interaction between mEAK-7 and the B

subunit of V-ATPase (11). In addition, mEAK-7 associates with

V-ATPases through its TLDc domain and C-terminal a-helix in

rotational State 2 (Figure 1) (8). The C-terminal a-helix binds to
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the D and B subunits of the V-ATPase and crosslinks the

stationary and rotor region of the enzyme through hydrophobic

interactions, resulting in the formation of a pincer-like grip

around the B subunit of V-ATPase (8, 28). Structural

investigations also unveiled interactions between human

mEAK7 and human V-ATPase, demonstrating an association

between the TLDc domain of mEAK-7 with subunit A, B, and E

of V-ATPase and the C-terminal domain of mEAK-7 with subunit

D of V-ATPase (17). Another structural analysis complimented

this finding by demonstrating that mEAK-7 interacts with

subunits A, B, D, and E of V-ATPases in state 2 (18).

Collectively, these findings suggest that mEAK-7 is a V-ATPase

inhibitor, presumably blocking V1-V0 torque transmission.

However, functional studies revealed that mEAK-7 does not

affect the enzyme activity of V-ATPases and lysosomal or

phagosomal pH in vitro (17, 28).

Bafilomycin, a V-ATPase blocker, inhibits lysosomal

acidification, thereby preventing the activity of lysosomal

proteases and autophagy by interfering with autophagosome-

lysosome fusion (29). The overexpression of mEAK-7 also does

not affect bafilomycin sensitivity, indicating that the V1 and V0

domains of V-ATPase may remain coupled even when mEAK-7

crosslinks the rotor and stator of V-ATPase. It is also possible that

the direct crosslink between mEAK-7 and V-ATPase is interrupted

during rotary catalysis (17, 18, 28). CryoEM studies of mEAK-7 and

V-ATPase structural interactions showed a clear 3-dimensional

structure in rotational State 2 before consumption of ATP, with

no area that lacked density (8). However, when ATP was added, a

population of particles associated with mEAK-7 in rotational State 2

and the density for the C-terminal a-helix disappeared, indicating

that ATP hydrolysis might disrupt mEAK-7 and V-ATPase

interactions (8).
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mEAK-7, V-ATPase, and the
mTOR pathway

mTOR is a conserved serine/threonine kinase in the PI3K

(phosphoinositide 3-kinases)-related kinase (PIKK) family and

responds to nutrients and growth signals (16). mTOR forms two

structurally and functionally distinct complexes known as mTORC1

(mTOR Complex 1) and mTORC2 (15, 16, 30). mTORC1 consists of

mTOR, Raptor (regulatory-associated protein of mammalian target of

rapamycin), mLST8 (mammalian lethal with Sec13 protein 8, also

known as GbL), PRAS40 (proline-rich Akt substrate of 40 kDa), and

DEPTOR (DEP domain containing mTOR-interacting protein) (30).

