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Abstract. Spatio-temporal data analysis is crucial in many research
fields. However, modelling large-scale spatio-temporal data presents chal-
lenges such as high computational demands, complex correlation struc-
tures, and the separation of mixed sources. To address these issues, we
are developing 4DModeller (fdmr), a robust and user-friendly R package
designed to model spatio-temporal data within a Bayesian framework.
The software package offers a comprehensive solution for visualizing, an-
alyzing and modelling different types of spatio-temporal data in various
disciplines. By incorporating Bayesian hierarchical models, "fdmr" al-
lows for the flexible integration of prior knowledge and data uncertainty
into the modelling process. By utilizing the Integrated Nested Laplace
Approximations (INLA) algorithm and the stochastic partial differen-
tial equations (SPDE) method for model inference, "fdmr" significantly
reduces the computational complexity of handling high-resolution, high-
dimensional spatio-temporal data. Furthermore, "fdmr" provides intu-
itive and interactive visual analytics tools that facilitate the exploration
of data patterns across both space and time. This paper aims to in-
troduce the "fdmr" package, and outline its core modelling framework
through an example study on the spread of COVID-19 infection rates in
England from 19 December, 2020 to 20 March, 2021.
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elling framework.
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1 Introduction

Spatio-temporal data analysis plays a crucial role across a wide range of re-
search domains, such as earth and environmental sciences, ecosystem dynam-
ics, epidemiology, crime analysis, and urban studies. It enables researchers and
decision-makers to uncover hidden spatio-temporal patterns, identify spatial and
temporal dependencies within the data, investigate the complex interplay be-
tween spatial and temporal controls, and make error-bounded predictions. With
the increasing availability of large-scale spatio-temporal datasets, the need for
advanced methodologies and tools to effectively handle and analyze such data
has become paramount. However, the modelling of large-scale spatio-temporal
data poses many challenges, such as intensive computational burden, complex
spatio-temporal correlation structures, and the separation of mixed sources into
their component processes. Furthermore, spatio-temporal modelling packages
often require sophisticated statistical and discipline based knowledge and expe-
rience, which creates a further hurdle for users. To overcome these challenges,
our team is currently engaged in the development of a robust and user-friendly R
package known as "fdmr", which stands for "4D-Modeller". The "fdmr" package
is designed to tackle spatio-temporal inference problems that occur in various
disciplines, spanning from regional to global scales. This package extends the
Bayesian hierarchical model developed during a successful ERC-funded project
called GlobalMass (www.globamass.eu), where it was able to reliably handle
large volumes of both satellite and in-situ data, and accurately decompose sig-
nals from the corresponding time series into the underlying physical processes
that drive sea level rise [28]. The objective of the "fdmr" package is to provide
researchers and practitioners a straightforward and efficient solution for handling
and analyzing different types of spatio-temporal data, enabling a comprehensive
analysis of the underlying spatio-temporal patterns and processes. There are
three basic types of spatial data based on the characteristics of the research do-
main, including the geostatistical (point-referenced) data, areal data, and point
patterns data [6]. The current development of the "fdmr" package supports geo-
statistical data and areal data over multiple time points. In geostatistical data,
the study domain is a continuous fixed set, and the spatial data consist of obser-
vations measured at many fixed and precise locations. Examples of these type of
data are air pollution, rainfall values or GPS ground displacements measured at
several monitoring stations. In areal data, the domain is fixed (of regular or ir-
regular shape) and partitioned into a finite number of areal units (e.g., polygons)
with well-defined boundaries. Examples of areal data are attributes collected by
ZIP code, census tract [17] or satellite imagery.

