
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Anonymity and independence in multiparty protocols

Permalink
https://escholarship.org/uc/item/5pm6t9rc

Author
Hevia, Alejandro

Publication Date
2006

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5pm6t9rc
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Anonymity and Independence in Multiparty Protocols

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Computer Science

by

Alejandro Hevia

Committee in charge:

Professor Daniele Micciancio, Chair
Professor Samuel R. Buss
Professor Mihir Bellare
Professor Adriano Garsia
Professor Russell Impagliazzo

2006

Copyright

Alejandro Hevia, 2006

All rights reserved.

The dissertation of Alejandro Hevia is approved,

and it is acceptable in quality and form for publi-

cation on microfilm:

Chair

University of California, San Diego

2006

iii

To Carolina

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . viii

List of Tables . ix

Acknowledgements . x

Vita, Publications, and Fields of Study . xii

Abstract of the Dissertation . xiv

1 General Introduction . 1

1.1 Cryptography and Provable Security . 1

1.2 Secure Multiparty Computation . 4

1.2.1 Motivation and Background . 4

1.2.2 On the importance of definitions 6

1.3 Anonymity and Independence of Inputs 6

1.4 Contributions . 8

2 Preliminaries . 11

2.1 Definitions . 11

2.1.1 Notation . 11

2.1.2 Probability Distributions and Algorithms 12

2.1.3 Asymmetric Encryption . 13

2.2 Secure Multiparty Computation . 15

2.2.1 Terminology and Background . 15

2.2.2 Multiparty Setting: Building Blocks 19

2.2.3 Standalone Security . 22

v

2.2.4 Universally Composable Security 24

3 Anonymous Communication . 30

3.1 Introduction . 30

3.1.1 Coping with information leaks . 31

3.1.2 Strong, Formal Definitions . 34

3.1.3 Comparing Notions . 35

3.1.4 The Anonymity of Previous Protocols 37

3.1.5 Comparison with Previous Anonymity Notions 38

3.1.6 Discussion and Related work . 39

3.2 Preliminaries . 40

3.3 Security Notions . 41

3.4 Relation between the notions . 43

3.4.1 Implications under computational assumptions 44

3.4.2 Implications that require “Dummy Traffic” 52

3.4.3 Message Overhead and Optimality of the Transformations 56

3.5 On the Anonymity of Previous Protocols 61

3.5.1 Broadcast Networks . 61

3.5.2 DC-nets or Anonymous Broadcast 69

3.5.3 MIX networks . 71

3.6 Variants and Extensions . 79

4 Simultaneous Broadcast . 81

4.1 Introduction . 81

4.1.1 Discussion and Related Work . 85

4.2 Preliminaries . 86

4.2.1 The Model . 86

4.2.2 Multisender Broadcast . 87

4.3 Simultaneous Broadcast: Notions of Independence 88

4.3.1 Chor, Goldwasser, Micali and Awerbuch’s definition 88

4.3.2 Chor and Rabin’s definition . 90

4.3.3 Gennaro’s definition . 90

vi

4.4 The Role of the Input Distributions . 91

4.4.1 Distributions for CR-Independence 93

4.4.2 Distributions for G-Independence 95

4.4.3 Distributions for Sb-Independence 97

4.4.4 Relations between Distributions . 97

4.5 Implications and Separations . 97

4.5.1 Separations . 101

4.5.2 Feasibility of CR and G independence 105

5 Universally Composable Simultaneous Broadcast 106

5.1 Introduction . 106

5.1.1 The Need for Efficient Simultaneous Broadcast with Strong
Security Guarantees . 106

5.1.2 New Results . 108

5.1.3 Discussion and Related Work . 108

5.1.4 Comparison with previous solutions 111

5.2 Preliminaries . 112

5.3 Terminating VSS (UC-TVSS) . 113

5.3.1 Instantiating TVSS . 116

5.4 Adaptively secure VSS of Cramer et al. 117

5.4.1 Information Checking Protocol . 117

5.4.2 The Verifiable Secret Sharing Protocol of Cramer et al. 122

5.5 UC Simultaneous Broadcast (UC-SB) . 127

5.5.1 A Generic Construction of UC-SB from UC-TVSS 129

5.6 Extensions . 133

A Appendix . 136

A.1 Alternative Characterization of Simultaneous Broadcast Notions 136

A.1.1 Sb-Independence . 136

A.1.2 CR-Independence . 137

A.1.3 G-Independence . 139

Bibliography . 143

vii

LIST OF FIGURES

2.1 The synchronous communication functionality FSY N of Canetti 28

2.2 The Verifiable Secret Sharing (with Spooling) functionality FV SS. 29

3.1 Examples of communication patterns hidden by each anonymity notion . 35

3.2 Anonymity variants and their associated relations RN. 43

3.3 Relations among notions of anonymity . 45

3.4 A simplified version of the WAR protocol 63

4.1 Implications and separations for Simultaneous Broadcast definitions . . . 85

5.1 The Terminating Verifiable Secret Sharing (with Spooling) functionality
FTV SS . 115

5.2 Information Checking Protocol of Cramer et al., sub-protocol Distr . . . 119

5.3 Information Checking Protocol of Cramer et al., sub-protocol AuthVal . . 120

5.4 Information Checking Protocol of Cramer et al., sub-protocol RevealVal . 121

5.5 Protocols for giving and revealing IC-signatures 123

5.6 Adaptively secure VSS protocol of Cramer et al., Sharing Phase 124

5.7 Adaptively secure VSS protocol of Cramer et al., Reconstruction Phase . 125

5.8 The simultaneous broadcast functionality FSB 128

5.9 Simultaneous Broadcast protocol in the FTV SS-hybrid model 130

5.10 The asynchronous simultaneous broadcast functionality FASB 134

viii

LIST OF TABLES

3.1 Anonymity variants and their alternative names 33

ix

ACKNOWLEDGEMENTS

Without a doubt, I will remember my years spent at UCSD as one of the best

times in my life. There are many people to thank for that.

First and foremost, I want to thank my wife and love of my life, Carolina, for

her love and support during all these years of graduate school. Without her, this thesis

would not be possible.

I am grateful to my advisor, Daniele Micciancio, who guided my development

as researcher, for all his relentless support, guidance, and patience. I learnt so much

from him, from how to be a researcher up to how to overcome hard times in life. Among

many things, he taught me how to ask the “right questions” and how pursue them, to

critically evaluate my own work, and to strive for excellence. Thank you, Daniele, for

encouraging me to be the best I can be.

I also thank my other committee members: Professors Sam Buss, Mihir Bellare,

Adriano Garsia, and Russell Impagliazzo for agreeing to supervise this thesis.

I am grateful to my friend and colleagues, former and present members of

the Cryptography and Security Lab at UCSD: Michel Abdalla, Jee Hea An, Alexandra

(Sasha) Boldyreva, Anand Desai, Marc Fischlin, Matthew Hohlfeld, Eike Kiltz, Ta-

dayoshi (Yoshi) Kohno, Anton Mityagin, Sara Miner More, Chanathip (Meaw) Nam-

prempre, Sir Gregory Neven, Saurabh Panjwani, Adriana Palacio, Tom Ristenpart,

Haixia Shi, Sarah Shoup, Bogdan Warinschi, and Chong Zhang together with the “hon-

orary members” of the lab: Nuno Bandeira, Yi-Kai Liu, Vadim Lyubashevsky, and

Barath Raghavan. My sincere thanks for their helpful and enjoyable discussions, com-

ments, insights, and being wonderful people to be around while studying, doing research,

or having fun. I will not forget our time together or our long discussions at the Mandeville

coffee cart.

I thank to people I have the honor to call co-authors: Daniele Micciancio, Flavio

Junqueira, Ranjita Bhagwan, Keith Marzullo, Geoff Voelker Craig Gentry, Ravi Jain,

Toshiro Kawahara, Zulfikar Ramzan, Anand Desai, Lisa Yin, and Marcos Kiwi.