mTORC2 consists of mTOR, Rictor (rapamycin-insensitive

companion of mTOR), mLST8, DEPTOR, hSin1, and PRR5

(proline-rich protein 5), and predominantly regulates cytoskeletal

structure, cellular metabolism, cell survival, and cell response to

insulin (30–32). Recently, several studies demonstrated that mTOR

activation requires localization to the lysosome surface (33, 34). When

amino acids are available, cytosolic mTOR is recruited to the lysosome

surface via Rag proteins (34). Upon growth factor stimulation, PI3K

triggers the production of PIP3 in the plasma membrane, initiating a

cascade to phosphorylate kinase Akt and its activator PDK1

(phosphoinositide-dependent protein kinase 1). This leads to the

inhibition of the TSC (Tuberous sclerosis complex) and GAP

(GTPase-activating protein) activity, culminating in an enhanced

level of GTP-bound Rheb at the lysosome surface, where it directly

binds and activates the mTORC1 complex (33–35). The activated

mTORC1 has been known to phosphorylate both S6K1 (ribosomal

protein S6 kinase) and 4E-BP (the eukaryotic initiation factor 4E

binding protein), to promote cellular growth through protein

anabolism (16, 36), nucleotide biosynthesis (37), lipogenesis (38),

glycolysis (15, 16), and mitochondrial biogenesis (39).
A B

FIGURE 1

mEAK-7 interaction with V-ATPase. (A) Simplified structural diagram of V-ATPase and its interactions with mEAK-7. The C-terminal a-helix of mEAK-
7 was shown to interact with the B and D subunits of V-ATPase, while the TLDc domain of mEAK-7 interacts with the E, A, and B subunits of V-
ATPase. The N-myristoylation motif (denoted as “N-myr”) anchors proteins to lipid bilayers and endomembrane compartments by irreversibly
attaching to myristate. (B) Specific amino acid interactions between residues in V-ATPase subunits and mEAK-7 domains presented by Tan et al. (8).
These indicate potential sites for future targeted drug therapies.
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Macrolide V-ATPase inhibitors effectively halt mTORC1

activation, indicating that V-ATPase affects activation of mTOR

signaling (40). A small-molecule in vivo activator of autophagy,

EN6, has been shown to covalently bind to Cysteine 277 in the

ATP6V1A subunit of the lysosomal V-ATPase, decoupling it from

RAGs and leading to the inhibition of mTORC1 signaling,

enhancement of lysosomal acidification, and activation of

autophagy (41). Conversely, mTORC1 has been shown to

suppress V-ATPase activity by repressing V1-V0 assembly,

enabling mTORC1 to respond promptly to changes in cellular

nutrient environments by preventing lysosomal degradation of

extracellular proteins (42). It has also been demonstrated that the

late endosomal/lysosomal V-ATPase-Ragulator-RAG (Ras-related

GTP binding) protein complex is required for mTORC1 activation

(43). Upon high nutrient and energy levels, V-ATPase stimulates

the GEF (guanine-nucleotide exchange factor) activity of Ragulator,

consisting of LAMTOR1 (late endosomal/lysosomal adaptor,

MAPK and mTOR activator 1) through LAMTOR5. This

promotes the conversion of the GDP-bound form to the GTP-

bound form of RAGA/RAGB, increasing the affinity of RAGs for

mTORC1 (40, 44, 45). The RAG-bound mTORC1 is then activated

after interacting with GTP-bound Rheb on the lysosomal surface

(35). These findings highlight the essential role of V-ATPase activity

in mTOR signaling and activation.

Previously, we demonstrated that mEAK-7 interacts with

mTOR at the lysosome in response to nutrient stimulation and

promotes cell proliferation and migration (5). In nematodes, EAK-7

is located in the plasma membrane, and there is some evidence that

mEAK-7 can be detected at the plasma membrane in mammalian

cells as well (5, 6). Research has shown that mEAK-7 predominantly

binds to the lysosomal membrane. This is supported by the strong

colocalization between mEAK-7 and LAMP1 (lysosomal-associated

membrane protein-1) as well as LAMP2. In contrast, there is

minimal to no colocalization observed in the endosome,

mitochondria, endoplasmic reticulum, and golgi complex,

indicating that mEAK-7’s association is primarily with the

lysosomal membrane (5). The knockdown of mEAK-7 in several

human cancer cell lines with high endogenous mEAK-7 expression,

such as H1975 (non-small cell lung cancer, NSCLC), H1299 cells

(NSCLC), and MDA-MB-231 (breast cancer), resulted in decreased

lysosomal localization of mTOR, marked attenuation of S6K2 and

4E-BP1 phosphorylation, and diminished cell proliferation and

migration. These effects were rescued upon overexpression of

mEAK-7, which reactivated mTOR signaling (5). Furthermore,

the TLDc domain and C-terminus of mEAK-7 are crucial for

facilitating mTOR kinase activity, and although mEAK-7 interacts

with mTOR and mLST8, it does not engage with Raptor or Rictor,

key constituents of the mTORC1 and mTORC2 complexes (5).

