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JUMP OPERATIONS FOR BOREL GRAPHS

ADAM R. DAY AND ANDREW S. MARKS

Abstract. We investigate the class of bipartite Borel graphs organized by the
order of Borel homomorphism. We show that this class is unbounded by finding
a jump operator for Borel graphs analogous to a jump operator of Louveau
for Borel equivalence relations. The proof relies on a non-separation result for
iterated Fréchet ideals and filters due to Debs and Saint Raymond. We give a
new proof of this fact using effective descriptive set theory. We also investigate
an analogue of the Friedman-Stanley jump for Borel graphs. This analogue
does not yield a jump operator for bipartite Borel graphs. However, we use it to
answer a question of Kechris and Marks by showing that there is a Borel graph
with no Borel homomorphism to a locally countable Borel graph, but each of
whose connected components has a countable Borel coloring.

1. Introduction

The study of Borel graphs and their combinatorial properties is a growing area
of research which has developed at the interface of descriptive set theory and
combinatorics, and has connections with probability, ergodic theory, and the study
of graph limits. The first systematic study of Borel graphs was the paper of
Kechris, Solecki and Todorcevic [4], and [5] is a recent survey of the field. We
largely follow the conventions and notation from [5]. A Borel graph G on X is a
graph whose vertex set X is a Polish space, and whose edge relation G is Borel.
We will typically abuse notation and identify a graph with its edge relation.

Suppose G andH are graphs on the vertex setsX and Y . Then a homomorphism
from G to H is a function h : X → Y such that ∀x, y ∈ X(xGy =⇒ h(x)Hh(y)).
That is, f maps adjacent vertices in G to adjacent vertices in H. In classical
combinatorics, the book of Hell and Nešetřil [3] is a good introduction to the
theory of graph homomorphisms.

If G and H are Borel graphs on X and Y , then we write G �B H if there is a
Borel homomorphism h : X → Y from G to H. Borel homomorphisms play a key
role in the study of Borel colorings of Borel graphs. Recall that a Borel coloring
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2 ADAM R. DAY AND ANDREW S. MARKS

of a Borel graph G on a Polish space X is a Borel function c : X → Y to a Polish
space Y such that ∀x, y ∈ X(xGy =⇒ c(x) 6= c(y)). So for example, if we take
a complete graph on n vertices Kn, then G �B Kn if and only if G has a Borel
n-coloring. More generally, if there is a Borel homomorphism from G to H, then
composing this homomorphism with a Borel coloring of H yields a Borel coloring
of G. Thus, the problem of definably coloring G is no more difficult than coloring
H. In an early breakthrough result, Kechris, Solecki and Todorcevic [4] isolated a
canonical graph G0 having no Borel ω-coloring such that for every Borel (indeed,
analytic) graph G, either G has a Borel coloring with countably many colors, or
G0 �B G. Hence, G0 is the canonical obstruction to an analytic graph having
countable Borel chromatic number.

In this paper, we study the class of Borel graphs organized under �B. We can
view �B as a general way of organizing all Borel graphs by the relative difficulty
of definably solving problems on them, such as coloring, where solutions can be
pulled back under homomorphisms.

An important subclass of the Borel graphs is the bipartite graphs, or equiv-
alently, the graphs with no odd cycles. Such graphs are of particular interest
in descriptive set theory since they isolate the descriptive-set-theoretic difficulties
that occur in definably coloring Borel graphs, from the difficulties that arise if
the graph has high classical chromatic number (a graph has classical chromatic
number > 2 if and only if it is not bipartite). For example, the graph G0 is acyclic
and hence it is classically 2-colorable.

Note that there may be no Borel witness to the bipartiteness of a bipartite Borel
graph. Indeed, Borel graphs G that do possess such a witness are trivial in the
since that both G �B K2 and K2 �B G where K2 is the complete graph on two
vertices.

One of our main theorems is that the class of bipartite Borel graphs is unbounded
under �B. In contrast, note that among all Borel graphs, there is a trivial exam-
ple of a maximal Borel graph under �B, specifically, the complete graph on any
uncountable Polish space.

Our proof of this theorem is inspired by a jump operator of Louveau which
comes from the theory of Borel reducibility between Borel equivalence relations
[7]. If G is a Borel graph on a Polish space X, define G∗ to be the Borel graph
defined on Xω where

xG∗y ↔ ∃n∀i ≥ n(x(i)Gy(i)).

We show this induces a jump operation on bipartite Borel graphs organized under
�B. Note that if G is bipartite, then so is G∗.

Theorem 1. Let G be a nontrivial bipartite analytic graph. Then G �B G∗ and
G∗ �B G.

By nontrivial, we mean that G has at least one edge. Our theorem here in fact
generalizes to G which are triangle-free.
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Our proof of Theorem 1 requires an analysis of iterated Fréchet filters that differs
from that in [7]. In particular, our proof uses the following theorem due to Debs
and Saint Raymond.

Theorem 2 ([1, Theorem 3.2, proof of Theorem 6.5]). Let Fα, Iα ⊆ P(ω) be the αth

iterate of the Fréchet ideal and Fréchet filter. Then Iα and Fα cannot be separated
by Π0

α+1 sets (but they can be separated by disjoint Σ0
α+1 sets).

In Section 4, we give a new proof of this theorem which uses different methods
than [1]. In particular, it uses effective descriptive set theory and an analysis of
suitably chosen generic reals.

A more well-known jump operation on Borel equivalence relations is the Friedman-
Stanley jump [2]. We can also define an operation on Borel graphs similar to the
Friedman-Stanley jump. Suppose G is a Borel graph on a Polish space X. Define
X+ ⊆ Xω by x ∈ X+ if i1 6= i2 implies x(i1) and x(i2) are in different connected
components of G. Now we define the Borel graph G+ on X+ by:

xG+y ↔ ∀i∃j(x(i)Gy(j)) ∧ ∀i∃j(y(i)Gx(j)).