I also want to thank my other friends from UCSD to whom I have owned so

x

much during my grad school years. Among them, Marvin McNett, and Flavio Junqueira

for being extraordinary friends and colleagues, and their continuous help and support.

Similarly, I must express my sincere gratitude to all the staff at the Computer Science

Department at UCSD, specially to Julie Conner who not only is known to have magical

powers to solve every administrative problem I ever had as grad student, but also happens

to be the friendliest person in the world. Last but not least, I would not have reach the

point where this thesis could have been written without the love and support of my close

friends in San Diego: Todd Clements, Louise Chen, David and Cheryl Clements; Scott

and Michelle Finkel; Jeff Conte, Michelle Dean; Jason and Amy Flowers; and Dave and

Betty Little. Thanks for all your help, counsel, and friendship, specially for making me

feel I belong in San Diego. I am truly happy and honored I can call you friends.

Finally, I would like to thank my parents whose continuous encouragement,

love and support made possible y achievements. In particular, I would like to thank my

mother, for being my number one fan; my father Francisco, for reminding me that life is

meant to enjoy it and share it with the loved ones; and to my father Jorge, who taught

me to love math and science, and show me the path to excellence. To all my family and

friends in Chile, thank you for your love and support.

The material in Chapter 3 is from “An Indistinguishability-based Characteriza-

tion of Anonymous Channels”, joint work with Daniele Micciancio, currently submitted

for publication. Most of Chapter 4 is a reprint from the material appearing in “Si-

multaneous Broadcast Revisited,” with Daniele Micciancio, in the proceedings of 24th

ACM Symposium on Principles of Distributed Computing (PODC 2005), Marcos Kawa-

zoe Aguilera, James Aspnes Eds., ACM Press, 2005. Finally, most of Chapter 5 is a

reprint from the material appearing in “Universally Composable Simultaneous Broad-

cast”, in the proceedings of the 5th Security and Cryptography for Networks (SCN 2006),

Springer-Verlag, 2006.

xi

VITA

1973 Born, Viña del Mar, Chile

1998 B.A., University of Chile, Chile

2002 M.Sc. University of California, San Diego

2006 Ph.D. University of California, San Diego

PUBLICATIONS

A. Hevia, “Universally Composable Simultaneous Broadcast”, In proceedings of the 5th
Security and Cryptography for Networks (SCN 2006), LNCS, Springer-Verlag, 2006.

A. Hevia and D. Micciancio, “Simultaneous Broadcast Revisited,” In 24th Symposium
on Principles of Distributed Computing (PODC 2005) Proceedings, ACM Press, 2005.

F. Junqueira, R. Bhagwan, A. Hevia, K. Marzullo, and G. M. Voelker, “Surviving Inter-
net Catastrophes,” In Proceedings of the USENIX Annual Technical Conference, Ana-
heim, California, USA, 2005.

C. Gentry, A. Hevia, R. Jain, T. Kawahara, and Z. Ramzan, “End-to-End Security in the
Presence of Intelligent Data Adapting Proxies: the Case of Authenticating Transcoded
Streaming Media,” In IEEE Journal on Selected Areas of Communications, Special Issue
on Intelligent Services and Applications in Next Generation Networks, Vol. 23 n.2, IEEE
Press, Feb. 2005.

A. Hevia and D. Micciancio, “The provable security of Graph-Based One-Time Sig-
natures and extensions to algebraic signature schemes,” In Advances in Cryptology -
Asiacrypt 2002 Proceedings, pages 379-396, LNCS 2501, Springer-Verlag, 2002.

A. Desai, A. Hevia, and Y. L. Yin, “A Practice-Oriented Treatment of Pseudorandom
Number Generators,” In Advances in Cryptology - Eurocrypt 2002 Proceedings, LNCS
2332, pages 368-383, Springer-Verlag, 2002.

A. Hevia and M. Kiwi, “Electronic Jury Voting Protocols,” In Theoretical Computer
Science Volume 321, Issue 1, 16 June 2004, Pages 73-94. Elsevier Science, 2004.

SUBMITTED PUBLICATIONS

A. Hevia and D. Micciancio, “An Indistinguishability-based Characterization of Anony-
mous Channels”, Submitted for publication.

xii

FIELDS OF STUDY

Studies in Cryptography
Professor Daniele Micciancio

xiii

ABSTRACT OF THE DISSERTATION

Anonymity and Independence in Multiparty Protocols

by

Alejandro Hevia

Doctor of Philosophy in Computer Science

University of California San Diego, 2006

Professor Daniele Micciancio, Chair

Electronic voting systems, chat rooms, and electronic auctions are well-known examples

of systems that involve many people interacting at the same time in order to achieve a

goal: cast a vote, discuss political ideas, and bid for an item. Yet, some security goals

of these multi-party protocols have not been carefully examined as they should. For

example, how different is protecting the anonymity of the sender – as in an electronic

election – versus protecting the anonymity of both the sender and the receiver – as in a

political chat room? Or, can online surveys guarantee that participants do not influence

each other’s answers? This dissertation studies two of these properties: anonymity and

independence of inputs.

We first revisit the problem of anonymous communication, in which users wish

to send messages to each other without revealing their identities. We propose a novel

framework to organize and compare anonymity definitions. In this framework, we present

simple and practical definitions for anonymous channels in the context of computational

indistinguishability. The notions capture the intuitive properties of several known types

of anonymous channels, and also model practical scenarios where information is leaked

in the system. We also compare these notions showing how stronger notions can be built

from weaker ones in a provably optimal way. With these tools, we revisit the security of

previous popular anonymous channels protocols.

xiv

In applications where multiple senders can broadcast messages at the same time

(like electronic auctions or elections), it is often important to enforce the simultaneous

transmission of messages, so that no sender can decide its broadcast message based on

the values broadcast by other players. In the second part of the dissertation, we study

the definitions of independence (or Simultaneous Broadcast) proposed in the literature,

obtaining a full characterization of their applicability and relative strength. In particular,

we show that the latest definition, under which the most (round) efficient solution was

proven secure, is strictly weaker than the previous definitions. We thus reopen the

problem of either proving the efficient solution satisfies the strongest definition of security

or finding an alternative efficient protocol that does so.

We conclude by addressing this last problem. We present a definition of si-

multaneous broadcast under the Universally Composable framework, and show that this

stronger notion can be achieved by a computationally efficient, constant-round construc-

tion. Our construction builds on an existent adaptive verifiable secret sharing scheme,

and does not resort to generic zero-knowledge proofs or commitment schemes present in

previous solutions.

xv

1

General Introduction

1.1 Cryptography and Provable Security

In the past three decades, our society has become increasingly dependent on

information stored in digital form. This information is usually accessed and used by

many different entities (computers), from many different geographical locations over large

networks (like the Internet). Examples of this include electronic voting systems, online

banking systems, medical information systems, electronic auctions, and online tax filing,

to name a few. There are many potential benefits from having these distributed solutions;

for example, electronic voting schemes may allow voters to cast ballots from remote

locations easily, and may help governments to have fast and inexpensive elections. Of

course, moving information to the digital world raises several security concerns, ranging

from how to protect the privacy of the data flowing on the network (eg. each voter’s

candidate), up to how to assure the participating entities do not exploit subtle timing

interactions of the network to compromise the goals of the system (eg. some misbehaving

government official finding the identities of voters who did not vote for a given candidate).