There are several existing R packages on CRAN for analyzing spatial or
spatio-temporal data, either in a point-referenced or areal format. For point-
referenced data, they include "fields" [18], "FRK" [33], "geoR" [21], "gstat"
[19], "R-INLA" [14], and "spBayes" [9]. For areal data, they include "brms"
[4], "CARBayes" [12], "CARBayes" [12], "CARBayesST" [13] and "hglm" [22].
These packages feature different degrees of flexibility, model inference methods
as well as computational capacity. Unlike these aforementioned packages, the
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"fdmr" package is designed to analyze both point-referenced and areal data
using a common Bayesian framework and syntax structure, and it is able to
accommodate various response types, such as Gaussian, Poisson, and binomial
data. "fdmr" also offers many features absent in the aforementioned packages -
together within a single package, such as intuitive tools for mesh building and
priors setting, interactive plotting tools for visualising and mapping the data in
an intuitive manner, the option to use different model inference methods and high
computational efficiency for "Big Data" problems. Thus, the "fdmr" package
streamlines and simplifies the workflow, allowing users to use its comprehensive
functionality without the need to rely on multiple packages.

In the "fdmr" package, spatio-temporal data are modelled within a Bayesian
framework using Bayesian hierarchical models, which are a powerful tool for un-
derstanding intricate processes in space and time. These models integrate prior
information and data observations to update process models, providing a pos-
terior probabilistic understanding of the underlying spatio-temporal dynamics
in the observed data. Additionally, the Bayesian hierarchical model accounts for
spatial-temporal autocorrelation in the data by modelling a set of random effects
via a spatio-temporal continuous Gaussian random field process. In comparison
to existing frequentist statistical models for spatio-temporal analysis, such as
the geographically weighted regression [3], spatial error model [8] and spatial lag
model [30], our Bayesian modelling approach has several advantages in terms
of computational accuracy and efficiency. Firstly, it allows for the incorporation
of prior knowledge and a more robust assessment of the uncertainties in predic-
tions by specifying prior distributions through a hierarchical modelling scheme
[11, 32, 7]. Secondly, it is able to accommodate missing data by borrowing infor-
mation from nearby spatial locations and time points based on the estimated
spatio-temporal dependence structure, which enables predictions at any spatial
location and time point, even in the case of missing data. Finally, our model
inference is carried out using the INLA [26, 27] and SPDE method [15] via the
R-inlabru package, which considerably reduces the computational burdens of
handling high-resolution spatio-temporal data compared to existing packages [9,
12] that use Markov Chain Monte Carlo simulation to make model inference.
Since the INLA-SPDE approach involves a finite element solution using a tri-
angulated mesh of the study region that the processes are estimated on, the
"fdmr" package also allows users to generate and customize a mesh based on
their expert knowledge of the process they wish to infer. For example, high reso-
lution for point sources of air pollution within urban areas and lower resolution
in unpopulated regions. Another notable feature of "fdmr" is its functionality
in data visualization. The package includes a set of intuitive and interactive vi-
sual analytics functions that enable users to visualize the data patterns across
space and time, which aid in identifying spatial clusters, temporal trends, and
anomalies. We have applied the package to several test case problems related to
COVID-19 transmission, hydropower generation in Norway, and lake growth in
the Tibetan Plateau. Thes examples were chosen to demonstrate the capabili-
ties for different classes of problem and data. Detailed instructions on installing
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the "fdmr" package in R [20] and a list of worked-out tutorials can be found at
https://4dmodeller.github.io/fdmr/index.html. This list is dynamic and
being continuously added to as the user community grows.

This paper serves as a brief introduction to the "fdmr" package. Section 2
introduces the fundamental modelling framework utilized through the package,
by presenting a case study that examines the spread of COVID-19 infection
rate in England using the "fdmr". Section 3 summarises the primary application
results, while the paper ends with a discussion in Section 4.

2 Spatio-temporal modelling framework

In this section, we demonstrate the spatio-temporal modelling framework em-
ployed in the package "fdmr" in the context of investigating the spread of
COVID-19 infection rates in mainland England during the period from 19 De-
cember, 2020 to 20 March, 2021. Fig. 1 displays our study region, which is par-
titioned into n = 6789 neighbourhood units called Middle Layer Super Output
Areas (MSOAs).

Fig. 1: A map of the study region. This map is made using the fdmr plotting
function plot_map().