Now it is easy to see that if G is a Borel graph with countably many connected
components, then there is a Borel homomorphism from G+ to G; take a Borel
ordering < on the connected components of G of ordertype ω, and then define a
homomorphism h from G+ to G by letting h(x) be the <-least x(j) in the sequence
(x(i))i∈ω. Similarly, for such a G, there is a Borel homomorphism from G++ (which
has continuum many connected components) to G+. Characterizing the Borel
graphs G such that G+ �B G remains an open question. However, we show that
in at least one special case G+ �B G: when G is a nontrivial locally countable
bipartite Borel graph with meager connectedness relation. More generally,

Proposition 3. Suppose G is a Borel graph on a Polish space X whose connect-
edness relation is meager and there is a Borel homeomorphism T : X → X such
that T (x) G x for every x ∈ X. Then for every locally countable Borel graph H,
G+ �B H.

We use this proposition to prove the following theorem, which answers a question
of Kechris and Marks [5, Section 3.(H)]:

Theorem 4. There is a Borel graph G such that for any connected component C of
G, G � C has a Borel ω-coloring. However, there is no Borel graph homomorphism
from G to a locally countable Borel graph.

The paper is organized as follows. In Section 2, we use a Baire category argument
to prove a lemma about the Friedman-Stanley jump for Borel graphs, and then
use this to prove Theorem 4. In Section 3, we prove Theorem 1 about the Louveau
jump, modulo Theorem 2. Finally, in Section 4, we prove Theorem 2 concerning
how hard it is to separate the iterated Fréchet ideal and filter, using effective
descriptive set theory.
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2. A Friedman-Stanley Jump for Borel Graphs

We begin by considering the jump G 7→ G+ for Borel graphs defined above.
First, we show that Proposition 3 implies Theorem 4.

Proof of Theorem 4: Let T : X → X be a fixed-point free Borel homeomorphism
of a perfect Polish space X, which induces the Borel graph GT on X where x GT y
if T (x) = y or T (y) = x. Let G = (GT )+. Now if C is a connected component of
G, then fixing some y ∈ C, map each x ∈ C to the unique x(i) such that x(i) is in
the same G-component as y(0). This is a countable Borel coloring, since connected
components of G are countable. However, there is no Borel homomorphism from
G to a locally countable Borel graph H by Proposition 3. �

We now use a Baire category argument to prove Proposition 3.

Proof of Proposition 3: A basis for Xω consists of the basic open sets NU0,...,Uk−1
=

{x ∈ Xω : ∀i < k(x(i) ∈ Ui)}, where U0, . . . , Uk−1 ⊆ X are open. Here we say
NU0,...,Uk−1

restricts coordinates less than k. Let H be a locally countable Borel
graph on a Polish space Y . By changing the topology on Y , we may assume
that H is generated by countably many Borel homeomorphisms S0, S1, . . . (see [6,
Exercise 13.5]).

Suppose that p : ω → ω is bijection. Then define the function Tp : Xω → Xω by

Tp(x)(n) = T (x(p(n)))

for all n ∈ ω. Note that since T is a homeomorphism, Tp is a homeomorphism
which sends basic open sets to basic open sets, and Tp(x) G+ x for every x ∈ X+.

Suppose h is a Borel function from X+ to Y . We will use a Baire category
argument to show that h is not a homomorphism from G+ to H. Note that X+

is a comeager subset of Xω, since the connectedness relation of G is meager. Fix
a comeager set C ⊆ X+ such that h � C is continuous ([6, Theorem 8.38]). Our
proof breaks down into three cases.

Case 1: Assume that h � C is constant on some open set U . We will find x, y ∈ U
such that x G+ y, but h(x) = h(y). We may assume U is basic open and restricts
coordinates less than k. Let p : ω → ω be the permutation which swaps the interval
[0, k) with the interval [k, 2k):

p(n) =


n+ k if n < k

n− k if k ≤ n < 2k

n if n > 2k.

Then T−1p (U) is a basic open set which restricts coordinates in [k, 2k), and so

V = T−1p (U) ∩ U 6= ∅. We claim that comeagerly many x ∈ V have h(x) =
h(Tp(x)). This is because h � C is constant on U , and since C ∩ U is comeager
in U and Tp is a homeomorphism, T−1p (C ∩ U) is comeager in T−1p (U). Hence
comeagerly many x ∈ V have x ∈ C and Tp(x) ∈ C, and so h(x) = h(Tp(x)).
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Case 2: There is a basic open set U = NU0,...,Uk−1
, such that the value of h � C

on x ∈ NU0,...,Uk−1
depends only on the first k coordinates of x, but h � C is not

constant on any open set. That is, if we take any two basic open neighborhoods
NV0,...,Vn , NV ′0 ,...,V

′
n
⊆ NU0,...,Uk−1

where Vi = V ′i for i < k, then h(C ∩ NV0,...,Vn) ∩
h(C ∩ NV ′0 ,...,V

′
n
) 6= ∅. In this case, we will find x, y ∈ U such that y = Tp(x) and

so x G+ y, but h(x) ��H h(y).
Let p be the permutation above which swaps the interval [0, k) with [k, 2k). Let

V = U ∩ T−1p (U) which is a nonempty open set. Let Am = {x ∈ X+ : Sm(h(x)) 6=
h(Tp(x))}. It suffices to show that each Am is comeager in V , since then the set
of x such that h(x) ��H h(Tp(x)) is comeager in V . Fix m ∈ ω. Given an arbitrary
open subset W ⊆ V , it suffices to show that Am is nonmeager in W . Since h � C
is continuous and not constant on any open set and Sm is a homeomorphism, we
can find open sets W0,W1 ⊆ W such that Sm(h(C ∩W0)) ∩ h(C ∩ Tp(W1)) = ∅.
By refining, we may assume that W0 and W1 are basic open sets. But since h � C
depends only on the first k coordinates, we may assume W0 and Tp(W1) restrict
only coordinates less than k, and so W1 only restricts coordinates in [k, 2k). Thus,
W0 ∩W1 is open and nonempty, and comeagerly many x in W0 ∩W1 are in Am.

