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ABSTRACT OF THE DISSERTATION

Some results on gradient Ricci solitons and complete Kähler manifolds
with nonnegative curvature

by

Bo Yang

Doctor of Philosophy in Mathematics

University of California, San Diego, 2013

Professor Lei Ni, Chair
Professor Bennett Chow, Co-chair

In this dissertation we study two problems related to Ricci flow on complete
noncompact manifolds. In Chapter 1 we report joint work with Ben Chow and
Peng Lu on volume growth, lower bounds on scalar curvature, and upper bounds
on Ricci curvature for complete gradient Ricci solitons. Most of our results are
obtained without any assumption on the soliton metrics. We wish they could be
useful for further study on complete gradient Ricci solitons under general assump-
tions. In Chapter 2 we obtain several results on complete Kähler manifolds with
nonnegative curvature. The uniformization problem of such manifolds has been an
important topic in complex geometry. We construct new examples of such metrics
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and discuss their connection with Kähler-Ricci flow. This is partly joint work with
Fangyang Zheng. We also explore the interaction between function theory and
metric geometry on general Kähler manifolds with nonnegative bisectional cur-
vature. This part is selected from my ongoing project and complete results will
appear elsewhere.
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Chapter 1

Complete noncompact gradient
Ricci solitons

An important aspect of Riemannian geometry is to study the interaction be-
tween curvature and topology of Riemannian manifolds. Hamilton [56] introduced
Ricci flow in 1982 to prove that every closed 3-manifold with positive Ricci cur-
vature is diffeomorphic to a 3-spherical form. Ever since then Ricci flow has been
proved to be a powerful tool to study geometry of manifolds. The most important
application is Perelman’s proof of the Poincaré Conjecture and the Geometrization
Conjecture for 3-manifolds ([95], [96], and [97]). In higher dimensions, there is also
some important progress on Ricci flow. Notably results include the theorem of
Böhm and Wilking [6] that closed manifolds with positive curvature operators are
space forms and the differentiable sphere theorem due to Brendle and Schoen [10].

In Chapter 1 we focus on complete gradient Ricci solitons which are self-
similar solutions to Ricci flows on complete noncompact manifolds. There has been
much progress on understanding geometric structures on gradient Ricci solitons
with in the past years. In the following sections we will study volume growth and
curvature behaviors of complete gradient Ricci solitons. These are joint work with
B. Chow and P. Lu ([39], [41], and [41]).

The organization of Chapter 1 is as follows: In Section 1.1 we review the
definition of gradient Ricci solitons and emphasize their importance in the study
of Ricci flow. In Section 1.2 we discover a neat monotonicity formulation in the
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spirit of Bishop-Gromov volume comparison to prove that asymptotic volume ratio
(AVR) of any shrinking soliton is well-defined, a byproduct is a necessary and
sufficient condition on AVR = 0. Lower bounds on scalar curvature on shrinking
solutions and steady solitons are studied in Section 1.3. In Section 1.4 we prove
integral upper bounds on the Ricci curvature along modified geodesics on non-
expanding solitons. At the end of Chapter 1 we discuss some more recent progress
on classification of Ricci solitons and related questions.

1.1 Introduction

Let (Mn, g) be a Riemannian manifold and f a real-valued function on it,
we call (Mn, g, f) a gradient Ricci soliton if

Ric(g) +∇∇f +
ε

2
g = 0. (1.1)

Here ε ∈ R is constant. We say g is shrinking, steady, and expanding if ε < 0,
ε = 0, and ε > 0 respectively. And we also call the function f a potential function
of gradient Ricci soliton. For simplicity we can normalize ε to be 1, 0, or −1.
Throughout this dissertation we also call shrinking (steady, expanding) gradient
Ricci solitons shrinkers (steadies, expanders) for short. It is well known (See [60]
for example.) that R+|∇f |2+εf is constant on any gradient Ricci solitons. Unless
specified otherwise we shall always assume that f is normalized in the sense that
R + |∇f |2 + εf = 0 holds on M.

Complete gradient Ricci solitons are self-similar solutions to the Ricci flow.
To be more precise, suppose (Mn, g0, f) is a complete gradient Ricci soliton, then
there exists s solution g(t) to the Ricci flow with g(t) = g0 and a family of diffeo-
morphism ϕ(t) such that:





∂
∂t

ϕ(t)(x) = 1
1+ε t

∇g0f(ϕ(t)(x))

g(t) = (1 + ε t)ϕ(t)∗g0

∂
∂t

g(t) = −2Ric(g(t))

(1.2)

We remark that the above statement follows from a standard calculation (See [38]
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for example.) and a nice observation due to Zhang [121] that the completeness of
g0 implies the completeness of ∇g0f .

If (Mn, g) is a Kähler manifold and f a real-valued function on it, we can
define a Kähler-Ricci soliton structure by requiring the (1, 0) part of the complex-
ified gradient vector field of the Ricci soliton metric to be a holomorphic vector
field. Therefore (Mn, g, f) is called a Kähler-Ricci soliton if in the holomorphic
coordinates

Rij̄ + fij̄ + εgij̄ = 0 and fij = fīj̄ = 0. (1.3)

Historically, the concept of Ricci solitons was first introduced by Hamilton
[57] when he studied Ricci flow on compact surfaces. Ever since then there has been
a lot of progress on understanding geometric structure of Ricci solitons. By the
work of Hamilton [59] and [60], Perelman [95], and others, gradient Ricci solitons
are often expected to model finite time singularity formation of the Ricci flow. See
[3] for a neckpinch forming a shrinker and [54] and [2] for a degenerate neckpinch
forming a steady soliton, respectively.

In another viewpoint, Ricci solitons, as a natural generalization of Einstein
metrics, is an important object for study in geometric analysis. One expect the
methods to study Einstein metrics also works to study geometry and topology of
Ricci solitons. It is also of interests to physicists as well and are called quasi-
Einstein in physics literature (See [94] for example.)

It is also interesting to mention that Ricci solitons are related to Bakry-
Émery Ricci tensor of metric measure space ([4]). Therefore the study of Ricci
solitons should have applications in function theoretic, spectral, and other aspects
of general metric measure spaces. We refer readers to [77], [78] and reference
therein for some recent developments on this direction.

Due to their importance in the study of Ricci flow and related subjects,
it is interesting to understand the geometry and topology of Ricci solitons and
even look for a possible complete classification. The first step of this program
is to construct more examples of gradient Ricci solitons. One typical method of
constructing Ricci solitons is to impose suitable symmetry conditions on both the
underlying manifolds and the soliton metrics and then reduce the soliton equation



4

(1.1) to ordinary differential equations. See [66], [13] for the compact case and
[64], [13], [14], [94], [48], and [43] for the complete noncompact case. In the Kähler
case, Wang and Zhu [106] constructed Kähler-Ricci solitons on toric Fano Kähler
manifolds by solving equations of Monge-Ampère type.

There has been much recent work on gradient Ricci solitons including [47],
[19], [20], [76], [77] and [78] to name only a few. Here we only list some notable
classification results. Perelman classified 3-dimensional κ-noncollapsed shrinking
solitons with bounded and nonnegative sectional curvature. Ni and Wallach [91]
and Naber [80] improved by dropping κ-noncollapsing assumption and replaced
nonnegative sectional curvature by nonnegative Ricci curvature. It follows from
[91] and the localized Hamilton-Ivey estimates of [27] that 3-dimensional nonflat
complete noncompact shrinking soliton must be a quotient of the round cylinder. In
dimension 4, Naber [80] classified shrinking solitons with bounded and nonnegative
curvature operator. There are also some classification results in high dimensions
under the assumption of locally conformal flatness. See [18] and [34] for example.

We refer the readers to see the review paper [16] or the forthcoming book
[37] for a more detailed account on recent progress on gradient Ricci solitons.

1.2 Asymptotic volume ratio of shrinkers

Recall that the asymptotic volume ratio (AVR) of a complete noncompact
Riemannian manifold (N n, h) is defined by

AVR(h) + lim
r→∞

Vol B(p, r)

ωnrn
(1.4)

if the limit exists, where B(p, r) denotes the geodesic ball in N with center p and
radius r and where ωn is the volume of the unit Euclidean n-ball. It is easy to check
that the AVR(h) is independent of the choice of p. Moreover, if h has nonnegative
Ricci curvature, then this limit exists by the Bishop–Gromov volume comparison
theorem.

In this section we study asymptotic volume ratio for complete noncompact
shrinking gradient Ricci solitons. In particular we establish a monotonicity formula
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for volume of sublevel sets for potential functions on any Ricci shrinkers. The direct
consequence is that AVR is well-defined on any shrinkers. We also give a necessary
and sufficient condition for complete noncompact gradient Ricci shrinkers to have
positive AVR.

It was proved by Chen [27] (see also [121]) that complete ancient solutions to
the Ricci flow, and in particular shrinkers, must have nonnegative scalar curvature.
As a consequence, the potential function f satisfies the estimate:

0 ≤ f(x) ≤
(

1

2
r(x) + f(O)

1
2

)2

, (1.5)

where r(x) denotes the distance function to a fixed point O in M. Cao and
Zhou [19] proved that there exists a positive constant C which depends on the
dimension n, supy∈B(O,1) |∇f |(y), and the minimum of the Ricci curvature Rcg in
the ball B(O, 1) such that f satisfies the lower estimate:

f(x) ≥ 1

4
(r(x)− C)2 (1.6)

for x ∈ M− B (O,C) (see Fang, Man, and Zhang [47] for related estimates). In
fact, carefully following the proof of [19] and integrating by parts yield:

f(x) ≥ 1

4

[(
r(x)− 4n− 2f (O)

1
2 +

4

3

)

+

]2

, (1.7)

where c+ + max(c, 0). Recently Haslhofer and Müller [61] further observed that if
the reference point O is chosen to be a global minimum point of f (its existence is
ensured by (1.5) and (1.6)), then one obtains improved estimates with constants
depending only on n:

1

4
[(r(x)− 5n)+]2 6 f(x) 6 1

4
(r(x) +

√
2n)2. (1.8)

Define the functions

V : R→ [0,∞), R : R→ [0,∞)

by
V(c) +

∫

{f<c}
dµ, R(c) +

∫

{f<c}
R dµ.
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In [19], the following ode relating V(c) and R(c) was established

0 ≤ n

2
V(c)− R(c) = c V′(c)− R′(c). (1.9)

Cao and Zhou [19] proved the following using (1.9) and aided by an obser-
vation of Munteanu [75] (see [61] for an improvement).

Theorem 1.2.1. Any complete noncompact shrinking gradient Ricci soliton must
have at most Euclidean volume growth, i.e., lim supr→∞

Vol B(O,r)
ωnrn is finite.

Note that an earlier result by Carrillo and Ni [20] states that any nonflat
shrinker with nonnegative Ricci curvature must have zero AVR. Based on Cao and
Zhou’s work, Zhang [120] proved a sharp upper bound on the volume growth of
shrinkers under the assumption that R ≥ δ for some constant δ > 0. More recently,
C.-W. Chen [33] proved that the AVR of a shrinker is bounded from below by some
c > 0 if the average scalar curvature satisfies 1

Vol B(O,r)

∫
B(O,r)

R dµ ≤ rα, where α

is a negative constant (see also [19] for a similar result in the case where α = 0).

Theorem 1.2.2. Let (Mn, g, f) be a complete noncompact shrinking gradient Ricci
soliton. Then AVR(g) exists and is finite (by [61], it is bounded by a constant
depending only on n). Moreover, AVR(g) > 0 if and only if

∫∞
n+2

R(c)
c V(c)

dc < ∞.

Proof. Let P(c) + V(c)

c
n
2
− R(c)

c
n
2 +1 and N (c) + R(c)

c V(c)
. Note that R(c)

V(c)
is the average

scalar curvature over the set {f < c}. The ode (1.9) implies

P′(c) = −
(

1− n + 2

2c

)
R (c)

c
n
2
+1

= −
(
1− n+2

2c

)
N (c)

1− N (c)
P(c). (1.10)

Since 0 ≤ R (c) ≤ n
2

V(c) by (1.9), we have
(
1− n

2c

) V(c)

c
n
2

≤ P(c) ≤ V(c)

c
n
2

. (1.11)

Hence, by the bounds (1.5) and (1.6) for f ,

2nωn AVR(g) = lim
c→∞

V(c)

cn/2
= lim

c→∞
P(c),

which exists by (1.10).
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Integrating (1.10) yields

P(c) = P(n + 2) e−
∫ c

n+2

(1−n+2
2c )N(c)

1−N(c)
dc (1.12)

for c ≥ n + 2. From R(c)
V(c)

≤ n
2
it is easy to see that for any c ∈ [n + 2,∞) we have

1

2

∫ c

n+2

N (c) dc ≤
∫ c

n+2

(
1− n + 2

2c

)
N (c)

1− N (c)
dc ≤ 2

∫ c

n+2

N (c) dc. (1.13)

If
∫∞

n+2
N (c) dc = ∞, then by (1.12) we have AVR(g) = 1

2nωn
limc→∞ P(c) = 0.

If
∫∞

n+2
N (c) dc < ∞, then by (1.12) and (1.13), we have

P(c) ≥ P(n + 2) e−2
∫∞

n+2 N(c)dc > 0.

Hence AVR(g) > 0.

Remark 1.2.3. It follows from the proof of Theorem 1.2.2 that we have a precise
formula for AVR in terms of scalar curvature. Note that AVR is bounded from
above by a constant which only depends on n, The natural question is whether it
is actually bounded by AVR of the standard Euclidean space. It is also interesting
to know more about the behavior of AVR among all shrinkers. One may compare
a result of Yokota [119] which says there is a gap for AVR if we consider complete
ancient solutions to the Ricci flow with bounded nonnegative Ricci curvature.

1.3 Lower bounds on the scalar curvature

In this section we focus on lower bounds on the scalar curvature of shrinking
solution and steady solitons. To more precise, we prove that recent work of Ni and
Wilking [92] yields the sharp result that a noncompact nonflat Ricci shrinker has
at most quadratic scalar curvature decay. We also prove a similar result for certain
noncompact steady gradient Ricci solitons.

It was proved by Chen [27] that R ≥ 0 for Ricci shrinkers. If a Ricci shrinker
is not isometric to Euclidean space, then R > 0 (see Pigola, Rimoldi, and Setti [99]
and Zhang [120]). Recently, Ni and Wilking [92] proved that on any noncompact
nonflat Ricci shrinker and for any δ > 0, there exists a constant Cδ > 0 such
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that R(x) > Cδd(x,O)−2−δ wherever d(x,O) is sufficiently large. The purpose of
this note is to observe the following version of their result and a similar result for
certain noncompact steady gradient Ricci solitons.

Theorem 1.3.1. Let (Mn, g, f) be a complete noncompact nonflat gradient shrink-
ing soliton with the potential function f normalized in the sense that R+|∇f |2−f =

0. Then for any given point O ∈ M there exists a constant C0 > 0 such that
R(x)d(x,O)2 > C−1

0 wherever d(x,O) > C0. Consequently, the asymptotic scalar
curvature ratio of g is positive.

Proof. Recall the estimate on the potential function on any complete shrinker due
to Cao and Zhou mentioned in Section 1.2. Namely there exists a positive constant
C1 such that f satisfies the estimate:

1

4

[
(d(x,O)− C1)+

]2 ≤ f(x) ≤ 1

4

(
d(x,O) + 2f(O)

1
2

)2

, (1.14)

where c+ + max(c, 0). Define the f -Laplacian ∆f + ∆ − ∇f · ∇. We have
0 < R + |∇f |2 = f = n

2
−∆ff . Recall that (see [45] for example)

∆fR = −2 |Rc|2 + R. (1.15)

Note that

∆f

(
f−1

)
= f−1 − f−2

(
n

2
− 2

|∇f |2
f

)
, (1.16)

∆f

(
f−2

)
= 2f−2 − f−3

(
n− 6

|∇f |2
f

)
. (1.17)

Using (1.15) and (1.16), we compute for any c > 0

∆f

(
R− cf−1

)
6 R− cf−1 + cf−2

(
n

2
− 2

|∇f |2
f

)
. (1.18)

Define φ + R− cf−1 − cnf−2. By (1.17) we obtain

∆fφ 6 φ− cnf−3

(
f

2
− n

)
− cf−4 (2f + 6n) |∇f |2 . (1.19)

Choosing c > 0 sufficiently small, we have φ > 0 inside B(O,C1 + 3n),
where C1 is as in (1.6). If infM−B(O,C1+3n) φ + −δ < 0, then by (1.6) there exists
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ρ > C1 + 3n such that φ > − δ
2
in M − B (O, ρ). Thus a negative minimum

of φ is attained at some point x0 outside of B(O,C1 + 3n). By the maximum
principle, evaluating (1.19) at x0 yields f(x0)

2
− n ≤ 0. However, (1.6) implies that

f(x0) > 9n2

4
, a contradiction. We conclude that R ≥ cf−1 + cnf−2 on M. The

theorem follows from (1.14).

Remark 1.3.2. Feldman, Ilmanen, and Knopf [48] constructed complete noncom-
pact Kähler–Ricci shrinkers on the total spaces of k-th powers of tautological line
bundles over the complex projective space CPn−1 for 0 < k < n. These examples,
which have Euclidean volume growth and quadratic scalar curvature decay, show
that Theorem 1 is sharp.

By a similar argument we prove the following result regarding steady gra-
dient Ricci solitons. See [7], [18], [55], [60], and [76] for some earlier works on the
qualitative aspects of steady Ricci solitons.

Theorem 1.3.3. Let (Mn, g, f, 0) be a complete steady gradient Ricci soliton with
R + |∇f |2 = 1. If limx→∞ f (x) = −∞ and f ≤ 0, then R ≥ 1√

n
2
+2

ef .

Proof. Note that on steady gradient Ricci solitons we have ∆ff = −1, ∆fR =

−2 |Rc|2 ≤ − 2
n
R2, and ∆f (e

f ) = −R ef . For c ∈ R,

∆f

(
R− cef

) ≤ − 2

n
R2 + cR ef ≤ nc2

8
e2f .

Using ∆f (e
2f ) = 2e2f (1− 2R), we compute for b ∈ R that

∆f

(
R− cef − be2f

) ≤
(

nc2

8
− 2b + 4bR

)
e2f . (1.20)

Suppose R − cef − be2f is negative somewhere. Then, since R ≥ 0 by [27] and
limx→∞ ef(x) = 0 by hypothesis, a negative minimum of R− cef − be2f is attained
at some point. By (1.20) and the maximum principle, at such a point we have

0 ≤ nc2

8
− 2b + 4bR <

nc2

8
− 2b + 4b (c + b)

since f ≤ 0. Given c ∈ (0, 1
2
], the minimizing choice b = 1−2c

4
yields (1−2c)2

4
< nc2

8
.

We obtain a contradiction by choosing c = 1√
n
2
+2

.
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Remark 1.3.4. Given a steady Ricci soliton (Mn, g, f, 0) with R+ |∇f |2 = 1 and
O ∈ M, since |∇f | ≤ 1, we have f (x) ≥ f(O) − d (x,O) on M. For the cigar
soliton (R2, 4(dx2+dy2)

1+x2+y2 ) we have R = ef assuming maxx∈R2 f (x) = 0. See [110] and
[76] for an estimate for the potential functions of steady gradient Ricci solitons.

Remark 1.3.5. We notice that Fernández-Lopez and García-Río [51] studied low-
ers bounds on scalar curvatures on certain steady solitons. Their results, without
assuming that the potential function decays uniformly at infinity, works on steadies
with nonnegative curvature.

1.4 Integral upper bounds on the Ricci curvature
along modified geodesics on non-expanding
solitons

Following previous discussions on lower bounds on Ricci solitons, we now
turn to the upper bounds of complete shrinking and steady solitons.

Establishing upper bounds for the curvatures of gradient Ricci solitons is
basic to controlling their geometry and topology. One example of this is that a
better than quadratic in distance upper bound for the scalar curvature of a shrinker
suffices to imply that the shrinker is of finite topological type (see [47] and [19]).
Estimates exist for the scalar curvature (uniform in the case of steady solitons
and quadratic in the case of shrinking solitons) but are not as strong for the more
informative Ricci or Riemann curvatures.

It is very likely that gradient Ricci shrinking solitons necessarily have bounded
Riemmanian curvature tensor. For example, It was proved in [79] that any com-
plete Ricci shrinker with bounded Ricci curvature must have Riemann curvature
with polynomial growth. In general, an optimistic conjecture in [37] states that
any singularity model (i.e. the complete ancient solution which arises as a limit of
blow up of finite singular solutions) must have bounded curvature. A solution to
such a problem, either positive or negative, will greatly improve our understanding
on geometry of gradient Ricci solitons.
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To be more precise, in this section we define an energy functional J asso-
ciated to a smooth function φ on a complete Riemannian manifold. This energy
function is motivated by Li and Yau [71] and similar to Perelman [95]. As an appli-
cation, we deduce integral Ricci curvature upper bounds along modified geodesics
for complete steady and shrinking gradient Ricci solitons. Because of the ubiquity
of such geodesics, this yields significant evidence for desired pointwise estimates
for the Ricci curvatures.

In more detail, the novelty of this paper is to use a standard second variation
argument to obtain a geodesic integral bound for the f -Laplacian of the scalar
curvature. In essence, the Hessian of R is ‘created’, traced, and then converted
to |Rc|2 by the Ricci soliton equation (see (1.21) and (1.22) below). Since locally,
modified geodesics are near Riemannian geodesics, there is hope of strengthening
the estimates in this paper.

1.4.1 The functional J and its first and second variations

Throughout this subsection (Mn, g) is a complete Riemannian manifold and
φ :M→ R be a smooth function with a uniform lower bound. Below, all objects
onM are assumed to be C∞ unless otherwise specified. For a path γ : [0, s̄] →M,
where s̄ > 0, define the functional (see Li and Yau [71])

J (γ) =

∫ s̄

0

(
|γ′ (s)|2 + 2φ (γ (s))

)
ds.

Since φ has a uniform lower bound, for any x, y ∈ M and s̄ > 0, among all paths
joining x to y, there exists a minimizer of J .

When φ = R
2
, where R denotes the scalar curvature, J is almost the steady

version L0 of the L-length, defined by L0(γ) =
∫ τ̄

0

(
|γ′(τ)|2g(τ) + Rg(τ) (γ(τ))

)
dτ ,

where g(τ) is a solution to the backward Ricci flow. Note that Perelman’s original
L-length [95] is commonly viewed as the shrinker version and is most relevant
to finite time singularity formation (see also [49] for the expander version). For a
steady soliton there is a subtle difference between J and L0, due to the fact that J
is for the static form and L0 is for the dynamic form. This difference, whose effect
is not just a diffeomorphism change, is essential for our purposes and manifests
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itself in that for the second variation of J along a minimizer, the main term is
the Hessian of R, whereas for L0 the main term is Hamilton’s matrix Harnack
expression without the Rc

τ
term.

Given a family of paths γu : [0, s̄] → M, u ∈ (−ε, ε), define Γ : [0, s̄] ×
(−ε, ε) → M by Γ (s, u) = γu (s) and define S = Γ∗ (∂/∂s) and U = Γ∗ (∂/∂u).
The well-known first variation formula is

1
2

d
du

∣∣
u=0

J (γu) =

∫ s̄

0

(〈∇SU, S〉+ U (φ)) ds =

∫ s̄

0

〈U,−∇SS +∇φ〉 ds + 〈U, S〉|s̄0 .

Hence the critical points γ of J on paths with fixed endpoints, called φ-geodesics,
are the paths which satisfy ∇SS = ∇φ. Then S |S|2 = 2 〈∇SS, S〉 = 2S (φ) implies
|S|2 − 2φ = C = const on γ.

Let Rm denote the Riemann curvature tensor. The standard second varia-
tion formula is

1
2

d2

du2

∣∣∣
u=0

J (γu) =

∫ s̄

0

(|∇SU |2 − 〈Rm (S, U) U, S〉+∇∇φ (U,U)
)
ds

−
∫ s̄

0

〈∇UU,∇SS −∇φ〉 ds + 〈∇UU, S〉|s̄0 ,

where we used ∇∇φ (U,U) = U (U (φ))− (∇UU) (φ). So when γ0 is a φ-geodesic,

1
2

d2

du2

∣∣∣
u=0

J (γu)− 〈∇UU, S〉|s̄0 =

∫ s̄

0

(|∇SU |2 − 〈Rm (S, U) U, S〉+∇∇φ (U,U)
)
ds.

Now assume ζ : [0, s̄] → R is a piecewise smooth function which vanishes at
the endpoints, let {ei}n

i=1 be a parallel orthonormal frame along γ0, take U = ζei,
and sum over i and each smooth partition of U . Note that ∇UU is continuous
along γ0. If γ = γ0 is φ-minimal, then

0 ≤ 1
2

n∑
i=1

d2

du2
i

∣∣∣
ui=0

J (γui
) =

∫ s̄

0

(
n (ζ ′)2

+ ζ2∆φ− ζ2 Rc (S, S)
)

ds,

where Rc is the Ricci curvature tensor.
Let f : M→ R. By ∇∇f (S, S) = S (S (f))−〈∇SS,∇f〉, and ∇SS = ∇φ,

we have
∫ s̄

0

ζ2 Rc (S, S) ds =

∫ s̄

0

ζ2 Rcf (S, S) ds+2

∫ s̄

0

ζζ ′ 〈∇f, S〉 ds+

∫ s̄

0

ζ2 〈∇φ,∇f〉 ds,
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where Rcf = Rc +∇∇f and we integrated by parts. Let ∆f = ∆−∇f · ∇ be the
f -Laplacian. Then

−
∫ s̄

0

ζ2∆fφds +

∫ s̄

0

ζ2 Rcf (S, S) ds ≤
∫ s̄

0

(
n (ζ ′)2 − 2ζζ ′ 〈∇f, S〉

)
ds. (1.21)

In the following subsection we shall apply (1.21) to study gradient Ricci solitons.

1.4.2 Application to steady gradient Ricci solitons

We prove the geodesic integral estimate for the Ricci curvature of a steady
soliton In this subsection. (See (1.24) below.)

Theorem 1.4.1. Let (Mn, g, f) be a nonflat complete steady Ricci soliton: Rcf =

0, with f normalized in the sense that R + |∇f |2 = 1. If x, y ∈ M are two
points with d(x, y) > 4, then there exists a point z with d(y, z) ≤

√
2

2
d(x, y) such

that |Rc |(z) ≤ C1√
d(x,y)

for some constant C1 only depending on n. In particu-
lar, there exists a sequence of points zi tending to infinity such that |Rc(zi)| ≤
C1(d(x, zi))

−1/2.

Similar estimates hold for ∇R since |∇R| = 2 |Rc (∇f)| ≤ 2 |Rc|.

Proof. It follows from [27] that R > 0. Let c > 0 and 2φ = cR.1 Since −∆fR =

2 |Rc|2, |∇f | ≤ 1, and |S| =
√

C + cR ≤ √
C + c, on a minimal 1

2
cR-geodesic we

have ∫ s̄

0

ζ2 |Rc|2 ds ≤ n

c

∫ s̄

0

(ζ ′)2
ds +

2
√

C + c

c

∫ s̄

0

|ζζ ′| ds. (1.22)

Given x, y ∈ M with s̄ + d (x, y) > 4, let γ : [0, s̄] → M be a minimal
1
2
cR-geodesic from x to y, and let γ̄ : [0, s̄] → M be a minimal geodesic from x

and y. Then

Cs̄ ≤
∫ s̄

0

(
|γ′ (s)|2 + cR(γ(s))

)
ds ≤

∫ s̄

0

(
|γ̄′ (s)|2 + cR(γ̄(s))

)
ds ≤ (1 + c)s̄,

(1.23)
Hence C ≤ 1 + c.