The weekly number of reported COVID-19 cases between 19 December, 2020
and 20 March, 2021 for each MSOA was obtained from the UK COVID-19 dash-
board (https://coronavirus.data.gov.uk/details/download). The aim of
this study is to predict the COVID-19 infection rates across England and iden-
tify the temporal trends as weel as dominant risk factors. An infection rate is
the probability or risk of an infection in a population, which in epidemiology is
defined as the proportion of affected people in a population during a specific time
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period [24]. Here it is calculated as the ratio of the number of reported COVID-
19 cases to the total population in each MSOA and week. However, naively using
such infection rate data as a measure of the variations in COVID-19 transmission
ignores the spatio-temporal autocorrelation inherent in the disease’s dynamics.
Moreover, it ignores the potential effects of risk factors on COVID-19 infections.
Therefore, it is necessary to develop a model-based approach that can capture
the spatio-temporal variations in disease spread, separate the variations from
random noise and account for the spatio-temporal correlation structure in the
data. To achieve this, we have developed a Bayesian hierarchical spatio-temporal
modelling approach within the "fdmr" package, which is outlined in Section 2.1.

2.1 Bayesian hierarchical model

This section outlines the modelling specification in the context of analyzing the
COVID-19 infections data described above.

Level 1 - Data likelihood model

Let Y (si, t) and N(si, t) be the number of reported COVID-19 cases and to-
tal population in MSOA i ∈ (1, . . . , nt) during week t ∈ (1, . . . , T ), respectively.
Here si ∈ R2 denotes the geographical location for MSOA i, and nt represents
the number of MSOAs that have reported COVID-19 cases during week t. As
the response variable is a count, the first level of our Bayesian hierarchical model
is the Poisson log-linear specification given by

Y (si, t) ∼ Poisson (N(si, t)θ(si, t)) , i = 1, . . . , nt; t = 1, . . . , T,

ln(θ(si, t)) = x(si, t)
⊤β + ξ(si, t), (1)

where θ(si, t) is the COVID-19 infection rate in MSOA i and week t, which is
modelled by two components. The first component is the vector of covariates (if
needed) given by x(si, t) for location si and time t, including an intercept term,
with a vector of regression parameters β. The second component is the spatio-
temporal random effect ξ(si, t). Note that although the model introduced above
is used to model count data , the "fdmr" package also accommodates Gaussian
and binomial type responses.

Level 2 - Spatio-temporal random effects model

The spatio-temporal random effect ξ(si, t) represents the realization of a spatio-
temporal process for the logarithm of the observed COVID-19 infection rates
after covariate adjustment. The spatial correlation is modelled by location spe-
cific random effects through a Gaussian random field process, which captures the
correlation via a covariance matrix expressed as a function of distance between
locations. The temporal correlation is modelled by a first-order autoregressive
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(AR1) process. Specifically, we have

ξ(sj , t) = α× ξ(sj , t− 1) + ω(sj , t), (2)

ξ(sj , 1) ∼ N
(
0,

σ2
ω

1− α2

)
.

Here α is a temporal dependence parameter such that |α| < 1. ω(sj , t) =

(ω(s1, t), . . . , ω(snt
, t))

⊤ is a spatial random effect that is assumed to follow
a multivariate Gaussian distribution and have ω(sj , t) ∼ N(0nt , σ

2
ωΣω), where

0nt is a nt× 1 vector of zeros, σ2
ω is the marginal variance of the spatial process,

and Σω is the nt × nt covariance matrix with elements

(Σω)ij = C(||si − sj ||),

where ||si−sj || is the distance between locations (si, sj), and C(·) is the Matern
function [31] given by

C(||si − sj ||) =
1

2ν−1Γ (ν)
(κ||si − sj ||)νKν(κ||si − sj ||), (3)

where Kν(·) is the modified Bessel function of second kind, and Γ (ν) is the
Gamma function. ν is the smoothness parameter of the Matern covariance func-
tion. κ is a scaling parameter controlling the spatial correlation range ρ, which
is the distance at which the correlation function has fallen to about 0.13 and is
given by ρ =

√
8ν/κ.