Case 3: Assume Case 1 and Case 2 do not occur. In this case, instead of specifying
a particular permutation p : ω → ω and considering h applied to a generic x and
Tp(x), we will consider a generic permutation p. More precisely, let Y ⊆ ωω be
the closed set of injective functions from ω → ω. A basis for Y consists of the sets
Nq = {p ∈ Y : p ⊇ q} for some finite partial injection q. Now the set of p ∈ Y such
that p is a bijection from ω to ω is dense Gδ. To complete the proof, we will show
that comeagerly many (x, p) ∈ X+ × Y have the property that h(x) ��H h(Tp(x)).

For each n, let Bn = {(x, p) ∈ X+ × Y : Sn(h(x)) 6= h(Tp(x))}. It suffices to
show that Bn is nonmeager in every open set U×V ⊆ X+×Y . By refining, we may
assume there is some k so that U is a basic open set which restricts coordinates
less than k, and V is a basic open set of the form V = Nq where q is a finite partial
injection with dom(q) = ran(q) = k.

Because U only restricts coordinates less than k, and dom(q) = ran(q) = k we
have that for all p, p′ ∈ Nq, Tp(U) = Tp′(U). Hence we can define Tq(U) to be this
common value (though q is only a finite partial function). This can be done in any
situation where the range and domain of q include all coordinates restricted by a
basic open set U .

Let W = Tq(U). We claim that there are basic open sets U ′ ⊆ U and W ′ ⊆ W ,
q′ ⊇ q and k′ such that:

(i) dom(q′) = ran(q′) ≥ k′.
(ii) U ′ and W ′ only restrict coordinates less than k′.

(iii) Tq′(U
′) ∩W ′ 6= ∅.

(iv) Sn(h(U ′ ∩ C)) ∩ h(W ′ ∩ C) = ∅.
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We establish this claim as follows. Since we are not in Case 1 or Case 2, we can
find basic open U1 = NV0,...,Vj and U2 = NV ′0 ,...,V

′
j

with U1, U2 ⊆ U such that Vi = V ′i
for all i < k, and h(U1∩C)∩h(U2∩C) = ∅. Hence, Sn(h(U1∩C))∩Sn(h(U2∩C)) = ∅
since Sn is a homeomorphism. Let U∗ = NV0,...,Vk−1

. We can find a basic open
W ′ ⊆ Tq(U

∗) such that h(W ′∩C) is disjoint from Sn(h(Ui∩C)) for some i ∈ {0, 1}.
Let U ′ = Ui and so part (iv) of the claim holds. As U∗ ⊆ U , this definition of W ′

ensures that W ′ ⊆ W . Let k′ be such that W ′ and U ′ do not restrict coordinates
less than k′.

Let c = k′ − k. Define q′ as follows

q′(i) =


q(i) if i < k

i+ c if k ≤ i < k + c

i− c if k + c ≤ i < k + 2c.

It remains to show part (iii) of the claim. If Tq′(U
′)∩W ′ = ∅ then these sets must

place incompatible requirements on some coordinate. By construction of q′, this
coordinate must be less than k (as W ′ restricts coordinates in [0, . . . , k + c) and
Tq′(U

′) restricts coordinates in [0, . . . , k)∪ [k+ c, . . . , k+ 2c)). However this is not
the case as W ′ ⊆ Tq(U

∗) and Tq(U
∗) places the same restrictions on coordinates

less than k as does Tq(U
′).

Now using the claim we will complete the proof. Let r be the inverse of q′.
Take any p ∈ Nq′ . Take any x ∈ U ′ ∩ Tr(W ′). If x is also in the comeager set
C ∩ T−1p (C), then Tp(x) ∈ W ′ ∩ C and x ∈ U ′ ∩ C. Hence Sn(h(x)) 6= h(Tp(x)).
Thus for comeagerly many x ∈ U ′ ∩ Tr(W ′) we have that (x, p) ∈ Bn. Thus
Bn ∩ ((U ′ ∩ Tr(W ′))×Nq′) is comeager and so Bn is nonmeager in U × V .

�

3. The Louveau jump for Borel graphs

In this section, we consider the Louveau jump G 7→ G∗ defined in the introduc-
tion, and we prove Theorem 1, that if G is a bipartite Borel graph, there is no Borel
homomorphism from G∗ to G. Note that among all graphs, there is not always
a homomorphism from G∗ to G (consider the G that is the disjoint union of the
complete graphs Kn for every n). However, if G is bipartite, then using the axiom
of choice we can always find a homomorphism from G∗ to G. This is because if
G∗ has a cycle of length n, then G clearly has a cycle of length n. Hence, if G is
bipartite, then G∗ is also bipartite, so using choice we can find a homomorphism
of G∗ into any two vertices of G connected by an edge.

Like Louveau’s argument in [7], our proof will involve potential complexity in a
key way. Recall that if Γ is a class of subsets of Polish spaces, X is a Polish space
with topology τ , and A ⊆ X ×X, then A is said to be potentially Γ if there is a
Polish topology τ ′ on X inducing the same Borel σ-algebra as τ such that A is Γ
as a subset of X×X with topology τ ′× τ ′. Louveau’s proof relies on the fact that
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if E and F are equivalence relations on Polish spaces X and Y and Γ is a class
of sets closed under continuous preimages, then if E ≤B F and F is potentially
Γ, then so is E. However, the analogous fact fails for Borel graphs under Borel
homomorphism: there are Borel graphs of arbitrarily high potential complexity
which admit Borel homomorphisms to Borel graphs of low potential complexity
(e.g. to K2). So instead, we will consider the complexity of separating pairs of
points of distance one and distance two.

Definition 5. If G is a graph on X, let DG,n be the set of pairs (x, y) ∈ X ×X
such that there is a path from x to y of length n in G.