Taken together, these findings suggest that mEAK-7 might play a

key role in recruiting mTOR to the lysosome and activating mTOR

kinase function via an alternative mTOR complex in

mammalian cells.

As discussed above, numerous studies have investigated

interactions among mEAK-7, V-ATPase, and mTORC1.

Although the exact nature of these interactions remains unclear,

the discoveries made so far are as follows: 1) The mEAK-7 and
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mTORC1 have physical and functional interactions; 2) The

interaction between mEAK-7 and the V-ATPase is predicted to

be inhibitory; however, this interaction could be disrupted by ATP

hydrolysis, potentially liberating part of mEAK-7 to serve as a

binding site for other molecules. There is speculation that mTORC1

might bind to the released segment of mEAK-7, although empirical

evidence to support this interaction remains elusive; and 3) The

interaction between V-ATPase and mTORC1 exhibits significant

complexity. V-ATPase interactions with Rag proteins are required

for mTORC1 activity (40), but inhibition of mTORC1 activates V-

ATPase by both increasing its assembly (42) and enhancing

synthesis via the TFEB pathway (46). Furthermore, despite the

interactions between each pair, currently, there is limited data

supporting simultaneous physical or functional interactions

amongst all three of the molecules (mEAK-7, mTORC1, and V-

ATPase). Also, the precise role mEAK-7 may play in such

interactions remains unclear. Recently, structural investigations

have unveiled the potential involvement of mEAK-7 in V-

ATPase-mediated mTOR signaling (8, 17, 18). While it was

initially suggested that the C-terminal a-helix of mEAK-7 could

engage with mTOR (5), this interaction through the a-helix seems

unfeasible when mEAK-7 is bound to V-ATPase. However, a

structural and functional investigation showed that the

interaction between mEAK-7 and V-ATPase, hinged on the C-

terminal a-helix, undergoes partial disruption during ATP

hydrolysis (8, 28). This potentially enables binding of other

proteins (47). Alternatively, this mechanism might serve to

regulate binding of mEAK-7 to both V-ATPase and other

proteins (8). Furthermore, one recent study suggests that mEAK-

7 may interfere with V-ATPase-mTOR signaling (17). This

validation involved the generation of a stable HCT116 cell line

(human colorectal carcinoma) that constitutively expresses the a4
subunit of V-ATPase (HCT-a4), which localizes to the lysosome.

Western blot analysis demonstrated that after treatment with

bafilomycin A1, the phosphorylation of S6 protein at Ser235/236

was completely abolished. In addition, overexpression of mEAK7 in

HC6-a4 cells inhibited the phosphorylation of S6 at Ser235/236 and

4E-BP1 at Ser65, indicating that mEAK7 may interfere with the V-

ATPase-mTOR signaling (17). However, the authors of this study

explicitly stated that this outcome might be due to using a ‘special

class of cells’ with V-ATPase overexpression. Figure 2 illustrates the

potential pathways involving mTORC1, V-ATPase, and the

alternative mTOR complex. Collectively, these findings reinforce

the need for further studies aimed at unraveling the details of

mEAK-7-mediated regulation within the context of V-ATPase-

mediated mTOR signaling or mEAK-7-mediated mTOR

signaling, while also delving into the prospective contributions of

mEAK-7 in other pathways, potentially mediated by its interactions

involving the a-helix.
mEAK-7 and cancer

As previously explored, mEAK-7 plays a crucial role in

activating the mTOR pathway that regulates cellular growth and

migration, maintains physiological hemostasis, and orchestrates
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metabolism in response to external stimuli (16). The dysregulation