1Note that the integral curves to ∇f are −R
2 -geodesics.
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If ζ (s) = s for s ∈ [0, 1], ζ (s) = 1 for s ∈ [1, s̄− 1], and ζ (s) = s̄ − s for
s ∈ [s̄− 1, s̄], then by (1.22),

∫ s̄

0

ζ (s)2 |Rc|2 (γ (s)) ds ≤ 2n + 2
√

1 + 2c

c
. (1.24)

Note that for any s0 ∈ [s̄/2, s̄]

d(γ(s0), y) ≤
∫ s̄

s0

√
C + cR(γ(s))ds ≤ s̄

2

√
1 + 2c. (1.25)

Pick a c ∈ (0, 1
2
]; then s̄

2

√
1 + 2c ≤

√
2

2
s̄. By (1.24) we have

inf
s∈[s̄/2,s̄−1]

|Rc|2 (γ(s)) ≤ 1
s̄
2
− 1

∫ s̄−1

s̄/2

|Rc|2 (γ (s)) ds <
4(2n + 2

√
1 + 2c)

s̄c
.

This implies that there is a point z with d(z, y) ≤
√

2
2

d(x, y) such that |Rc| (z) <

C1√
d(x,y)

≤ C1(1+
√

2
2

)1/2√
d(x,z)

, where C1 +
(

8n+8
√

1+2c
c

)1/2

.

As a corollary, lim infz→∞ |Rc| (z) = 0. This is a result of Fernández-Lopez
and García-Río [50]. By different methods, Munteanu and Sesum [76] and Wu
[110] obtained lim infz→∞ R(z) = 0.

1.4.3 Application to noncompact shrinking gradient Ricci
solitons

In this subsection we prove for shrinkers a Ricci curvature estimate analo-
gous to that in the previous discussion. (See (1.29) below.)

Theorem 1.4.2. Let (Mn, g, f) be a complete noncompact shrinking gradient Ricci
soliton: Rcf = 1

2
g, with f normalized so that R + |∇f |2 − f = 0. Let O be a point

such that f(O) = minM f ≤ n
2
. Then there exists a constant C2 which only de-

pends on n and f(O) such that for any y ∈ M with d (O, y) > 4, there exists a
point z ∈ M with d (z, y) ≤

√
2

2
d(O, y) such that |Rc | (z) ≤ C2 (d (O, y) + 1).

In particular there exists a sequence of points zi tending to infinity such that
|Rc | (zi) ≤ C2 (d (O, zi) + 1).

Consequently |∇R| (zi) ≤ C2 (d (O, zi) + 1)2 holds since |∇R| = 2 |Rc (∇f)|
and |∇f |(z) ≤ d(O,z)

2
+ f(O)1/2.
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Proof. We only need to consider the case R > 0 (see [99] and [120]). Let c > 0

and 2φ = cR
f
. From ∆fR = −2 |Rc|2 + R, ∆ff = n

2
− f , and ∇R = 2 Rc (∇f), we

compute

∆f
R

f
=

R

f 2
(2f − n

2
)− 2

|Rc|2
f

− 4
Rc(∇f,∇f)

f 2
+ 2

R|∇f |2
f 3

(1.26)

≤ −|Rc |2
f

+ 4
(1 +

√
n)2

f
,

where we have used 2R
f
− |Rc|2

2f
≤ 2n

f
and − |Rc|2

2f
− 4Rc(∇f,∇f)

f2 ≤ 8 |∇f |4
f3 . Hence it

follows from (1.21) that

c

2

∫ s̄

0

ζ2

( |Rc |2
f

− 4
(1 +

√
n)2

f

)
ds +

1

2

∫ s̄

0

ζ2 |S|2 ds (1.27)

≤ 2n−
∫ s̄

0

2ζζ ′ 〈∇f, S〉 ds.

Given y ∈ M with s̄ + d (O, y) > 4, let γ : [0, s̄] → M be a minimal
1
2
cR

f
-geodesic from O to y. Note that R

f
≤ 1. By a similar argument as in (1.23)

we get C ≤ 1 + c.
Let r = d (·, O). Then |∇f | (z) ≤

√
f (z) ≤ √

n
2

+ r (z). We have |S| ≤√
C + c and r (γ (s)) ≤ min{s√C + c, r (y) + (s̄− s)

√
C + c}. Define ζ(s)=s for

s ∈ [0, 1], ζ(s)=1 for s ∈ [1, s̄− 1], and ζ(s)= s̄− s for s ∈ [s̄− 1, s̄]. Then

−
∫ s̄

0

ζζ ′ 〈∇f, S〉 ds ≤
∫ 1

0

s
√

f (γ (s)) |S (s)| ds +

∫ s̄

s̄−1

(s̄− s)
√

f (γ (s)) |S (s)| ds

≤ 1
2

√
C + c

(√
2n + r (y) + 2

√
C + c

)
. (1.28)

Let A =
√

C + c; then A ≤ √
1 + 2c. Since f(γ(s)) ≥ f(O) and s̄ = d (O, y), from

(1.27) and (1.28) we have
∫ s̄

0

ζ2|Rc |2
f

ds ≤ 4(1 +
√

n)2r (y)

f (O)
+

4(
√

n + A)2

c
+

2Ar (y)

c
. (1.29)

Let c ∈ (0, 1
2
). By an argument similar to (1.25) we have d (γ (s0) , y) ≤

√
2

2
r (y) for s0 ∈ [ s̄

2
, s̄]. Thus

( r(y)
2
− 1) min

s∈[ s̄
2
,s̄−1]

|Rc |2 (γ (s))

(√
n
2

+ Ar (y)
)2 ≤

∫ s̄−1

1
2
s̄

|Rc |2 (γ (s))

f (γ (s))
ds ≤ Const (r (y) + 1) ,
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where we have used f(γ(s)) ≤ √
n
2

+ r(γ(s)) ≤ √
n
2

+ As̄. Therefore there
exists C2 < ∞, only depending on n and f(O), such that for any y ∈ M
with r (y) > 4, there exists a point z ∈ M with d (z, y) ≤

√
2r(y)
2

such that
|Rc | (z) ≤ C2 (r (y) + 1) ≤ C2

(
(1−

√
2

2
)−1r(z) + 1

)
.

Finally, we make a remark about infγ J (γ). Define the function ρ (x, y, s̄)+
infγ J (γ), where the infimum is over γ : [0, s̄] →M from x to y. Let γ + γ0 be a
minimal φ-geodesic. Since ∇SS = ∇φ, we have 1

2
d
du

∣∣
u=0

J (γu) = 〈U, S〉|s̄0. Thus
∇ρ (x, y, s̄) = 2S (s̄) = 2γ′ (s̄). By Lemma 3.1 of [71], we have ∂ρ

∂s̄
+ 1

4
|∇ρ|2 = 2φ in

the weak sense. Since ρ is similar to Perelman’s reduced distance, we now derive
a heat-type inequality satisfied by a natural quantity expressed in terms of ρ.

Let {ei}n
i=1 be a parallel orthonormal frame along γ + γ0. Summing U = s

s̄
ei

over i in the second variation formula, we obtain

1
2
∆yρ ≤ n

s̄
+

∫ s̄

0

(
−s2

s̄2
Rc (S, S) +

s2

s̄2
〈∇f,∇φ〉+

s2

s̄2
∆fφ

)
ds.

Since

−
∫ s̄

0

s2

s̄2
Rc (S, S)ds =

∫ s̄

0

s2

s̄2
S (S (f)) ds−

∫ s̄

0

s2

s̄2
〈∇SS,∇f〉 ds

= 〈S,∇f〉(s̄)− 2

s̄
f(y) +

2

s̄2

∫ s̄

0

f(γ (s))ds−
∫ s̄

0

s2

s̄2
〈∇φ,∇f〉ds,

we have

1
2
∆yρ (x, y, s̄) ≤ n

s̄
+

∫ s̄

0

s2

s̄2
∆fφds + 〈S,∇f〉 (s̄) +

2

s̄2

∫ s̄

0

(f (γ (s))− f (y)) ds.

Thus Φ = s̄−
n
2 e−

ρ
4 satisfies in the weak sense (note 〈S,∇f〉 (s̄) = 1

2
〈∇ρ,∇f〉)

(
∂

∂s̄
− (∆y)f +

φ

2

)
Φ ≤ Φ

2

(∫ s̄

0

s2

s̄2
∆fφds +

2

s̄2

∫ s̄

0

(f (γ (s))− f (y)) ds

)
.

1.5 Further discussions

After our work discussed in previous sections, we notice there has been some
important further progress on the study of gradient Ricci solitons. In particular,
Brendle [8] proved that any three-dimensional steady gradient Ricci soliton which
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is non-flat and κ-noncollapsed is isometric to the Bryant soliton up to scaling. This
confirms a claim made by Perelman [95]. In another paper [9] he also proved a
similar result in higher dimensions with additional assumption on the asymptotic
behaviors of soliton metrics along infinity.

It was proved by Munteanu and Wang [78] that any shrinking solitons must
be of at least linear volume growth. The result, sharp on cylinders, could be
viewed a natural generalization of the result of Calabi and Yau on volume growth
of complete manifolds with nonnegative Ricci curvature.

We also note that a complete classification result in dimension 4 and higher
is still open. The result of Naber [80] mentioned in the introduction assumes
bounded and nonnegative curvature operator. For Kähler-Ricci solitons, the first
question is to understand their holomorphic structures. In this direction, Chau-
Tam [21] proved that any complete gradient Kähler-Ricci soliton with nonnegative
Ricci curvature is biholormophic to Cn if it is steady and the scalar curvature
attains the its maximum at some point or if it is expanding, The steady case was
also proved by Bryant [11] independently. In [112] we generalize their result to the
case of nonnegative Ricci curvature.

Theorem 1.5.1 ([112]). Let (Mn, g, f) be a complete noncompact steady gradient
Kähler-Ricci soliton with non-negative Ricci curvature. Assume that its scalar
curvature attains a positive maximum along a compact complex submanifold K
with codimension 1 and the Ricci curvature is positive away from K. Then Mn is
biholomorphic to a holomorphic line bundle over K.

Examples of steady solitons satisfying the assumption in Theorem 1.5.1
include the ones on canonical line bundles over Fano Kähler-Einstein manifolds.
Note that these new examples are not locally conformally flat in general, and
steady ones can have nonnegative Ricci curvature.

In view of Theorem 1.5.1, it is possible to study complex structure of Kähler-
Ricci solitons in complex dimension 2. In particular, let (M2, g, f) denote a com-
plete noncompact Kähler-Ricci soliton and∇f is the associated holomorphic vector
field, and let Zf denote the zero locus of ∇f . It is known ([11]) that Zf is a dis-
joint union of nonsingular complex totally geodesic submanifolds. Can we get the
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information on complex structures on M2 by studying Zf? We plan to study
Kähler-Ricci solitons in complex dimension 2 along this direction in the future.

Main results in Chapter 1, including Theorem 1.2.1, Theorem 1.3.1, The-
orem 1.4.1, and Theorem 1.4.2, are joint work with Ben Chow and Peng Lu.
They were published in Comptes Rendus Mathématique in 2011, Proceedings of
the American Mathematical Society in 2012, and Annals of Global Analysis and
Geometry in 2012.



Chapter 2

Complete noncompact Kähler
manifolds with nonnegative
holomorphic bisectional curvature

One of the central problems in complex geometry is to generalize the clas-
sical uniformization theorem for Riemann surfaces to complex manifolds in higher
dimensions. A natural program is to study Kähler manifolds under suitable curva-
ture assumptions. For example, the Frankel conjecture and the generalized Frankel
conjecture address the structure of compact Kähler manifolds with positive or
nonnegative holomorphic bisectional curvature. In the noncompact case a similar
question asks if any complete noncompact Kähler manifolds with positive bisec-
tional curvature is biholomorphic to complex Euclidean space. In the negative
curvature case it is believed that the universal cover of any compact Kähler man-
ifold with negative sectional curvature is biholomorphic to a bounded domain in
Euclidean space. Those problems provided much of the driving force for the devel-
opment of complex differential geometry and several complex variables and have
been subjects of intensive research in the past years.

Uniformization problems are closely related to the function theory on com-
plete Kähler manifolds with curvature assumptions. In the nonnegative bisectional
curvature case, although a sharp dimension estimate on spaces of holomorphic
functions with polynomial growth was proved, the finite generation of the ring

19
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of such holomorphic functions is unknown. Hopefully a better understanding of
generators of this ring could give the manifold a nice embedding which has further
geometric consequences. In the negative curvature case, there is an long-standing
open problem which asks if there exist nontrivial bounded holomorphic functions
on complete Kähler manifolds with sectional curvature bounded by two negative
constants.

In Chapter 2, we focus on analytic and geometric properties of complete
noncompact Kähler manifolds with nonnegative curvature. In particular, we con-
struct new examples of U(n)-invariant Kähler metrics with nonnegative and un-
bounded curvature and give their applications to a problem of Yau. We also study
the interplay of function theory and metric geometry on general Kähler manifolds
with nonnegative bisectional curvature.

In more detail, we review previous results on examples and general theory
on complete noncompact Kähler manifolds with nonnegative curvature in Section
2.1. In Section 2.3 we construct new examples of complete Kähler metrics with
nonnegative and unbounded curvature and study various levels of positivity on the
curvature for those metrics. Applications include a counterexample to a problem
of Yau in Section 2.2 and a rigidity result on rotationally symmetric Kähler metrics
with positive complex sectional curvature in Subsection 2.3.2. Section 2.4 and Sub-
section 2.4.5 are devoted to proving several results on U(n)-invariant Kähler-Ricci
flow with nonnegative and unbounded curvature. At the end of Chapter 2 we study
the interaction of function theory and geometry on complete Kähler manifolds with
nonnegative bisectional curvature. We are able to derive some information on the
volume growth and curvature decay from the growth of holomorphic functions and
canonical sections on such manifolds.

2.1 Background and the work of Wu and Zheng

The central question from uniformization on complete noncompact Käh-
ler manifolds with nonnegative curvature is the uniformization conjecture whose
most general form is due to Yau [116]. The conjecture states that any complete
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noncompact Kähler manifold with positive holomorphic bisectional curvature is bi-
holomorphic to complex Euclidean space. Some related questions were also asked
by Greene and Wu [53] and Siu [105]. For example, on noncompact Kähler mani-
folds with positive holomorphic bisectional curvature Siu and Yau (See p508 [105].)
proved that there are holomorphic functions and holomorphic vector fields with
any prescribed values to any finite order at any finite number of points. However, it
is not known if such manifolds are necessarily Stein. Note that the uniformization
conjecture asks the uniqueness of complex structure of Cn under the assumption
of positive curvature, it is naturally desirable to understand the metric geometry
of Kähler manifold with nonnegative curvature.

The first result on the conjecture was by Mok, Siu and Yau [74]. On a com-
plete noncompact Kahler manifold has Euclidean volume growth and nonnegative
sectional curvature with pointwise faster than quadratic decay, they solved the
Poincaré-Lelong equation

√−1∂∂̄u = Ric and used it to prove that such a man-
ifold is holomorphically isometric to Cn. Later Mok [72] considered noncompact
Kahler manifolds with positive bisectional curvature, Euclidean volume growth,
and pointwise quadratic scalar curvature decay. Using the L2-method of Andreotti
and Vesentini [1], and Hörmander [62] and techniques in algebraic geometry, Mok
proved that, that such a manifold is biholomorphic to an affine algebraic variety in
CN for some large N . If if the complex dimension is two, he proved that the man-
ifold is biholomorphic to C2 we in addition assume that it is of positive sectional
curvature.

Later the Poincaré-Lelong equation was solved in much weaker assumptions
and applied to study the structure of Kähler manifold with nonnegative curvature,
see for example Ni and Tam [88] and [90]. More recently, Ni [86] proved any com-
plete noncompact Kahler manifold with nonnegative bisectional curvature whose
scalar has faster than quadratic decay in the average sense (No global curvature
upper bounds assumed!) must be flat.

Another powerful tool to study the uniformization problem is Kähler-Ricci
flow on complete noncompact manifolds. Shi [101] studied Ricci flow on complete
noncompact Riemannian manifolds with bounded curvature and established the
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short time existence. Shi ([102], [103]) first used Kähler-Ricci flow to study the
uniformization problem. A quick remark is that there are extra difficulties to study
Ricci flow on complete noncompact manifolds, and his methods is different from
these for Kähler-Ricci flow on compact Kähler manifolds. The best results on
uniformization conjecture obtained so far is due to Chau-Tam [23]. Their result
states that any complete noncompact Kähler manifold with bounded nonnegative
bisectional curvature and Euclidean volume growth is biholomorphic to Cn.

Besides the above mentioned, some other notable results include the result
of Chen and Zhu [32] on volume growth and curvature decay of Kähler manifold
with nonnegative bisectional curvature. Ni and Tam [88] introduced the heat defor-
mation of plurisubharmonic functions to prove new structure theorems for Kähler
manifold with nonnegative bisectional curvature. A sharp dimension estimate on
spaces of holomorphic functions with polynomial growth was established in Ni [81].
Notably, their results imply that complete Kähler metrics with nonnegative bisec-
tional curvature can not exist on the total space of any holomorphic vector bundle
E over CPn or any other compact Hermitian symmetric space, except when E is
the trivial bundle.

We refer to [53], [74], [72], [102], [103], [29], [31], [23], [24], [25] and references
therein for detailed progress on the uniformization conjecture.

Perhaps one of the major reasons that made the problem so resilient is the
lack of examples. Before the work of Wu and Zheng [108], there are only three
types of examples of complete Kähler metrics with positive bisectional curvature
(See [65], [13], [14].) and they are all constructed on Cn with U(n)-symmetry.
Recently Wu and Zheng [108] gave a complete characterization of complete U(n)

invariant Kähler metrics on Cn with positive bisectional curvature and was first
able to demonstrate the abundance of such metrics.

Now let us discuss main results in [108]: Follow the notations in [108]. Let
z = (z1, · · · , zn) be the standard coordinate on Cn and r = |z|2. A U(n)-invariant
Kähler metric on Cn has the Kähler form

ω =

√−1

2
∂∂P(r) (2.1)

where P(r) ∈ C∞[0, +∞). Under the local coordinates, the metric has compo-
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nents:
gij = f(r)δij + f ′(r)zizj. (2.2)

We further denote:
f(r) = P ′(r), h(r) = (rf)′. (2.3)

It can be checked that the from ω will give a complete Kähler metric on Cn if and
only if

f > 0, h > 0,

∫ +∞

0

√
h√
r
dr = +∞. (2.4)

Now if we compute the components of the curvature tensor at (z1, 0, · · · , 0)

under the orthonormal frame {e1 = 1√
h
∂z1 , e2 = 1√

f
∂z2 , · · · , en = 1√

f
∂zn}, then

denote A,B,C respectively:

A = R1111 = −1

h
(
rh′

h
)′, B = R11ii =

f ′

f 2
− h′

hf
, C = Riiii = 2Riijj = −2f ′

f 2
, (2.5)

where we assume 2 ≤ i 6= j ≤ n, It is easy to check all other components of
curvature tensor are zero.

Let Mn denote the space of all U(n) invariant complete Kähler metrics on
Cn with positive bisectional curvature.

Theorem 2.1.1 (Characterization of Mn by the ABC function). Suppose
n ≥ 2 and h is a smooth positive function on [0, +∞) satisfying (2.4), then(2.1)
gives a complete Kähler metric with positive (nonnegative) bisectional curvature if
and only if A,B,C are positive (nonnegative). Moreover, it is of positive sectional
curvature iff D

.
= AC − B2 > 0, and is of positive complex curvature operator iff

Dn
.
= n

2(n−1)
AC −B2 > 0.

If we define a smooth function ξ on [0, +∞) by

ξ(r) = −rh′(r)
h

, (2.6)

then h determines ξ uniquely. On the other hand, note that ξ determines h by
h(r) = h(0)e

∫ r
0

ξ(t)
t

dt, hence ω up to scaling. The following interesting theorem in
[108] reveals that the space Mn is in fact quite large.
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Theorem 2.1.2 (Characterization of Mn by the ξ function). Suppose n ≥ 2

and h is a smooth positive function on [0, +∞), then the form defined by (2.1) gives
a complete Kähler metric with positive bisectional curvature on Cn if and only if ξ

defined by (2.6) satisfying

ξ(0) = 0, ξ′ > 0, ξ < 1. (2.7)

Fix a metric ω inMn, the geodesic distance between the origin and a point
z ∈ Cn is:

s =

∫ r

0

√
h

2
√

r
dr. (2.8)

where r = |z|2. We denote B(s) the ball in Cn centered at the origin and with the
radius s with respect to ω. It is further shown in [108] that:

Vol(B(s)) = cn(rf)n. (2.9)

where cn is the Euclidean volume of the Euclidean unit ball in Cn.
Using Theorem 2.2 Wu and Zheng further proved the following estimates

on volume growth of geodesics ball B(s) and the first Chern number for Kähler
metrics in Mn. Note that an estimate on volume growth of geodesics ball in the
general case has been proved by Chen and Zhu [32].

Proposition 2.1.3 (Volume growth estimates for metrics in Mn). rf =

f(1) + 2
√

h(1)(s − s(1)) for r > 1 and rf ≤ s2 for any r ≥ 0. So there exists a
constant C such that:

Csn ≤ Vol(B(s)) ≤ cns
2n. (2.10)

for s large enough.

Proposition 2.1.4 (Bounding the first Chern number for metrics inMn).
Given any ω in Mn with n ≥ 1, we have

∫

Cn

(Ric)n = cn(
nξ(+∞)

π
)n ≤ cn(

n

π
)n. (2.11)

while V ol(B(s)) = cnv
n.
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Wu and Zheng [108] further introduced another function F in the following
way: First we define x =

√
rh and a nonnegative function y of r by

y(0) = 0, x′2 + y′2 =
h

4r
, y′ > 0. (2.12)

One can check that x(r) is strictly increasing and then we may define F (x) a
function on [0, x0) by y = F (x), where

x2
0 = lim

r→+∞
rh = h(1)e

∫ +∞
1

1−ξ
r

dr. (2.13)

Extending F to (−x0, x0) by letting F (x) = F (−x), one can check that F is a
smooth, even function on |x| < x0. Starting with such a F satisfying certain
conditions, one can recover the metric ω in a geometric way. See Section 5 in [108]
for details. This result is summarized as the following theorem.

Theorem 2.1.5 (Characterization ofMn by the F function). Suppose n ≥ 1,
there is a one to one correspondence of between the set Mn and the set of F of
smooth, even function F (x) defined on (−x0, x0) satisfying

F (0) = 0, F ′′ > 0, lim
x→x0

F (x) = +∞. (2.14)

Denote v = rf , one can rewrite s and Vol(B(s)) in terms of F :

s =

∫ x

0

√
1 + (F ′(τ))2dτ, v +

∫ x

0

2τ
√

1 + (F ′(τ))2dτ.

Vol(B(s)) = cnv
n = cn(

∫ x

0

2τ
√

1 + (F ′(τ))2dτ)n. (2.15)

Rewrite A, B, and C defined in (2.5) in terms of F:

A =
F ′F ′′

2x(1 + F ′2)2
, B =

x2

v2
− 1

v
√

1 + F ′2
, C =

2

v
− 2x2

v2
. (2.16)

Recall the scalar curvature at the point z = (z1, 0, · · · , 0) is given by

R = A + 2(n− 1)B +
1

2
n(n− 1)C. (2.17)

Using (2.17), (2.16), (2.15), and a careful integration by parts, Wu and
Zheng [108] proved the following relation between average scalar curvature decay
and volume growth of geodesic balls. See also Chen and Zhu [32] for a related
result on any complete Kähler manifold with positive bisectional curvature.
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Proposition 2.1.6 (Estimates on average scalar curvature for metrics in
Mn). Given any complete Kähler metric ω in Mn with n ≥ 2, there exists a
constant C1 > 0 such that

1

C1(1 + v)
≤ 1

Vol(B(s))

∫

B(s)

R(s)wn ≤ C1

1 + v
. (2.18)

while Vol(B(s)) = cnv
n.

2.2 Applications to a problem of Yau

Shing-Tung Yau asked the following question in [115] (See p278, Problem
9 from Section I “Metric geometry”):

Question 2.2.1. Given an n-dimensional complete manifold with nonnegative
Ricci curvature. Let B(r) be the geodesic ball around some point p and σk be
the k-th elementary symmetric function of the Ricci tensor, then is it true that
r−n+2k

∫
B(r)

σk has an upper bound when r tends to infinity? This should be con-
sidered as a generalization of the Cohn-Vossen inequality.

On Kähler manifolds one can have a similar question.

Question 2.2.2. On a complete Kähler manifold with complex dimension n and
nonnegative Ricci curvature, if we denote ω and Ric the Kähler form and the Ricci
form respectively, one would like to ask if r−2n+2k

∫
B(r)

Rick ∧ ωn−k is bounded for
any 1 ≤ k ≤ n when r goes to infinity.

As an application of the work of Wu and Zheng [108] discussed in Section
2.1, we exhibit counterexamples to Question 2.2.1 when 2 ≤ k ≤ n (Now the real
dimension is 2n, Question 1.1 is meaningful when 1 ≤ k ≤ n). More precisely, We
will show that for any complex dimension n ≥ 2,

∫
B(r)

σn always blows up when
r goes to infinity for all nonflat metrics in Mn; for any 2 ≤ k < n, we can find a
metric in Mn such that r−2n+2k

∫
B(r)

σk is unbounded when r large (See Theorem
2.2.6). The essential reason is that for a carefully constructed metric from Mn,
terms containing the square of radial curvature from the expression of σk (k > 1)
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make r−n+2k
∫

B(r)
σk unbounded when r large. Note that each eigenvalue of real

Ricci curvature of a Kähler manifold is of multiplicity 2. Since our methods rely
on this special property of σk in the case of k > 1, Question 2.2.1 is still open
in k = 1. It is interesting to note that the recent work of Petrunin [98] implies
that Question 2.2.1 is affirmative for k = 1 under the stronger assumption of
nonnegative sectional curvature.

We also show that Question 2.2.2 is affirmative for any complete U(n) in-
variant Kähler metrics on Cn with nonnegative bisectional curvature (See Theorem
2.2.8). In fact, Question 2.2.2 is closely related to the uniformization of general
Kähler manifolds with nonnegative curvature, see [32] for example.

Section 2.2 is divided into two parts. First we follow [108] to prove parallel
results to characterize U(n)-invariant Kähler metrics with nonnegative bisectional
curvature. In the latter part we use these results to construct counterexamples to
Question 2.2.1 when 2 ≤ k ≤ n.

2.2.1 U(n)-invariant Kähler metrics with nonnegative bi-
sectional curvature

Let Mn denote the space of all U(n) invariant complete Kähler metrics
on Cn with nonnegative bisectional curvature. First we state a generalization of
Theorem 2.1.2 to the space Mn.