For example, if G is an analytic triangle-free graph on a Polish space X, then
DG,1 and DG,2 are disjoint analytic sets which can therefore be separated by a
Borel set.

Proposition 6. Suppose G and H are triangle-free graphs on the Polish spaces X
and Y , and there is a Borel homomorphism from G to H. Then if DH,1 and DH,2

can be separated by a potentially Σ0
α (resp. Π0

α) set, then DG,1 and DG,2 can also
be separated by a potentially Σ0

α (resp. Π0
α) set.

Proof. Let h be a Borel homomorphism from G to H. By changing topology, we
may assume that h is continuous (see [6, Theorem 3.11]). Since h is a homo-
morphism, if there is a path from x to y in G of length n, then there is a path
from h(x) to h(y) in H of length n. Hence, the preimage of a set separating DH,1

and DH,2 under the function (x, y) 7→ (h(x), h(y)) will separate DG,1 and DG,2.
The result follows since the classes Σ0

α and Π0
α are closed under taking continuous

preimages. �

Next, we will define a transfinite way to iterate the operation G 7→ G∗. In what
follows, for each countable limit ordinal λ, let πλ : ω → α be an increasing and
cofinal function. For each successor ordinal α + 1, let πα+1 : ω → α + 1 be the
constantly α function. These functions will allow us to simultaneously handle limit
and successor cases in a uniform way.

Suppose (Gi)i∈ω is a countable sequence of graphs. Define (Gi)
∗ to be the graph

whose vertices are elements of
∏

iGi and such that x(Gi)
∗y if there exists an n

such that for all m > n we have x(m)Gmy(m). Now we define Gα for countable
ordinals α as follows.

G0 = G

Gα = (Gπα(n))∗ if α > 0

Note that under this definition, G1 = G∗.

Lemma 7. Let G and H be graphs. If there is a Borel homomorphism from G
to H, then for all countable ordinals α, there is a Borel homomorphism from Gα

to Hα. �
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Lemma 8. Let (Gi)i∈ω be a countable sequence of graphs. Assume for each i ∈ ω
that hi : Gi → G is a Borel homomorphism. Then there is a Borel homomorphism
from (Gi)

∗ to G∗.

Proof. Let X be the vertex set of G and Xi be the vertex set of Gi. Then define the
Borel homomorphism g :

∏
iXi →

∏
iX from (Gi)

∗ to G∗ by g(x)(n) = hn(x(n))
i.e. apply to the nth vertex in the sequence the mapping hn. Now assume that
x (Gi)

∗ y. Then for some n for all m > n we have that x(m) Gm y(m). Hence
hm(x(m)) G hm(y(m)) and so h(x) G∗ h(y). �

Lemma 9. If there is a Borel homomorphism from G∗ into G, then for all count-
able ordinals α, there is a Borel homomorphism from Gα into G.

Proof. If for all β < α there is a Borel homomorphism from Gβ to G, then by
the previous lemma, there is a Borel homomorphism from Gα to G∗. Now this
homomorphism can be composed with the homomorphism from G∗ to G to obtain
a Borel homomorphism from Gα to G. �

As usual, let us denote by K2 the complete graph on two vertices. The graphs
Kα

2 for countable ordinals α will play a key part in the main theorem of this section.
We will investigate these graphs further. First we will define the spaces on which
these graphs live. Inductively define Xα as follows.

X0 = 2

Xα =
∏
n

Xπα(n) if α > 0

It should be clear from the definition of Gα that Kα
2 is a graph on Xα. If α > 0,

then the space Xα is clearly homeomorphic to 2ω. We want to define a homeomor-
phism from Xα to 2ω that respects the manner in which Xα has been inductively
constructed. We define γα : Xα → 2ω inductively as follows.

(i) γ1 is the identity map.
(ii) For α > 1, we define γα(x) to be the sequence z such that for all m and

n, z(〈m,n〉) = (γπα(m)(x(m)))(n).

The edge relation on Kα
2 can be thought of in terms of the iterated Fréchet filter.

The α iterate of the Fréchet filter is a subset of Xα. It will be denoted by Fα and
it is defined inductively as follows.

F0 = {1}
Fα = {x ∈ Xα : ∃n∀m > n(x(m) ∈ Fπα(m))} if α > 0.

Note that F1 is the standard Fréchet, or cofinite, filter. Similarly we can define
the iterated Fréchet ideals.

I0 = {0}
Iα = {x ∈ Xα : ∃n∀m > n(x(m) ∈ Iπα(m))} if α > 0.
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If x, y are elements of 2ω then we denote by x∆y the binary sequence z where
z(n) = 0 if x(n) = y(n) and z(n) = 1 otherwise. The notation ∆ is used because
x∆y is the symmetric difference of x and y when x and y are considered as subsets
of ω under the standard bijection between 2ω and P(ω).

We can use the fact that Xα is homeomorphic to 2ω in order to induce a sym-
metric difference operation on Xα when α > 0. Define the operation ∆α on Xα by
x∆αy = z if and only if γα(x)∆γα(y) = γα(z). For the case α = 0, for x, y ∈ X0,
define x∆0y = 0 if x = y and x∆0y = 1 if x 6= y.

Since the homeomorphism γα is defined simply by permuting indices from a
product of infinitely many copies of 2 to yield 2ω, we have that symmetric difference
operation commutes with γα.

We will make use of the following properties of ∆α.

(i) The operation ∆α is associative and commutative.
(ii) x∆αx∆αy = y.

(iii) For all α > 0, (x∆αy)(n) = x(n)∆πα(n)y(n).
(iv) For all α, if x ∈ Iα, then x∆αy ∈ Fα if and only if y ∈ Fα.

The following lemma explains how to define the edge relation in Kα
2 using Fα.

Lemma 10. For all α and x, y ∈ Xα, xKα
2 y if and only if x∆αy ∈ Fα.