Cryptography is the field that studies techniques to understand some of the

above problems, and designs tools to implement solutions for them. Historically, two

basic goals of cryptography have been data privacy and authentication. The former aims

to allow two parties to exchange data over a communication channel (through the mail, a

1

2

telephone line, or wireless network link) so the actual content sent on the communication

line is unintelligible and meaningless to any curious eavesdropper of the line except the

intended receiver. This problem has been around for centuries (Julius Caesar employed

some basic letter substitution techniques to hide messages of military importance) and

its solution, encryption, has been extensively study. Data authentication, another basic

goal of cryptography, allows a sending party to convince a receiving party that the data

received indeed comes from the sending party – so, for example, a bank can be sure client

Bob’s remote request to pay a large amount of money to Alice indeed is an authorization

that comes from Bob and it was not maliciously made by Alice herself.

Even though data privacy and authentication tools are crucial components to

any secure system like those mentioned before, the fact those systems must work over

complex, dynamic distributed environments, with entities accessing remote data at differ-

ent times (eg. concurrently) and from different locations raises new issues. For instance,

systems to remotely access information on sensitive diseases (HIV, cancer) may need to

assure their users’ anonymity – the identities of the users of the system are not revealed to

anyone, not even to a curious insider (the system manager). Another case, for example,

would be where the auctioneer of an online auction system may wish to have guaran-

tees that malicious bidders cannot “correlate” their bids to those of honest bidders, so

the final price of items reflect the bidders true valuation (and nothing less1). In other

words, the auctioneer would like to enforce the independence of inputs for all bidders.

In this thesis, we show how cryptographic techniques can help to further understand the

subtleties involved in identifying the appropriate security goals such multi-party system

must seek, as well as designing efficient implementations of them.

But how do we know if a system or protocol is “secure”? As cryptographers

have known for long time, achieving security is hard since, at first, it seems to require

proving a negative: that no malicious entity (adversary) exists for the system. Instead,

cryptographic protocols are often designed by trial and error: a scheme is assumed

secure if it is “believed” to be secure – more precisely, if it has not been broken. This

approach is highly unreliable, as often the best designer’s or evaluator’s intuition may be

1 It would be extremely unfair (and probably would not make the auctioneer happy) if a thief could
somehow manage to set the winning bid to only one cent more than the second-highest bid, even if the
thief does not know the value of his/her bid!.

3

flawed, and insecure protocols may be deployed and widely employed a long time before

serious security flaws or attacks are discovered. Serious breaks on the wireless protocol

WEP [BGW01], the Diebold electronic voting system [KSRW04], or the GSM cellphone

encryption protocol [GBW98] are well-know examples of this.

Perhaps surprisingly, the above approach to protocol design is not the only

one. It is possible to prove that a protocol resists some attacks, under the assumption

some other well-known problem is hard to solve or some primitive is hard to attack.

This technique, the provable security approach, was first proposing by Goldwasser and

Micali [GM84] and it works by mathematically proving that any attack on the protocol

in question can be translated into an attack on some other (often smaller, more stud-

ied) cryptographic primitive or mathematical problem. This “translation” is called the

security reduction. In order to be meaningful, a reduction-based proofs require the speci-

fication of a security model, which includes the description of the adversarial capabilities

(what the adversary can do, including the available resources), and the security goal

(what the adversary should not be able to do). Proving the security of a protocol in

this framework is done by contradiction: if an adversary with the specified capabilities

violates the security goal, then some well-known assumption no longer holds. More pre-

cisely, it involves showing how any adversarial algorithm which violates the security goal

using the specified capabilities (eg. uses at most polynomial time, eavesdrops a certain

number of messages, or can access local private data of at most a certain number of hon-

est parties in the system) can be transformed into another adversarial algorithm that

violates another well-known cryptographic problem or primitive. Therefore, if the latter

well-known problem or primitive is believed to be secure, then no such adversary for the

original protocol can exist in the first place. Examples of well-known problems are math-

ematical problems long conjectured to be hard to solve, like the hardness of factoring

large numbers or the hardness of computing discrete logarithms in certain cyclic groups.

Similarly, reductions to the hardness of breaking some properties of cryptographic primi-

tives (pseudorandomness of block ciphers when seen as families of functions, for example)

have also been used to justify the security of more complex protocols. As long as the

security model captures meaningful threats to the protocol at hand the provable secu-

rity approach provides very strong security guarantees: the protocol will not be broken

4

unless the hardness of the underlying problem does not hold, thus reducing our focus to

the security of these underlying (usually extensively studied) problems.

1.2 Secure Multiparty Computation

1.2.1 Motivation and Background

A classical setting to analyze problems like encryption or data authentication

involves two participants – one sender and one receiver – and one adversary – the eaves-

dropper or forger. Such setting has shown certainly adequate for these problems as

it simplifies the security model, and in consequence, the security proofs. In contrast,

systems like electronic voting protocols or electronic auctions explicitly involve many

participants, and in addition an adversary able to compromise (break-into) some of

these participants. For this reason, this last type of protocols have been often referred

as multi-party protocols.2 Loosely speaking, in multi-party protocols, several parties are

often actively involved in the execution of the protocol (but perhaps not all actively

involved at every moment). Multiparty protocols are interesting cryptographically as

their analysis must explicitly take into account the influence of multiple participants

with different degrees of participation into the security of the protocol. In general, this

influence is often expressed in terms of each participant’s actions (how parties can af-

fect the protocol), or each participant’s knowledge of private data or ability to gather

information (how parties can obtain information from the protocol). All of this may

add new complexities and new sources of threats. For example, a seemingly secure sys-

tem may leak private information when executed in conjunction with some other system

(that is, when composed 3), or a multiparty system may compromising the anonymity

of the participants because of some participant’s inaction (not sending data out) may

2 The distinction between “multi-party protocols” and “single sender/single receiver schemes” (like
those implementing encryption and data authentication) is rather artificial as schemes are usually two
party protocols which are a special case of multiparty protocols. Moreover, there are good benefits of
casting encryption or signature schemes in a multiparty setting as many recent results have shown (e.g.
[BBM00], [CK02]). Nonetheless, since the results of these thesis deal with problems (anonymity and
independence of inputs) where the most interesting cases happen with more than two parties, we add
the term “multiparty” to the protocols we discuss.

3 A well-known example is the case of some zero-knowledge proof protocols [GMR89]. Some of them,
despite being proven secure as standalone protocols, were not secure when executed in parallel [GK96].

5

help an eavesdropper to narrow it down the identity of a certain message’s sender. Also,

issues like execution synchronization (whether a global clock exists or not) or fault tol-

erance resilience (how the protocol behaves when participants unexpectedly stop or no

longer follow the protocol) become a more challenging concern in the multiparty setting.

Therefore, the security goals and adversarial capabilities required to carry on the prov-

ably secure approach become more subtle to characterize as capturing what “secure”

means is not necessarily straightforward.

Fortunately, there has been extensive work on the subject, including on security

models (see [Can05] and references therein) and concrete protocols. Regarding security

models, the standard paradigm is to define security of a protocol in terms of emulation

of an trusted party. The idea is that any protocol can be thought as computing a process

(for example, a function) on some party inputs. Then, if we had a completely reliable

party which is trusted by all, parties could simply hand all inputs out to the trusted

party, which would perform the computation and return the outputs back to each party.

The goal then would be that a secure protocol should be able to “emulate” this idealized

computation by the mutually distrustful parties. The concrete meaning of emulation

can vary, depending on the assumptions on the communication channels, or the type of

tolerated adversarial behavior, for example. Some of these parameters are discussed in

Section 2.2.1.

Interestingly, in the past thirty years, there have been proposed not only a

variety of protocols for solving specific multiparty problems but also concrete protocols

for solving general multiparty problems. Protocols that solve arbitrary problems – where

the process to compute can be parameterized by an arbitrary function – were proposed in

the seminal and independent work of: Goldreich, Micali and Widgerson [GMW87], Ben-

Or, Goldwasser and Widgerson [BGW88] and Chaum, Crépeau and Damg̊ard [CCD88].