Proposition 2.2.3 (Characterization of Mn by the ξ function). Suppose
n ≥ 2 and h is a smooth positive function on [0, +∞), then the form defined by
(2.1) gives a complete Kähler metric with nonnegative bisectional curvature if and
only if ξ defined by (2.6) satisfying

ξ(0) = 0, ξ′ ≥ 0, ξ ≤ 1. (2.19)

Proof of Proposition 2.2.3. In view of Theorem 2.1.1, the point is to show that the
ξ satisfying the assumption in Proposition 2.2.3 is equivalent to the nonnegativity
of A, B, and C. the original proof of Theorem 2.2 due to Wu and Zheng [108]
works here. In fact, the proof shows that the completeness of the metric and
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the nonnegativity of A must imply the nonnegativity of B and C. This could
be considered as a strong rigidity property of nonnegatively curved metrics with
U(n)-symmetry. Now we only sketch the necessary part. First from (2.6) we know
ξ(0) = 0. Note that (2.6) and Theorem 2.1 imply

A =
ξ′

h
≥ 0 (2.20)

which leads to ξ′ ≥ 0.
To prove ξ ≤ 1, argument by contradiction as in [108]. Assume limr→+∞ =

b > 1, then take δ0 > 0 such that 1 + δ0 < b. It follows that there exists r0 > 0

with ξ(r0) ≥ 1 + δ0. Thus integrating (2.6) leads to h(r) = h(0) exp
∫ r

0
ξ
r
dr ≤ c

r1+δ0

which contradicts to the completeness of the metric (2.4).

It also follows from the original proof of Proposition 2.3 and 2.4 due to
Wu and Zheng that the same conclusion holds for the space Mn. Namely, for
any metric ω in Mn, Csn ≤ Vol(B(s)) ≤ cns

2n holds for s sufficiently large. and∫
Cn(Ric)n ≤ cn(n

π
)n is true. We remark here that the estimate on lower bounds

of the volume growth of B(s) here can not be true for an arbitrary complete non-
compact Kähler manifolds with nonnegative bisectional curvature. For example,
take Σ1 × CP1 × · · · × CP1 where Σ1 is a capped cylinder on one end and CP1 is
the complex projective plane with the standard metric.

Next we state another generalization of Theorem 2.5 to Mn.

Theorem 2.2.4 (Characterization ofMn by the F function). Suppose n ≥ 1,
there is a partition of the set Mn \ {ge} = S1 ∪ S2 ∪ S3 where ge is the standard
Euclidean metric on Cn such that:

(1) S1 corresponds to the set of F of smooth, even function F (x) defined
on (−∞, +∞) defined above satisfying

F (0) = F ′(0) = 0, F ′′ ≥ 0, F ′(∞) < +∞, F (∞) = +∞. (2.21)

S1 consists of nonflat Kähler metrics in Mn whose geodesic balls have Euclidean
volume growth.
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(2) S2 corresponds to the set of F of smooth, even function F (x) on (−x0, x0)

(where x0 is either finite or +∞) satisfying

F (0) = F ′(0) = 0, F ′′ ≥ 0, F ′(x0) = F (x0) = +∞. (2.22)

S2 includes Kähler metrics in Mn whose geodesic balls have strictly less than Eu-
clidean volume growth and bisectional curvatures in the radial direction strictly
positive along a sequence of points in Cn tending to infinity.

(3) For any metric ω ∈ S3, there exists a positive real number r0 such that
r0 = inf{r : ξ(r) = 1} and a corresponding positive real number x0 such that there
exists a smooth even function F (x) defined on (−x0, x0) such that

F (0) = F ′(0) = 0, F ′′ ≥ 0, F ′(x0) = +∞, F (x0) < ∞, (2.23)

S3 is the set of metrics with geodesic balls having half Euclidean volume growth
and whose bisectional curvatures in the radial direction vanish outside a compact
set. A standard example in complex dimension 1 is a capped cylinder on one end.

Proof of Theorem 2.2.4. The proof of Theorem 2.2.4 is based on a modification of
the proof of Theorem 2.5 in [108]. From Proposition 2.2.3, we know for any Kähler
metric in Mn, there exists a corresponding ξ(r) on [0, +∞) with ξ(0) = 0, ξ′ ≥ 0,
and ξ ≤ 1. Denote r0 = inf {r : ξ(r) = 1}.

Recall the definition of x and y in (2.12), x =
√

rh and x′(r)2 + y′(r)2 = h
4r

with y(0) = 0 and y′ ≥ 0. It is easy to check:

dx

dr
= (1− ξ)

√
h

4r
, (2.24)

then we know x(r) and y(r) are both nondecreasing with respect to r.
(Case I) r0 = +∞. From (2.24) we know x(r) is strictly increasing on

[0, +∞), then we can define F (x) by y = F (x) on x ∈ (−x0, x0) after an even
extension by letting F (−x) = F (x). It follows that

F (0) = 0, F ′(x) ≥ 0, 1 + [F ′(x)]2 =
1

(1− ξ)2
. (2.25)

Note that 0 ≤ ξ(r) < 1 is nondecreasing on (−∞, +∞), we conclude that F ′′ ≥ 0.
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Moreover, (2.24) and (2.25) implies:

lim
x→x0

F (x) =

∫ x0

0

√
1

(1− ξ)2
− 1dx (2.26)

=

∫ +∞

0

√
1− (1− ξ)2

√
h

4r
dr

≥
√

1− (1− ξ(a))2

∫ +∞

a

√
h

4r
dr.

for any a > 0. Note that the integral in the last step of (2.26) is distance function
(2.8). we conclude F (x0) = ∞ if and only if ξ(+∞) > 0. Note that the latter
condition is satisfied when ω is nonflat.

We further divide our discussion into two subcases:
(Subcase Ia) 0 < ξ(+∞) < 1. In this case we have F ′ is bounded on

(−x0, x0) and x0 = +∞. Moreover, we will show that the geodesic balls of (Cn, ω)

has Euclidean volume growth. We follow the method of Wu and Zheng (See P528
of [108]). Note that (2.8),(2.9), (rf)′(r) = h and (rh)′(r) = h(1 − ξ), it follows
from the L’Hospital’s rule that:

lim
s→+∞

Vol(B(s))

s2n
= lim

r→+∞
cn(rf)n

s2n
(2.27)

= lim
r→+∞

cn(

√
rf

s
)2n

= cn(1− ξ(+∞))n

(Subcase Ib) ξ(+∞) = 1, It follows from (2.27) that in this case the
geodesic balls of (Cn, ω) has strictly less than Euclidean volume growth. Since
A = ξ′

h
, ξ(0) = 0, and ξ(+∞) = 1 we also know that bisectional curvatures in the

radial direction strictly positive along at least a sequence of points in Cn tending
to infinity.

(Case II) r0 > 0 is finite. Note that (rh)′ = h(1 − ξ), we conclude that
x0 = limr→+∞

√
rh is finite and x2

0 = r0h(r0). This implies that F (x) is well
defined on (−x0, x0) with F (x0) < +∞. Since A = ξ′

h
we conclude that bisectional

curvatures in the radial direction vanishes outside a compact set in Cn. Next
we proceed to show that the geodesic balls of (Cn, ω) has half Euclidean volume
growth. Again the methods follows from [108] (See p528 of [108]).
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lim
s→+∞

Vol(B(s))

sn
= lim

r→+∞
cn(

rf

s
)n (2.28)

= lim
r→+∞

cn(2
√

rh)n

= 2ncnx
n
0 .

Denote S1, S2, and S3 the sets of metrics in the above three cases (Subcase
Ia), (Subcase Ib), and (Case II) respectively, we have proved Theorem 2.2.4.

Next we gives some more explicit description of S3. Given any metric ω in
S3, d(rh)

dr
= (1− ξ)h, h = (rf)′ and ξ(r) = 1 when r > r0, then:

rf |rr0
=

∫ r

r0

r0h(r0)

r
dr, (2.29)

which further implies:
rf = x2

0 ln
r

r0

+ r0f(r0). (2.30)

Now we compute A, B, C with (2.5) in Section 2 when r ≥ r0:

A = −1

h
(
rh′

h
)′ =

ξ′

h
= 0, (2.31)

B =
f ′

f 2
− h′

hf
=

1

r
(
(rf)′ − f

f 2
− rh′

hf
) (2.32)

=
1

r
(

h

f 2
− 1− ξ

f
) =

h

rf 2
=

x2
0

r2f 2
.

C = −2f ′

f 2
= 2

rf − rh

(rf)2
= 2

x2
0(ln

r
r0
− 1) + r0f(r0)

[x2
0 ln r

r0
+ r0f(r0)]2

(2.33)

We also see the distance function for metrics in S3:

s(r) =

∫ r0

0

√
h

4r
dr +

x0

2
ln

r

r0

. (2.34)

Now one can estimate the average of A, B, and C in B(s) from (2.17),
(2.31), (2.32), (2.33), (2.9), and (2.34). Namely, if n ≥ 2, for any metric in S3

there exists a constant C1 such that
1

C1 rf
≤ 1

Vol(B(s))

∫

B(s)

R ωn ≤ C1

rf
, (2.35)
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where Vol(B(s)) = cn(rf)n and f is defined in (2.3).
If ω is a nonflat Kähler metric in S1 ∪ S2, we see from Theorem 2.2.4 that

F must have F ′(x0) > 0. Then the formula of A, B, and C in terms of F is
exactly the same as (2.16) derived in [108] (See p536 in [108]). Follow the proof
of Proposition 2.6 in [108], we get the same conclusion. We summarize the above
discussion as the following result.

Proposition 2.2.5. When n ≥ 2, given any non flat metric in Mn, there exists
a constant C1 > 0 such that

1

C1(1 + rf)
≤ 1

Vol(B(s))

∫

B(s)

R wn ≤ C1

1 + rf
. (2.36)

where Vol(B(s)) = cn(rf)n.

2.2.2 Counterexamples to Question 2.2.1

Now we state the result regarding Question 2.2.1.

Theorem 2.2.6. Given any n ≥ 2, any nonflat Kähler metric inMn has
∫

B(s)
σnω

n

unbounded when s goes to infinity. Moreover, if 2 ≤ k < n one can construct a
complete Kähler metric ω from S1 ⊂Mn with bounded curvature on Cn such that

1
s2n−2k

∫
B(s)

σk ωn is unbounded when s tends to infinity.

Proof of Theorem 2.2.6. It follows from (2.5) that for any metric in Mn we have
Ricci curvature at z given by:

λ = R11 = A + (n− 1)B, µ = Rii = B +
n

2
C 2 ≤ i ≤ n. (2.37)

Note that we are now working on the Kähler manifolds Cn and the Ricci tensor
is J-invariant where J is the standard complex structure on Cn. Therefore the
Ricci tensor in the real case has eigenvalue λ of multiplicity 2 and µ of multiplicity
2n−2. Let σk denote the k-th elementary symmetric function of the Ricci curvature
tensor.

First note that Question 1.1 are true for any metric ω ∈ Mn when k = 1.
Since σ1 = 2R where R is the scalar curvature in the Kähler case, it follows from
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Proposition 2.2.5 and the upper bound of the volume growth of B(s) after Propo-
sition 2.2.3 that 1

s2n−2

∫
B(s)

R ωn is bounded when r tending to infinity. Therefore,
we focus on Question 1.1 in the case of 2 ≤ k ≤ n, Note that in this case σk of the
Ricci tensor is a linear combination of λ2µk−2, λµk−1, and µk. To sum up, σk is a
linear combination of three types of quantities:

(Type I) A2BiCj, AB1+iCj, and B2+iCj when i ≥ 0, j ≥ 0, and i+j = k−2.

(Type II) ABiCj and B1+iCj when i ≥ 0, j ≥ 0, and i + j = k − 1.

(Type III) BiCj when i ≥ 0, j ≥ 0, and i + j = k.

We divide the proof of Theorem 2.2.6 into two cases.
(Case I) If k = n, we only need to look at the term Cn contained in σn.

Recall that if for any fixed complete Kähler metric ω in S1 ∪ S2, we may assume
that there exists 0 < M1 < x0 such that F ′(x) ≥ C0 where C0 = F ′(M1) > 0 when
x ≥ M1. we have the expression of C from (2.16):

C =
2v − 2x2

v2
(2.38)

=

∫ x

0
2τ(

√
1 + F ′(τ)2 − 1)dτ

v2

≥
∫ x

M1
2τ( F ′(τ)2√

1+F ′(τ)2+1
)dτ

v(
∫ x

M1
2τ

√
1 + F ′(τ)2dτ +

∫ M1

0
2τ

√
1 + F ′(τ)2dτ)

.

Note that we have 1 ≤ F ′(x)
C0

when x ≥ M1.

C ≥
C0

1+
√

C2
0+1

I(x)

v(
√

1
C2

0
+ 1I(x) + M2

1

√
1 + C2

0)
≥ C1

v
, (2.39)

where

C1 =

C0

1+
√

C2
0+1

I(x)
√

1
C2

0
+ 1I(x) + M2

1

√
1 + C2

0

, I(x) =

∫ x

M1

2τF ′(τ)dτ. (2.40)

Since I(x) goes to ∞ and C1 is bounded when x tends to x0, we conclude that
there exists a C2 and M2 such that when x > M2,

C ≥ C2

v
. (2.41)
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We remark that (2.41) is used in the proof of Proposition 2.3 in [108].
There exists a constant C3 only depending on n such that:

∫

B(s)

σnω
n ≥ C3

∫

B(s)

Cnωn (2.42)

= C3cn

∫ x

0

Cndvn

≥ C3cn

∫ v(x)

v(M2)

(
C2

v
)ndvn

= nC3cnC
n
2 ln

v(x)

v(M2)

It follows that (2.42) is unbounded when x tends to x0 since v(x0) = +∞.
To sum up, we show that for any non flat Kähler metric ω in S1 ∪ S2,∫

Cn σnω
n is∞. If ω ∈ S3, it follows from (2.30) and (2.33) that lims→+∞

∫
B(s)

σnω
n

is unbounded when s goes to infinity. Therefore, Question 1.1 is false when k = n

for any non flat Kähler metric ω in Mn.

(Case II) If 2 ≤ k < n, for any fixed nonflat Kähler metric ω in S1, we may
assume that there exist C4 and M3 such that F ′(x) ≤ C4 for all x ∈ (−x0, x0) and
F ′(x) ≥ 1

C4
when x ≥ M3. Then it follows from a similar argument as in (2.41),

we may further assume that there exist C5 and M3 such that for any x ≥ M3

C ≥ C5

v
. (2.43)

Since A = F ′F ′′
2x(1+F ′2)2

, we conclude that A and F ′′(x)
x

are equivalent. If we can
construct a Kähler metric ω in S1 such that

1

s2n−2k

∫

B(s)

(
F ′′(x)

x
)2(

C5

v
)k−2ωn (2.44)

is unbounded when s tends to ∞, then so is 1
s2n−2k

∫
B(s)

A2Ck−2ωn. Therefore
1

s2n−2k

∫
B(s)

σkω
n will be unbounded when s tends to ∞.

Let us rewrite (2.44):
∫

B(s)

(
F ′′(x)

x
)2(

C5

v
)k−2ωn (2.45)

= cnC
k−2
5

∫ x

0

(
F ′′(τ)

τ
)2(

1

v
)k−2dvn

= 2ncnC
k−2
5

∫ x

0

1

τ
(F ′′(τ))2vn−k+1

√
1 + (F ′(τ))2dτ.
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Since s =
∫ x

0

√
1 + (F ′(τ))2dτ , v =

∫ x

0
2τ

√
1 + (F ′(τ))2dτ and F ′(x) ≤ C4

we know s and x are equivalent, v and x2 are equivalent. In order to estimate
(2.45), it suffices to estimate the following.

∫ x

0

(F ′′)2τ 2(n−k)+1 dτ. (2.46)

To sum up, if there exists a function δ(x) ∈ C∞[0, +∞), such that

lim
x→x0

1

x2n−2k

∫ x

0

δ2(τ) τ 2(n−k)+1 dτ = +∞,

∫ +∞

0

δ(x) dx < +∞. (2.47)

Then we can solve F (x) with F ′′(x) = δ(x) with the initial value F (0) = F ′(0) = 0,
it will follow from Theorem 2.2.4 that we can construct a complete Kähler metric
ω in S1 such that

1

s2n−2k

∫

B(s)

σk ωn (2.48)

is unbounded when s tends to infinity. Hence both Question 1.1 and 1.2 can not
be true when 2 ≤ k < n.

In fact such a δ(x) is not hard to construct. Consider δ̄(x) defined by the
following with q an integer to be determined.

δ̄(x) =





2 x ∈ [2, 2 + (1
2
)q]

... ...

l x ∈ [l, l + (1
l
)q]

... ...

0 x ∈ [0, +∞) \ (∪l≥2[l, l + (1
l
)q])

(2.49)

Now set q = 5
2
, it is easy to verify that δ̄(x) satisfies (2.47). Choose δ(x)

as a suitable smoothing of δ̄(x) on [0, +∞) which also satisfies (2.47), we will get
the counterexample. It is straightforward to see that the result metric ω ∈ S1 has
bounded curvature on Cn.

It follows from Theorem 2.2.4 and Proposition 2.2.5 that for any complete
Kähler metric (Cn, ω) with ω ∈Mn with Euclidean volume growth has quadratic
average scalar curvature decay. Note that the same result for any complete Kähler
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manifolds with bounded nonnegative bisectional curvature and Euclidean volume
growth has been proved by Ni [83] and [85]. We refer readers to the introduction
of Ni [85] and Chau and Tam [23] for the important role of this result in the
study of the function theory and the uniformization conjecture on complete Kähler
manifolds with positive bisectional curvature. Now we construct another example
which implies that in general only assuming Euclidean volume growth one can not
expect the same rate of decay for Lp norm of curvature for any p > 1.

Proposition 2.2.7. For any n ≥ 2 and any p > 1, there exists a metric ω ∈Mn

such that the geodesic balls in (Cn, ω) has Euclidean volume growth. Moreover,

s2

Vol(B(s))

∫

B(s)

[
Rm(

∂

∂s
, J

∂

∂s
, J

∂

∂s
,

∂

∂s
)
]p

ωn (2.50)

is unbounded as s goes to infinity. Here we denote ∂
∂s

to the unit radial direction
on Cn.

Proof of Proposition 2.2.7. For a given metric ω in S1, as a similar argument in
(Case II) of the proof of Theorem 2.2.6, it suffices to show that we can find a
smooth function η(x) on [0, +∞) such that

lim
x→+∞

1

x2n−2

∫ x

0

ηp(τ) τ 2n−1−p dτ = +∞,

∫ +∞

0

η(x) dx < +∞. (2.51)

Consider η̄(x) defined by the following where α and β are two integers to
be determined.

η̄(x) =





2α x ∈ [2, 2 + (1
2
)β]

... ...

lα x ∈ [l, l + (1
l
)β]

... ...

0 x ∈ [0, +∞) \ (∪l≥2[l, l + (1
l
)q])

(2.52)

Pick any α > 1 and 1+α < β < p(α− 1)+2, then η̄ defined above satisfies
(2.51). It is not hard to find η(x) from a suitable smoothing of η̄(x) which will
result in the desired metric ω. Note that (Cn, ω) we constructed has unbounded
curvature on Cn.
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We proceed to show that Question 2.2.2 is true for Mn.

Theorem 2.2.8. For any metric ω ∈ Mn, then s−2n+2k
∫

B(s)
Rick ∧ ωn−k is

bounded when s goes to infinity.

Proof of Proposition 2.2.8. First we remark that it directly follows from analogues
of Proposition 2.3, 2.4 and 2.6 in [108] for the space Mn (See Proposition 2.2.5
and the paragraph after Proposition 2.2.3) that Question 1.3 is true for k = 1

and k = n. It suffices to show that s−2n+2k
∫

B(s)
Rick ∧ ωn−k is bounded for any

2 ≤ k < n.
Note that for 2 ≤ k < n, Rick ∧ ωn−k is a linear combination of λµk−1

and µk. It turns out that we only needs to show that 1
s2n−2k

∫
B(s)

P (A,B,C)ωn is
bounded when s goes to infinity. Here P is a monomial of the following two types:

(Type I) ABiCj, and B1+iCj when i ≥ 0, j ≥ 0, and i + j = k − 1.

(Type II) BpCq when p ≥ 0, q ≥ 0, and p + q = k.

First we consider any Kähler metric ω in S1 ∪ S2. Note that (2.16) implies
that

B ≤ x2

v2
≤ 1

v
, C ≤ 2

v
. (2.53)

Then we have the following when p + q = k,

1

s2n−2k

∫

B(s)

BpCqωn (2.54)

≤ 2qcn
1

s2n−2k

∫ v(x)

0

1

vk
nvn−1dv

≤ 2qncn(
∫ x

0
2τ

√
1 + (F ′(τ))2dτ)n−k

(n− k)(
∫ x

0

√
1 + (F ′(τ))2dτ)2n−2k

.

According to the L’Hospital’s rule, (2.54) has the limit when x tends to x0:

lim
x→x0

(
∫ x

0
2τ

√
1 + (F ′(τ))2dτ)n−k

(
∫ x

0

√
1 + (F ′(τ))2dτ)2n−2k

= (
2√

1 + limx→x0 F ′(x)
)n−k. (2.55)

We conclude that 1
s2n−2k

∫
B(s)

BpCqωn is bounded when s goes to infinity.
Next we turn to the term ABiCj, integrate by parts as in the original proof

of Proposition 2.6 in [108].
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∫

B(s)

ABiCjωn (2.56)

= cn

∫ x

0

F ′F ′′

2τ(1 + (F ′)2)2

1

vk−1
nvn−12τ

√
1 + (F ′)2dτ

= cn

∫ x

0

F ′F ′′

(1 + (F ′)2)
3
2

nvn−kdτ

= cn

∫ v

0

nvn−kd(− 1√
1 + (F ′)2

)

= (−cnnvn−k 1√
1 + (F ′)2

)|v0 + cnn(n− k)

∫ v

0

1√
1 + (F ′)2

vn−k−1dv

≤ cnnvn−k.

It follows from (2.55) that
1

s2n−2k

∫

B(s)

ABiCjωn (2.57)

is bounded when s tends to infinity.
It remains to verify that Question 2.2.2 is true when 2 ≤ k < n for any

metric ω ∈ S3. Note that in this case we have (2.32), (2.33), (2.34), and A = 0

outside a compact set for metrics in S3, it follows from a straightforward calculation
that 1

s2n−2k

∫
B(s)

Rick ∧ ωn−k is bounded when s goes to infinity. Hence we finish
the proof of Proposition 2.2.8.

After the first draft of this paper. Professor Shing-Tung Yau [117] sug-
gested that the original conjecture be considered in the stronger assumption of
nonnegative sectional curvature. In the following section we will give further an-
swers to these questions after developing a more complicated result to construct
U(n)-invariant Kähler metrics with positive curvature.

2.3 New examples of U(n)-invariant Kähler met-
rics with positive curvature

In this section we study new examples of U(n)-invariant complete Kähler
metrics on Cn with positive and unbounded sectional curvature.
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Let Mn (Nn, Kn) denote the space of all U(n)-invariant complete Kähler
metrics on Cn with positive bisectional curvature (positive sectional curvature,
positive complex curvature operator). See Subsection 2.3.2 for the definition of
complex curvature operator on Kähler manifolds. We will show the following
theorems.

Proposition 2.3.1. There are examples in Nn and Kn with unbounded curvature.

It is shown in [108] that examples of metrics with unbounded curvature in
Mn can be easily constructed. In fact, their results implies that one can perturb
any metric in Mn such that the new one have scalar curvature blows up with any
given rate along a prescribed sequence along the infinity. However, if we require
stronger assumptions on the positivity of the curvature, more careful analysis on
the perturbation are needed. In fact, we construct examples in Proposition 2.3.1
by perturbing a particularly chosen metric in Kn, although we believe that such a
choice should not be essential.

As an application of the perturbation argument developed in the proof of
Proposition 2.3.1, we prove

Proposition 2.3.2. Fix any n > 2. For any integer 2 ≤ k ≤ n, there exists
a complete Kähler metric in Nn such that r−2n+2k

∫
B(O,r)

σk is unbounded when r

tends to infinity. Here σk denotes the k-th elementary symmetric function of the
eigenvalues of the Ricci tensor and B(O, r) is the geodesic ball of radius r centered
at a fixed point O.

This problem is related to Yau’s Question 2.2.1 [115] and his suggestion
mentioned at the end of Section 2.2. In Subsection 2.3.1, we are able to construct
examples in Nn satisfying the conclusion of Proposition 2.3.2 with a perturbation
argument. A careful choice of the perturbation function will allow us to keep the
perturbed metric having positive curvature while making σk oscillate large enough
such that r−n+2k

∫
B(r)

σk unbounded when r is large.
It is interesting to compare Proposition 2.3.2 with the result of Petrunin

[98] which shows a sharp difference in the case of k = 1.
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Theorem 2.3.3 (Petrunin [98]). Let (Mn, g) be a complete Riemannian manifold
with nonnegative sectional curvature, then for any O ∈ M and r > 0, there exists
a constant c(n) which depends only on n such that

r2−n

∫

B(O,r)

R dVol(g) ≤ c(n).

2.3.1 Proof of Proposition 2.3.1 and 2.3.2

Step 1: Set up and the generating function p(x)

Now assume F : [0, x0) → [0,∞) is a smooth strictly convex function where
0 < x0 ≤ +∞, F (0) = F ′(0) = 0, and F (x0) = +∞. Write

p(x) =
√

1 + (F ′(x))2, v(x) =

∫ x

0

2τp(τ)dτ.

We will call p(x) the generating function for the metric in Mn. One can rewrite
ABC in terms of p(x):

A =
F ′F ′′

2x(1 + (F ′)2)2
=

p′

2x p3
. (2.58)

B =
1

v2
(x2 − v√

1 + (F ′(x))2
) =

1

v2
(x2 − v

p
). (2.59)

C =
2

v2
(v − x2). (2.60)

The problem of characterizing the space Nn or Kn can be reduced to the
following problem:

Question 2.3.4. Let 0 < x0 ≤ ∞, and let p(x) be a smooth strictly increasing
function on [0, x0) with p(0) = 1, p′(0) = 0, p′′(0) > 0 and

∫ x0

0
p(τ)dτ = +∞. Can

we find p(x) such that

p′v2

xp3
(v−x2) > (x2− v

p
)2 or n

2n−2

p′v2

xp3
(v−x2) > (x2− v

p
)2 (2.61)

holds for all x ∈ (0, x0)? Here v(x) =
∫ x

0
2τp(τ)dτ . Note that Nn and Kn are

the same when n = 2. In general the second named author [122] proved that
any complete Kähler surface with positive sectional curvature must have positive
complex curvature operator, See Subsection 2.3.2 for more discussion.
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Step 2: Perturbation on p(x) and Estimates on D

First we recall the following examples in [108].

Example 2.3.5 ([108]). ξ = cr
1+r

where r ∈ [0, +∞). Then for any 0 < c < 1 the
corresponding metric lies in Mn and has maximal volume growth; it lies in Kn if
0 < c ≤ 1

2
while it dose not have positive sectional curvature for any 1

2
< c < 1.

Let us fix c = 1
2
. A routine calculation shows:

A =
1

2(1 + r)
3
2

, B =
1

4(1 + r)
, C =

1

2
√

1 + r
, D =

3

16(1 + r)2
. (2.62)

s =

∫ r

0

1

2

√
r(1 + r)

1
2

dr ∼ r
1
4 . (2.63)

p =
1 + r

1 + r
2

, p′(x) =
r

1
2 (1 + r)

5
4

(1 + r
2
)3

, v = 2(
√

1 + r − 1). (2.64)

x2 =
r√

1 + r
, r =

x4 +
√

x8 + 4x4

2
(2.65)

Our goal is to perturb the function p(x) to produce a Kähler metric in Nn

with unbounded curvature along a sequence of points tending to infinity.
Define

p̃ = p + Φ, E =

∫ x

0

2τΦ(τ)dτ. (2.66)

Here we assume that Φ is nonnegative nondecreasing function on [0, +∞) and
vanishes in a small neighborhood of 0. These conditions ensure that the new
function p̃(x) will be a generating function for some metric in Mn. Note that
we have ṽ =

∫ x

0
2τ p̃(τ)dτ = v + E, so it is straightforward to get the curvature

components of the new metric generated by p̃ :

Ã =
p̃′

2x p̃3
=

p′(x) + Φ′(x)

2x (p + Φ)3
. (2.67)

B̃ =
1

ṽ2
(x2 − ṽ

p̃
) =

x2

(v + E)2
− 1

(v + E)(p + Φ)
. (2.68)

C̃ =
2

ṽ2
(ṽ − x2) =

2

v + E
− 2x2

(v + E)2
. (2.69)

The point of Step 2 is to estimate D̃
.
= ÃC̃ − B̃2 via the following lemma.
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Lemma 2.3.6. There exists δ0 > 0 and two constants C(δ0) and x0 both only
depending on δ0 such that for any 0 < δ ≤ δ0 and any smooth increasing function
Φ(x) defined on [0, +∞) with Φ = 0 in a small neighborhood of 0 and

lim
x→+∞

Φ(x) = δ,

∫ +∞

0

Φ′(τ)τ 2dτ ≤ C(δ0)δ, (2.70)

we always have D̃ > 0 for any x > x0.