Proof. This result holds trivially for the case α = 0. Take α > 0 and assume the
result holds for all smaller ordinals. Consider x, y ∈ Xα. We have that

xKα
2 y ⇔ ∃n∀m > n(x(m)K

πα(m)
2 y(m))

⇔ ∃n∀m > n(x(m)∆πα(m)y(m)) ∈ Fπα(m)

⇔ ∃n∀m > n(x∆αy)(m) ∈ Fπα(m)

⇔ x∆αy ∈ Fα. �

Similarly, we have the following:

Lemma 11. For all α and x, y ∈ Xα, x∆αy ∈ Iα if and only if there is a path of
length 2 from x to y in Kα

2 .

Proof. Suppose xKα
2 z. By the above lemma, this is true if and only if x∆αz ∈ Fα.

Letting w = x∆αz, we have zKα
2 y if and only if z∆αy ∈ Fα. Finally, note that

z∆αy = (w∆αx)∆αy = w∆α(x∆αy) which is in Fα if and only if x∆αy ∈ Iα, since
w ∈ Fα. �

Lemma 12. Let C ⊆ 2ω be a comeager set. Then there is a continuous map
f : 2ω → 2ω × 2ω such that for all x:

(i) f0(x) ∈ C.
(ii) f1(x) ∈ C.

(iii) f0(x)∆f1(x) = x.
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Proof. Let (En) be a sequence of dense open sets such that
⋂
nEn ⊆ C. We will

use pn and qn to denote finite strings.
Fix x. Let p0 and q0 be the empty string ∅. Now given pn, take p′n+1 < pn,

such that Np′n+1
⊆ En. Define q′n+1 < qn so that for all i < |q′n+1|, x(i) = 1 if and

only if p′n+1(i) 6= q′n+1(i). Now take qn+1 < q′n+1, such that Nqn+1 ⊆ En. Define
pn+1 < p′n+1 so that for all i < |qn+1|, x(i) = 1 if and only if pn+1(i) 6= qn+1(i).

By induction, for all n, we have that pn+1 < pn, and qn+1 < qn. Let f0(x) =
limn pn and f1(x) = limn qn. Because we only used finitely many bits of x at
each stage of the construction, this construction gives a continuous map with the
desired properties. �

Lemma 13. For any α and any comeager set C in Xα, there is a continuous map
f : Xα → Xα ×Xα such that for all x:

(i) f0(x) ∈ C.
(ii) f1(x) ∈ C.

(iii) f0(x)∆αf1(x) = x.

Proof. This follows from the previous lemma and the fact that there is a homeomor-
phism γα : Xα → 2ω such that for x, y ∈ Xα, x∆αy if and only if γα(x)∆γα(y). �

We now have the following lemma:

Lemma 14. Suppose α < ω1. Then DKα
2 ,1

and DKα
2 ,2

can be separated by a
potentially Σ0

α set, but not by a potentially ∆0
α set.

Proof. By the above lemmas, we have DKα
2 ,1

= {(x, y) : x∆αy ∈ Fα}, and DKα
2 ,2

=
{(x, y) : x∆αy ∈ Iα}. Now the function (x, y) 7→ x∆αy is continuous and so by
Theorem 2, DKα

2 ,1
and DKα

2 ,2
can be separated by a potentially Σ0

α set.
Suppose there was a topology τ ′ on Xα so that DKα

2 ,1
and DKα

2 ,2
were separable

by a potentially ∆0
α set. Let τ be the usual topology on Xα. Then there is a

comeager set C on which the identity function id : (Xα, τ) → (Xα, τ ′) is continu-
ous. Let f0 and f1 be as in Lemma 13. Then id ◦ f0 and id ◦ f1 are continuous,
and taking the preimage of the separating set under x 7→ (id ◦ f0(x), id ◦ f1(x))
would separate Iα and Fα by a ∆0

α set, contradicting Theorem 2. �

We are now ready to prove (a slight generalization of) Theorem 1 from the
introduction.

Theorem 15. Let G be a triangle-free analytic graph on a Polish space, with at
least one edge. Then there is no Borel homomorphism from G∗ to G.

Proof. Since DG,1 and DG,2 are analytic sets, they can be separated by a Borel set
which is ∆0

β for some countable ordinal β. Let α be such that Fα and Iα are not

separable by a ∆0
β set.

Assume that there is a Borel homomorphism from G∗ into G. By Lemma 9,
there is a Borel homomorphism from Gα to G. By Lemma 7, there is Borel
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homomorphism from Kα
2 to Gα and hence a Borel homomorphism from Kα

2 to G.
By Proposition 6, this implies DKα

2 ,1
and DKα

2 ,2
can be separated by a Borel set

which is potentially ∆0
β, contradicting our choice of α. �

4. Separating the Iterated Fréchet Filters and Ideals

In this section, we give a new proof of Theorem 2.
We begin by proving that Fα and Iα can be separated by disjoint Σ0

α+1 sets. The
idea here is based on a trick for switching quantifier order which is encapsulated
in the following lemma.

Lemma 16. For each n, k ∈ N let An,k and Bn,k be disjoint Σ0
α subsets of a Polish

space Xn,k. Let

A = {x ∈
∏
Xn,k : (∃m)(∀n > m)(∃j)(∀k > j)(x(n, k) ∈ An,k)},

B = {x ∈
∏
Xn,k : (∃m)(∀n > m)(∃j)(∀k > j)(x(n, k) ∈ Bn,k)}.

Then there are A∗, B∗, disjoint Σ0
α+2 subsets of

∏
Xn,k such that A ⊆ A∗ and

B ⊆ B∗.

Proof. Let us define the sets

A′ = {x ∈
∏
Xn,k : (∃m)(∀n > m)(∀j)(∃k > j)(x(n, k) ∈ An,k)},

B′ = {x ∈
∏
Xn,k : (∃m)(∀n > m)(∀j)(∃k > j)(x(n, k) ∈ Bn,k)}.

