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Reliability and Validity of Bilateral Ankle Accelerometer
Algorithms for Activity Recognition and Walking Speed

After Stroke
Bruce H. Dobkin, MD; Xiaoyu Xu, BS; Maxim Batalin, PhD; Seth Thomas, BS; William Kaiser, PhD

Background and Purpose—Outcome measures of mobility for large stroke trials are limited to timed walks for short
distances in a laboratory, step counters and ordinal scales of disability and quality of life. Continuous monitoring and
outcome measurements of the type and quantity of activity in the community would provide direct data about daily
performance, including compliance with exercise and skills practice during routine care and clinical trials.

Methods—Twelve adults with impaired ambulation from hemiparetic stroke and 6 healthy controls wore triaxial
accelerometers on their ankles. Walking speed for repeated outdoor walks was determined by machine-learning
algorithms and compared to a stopwatch calculation of speed for distances not known to the algorithm. The reliability
of recognizing walking, exercise, and cycling by the algorithms was compared to activity logs.

Results—A high correlation was found between stopwatch-measured outdoor walking speed and algorithm-calculated
speed (Pearson coefficient, 0.98; P�0.001) and for repeated measures of algorithm-derived walking speed (P�0.01).
Bouts of walking �5 steps, variations in walking speed, cycling, stair climbing, and leg exercises were correctly
identified during a day in the community. Compared to healthy subjects, those with stroke were, as expected, more
sedentary and slower, and their gait revealed high paretic-to-unaffected leg swing ratios.

Conclusions—Test–retest reliability and concurrent and construct validity are high for activity pattern-recognition
Bayesian algorithms developed from inertial sensors. This ratio scale data can provide real-world monitoring and
outcome measurements of lower extremity activities and walking speed for stroke and rehabilitation studies. (Stroke.
2011;42:2246-2250.)
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Randomized clinical trials to lessen physical impairments
and disabilities with interventions for acute stroke and

for rehabilitation usually include surrogate measurements of
real-world, mobility-related activities. For example, the
laboratory-based 10-m walking speed and the distance
walked in 2 to 6 minutes are often used to assess walking
ability and capacity. These tools are supplemented by ordinal
disability scales, such as the Modified Rankin Scale and
Functional Independence Measure.1–6 Quality-of-life question-
naires, such as the Stroke Impact Scale,7 add a subject’s
perception about daily activity and participation. These are
indirect measures in that they do not quantify activity or walking
speed and distance as actually performed outside the laboratory.
Levels of exercise and mobility are remarkably low during
rehabilitation and in daily life after stroke, and are associated
with poor cardiovascular fitness.8 Efforts to augment physical
training and skills learning to optimize walking speed,9 balance,
distances walked, and fitness could improve daily functioning,

reduce risk factors for recurrent stroke,10 and possibly improve
aspects of cognition that often decline with stroke and aging.11,12

One confounding problem in the development of such interven-
tions has been the absence of ratio scale tools to continuously
identify in patients the type, quantity, and aspects of the quality
of practice and activities outside of the clinic.

Direct measurements of activity and mobility in the home
and community would offer greater ecological validity about
the efficacy of poststroke interventions,13 as well as provide
feedback about practice and activity to encourage compli-
ance. For mobility-related outcomes, inexpensive single ac-
celerometers that serve as movement counters have been
deployed to reveal the number of steps taken outside of the
laboratory, but these devices are limited in their accuracy and
cannot assess walking speed, distance, gait variations under
changing environmental conditions, or describe asymmetries
between the hemiparetic and less affected leg as a measure of
quality of gait.9,14
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The cost of more sophisticated sensor technologies, such as
multiple triaxial accelerometers, is rapidly decreasing. Algo-
rithms enable raw inertial data to provide more specific
information, such as walking speed, stair climbing, and leg
exercise.15–18 Using newly developed mathematical algo-
rithms with machine-learning computations, we tested the
reliability of wireless triaxial accelerometers placed on each
ankle of healthy subjects and those with hemiparesis after
stroke to accurately detect all bouts of walking, along with
walking speed and lower extremity exercise in the
community.

Subjects and Methods
A convenience sample was recruited from the Southern California
Stroke Association. Participants met entry criteria of hemiparesis,
having no better than movement against light resistance at the hip
flexors and knee extensors and independent walking in the home.
Exclusion criteria included lower extremity contractures or pain,
cardiopulmonary disease that limited exercise tolerance, and recent
medical complications. Descriptors appear in Table 1. The healthy
controls were a convenience sample of 3 males and 3 females aged
30 to 60 years old (mean, 40 years). The study was approved by the
Institutional Review Board.