Level 3- Prior distributions

The regression parameters β are assigned independent weakly informative zero-
mean Gaussian prior distributions with a large variance, i.e., βj ∼ N(0, 1000)
for j = 0, . . . , p, to ensure their values are mainly informed by data. Penalized
complexity priors [10] are specified for the spatial correlation range ρ and the
marginal standard deviation parameter σω. Specifically, a prior of p(ρ < vρ) = pρ
is specified for ρ, which means that the probability that ρ is smaller than vρ is pρ.
A prior of p(σω > vσω ) = pσ is specified for σω, indicating that the probability
of σω being greater than vσω

is pσ. The temporal autoregressive parameter α
is also assigned a penalized complexity prior, with p(α > 0) = 0.9. Note that
the "fdmr" package provides default priors for the model parameters, but it also
allows users to specify a range of different types of prior distributions based on
the expert information in the research field.

2.2 Mesh construction

The model is implemented through the INLA-SPDE approach, which approxi-
mates a continuous spatial process, i.e., a Gaussian random field process, with
the Matern covariance function defined in equation (3), by a discretely indexed
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spatial random process known as a Gaussian Markov random field (GMRF).
The GMRF has zero mean and uses a sparse precision matrix which substan-
tially reduces the computational cost in matrix algebra operations compared to
using dense covariance matrices [25]. To represent the Matern field as a GMRF,
the SPDE approach discretizes the space by defining a mesh composed of non-
intersecting triangles that partition the domain of the study region [15]. These
triangles allow the spatial autocorrelation between data observations to be calcu-
lated in the modelling process. For example, Fig. 2 displays the mesh we created
for England, and the points in the figure represent the locations of MSOAs with
COVID-19 reported cases. Then the INLA algorithm estimates the posterior dis-
tribution of the latent Gaussian process and hyperparameters using the Laplace
approximation [27]. More details on this methodology can be found in the work
of Blangiardo & Cameletti (2015) [1].

Fig. 2: A triangulated mesh over the study region.

The construction of a mesh has an impact on the performance of model in-
ference and predictions. Therefore, it is important to develop a robust mesh that
minimizes the sensitivity in the results. The choice of mesh varies depending on
the case study. In general, high resolution meshes with large buffer regions tend
to yield more accurate predictions [23], while such meshes may also increase
computational costs. Lindgren and Rue (2015) [14] provided details on the con-
struction of an optimal mesh. Our "fdmr" package will provide an intuitive mesh
builder tool that allows users to interactively adjust the parameters related to
mesh resolution and shape with ease, and then displays the resulting mesh in a
few seconds in a user-friendly interface.
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3 Results summary

The Bayesian spatio-temporal model outlined in Section 2.1 was fitted to the
COVID-19 infection data in England. Although the model is outlined in its most
general form that includes covariate information, covariates are not included in
the COVID-19 application in this paper. Table 1 summarises the estimates for
the spatial correlation range parameter ρ and temporal dependence parameter α
from the model. It indicates that there is strong evidence of significant spatial and
temporal autocorrelation in the spread of COVID-19 infections across England,
with a spatial range of 0.295 and a high degree of temporal dependence of 0.836.

Our "fdmr" package provides automated plotting tools for time series visu-
alization and spatial pattern mapping. For example, Fig. 3 illustrates the pre-
dicted COVID-19 infection rates for all MSOAs by week. The boxplots reveal
the presence of health inequalities in COVID-19 infection rates across MSOAs
in England, because there were substantial variations in the predicted infection
rates, with values ranging between 0.0002 and 0.023 (ADD UNITS). The aver-
age infection rate curve shows that there was a steady rise in recorded infection
levels starting from 19 December 2020, which was driven by the emergence of
the Alpha variant. This upward trend reached its peak in early January 2021,
after which the recorded infection rate exhibited a gradual decrease until the end
of the study. This reduction is result of the second national lockdown restric-
tion implemented by the UK government, which limited the transmission of the
virus. Fig. 4 displays the spatial pattern of the time averaged rates of infection
in England. The high infection rates were mainly concentrated in the northeast
of England, such as districts of Northumberland, Cumbria, and Lancashire, as
well as in the southeast, particularly including London and some surrounding
areas such as Kent, Essex, Surrey and Sussex. The goals here is not to present a
detailed analysis of COVID infection dynamics but to illustrate the capabilities
of fdmr for this example.