The efficiency of these proposed solutions for general problems has been improved in

recent years (eg. [CDD+99, BTH06] among many others), although for some concrete

problems like electronic voting or threshold cryptography, for example, more efficient

solutions have come from specially tailored constructions. In terms of security analysis,

more sophisticated security models for the problems have been proposed and further

studied. Two important popular variants of these models, proposed by Canetti 2000

6

[Can00a] and Canetti 2001 [Can01b, Can05] are further discussed in Section 2.2.1.

1.2.2 On the importance of definitions

From the view point of provably security, it is hard to overstate the the im-

portance of the security model: any security reduction can only capture the concerns

and threats explicitly implied by the security goal and by the adversarial capabilities.

Indeed, all bets are off for adversaries that do not fit the security model: the security

reduction provide no guarantees such adversaries do not exist, even if the assumption

on the hardness of the base problem happens to be true. In other words, the security

model can be seen as providing the meaning of the word “security” for any protocol.

Therefore, understanding the practical applicability and limitations of the security model

for a given problem is as critical as developing a secure implementation. The flip side

of this consideration is that some too practical threats may be hard to include in the

proof: attacks involving key compromises, worms leveraging on software vulnerabilities,

hardware failures, or some denial-of-service attacks are often not captured in security

proofs as factoring them into the adversarial capabilities can obscure some other most

important threats and complicates the model. Nonetheless, it seems the answer here is

not that some threats and concerns do have to remain always beyond the guarantees

of the security proof. Recent trends in this direction show that including more realistic

adversarial capabilities and security goals may lead to protocols more secure in “real

life” (e.g. [MR04]). We claim that plugging those capabilities into the model is not

only necessary but critical to obtain meaningful security guarantees. In fact, we follow

this approach in Chapter 3, by adding adversarial capability to select parameters like

the amount of network traffic per party to model leakage of information in anonymity

systems.

1.3 Anonymity and Independence of Inputs

In this dissertation we study two important goals in multiparty computation:

anonymous communication and independence of inputs.

7

Anonymous communication allows users to send and receive messages without

revealing their identities. There are well-known ways to obtain anonymity in the non-

digital world: one could send stamped mail from a randomly selected post-office or could

make phone calls from a payphone. In the digital world, things become much harder as

each action or message sent in a digital form can be copied or traced if communication

links are monitored (which nowadays is well-known to be feasible). Yet, anonymous

communication plays an very important role in many (very legitimate) settings. For

example, protecting “whistle blowers” or guaranteeing source confidentiality in crime

tips, fostering online support groups (for “embarrassing” or socially stigmatized diseases

like HIV, cancer or sexually transmitted diseases), protecting voter privacy in electronic

voting, providing effective tools to implement security policies for managing patient

health records, or even preventing (unfair) price discrimination.

As a cryptographic goal, anonymous communication is orthogonal to standard

goals like confidentiality (secrecy of the content of the communication), or integrity of

communicated data; clearly, by simply encrypting a message before sending it out in a

regular communication channel, Bob does not hide the fact he is the sender. In fact,

anonymous communication is one of the few applications which are multiparty by nature

– all known techniques to solve the problem in the digital world (which do not some-

how rely on specially trusted entities) involve participation of as many participants as

possible. The obvious example is that no protocol can achieve meaningful anonymity

for a system with only two participants. Therefore, sound solutions for the problem of

anonymous communication face the same definitional subtleties and design challenges

that several well-known multiparty protocols (like threshold encryption or distributed

key generation) have face. Moreover, anonymous channels have been historically very

hard to achieve. The reasons are often twofold. First, there are many practical details

and realistic threats that are not adequately captured by the security models underly-

ing previous anonymity-enabled constructions. And second, often the meaning of the

different “flavors” of anonymity are rather informal or cast in definitions too weak to

provide strong enough anonymity guarantees – at least strong enough as the guarantees

commonly given by other more mature cryptographic primitives (like encryption). In

this thesis, we study the anonymous communication problem, proposing security models

8

that address these two issues.

Another desirable property of multiparty protocols is independence of inputs.

Loosely speaking, inputs provided by parties in a protocol are independent if no party can

decide (change) his/her local input based on the inputs by the other (honest) parties.

In some sense, this property captures the concept of “fairness” in how inputs from

the parties are contributed into the protocol. Indeed, independence guarantees each

party, once given an input (eg. on the onset of the computation, or as the output of

past protocol executions), the party contributes this value as his/her true input to the

protocol. An important scenario where this property appears is in broadcast channels,

which allow parties to transmit messages to be received by all parties connected to

a network. Broadcast channels are powerful, commonly used primitives in the design

of a large fraction of multiparty protocols, as they provide a way to reliably transmit

consistent data (and thus provide a method to guarantee data consistency across several

parties). In applications where multiple senders can broadcast messages at the same

time (e.g., when running in parallel many copies of a broadcast protocol with different

senders), it is often important to enforce this simultaneous transmission of the messages,

so that no sender can decide its broadcast message based on the values broadcast by

the other players. This independence property plays a fundamental role in the secure

multiparty computation protocol of [CGMA85] as well as many important applications

(like contract bidding, coin flipping, and electronic voting schemes) where broadcast is

employed. In this thesis, we study the simultaneous broadcast problem, which is perhaps

the simplest but still useful context in which the independence problem appears. Our

study explores the definitional challenges surrounding the formalization of the security

model for this problem, as well as how to achieve efficient constructions in very strong

models.

1.4 Contributions

First, in the context of anonymous communication, we propose a novel frame-

work to organize and compare anonymity definitions. In this framework, we present

simple and practical definitions for anonymous channels in the context of computational

9

indistinguishability. The notions seem to capture the intuitive properties of several types

of anonymous channels [PK01] (eg. sender anonymity and unlinkability). We justify these

notions by showing they naturally capture practical scenarios where information is un-

avoidably leaked in the system. Then, we compare the notions and we show they form

a natural hierarchy for which we exhibit non-trivial implications. In particular, we show

how to implement stronger notions from weaker ones using cryptography and dummy

traffic – in a provably optimal way. With these tools, we revisit the security of previous

anonymous channels protocols, in particular constructions based on broadcast networks

[BIK+03], anonymous broadcast [Cha81, GJ04], and mix networks [Gro03, NSNK04].

Our results give generic, optimal constructions to transform known protocols into new

ones that achieve the strongest notions of anonymity.

Second, in the context of independence of inputs in multiparty protocols, we

study various definitions of independence proposed in the literature by Chor, Goldwasser,

Micali and Awerbuch [CGMA85], Chor and Rabin [CR87] and Gennaro [Gen00], and

prove implications and separations among them. In summary, we show that each defi-

nition (generalized to allow arbitrary input distributions) is characterized by a class of

“achievable” input distributions such that there is a single protocol that simultaneously

meets the definition for all distributions in the class, while for any distribution outside

the class no protocol can possibly achieve the definition. When comparing sets of achiev-

able distributions, the definition of Gennaro is the most stringent (followed by the Chor

and Rabin one, and Chor, Goldwasser, Micali and Awerbuch as the most relaxed) in the

sense that it is achievable for the smallest class of distributions. This demonstrates that

the definitions of Gennaro, and Chor and Rabin are of limited applicability.

Then, we compare the definitions when restricted to achievable distributions.

This time the results of our comparison rank the definitions in the opposite order, with

the definition of Chor, Goldwasser, Micali and Awerbuch as the strongest one (followed

by Chor and Rabin, and then Gennaro) in the sense that security according to the

stronger definitions implies security according to the weaker ones. We also give examples

showing that the implications are strict, i.e., there are input distributions such that a

protocol can meet the weaker definition, but fail to satisfy the stronger. The separation

between the definitions of Gennaro and Chor and Rabin is particularly strong, as we show

10

that there is a single protocol that is simultaneously secure according to Gennaro under

any achievable input distribution, but does not satisfy the definition of Chor and Rabin

for any non-trivial distribution. In particular, the separation holds for the special case

of the uniform input distribution originally considered by the authors in their papers.