Accelerometry Procedures
Wireless triaxial accelerometers, attached by Velcro (3M Corpora-
tion, St Paul, MN) to a soft snap band, were placed above each ankle
on the bony tibia, 3 cm above the medial malleous, with the lateral
edge flush against the anterior border of the tibia (Figure) to prevent
displacement. The y-axis is vertical. We used low-cost ($130),
100-g, 1�2�5-cm annular devices (Gulf Coast Data Concepts) with
a USB port for charging and downloading. The sampling rate was
320 Hz.

Subjects performed stopwatch-timed 50-ft walks at slow, casual,
and fastest speeds on a flat indoor surface. All walks began with 1
foot behind the other that was on the start line. After saying “ready,
go,” the stopwatch started when the hind foot first crossed the start
line, and then stopped when the lead foot first crossed the end line.
Subjects used usual assistive devices. This test of walking speed
served as a template for the initial activity pattern-recognition
algorithm of the raw sensor data for each subject (Table 2). The
subjects then walked from the clinic to the outdoors. For subjects
2 to 9, this �300-ft untimed walk (Supplemental Table I,
http://stroke.ahajournals.org) included crossing a 4-lane (62-ft-wide)
street with a traffic light. On a sidewalk with pedestrians and

automobile traffic 15 ft on 1 side, subjects walked at their usual
speed for 67 ft twice, and then continuously with a turn on the 67-ft
course (134 ft). Each segment was timed by a stopwatch and served
as the ground truth for comparison with subsequent calculations by
the algorithms. Subjects wore the sensors home for the next 24 hours
when out of bed. They kept a log of mobility activities. This checklist
included walking in the home, community, or at work, and kitchen
tasks, dressing, sitting, and exercising.

The healthy control subjects performed three 50-ft timed walks at
slow to fast speeds and ascended and descended 5 stairs for the
baseline template of activity. They also wore ankle sensors and kept
a log for 24 hours of activity.

Statistics
The sensor data were analyzed by machine-learning algorithms with
no knowledge of the distance walked for the timed 67-ft outdoor test.
A blinded observer compared a printout of the bins of activity
derived from the algorithm to the time slots of activity in each
participant’s log. For the primary reliability experiment of repeated
measures of outdoor walking speed and for the primary concurrent
validity study of stopwatch-timed versus algorithm-timed outdoor
67-ft walks, we used the Pearson correlation coefficient. The error
SD was the SD of the differences between the methods. The bias was
the mean of these differences. The mean absolute deviation was
computed by taking the differences between the methods for each
observation and then computing the absolute value and the mean.
The same statistic was used for comparing observer counts of steps
taken to accelerometer step counts during the transition from testing
indoors to walking to the outdoor 67-ft course in subjects 2 to 9.

Sensor Analysis System
The Medical Daily Activity Wireless Network (MDAWN) was
designed as a complete architecture to identify and quantify purpose-
ful leg movements. The accelerometer signal processing and activity
state classification system includes components for automated sensor
data collection, transport to a secure remote repository, individual-
ized subject model development, and classification by sensor fusion
analysis principles.19,20 The system is hosted at the MDAWN
DataServer at University of California Los Angeles.21,22 The naive
Bayes classifier relies on a probabilistic model of inertial data
features, classes, and their relation. The feature extraction step for

Table 1. Subjects With Stroke

Subject Age/Gender
Side of

Hemiparesis
Assistive
Device

Time Since
Onset (mo)

1 64/M L . . . 2

2 58/F L Cane 3

3 73/F L . . . 28

4 68/M L Cane, AFO 90

5 42/F L Cane 2

6 48/M R Cane, AFO 5

7 55/F R Cane, AFO 25

8 69/M R AFO 13

9 72/M R Cane 4

10 36/M L . . . 35

11 71/M R . . . 112

12 51/M R . . . 8

AFO indicates ankle–foot orthosis; F, female; L, left; M, male; R, right.

Figure. Accelerometers held firmly above the ankles.
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each subject state summarizes time domain data from each sensor
into a vector derived from the unique frequencies, amplitudes, and
waveforms of accelerations and decelerations, and time averages and
derivatives. Approximately 10 repetitions of a purposeful movement
or 2 walks of 10 m at �1 speed fulfill the requirements. In addition
to feature extraction, the machine-learning process includes Gauss-
ian discretization of features into model-free clusters, followed by
maximum likelihood estimation for real-time classification. Thus,
the 50-ft indoor walk provided subject-specific accelerometer data.
The machine-learning algorithms developed unbiased discrete clas-
sification patterns and were trained on subsequent sensor data. We

defined the 50-ft walks as walking at a particular speed based on
stopwatch results. The algorithms subsequently identified specific
sensor patterns, such as walking and the velocity used, or identified
other discrete patterns that were yet to be named.