Assume we have proved Lemma 2.3.6, we pick any 0 < δ < δ0 and any
function Φ satisfying the assumption in Lemma 2.3.6. Consider D̃ inside the ball
with 0 ≤ x ≤ 2x0. Since D̃ converges to D > 0 uniformly on compact sets
B(O, 2x0) as δ → 0. Shrinking δ if necessary, we conclude that there exists a
function Φ(x) defined on [0, +∞) such that

lim
x→+∞

Φ(x) = δ,

∫ +∞

0

Φ′(τ)τ 2dτ ≤ C(δ0)δ, (2.71)

such D̃ > 0 for this particular Φ(x) inside the ball with 0 ≤ x ≤ 2x0. Therefore,
D̃ > 0 everywhere and the generating function p̃(x) give a metric with positive
sectional curvature.

Proof of Lemma 2.3.6. Note that:

D̃ −D (2.72)

= (A + Ã− A)(C + C̃ − C)− (B + B̃ −B)2 − (AC −B2)

= (Ã− A)C + (C̃ − C)A + (Ã− A)(C̃ − C)− 2B(B̃ −B)− (B̃ −B)2

Step 1 of Proof of Lemma 2.3.6: estimating Ã− A.
It follows from (2.58) and (2.67) that

Ã− A =
Φ′

2x(p + Φ)3
− p′(3p2Φ + 3pΦ2 + φ3)

2xp3(p + Φ)3
. (2.73)

Then we know Ã− A ≥ 0 at points where

Φ′(x) ≥ Φ
p′(x)

p3
(Φ2 + 3Φp + 3p2). (2.74)
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Otherwise, we have

− p′(x)

2xp6
(δ3 + 6δ2 + 12δ) ≤ Ã− A ≤ 0 (2.75)

where we use 1 ≤ p ≤ 2.
Note that P ′(x)

2xp3 ∼ O( 1

r
3
2
). we conclude that there exists x0 and c(δ) only

depends on δ such that

If Ã− A ≤ 0, then− c(δ)

r
3
2

≤ Ã− A ≤ 0 whenever x ≥ x0. (2.76)

Step 2 of Proof of Lemma 2.3.6: estimating C̃ − C.
It follows from (2.60) and (2.69) that

C̃ − C =
−2E

v(v + E)
+ 2x2 E2 + 2vE

v2(v + E)2
(2.77)

Note that v ≤ 2
√

r and x2 ≤ √
r.

2E

v(v + E)
+ x2 E2 + 2vE

v2(v + E)2
≤ δ

2
√

r
+

2δ + δ2

4
√

r
. (2.78)

Similarly we conclude that there exists c(δ) only depends on δ such that

|C̃ − C| ≤ c(δ)√
r

. (2.79)

Step 3 of Proof of Lemma 2.3.6: estimating B̃ −B.
It follows from (2.59) and (2.68) that

B̃ −B = −x2 E2 + 2Ev

(v + E)2v2
+

Ep + EΦ + vΦ

vp(v + E)(p + Φ)
. (2.80)

Now plug in v = 2(
√

1 + r − 1), x2 = r√
r+1

and p = 1+r
1+ r

2
. Denote B̃ − B =

I1 − I2 where

I1 =
r√

r + 1

E2 + 2E · 2(
√

r + 1− 1)

[2(
√

1 + r − 1) + E]2[2(
√

r + 1− 1)]2
, (2.81)

I2 =
E( 1+r

1+ r
2
) + EΦ + 2(

√
r + 1− 1)Φ

2(
√

r + 1− 1)[2(
√

r + 1− 1) + E]( 1+r
1+ r

2
)[ 1+r

1+ r
2

+ Φ]
. (2.82)

The following claim is crucial in Step 3 of Proof of Lemma 2.3.6.
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Claim 2.3.7.
lim

r→+∞
√

rI1 = lim
r→+∞

√
rI2 =

δ2 + 4δ

4(2 + δ)2
, (2.83)

r|I1 − I2| ≤ c(δ) (2.84)

for constant c(δ) and x ≥ x0 where x0 only depends on δ .

Proof of Claim 2.3.7. (2.83) is straightforward if we note

lim
r→+∞

E√
r

= lim
x→+∞

Φ(x) = δ. (2.85)

Introduce:

I3
.
= r[E2 + 2E · 2(

√
r + 1− 1)]2(

√
r + 1− 1)(

1 + r

1 + r
2

) (2.86)

·[2(
√

r + 1− 1) + E][
1 + r

1 + r
2

+ Φ]

I4
.
=

√
1 + r[E + 2(

√
r + 1− 1)]2[2(

√
r + 1− 1)]2 (2.87)

·[E(
1 + r

1 + r
2

) + EΦ + 2(
√

r + 1− 1)Φ]

To prove (2.84) we will show there exists constants c(δ) and x0 which only
depends on δ

|I3 − I4|
r

5
2

≤ c(δ) (2.88)

for any x ≥ x0.
Note the fact that

√
r + 1−1 =

√
r−C1, 1+r

1+ r
2

= 2− C2

r
, and

√
1 + r−√r =

C3√
r
where C1, C2 and C3 are bounded functions of r.

I3 = r[E2 + 4E
√

r − 2C1E][2
√

r − 2C1] (2.89)

[2− C2

r
][2
√

r + E − 2C1][2 + Φ− C2

r
]

I4 = [
√

r +
C3√

r
][E + 2

√
r − 2C1]

2[2
√

r − 2C1]
2

[2E + EΦ + 2
√

rΦ− C2

r
E − 2C1Φ]

It is straightforward to check that:

|I3 − I4|
r

5
2

= 16(δ + 2)(E −√rΦ) + c(δ), (2.90)
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where c(δ) only depends on δ.
A further integration of parts shows:

E −√rΦ =

∫ x

0

2τΦ(τ)dτ −√rΦ (2.91)

= x2Φ(x)−
∫ x

0

Φ′(x)τ 2dτ −√rΦ.

= O(
1√
r
)Φ(x)−

∫ x

0

Φ′(τ)τ 2dτ.

To sum up, we need
∫ +∞

0

Φ′(τ)τ 2dτ ≤ c(δ) (2.92)

to ensure that |B̃ −B| ≤ C(δ)
r

for r large. Claim 2.3.7 is proved.

To sum up, we proved Lemma 2.3.6.

Now we are ready to prove both Proposition 2.3.1 and 2.3.2 by the pertur-
bation method established above.

Proof of Proposition 2.3.1. Now that Lemma 2.3.6 is proved, it is easy to prescribe
a suitable perturbation function Φ(x) to prove Proposition 2.3.1.

Define the following function η on [0, +∞) with α and β to be determined.

η(x) =





2α x ∈ [2, 2 + (1
2
)β]

3α x ∈ [3, 3 + (1
3
)β]

... ...

0 x ∈ [0, +∞) \ (∪l≥2[l, l + (1
l
)β])

(2.93)

.
Set α > 1 and β > α + 3, then it is easy to check.

∫ +∞

0

η(τ)dτ < ∞,

∫ x

0

η(τ)τ 2dτ < ∞, (2.94)

After a suitable smoothing of η, still denoted by η for simplicity, choose

Φ′(x) = δ
η(x)∫ +∞

0
η(τ)dτ

. (2.95)
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Here we choose a sufficiently small δ ≤ δ0 where δ0 is defined in Lemma 2.3.6.
Note that

Ã =
p′(x) + Φ′(x)

2x (p + Φ)3
.

will be unbounded along a sequence going to infinity. This will produce a metric
in Nn with unbounded curvature. The proof of Proposition 2.3.1 is done since a
similar perturbation estimates on Dn works.

Proof of Proposition 2.3.2. Fix any fixed 2 ≤ k ≤ n, it suffices to show that we
can find p(x) defined in Question 2.3.4 with x0 = +∞ such that both (2.61) and
the following hold.

lim sup
x→+∞

1

x2n−2k

∫ x

0

p2

p2 − 1
[p′(τ)]2τ 2(n−k)+1dτ = +∞. (2.96)

Compare with the proof to Proposition 2.3.1, we only need to show: Fix
any fixed n > 2 and 2 ≤ k ≤ n, we can find a smooth increasing function Φ(x)

defined on [0, +∞) with Φ = 0 at a small neighborhood of 0. such that there exists
a constant δ small enough and C independent of δ:

lim
x→+∞

Φ(x) = δ,

∫ +∞

0

Φ′(τ)τ 2dτ ≤ Cδ, (2.97)

lim sup
x→+∞

1

x2n−2k

∫ x

0

[Φ′(τ)]2τ 2(n−k)+1dτ = +∞. (2.98)

That could be done by assuming α + 3 < β < 2α + 2 on the function η

defined in the proof of Proposition 2.3.1.

2.3.2 Various levels of positivity on the curvature

In this subsection, we discuss the different levels of positivity for metrics in
Mn.

Start with an arbitrary Kähler manifold (Mn, g) of complex dimension n. At
any p ∈ M , the complexified tangent space T = TpM⊗RC splits as V ⊕V , with V ∼=
Cn the space of all type (1, 0) tangent vectors. Extend the Riemannian curvature
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tensor R of g linearly over C. The Kählerness of g implies that the curvature
operator of g, as a symmetric bilinear form on Λ2T = Λ2V ⊕ (V ⊗ V ) ⊕ Λ2V ,
vanishes on the first and the third components of the right hand side. It can be
identified with the following Hermitian bilinear form Q on V ⊗ V defined by:

Q(ξ, η) =
n∑

i,j,k,l=1

Rij̄kl̄ξij̄ηlk̄ ,

where Rij̄kl̄ are the components of R under a unitary basis {e1, . . . , en} of V , and
with ξ =

∑
ξij̄ei ⊗ ej and η =

∑
ηij̄ei ⊗ ej. We will call Q the complex curvature

operator of g.
For any 1 ≤ k ≤ n, we will say that (Mn, g) have k-positive curvature, or Q

is k-positive, if Q(ξ, ξ̄) > 0 for any 0 6= ξ ∈ V ⊗V with rank(ξ) ≤ k. Here the rank
of ξ is defined to be the rank of the matrix (ξij̄) under any basis e of V . Similarly,
one can define the notion of k-nonnegative, k-negative, or k-nonpositive.

So 1-positive means that g has positive bisectional curvature, and n-positive
means that g has positive complex curvature operator. We point out that Kähler
manifold (Mn, g) has 2-positive curvature means exactly that g has positive complex
sectional curvature, namely, for any non-zero element σ ∈ V ⊗ V , it holds that
−R(σ, σ) > 0.

When g has 2-positive (2-nonnegative) curvature, its sectional curvature
must be positive (or nonnegative), but the converse may not be true in general,
when the complex dimension n > 2. (For n = 2 it is proved in [122] that the posi-
tivity of sectional curvature is equivalent to the positivity of the complex curvature
operator).

For our metric inMn, however, we will show that the 2-positivity is always
equivalent to the positivity of the sectional curvature of g. In other words, any
metric in Nn will have positive complex sectional curvature. This result gives an
intuitive explanation why we are able to prove that nonnegative sectional curvature
is preserved under U(n)-invariant Kähler-Ricci flow Cn in Section 2.4.

Theorem 2.3.8. Let g be a complete U(n)-invariant Kähler metric on Cn. If g has
positive (nonnegative) sectional curvature everywhere, then it will have 2-positive
(2-nonnegative) curvature everywhere.
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Proof of Theorem 2.3.8. Let us use the notations discussed in the early part of
this section. Let g ∈ Nn, we have D = AC − B2 > 0 everywhere. Fix a point
z = (z1, 0, . . . , 0). We want to show that Q(ξ, ξ̄) > 0 for any ξ 6= 0 with rank
at most 2. Under the unitary tangent frame {e1, . . . , en} at z, the only non-zero
components of the curvature tensor are Rīijj̄. Denote it by Pij, then P11 = A,
P1i = B, Pii = C, and Pij = 1

2
C for any 2 ≤ i 6= j ≤ n.

For convenience, let us choose a new frame ẽ1 = ρe1, ẽi = ei for 2 ≤ i ≤ n,
where ρ =

√
C√
2B

. Then under the new frame ẽ, the only non-zero components of
the curvature tensor are R̃īijj̄ = P̃ij, where

P̃ij =
C

2
(1 + δij) + δi1δj1

C

2
(
AC

2B2
− 2).

Now write ξ =
∑n

i,j=1 ξij̄ ẽiẽj. We have

2

C
Q(ξ, ξ̄) =

2

C

n∑
i,j=1

P̃ijξīiξjj̄ +
2

C

∑

i6=j

P̃ij|ξīi|2 (2.99)

= (
AC

2B2
− 2)|ξ11̄|2 + |

n∑
i=1

ξīi|2 +
n∑

i,j=1

|ξij̄|2

In particular, when ξ11̄ = 0 and ξ 6= 0, we have Q(ξ, ξ̄) > 0. So scale ξ if necessary,
we may assume from now on that ξ11̄ = 1. Notice that any unitary change on the
subframe {ẽ2, . . . , ẽn} will not affect the components of the curvature tensor, so
we may assume that the lower right (n − 1) × (n − 1) block of the matrix (ξij̄)

only have non-zero entries in its first two rows. In particular, only the first three
elements on the diagonal line of (ξij̄) might be non-zero. Let us denote the upper
left 3× 3 corner of (ξij̄) by

E =




1 v1 v2

u1 x z

u2 0 y


 (2.100)

Notice that by performing a unitary change of {e2, e3} if necessary, we could make
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the (3, 2)-entry zero. Since the trace of the matrix (ξij̄) is 1 + x + y, we have

2

C
Q(ξ, ξ̄) (2.101)

≥ (
AC

2B2
− 2) + 1 + |u|2 + |v|2 + |x|2 + |y|2 + |z|2 + |1 + x + y|2

= (
AC

2B2
− 2) + 1 + f

=
1

2
(
AC

B2
− 1)− 1

2
+ f > −1

2
+ f

since D = AC −B2 > 0. Here we wrote |u|2 = |u1|2 + |u2|2 and |v|2 = |v1|2 + |v2|2.
Since the rank of ξ is at most 2, we have

det E = xy + zu2v1 − xu2v2 − yu1v1 = 0. (2.102)

Our goal is to show that f ≥ 1
2
for any w = (u, v, x, y, z) ∈ C7 with det E = 0.

Assume the contrary, namely, inf f = c < 1
2
. Take a sequence of points {wk} in

V = {det E = 0} ⊂ C7 such that f(wk) → a. Since f dominates the square of the
Euclidean distance of C7, {wk} is bounded, thus having a subsequence converging
a point w ∈ V . We have f(w) = c < 1

2
. Let us fix such a point w, and we will

derive a contradiction from this.
First notice that x 6= 0, since otherwise f ≥ |y|2 + |1 + y|2 ≥ 1

2
. Similarly,

y 6= 0. Next, notice that when u2 = 0, we have x = u1v1, thus |u|2 + |v|2 ≥
2|u1v1| = 2|x|, which leads to

f ≥ 2|x|+ |x|2 + |y|2 + |1 + x + y|2 (2.103)

≥ 2|x|+ |x|2 +
1

2
|1 + x|2 ≥ 1

2
,

contradicting with the assumption that f(w) < 1
2
. So we must have u2 6= 0, and

similarly, v1 6= 0. Near the point w, V is the smooth hypersurface in C7 given by
the graph of

z = x
v2

v1

+ y
u1

u2

− xy

u2v1

and w is a local minimum point of the function f , now viewed as a function of
(u, v, x, y). The first order derivatives of f are all zero at w, from these equations
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we get

v1v̄2 = −xz̄, u2ū1 = −yz̄ (2.104)

|u2|2 − |v2|2 = |v1|2 − |u1|2 = |z|2 (2.105)

2|x|2 + x(1 + ȳ) + |z|2 + |u1|2 = 0 (2.106)

2|y|2 + y(1 + x̄) + |z|2 + |v2|2 = 0 (2.107)

If z = 0, then by (2.104), we have v2 = u1 = 0, so u2 = v1 = 0 by (2.105), a
contradiction. So z 6= 0 at w. So again by (2.104) we know that u1v2 6= 0 at w as
well. Let us write α = v1v̄2 and β = u2ū1. Then we have x = −α

z̄
and y = −β

z̄
.

Plug them into (2.106) and (2.107) in the above, and write a = |u2

v2
|2 > 1 and

b = | v1

u1
|2 > 1, note that (2.105) we get

z = (a + 1)ᾱ + β̄ = ᾱ + (b + 1)β̄. (2.108)

Thus aᾱ = bβ̄, which is just α = β since (2.104). Hence a = b.
Let us write |u1|2 = |v2|2 = ρ > 0. Then we have |u2|2 = |u1|2 = aρ, and

|z|2 = (a− 1)ρ > 0. Since z = (a + 2)ᾱ, we get (a− 1)ρ = (a + 2)2aρ2, so

ρ =
a− 1

a(a + 2)2
> 0. (2.109)

We also have x = y = − 1
a+2

. So at w, we have

f = 2ρ + 2aρ + (a−1)ρ +
2

(a+2)2
+ (1− 2

a+2
)2 =

a3 + 3a2 − 1

a (a + 2)2
(2.110)

On the other hand, since w is on V = {det E = 0}, we have

(a + 2)ᾱ = − 2

a + 2
(

ᾱ

aρ
)− 1

(a + 2)2

1

u2v1

Therefore
[(a + 2) +

2

aρ(a + 2)
] = − 1

(a + 2)2aρv2u2

So u2v2 = −|u2v2| = −√aρ, and we get

ρ =
1√

a(a + 1)(a + 2)
. (2.111)
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Compare (2.111) with (2.109), we get

a2 − 1 =
√

a(a + 2).

Since a > 1, we have

2(a3 + 3a2 − 1)− a(a + 2)2

= a(a2 − 1) + 2(a2 − 1)− 3a

=
√

a(a + 2)2 − 3a > (a + 2)2 − 3a > 0,

Thus f(w) > 1
2
by (2.110), a contradiction. Thus we proved Theorem 2.3.8.

Remark 2.3.9. In view of the proof of Theorem 2.1.1 and 2.3.8, it is possible that
for any U(n)-invariant Kähler metric on Cn the necessary condition for k-positive
complex curvature operator (2 < k < n) k

2(k−1)
AC −B2 > 0 is also sufficient.

Also it is still open if one can construct an example of U(n)-invariant Kähler
metric with positive sectional curvature but not positive curvature operator. The
curvature characterization in Theorem 2.1.1 provides good evidence that such an
example should exist.

2.4 U(n)-invariant Kähler-Ricci flow with non-
negative curvature

The main result of this section is that various levels of nonnegative curvature
and asymptotic volume ratio are both preserved along U(n)-invariant Kähler-Ricci
flow on Cn with nonnegative curvature. Note that we do not assume any upper
bounds on curvature along Kähler-Ricci flow. We also discuss the short existence
problem of Kähler-Ricci flow with U(n)-symmetry.

2.4.1 Introduction

As we mentioned in Section 2.1, the Ricci flow has been a powerful tool
to study the uniformization problem since Shi’s work [102] and [103]. The best
results obtained to date is the theorem of Chau and Tam [23] which solves the
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conjecture for manifolds with bounded curvature and Euclidean volume growth.
All the important progress along the uniformization problem via the Ricci flow
approach assume upper bounds of curvatures since they all rely on the long time
existence theorem of Kähler-Ricci flow proved by Shi [102] and [103], which in turn
is based on Shi’s short time existence result of Ricci flow on complete manifolds
with bounded curvatures [101].

So far, all the available examples of complete Kähler metrics with positive
bisectional curvature are constructed on Cn with U(n)-symmetry. In particular
it is known from [108] and our discussion in Section 2.3 that there are many
examples of Kähler metrics with positive but unbounded curvature. In general,
it is unknown whether one can prove an existence theorem of Kähler-Ricci flow
on any complete Kähler manifold with positive holomorphic bisectional curvature
(without assuming boundedness of curvatures). Such a result, if exists, could be
very helpful to study uniformization problem for Kähler manifolds with positive
but unbounded curvature. For the Riemannian Ricci flow, the recent exciting work
of Cabezas-Rivas and Wilking [12] proved a short time existence theorem for any
complete noncompact manifold with nonnegative complex sectional curvature.

Recall that in previous sections, we discussed U(n)-invariant examples of
Kähler metrics with unbounded and positive bisectional curvature. These examples
motivate us to consider the following question:

Question 2.4.1. Starting with any complete U(n)-invariant Kähler metric on Cn

with nonnegative holomorphic bisectional curvature, does there always exist a com-
plete solution to the Kähler-Ricci flow with U(n)-symmetry?

Recall that Chen [27] shows that the nonnegativity of the scalar curvature
is preserved for any complete solution to the Ricci flow. Motivated by the new
cut-off techniques developed in [27], we show that any complete Kähler-Ricci flow
on Cn with U(n)-symmetry preserves various levels of nonnegative curvatures. In
general it is known that Kähler-Ricci flow preserves nonnegativity of holomorphic
bisectional curvature on compact manifolds ([5] and [73]) or complete manifolds
with bounded curvature ([102]). The point here is that by assuming the U(n)-
symmetry we do not require any upper bounds on curvatures.
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Theorem 2.4.2. Let g(t) be a complete solution of Kähler-Ricci flow on Cn with
U(n)-symmetry for t ∈ [0, T ], if the holomorphic bisectional curvature (sectional
curvature, or complex curvature operator) of the initial metric g(0) is nonnega-
tive, so is that of g(t) for any t ∈ [0, T ]. Furthermore, if g(0) has holomorphic
bisectional curvature (sectional curvature, or complex curvature operator) positive
somewhere, then g(t) has positive bisectional curvature (sectional curvature, or
complex curvature operator) on Cn × (0, T ].

In fact our method shows that any nonnegative curvature conditions which
lies between nonnegative sectional curvature and nonnegative complex curvature
operator is always preserved by complete Kähler-Ricci flow on Cn with U(n)-
symmetry. It is worth noting that in general, the nonnegative sectional curvature
may not be preserved by Ricci flow on noncompact manifolds [82]. This is well
explained by our Theorem2.3.8 in the previous section. Recall that it was shown
in [93] that nonnegative complex sectional curvature is preserved along Ricci flow
on closed manifolds. Such an invariance curvature condition under Ricci flow is
useful in the proof of differentiable sphere theorem due to Brendle and Schoen [10].
Our Theorem 2.3.8 demonstrates a somewhat surprising rigidity phenomenon for
U(n)-invariant Kähler metrics on Cn with positive curvature.

The asymptotic volume ratio (AVR) is another interesting quantity whose
invariance under the Ricci flow is first studied by Hamilton [60]. There has been
various generalizations of Hamilton’s result in the context of Ricci flow and Kähler-
Ricci flow, see [102], [32], [29], [88], [118], and [100].

Theorem 2.4.3. Let g(t) be a complete U(n)-invariant Kähler-Ricci flow on Cn×
[0, T ] where g(0) is of nonnegative holomorphic bisectional curvature, then AVR of
(Cn, g(t)) is constant on [0, T ]. In fact, for any t ∈ [0, T ]

lim
s→+∞

Vt(Bt(O, s))

V0(B0(O, s))
= 1,

where Bt(O, s) denotes the geodesic ball of radius s for the metric g(t) centered at
the origin.

Of course it is desirable if one can answer Question 2.4.1 affirmatively.
Kähler-Ricci flow equation on Cn with U(n)-symmetry can be reduced to a non-
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linear equation of fast diffusion type. In the case of n = 1 such equations has been
studied extensively from the PDE perspective, we refer the readers to check the
review paper [63] and reference therein. However, in higher dimensions it seems
very hard to solve such equations directly due to the high nonliearities involved.
In the last part of the paper we study the Riemannian Ricci flow constructed
by Cabezas-Rivas and Wilking [12] with the initial metric being a U(n)-invariant
Kähler metric with nonnegative complex sectional curvature on Cn. Note that by
Theorem ?? we only need to assume nonnegative sectional curvature. Recall that
Cabezas-Rivas and Wilking constructed such a Ricci flow after obtaining some
delicate estimates on curvature evolution of the Ricci flows emanating from a se-
quence of double covers which converges to the original manifold in the sense of
Cheeger-Gromov. Such double covers, obtained by gluing two copies of geodesic
balls in the original manifold with increasing radii after identifying the boundary
and perturbing the inner region nearby, are topologically spheres. Moreover, they
are endowed with metrics with nonnegative complex sectional curvature. Ricci
flows on those closed manifolds instantaneously evolve their curvatures into posi-
tive complex sectional curvatures (p.6 in [12]), thus destroy the Kähler structures
even when the initial metrics are Kähler on some open sets. Apriori it is not clear
if one can get a complete Kähler-Ricci flow after taking limits on those closed Ricci
flows. In Subsection 2.4.5, we are able to show Cabezas-Rivas and Wilking’s Ricci
flow is indeed a Kähler-Ricci flow under some extra technical assumptions. We
believe that those assumptions could be improved by more refined analysis on the
curvature evolution for the Ricci flow on those double covers. We plan to study
the existence of complete Kähler-Ricci flow with positive curvature in a general
context in future works.

Section 2.4 is organized as follows: We introduce U(n)-invariant Kähler-
Ricci flow equation in Section 2.4.2, then we prove that any complete Kähler-
Ricci flow on Cn with U(n)-symmetry preserves nonnegativity of various levels
of curvature and the asymptotic volume ratio in Subsection 2.4.3 and Subsection
2.4.4. In Subsection 2.4.5, we discuss the Ricci flow constructed by Cabezas-Rivas
and Wilking [12] with the initial metric being U(n)-invariant Kähler metrics with
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nonnegative sectional curvature on Cn. We end up with an existence theorem for
Kähler-Ricci flow with U(n)-symmetry under extra assumptions.

2.4.2 The U(n)-invariant Kähler-Ricci flow equation

Throughout this section we will follow the notation from the Section 1. Pick
any metric in Mn, at the point (z1, 0, · · · , 0) on Cn, under the orthonormal frame
{e1 = 1√

h
∂z1 , e2 = 1√

f
∂z2 , · · · , en = 1√

f
∂zn}, the non-zero components of the Ricci

curvature are:

Ric(e1, ē1) = A + (n− 1)B; Ric(ei, ēi) = B +
n

2
C; (2.112)

where 2 ≤ i ≤ n.
Assume that there exists a complete solution to the Ricci flow with U(n)-

symmetry with initial metric in Mn, we have:




∂h(z,t)
∂t

= −(A + (n− 1)B)h(z, t)

∂f(z,t)
∂t

= −(B + n
2
C)f(z, t)

(2.113)

Recall (2.5) and (2.6), we can simplify (2.113).




∂h(r,t)
∂t

= ∂
∂r

(
r ∂h

∂r

h
)− (n− 1)( h2

rf2 − h(1−ξ)
rf

);

∂f(r,t)
∂t

= − ξ
r
− n−1

r
+ (n− 1) h

rf
.