Finally, we explore the problem of Simultaneous Broadcast under Universally

Composable (UC) security of Canetti [Can01b, Can05]. We give a definition of Simul-

taneous Broadcast in this framework, which is shown to imply all past definitions. We

also show this notion can be achieved by a computationally efficient, constant-round

construction for the problem (building on the verifiable secret sharing scheme of Cramer

et al. [CDD+99]) which is proven secure as long as a majority of the parties are honest.

Our results rely on (and benefit from) capturing synchronous communication as a func-

tionality within the UC model, as suggested by Canetti [Can05]. Indeed, we show that

this approach of modeling synchronous communication can lead to better understanding

of where synchronicity is needed, and also simpler constructions and proofs.

2

Preliminaries

In this chapter, we introduce notation and concepts used throughout this thesis.

2.1 Definitions

2.1.1 Notation

Let N be the set of natural numbers. We denote by {0, 1}∗ the set of all binary

strings of finite length. Given a string w ∈ {0, 1}∗, we let |w| denote the length of w.

Let k ∈ N denote a security parameter.

We let 1k denote the string consisting of concatenating bit “1” exactly k times.

When k is the security parameter, we often give this string as input (parameter) to

algorithms so we can measure their running time as a function of k, ie. the algorithm’s

the input length. We say an algorithm S runs in polynomial time on its input length

(which is often equal to the security parameter) if there exists a polynomial q such

that, on input w ∈ {0, 1}∗, the algorithm makes at most q(|w|) steps before halting.

Before halting, the algorithm may or may not have output some value. We refer to these

algorithms as polynomial-time algorithms; if a polynomial-time algorithm is randomized,

we say it is a probabilistic polynomial-time (PPT) algorithm.

Let n be a positive integer, and [n] denote the set {1, . . . , n}. For any set

11

12

S ⊂ [n] and any vector x = (x1, . . . , xn), we denote by xS the |S|-dimensional vector

formed by the elements of x whose index are in S, that is, xS = (xi)i∈S . Also, let G and

B two disjoint sets such that G ∪ B = [n] and w, z two n-dimensional vectors. Then,

we let wG t zB denote the n-dimensional vector formed by combining the elements of w

with indexes in G with the elements of z with indexes in B. When clear from context,

we may drop the subindex G or B, as in wGtz. In such case, by convention, we assume

the coordinates for z are in the set G = [n] \G. When describing multiparty protocols,

we let P[n] denote the set of all parties {P1, . . . , Pn}.

2.1.2 Probability Distributions and Algorithms

Probability Distributions, Ensembles and Classes of Distributions: A prob-

ability distribution D is a function from strings to non-negative reals such that
∑

x∈{0,1}∗ D(x) = 1. For any distribution D over {0, 1}n we write d
R
← D to denote

the process of selecting an n-dimensional vector d from {0, 1}n according to distribution

D. We also denote by DB, for any B ⊂ [n], the distribution induced by selecting a vector

in D and taking only the coordinates in set B. For simplicity, we write Di instead of D{i}.

We also extend the t notation to distributions. Given two distributions D and R over

n-bit strings, for any set B ⊂ [n], we say an n-bit vector x is drawn from distribution

DB t RB if x is formed by first drawing xB from DB and then drawing xB from RB .

Notice that for any distribution D and set B, X
def
= DB tDB is not necessarily equal to

D since XB is independent from XB while DB and DB may be dependent.

A probability ensemble indexed by N is a sequence ∆ = {D(k)}k∈N of proba-

bility distributions. For each value of the security parameter k, probability distribution

D(k) assigns positive probability only to n-bit strings. We sometimes abuse notation

by using D(k) to refer to the random variable that ranges over {0, 1}n and that follows

the corresponding distribution D(k). As with distributions, given a probability ensemble

D = {D(k)} and a set B ⊂ [n], we let DB = {D
(k)
B }k∈N denote the ensemble consisting

of the induced distributions D
(k)
B . A class of probability ensembles (or simply, class of

distributions) Φ = {∆〈`〉}`∈D is a collection of probability ensembles ∆〈`〉 indexed by

some (possibly uncountable) set D.

13

Algorithms and their probabilities: For any (probabilistic) algorithm A, A(x)

denotes the probability distribution of all possible outputs of running algorithm A on

input x. If P is a predicate, A,B are (probabilistic) algorithms, and x, y are values,

then Pr [a← A(x), b← B(y), . . . : P (a, b, . . .)] denotes the probability that predicate

P on input a, b, . . . is true given that a, b, . . ., are the output of the ordered execution of

algorithm A on input x, B on input y, and so on. A function µ(k) is negligible in the

security parameter k if there exists a constant c > 0 and infinitely many positive values

of k such that µ(k) < k−c. A probability is overwhelming if it is larger than 1 − µ(k)

where µ(k) is a negligible function.

2.1.3 Asymmetric Encryption

We recall the standard definition of asymmetric encryption schemes.

Syntax: Let k ∈ N be the security parameter. An asymmetric (public-key) encryption

scheme AS = (K, E ,D) consists of three algorithms:

• A randomized polynomial-time key generation algorithm K. This algorithm takes

as input 1k and returns a pair (pk, sk) consisting of a public key pk and a corre-

sponding secret key sk. In this case, we write (pk, sk)
R
← K(1k).

• A randomized polynomial-time encryption algorithm E . This algorithm takes as

input a public key pk and a plaintext m, and returns a ciphertext c. For this

operation, we write c
R
← E(pk,m). Sometimes, it may be necessary to precise the

particular value of the random bits r ∈ {0, 1}∗ used by algorithm E to compute the

ciphertext c; in such cases, we write c
R
← E(pk,m; r) with the implicit convention r

is drawn uniformly at random from the set of strings {0, 1}`, for some long enough

` ∈ N (usually ` = s(k) for some fix polynomial depending only on the scheme

AS).

• A deterministic polynomial-time decryption algorithm D. This algorithm takes as

input a secret key sk and a ciphertext c and returns a plaintext m′ or the special

symbol ⊥ indicating the ciphertext c was invalid. For this operation, we write

m′ ← D(sk, c).

14

Associated to each public key pk there is a message space MsgSp(pk) from which the

plaintext m is drawn. We require that D(sk, E(pk,m)) = m for all m ∈ MsgSp(pk) and

all (pk, sk) output by K(1k).

Security: We present the standard definition of data privacy for asymmetric encryption

schemes following the indistinguishability approach [GM84]. In terms of adversarial

capabilities, there are two possibilities: chosen-plaintext attacks and chosen-ciphertext

attacks. A stateful adversary A runs in two stages, the “find” stage and the “guess”

stage. In the first stage, given a public key, A outputs two equal-length messages m0,m1

together with some state information s. Then, in the “guess” stage, A gets a challenge

ciphertext y which is the encryption of either m0 or m1 (this choice depends on a bit b

which can be seen as chosen at random), and A must guess which message was chosen.

For the case of chosen-ciphertext attacks [RS91], the adversary is also given access to a

decryption oracle D(sk, ·) which A is free to evaluate at any value as long as the oracle

is not queried on the challenge ciphertext c.

Let AS = (K, E ,D) be an encryption scheme. Let b ∈ {0, 1}, k ∈ N be the

security parameter, and Acpa, Acca be adversaries where the latter has access to an oracle.