The sets A′ and B′ are Σ0
α+2. Now A ⊆ A′ because if for some n there are

cofinitely many k such that x(n, k) ∈ An,k then there are infinitely many k such
that x(n, k) ∈ An,k. Also B∩A′ = ∅ because if there are infinitely many k such that
x(n, k) ∈ An,k, then there cannot be cofinitely many k such that x(n, k) ∈ Bn,k

(as An,k and Bn,k are disjoint). Similarly we have that B ⊆ B′ and A ∩ B′ = ∅.
Finally apply separation to obtain disjoint Σ0

α+2 sets A∗ and B∗ with A∗ ⊆ A′,
B∗ ⊆ B′, and A∗ ∪B∗ = A′ ∪B′. Hence A ⊆ A∗ and B ⊆ B∗. �

Lemma 17. For all α, Fα and Iα can be separated by disjoint Σ0
α+1 sets.

Proof. If α is 0, 1, or a limit ordinal then there is nothing to prove because the
sets Fα and Iα already have the required complexity.

If α = β + 1 where β is a limit ordinal, then

Fα = {x ∈ Xα : (∃m)(∀n > m)(∃j)(∀k > j)(x(n)(k) ∈ Fπβ(k))},
Iα = {x ∈ Xα : (∃m)(∀n > m)(∃j)(∀k > j)(x(n)(k) ∈ Iπβ(k))}.

As for all k, the sets Fπβ(k) and Iπβ(k) are disjoint Σ0
β, we can apply Lemma 16, to

find disjoint Σ0
α+1 sets that separate Fα and Iα.
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Finally, we need to consider the case that α is β + n where n ≥ 2 and β is a
limit ordinal or 0. In this situation we have that

Fα = {x ∈ Xα : (∃m)(∀n > m)(∃j)(∀k > j)(x(n)(k) ∈ Fβ+n−2)},
Iα = {x ∈ Xα : (∃m)(∀n > m)(∃j)(∀k > j)(x(n)(k) ∈ Iβ+n−2)}.

By induction we can assume that we have disjoint Σ0
β+n−1 sets A and B such that

Fβ+n−2 ⊆ A and Iβ+n−2 ⊆ B. Hence

Fα ⊆ {x ∈ Xα : (∃m)(∀n > m)(∃j)(∀k > j)(x(n)(k) ∈ A)},
Iα ⊆ {x ∈ Xα : (∃m)(∀n > m)(∃j)(∀k > j)(x(n)(k) ∈ B)}.

Thus again by Lemma 16 we have that Fα and Iα can be separated by disjoint
Σ0
α+1 sets. �

The next goal is to show that if α ≥ 1, the separation obtained in the previous
lemma is optimal. The case for α = 1 is simple.

Lemma 18. There do not exist disjoint Π0
2 sets A and B such that F1 ⊆ A and

I1 ⊆ B.

Proof. If F1 ⊆ A then A must be comeager (as any dense Π0
2 set is comeager). If

I1 ⊆ B then B is comeager. Hence A ∩B 6= ∅. �

For α > 1, our plan is to take x ∈ X1 and continuously encode x into an element
ρ(x) of Xα such that if x ∈ F1, then ρ(x) ∈ Fα and if x ∈ I1, then ρ(x) ∈ Iα. We
want to do this in such a way that, relative to some parameter p, x can uniformly
compute the αth iterate of the Turing jump of ρ(x) (or the (α− 1)th iterate of the
jump if α < ω). From this it will follow that if Fα and Iα are separable by ∆0

α+1

sets, then F1 and I1 are separable by ∆0
2(p) sets which we know by Lemma 18 is

impossible.
We will introduce some of the main ideas needed with an example. Let T be the

full ω-branching tree of height 2. Hence the nodes of T are all strings of natural
numbers of length 0, 1, or 2. We will denote the root of the tree by ∅. Given x
we are now going to label all nodes of T except ∅ with either 0 or 1. This is a
function f : T \ {∅} → 2. We will encode x at the first level of the tree so for all
i ∈ N, f(i) = x(i). At the second level of the tree, we will label nodes so that for

all i, limj f(i a j) exists and is equal to f(i). In order to complete our definition

of f we need some additional information as to what values f(i a j) should take
before the limit is reached. For this, we will take an additional function g that
maps from the nodes of T , that are neither the root nor a leaf, to 2<ω. For our
example tree, g is a function from nodes of length 1 to 2<ω. Now we can complete
our definition of f as follows. Fix i.

(i) If j < |g(i)|, then f(ia j) = g(i)(j).

(ii) If j = |g(i)|, then f(ia j) = 1− f(i).
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(iii) If j > |g(i)|, then f(ia j) = f(i).

Defining f(iaj) = 1−f(i) for j = |g(i)| allows us to recover g(i) from the function

j 7→ f(ia j).
Now consider f , restricted to the leaf nodes. We can regard f as an element

of X2 by mapping f to z ∈ X2 where z(i)(j) = f(i a j). Further, if x ∈ F1,
then z ∈ F2, and if x ∈ I1, then z ∈ I2. Hence if we fix g, we have a mapping
ρ : X1 → X2 with the desired properties. We will show that if g is sufficiently
generic, then for any x, ρ(x)′ is uniformly Turing reducible to x ⊕ g ⊕ 0′. Given
this, assume that F2 and I2 are separable by disjoint ∆0

3 sets A and B with F2 ⊆ A
and I2 ⊆ B. This means that the double jump of ρ(x) can uniformly determine
whether ρ(x) is in A or B, and hence (g⊕x⊕0′)′ can uniformly determine if ρ(x) is
in A or B. As g is independent of x, this means that the sets {x ∈ X1 : ρ(x) ∈ A}
and {x ∈ X1 : ρ(x) ∈ B} are ∆0

2(g ⊕ 0′). But these sets separate F1 from I1, a
contradiction. By relativization, we get that F2 and I2 are not separable by ∆0

3

sets. As separation by disjoint Π0
α sets implies separation by disjoint ∆0

α sets, we
conclude that F2 and I2 are not separable by Π0

3 sets.
Our proof of Theorem 2 is written in the language of effective descriptive set

theory. We will establish a lightface version of this theorem, and then obtain the
full result by relativization. Let us start by defining a wellfounded tree Tα ⊆ ω<ω

for each computable ordinal α. Let T0 be the tree consisting of just the empty
string, so T0 = {∅}. For α > 0, let Tα be the tree having ω many branches at the

root with the tree above the nth node being Tπα(n), so naσ ∈ Tα if σ ∈ Tπα(n). We
can assume that the functions πβ, for β ≤ α, are all uniformly computable. Note
that for each α, the tree Tα has rank α.