(2.114)

It is easy to see that the first equation in (2.114) can be derived from the second.
To sum up, to get a complete Ricci flow with U(n)-symmetry it suffices to solve
f(r, t) on [0, +∞)× [0, T ) such that.





∂f(r,t)
∂t

= 2fr+rfrr

f+rfr
+ (n− 1)fr

f
.

f(r, t) > 0, f + rfr > 0,
∫ +∞

0

√
f+rfr√

r
dr = +∞.

(2.115)

When n = 1, it reduces to the rotationally symmetric Ricci flow equation on
R2. In general, the Ricci flow equation on R2 is related to a fast diffusion equation
which was first studied by Wu [109] (see [63] and reference therein for further de-
velopments). In particular, the recent work [52] and [12] implies that there always



56

exists a complete solution to the Ricci flow with long time existence starting from
a nonnegatively curved R2 and its curvature becomes bounded instantaneously.
In particular, Wu’s result [109] implies that, assuming rotational symmetry, such
a flow converges after modified by diffeomorphisms on R2. It was further proved
in [109] that the limiting metric is Hamilton’s cigar soliton if circumference at in-
finity of the initial metric is finite and it is the standard flat metric on R2 if the
asymptotic volume ratio is positive.

In higher dimensions, Fan [46] studied the uniqueness and convergence of
U(n)-invariant Kähler-Ricci flow on Cn with positive bisectional curvature. How-
ever, his result assumed upper bounds on curvatures and used the short existence
theorem of Shi [103] and some earlier convergence results of Chau-Tam [22].

2.4.3 Nonnegativity of curvatures are preserved

Theorem 2.4.4. Let g(t) t ∈ [0, T ] be a complete solution of the Kähler-Ricci flow
on Cn with U(n)-symmetry, if the holomorphic bisectional curvature of the initial
metric g(0) is nonnegative, so is that of g(t) for any t ∈ [0, T ]. Moreover, if g(0)

has positive holomorphic bisectional curvature somewhere, then g(t) has positive
holomorphic bisectional curvature on Cn × (0, T ].

Proof of Theorem 2.4.4. We only need to prove that the nonnegativity of the bi-
sectional curvature is preserved, since the strong maximum principle is a local re-
sult and its proof is standard (See [58] and p.193-195 of [36]). Given any complete
U(n)-invariant Kähler-Ricci flow solution g(t) on Cn, we have a time-dependent or-
thonormal moving frame {e1(t) = 1√

h(t)
∂z1 , e2(t) = 1√

f(t)
∂z2 , · · · , en(t) = 1√

f(t)
∂zn}

at the point z = (z1, 0, · · · , 0). Denote

A(z, t) = Rmg(t)(e1(t), ē1(t), e1(t), ē1(t)), (2.116)

B(z, t) = Rmg(t)(e1(t), ēi(t), e1(t), ēi(t)),

C(z, t) = Rmg(t)(ei(t), ēi(t), ei(t), ēi(t)),
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where 2 ≤ i ≤ n. We have the evolution equation for bisectional curvature tensor




( ∂
∂t
−∆)A = A2 + 2(n− 1)B2,

( ∂
∂t
−∆)B = −B2 + AB + n

2
BC,

( ∂
∂t
−∆)C = n

2
C2 + 2B2.

(2.117)

Based on the following lemma, it suffices to show that A(t) ≥ 0 is preserved
along g(t).

Lemma 2.4.5 (Theorem 2, p.525 in [108], see also Proposition 3.1 in [111]). For
any complete Kähler metric ω on Cn with U(n)-symmetry, the bisectional curvature
of ω is nonnegative if and only if A ≥ 0 everywhere.

Chen [27] proved that the nonnegativity of the scalar curvature is always
preserved along any complete solution to the Ricci flow (without assuming upper
bounds on curvatures). The method is to apply the maximum principle for u =

ϕ(dt(x,x0)
ar0

)R(x, t) where ϕ is a suitable cut-off function and a > 0 is a sufficiently
large constant. Recall that the scalar curvatures evolves by ( ∂

∂t
−∆)R = 2|Ric|2 ≥

2
n
R2, which is very similar to the evolution equation of A in (2.117). Therefore,

we can prove that A ≥ 0 is preserved by the same method in [27].

Recall that Theorem 2.1.1 gives a characterization of nonnegativity of vari-
ous curvatures via A, B, and C. In particular, any complete U(n)-invariant Kähler
metric with nonnegative bisectional curvature has nonnegative sectional curva-
ture (nonnegative complex curvature operator) if and only if D = AC − B2 ≥ 0

(Dn = n
2(n−1)

AC −B2 ≥ 0).

Theorem 2.4.6. Let g(t) be a complete solution of the Kähler-Ricci flow on Cn

with U(n)-symmetry for t ∈ [0, T ]. If the sectional curvature (complex curva-
ture operator) of the initial metric g(0) is nonnegative, so is that of g(t) for any
t ∈ (0, T ]. Moreover, if g(0) has sectional curvature (complex curvature operator)
positive somewhere, then g(t) has positive sectional curvature (complex curvature
operator) on Cn × (0, T ].

Proof of Theorem 2.4.6. First we will prove that the nonnegativity of sectional
curvature is preserved. Suppose there is a point (z0, t0) where 0 < t0 ≤ T where the
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sectional curvature is negative along some real 2-plane, then D(z0, t0) = AC−B2 <

0. By picking r0 > 0 small enough we may assume that Ric(z, t) ≤ n−1
r2
0

for any
z ∈ Bt0(z0, r0) where Bt0(z0, r0) is with respect to g(t0).

(
∂

∂t
−∆)(AC −B2) (2.118)

= [(
∂

∂t
−∆)A]C + [(

∂

∂t
−∆)C]A− 2B[(

∂

∂t
−∆)B]

−2∇A · ∇C + 2|∇B|2

= A2C + (n− 2)B2C +
n

2
C2A + 2B3 − 2∇A · ∇C + 2|∇B|2.

Let ϕ is a fixed smooth cut-off non-increasing function such that ϕ = 1 on (−∞, 1]

and ϕ = 0 on [2, +∞). Moreover,

− 2 < ϕ′ ≤ 0, |ϕ′′|+ (ϕ′)2

ϕ
≤ 32. (2.119)

Define u(z, t) + ϕ(dt(z,z0)
ar0

)D(z, t), where a > 0 will be a sufficiently large number.

(
∂

∂t
−∆)u (2.120)

= ϕ′
1

ar0

[
(
∂

∂t
−∆)dt

]
D + ϕ

[
(
∂

∂t
−∆)D

]
− 2∇ϕ · ∇D − ϕ′′

D

(ar0)2

Denote umin(t) = minz∈Cnu(z, t), so umin(t0) ≤ u(z0, t0) < 0. Assume that
there exists (z1, t1) such that u(z1, t1) = mint∈[0,T ]umin(t) < 0. Now we compute
the right hand side of (2.120) at the space-time point (z1, t1). For simplicity, let
us call it Q(z1, t1).

First of all, Lemma 8.3 from Perelman [95] implies:

(
∂

∂t
−∆) dt1(z, z0) ≥ −5(n− 1)

3r0

, (2.121)

whenever dt1(z, z0) > r0.
The definition of (z1, t1) implies ∇u(z1, t1) = 0. Therefore ∇D = −∇ϕ

ϕ
D

and ∇A = 1
C
(∇D + 2B∇B − A∇C).

It follows from (2.58), (2.59), and (2.60) and a straightforward calculation
that

∇sB =
2x

v
(A− 2B), ∇sC =

2x

v
(2B − C). (2.122)
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See also Section in Appendix for a detailed proof of (2.122).

Q(x1, t1) (2.123)

≥ ϕ
{

A2C + (n− 2)B2C +
n

2
C2A + 2B3 − 2∇A · ∇C + 2|∇B|2

}

−10(n− 1)ϕ′

3ar2
0

D +
2(ϕ′)2

(ar0)2
D − ϕ′′D

(ar0)2

= ϕ
[
A2C + (n− 2)B2C +

n

2
C2A + 2B3

]

+ϕ
[
− 2

C
∇D · ∇C − 4B

C
∇B · ∇C +

2A

C
|∇C|2 + 2|∇B|2

]

−10(n− 1)ϕ′

3ar2
0

D +
2(ϕ′)2

(ar0)2
D − ϕ′′D

(ar0)2

≥ ϕ
[
A2C + (n− 2)B2C +

n

2
C2A + 2B3

]

+ϕ
4x2

v2

2

C

[
A2C + AC2 + 8B3 − 6ABC

]

−ϕ′
ϕ

1

ar0

2x

Cv
|2B − C|D − 10(n− 1)ϕ′

3ar2
0

D +
2(ϕ′)2

(ar0)2
D − ϕ′′D

(ar0)2

Claim 2.4.7. At the point (z1, t1)

A2C + (n− 2)B2C +
n

2
C2A + 2B3 ≥ [B2 − AC]

3
2 = |D| 32 , (2.124)

A2C + AC2 + 8B3 − 6ABC ≥ 0 (2.125)

Proof of Claim 2.4.7. Note that B2 > AC at the point (z1, t1), (2.124) can be
verifed by a straightforward calculation. (2.125) simply follows from the the arith-
metic and geometric mean inequality.

It follows from (2.123) that

d−umin(t)

dt
|t=t1 ≥ |u| 32 + [− ϕ′

ar0

C1 − ϕ′

ar2
0

C2 +
(ϕ′)2C3

ϕ(ar0)2
+

|ϕ′′|
(ar0)2

]u (2.126)

where C1, C2 and C3 are all constants depending only on the g(t) restricted to a
compact subset Cn × [0, T ].

On the other hand, the choice of the point (z1, x1) implies d−umin(t)
dt

≤ 0.
We conclude that

√
|u(x1, t1)| ≤ C5

ar0
+ C6

(ar0)2
. Therefore, we have

D(x0, t0) ≥ u(x1, t1) ≥ −[
C5

ar0

+
C6

(ar0)2
]2. (2.127)
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Now let a goes to infinity, we get D(z0, t0) ≥ 0, which contradicts to the
choice of (z0, t0). Therefore, the first part of Theorem 2.4.6 is proved.

It remains to show that the condition Dn = n
2(n−1)

AC−B2 ≥ 0 is preserved.
Let us write Dλ = λAC − B2. We will next prove that, for any λ ∈ [1

2
, 1], the

condition Dλ ≥ 0 is preserved under the U(n)-invariant Kähler-Ricci flow. We
show it by using a successive approximation on λ.

Follow the proof above for the preservation of the condition D1 ≥ 0, a
similar computation shows:

(
∂

∂t
−∆)[ϕ(

dt(z, z0)

ar0

)Dλ(z, t)] (2.128)

≥ ϕ
[
λA2C + (2λ(n− 1)− n)B2C +

λn

2
C2A + 2B3 − 2(1− λ)AB2

]

+ ϕ
4x2

v2

2

C

[
λA2C + AC2 + 8B3 − (2 + 4λ)ABC − (4− 4λ)AB2

]

−ϕ′
ϕ

1

ar0

2x

Cv
|2B − C|Dλ − 10(n− 1)ϕ′

3ar2
0

Dλ +
2(ϕ′)2

(ar0)2
Dλ − ϕ′′Dλ

(ar0)2
.

Denote

I1(λ) = λA2C + (2λ(n− 1)− n)B2C +
λn

2
C2A + 2B3 − 2(1− λ)AB2

I2(λ) = A2C + AC2 + 8B3 − (2 + 4λ)ABC − (4− 4λ)AB2

The key observation is that:

Lemma 2.4.8. There exists a decreasing sequence {λk} with the following prop-
erty:

(1) λ0 = 1 and 1
2

< λk < 1 for any k > 1.
(2) Assume λk+1AC < B2 ≤ λkAC at the point (z1, t1), then:

I1(λk+1) ≥ [B2 − λk+1AC]
3
2 = |Dλk+1

| 32 , (2.129)

I2(λk+1) ≥ 0 (2.130)

Proof of Lemma 2.4.8. Denote K + AC
B2 where 1

λk
≤ K < 1

λk+1
.

I2(λk+1) (2.131)

= A2C + AC2 + 8B3 − (2 + 4λk+1)ABC − (4− 4λk+1)AB2

= AB2
{

λk+1K
2(

B

A
)2 + [8− (2 + 4λk+1)K]

B

A
+ K − 4(1− λk+1)

}
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To ensure that I2(λk+1) is nonnegative, it suffices to have 1
λk
≥ 4(1− λk+1)

and λk+1 ≥ 1
2
. This motivates us to define the sequence {λk} recursively by

λk+1 = 1− 1
4λk

with λ1 = 1. In fact it is easy to check that λk = k+1
2k

.

I1(λk+1) (2.132)

= λk+1A
2C + (2λk+1(n− 1)− n)B2C +

λk+1n

2
C2A + 2B3 − 2(1− λk+1)AB2

= AB2
{[

2λk+1(n− 1)− n +
λn

2
K

]
K(

B

A
)2 + 2

B

A
+ λk+1K − 2(1− λk+1)

}

and
[B2 − λk+1AC]

3
2 = (1− λk+1K)B3. (2.133)

It follows from (2.132) and (2.133) that λk+1

λk
≥ 2−2λk+1 ≥ 0 and 2λk+1(n−

1)− n + n
2

λk+1

λk
≥ 0 will suffice to prove (2.129). It is straightforward to check that

those two inequalities are satisfies if we let λk = k+1
2k

.

From Lemma 2.4.8 and the proof of the preservation of the condition D1 ≥
0, we can argue inductively to show that Dλ ≥ 0 is preserved for any 1

2
< λ ≤ 1.

Thus we have proved that Dn = n
2(n−1)

AC − B2 is preserved along the Ricci flow
with U(n)-symmetry. To sum up, we have shown that any nonnegative curvature
condition which lies between nonnegative sectional curvature and nonnegative com-
plex curvature operator is preserved along any complete solution to Kähler-Ricci
flow on Cn with U(n)-symmetry.

2.4.4 The asymptotic volume ratio is preserved

Asymptotic volume ratio (AVR), which measures the cone angle at infinity,
is an important quantity in the study of Ricci flow. Hamilton [60] proved that AVR

is constant on any complete Ricci flow with bounded nonnegative Ricci curvature
if the Riemannian curvature decays pointwisely to zero along infinity on each time
slice. In the case of Kähler-Ricci flow, Shi [102] proved that the maximal volume
growth is preserved for a complete Kähler-Ricci flow with bounded bisectional
curvature in the space time and with the scalar curvature of the initial metric
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having average quadratic decay. Shi’s result was improved by weaker assumptions
on the scalar curvature decay in more recent works, see Chen-Zhu [31], Chen-
Tang-Zhu [29] and Ni-Tam [88] for exmaple. There are also similar results for the
Ricci flow on Riemannian manifolds with nonnegative bounded curvature operator
(Yokota [118] and Schulze-Simon [100]). In particular, Ni-Tam [88] proved that
the order of volume growth of geodesics balls in each time slice keeps constant
on complete Kähler-Ricci flow with bounded nonnegative bisectional curvature in
space-time. Our main result in this subsection is to remove the upper bound of
curvature with the help of U(n)-symmetry.

Theorem 2.4.9. Let g(t), t ∈ [0, T ], be a complete solution to the Kähler-Ricci
flow on Cn with U(n)-symmetry. Assume that the bisectional curvature of g(t) is
nonnegative for any t ∈ [0, T ]. Then for any t ∈ [0, T ]

lim
s→+∞

Vt(Bt(O, s))

V0(B0(O, s))
= 1 (2.134)

where Bt(O, s) denotes the geodesic ball of radius s for the metric g(t) centered at
the origin. In particular, the AVR of (Cn, g(t)) is constant for any t ∈ [0, T ].

Recall that for any fixed metric g0 in Mn, at the point z = (z1, 0, · · · , 0)

on Cn, under the orthonormal frame {e1 = 1√
h
∂z1 , e2 = 1√

f
∂z2 , · · · , en = 1√

f
∂zn}:

Ric(e1, ē1) = A + (n− 1)B, (2.135)

and the distance between the origin and a point z is given by

s =

∫ r

0

√
h

2
√

r
dr (2.136)

where r = |z|2. The following lemma gives an integral bound for the Ricci curvature
along the radial geodesic. It further implies a lower bound on the radial distance
function along U(n)-invariant Kähler-Ricci flow.

Lemma 2.4.10. There exists a constant C0 which only depends on g0 restricted
on the fixed coordinate ball such that

∫ s

0

Ric(
∂

∂s
,

∂

∂s
)ds ≤ C0. (2.137)
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Proof of Lemma 2.4.10.
∫ s

0

Ric(e1, ē1)ds =

∫ r

0

[A + (n− 1)B]
√

h

2
√

r
dr (2.138)

Recall (2.58),(2.59), and (2.60) and let a =
√

h(1) > 0.
∫ r

1

A
√

h

2
√

r
dr =

∫ x

a

F ′F ′′

2τ [1 + F ′(τ)2]
3
2

dτ (2.139)

=

∫ x

a

1

2τ
(

−1√
1 + F ′(τ)2

)′dτ

≤ 1

2a
− 1

2x
√

1 + F ′(x)2
−

∫ x

a

1

2τ 2

√
1 + F ′(τ)2

dτ

≤ 1

2a

∫ r

1

B
√

h

2
√

r
dr (2.140)

=

∫ x

a

1

v2
(τ 2 − v√

1 + F ′(τ)2
)

√
1 + F ′(τ)2dτ

≤ 1

2

a

v(a)
+

1

2

∫ x

a

1

v
[−1 +

v

τ 2
√

1 + F ′2 −
v

τ
(

1√
1 + F ′2 )′]dτ

≤ 1

2

a

v(a)
+

1

2
(

∫ x

a

2

τ 2
dτ +

1

a
)

≤ 1

2

a

v(a)
+

3

2a
.

As in the work of Shi [103], we define

F (x, t) = log(
det g(x, t)

det g(x, 0)
). (2.141)

and Let ∆t and dVt denote the Laplacian operator and the volume element with
respect to g(t).

Lemma 2.4.11. Let g(t), t ∈ [0, T ], be a complete solution to the Kähler-Ricci
flow on Cn with U(n)-symmetry and nonnegative bisectional curvature. Then for
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any fixed t ∈ (0, T ], there exists a constant C0 which only depends on n and g(t)

restricted to a compact set of Cn × [0, t], such that:

−
∫

B0(O,s)

(1− eF (x,t))dV0 ≤ C0t

s2

[ ∫ 10s

0

[s−
∫

B0(O,s)

R(x, 0)dV0]ds + s
]
. (2.142)

Proof of Lemma 2.4.11. It will follows from a slight modification of the method in
Theorem 2.2 on p.132 of Ni-Tam [88]. In particular we need their estimate (2.148)
whose proof is also included for the convenience of the reader. In [88] the result
was stated under the assumption that g(t) has bounded curvature along [0, T ],
here we are able to remove the assumption on curvature bounds with aid of the
U(n)-symmetry.

First we have the following inequality from Shi [103]:

∆0F (x, t) ≤ R(x, 0) + eF ∂F (x, t)

∂t
. (2.143)

Let Gs(x, y) be the positive Green’s function on B0(O, s) with zero bound-
ary value. Integrate (2.143) over B0(O, s)× [0, t], we get for B0 = B0(O, s) that:

∫

B0

Gs(O, x)(1− eF (x, t))dV0 (2.144)

≤ t

∫

B0

Gs(O, x)R(x, 0)dV0 −
∫ t

0

∫

B0

Gs(O, x)∆0F (x, τ)dV0 dτ

= t

∫

B0

Gs(O, x)R(x, 0)dV0 +

∫ t

0

[
F (O, τ) +

∫

∂B0

F (x, τ)
∂Gs(O, x)

∂s
dA0

]
dτ

≤ t
[ ∫

B0

Gs(O, x)R(x, 0)dV0 − F (x, t)|∂B0

]
,

where dA0 is the area element for ∂B0.
Note that in (2.144) we used the Green’s formula and the facts that F (x, t) ≤

0 is non-increasing and
∫

∂B0(O,s)
∂Gs(O,x)

∂s
dA0 = −1.

As in [103], [31] and [88], considering Cn×C2, we may assume that (Cn, g(0))

admits a minimal positive Green’s function such that

α
d2(x, y)

V (x, d(x, y))
≤ G(x, y) ≤ 1

α

d2(x, y)

V (x, d(x, y))
. (2.145)

for some α > 0 which depends only on n.
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Then we can apply the mean value inequality in [87] (see the proof of
Theorem 1.1 and Theorem 2.1 on p.345-348 of [87]) to conclude that

∫

B0(O,s)

Gs(O, x)R(x, 0)dV0 ≤
∫

B0(O,s)

G(O, x)R(x, 0)dV0 (2.146)

≤ c(n, α)

∫ 2s

0

[
s−
∫

B0(O,s)

R(x, 0)dV0

]
dτ

s2−
∫

B0(O,s)

(1− eF (x,t))dV0 ≤ c(n, α)

∫

B0(O, 5s)

Gs(O, x)(1− eF (x, t))dV0 (2.147)

Now (2.144) becomes

s2−
∫

B0(O,s)

(1− eF (x,t))dV0 ≤ c(n) t
[ ∫ 10s

0

[s−
∫

B0(O,s)

R(x, t)dV0]ds− F (x, t)
]
. (2.148)

We remark that similar estimates as (2.148) have been used in [102], [31],
[29].

The proof of Lemma 2.4.11 will be done if we can prove

− F (x, t)|∂B0(0,s) ≤ C0s (2.149)

for a constant C0 which depends only on g(t) restricted to a compact set in Cn.
Since (Cn, g(t)) has U(n)-symmetry and positive curvature, we have for any

r ≥ 1

s =

∫ r

0

1

2

√
h(r)

r
dt ≥

√
h(1)

2
log r (2.150)

Recall the definition of F in (2.141),

F = log h(x, t) + (n− 1) log f(x, t)

− log h(x, 0)− (n− 1) log f(x, 0) (2.151)

−rFr ≤ −rhr(x, t)

h(x, t)
+ (n− 1)

−rfr(x, t)

f(x, t)

≤ ξ(+∞, t) +
f(r, t)− h(r, t)

f(r, t)
≤ n (2.152)

Now from (2.152) and (2.150) we have

− F (r, t) ≤ n log r − F (1, t) ≤ C0s, (2.153)

which completes the proof of Lemma 2.4.11.
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Proof of Theorem 2.4.9. Theorem 2.4.9 can be proved by arguing similarly as the
proof of Theorem 2.2 in [88]. First note that Lemma 2.4.10 and the volume com-
parison theorem will imply that the AVR of g(t) is non-increasing on [0, T ].

As in [31] and [88], we have

Vt(Bt(O, s)) ≥
∫

B0(O,s)

dVt ≥ V0(Bt(O, s))−
∫

B0(O,s)

(1− eF (x,t))dV0. (2.154)

Recall that we have decay estimates of the average scalar curvature for
U(n)-invariant Kähler metrics on Cn with nonnegative curvature, see Theorem 7
in [108] or Proposition 3.3 in [111]). We conclude from Lemma 2.4.11 that the AVR

of g(t) is non-decreasing on [0, T ]. Hence it must be constant for any t ∈ [0, T ].
In fact, the proof shows that the precise order of volume growth of (Cn, g(t)) is
constant on [0, T ], i.e. (2.134) must hold.

2.4.5 Discussions on the existence of U(n)-invariant
Kähler-Ricci flow

The theorem of Cabezas-Rivas and Wilking.

Let us recall the following result by Cabezas-Rivas and Wilking [12]:

Theorem 2.4.12 (Cabezas-Rivas and Wilking [12]). Let (Mn, g) be an open man-
ifold with nonnegative complex sectional curvature. Then there exists a constant
T > 0 which depends on n and g such that there exists a complete solution of Ricci
flow g(t) with nonnegative complex sectional curvature starting from g on [0, T ].
In addition, if we assume

inf{VolgBg(p, 1) : p ∈ M} = v0 > 0, (2.155)

then T can be chosen as T (n, v0) and the scalar curvature of (M, g(t)) is bounded
by c(n,v0)

t
on (0, T (n, v0)].

Ricci flow on double covers with rotational symmetry

Let us consider (Cn, g0), where g0 is a complete U(n)-invariant Kähler met-
ric with nonnegative complex sectional curvature. In fact by Theorem 2.3.8 we
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only need to assume that g0 has nonnegative sectional curvature. Let B(O, i) de-
note the geodesic ball with radius i centered at the origin. The double cover Di

is a closed manifold obtained by gluing two copies of B(O, i) after identifying the
boundary and perturbing the inner region nearby. To be more precise, define a
smooth function φi: (−∞, i) → R with φi = 0 on (−∞, i − ε] and φi(i) = 1, φ′i,
φ′′i > 0 on (i− ε, i), and φi is left continuous at i and left derivatives of its inverse
vanishes at 1. Then define Fi : Di → Cn × R by Fi(z) = (z, φi(s(z))) on one
copy of B(O, i) and Fi(z) = (z, 2− φi(s(z))) on the other. It can be checked this
will realize Di as a closed smooth hypersurface in Cn × R. The induced metric
of Di from the product metric of Cn × R, denoted by gi, has nonnegative com-
plex sectional curvature. It follows from Proposition 4.1 in [12] that (Di, gi, O)

converges to (Cn, g0, O) smoothly in the sense of Cheeger-Gromove convergence
(see Cabezas-Rivas and Wilking [12] p.7-8 for the details of the results mentioned
above.)

The general Theorem 2.4.12 is proved by Cabezas-Rivas and Wilking by
establishing some delicate curvature estimates on the closed Ricci flow evolved
from those double covers. In this section, under the extra assumption of the
rotational symmetry of (Cn, g0), we will compute the curvatures of (Di, gi) and its
evolution under the Ricci flow more explicitly.

Fix a point p = (x1, · · · , x2n) on (Di, gi) where xk = 0 for 2 ≤ k ≤ 2n.
Define r =

∑2n
k=1 |xk|2 and the function s(r) =

∫ r

0

√
h(r)

2
√

r
dr. Note that s(r) is the

distance function only inside the ball B(O, i − ε). Under the local coordinates
{x1, · · · , x2n}, the metric (Di, gi) has components:

gi(
∂

∂x1

,
∂

∂x1

) = h(2 + (φ′i(s))
2), gi(

∂

∂xn+1

,
∂

∂xn+1

) = 2h. (2.156)

gi(
∂

∂xk

,
∂

∂xk

) = gi(
∂

∂xn+k

,
∂

∂xn+k

) = 2f. (2 ≤ k ≤ n)

gi(
∂

∂xp

,
∂

∂xq

) = 0 (p 6= q).

At the same point we calculate the nonzero components of the second fun-
damental form of (Di, gi) with respect to Cn×R. Note that we abuse the notations
again by denoting ∂

∂xk
for dFi(

∂
∂xk

).
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Π(
∂

∂x1

,
∂

∂x1

) =

√
2φ′′i (s)√

2 + (φ′i)2
h (2.157)

Π(
∂

∂xn+1

,
∂

∂xn+1

) =

√
2φ′i(s)√

2 + (φ′i)2
(

√
h

r
−

√
r

h
hr),

Π(
∂

∂xk

,
∂

∂xk

) = Π(
∂

∂xn+k

,
∂

∂xn+k

) =

√
2φ′i(s)√

2 + (φ′i)2

√
h

r
.

The Gauss equation gives the curvature of (Di, gi) under the complexified
local coordinates zk = xk +

√−1xn+k. We should caution here that these zk are
only holomorphic inside the ball B(O, i−ε) ⊂ Di. We list all the nonzero curvature
components below.