Consider the following two experiments, parameterized by bit b:

Experiment Expind−cpa−b
AS,Acpa

(k) Experiment Expind−cca−b
AS,Acca

(k)

(pk, sk)
R
← K(1k) (pk, sk)

R
← K(1k)

(m0,m1, s)← Acpa(“find”, pk) (m0,m1, s)← A
D(sk,·)
cca (“find”, pk)

y ← E(pk,mb) y ← E(pk,mb)

g ← Acpa(“guess”, y, s) g ← A
D(sk,·)
cca (“guess”, y, s)

return g return g

The adversary A ∈ {Acpa, Acca} is legitimate if it only outputs equal length

plaintexts m0,m1 ∈ MsgSp(pk) and if A = Acca, it does not query the oracle with y in

the “guess” stage. For atk ∈ {cpa, cca}, encryption scheme AS achieves indistinguishabil-

ity against chosen plaintext attack or simply IND-CPA (respectively indistinguishability

against chosen ciphertext attack or simply IND-CCA) if the quantity

Advind−atk
AS,A (k)

def
= Pr

[

Expind−atk−1
AS,Aatk

(k) = 1
]

− Pr
[

Expind−atk−0
AS,Aatk

(k) = 1
]

is negligible in k for any feasible (PPT in k) adversary Aatk.

15

2.2 Secure Multiparty Computation

2.2.1 Terminology and Background

Very broadly, a multiparty protocol is a distributed algorithm in which two or

more parties or participants compute a functionality, a random process that maps m

inputs into m outputs. For purposes of this thesis, we consider n ∈ N parties, m = n,

where the inputs to the process are the local inputs to the parties and the outputs are

the local outputs to the parties. We consider a system of n participants (also called

parties or players) whose identities are denoted by P1, P2, . . . , Pn. We often let n de-

note either a fixed constant or a quantity that may depend polynomially on the security

parameter k (eg. n = q(k) for some fixed polynomial q). Formally, parties are modeled

as probabilistic, polynomial-time (PPT) interactive Turing machines, although the ex-

act characterization is not crucial for this thesis, as long as each party is polynomially

bounded.1 All parties belong to a network where they can communicate via messages.

As standard in cryptography, we assume there is an adversary, modeled by an arbitrary

non-uniform PPT algorithm. Parties execute a prescribed program (specified by the

protocol) but some of them can be “influenced” by the adversary– how and the degree

of influence is explained below. Parties which strictly follow their program are called

honest (or uncorrupted), otherwise are called corrupted (or dishonest).

There are several ways to define the security of a protocol. Here we describe the

simulation paradigm [Gol04]. As mentioned above, the particular functionality computed

by the parties is described by the random process parties compute. But how do we

know if an execution of a protocol computes a process “as it should”? To avoid a

circular definition, it is useful to consider the abstraction in which the random process

is computed by an external entity trusted by all participants, which receives all inputs

from each party, computes the random process, and hands out the outputs for all. Then,

we can measure security as how well the execution of a protocol in the presence of some

disruptive entity (adversary) compares with an execution of the ideal process (where

the trusted entity exists). If whatever a reasonable adversary (see below) can do in the

1 The issue of capturing in a model the requirement parties are bounded to polynomial amount
of work/time is non-trivial, particularly in the context of concurrent execution. General and sensible
definitions are beyond the scope of this thesis. See a discussion on [Can05].

16

execution of the real multiparty protocol, a reasonable adversary can do in the ideal

process. We further elaborate on this idea below and in Sections 2.2.3 and 2.2.4.

Below we discuss some parameters usually considered in defining security mod-

els in the literature.

Adversaries: In order to capture meaningful ways in which entities (either parties or

external entities) can affect the execution of protocols, we consider adversaries which

can corrupt parties, forcing them to deviate from the protocol. In most works, there is

a bound on the number of parties t adversaries may corrupt – in fact, in most models

secure multiparty computation is only possible if no more than a minority of parties is

corrupted, i.e. t < n/2). More general adversarial structures are possible [HM97].

The most general type of adversary is the one that may corrupt parties before

and during the execution of the protocol, possibly choosing which parties to corrupt based

on the data gathered so far. We say such an adversary is adaptive. A more restricted (but

very common) model is one where the adversary must select the parties to corrupt before

the protocol starts and the set of corrupted parties do not change during the execution.

Such an adversary is called non-adaptive or static. An orthogonal aspect of adversarial

capabilities is the degree in which the adversary can make parties to deviate from the

protocol. If the corrupted parties can take active steps to disrupt the execution (say by

sending messages not specified by the protocol or failing to reply) the adversary is said

to be active. An adversary is passive (or honest-but-curious, semi-honest) if a dishonest

party does not deviate from the protocol except to provide the adversary with all the

information gathered so far. This last type of corruption is useful to model adversaries

which may have access to private data from parties after the protocol has concluded. In

some models, it may be useful to model parties which are allowed to recover after being

corrupted (and thus became honest again), in which case the adversary may potentially

corrupt all parties, as long as it does not corrupt more than a given bound during a

“time period”. This adversary has been called mobile or proactive proactive.

As mentioned before, the resources of the adversaries are usually considered

polynomially bounded as it naturally captures realistic threats. In some settings, how-

ever, it is possible to prove meaningful results even against computationally unbounded

17

adversaries. Such results often assume private channels.2 This model is called information-

theoretic while the former is referred as the computational model.

Communication Channels: The adversary is commonly assumed to monitor all com-

munication channels between honest parties. By monitor, we mean the adversary is able

to obtain a copy of each message sent by each channel. A variant of this assumption is

that the adversary can only monitor a subset of all the communication channels. (This is

arguably realistic in most practical networks.) Alternatively, the private-channel model

postulates communication channels between parties are untappable by the adversary.

Although much stronger, this assumption can be justified in some settings, and it can

be implemented (emulated) by tappable channels in some others (by using encryption).

It can also provide a clean, simple abstraction to design secure protocols. Another stan-

dard assumption is that the adversary cannot modify, delete, duplicate, or create new

messages for communication channels between honest parties. As with the previous

assumption, in some settings this assumption can also be emulated using appropriate

cryptographic tools like encryption and signatures (see for example [BR93, CK02]).

Network Topology: A standard assumption is that parties are pairwise connected

with dedicated (two-way) communication channels, also known as point-to-point chan-

nels. Less standard is that some topology exists and communication is limited to a

particular graph where parties are the nodes and communication channels are the edges.

A stronger, but common, assumption is that parties share a broadcast channel, which

allows some or all parties to sends a message to all the other parties so all parties are

guaranteed to receive the same message (see details in Section 4.2.2). As before, this

assumption can be justified in some settings: under some conditions it can be emulated

by point-to-point channels (see [FM97] or [LLR02a] and references therein).

Synchronous versus asynchronous networks: Messages sent in communication

channels are often assumed to be reliably delivered – they might be delayed but always

arrive to their destination. In terms of delays, there are two standard assumptions:

synchronous networks and asynchronous networks. In a synchronous network, parties

2 If the definition of security follows the simulation paradigm, it is also required that the simulator
(or ideal adversary) operates in time comparable with that of the adversary [Can00a]. Such results then
imply results for computationally bounded adversaries.

18

have perfectly synchronized clocks which “tick” at discrete instants. The time interval

between the i-th tick and the (i + 1)-th tick is called the i-th round. Messages sent in

one round are guaranteed to be delivered in the next round. A network is said to be

partially synchronous if the adversary is allowed rushing, which means that the network

delivers the messages addressed to corrupted players instantly, so the adversary obtains

those messages before deciding and sending out the messages of corrupted players for

the same round.3 We say the communication channel is asynchronous if an attacker can

succeed in delaying messages by an arbitrary, but finite amount of time. In other words,

if any message inserted into a channel is eventually delivered.

Setup Assumptions: In some cases it may be helpful to assume parties do share or

know some information before the protocol starts. For example, common assumptions

are that parties know public keys (or verification keys) corresponding to each of the other

parties, or that parties have access to a common (trusted) random string. The former

assumption is called the bare public key (BPK) model, while the latter the common-

random string (CRS) model.