Results
All subjects donned the accelerometer snap bands without
slippage or reported problems about use for 1 day. No
artifacts accompanied the data.

Walking Speed
The fast, usual, and slow 50-ft indoor walking speeds for
hemiparetic subjects are shown in Table 2 (second column).
Based on the algorithm derived from this baseline sensor
data, subsequent walking activity and speeds were calculated
for the outdoor timed walks by MDAWN. Table 2 shows the
primary concurrent validity comparison between stopwatch-
timed and algorithm-derived outdoor walking speeds, as well
as their relationship to the indoor range of walking speeds.
The Pearson correlation between stopwatch-measured out-
door walking speed and algorithm-calculated walking speed
was 0.98 (P�0.001), with a mean absolute deviation of 0.045
(6.7% of the average speed of 0.67), a bias of 0.01, and an
error SD of 0.05. No outliers were found. Concurrent validity,
then, was high (P�0.001). In addition, the test–retest reli-
ability for these walks performed 3 times by subjects 1 to 9
was high (P�0.01), with no outliers (Table 2). In retrospect,
subjects who walked �0.8 m/sec (unlimited community
walkers)23 showed the widest range of indoor walking speeds
from slow to fast. Walking speeds crossing the 62-ft-wide
pedestrian street for 2 of 6 subjects who were timed (not
shown) were 11% and 15% faster than their fastest walking
speed timed indoors, 2 were within 5%, and 2 were 10% and
16% slower.

For the 6 healthy subjects (data not shown), the Pearson
correlation was 0.98 (P�0.001), revealing concurrent validity
of outdoor speed measures. The significant difference in
mean walking speeds between healthy subjects and those
with stroke supports the construct validity of the algorithms.

Walking Activity
During the transition from the indoor to outdoor walkway, the
steps taken by subjects 2 to 9 were counted by an investigator
and, later, calculated by the algorithm, along with walking
speed. The step counts highly correlated (0.99) with each
other, with no outliers. Walking speeds are shown in Supple-
mental Table I (Transition to Outdoors column). These
speeds were similar to the usual walking speed during the
50-ft timed walk for most subjects, providing additional
construct validity. All subjects then wore their accelerometers
for 1 day. Supplemental Table I shows walking during home
and community activity. Bouts of walking were defined as a
minimum of 5 strides and identified by the activity pattern-
recognition algorithm. Speeds varied over the day within
subjects but were within the range of the slow-to-fast 50-ft
indoor velocities (Table 2). The time spent walking, mean
duration of bouts (28–77 seconds), and number of steps taken
(383–5880) varied across subjects. Subject 10, the fastest
walker, was the only person who achieved the mean number
of steps taken daily by our healthy subjects (�9000). The

Table 2. Range of Walking Speeds of Subjects With Stroke
Who Were Instructed to Walk at Fast, Usual, and Slow Speeds

Subject
50-ft Indoor

Speed (m/sec)
Outdoor, Ground

Truth (m/sec)
Outdoor, Calculated

From Algorithm (m/sec)

1 0.47 F 0.54 0.49

0.46 U 0.51 0.48

0.41 S 0.50 0.48

2 0.59 F 0.58 0.57

0.55 U 0.57 0.56

0.60 S 0.62 0.61

3 0.57 F 0.54 0.53

0.58 U 0.53 0.50

0.51 S 0.50 0.50

4 1.15 F 1.21 1.15

0.71 U 1.22 1.15

0.56 S 1.25 1.17

5 0.76 F 0.88 0.89

0.63 U 0.90 0.89

0.78 S 0.82 0.93

6 0.57 F 0.62 0.58

0.54 U 0.60 0.53

0.42 S 0.61 0.59

7 0.54 F 0.45 0.40

0.48 U 0.40 0.39

0.41 S

8 0.84 F 0.90 0.77

0.93 U 0.85 0.80

0.73 S 0.79 0.78

9 1.05 F 1.01 1.05

1.04 U 1.04 1.05

0.62 S 0.96 1.07

10 1.19 F 0.97 0.94

0.94 U

0.57 S

11 0.89 F 0.76 0.74

0.74 U

0.46 S

12 1.25 F 0.85 0.81

0.81 U

0.47 S

Outdoor walking speed was calculated by stopwatch (ground truth) vs
Medical Daily Activity Wireless Network algorithm for up to 3 bouts of
ambulation.

F indicates fast; S, slow; U, usual.
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construct validity of the algorithms was also revealed by the
uneven ratio of swing time of the affected lower extremity
compared to the unaffected one, which ranged from 1.1 to
1.7. Healthy subjects had normal ratios for the right leg
versus left leg of 0.95 to 1.05. Thus, this aspect of quality of
movement was identified.