R11̄11̄ = h2A + Π2
11̄ − |Π11|2, R11̄kk̄ = hfB, (2.158)

Rkk̄kk̄ = f 2C + Π2
kk̄, Rkk̄ll̄ =

1

2
f 2C,

Rk̄1̄1k = Πkk̄Π11̄, Rk̄11k = Πkk̄Π11.

Under the orthonormal frame e1 = 1√
h(2+(φ′i(s))2)

∂x1 , e2 = 1√
2f

∂x2 , · · · ,
en+1 = 1√

2h
∂zn+1 , · · · , en+2 = 1√

2f
∂xn+2 , · · · , e2n = 1√

2f
∂x2n and its correspond-

ing complexification (ω1, · · · , ωn) with ωk = 1√
2
(ek −

√−1en+k), it is easy to see
that

gi(ωk, ω̄l) = δkl, gi(ωk, ωl) = 0 (2.159)

It is easy to derive the formula for the curvature components of (Di, gi) under the
orthonormal frame ωk. It has similar type of nonzero components as that under
the coordinates zk as in (2.158).

To simplify the computation of the curvature evolution of the Ricci flow on
the double cover, we use the Uhlenbeck trick to evolve the above complexified or-
thonormal frame ωk to get a time-dependent orthonormal frame (ω1(t), · · · , ωn(t))

with the property that (2.159) holds for any t.

Lemma 2.4.13. The complete Ricci flow (Cn, g(t)) constructed in Theorem 2.4.12
is a Kähler-Ricci flow on Cn with U(n)-symmetry if RABγδ(g(t)) = 0 everywhere
under the time-dependent orthonormal frame (ω1(t), · · · , ωn(t)). Here A,B are
any indices either barred or unbarred while γ and δ are unbarred from 1 to n.
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Proof of Lemma 2.4.13. The fact that g(t) being Kähler is proved by Shi (See
p.138-p.142 [103]). Here the U(n)-symmetry follows from the rotational symmetry
of (Cn, g0) and (Di, gi(t)).

Conditions that ensure the existence of Kähler-Ricci flow

From now on we focus our discussion in the complex dimension n = 2, we
emphasize that it is purely for the sake of convenience and all results mentioned
below can be generalized to higher dimensions.

The following two results study the curvature evolution of the closed Ricci
flow (Di, gi(t)) under the time-dependent orthnormal frame (ω1(t), ω2(t)). Note
that the only non-vanishing curvature components of the initial metric (Di, gi(0))

are R11̄11̄, R11̄22̄, R22̄22̄, R2̄112, and R2̄1̄12.

Lemma 2.4.14. The curvatures of (Di, gi(t)) satisfy:

R11̄12 = R11̄21̄ = R22̄12̄ = R22̄21 = 0 (2.160)

Proof of Lemma 2.4.14. We have the following curvature evolution equations via
the Uhlenbeck trick.

(
∂

∂t
−∆)R11̄21 = −R11̄EGRĒḠ21 + 2RE1G1RĒ1̄Ḡ2 −RE1G2RĒ1̄Ḡ1 (2.161)

= Q1(R11̄21, R11̄12̄, R12̄21).

Similarly:

(
∂

∂t
−∆)R11̄12̄ = Q2(R11̄21, R11̄12̄, R22̄12̄, R22̄12) (2.162)

(
∂

∂t
−∆)R22̄12 = Q3(R11̄21, R11̄12̄, R22̄12̄, R22̄12) (2.163)

(
∂

∂t
−∆)R22̄21̄ = Q4(R11̄21, R11̄12̄, R22̄12̄, R22̄12) (2.164)

Notice that R11̄12 = R11̄21̄ = R22̄12̄ = R22̄21 = 0 holds at t = 0, so the lemma
follows from the maximum principle for solutions to parabolic equations on closed
manifolds.

Similarly we can prove the following lemma.
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Lemma 2.4.15. The curvatures of (Di, gi(t)) satisfy:

R1221 = R21̄21 = R21̄21̄ = 0 (2.165)

After passing the time-dependent orthnormal frame (ω1(t), ω2(t)) defined on
(Di, gi(t)) to the limit Ricci flow (C2, g(t)), we have a time-dependent orthnormal
frame on (C2, g(t)). Let (ω1(t), ω2(t)) still denote the frame (C2, g(t)) for simplicity,
the above lemmas show that all curvatures components of the type RABγδ(g(t)) of
(C2, g(t)) vanish except R2̄112 and R2̄1̄12.

Theorem 2.4.16. Assume (C2, g0) is a complete U(2)-invariant Kähler manifold
with nonnegative sectional curvature. Moreover, assume that the condition (2.155)
holds.(e.g. (2.155) is satisfied when (C2, g0) has Euclidean volume growth.) Then
Cabezas-Rivas and Wilking’s Ricci flow in Theorem 2.4.12 satisfies either

R2̄112 = R2̄1̄12 = 0 (2.166)

everywhere on C2 × [0, T (2, v0)] or P (x, t) > 0 everywhere and

lim inf
r0→+∞,t0→0

infBt0 (O,r0) P (x, t0)

supBt(O,r0)×(0,t0] P (x, t)
= 0 (2.167)

where P (x, t)
.
=

√
|R2̄112|2 + |R2̄1̄12|2.

Proof of Theorem 2.4.16. The proof is motivated by a result of Chen (Theorem
3.1 on p.371 [27]), where an important interior estimate for the Ricci flow was
proved. See also Simon [104] for related works.

First note that R2̄1̄12 ≥ 0 since (C2, g(t)) has nonnegative complex sectional
curvature. If R2̄1̄12 = 0 at one point (x, t), then by the strong maximum principle it
vanishes everywhere, which further implies R2̄112 = 0 from the evolution equation
of R2̄1̄12. Now assume that P (x, t) > 0 everywhere and there exists a constant
ε0 > 0 such that

lim inf
r0→+∞,t0→0

infBt0 (O,r0) P (x, t0)

supBt(O,r0)×(0,t0] P (x, t)
≥ ε0 (2.168)

We will show that there exists a constant C independent of r0 such that

P (x, t) ≤ C

r2
0

(2.169)
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whenever 0 < t ≤ T (n, v0) and dt(x,O) ≤ r0

2
.

Assume that (2.169) is not true. Then there will exist a sequence {rn}
tending to infinity and a sequence of points (xn, tn) with P (xn, tn) ≥ 4n

r2
n
where

tn → 0 and dtn(xn, O) ≤ rn

2
.

It follows from a point-picking technique of Perelman [95] (see also p.372
of [27]) that for any fixed B > 0, picking n large enough if necessary, we can
choose (x̄n, t̄n) such that 0 < t̄n ≤ tn, dt̄n(x̄n, O) ≤ 3

4
rn, and Q̄n

.
= R(x̄n, t̄n) ≥ 4n

r2
n
,

Moreover,
0 ≤ R(x, t) ≤ 4Q̄n (2.170)

wherever 0 < t̄n ≤ tn and dt(x,O) ≤ d t̄n(x̄n, O) + BQ̄
− 1

2
n .

As in p.372 of [27], construct a smooth function ψ : R → [0, 1] such that
ψ = 1 on (−∞, d t̄n(x̄n, O) + B

2
Q̄
− 1

2
n ] and ψ = 0 on [d t̄n(x̄n, O) + BQ̄

− 1
2

n , +∞),

Moreover, one can assume that |ψ′| ≤ 4 Q̄
1
2
n

B
and |ψ′′|+ |ψ′|2

ψ
≤ 32 Q̄n

B2 .
Denote by u(x, t) = ψ(dt(x,O))(|R2̄112|2 + |R2̄1̄12|2). We have

(
∂

∂t
−∆)u (2.171)

=
{

ψ′[(
∂

∂t
−∆)dt] + (

|ψ′|2
ψ

− ψ′′)
}

(|R2̄112|2 + |R2̄1̄12|2)
+2ψ[|R2̄112|2(2R2̄1̄12 + R11̄22̄ −R11̄22̄ + R22̄22̄)]

+2ψ[R2̄1̄12
3 + R2̄1̄12|R2̄112|2 + R2̄1̄12

2(2R11̄22̄ + R11̄22̄ + R22̄22̄)]

−2ψ(|∇R2̄1̄12|2 + |∇R2̄1̄12|2)
d+umax(t)

dt
≤ (16

Q̄n

B
+ 32

Q̄n

B2
)P (x, t) + 32umax(t)Q̄n. (2.172)

In the above we used, by (2.170), that ( ∂
∂t
− ∆)dt ≥ −4Q̄

1
2
n when dt(x,O) ≥ Q̄

1
2
n ,

from Lemma 8.3 on p.20 of [95].
It follows from (2.172) that:

d+

dt
(e−32Q̄ntumax(t)) ≤ 64

Q̄n

B
e−32Q̄n supBt(O,r0)×(0,t̄n] P (x, t) (2.173)

where we use d(x, t) ≤ d t̄n(x̄n, O) + BQ̄
− 1

2
n ≤ r0 for n large.

Note that Theorem 2.4.12 guarantees that t̄Q̄ ≤ c(2, v0), so (2.173) implies
that

umax(t̄) ≤ e32c(2,v0) − 1

2B
supBt(O,r0)×(0,t̄n] P (x, t) (2.174)
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However, since B can be chosen to be arbitrarily large, we get a contradic-
tion with the assumption (2.168). Such a contradiction implies that (2.169) must
be true. However (2.169) again contradicts to the assumption P (x, t) > 0 after
taking r0 approaching to the infinity. To sum up, we have completed the proof of
Theorem 2.4.16.

Note that that the constant c(n, v0) in Theorem 2.4.12 will be 0 if v0 is
the volume of a standard unit ball in Euclidean space. Indeed, starting from a
standard flat metric on Rn, it is easy to see that (from Theorem 3.1 of [27] for
example) that Cabezas-Rivas and Wilking’s Ricci flow is a flat one. Intuitively it
is reasonable to expect that c(n, v0) is close to zero if v0 is close to the volume of
a unit Euclidean ball.

Assume that (C2, g(t)) is a Kähler-Ricci flow with U(n)-symmetry. Then we
certainly have R2̄112 = R2̄1̄12 = 0. In addition, by Lemma 2.4.10, we know that the
term

∫ r

0
Ric( ∂

∂s
, ∂

∂s
, t)ds is bounded in the space-time. The following proposition

shows that conversely the boundedness of R2̄112, R2̄1̄12, and
∫ r

0
Ric( ∂

∂s
, ∂

∂s
, t)ds in

spacetime will be sufficient to ensure the existence of a Kähler-Ricci flow, provided
that c(2, v0) is suitably small.

Proposition 2.4.17. Under the same assumption as in Theorem 2.4.16, assume
that the constant (2.155) satisfies c(2, v0) ≤ 1

32
, and there exists a constant t1 such

that R2̄1̄12 and R2̄112 are bounded on C2 × (0, t1]. In addition, assume that there
exists a constant C1 which depends on g(t) for t ∈ (0, t1] such that

∫ r

0

Ric(
∂

∂s
,

∂

∂s
, t)ds ≤ C1 (2.175)

holds for all r > 0 and t ∈ (0, t1]. Then the Ricci flow (C2, g(t)) constructed
by Cabezas-Rivas and Wilking is a U(n)-invariant Kähler-Ricci flow as long as it
exists.

Proof of Proposition 2.4.17. Under the assumption (2.175), tracing the proof of
Lemma 8.3 on p.20 of [95], we will get that, for any t ∈ (0, t1], the distance
function dt(x,O) satisfies the following estimates:

(
∂

∂t
−∆t)dt(x,O) ≥ −4(C1 +

1

r0

) (2.176)
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whenever dt(x,O) > r0.
Define v(x, t) = ηP (x, t) = η(dt(x,O)

r0
)(|R2̄112|2+|R2̄1̄12|2), where η is a cut-off

function with η = 1 on (−∞, 1], η = 0 on [2, +∞), and |η′|+ |η′′|+ |η′|2
η
≤ 16.

A similar computation shows that there exists a constant C2 > 0 such that

d+vmax(t)

dt
≤ 32

c(2, v0)

t
vmax(t) + (

32

r2
0

+
4C1

r0

)C2 (2.177)

where we use the boundedness of P (x, t).
Note that we have assumed that 32c(2, v0) < 1. Integrating (2.177) on

[0, t1], we will arrive at:

vmax(t1) ≤ t1
1− 32c(2, v0)

(
32

r2
0

+
4C1

r0

)C2. (2.178)

By taking r0 → +∞, we get P (x, t) = 0 everywhere. Now the Proposition 2.4.17
follows from Lemma 2.4.13.

Remark 2.4.18. We believe that a more refined analysis on curvature evolution
on the double covers will imply that either (2.175) is automatically true or (2.167)
contradicts to P (x, t) > 0 on the limit flow (C2, g(t)). We will study the existence
of complete Kähler-Ricci flow in a more general context in future works.

2.5 Holomorphic functions on noncompact Käh-
ler manifolds with nonnegative curvature

Throughout this section we work on a general complete Kähler manifold
with nonnegative holomorphic bisectional curvature. We discuss some questions
related to the function theory and geometric properties of complete Kähler man-
ifold with nonnegative holomorphic bisectional curvature. The results here are
mainly from our forthcoming paper [113].

2.5.1 Definition of minimal growth orders

Let (Mn, g) be a complete Kähler manifold with complex dimension n and
nonnegative holomorphic bisectional curvature. Recall that a holomorphic function



74

f is of polynomial growth if there exists α ≥ 0 and C(α, f) such that

|f(x)| ≤ C(dα(x,O) + 1)

where d(x,O) is the distance with respect to a fixed point O ∈ M .
Define the minimal growth order of holomorphic function of polynomial

growth on (Mn, g).

dmin = inf{α > 0|∃ a nonconstant f, C, and, α s.t. |f(x)| ≤ C(dα(x,O) + 1)}.

Note that it is equivalent to define dmin as:

dmin = inf
f
{lim sup

r→+∞

log |f(x)|
log d(x,O)

|where f is a nonconstant holomorphic function}.

More generally, one may define Hadamard’s order of any holomorphic func-
tion by

OrdH(f) = lim sup
r→+∞

log log(supB(r) |f(x)|)
log r

. (2.179)

It is well-known from Cheng-Yau [35]) that there are no non-constant sublin-
ear growth holomorphic functions on (Mn, g). In our notation it means dmin ≥ 1.

If (Mn, g) admits a non-constant holomorphic function with polynomial
growth, we can define K(Mn) which is the transcendence degree of the quotient
field of holomorphic function with polynomial growth. Such a quantity, similar
to algebraic dimension for compact complex manifolds, is important in function
theory on complete Kähler manifolds with nonnegative curvature. A theorem of
Ni [81] says that 1 ≤ K(Mn) ≤ n for any complete noncompact Kähler manifold
(Mn, g) with nonnegative bisectional curvature.

Similarly we can define the minimal growth order Dmin for holomorphic sec-
tions of the canonical line bundle over complete Kähler manifold with nonnegative
bisectional curvature:

Dmin = inf
s
{lim sup

r→+∞

log ||s(x)||
log d(x,O)

| s is any nonconstant holomorphic section of KM}.

For the sake of convenience, we set dmin = +∞ or Dmin = +∞ if (Mn, g)

does not admit any holomorphic functions of polynomial growth or there are none
sections of polynomial growth on KM .

In Section 2.5 we are interested in how to relate dmin, Dmin, K(Mn), and
the differential geometry of (Mn, g).
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2.5.2 Kähler manifolds with quadratic average scalar cur-
vature decay

In this section we review some results on Kähler manifolds with quadratic
average scalar curvature decay. These are the class of Kähler manifolds on which
the uniformization theory is most successful so far.

As we mentioned before, Chau and Tam [23] proved that any complete
noncompact Kähler manifold with bounded and nonnegative bisectional curvature
and Euclidean volume growth is biholomorphic to Cn. It is interesting to note
that Ni ([83] and [85]) proved that any complete noncompact Kähler manifold
with bounded and nonnegative bisectional curvature and Euclidean volume growth
must have uniformly quadratic average scalar curvature decay. Later Chau-Tam
([24] and [26]) further studied uniformization problem on Kähler manifolds with
bounded and nonnegative bisectional curvature and uniformly quadratic average
scalar curvature decay, instead of assuming Euclidean volume growth. In partic-
ular, a uniform lower bound on the the injectivity radius along Kähler-Ricci flow
with initial data being such manifolds was proved in [26].

Now we observe that the lower bound on the the injectivity radius along
the Kähler-Ricci flow established in [26] implies that the equivalence of Euclidean
volume growth and uniformly quadratic average scalar curvature decay for Kähler
manifolds with bounded and nonnegative bisectional curvature.1

Proposition 2.5.1. let (Mn, g) be a complete noncompact n-dimensional Kähler
manifold with nonnegative bisectional curvature and Ricci curvature is positive at
one point O. Assume that there exists C which is independent on O such that

1

V (B(O, r))

∫

B(O,r)

R(x) dVol(x) ≤ C

(1 + r)2
. (2.180)

Then (Mn, g) has Euclidean volume growth.

Proof of Proposition 2.5.1. It follows from Shi [103] that the Kähler-Ricci flow
with the initial metric (Mn, g) in our proposition has long time existence and

1I would like to thank Lei Ni for sharing me with this observation.
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is the scalar curvature satisfies R(x, t) ≤ C1

t
for some C1. Recently Chau-Tam

(p6298 [26]) proved that at a fixed point p the injectivity radius of g(t) satisfies
inj(g(t), p) ≥ C2

√
t for some constant C2. Denote Bt(p, r) the geodesic ball with

respect to g(t), a scaling argument and volume comparison lead to:

V olt(Bt(p,
C1

√
t

2
)) ≥ C3(

C1

√
t

2
)2n (2.181)

for some C3 depending on n, C1, and C2.
It follows from Lemma 8.3 p20 [95] we have an upper bound for the changing

distance:
d

dt
dt(p, q)|t=t0 ≥ −C(n)(C1C4 +

1

C4

)
1√
t0

(2.182)

whenever dt0(p, q) > 2C4

√
t0. Here C4 will be determined later.

Note that dt0(p, q) is nonincreasing on t, we conclude that for any t0 > 0

B0

(
p,

[
C1 + C(n)(C1C4 +

1

C4

)
]√

t0

)
⊇ Bt0(p,

C1

√
t0

2
) \Bt0(p, 2C4

√
t0). (2.183)

It follows that

V ol0

(
B0

(
p,

[
C1 + C(n)(C1C4 +

1

C4

)
]√

t0
))

(2.184)

≥ C3(
C1

√
t0

2
)2n − ω2n(2

√
C4

√
t0)

2n

Note that t0 is arbitrary, clearly (2.184) implies that (Mn, g) has Euclidean
volume growth after we choose C4 small enough.

Remark 2.5.2. In view of Cao’s splitting theorem [15], we may assume that the
universal cover of (Mn, g) does no split other than Ricci curvature is quasi-positive
in Proposition 2.5.1. In general, without assuming the upper bound of curvature,
it is related to a conjecture of Wu-Zheng [107].

We would like to mention that there are recent progresses on solutions to
Poincaré-Lelong equation without global upper bounds on curvatures due to Ni and
Tam [90]. Their result, combined with Corollary 5.2 in [81], implies the following
result.
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Proposition 2.5.3 (Ni [81], Ni and Tam [90]). Let (Mn, g) be a complete non-
compact n-dimensional Kähler manifold with nonnegative (but possibly unbounded)
bisectional curvature and Ricci curvature is positive at one point O. Assume that
there exists C which depends on O such that

1

V (B(O, r))

∫

B(O,r)

R(x) dVol(x) ≤ C

(1 + r)2
. (2.185)

Then the transcendence degree K(Mn) = n (i.e. there are global holomorphic
function with polynomial growth giving local coordinates at O) and π1(Mn) is finite.

2.5.3 A conjecture on the precise measurement assuming
the existence of non-constant holomorphic functions
with polynomial growth

Let (Mn, g) be a complete n-dimensional Kähler manifold with nonnegative
bisectional curvature. In this subsection we are interested in the metric geometry
of such manifolds on which one can find a non-constant holomorphic function with
polynomial growth.

Function theory on Kähler manifolds with nonnegative curvature turns out
to useful in understanding geometry of such manifolds. It is well-known ([105],[72],
[32], and the introduction in [85]) that one can construct nontrivial holormophic
functions on Kähler manifold with positive bisectional curvature.

Now we will restate the above result in a slightly general context and also
include a proof by L2 methods in Appendix B for the sake of convenience. It also
relates the existence of holomorphic functions of polynomial growth with the value
of the transcendence degree K(Mn).

Proposition 2.5.4. Let (Mn, g) be a complete noncompact Kähler manifold with
nonnegative bisectional curvature, assume that the universal cover (M̃n, g̃) does
not split, then

(1) (Mn, g) admits a nonconstant holomorphic function with Hadamard’s
order dH ≤ 1. The canonical line bundle KM on Mn admits nontrival sections
with at most exponential growth.
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(2) Either the transcendence degree K(Mn) = 0 or K(Mn) = n. Moreover,
in the case of K(Mn) = n, at any point O ∈ Mn there exists n holomorphic
functions with polynomial growth giving local coordinates at O and π1(Mn) is finite.

Remark 2.5.5. We remark that Proposition 2.5.4 is sharp in two aspects.
In (1), there are examples of Kähler manifolds with nonnegative bisectional

curvature without any nonconstant holomorphic functions. Recall that a toroidal
group X is Cn/Λk where Λk ⊂ Cn is some lattice of rank n + 1 ≤ k ≤ 2n with the
property that any holomorphic functions on X are constant. Those noncompact
toroidal groups are (C2n−k)∗-bundle over a complex torus Tk−n

C and their tangent
bundles are trivial. A standard example, due to Cousin [42], is C2/Λ3 where Λ3 is
generated by (1, 0), (0, 1), and (

√−1, a +
√−1) where a is irrational.

In (2) we can not assume “(Mn, g) itself does not split” instead. Consider
C1×Cn−1 with the product metric ge×h where ge is the Euclidean metric on C1 and
h is a U(n− 1)-invariant Kähler metric with positive bisectional curvature. Define
a cyclic group Γ =<γ> where γ(ξ, z1, ..., zn−1) = (ξ +k, z1e

2πk
√−1, ..., zn−1e

2πk
√−1).

Note that γ have no fixed points and M = (C1 × Cn−1)/Γ whose induced metric
has nonnegative bisectional curvature. Chau-Tam (p6302 [26]) use such examples
to motivate their discussion on fibre bundle structures for Kähler manifolds with
nonnegative curvature. Now we observe that K(M) = n − 1 if we pick k = 1

p
for

a prime number p and h with Euclidean volume growth.

Now assume that (Mn, g) satisfy the assumption in Proposition 2.5.4 and
it admits a nonconstant holomorphic function with polynomial growth. Since
K(Mn) = n, we can also define the minimal order (d

(1)
min, ..., d

(n)
min) for the set of

every n holomorphic functions with polynomial growth which gives local coordi-
nates at a fixed point. Namely, for all such {f1, ..., fn} with lim supr→+∞

log |fi(x)|
log r(x)

nondecreasing for 1 ≤ i ≤ n, we define:

(d
(1)
min, ..., d

(n)
min) = inf

{f1,...,fn}
{lim sup

r→+∞

log |f1(x)|
log r(x)

, ..., lim sup
r→+∞

log |fn(x)|
log r(x)

}

We caution that it is apriori unclear if (d
(1)
min, ..., d

(n)
min) can be obtained by a

set of holomorphic functions onMn, but it is true for any complete Kähler metric
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on Cn with nonnegative curvature and U(n)-symmetry. Note that dmin = d
(1)
min, in

this sense those {(d(1)
min, ..., d

(n)
min} could be viewed as a refinement on dmin. Note

that we can show that the volume growth of (Mn, g) satisfies Vol(B(r)) ≥ C[ r2

log r
]n

for r sufficiently large and some constant C > 0 using a technique in [28]. Next we
propose some conjectures on determining the exact values for the AVR and ASCD

of (Mn, g):
Recall that on any Riemannian manifold (N n, g) with nonnegative curva-

ture one can define the asymptotic volume ratio (AVR) and the average scalar
curvature decay (ASCD):

AVR(N n, g) = lim
r→+∞

Vol(B(O, r))

ωnrn
,

ASCD(N n, g) = lim sup
r→+∞

r2

Vol(B(O, r))

∫

B(O,r)

R(x)dVol(x),

where ωn the volume of unit ball in Rn. Note that both definitions are independent
of the choice of O.

Conjecture 2.5.6. Let (Mn, g) be a complete simply-connected n-dimensional
Kähler manifold with nonnegative bisectional curvature and its universal cover
(M̃n, g̃) does not split, then is it true that there exists a constant c(n, d

(1)
min, ..., d

(n)
min)

such that
1

c(n, d
(1)
min, ..., d

(n)
min)

≤ AVR(Mn, g) = c(n, d
(1)
min, ..., d

(n)
min). (2.186)

In fact, a more ambitious conjecture is that if

AVR(Mn, g) =
n∏

i=1

1

d
(i)
min

? (2.187)

Here (d
(1)
min, ..., d

(n)
min) are minimal growth orders for the set of every n holomorphic

functions of polynomial growth {f1, ..., fn} which are linearly independent at a fixed
point O ∈Mn.

Remark 2.5.7. A result of Li [67] states that any Riemannian manifold (Mn, g)

with nonnegative Ricci curvature has finite fundamental group and satisfies

AVR(Mn, g) =
1

|π1(Mn)| AVR(M̃n, g̃).
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Therefore, if Conjecture 2.5.6 is true, note the fact that AVR of metric product is
equal to the product of AVR of each factor, then we would get a complete picture of
AVR of complete Kähler manifolds with nonnegative bisectional curvature in terms
of the growth orders of holomorphic functions and the order of its fundamental
group.

We further speculate:

Conjecture 2.5.8. Let (Mn, g) be a complete n-dimensional Kähler manifold with
nonnegative bisectional curvature whose universal cover (M̃n, g̃) does not split,
then Dmin =

∑n
i=1 d

(i)
min − n and there exists a constant c(n) such that

1

c(n)
Dmin ≤ ACSD(Mn, g) ≤ c(n)Dmin. (2.188)

Again an optimistic conjecture is that:

ASCD(Mn, g) = nDmin? (2.189)

Can we change lim sup in (2.186) to lim?

Remark 2.5.9. Both Conjectures 2.5.6 and 2.5.8 are affirmative for any U(n)-
invariant Kähler metric with nonnegative bisectional curvature on Cn. In this case
d

(i)
min = dmin for any 1 ≤ i ≤ n and Dmin = n(dmin − 1). Both conjectures can

be viewed as a quantified version of the conjectures in p931 [81]. Note that both
conjectures are almost true for simply connected Riemann surface with nonnegative
curvature, see more discussion in Appendix A.

We have the following result to characterize manifolds with dmin = 1.

Proposition 2.5.10. Let (Mn, g) be a complete n-dimensional Kähler manifold
with nonnegative bisectional curvature and dmin = 1, then (Mn, g) must split as
N n−1 × C.

Proof of Propostion 2.5.10. Suppose that for any k ∈ N there exists a holomorphic
functions fk and Ck such that

|fk(x)| ≤ Ck(d(x,O))1+ 1
k .
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We will show that we can choose some fN0 from {fk}∞k=1 such that the following is
true for some new constants C̃k:

|fN0(x)| ≤ C̃k(d(x,O))1+ 1
k . (2.190)

Denote SN = Span{fN , fN+1, fN+2, ...}, the dimension estimates on holo-
morphic functions with polynomial growth ([81], [28]) imply that limN→+∞ dim SN

exists and it is finite. Therefore, we can find two natural numbers N0 and l so that
dim SN = l for any N ≥ N0. Note that SN is non-increasing when N increases, we
conclude that fN0 ∈ SN for any N ≥ N0, which proves (2.190). Now Propostion
2.5.10 follows Ni-Tam’s Liouville type theorem for plurisubharmonic functions on
Kähler manifolds with nonnegative curvature, see Theorem 0.3 p460 [88].