of these processes contributes to the development and progression

of pathophysiological conditions such as cancer and neurological

disorders (5, 14, 15). Heightened mRNA expression levels of

mEAK-7 have been observed in several cancer cell lines (5) and

there is significant elevation of both mEAK-7 and mTOR signaling

in tumor and metastatic lymph nodes of patients diagnosed with

NSCLC (14). In two well-established NSCLC cell lines, H1975 and

H1299, stem-like CD44+/CD90+ cells, which represented 1% of the

total cell population, yielded elevated protein levels of mEAK-7,

S6K2, n-cadherin (marker for the epithelial-mesenchymal

transition state in cancer stem cells), and phosphorylated S6 and

4E-BP1, indicating activated mTOR signaling with higher invasive

potential compared to CD44-/CD90- cells (14). Furthermore,

mEAK-7 is necessary for clonogenic potential and spheroid

formation of CD44+/CD90+ NSCLS cells and promotion of

cisplatin- and radiation resistance through DNA damage-

mediated mTOR signaling, in part through interaction with

DNA-PKcs (DNA-dependent protein kinase catalytic subunit)

(14, 48). Knockdown of mEAK-7 impairs the DNA damage

response and enhances proapoptotic Noxa levels and PARP (poly

(ADP-ribose) polymerase) cleavage in cancer cells. A bioinformatic

search using the Exiqon miRSearch V3.0 algorithm revealed that

MicroRNA-1911-3p regulates mEAK-7 translation (49). The study

revealed that MicroRNA-1911-3p targets mEAK-7 mRNA at

3’UTR and decreases mEAK-7 protein levels, leading to

suppressed mTOR signaling, which was evidenced by significantly

decreased mTOR-dependent S6 and 4E-BP1 phosphorylation in

NSCLC cell lines. Furthermore, H1299 cells transfected with a

MicroRNA-1911-3p mimic significantly decreased mTOR and
Frontiers in Oncology 05
LAMP2 colocalization, demonstrating that repressed mEAK-7

levels impair co-localization of mTOR to the lysosome and

subsequently attenuates NSCLC cell proliferation and migration.

Collectively, these studies provide a novel perspective towards

developing a cancer treatment targeting mEAK-7-associated

mTOR signaling in NSCLC and other malignancies exhibiting

elevated mEAK-7 expression.
Conclusion

The lysosome-bound mEAK-7 protein plays an important role

in the intricate regulation of cellular proliferation and migration by

activating mTOR via an alternative pathway and/or interacting with

V-ATPase to modulate V-ATPase-mediated mTOR activation.

Structural and functional analyses conducted in both

physiological and pathophysiological conditions suggest mEAK-7

could serve as a promising therapeutic target against tumors,

particularly non-small-cell lung cancer. However, despite recent

findings, the precise molecular mechanisms and signal transduction

pathways controlled by mEAK-7 in cancer remain largely

unknown, with in vivo investigations yet to be systematically

explored. The elucidation of the mEAK-7 protein structure and

its interaction with V-ATPases presents a remarkable opportunity

for the development of a potent mEAK-7 inhibitor with specific

binding characteristics while minimizing adverse effects, paving the

way for the generation of mEAK-7-targeted therapy in cancer. This

exciting potential not only broadens the current understanding of

cancer biology but also highlights the possibility of tailored

interventions that could revolutionize treatment strategies.
FIGURE 2

Diagram illustrating the potential mEAK-7-mediated mTOR activation pathway and their interactions with V-ATPase. V-ATPase stimulates GEF
activity of Ragulator, promoting conversion of GDP to GTP-bound RAGs and increasing their affinity for mTORC1. RAG-bound mTORC1 is then
activated after interacting with GTP-bound Rheb. mEAK-7 interacts with mTOR to form an alternative mTOR complex involving mLST8 and DNA-
PKcs. This complex is known to play a role in phosphorylating S6K2 and 4E-BP1, leading to cell growth, proliferation, and migration. Although
structural studies have suggested that mEAK-7 interacts with V-ATPase, the precise mechanism is still unknown.
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