A slight strengthening of the BPK model is the public key infrastructure model

where the secret keys corresponding to public (verification) keys are securely associated

to parties, i.e. parties are assumed to know their secret keys (see [Rey01] for more details).

More precisely, in the PKI model, we assume all parties P1, . . . , Pn hold the same vector

pk1, . . . , pkn of public keys for a certain encryption scheme, and each party Pi holds a

secret key ski corresponding to pki. Also, each key pair (pki, ski) is correctly generated

for each (honest) party Pi.

The PKI model is assumed in several parts of this thesis.

In this work, we use several network models. In Section 3.2, we consider mostly

the one with partially synchronous point-to-point channels plus broadcast channel, static,

passive adversary (with no corruptions4). In Section 2.1.2, we strengthen the model to

include adaptive, active adversaries that corrupt up to a minority t < n/2 of the parties.

3 In some works in the literature, the partial synchronicity assumption is left implicit (“synchronous”
meaning “partially synchronous”) or the network is referred as “synchronous with rushing adversaries”.

4 In Section 3.6 we comment on how to extend our results for the case of corruptions, i.e. passive
adversary corrupting up to t parties.

19

Finally, in Section 5.2, we use a generalization of the asynchronous model, the Universally

Composable framework [Can05], which is described in Section 2.2.4.

2.2.2 Multiparty Setting: Building Blocks

In this section, we first review the concept of verifiable secret sharing [Sha79,

Bla79, CGMA85], a very powerful and useful protocol which is extensively used as prim-

itive in the design of most multiparty protocols. Then, we recall the definition of key

private asymmetric encryption schemes [BBDP01] which are a key ingredient in the

design of anonymous protocols of Chapter 3.

Verifiable Secret Sharing

A secret sharing scheme is a multiparty protocol where a certain party, the

dealer, holds a secret s that wishes to distribute or share among n other parties in such

a way that secret s can be reconstructed by any group of at least t parties. Also, it is often

required that any subset of less than t < n parties should not obtain any information on

the secret, even after the secret has been shared. Secret sharing protocols were invented

independently by Shamir [Sha79] and Blakley [Bla79].

Shamir Secret Sharing: Shamir’s secret sharing [Sha79] is based on the idea of

polynomial interpolation. Let F be any finite field, and s ∈ F . Associated to each party

Pi, there is a point xi ∈ F , where all points xi are distinct (which requires |F | ≥ n). The

dealer chooses a polynomial f(x) = a0 + a1x + . . . + at−1x
t−1 by selecting coefficients

a1, . . . , at−1 ∈ F uniformly at random. To share secret s, the dealer sets s0 = s and

evaluates the polynomial f on the n different points x1, . . . , xn. Then, the dealer privately

sends (xi, f(xi)) to each party Pi. By the interpolation property of polynomials, t shares

suffice to reconstruct f and hence s. Any set of less than t parties knows at most t− 1

shares (as the shares are sent privately to each party by the dealer) which does not reveal

any information about s0 = s as any s′ ∈ F defines a possible polynomial that satisfies

these t− 1 constraints and f(0) = s′.

There are two drawbacks in Shamir’s scheme. A misbehaving dealer can deal

20

inconsistent shares to the participants (shares that are not points computed as instructed

by the protocol), effectively preventing parties to reconstruct the secret. Also, dishonest

parties at reconstruction stage may provide other parties with shares other than the ones

received causing an incorrect secret to be reconstructed. Both problems are solved by

verifiable secret sharing schemes, which were proposed by Chor, Goldwasser, Micali and

Awerbuch [CGMA85]. In these schemes, each party can verify that the data received is

indeed a correct share, and incorrect shares submitted by parties at reconstruction time

can be detected.

Classical definition: We revisit the definition of verifiable secret sharing by Feldman

and Micali [FM88, FM97] (cf. [GRR98]). The definition assumes a synchronous network

with rushing adversaries, and relies on the notion of a fixed event : an event X is fixed

at a given round r in an execution E of a protocol, if X occurs in any execution E ′ of

the protocol coinciding with E up to round r.

Definition 2.2.1 A certain party D (say D = P1) is referred to as the dealer; let K be

the set of possible secrets. Consider a protocol π that consist of two phases: a sharing

phase and a reconstruction phase.

(1) Sharing: The dealer holds an input s ∈ K, referred to as the secret, and each party

Pi holds an independent random input ri. At the end of this phase, each party Pi

locally outputs its view vi of this phase. This view includes a boolean value veri.

(2) Reconstruction: In this phase, each party holds as input its view vi from the

sharing phase. At the end of this phase, each player locally output an output value

yi ∈ K.

A two-phase, n-party protocol as above is called a (n, t)-VSS protocol if, for any adversary

corrupting up to t parties, the following requirements hold:

• Unanimity: If any honest party Pi outputs veri = 1 at the end of the sharing

phase, then verj = 1 for all the other honest parties Pj .

• Acceptance of good secrets: If D is honest, then veri = 1 for every honest

party Pi.

21

• Verifiability: If an honest party Pi outputs veri = 1 at the end of the sharing

phase, there exist a value s∗ ∈ K such that the event that all honest parties output

s∗ at the end of the reconstruction phase is fixed at the end of the sharing phase.

Moreover, if D is honest, then s∗ = s the original input of D.

• Privacy: If D is honest, the adversary’s view during the sharing phase is (perfectly)

simulatable by a simulator T that only takes the description of K as input.

In Section 2.2.4, we revisit the definition of verifiable secret sharing and show

how it can be adapted for the universally composable security framework [Can05].

Key Private Encryption

Key-Private Asymmetric Encryption Schemes: The concept of key privacy for

asymmetric encryption schemes was originally proposed by Bellare, Boldyreva, Desai and

Pointcheval [BBDP01]. Motivated by anonymity-preserving applications, key privacy

aims to guarantee that no useful information about the public key holder’s identity

should be obtained from a ciphertext encrypted under that public key, even if all public

keys are known.

Let AS = (K, E ,D) be an encryption scheme.5 Let b ∈ {0, 1}, k ∈ N be the

security parameter. Consider the following experiment:

Experiment Expik−cpa−b
AS,A (k)

(pk0, sk0)
R
← K(1k), (pk1, sk1)

R
← K(1k)

(x, s)← A(“find”, pk0, pk1)

y ← Epkb
(x)

g ← A(“guess”, y, s)

return g

5 Our presentation differs from the one in [BBDP01] in that we do not consider a common-key

generation algorithm which there is used to generate the public parameters common to all parties.
Instead, for simplicity, we assume all common parameters for the encryption scheme are generated
initially once and for all.

22

An encryption scheme AS achieves key privacy against chosen plaintext attack (IK-CPA)

if the quantity

Advik−cpa
AS,A (k)

def
= Pr

[

Expik−cpa−1
AS,A (k) = 1

]

− Pr
[

Expik−cpa−0
AS,A (k) = 1

]

is negligible in k for any feasible (PPT in k) adversary A.

2.2.3 Standalone Security

One possible way to capture the security requirements of multiparty protocols is

by seen them as a distributed algorithm to compute a certain function, where the function

is computed on inputs provided by some of the parties (including those carrying out the

computation). This approach is referred as the secure function evaluation model.

We briefly recall the definition of secure function evaluation from [Can00a]. Let

n ∈ N be a fixed parameter. Assume Π is an n-party protocol, x = (x1, . . . , xn) is a

vector of inputs for the parties, and f : ({0, 1}∗)n → ({0, 1}∗)n be a function that map

n strings into n strings. Intuitively, the goal of protocol Π is to compute function f on

the inputs held by the parties, in such a way that each party receives some output as

specified by f . In order to define the security of a protocol computing f , the simulation

paradigm is used and two processes or “worlds” are considered: an ideal process and a

real process. In both, all communication is partially synchronous.