Proposition 2.5.11. Let (Mn, g) be a complete n-dimensional Kähler manifold
with nonnegative bisectional curvature, then there exists a constant C(n) such that

ASCD(Mn, g) ≤ C(n)Dmin. (2.191)

In particular, by Ni’s gap theorem [86], any nonflat complete Kähler manifold with
nonnegative bisectional curvature must have Dmin > 0.

Proof of Proposition 2.5.11. In fact Propostion 2.5.11 is no more than a reformu-
lation of Corollary 2.3 on p.930 in [81] in terms of Dmin. We follow the same proof,
which will be sketched for the sake of convenience.

For any ε > 0 there exists a holomorphic section sε ∈ H0(Mn, KM) and a
constant Cε so that

|sε(x)| ≤ Cε(d(x,O))Dmin+ε.

Recall that Poincaré-Lelong implies that ∆ log ||s||2(x) ≥ R(x). Let v(x, t)

be the solution to the heat equation ( ∂
∂t
−∆)v(x, t) = 0 with initial value v(x, 0) =

log ||sε||2(x). Denote w(x, t) = ∂
∂t

v(x, t), it follows from Lemma 3.1 p926 [81] imply
that ∂

∂t
(tw(x, t)) ≥ 0.
By the heat kernel estimate of Li-Yau, there exists constants c1(n) and c2(n)

which only depend on n such that
c1(n)

Vol(B(x,
√

t))
e−

d2(x,y)
3t ≤ H(x, y, t) ≤ c2(n)

Vol(B(x,
√

t))
e−

d2(x,y)
5t . (2.192)
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From now on let us use C(n) denote any constant which only depends on
n, it follows from (2.192) that:

w(x, t) ≥ C(n)

Vol(B(x,
√

t))

∫

B(O,
√

t)

R(x)dVol(x) (2.193)

On the other hand, the sharp large time asymptotics for v(x, t):

lim sup
t→+∞

v(x, t)

log t
≤ Dmin + ε (2.194)

is proved in Lemma 4.2 on p.934 in [81] (for the case of Euclidean volume growth)
and Lemma 2.1 on p.1438 in [28] (for the general case).

Therefore, ∂
∂t

(tw(x, t)) ≥ 0, together with (2.193) and (2.194) imply that

lim sup
t→+∞

t

Vol(B(x,
√

t))

∫

B(O,
√

t)

R(x)dVol(x) ≤ C(n)(Dmin + ε). (2.195)

We prove (2.191) by taking ε goes to zero in the above. The recent gap
theorem in Ni [86] shows that any Kähler manifold with nonnegative bisectional
curvature satisfies ASCD(Mn, g) = 0 if and only if (Mn, g) is flat. In other words
any nonflat complete Kähler manifold with nonnegative bisectional curvature must
have Dmin > 0.

Proposition 2.5.12. Let n > 1 and (Mn, g) be a complete n-dimensional Kähler
manifold with nonnegative bisectional curvature with maximum volume growth,
then

ASCD(Mn, g) ≤ 4nn!e
1
4
2n− 1

n− 1
Dmin. (2.196)

Moreover, assume that ∀k ∈ N, there exists r(k) > 0 and sk ∈ H0(Mn, KM) such
that ||sk|| ≥ d(x,O)Dmin− 1

k whenever d(x,O) ≥ r(k), and [sk] → 0 in the sense
that

∫
{sk=0} H(x, y, t)dVoly → 0 when k → +∞. then we have

ASCD(Mn, g) ≥ 1

4e
1
4 + (n− 1)!4ne

1
4 − 4

Dmin. (2.197)

Proof of Propostion 2.5.12. A sharp estimates on heat kernel on complete mani-
folds with nonnegative Ricci curvature and Euclidean volume growth was proved
by Li-Tam-Wang [70]. Their result implies that for (Mn, g) in our proposition



83

with α = AVR(Mn, g) and any fixed δ > 0 there exists a constant C = C(n, α)

such that

ω2nδ
2nd2n(x, y)

Vol(B(x, δd))
e−

1+9δ
4t

d2(x,y) ≤ H(x, y, t) ≤ (1 + C(δ + β))
ω2n

α(4πt)n
e−

1−δ
4t

d2(x,y).

Here β : [0, +∞) → R is defined by

β(d(x, y)) = δ−2n max
r≥(1−δ)d(x,y)

{
1− δn(2n+1) Vol(B(p, r))

Vol(B(p, δ2n+1r))

}
. (2.198)

Note that limd(x,y)→+∞ β(d(x, y)) = 0.
Now follow the notation in the proof of Propostion 2.5.11 we will give an

explicit form of the constant C(n) in (2.193) with the aid of the above sharp lower
bound on the heat kernel. Precisely we will show that

lim sup tw(x, t) ≥ ω2n

(4π)n
e−

1
4 (

n− 1

2n− 1
) lim sup

t

Vol(B(x,
√

t))

∫

B(O,
√

t)

R(x)dVol(x)

Note that (2.199) will imply (2.196) if we follow the proof Proposition 2.5.11.
Indeed, the above lower bound on the heat kernel implies that

t

∫

Mn

H(x, y, t)R(y)dVol(y) (2.199)

≥ ω2nδ2n

(4π)ntn−1

∫ +∞

0

e−
1+9δ

4t
r2

Vol(x, δr)

∫

∂B(x,r)

R(y)dA(y) dr

≥ ω2nδ2ne
− 1+9δ

4

(4π)ntn−1 Vol(x, δ
√

t)

∫ √
t

0

r2nd(

∫

B(x,r)

R(y)dVol(y))

=
ω2ne

− 1+9δ
4

(4π)n
I(x, t)

where

I(x, t) = δ2n
tn

∫
B(x,

√
t)

R(y)dVol(y)− ∫ √t

0
2nr2n−1

∫
B(x,r)

R(y)dVol(y)dr

tn−1 Vol(B(x, δ
√

t))
(2.200)

It is straightforward to check that

lim sup
t→+∞

I(x, t) ≥ n− 1

2n− 1
lim sup
t→+∞

t
∫

B(x,
√

t)
R(y)dVol(y)

Vol(B(x,
√

t))

Now we turn to the second part, the Poincaré-Lelong equation implies that

∆ log ||sk||2(x) = gij̄[sk]ij̄ + R(x) ≥ R(x) (2.201)



84

Let vk(x, t) be the solution to the heat equation with initial value vk(x, 0) =

log ||sk||2(x). Denote wk(x, t) = ∂
∂t

vk(x, t), then we have ∂
∂t

(tw(x, t)) ≥ 0.
Applying the above upper bound on heat kernel and the assumption that

[sk] → 0 as k → +∞, we get:

lim
t→+∞

twk(x, t) (2.202)

≤ ω2n

(4π)n

[
(1− e−

1
4 ) lim sup

t→+∞
tk(x,

√
t) +

∫ +∞

√
t

e−
r2

4t
r2n+1

2tn+1
k(x, r)dr

]

where k(x, r) = 1
Vol(B(x,r))

∫
B(O,r)

R(x)dVol(x).
Similarly, we have

lim inf
t→+∞

vk(x, t)

log t
≥ ω2n

(4π)n
e−

1
4
1

4
(Dmin − 1

k
). (2.203)

which implies that

lim
t→+∞

twk(x, t) ≥ ω2n

(4π)n
e−

1
4
1

4
(Dmin − 1

k
). (2.204)

(2.203) and (2.204) together imply that

ω2n

(4π)n
e−

1
4
1

4
(Dmin − 1

k
) (2.205)

≤ ω2n

(4π)n

[
(1− e−

1
4 ) lim sup

t→+∞
tk(x,

√
t) +

∫ +∞

√
t

e−
r2

4t
r2n+1

2tn+1
k(x, r)dr

]

Now a simple argument by contradiction will lead to

lim sup
r→+∞

r2k(x, r) ≥ 1

4e
1
4 + (n− 1)!4ne

1
4 − 4

Dmin (2.206)

In fact, by a monotonicity property on r2k(x, r) proved by Ni (p756 [86])
we further conclude that

lim inf
r→+∞

r2k(x, r) ≥ C(n)Dmin

for some constant C(n).
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2.5.4 Volume growth and curvature decay in view of holo-
morphic functions

Chen-Zhu [32] proved that any complete noncompact Kähler manifold with
quasi-positive bisectional curvature has at least half-Euclidean volume growth and
at least linear decay if assuming bisectional curvature positive everywhere. See also
a generalization of this result to the case of nonnegative curvautre by Ni-Tam [88].
It was further asked by Chen-Zhu (see [108] p.519) if there is a connection between
volume growth rate and the decay rate of average curvature for complete positively
curved Kähler metrics. Wu-Zheng [108] shown that for any U(n)-invariant Kähler
metric with positive bisectional curvature on Cn there exists a constant C such that

1
C(1+v(r))

≤ 1
V ol(B(O,r))

∫
B(O,r)

R(x)d V olx ≤ C
1+v(r)

and V ol(B(O, r)) = ω2n(v(r))n.
Here ω2n is the volume of the ball unit in Euclidean space R2n and v(r) a smooth
function of r. In particular, there is another constant c such that cr ≤ v(r) ≤ r2

for r large enough.
Using Wu-Zheng’s theorem [108] on rotationally symmetric Kähler metric

with positive curvature on Cn, one can construct metrics with the volume growth
like (r log r)n and r2n

(log r)n . Motivated by these examples, we define the order of vol-
ume growth of any complete Kähler manifold (Mn, g) with nonnegative bisectional
curvature.

K+ = lim sup
r→+∞

log Vol(B(r))

n log r
.

K− = lim inf
r→+∞

log Vol(B(r))

n log r
.

Next we introduce the notion of the minimal Hadamard’s order d0 on
(Mn, g).

d0 = inf{d > 0|∃ a nonconstant holomorphic function f s.t.OrdH(f) = d}.

Note that it is apriori unclear if d0 can be exactly attained by a holomorphic
function on (Mn, g). But it is true for complete U(n)-invariant Kähler metric on Cn

with quasi-positive bisectional curvature. Also it is direct to see 1 ≤ K− ≤ K+ ≤ 2

using Chen-Zhu’s result [32], however it is unclear if it is always the case that



86

K− = K+ even assuming the metric being rotationally invariant, see Appendix A
for more discussion.

Observation 2.5.13. On any (Mn, g) with complete noncompact Kähler metric
with nonnegative curvature, assume that the universal cover (M̃n, g̃) does not split,
then K− ≥ 2 − d0. Moreover, if V ol(B(O, r)) ≥ C1r

nα for some C1 > 0 and
1 < α ≤ 2 implies that

∫
B(O,r)

R(x)dµ(x) ≤ C2

rα , then K− = 2− d0.

Proof of Observation 2.5.13. If we assume that (Mn, g) has quasi-positive bisec-
tional curvature, then it is not hard to show that K− ≥ 2−d0 by a technique devel-
oped in [28]. In fact, their method can be used to show that Vol(B(r)) ≥ Cr(2−a)n

if there exists a nonconstant holomorphic function f(x) with log(|f(x)| + 1) ≤
C(ra + 1) for some 0 < a ≤ 1. Obviously, K− = 2 − d0 is true for any complete
U(n)-invariant Kähler metric on Cn with nonnegative bisectional curvature in view
of Wu-Zheng’s result mentioned above.

2.5.5 Minimal orders and Type-III solutions to the Kähler-
Ricci flow

The main purpose of this subsection is to discuss minimal growth orders of
holomorphic functions in the context of Kähler-Ricci flow.

Type-III solutions to the Kähler-Ricci flow

According to Hamilton [60], a complete solution (M, g(t)) where t ∈ [0, +∞)

to the Ricci flow on a complete manifold M is called Type-III if

sup
M×[0,+∞)

t|Rm|(x, t) < ∞.

Type-III solutions are important in the singularity analysis of the Ricci flow and
it is closely related to gradient expanding solitons, see [60], [14], and [30].

It is known from the work of Shi [103] that Kähler-Ricci flow on man-
ifolds with bounded nonnegative bisectional curvature curvature and uniformly
quadratic average scalar curvature decay is type-III. Under the extra assumption
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of Euclidean volume growth Chau-Tam [23] further proved that the blowing down
of such a flow converges to an expanding Kähler-Ricci soliton with nonnegative
curvature. Such a result is important in their proof of the uniformization theo-
rem on complete Kähler manifolds with Euclidean volume growth and bounded
nonnegative bisectional curvature curvature. There is a slight generalization of
this result of Ni [84]. Note that Ni’s result ([83] and [85]) and Proposition 2.5.1
have established the equivalence of Euclidean volume growth and quadratic decay
of average scalar curvature for Kähler manifolds with bounded and nonnegative
bisectional curvature. Recently Schulze-Simon [100] proved the Riemannian ana-
logue of this result. Namely they show that there exists a long-time Ricci flow
solution starting from Riemannian manifolds with Euclidean volume growth and
bounded nonnegative curvature operator with its blowing down being an expand-
ing soliton. In the following theorem we collect these results on Kähler-Ricci flow
on manifold with bounded nonnegative curvature and Euclidean volume growth.

Theorem 2.5.14 ([83], [23], and [100]). Suppose that (Mn, g0) is a complete non-
compact Kähler manifold with bounded nonnegative curvature and Euclidean vol-
ume growth.

(1) The Kähler-Ricci flow with initial metric g0 has a long time existence
g(t) and α = AVR(Mn, g(t)) is invariant along g(t), and there exists a constant
c(n, α) such that R(x, t) ≤ c(n,α)

t
for any x and t.

(2) For any point x ∈Mn, let {λ1(x, t), ..., λn(x, t)} denote the eigenvalues
of Ricci curvature Ric(x, t) with respect to g(t) in the nondecreasing order, then
tλi(x, t) is nondecreasing, therefore limt→+∞ tλi(x, t) exists.

(3) Fix any point p be on Mn, given any tk → +∞, define gk(t) = 1
tk

g(tkt),
the pointed sequence (Mn, gk(t), p) sub-sequentially converges to a gradient expand-
ing Kähler-Ricci soliton (N n, h(t), O) with nonnegative bisectional curvature.

(4) The expanding soliton in (3) satisfies AVR(N , h(1)) = AVR(Mn, g0).

Proof of Theorem 2.5.14. Briefly speaking (1) is a consequence of Shi’s short time
existence result to Kähler-Ricci flow [101] and Perelman’s Corollary 11.6 [95]. The
proof has been given in [83]. (2) and (3) has been proved in [23]. (4) could be
proved following the method in [100]. Precisely, (4) was proved in [100] for Rieman-
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nian manifolds with bounded and nonnegative curvature operator and Euclidean
volume growth. The point is show AVR(N , h(t)) ≤ AVR(Mn, g0) since the re-
verse direction easily follows from the blowup down procedure and the fact that
AVR is invariant along Kähler-Ricci flow with bounded curvature. To prove this,
let (Mn, gk(t), p) be the sequence converging to (N n, h(t), O) in (3) and denote
the asymptotic cone (X, dX , O) the Gromov-Hausdorff limit of (Mn, gk(0), p) for
that particular choice of tk. Note that we don’t know the uniqueness of asymp-
totic cones for Kähler manifolds with nonnegative bisectional curvature and Eu-
clidean volume growth. Following [100] one can prove that (Mn, gk(t), p) con-
verges to (X, dX , O) in the sense of Gromov-Hausdorff as t goes to zero. Now
AVR(N , h(t)) ≤ AVR(Mn, g0) will follow from Cheeger-Colding’s volume conver-
gence theorem on noncollasping manifolds with lower Ricci bounds under Gromov-
Hausdorff convergence.

We have the following proposition to relate ASCD and limiting behaviors
of Type-III Kähler-Ricci flow.

Proposition 2.5.15. Suppose that (Mn, g0) is a complete noncompact Kähler
manifold with bounded nonnegative curvature and Euclidean volume growth, by
Theorem 2.5.14 there exists a complete solution g(t) (t ∈ [0, +∞)) to the Kähler-
Ricci flow with initial metric g0. Then for any point x ∈Mn, limt→+∞ tλi(x, t) and
limt→+∞ tR(x, t) is independent of the choice of x. Denote β = limt→+∞ tR(x, t),
then there exists a constant C(n) such that

1

C(n)
ASCD(Mn, g(t)) ≤ β ≤ C(n) ASCD(Mn, g(t))

holds for any t ∈ [0, +∞).

Proof of Proposition 2.5.15. Define

F (x, t, T ) = log
[det(gij̄(x, t + T ))

det(gij̄(x, T ))

]

and we have d
dt

F (x, t) = −R(x, t), Such a quantity measures the change of volume
element along g(t) and its estimates proves to be important to study the long time
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behavior of the flow since Shi’s work [103]. Indeed our proof relies on a version of
such estimates due to Ni-Tam [89].

More precisely, denote m(t) = infx∈Mn F (x, t, T ) and

kT (x, r) =
1

VolT (BT (x, r))

∫

BT (x,r)

R(y, T )dVolT (y),

then it is proved (p124 [89]) that there exists a constant C(n) such that for any
A > 0

1

C(n)

∫ √
t

0

skT (x, s)ds ≤ −F (x, t, T ) (2.207)

C(n)
[
(1 +

t(1−m(t))

A2
)]

∫ A

0

skT (x, s)ds− tm(t)(1−m(t))

A2

]
.

On one hand, since d
dt

F (x, t) = −R(x, t) and tR(x, t) is nondecreasing, we
have

lim
t→+∞

−F (x, t)

log t
= lim

t→+∞
tR(x, t) = β(x) (2.208)

Pick A2 = 2C(n)t(1 − m(t)) as in p127 [89], the second half of (2.207)
becomes

− F (x, t) +
1

2
m(t) ≤ (2C1 + 1)

∫ A

0

skT (x, s)ds. (2.209)

Pick a sequence tj → +∞ such that limj→+∞
−m(tj)

2 log tj
= lim supt→+∞

−m(t)
2 log t

,
then pick xj ∈Mn with −F (xj, tj) ≥ −m(tj)− 1

j
. It is direct to check that

lim sup
t→+∞

−m(t)

2 log t
= lim

j→+∞
−F (xj, tj) + 1

2
m(t)

log tj
. (2.210)

Note that ASCD(g(t)) = lim supr→+∞ r2kT (x, r) are independent of choice
of base point O. Therefore, for any ε > 0, t2jkT (xj, tj) ≤ ASCD(g(t)) + ε. It
is proved ([86]) that r2kT (x, r) is nondecreasing mudulo a constant which only
depends on the n. That is to say that, thre exists constants C2(n) and C3(n) on n

so that t2kT (x, t) ≤ C3(n)t21kT (x, t1) for any t ≤ C2(n)t1.



90

lim sup
j→+∞

(2C1 + 1)
∫ A

0
skT (xj, s)ds

log t
(2.211)

≤ lim sup
j→+∞

(2C1 + 1) lim sup
j→

C3(n)
[
ASCD(g(t)) + ε

]
log(

√
2C1tj(1− tj))

log tj

≤ 1

2
(2C1 + 1)C3(n)

[
ASCD(g(t)) + ε

]

where in the last step we use −m(t) = O(log t).
To sum up, we have proved that supx∈Mn β(x) ≤ C(n) ASCD(g(T )) for

some C(n). A similar argument on the first half of (2.207) will give infx∈Mn β(x) ≥
1

C(n)
ASCD(g(T )). Since T can be arbitrary, (2.207) is proved once we can show

β(x) is constant.
Indeed, we can show limt→+∞ tλi(x, t) is independent of the choice of x.

Fix and t and let x and y are two points and γ(s) (s ∈ [0, dt(x, y)]) the unit
speed minimizing geodesic with respect to g(t) connecting x and y, and v(s, t)

being any parallel transport along γ(s) such that v(0, t) is the unitary eigenvector
corresponding to λi(x, t). Then we have

∣∣∣tRic(v(dt(x, y), t), v̄(dt(x, y), t))|y − tRic(v(0, t), v̄(0, t))|x
∣∣∣ ≤ t|∇Ric|dt(x, y)

(2.212)
Recall Shi’s estimate |∇Ric|2 ≤ C

t3
([103]), the above implies that

lim
t→+∞

tRic(v(dt(x, y), t), v̄(dt(x, y), t))|y = β(x)

Since we can set v(0, t) to be any unitary vector at x in (2.212), it follows
from the minimax principle for eigenvalues that the limits of {tλ1(x, t), ..., tλn(x, t)}
and {tλ1(y, t), ..., tλn(y, t)} must match.

It is direct to see that the minimal orders {d(1)
min, ..., d

(n)
min} and Dmin are all

invariant under the Type-III Kähler-Ricci flow. Motivated by Proposition 2.5.15,
we propose the following conjecture.

Conjecture 2.5.16. Suppose that (Mn, g0) is a complete noncompact Kähler man-
ifold with bounded nonnegative curvature and Euclidean volume growth. Denote
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g(t) (t ∈ [0, +∞)) the complete solution Kähler-Ricci flow with initial metric g0

from Theorem 2.5.14, then
(1) Denote β = limt→+∞ tR(x, t) and γi = limt→+∞ tλi(x, t), can we show

that Dmin = β and

{d(1)
min, ..., d

(n)
min} = {γ1 + 1, ..., γn + 1}?

(2) ASCD(Mn, g(t)) is invariant along g(t).

Expanding Ricci solitons with nonnegative Ricci curvature

In view of Theorem 2.5.14, it is interesting to understand the geometry
of gradient expanding Ricci solitons with nonnegative curvature. Gradient Ricci
solitons of expanding type has been studied intensively in recent years, see [13],
[14], and [79] for example. In this subsection we focus on expanding Ricci solitons
with nonnegative Ricci curvature. First of all, it is known that any gradient Ricci
soliton of expanding type with nonnegative Ricci curvature is diffeomorphic to
the Euclidean space. Moreover, Chau-Tam [21] proved it is biholomrphic to the
complex Euclidean space if it is a Kähler-Ricci soliton.

Next we give the estimates of the potential function and the asymptotic
volume ratio.

Lemma 2.5.17. Suppose that (N n, g, f) is a complete noncompact gradient ex-
panding Ricci soliton with Ric+Hess f = g and nonnegative Ricci curvature, and
we set the normalization R + |∇f |2 = 2f and denote O to be the unique criti-
cal point of f whose existence is ensured by the assumption of nonnegative Ricci
curvature, then N n is diffeomorphic to Rn and the potential function f satisfies:

1

2
d(x,O)2 + f(O) ≤ f(x) ≤ (

1√
2
d(x,O) +

√
f(O))2 (2.213)

and the scalar curvature satisfy the exponential decay:

R(x) ≥ R(O)e−(f(x)−f(O)).

Proof of Lemma 2.5.17. This seems well-known and the proof is quite direct.
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We procced to prove an upper bound for AVR(N n, g) assuming nonnegative
sectional curvature.

Proposition 2.5.18. Let (N n, g, f) be a complete noncompact nonflat gradient
expanding Ricci soliton as in Lemma 2.5.17. In addition, assume (N n, g) has
nonnegative sectional curvature. Then there exists a constant c(n) which only
depends on the dimension such that 0 < AVR(N n, g) ≤ c(n)

c0
where c0 = f(O) =

R(O)
2

.

Proof of Proposition 2.5.18. In fact one only need to assume nonnegative scalar
curvature to show that any expanding Ricci soliton has at least Euclidean vol-
ume growth, see p6307 [25]. Here we are interested in a more explicit bound on
AVR(N n, g) in terms of the maximum of scalar curvature.

Define the functions

V : R→ [0,∞), R : R→ [0,∞)

by
V(c) +

∫

{f<c}
dµ, R(c) +

∫

{f<c}
R dµ.

Similarly as shrinking solitons treated in [19], we can prove the following ode
relating V(c) and R(c).

n V(c) + R(c) = 2c V′(c)− R′(c). (2.214)

It is direct to check
d

dc

[V(c)

c
n
2

(2− R(c)

c V(c)
)
]

= (
n + 2

2c
+ 1)

R(c)

c
n
2
+1

(2.215)

Note that (2.213) shows that f(x) is comparable to 1
2
d(x,O)2 and that R(x) attains

the maximum at O, denoting c0 = f(O), an integration shows

AVR(N n, g) =
1

ωn2
n
2
+1

∫ +∞

c0

(
n + 2

2c
+ 1)

R(c)

c
n
2
+1

dc (2.216)

Now recall the following result due to Petrunin [98]: Let (Mn, g) be any
complete Riemannian manifold with nonnegative sectional curvature, then for any
O ∈ M and r > 0, there exists a constant c(n) such that

∫

B(O,r)

R dVol(g) ≤ c(n)rn−2,
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In view of (2.213), we have

R(c)

c
n
2
+1
≤

∫
B(x,

√
2(c−c0))

R dVol

c
n
2
+1

≤ c(n)

c
(2.217)

Now Proposition 2.5.18 follows from (2.216) and (2.217).

Corollary 2.5.19. Suppose that (Mn, g0) is a complete noncompact Riemmanian
manifold with bounded and nonnegative curvature operator and Euclidean volume
growth. By Schulze-Simon [100] the Ricci flow solution g(t) with initial metric
g0 has the long time existence and it is Type-III. Denote β = supx∈Mn β(x) =

limt→+∞ tR(x, t), then 0 < AVR(Mn, g) ≤ c(n)
β
. The same conclusion is true for

Kähler manifolds with bounded and nonnegative complex curvature operator and
Euclidean volume growth, and β(x) is independent of x.

Geometry of non-negatively curved Kähler-Ricci expanding soliton

In this part, we focus on gradient expanding Kähler-Ricci soliton with non-
negative curvature. As mentioned in previous subsection, the complex structure
of such solitons is well-understood, Chau and Tam [21] proved any gradient ex-
panding Kähler-Ricci soliton with nonnegative Ricci curvature is biholomorphic
to Cn. Recall that the main theorem of Chau and Tam [23] states any complete
noncompact Kähler manifold with bounded and nonnegative bisectional curvature
and Euclidean volume growth is biholomorphic to Cn. In view of Theorem 2.5.14,
those results could be viewed as a stability result on complex structures when blow-
ing down Kähler-Ricci flow on such manifolds. Again Theorem 2.5.14 tells us that
AVR is also preserved when we blow down such a Kähler-Ricci flow. These results
naturally lead us to further investigate the metric geometry of such manifolds in
the context of this blowing down procedure.

We will solve the minimal order for holomorphic functions and sections of
canonical line bundles on complete gradient expanding Kähler-Ricci solitons with
nonnegative bisectional curvature. Therefore we confirm Conjecture 2.5.16 for
expanding solitons with nonnegative bisectional curvature.

Theorem 2.5.20. Assume that (N n, g, f) is a complete noncompact gradient ex-
panding Kähler-Ricci soliton with Rij̄ + gij̄ = fij̄ and nonnegative Ricci curvature,
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Let us set the normalization R + |∇f |2 = 2f and {µ1, ..., µn} eigenvalues of Ricci
curvature at the critical point O of f in the nondecreasing order, then

{d(1)
min, ..., d

(n)
min} = {µ1 + 1, ..., µn + 1}.

Furthermore, if we assume (N n, g) has nonnegative bisectional curvature, then
Dmin = R(O) =

∑n
i=1 d

(i)
min − n where R(O) is the maximum of scalar curvature.