Activity Detection
The pattern-recognition algorithms were annotated for the
time and type of each block of activity. The logs were then
compared for defined categories of mobility and exercise. For
the subjects with stroke, frequency profiles of walking
obtained from the sensors all took place within the time frame
of documented mobility-related activities. In addition, sta-
tionary bicycling, alternating leg lifts, and repetitive heel
slides while supine on a mat were identified by MDAWN. All
periods of mobility and lower extremity exercise were cor-
rectly categorized in healthy people as well, including walk-
ing and stationary bicycling at various speeds, jogging, and
stair climbing. Some repetitive leg movements could not be
classified at first. Sensor data were re-examined in relation to
the activity logs. Once the algorithm was given a definition of
the discrete classification of movement it had identified, it
correctly identified further bouts of elliptical machine exer-
cise and resistance exercise of the leg against an elastic band.
The findings support convergent validity for the algorithms
and logs.

Discussion
Using wireless ankle accelerometers, the MDAWN algo-
rithms identified walking speeds with high concurrent or
criterion validity (stopwatch versus algorithm) and test–retest
reliability (reproducibility of speed measures at different
times). MDAWN activity pattern recognition also had high
convergent or construct validity compared to logs in identi-
fying bouts of walking, cycling, and leg exercises. The results
held for disabled persons with hemiparesis and healthy
subjects. Cadence and distance walked also can be derived
from these data. We found additional construct validity in that
the speeds measured indoors and outdoors were similar
within subjects regarding the velocities used in the home and
community. In addition, participants with stroke, as expected,
walked slower, had shorter bouts of walking, and had higher
swing ratios compared to our convenience sample of healthy
subjects.16 As anticipated, subjects with stroke, especially
those who walked at slower speeds, were remarkably inactive
over 24 hours, as has been found by others.24,25 The face
validity of the measures derived from MDAWN seems high
as well, because ecologically sound assessments of real-
world, mobility-related activity have been a high priority for
rehabilitation.13 The results also confirm reports that the
laboratory-based walking speed may not replicate the habit-
ual walking speed of hemiplegic subjects when they move
about in the community.26

The algorithms provided insight into an aspect of quality of
gait by revealing the duration of swing times for each leg
under different conditions.9 Collectible parameters relevant to
the quantity of movement included repetitions per minute,
duration of bouts of activity, walking distance and cadence,

and ratio measures to permit calculation of means and
quartiles for this data. Thus, monitoring with the MDAWN
system provided generally unobtainable information about
poststroke daily mobility and exercise activities in the home
and community, despite the use of ankle–foot orthoses, canes,
and patterns of walking that differ markedly from that of
healthy persons.

Accelerometry has made inroads in subacute stroke and
rehabilitation outpatient studies to count steps of 1 leg, but
not for walking speed.3,27 Other algorithms have distin-
guished a limited set of activities28 or identified the step
cycle.16 The machine-learning algorithms of the MDAWN
system overcame some of the limitations of commercial
monitors.15,17 These systems use proprietary analytics that
limit their flexibility for research and the sensors are too
expensive and fragile to distribute to participants in clinical
trials. Available systems do measure cadence, step time, and
speed, and have high repeatability (intraclass correlation
�0.9) and interobserver reliability (intraclass correlation
�0.8) across all ages and genders, unless accelerometry
signals are collected at �180 Hz.

The results move forward the ability of clinical trialists to
make reliable measurements of the type, quantity, and aspects
of quality of physical activities. New tools like MDAWN can
augment ordinal scales by assessing not only the perception
or capacity for an activity but also what patients actually
perform daily. Patients after stroke often overestimate their
level of daily activity.29

Although this pilot study begins to establish the reliability
and validity of sensor activity recognition and quantification,
we did not attempt an in-depth analysis of this convenience
sample. To fully capture the typical amount of daily ambu-
lation and range of activities, 5 to 7 days of acquisition are
necessary.30 An additional sensor attached to the chest or
thigh, as well as global positioning satellite and gyroscope
data, can add capabilities as needed. Algorithms can fuse
these data.

Using inertial sensors with recognition algorithms, future
studies could remotely monitor the fidelity and quantity of
skills practice after stroke for rehabilitation trials31 and
compliance with fitness recommendations. Remote monitor-
ing may allow more patients to participate in trials at low
costs.32 Continuous recordings may reveal the trajectory of
gains in lower extremity activities, enable dose–response
curves for interventions, and detect declines in activity as an
early warning of disease exacerbation.

Conclusions
The MDAWN system enables the direct evaluation of walk-
ing and other physical activities of patients in the community,
rather than evaluation solely by surrogate laboratory mea-
surements and questionnaires. This tool may offer inexpen-
sive, quantifiable, clinically meaningful monitoring and out-
come data for randomized clinical trials and individual care.
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