In what follows, fix a computable ordinal γ and take T to be Tγ. For all α ≤ γ
we define the following subsets of T .

Nα = {σ ∈ T : rank(σ) = α}
Lα = {σ ∈ T : rank(σ) < α}
Aα = {σ ∈ T : rank(σ) < α ∧ rank(σ−) ≥ α}

Here by σ− we mean σ without its last bit.
Note that N0 = A1 and is the set of all leaf nodes of T . However, if γ ≥ ω, then

N1 ( A2.
The following lemma follows immediately from these definitions.

Lemma 19.

(i) Nα ⊆ Aα+1.
(ii) Aα+1 \Nα ⊆ Aα.

(iii) For each 0 < α ≤ γ the set Aα is a maximal anti-chain.
(iv) Aγ is the set of successors of the root of Tγ. �
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Because Tγ is constructed using the same functions πα, for α ≤ γ as Xγ, there
is a natural homeomorphism from 2N0 to Xγ. This is defined as follows. We map

f ∈ 2N0 to x ∈ Xγ where for all sequences i1 a i2 a . . .a ik ∈ N0 we have that

x(i1)(i2) . . . (ik) = f(i1 a i2 a . . .a ik).

To simplify the exposition, let us identify Xγ with 2N0 and so we can regard both
Fγ and Iγ as subsets of 2N0 .

We will now define a family of continuous maps ρg from X1 to Xγ. Suppose
x ∈ X1 and g is a function from T \ (N0 ∪ {∅}) to 2<ω. Then there is a unique
mapping fg,x : T \ {∅} → 2 with the following properties.

(i) For all i ∈ N, fg,x(i) = x(i).
(ii) For all nodes σ ∈ T \ (N0 ∪ {∅}), if |g(σ)| = n, then

(a) For all i < n, fg,x(σ a i) = g(σ)(i)

(b) fg,x(σ a n) = 1− fg,x(σ)

(c) For all i > n, fg,x(σ a i) = fg,x(σ).

Our idea is for that each σ, the values of fg,x(σ a i) for i ∈ ω should eventually
reach a limit equal to fg,x(σ). The finitely many values before the limit is reached
are specified by g(σ)

If we fix g, we now have a continuous mapping ρg : X1 → Xγ defined by
ρg(x) = fg,x �N0 . This mapping is not surjective, but it does have the following
important property.

Lemma 20. If x ∈ F1, then ρg(x) ∈ Fγ and if x ∈ I1, then ρg(x) ∈ Iγ. �

We will soon examine what happens to the mapping ρg if we take g to be
sufficiently generic. In the following, by generic, we will always mean for the
Cohen partial order of finite partial functions ordered by inclusion. In particular,
suppose f is a function between computable sets A and B (for example, from
T \ (N0∪{∅}) to 2<ω), and C is a computable subset of A. Then we say that f �C
is arithmetically generic relative to z ∈ 2ω, if for every arithmetically definable
dense open set D of finite partial functions from C to B, there is a finite partial
function p ⊆ f �C such that p meets D. We say that f, g are mutually z-generic,
if f ⊕ g is z-generic, where f ⊕ g is defined on the disjoint union of the domains
of f and g.

Suppose h is a function from ω to 2<ω, and y ∈ 2ω. Fix a computable pairing
function 〈·, ·〉 : ω2 → ω. Define hy ∈ 2ω as follows. For all i, j,

hy(〈i, j〉) =


h(i)(j) if j < |h(i)|
1− y(i) if j = |h(i)|
y(i) otherwise.

Once again, here we are coding the real y into hy where each bit y(i) is the limit
limj→∞ hy(〈i, j〉), and the finitely many values before this limit is reached are
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specified by h(i). We now have the following lemma from [8, Lemma 2.3], where
x from that paper corresponds to our h, y from that paper corresponds to our y,
J(x, y) is hy, and we state our lemma only for the case n = 1 and relativized to a
real z.

Recall finally that if x ∈ 2ω, we use x′ to denote the Turing jump of x, and if
α < ωck1 , we use x(α) to denote the αth iterate of the Turing jump relative to x.

Lemma 21. Suppose y, z ∈ 2ω, and g, h : ω → 2<ω are mutually arithmetically
generic relative to z. Then (g ⊕ hy ⊕ z)′ ≡T g ⊕ h⊕ y ⊕ z′ uniformly.

We emphasize that for the previous lemma to hold, g and h do not need to be
generic relative to x. The proof of the next lemma is standard.

Lemma 22. Suppose x, z ∈ 2ω, and g : T \ (N0 ∪ {∅}) → 2<ω is arithmetically
generic relative to z. Let E be an infinite computable subset of T such that

(i) E ∩ (Aγ ∪ {∅}) = ∅.
(ii) No infinite subset of E consists of elements sharing a common predecessor

Let A be an infinite computable subset of T \ (N0 ∪ {∅}) such that no element
of A is a predecessor of an element of E. Then g �A and fg,x �E are mutually
arithmetically z-generic.

Proof. Suppose D is an dense open set in the partial order for building g �A
⊕fg,x �E which is arithmetically definable from z. Let P be the partial order for
building g: the order of finite partial functions from (N0 ∪ {∅}) to 2<ω. We will
define a dense open set D∗ in P so that if g meets D∗, then g �A ⊕fg,x �E meets D.