Proof of Theorem 2.5.20. It is known from [21] that the expanding Kähler-Ricci
soliton in our Theorem 2.5.20 must be biholomorphic to Cn. In fact, we can
use Bryant [11] to construct the so-called Poincaré coordinate system on (N n, g).
Indeed, it is proved in [11] that there exist local coordinates (UO, zi) at O such that
the complexified vector field ∇f =

∑
i(1 + µi)zi

∂
∂zi

, then one can extend (UO, zi)

to the whole (N n, g) by defining

zi(ϕ(q, t)) = e(1+µi)tzi(q) (2.218)

for any q ∈ UO where ϕ(q, t) is the holomorphic flow generated by ∇f . It is easy to
see this definition is independent of choice of q and {zi} gives a global holomorphic
coordinate on (N n, g).

Next we will solve the growth orders for holomorphic functions {z1, ..., zn}.
First we will solve the growth order for holomorphic functions zk along any integral
curves of ∇f through a point q on (N n, g) with zk(q) 6= 0. It follows from R +

|∇f |2 = 2f that

f(ϕ(q, t))− f(q) =

∫ t

0

|∇f(ϕ(q, s))|2ds ≤
∫ t

0

2f(ϕ(q, s))ds. (2.219)

Now a simple integration on (2.219) leads to f(ϕ(q, t)) ≤ f(q)e2t.
Therefore,

lim sup
t→+∞

log zk(ϕ(q, t))

log d(ϕ(q, t), O)
= lim sup

t→+∞

log zk(ϕ(q, t))

log
√

2f(ϕ(q, t), O)
≥ 1 + µi (2.220)

Next we will prove lim supx→+∞
log zk(x)
log d(x,O)

≤ µk +1. Let {xi} be any sequence
of points on (N n, g) tending to infinity, it suffices to show lim supi→+∞

log zk(xi)
log d(xi,O)

≤
µk + 1. Unlike the straightforward estimate (2.219) of f restricted an integral
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curve, we need to be more careful to prove a uniform estimate which holds outside
certain level set of f .

Note that
√

2f is comparable to distance function and O is the unique
critical point of f , we see that f(ϕ(q, t)) → +∞ as t → +∞. Pick any a > R(O)

and denote b = supf(y)=a R(y) and c = supf(y)=a |zk(y)|. For every point xi, the
integral curve ϕ(xi, t) converges to O as t → −∞. Let ϕ(q,−ti) denote the first
intersection point of the integral curve ϕ(xi, t) and the level set {f = a}. we have
the following lower estimate of f :

f(xi)− f(ϕ(xi,−ti)) ≥
∫ t

−ti

(2f(ϕ(xi, s))− b)ds (2.221)

for any −ti ≤ t ≤ 0.
It follows from (2.221) that f(xi) ≥ 1

2
e2ti(2a − b) + b

2
, which immediately

leads to

lim sup
i→+∞

log zk(xi)

log d(xi, O)
≤ lim sup

i→+∞

2 log(ce(1+µk)ti)

log [(e2ti)(2a− b) + b]
≤ µk + 1. (2.222)

To sum up, we have proved that lim supx→+∞
log zk(x)
log d(x,O)

= µk +1 for any 1 ≤ k ≤ n.
Now we observe that Poincaré coordinates give the minimal growth orders

for holomorphic functions on N n. Otherwise, there exist

{h1(z1, ...zn), ..., hn(z1, ..., zn)}

which are n holomorphic functions with polynomial growth which are linearly
independent at O, with its growth orders {ν1, ..., νn}. Assume that both {µ1 +

1, ..., µn + 1} and {ν1, ..., νn} are in a non-decreasing order, let i0 denote the first
1 ≤ i ≤ n such that νi < µi + 1, If i0 = 1 then we will show that h1 must be
constant.

Indeed, assume that h1 has growth order ν1 strictly less than µ1 + 1, note
that N n is biholomorphic to Cn, then the Cauchy estimate implies at any point
p = (w1, ..., wn) in terms of Poincaré coordinates:

∂h1

∂z1

(w1, ..., wn) ≤ 1

r
sup
q∈D

|h1(q)| (2.223)

where D = {(z1, w2, ..., wn) ∈ N n | |z1 − w1| = r} for any r > 0.
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Now by a similar argument as when we derive (2.221) one conclude that for
any q ∈ D there exists some t(q) > 0 such that

r ≥ |z1(q)| − |w1(p)| ≥ C1e
(1+µ1)t(q) − |w1(p)| (2.224)

for some constant C1. In the meantime,

|f(q)| ≤ C2(d(q, O)ν1) ≤ C2[
√

2f(q)]ν1 ≤ C3e
ν1t(q). (2.225)

Take r goes to infinity, it follows from (2.223), (2.224), and (2.225) that

∂h1

∂z1

(w1, ..., wn)

vanishes everywhere and h1 is constant, which it is impossible since

{h1(z1, ...zn), ..., hn(z1, ..., zn)}

are linearly independent at O.
If i0 > 1 then a same argument implies that ∂fi0

∂zi
must be zero for any

i0 ≤ i ≤ n. It follows that fj = fj(z1, ..., zi0−1) for any 1 ≤ j ≤ i0. it shows that
{f1, ..., fn} are linearly dependent at O.

Next we solve Dmin. It is well-known that any holomorphic vector bundle
over Cn are trivial. Therefore any holomorphic sections of KNn will be the form
of

f(z1, ..., zn)dz1 ∧ dz2, ...,∧dzn

where f is a global holormophic function on N n. We only need to prove that s0 =

dz1 ∧ dz2, ...,∧dzn has the growth order exactly R(O) =
∑n

i=1 µi. Our calculation
relies on this following idenity:

d2

dt2

[
− log det gij̄(ϕ(q, t))

]
= −2

∂2

∂zi∂z̄j

(log det gij̄)f
if j̄ = 2Ric(∇f,∇f). (2.226)

Now pick any sequence of points xi which goes to infinity, a further integration
leads to

d

dt

[
− log det(ϕ(xi, t))

]
= 2R(O)− 2R(ϕ(xi, t)) (2.227)
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where we use d
dt

[− log det(ϕ(q, t))]|t=−∞ = 0. Recall (2.221), we are able to solve
the growth order of s0 along the integral curve of ∇f :

lim sup
i→+∞

−1
2
log det gij̄(xi)

log d(xi, O)
= lim sup

t→+∞

−1
2
log det gij̄(ϕ(q, t))

1
2
log(2f)

≤ R(O). (2.228)

In fact, the above argument also implies that

lim sup
i→+∞

−1
2
log det gij̄(xi)

log d(xi, O)
≥ R(O)− lim

t→+∞
R(xi) (2.229)

Now if we assume in addition that (N n, g) has nonnegative bisectional curvature,
it follows from [32] that the scalar curvature of (N n, g) has at least linear average
decay. Therefore, there exists a sequence of points zi such that R(zk) → 0 which
zk tends to infinity. We may replace xi in (2.229) by zk to conclude that

Dmin = lim sup
z→+∞

log ||s0||(z)

log d(z, O)
= lim sup

z→+∞

−1
2
log det gij̄(z)

log d(z, O)
= R(O). (2.230)

Remark 2.5.21. In the proof of Theorem 2.5.20 we show that any holomorphic
function f on (N n, g, f) with growth order µk ≤ d < µk+1 +1 where 1 ≤ k ≤ n− 1

must be f = f(z1, ..., zk). This is of course not necessarily true without working in
Poincaré coordinates.

The only known examples of Kähler-Ricci expanders with nonnegative Ricci
curvature are those rotationally symmetric ones on Cn. In particular in the com-
plex dimension 2 case for any λ > 1 one can construct such examples (C2, g, f)

whose holomorphic vector field ∇f = λz1
∂

∂z1
+ λz1

∂
∂z1

, here (z1, z2) are the global
Poincaré coordinates on C2. On the other hand, let (w1, w2) = ϕ(z1, z2) = (z1, z2 +

z2
1) ∈ Aut(C2), on (C2, g) with global coordinates (w1, w2) we have z2(w1.w2) =

w2 − w2
1 has growth order λ while w1 and w2 have growth orders λ and 2λ respec-

tively.

Section 2.2 is an exposition of my own work which appeared in Mathe-
matische Annalen 2013. Section 2.3 and Section 2.4 are from a joint work with
Fangyang Zheng which was published in Communications in Analysis and Geom-
etry 2013. The remaining results of Chapter 2 are from my ongoing project and it
will appear as a separate paper [113] and be submitted elsewhere for consideration
for publication in the near future.



Appendix A

Additional results on
U(n)-invariant Kähler metrics
with nonnegative curvature

In this appendix we discuss some additional results on U(n)-invariant Käh-
ler metrics with nonnegative curvature. Section A.1 is devoted to proving an
important lemma used in the proof of Theorem 2.4.6. In Section A.2, as an il-
lustration of the minimal orders for holomorphic functions on complete Kähler
manifolds with nonnegative bisectional curvature, we give a detailed discussion on
the case of U(n) invariant Kähler metrics on Cn with positive curvature. (Similar
results follows if we only assuming nonnegative bisectional curvature.) In Section
A.4 we give some observations on holomorphic functions on complete noncompact
Riemann surfaces which mainly follow from previous works of Li and Tam.

A.1 Proof of (2.122)

Recall that Mn denote the space of all U(n) invariant complete Kähler
metrics on Cn with nonnegative bisectional curvature. In this section we will
prove (2.122) which is rephrased as follows:

98
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Lemma A.1.1. For any metric in Mn, we have

∇sB =
2x

v
(A− 2B) and ∇sC =

2x

v
(2B − C), (A.1)

where s denotes the radial geodesic distance.

Proof of Lemma A.1.1. If we assume that our metric is in Mn, then the proof of
(A.1) is just a matter of a standard calculation following (2.16) and (2.15).

However, since we are working on Mn which can not always be be char-
acterized by F , we have to discuss other cases arising from Theorem 2.2.4. More
precisely, We have to prove that (A.1) is true for any metric in S3 from Theorem
2.2.4. For the convenience of the reader, we also include the verification of (A.1)
for metrics in S1 and S2.

Indeed, given any metrics in S1 and S2, it follows from (2.16) and (2.15)
that

∇sB =
∂B
∂x√

1 + (F ′(x))2
(A.2)

and

∂B

∂x
= −2x

√
1 + (F ′(x))2

v2
(
x2

v
− 1√

1 + (F ′(x))2
)

+
1

v
(
2x

v
− 2x3

√
1 + (F ′(x))2

v2
+

F ′F ′′

(
√

1 + (F ′(x))2)3
). (A.3)

Therefore

∇sB = −4x3

v3
+

4x

v2
√

1 + (F ′(x))2
+

F ′F ′′

v[1 + (F ′(x))2]2

=
2x

v
(A− 2B). (A.4)

And a similar calculation works for ∇sC.
Next we will verify (2.16) for metric in S3. Since now the metric can not be

globally parameterized by F , we turn to use the parameter r outside a compact
set. Indeed, it follows from (2.31), (2.32), (2.33), and (2.34) that

∇sB =
∂B
∂r
∂s
∂r

=
2
√

r√
h

∂B

∂r
, (A.5)
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and
∂B

∂r
=
−2hx2

0

(rf)3
. (A.6)

Therefore,

∇sB =
−4
√

rh

rf
B = −4x

v
B. (A.7)

Similarly we have
∂C

∂r
= 2

∂

∂r
[
rf − rh

(rf)2
], (A.8)

and
∇sC = 4

√
rh

2h− f

r2f 3
=

2x

v
(2B − C). (A.9)

In view of Theorem 2.2.4, we have proved Lemma A.1.1.

A.2 Holormophic functions and volume growth

We also have the following result relating the growth of the coordinate
function zi to the volume growth of the geodesic balls with respect to the metric
ω in Mn.

Proposition A.2.1. Given any metric ω ∈ Mn, if the coordinate function zi for
some 1 ≤ i ≤ n has polynomial growth with respect to ω, then the geodesic balls of
(Cn, ω) have Euclidean volume growth.

Proof of Proposition A.2.1. Assume some coordinate function zi for some 1 ≤ i ≤
n has polynomial growth with respect to ω in Mn. it follows from ω being ro-
tationally symmetric that there exists some integer α and constant C6 > 0 such
that:

r = |z|2 ≤ C6s
α. (A.10)

From Theorem 2.2.4 it suffices to show that ω ∈ S1, namely F ′(x) bounded
when x goes to x0. First we note that ω can not be from S3 from the explicit
formula (2.34) on the distance with respect to metrics in S3 in Theorem 3.1.

Plugging (2.15) into (A.10) leads to:

r ≤ C6(

∫ x

0

√
1 + (F ′(τ))2dτ)α. (A.11)
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Note that:
dr

dx
=

2r

(1− ξ)x
=

2r
√

1 + (F ′(x))2

x
. (A.12)

Solve r in terms of x from (A.12) and plug into (A.11):

e
2

∫ x
C7

√
1+(F ′(τ))2

τ
dτ ≤ C6(

∫ x

0

√
1 + (F ′(τ))2dτ)α (A.13)

for any C7 ≤ x < x0. Here C7 is the value of x which corresponds to r = 1.
It is not hard to show that F ′(x) is bounded for all x ∈ (0, x0) from (A.13).

First we see that x0 must be infinity. Otherwise, the left hand side

e
2

∫ x
C7

√
1+(F ′(τ))2

τ
dτ ≥ e

2
x0

∫ x
C7

√
1+(F ′(τ))2dτ

,

then (A.13) could not be true since exponential functions can not be bounded from
above by any polynomial as

∫ x

C7

√
1 + (F ′(τ))2dτ goes to infinity. Next we show

that F ′(x) is bounded for all x ∈ (0, +∞). It follows from (A.13) that

2
∫ x

C7

√
1+(F ′(τ))2

τ
dτ

α ln
∫ x

0

√
1 + (F ′(τ))2dτ + ln C6

(A.14)

should be bounded by 1 when x tends to infinity.
It is easy to see that (A.14) has a limit when x goes to infinity.

lim
x→+∞

2
∫ x

C7

√
1+(F ′(τ))2

τ
dτ

α ln
∫ x

0

√
1 + (F ′(τ))2dτ + ln C6

=
2

α

√
1 + [ lim

x→+∞
F ′(τ)]2, (A.15)

which implies that F ′(x) is bounded for all x in [0, +∞). Therefore ω ∈ S1.

Remark A.2.2. It was conjectured by Ni (See Conjecture 3.1 on p.931 in [81].)
that Proposition A.2.1 is true in general for any complete Kähler manifold with
quasi-positive bisectional curvature.

As an illustration of minimal orders for holomorphic functions on complete
Kähler manifolds with nonnegative bisectional curvature, we give a detailed dis-
cussion on the case of U(n) invariant Kähler metrics on Cn with positive curvature.
Similar results follows if we only assuming nonnegative bisectional curvature.
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First recall the following formulas will be directly from [108].

v =

∫ x

0

2τ
√

1 + (F ′(τ))2dτ. (A.16)

s =

∫ x

0

√
1 + (F ′(τ))2dτ

log |z| =
∫ x

C

√
1 + (F ′(τ))2

τ
dτ

Note that the coordinate function gives the minimal order growth for any
U(n)-invariant Kähler metric with positive bisectional curvature on Cn. Fol-
low the definition in the next section, we have K− = lim infx→+∞

log v
log s

, K+ =

lim supx→+∞
log v
log s

and d0 = lim sup log(log |z|)
log s

= lim sup
log(

∫ x
C

√
1+(F ′(τ))2

τ
)dτ

log s
.

It is easy to see that 1 ≤ K− ≤ K− ≤ 2 and 0 ≤ d0 ≤ 1,

Example A.2.3. (1) Two extreme cases: K+ = K− = d0 = 1 when the metric is
a cigar (i.e. x0 is finite); K+ = K− = 2 and d0 = 0 when the metric has Euclidean
volume growth. (i.e. x0 = +∞ and F ′(x0) is finite.)

(2) Two almost extreme examples: when F (x) =
∫ x

0

√
log2(τ + e)− 1dτ

then d0 = 0 and K+ = K− = 2, the volume growth is like Vol(B(O, s)) ∼ s2n

(log s)n .
When F (x) = ex − x − 1 then d0 = K+ = K− = 1, and the volume growth is like
Vol(B(O, s)) ∼ (s log s)n.

Now we give a summary of our calculation in the U(n)-symmetry case.

Result 1. Assume that x0 = +∞ and F ′(x0) = +∞. we have the following results.
(1)

1 ≤ 1 + lim inf
x→+∞

F (x)

xF ′(x)
≤ K− ≤ K+ ≤ 1 + lim sup

x→+∞

F (x)

xF ′(x)
≤ 2.

(2) If limx→+∞
∫ x

C
F ′(τ)

τ
dτ

F ′(x)
exists, then

d0 =
1

1 + limx→+∞
∫ x

C
F ′(τ)

τ
dτ

F ′(x)

In general, we only have:

d0 ≤ 1

1 + lim infx→+∞
∫ x

C
F ′(τ)

τ
dτ

F ′(x)
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(3) If limx→+∞
F (x)

xF ′(x)
= a0, then limx→+∞

∫ x
C

F ′(τ)
τ

dτ

F ′(x)
exists and the limit is

a0

1−a0
. Therefore, K− = K+ = 2− d0 = 1 + a0.

(4) In general, then we have

1− lim sup
x→+∞

F (x)

xF ′(x)
≤ 2−K+ ≤ 2−K− = d0 ≤ 1− lim inf

x→+∞
F (x)

xF ′(x)

Remark A.2.4. Does there exist an example of U(n) invariant Kähler metric on
Cn with positive bisectional curvature such that K− < K+? It is probably true in
view that limx→+∞

F (x)
xF ′(x)

does not necessarily exist.

Result 2. Recall F is the generating function for a U(n)-invariant Kähler metric
positive bisectional curvature on Cn.

(1) 2−K− ≤ d0 can be proved simply by the Cauchy-Schwarz inequality. Of
course, as mentioned earlier it is true in general without U(n)-symmetry on Cn.

(2) In view of [108], the generating function F (x) relates any U(n)-invariant
Kähler metric positive bisectional curvature on Cn to a rotationally symmetric
positive curved metric on R2. We see that 2 − K− ≥ d0 holds from Corollary
A.4.2. However it is unclear how to prove it by the direct calculation.

A.3 More on U(n)-invariant Kähler-Ricci flows

First we recall the result of Wu-Zheng [108]. Let F is any smooth function,
even function on (−∞, +∞) such that

F (0) = F ′(0) = 0, F ′′ ≥ 0, F ′(+∞) < +∞, F (+∞) = +∞,

then we can construct a complete U(n)-invariant Kähler metric g0 on Cn with
nonnegative bisectional curvature and Euclidean volume growth. Since such a
correspondence is one to one, we may call this F the generating function of g0.
Now we state a necessary condition for U(n)-invariant Kähler metrics on Cn with
positive bisectional curvature to be a positive-time slice of a Type-III solution to
Kähler-Ricci flow with bounded and positive curvature.

Proposition A.3.1. Suppose that (Cn, g0) is a complete U(n)-invariant Kähler
metric with bounded and nonnegative bisectional curvature and Euclidean volume
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growth, then there exists a complete U(n)-invariant solution g(t) to Kähler-Ricci
flow with the initial metric g0 on Cn× [0, +∞). Assume that (Cn, g1) is the t1-slice
of g(t) for some number t1 > 0, then the generating function F (x) of g1 must
satisfy:

n + 1

4
(F ′′(0))2t1 ≤

√
1 + F ′(+∞)2 − 1. (A.17)

A.4 Holomorphic functions on Riemann surfaces

Let (M2, g) denote a complete noncompact Riemann surface with nonneg-
ative curvature. It is well known that (M2, g) is biholomorphic to C1 unless it is
flat.

Lemma A.4.1 (Li-Tam [68] and [69]). Let (M2, g) be a simply connected Riemann
surface with nonnegative curvature. Note thatM2 is diffeomorphic to R2, let r0(x)

and r(x) be the Euclidean and geodesic distance with respect to a fixed point O.
then there exists C1 and R1 such that

1

C1

(

∫ r(t)

1

t

V (t)
dt− 1) ≤ log r0(x) ≤ C1(

∫ r(t)

1

t

V (t)
dt + 1) (A.18)

for any x ∈M2 −B(O,R0).
In particular, if AVR(M2, g) = α > 0, then

lim
r(x)→+∞

log r(x)

log r0(x)
= α. (A.19)

holds, and there exists C2 and R1 such that log r0(x) ≤ C1r(x) for any x ∈ M2 −
B(O,R2).

Corollary A.4.2. Let (M2, g) be a simply-connected open Riemann surface with
nonnegative curvature. then d0 = 2 − K−. Moreover, both Conjecture 2.5.6 and
2.5.8 are true except we only have dmin − 1 ≤ Dmin ≤ dmin.

Proof of Corollary A.4.2. It is a consequence of [68] and [69].

Proposition A.4.3. Conjecture 2.5.16 is true for any complete noncompact Rie-
mann surface with nonnegative curvature and Euclidean volume growth.

Proof of Corollary A.4.2. It is a consequence of [12], [52], and [100].



Appendix B

Construction of holomorphic
functions by the L2–method

We will prove the following proposition mentioned in Section 2.5.

Proposition B.0.4. Let (Mn, g) be a complete noncompact n-dimensional Kähler
manifold with nonnegative bisectional curvature, assume that the universal cover
(M̃n, g̃) does not split, then

(1) (Mn, g) admits a nonconstant holomorphic function with its Hadamard’s
order dH ≤ 1. The canonical line bundle KM on Mn admits nontrival sections
with at most exponential growth.

(2) Either the transcendence degree K(Mn) = 0 or K(Mn) = n. Moreover,
in the case of K(Mn) = n, at any point O ∈ Mn there exists n holomorphic
functions with polynomial growth which give local coordinates at O and π1(Mn) is
finite.

Proof of Proposition B.0.4 relies on the following general formulation of the
well-known L2-estimate of the ∂̄ operator.

Theorem B.0.5 (See [1] and [44] for example). Let (M, g) be a complete Kähler
manifold with dimension n and (L, h) be a Hermitian line bundle with nonnegative
curvature on M . Suppose ϕ is a smooth function outside a discrete set S on M

and for any point p ∈ S there exists a constant Cp and a open neighborhood (Up, z)
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such that ϕ(z) = Cp log |z|2 on Up. Assume that

Ric(ωg) + Θ(L, he−ϕ) = Ric(ωg) + Θ(L, h) +
√−1∂∂̄ϕ > εωg (B.1)

on M \ S for some continuous function ε : M → [0, 1]. Then for every smooth
L-valued (0, 1) form θ which satisfies

∂̄θ = 0 and
∫

M

1

ε
||θ||2e−ϕωn

g < ∞, (B.2)

there exists a smooth L-valued function u on M such that

∂̄u = θ and
∫

M

||u||2e−ϕωn
g ≤

∫

M

1

ε
||θ||2e−ϕωn

g < ∞. (B.3)

Remark B.0.6. Part (1) of Proposition B.0.4 has been known if we assume holo-
morphic bisectional curvature is quasi-positive. (See Siu [105] for example.) Note
that we use a slightly weaker assumption that the universal cover (M̃n, g̃) does not
split. However, as we show below, applying a result by Ni and Tam our assumption
will lead to the existence of strictly plurisubharmonic functions, which is exactly
the necessary ingredient to apply the L2 method.

Proof of Proposition B.0.4. Step 1: We show the existence of a strictly plurisub-
harmonic function on (Mn, g).

Recall that the Busemann function β(x) on Lipschitz with Lipschitz con-
stant 1 on any complete Riemannian manifold. It is proved byWu and it is a contin-
uous plurisubharmonic function if (Mn, g) has nonnegative bisectional curvature.
Let v(x, t) be the solution of the heat equation with initial value v(x, t) = β(x). It
is proved by Ni and Tam [88] that for any t > 0, |∇v(x, t)| ≤ 1 and the null space

K(x, t) = {w ∈ T 1,0
x (M) | vαβ̄wα = 0 for all β}

of vαβ̄ is a parallel distribution on M. Therefore the null space must be trivial
since we assume (M̃n, g̃) does not split, which leads to a family of strictly plurisub-
harmonic function on (Mn, g). Consider the heat deformation of max(0, β(x)) we
may assume there exists a strictly plurisubharmonic function φ such that

0 ≤ φ(x) ≤ C(d(x,O) + 1) (B.4)
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for some constant C.
Step 2: The detailed construction of holomorphic functions and canonical

sections by the L2-method.
Fix any point p on M and denote (Vp, z) a holomorphic coordinates, we

may assume that p ∈ U ⊂ W ⊂ {z ∈ Vp | |z| < 1} ⊂ Vp where both U and W are
open neighborhoods at p. Define χp(x) = ρ(x) log |z(x)|2 where ρ(x) : M → R a
smooth function with ρ(x) = 1 on U and ρ(x) = 0 outside W . Note that χp(x) is
now a well-defined smooth function on the whole M.

Fix d0 ∈ Z and pick d ∈ Z large enough, we define ξ(x) = zα + O(|z|d+1)

where α is a multi-index and |α| = d0 inside {z ∈ Vp | |z| < 1}, Note that ξ(x)

is holomorphic inside {z ∈ Vp | |z| ≤ 1}, now extend it smoothly such that ξ = 0

outside {z ∈ Vp | |z| < 2}. It is clear that ξ(x) is well-defined and ∂̄ ξ is a (0, 1)

form on M.
Let µ = d + m + 2, we claim that there exists a continuous function ε :

M→ [0, 1] such that
√−1∂∂̄ [µ(φ(x) + χp(x))] ≥ ε(x) ωg, (B.5)

and ∫

M

1

ε(x)
|∂̄ ξ|2e−µ(φ(x)+χp(x))ωn

g < ∞. (B.6)

Indeed since φ(x) is strictly plurisubharmonic it is easy to find a continuous
function ε(x) satisfying (B.5) and (B.6). Note that ε(x) will be positive inside U

and outside W . Thought it may have zeros inside W \ U , (B.6) holds since ∂̄ ξ

vanishes inside {z ∈ Vp | |z| ≤ 1}.
Now applying Theorem B.0.5 to the trivial line bundle L = M× C1 and

the equation ∂̄η = ∂̄ξ, we conclude that there exists a smooth function onM such
that: ∫

M
|η|2e−µ(φ(x)+χp(x))ωn

g < ∞. (B.7)

First we note that (B.7) and our choice of µ implies that η has to vanish
up to the order d + 1; Second it follows from (B.7) and there exists a constant C1

(B.4) which depends on C and µ such that∫

M
|η|2ωn

g < eC1(d(x,O)+1). (B.8)
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Denote f = ξ − η then we get a nontrivial holomorphic function which has
vanishing order d0. Moreover, there exists some constant C2

∫

M
|f |2ωn

g < eC2(d(x,O)+1), (B.9)

where we make use the assumption that ξ is compact supported.
Now it follow from the mean value inequality of holomorphic function that

for some constant C3

|f | < eC3(d(x,O)+1). (B.10)

That is to say f is of at most Hardamard’s order 1.
It is direct to see that the same argument works if we choose E = KM to

be the canonical line bundle over M. In this case, we will get nontrivial canonical
section with Hardamard’s order no more than 1.

Step 3: The alternative of the transcendence degree: K(Mn) = 0 or n.
Suppose there exists a nonconstant holomorphic function of polynomial

growth on M, say f0. It is well known that log(|f0|2 + 1) is a smooth plurisub-
harmonic function. Considering the heat deformation of log(|f0|2 + 1) as Step 1,
the result of Ni and Tam will imply that we can get a strictly plurisubharmonic
function on M, then we can apply L2 method as in Step 2 to construct holomor-
phic functions with precised local expansion at any given point p. It follows from
Proposition 5.1 (p.940 in [81]) that K(Mn) = n. Moreover, Corollary 0.1 in [81]
implies that π1(M) is finite.
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