Table 1: Summary of the spatial correlation range parameter ρ and the temporal
dependence parameter α.

Parameter mean 0.025quant 0.975quant
Spatial range ρ 0.295 0.290 0.300
Temporal dependence α 0.836 0.832 0.839
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Fig. 3: Summary of the estimated COVID-19 infection rates across all MSOAs
between 19 December, 2020 and 20 March, 2021. The red line displays the aver-
age estimated infection rate across mainland England in weeks and the dashed
lines show the corresponding 95% credible intervals by week. This plot is made
using the fdmr plotting functions plot_boxplot() and plot_line_average().

Fig. 4: Map of the average predicted infection rates in England over the study
period. This map is made using the fdmr plotting function plot_map().



10 X. Yin et al.

4 Conclusion and discussion

In addition to the COVID-19 transmission case study outlined above, two other
applications of the "fdmr" package include hydropower production in Norway,
and the spatial dynamics of lakes on the Tibetan Plateau. Power in Norway
comes primarily from hydropower stations throughout the country. Water runoff
that feeds hydropower reservoirs is primarily due to snow melt. This snow melts
in the spring, running into reservoirs that then feed hydropower stations. Gaug-
ing stations are placed throughout catchments (i.e., the area or region where
water drains into a river), to monitor stream flow. The "fdmr" package is used
to calculate the spatial and temporal flow rates per catchment, given precipi-
tation data (ERA5-land precipitation [5]) as a fixed effect and an SPDE model
which assumes there is some other correlation structure in the streamflow data
due to unobserved variables, such as local elevation, temperature, soil perme-
ability, or presence of vegetation. This study can provide data-driven expecta-
tions for reservoirs, aiding in effective hydropower management. In the Tibetan
Plateau study, the "fdmr" package offers the capability to calculate lake change
and investigate the underlying processes affecting the area of lakes. The Tibetan
Plateau is a largely endorheic region, that is, water in this region does not travel
outside the catchment. It is climatically linked to the larger High Mountain Asia
region. It could be that glacier melt is the primary driver of lake growth in a high
mountain context. However, glaciers seem to account for only a small amount
of lake growth [2], while precipitation in the region seems to be increasing in
the area [29], and ground thermal changes are likely also increasing permafrost
thaw [16]. "fdmr" allows us to combine all these features into one model, thus
providing insights into the dynamics of lake growth in the Tibetan Plateau and
facilitating a better understanding of the region’s hydrological system and its
response to various environmental factors. New case studies are being added as
the user community grows. A fdmr hackathon in November 2023 will further
expand the portfolio of use cases and tutorials available.

The "fdmr" package aims to provide a robust and versatile toolkit for the
exploration, analysis, and modelling of spatio-temporal data across diverse re-
search domains. It has the benefits of supporting various data formats, efficiently
handling large datasets, flexibility in specifying prior distributions, and account-
ing for data uncertainty during the modelling process. Furthermore, the package
provides intuitive data visualization tools to aid in the interpretation of results.
Despite being a work in progress, the package has demonstrated its efficacy and
utility in several real-world applications. Future package development efforts
will focus on expanding its capabilities and broadening its applicability. This in-
cludes, but is not limited to, automated mesh generation, the development of an
R Shiny-based tool for customized meshes, the integration of additional model
diagnostic tools for effective model evaluation and selection, an automated prior
picking mechanism, and the enhancement of flexible prior distribution options
for model parameters. Moreover, our team actively seeks for interdisciplinary
collaborations to further expand the modelling framework and tailor it to the
specific needs of diverse disciplines.
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