Suppose p ∈ P. Let P be the set of elements of E that have a predecessor in
dom(p). Note that if σ ∈ P , then we cannot effect the value of fg,x(σ) by extending

p. However, P is finite and for any string σ ∈ E \ P with σ = na τ , if we extend
p to some p∗ where p∗(τ) has length ≥ n, then fg,x(σ) = τ(n). By considering
every possible value of fg,x �P and iteratively finding extensions for each of them,
we can find an extension p∗ of p so that g �A ⊕fg,x �E meets D, no matter what
the value of fg,x � P is. Now define D∗ to be the set union over all p ∈ P of such
strings p∗. �

It does not matter for the purposes of our proof, but a more precise calculation
shows that if g is 2-generic relative to z, then g �A and fg,x �E will be mutually
1-generic relative to z. Similarly, in Lemma 21, g and h need only be 2-generic for
the conclusion to hold.

Following is our main technical lemma.

Lemma 23. Suppose x, z ∈ 2ω, α < γ, g : T \ (N0 ∪ {∅})→ 2<ω is arithmetically
generic relative to z. Then uniformly

(fg,x �Aα ⊕g �Lα ⊕z)′ ≤T fg,x �Aα+1 ⊕g �Lα+1 ⊕z′.
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Proof. Separate Aα into two sets D and E. Let D be those elements of Aα who

have predecessors in Nα and let E be the rest. Note that if σ a i ∈ E, then

rank(σ) > α ≥ rank(σa i)+1 and hence rank(σ) is a limit ordinal. Thus for some

m, for all n greater than m, rank(σam) > α (as the tree is defined to have strictly
increasing ranks at limits). It follows that for any σ ∈ T , there are not infinitely
many successors of σ in E. By considering ranks, it follows that no element of
Lα+1 is a predecessor of an element of E. Hence by Lemma 22, g �Lα+1 and fg,x �E
are mutually arithmetically z-generic. As Lα+1 is the disjoint union of Lα and Nα,
it follows that g �Nα and g �Lα ⊕fg,x �E are mutually arithmetically z-generic.

If we let h = g �Nα and y = fg,x �Nα , then hy = fg,x �D (under some uniform
computable bijection) using the notation of Lemma 21. Hence applying Lemma 21,
we have that,

(fg,x �Aα ⊕g �Lα ⊕z)′ ≡T ((fg,x �E ⊕g �Lα)⊕ fg,x �D ⊕z)′

≤T fg,x �E ⊕g �Lα ⊕g �Nα ⊕fg,x �Nα ⊕z′.
Now as Lα+1 = Lα ∪Nα, and Aα+1 = Nα ∪ E. We obtain the desired result. �

Lemma 24. Suppose x, z ∈ 2ω, and g : T \ (N0 ∪ {∅}) → 2<ω is arithmetically
generic relative to z. If 1 ≤ n < ω and n ≤ γ, then uniformly

fg,x �An+1 ⊕g �Ln+1 ⊕0(n) ≥T (fg,x �N0)
(n).

Proof. The result holds if n = 0 because A1 = N0. Consider the case n + 1. We
have, by the previous lemma, and the induction hypothesis, that uniformly

fg,x �An+2 ⊕g �Ln+2 ⊕0(n+1) ≥T (fg,x �An+1 ⊕g �Ln+1 ⊕0(n))′

≥T (fg,x �N0)
(n+1). �

Lemma 25. Suppose x, z ∈ 2ω, and g : T \ (N0 ∪ {∅}) → 2<ω is arithmetically
generic relative to 0(α). If ω ≤ α ≤ γ, then uniformly

fg,x �Aα ⊕g �Lα ⊕0(α) ≥T (fg,x �N0)
(α).

Proof. Note that if α > β then uniformly in α and β we have that fg,x �Aβ is
computable from fg,x �Aα ⊕g �Lα . Consider the case that α = ω. By the previous
remark, fg,x �Aω ⊕g �Lω ⊕0(ω) uniformly computes fg,x �An ⊕g �Ln ⊕0(n) for all n.
Hence by Lemma 23, fg,x �Aω ⊕g �Lω ⊕0(ω) uniformly computes (fg,x �N0)

(n) and
so (fg,x �N0)

(ω). For successors, just last repeat the previous lemma, and at limits
repeat the argument for ω. �

The difference between the previous two lemmas corresponds to a slight differ-
ence between the indexing of light-face Borel sets and the iterates of the Turing
jump. This discrepancy also occurs in the following standard lemma.

Lemma 26. A set X ⊆ 2ω is ∆0
α if and only if there is an e such that

(i) For all x, Φe(x
(β); 0) ↓.



JUMP OPERATIONS FOR BOREL GRAPHS 17

(ii) For all x, Φe(x
(β); 0) = 1 if and only if x ∈ X.

Where β = α if α ≥ ω and β = α− 1 if 1 ≤ α < ω.

Lemma 27. If q ≤ γ ≤ ωck1 , then the sets Fγ and Iγ are not separable by ∆0
γ+1

sets.

Proof. Assume that A and B are disjoint ∆0
γ+1 sets with Fγ ⊆ A and Iγ ⊆ B. We

can additionally assume that A ∪ B = Xγ. Fix g which is arithmetically generic
relative to 0(γ). We have the associated function ρg : X1 → Xγ as above.

Suppose first that γ ≥ ω. Then from (ρg(x))(γ+1) we can compute whether
ρg(x) ∈ A or ρg(x) ∈ B. Hence we can compute this from (x⊕ g �Lγ ⊕0(γ))′. Note

that g �Lγ ⊕0(γ) is fixed for all x. Hence F1 and I1 are separable by ∆0
2(g �Lγ ⊕0(γ))

sets. But this is a contradiction. If 1 ≤ γ < ω then the same argument works after
replacing occurrences of γ with γ − 1. �

Theorem 2 follows immediately from relativizing this lemma and observing that
if Fγ and Iγ could be separated by Π0

γ+1 sets, then they could be separated by

∆0
γ+1 sets.
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