In the ideal process, there is a trusted third party connected to each party by

a point-to-point channel. The trusted party may compute f on the inputs provided

by the parties and returns the output to the parties as specified by f . In this world,

the protocol Ideal(f) that computes f on the parties’ input vector x is very simple: all

parties privately submit their inputs to the trusted party, which computes (y1, . . . , yn) =

f(x) and returns each output yi to party Pi. Adversaries in the ideal process cannot

corrupt the trusted party but can corrupt an arbitrary subset B of the parties before the

protocol starts. Upon corruption, party Pj gives her input xj to the adversary and all

her outgoing messages and output is controlled by the adversary. The communication

channel between each honest party and the trusted third party cannot be eavesdropped

by the adversary. This process models the ideal case in which an adversary cannot disrupt

the computation other than replacing the inputs and outputs of corrupted parties, nor

23

obtain more information from the inputs and outputs of the honest parties other than

what can be inferred from the output of the corrupt parties.

In the real process there is no trusted third party and parties are connected

by pairwise point-to-point channels. Adversaries in the real process can also corrupt an

arbitrary set B of parties; corruption occurs as in the ideal process. Parties execute

protocol Π in this world.

For any security parameter k ∈ N, any input x = (x1, . . . , xn) ∈ ({0, 1}∗)n for

the parties, and any real-process adversary A with auxiliary input z ∈ {0, 1}∗, we let

ExecΠ
A(k,x) denote the (n + 1)-vector whose elements are the output of each party and

the adversary after executing protocol Π under adversary A. That is,

ExecΠ
A(k, z,x)

def
=

(

OutputΠ
A(k, z),OutputΠ

P1
(k, x1), . . . ,OutputΠ

Pn
(k, xn)

)

.

where OutputΣ
C(k, x) denotes the local output of entity C (either a party or adversary)

after executing protocol Σ on input the security parameter k and value x. Similarly, for

the ideal process, given any ideal-process adversary S the execution of Ideal(f) under

adversary S is defined as

Exec
Ideal(f)
S (k, z,x)

def
=

(

Output
Ideal(f)
S (k, z),Output

Ideal(f)
P1

(k, x1), . . . ,Output
Ideal(f)
Pn

(k, xn)
)

.

Both quantities define ensembles in the straightforward way,

ExecΠ
A

def
=

{

ExecΠ
A(k, z,x)

}

k∈N,z∈{0,1}∗,x∈({0,1}∗)n

Exec
Ideal(f)
S

def
=

{

Exec
Ideal(f)
S (k, z,x)

}

k∈N,z∈{0,1}∗,x∈({0,1}∗)n

A protocol Π securely implements function f if for any real-process PPT adversary A

there exists an ideal-process PPT adversary S such that ExecΠ
A is computationally close

to Exec
Ideal(f)
S , denoted

ExecΠ
A

c
≈ Exec

Ideal(f)
S

Spelled out, protocol Π securely implements function f if for any real-process PPT

adversary A there exists an ideal-process PPT S such that for all PPT distinguishers D,

24

for all constant c > 0 and for all sufficiently large k, all z ∈ {0, 1}∗ and x ∈ ({0, 1}∗)n,

∣

∣

∣
Pr

[

D(1k, z,x,ExecΠ
A(k, z,x)) = 1

]

−Pr
[

D(1k, z,x,Exec
Ideal(f)
S (k, z,x)) = 1

]
∣

∣

∣
< k−c

2.2.4 Universally Composable Security

In this section, we provide a brief and informal overview of the Universally

Composable framework of Canetti as described in [Can05]. The Universally Composable

(UC) framework is an extension of the standalone security model of the previous sec-

tion. This framework allows defining the desired properties of cryptographic protocols

in terms of tasks or functionalities. A functionality is a program executed by a “trusted

party” which first obtains inputs directly from the parties, performs certain instructions

on these inputs, and provides the parties with the appropriate outputs.6 Such protocol

is called the ideal protocol and the functionality used is the ideal functionality. Func-

tionalities can be reactive, in the sense that they may receive inputs from the parties

and the adversary, as well as as deliver outputs to the parties and the adversary, in the

course of one ore more iterations. Informally, a protocol securely implements a given

cryptographic task, if executing the protocol against a realistic (i.e. real-life) adversary

“emulates” an ideal process in which the task is computed by the functionality directly

interacting with the parties against a limited adversary (called the ideal adversary). The

model assumes there exist a third party, the environment Z, which interactively gives

inputs to the parties and sees the parties’ outputs, possibly at several times during the

computation. The environment can also freely communicate with the adversary. The ob-

jective of the environment is to distinguish whether the observed execution corresponds

to a “real-life” execution of the protocol or whether it corresponds to the ideal process

with the ideal functionality is used. In this sense, the notion of emulation of UC secu-

rity effectively is based on that no interactive distinguisher cannot tell the executions

apart. More precisely, a protocol π is said to UC-securely realize functionality F if for

any real-life adversary A attacking protocol π under the presence of the environment

6 A functionality may also take inputs from or give outputs to the adversary to model the “allowed
influence” of the adversary in the computation of the task, or the “allowed leakage of information” to
the adversary, respectively.

25

Z, there exists an ideal adversary S for the ideal process such that no environment Z

can distinguish whether it is interacting with the real-life adversary A and protocol π,

or it is interacting with the ideal adversary S and the functionality F .7 Intuitively, this

means that, whatever adversary A can obtain from the execution of protocol π, it can

be obtained by S from the (obviously secure) ideal functionality F , regardless of what

external protocols may run concurrently or what inputs the parties start from.

The framework also consider protocols that operate in the real process but

with access to an existent functionality F . One benefit of assuming the availability of

a given functionality is that it facilitates modular protocol design: as functionalities

can be implemented and proven secure independently from the protocols that use them.

Formally, a protocol is said to run in the F -hybrid model, if it runs in the real-life process

but parties have access to copies of functionality F (i.e. parties can send inputs and get

outputs from an unbounded number of copies of F as in the ideal model).

In the UC framework, the adversary gets to see, and schedule the delivery of

all the messages exchanged between parties – in particular, the adversary can block mes-

sages. However, adversaries can not see the parties’ inputs nor the inputs that parties

give to (or receive from) the functionality. (We stress parties cannot communicate di-

rectly among them, they can only communicate via the adversary). This models that

communication between parties happens through potentially untrusted communication

channels, while communication with any functionality is private and thus “trusted”. The

environment, on the other hand, has access to the parties’ inputs and it obtains the par-

ties’ outputs, but it cannot see the messages exchanged between them. This shows that

the adversary and the environment capture slightly different concerns: the adversary

represents active threats via corruptions or by leaking information via communication

channels, while the environment represents “everything else”, all external (possibly con-

currently executing) protocols, including possible inputs provided by them and possible

outputs leaked by the interaction with them. In any case, the UC framework allows the

environment and adversary to freely communicate during the protocol execution, so this

restriction does not limit the model.

7 The ideal adversary S is sometimes called the simulator, as S must simulate the real-life adversary’s
actions by somehow using the ideal functionality, without having access to the information exchanged in
the real protocol.

26

In any hybrid model (or the ideal process), the adversary can communicate

directly with the functionality as long as the functionality’s code allows it. One common

provision is that the adversary A may corrupt parties in a dynamic fashion (choosing

which party to corrupt as a function of what A sees during the execution) by sending a

special message (Corrupt, P) to the functionality, where P is the party to corrupt. The

functionality’s code then determines the subsequent actions, like sending party P ’s inputs

and local state to the adversary, for example. As expected, the definition of security

mentioned before is also presented for protocols in the hybrid models. A protocol π in

the F -hybrid model emulates protocol φ in the G-hybrid model if for any adversary A

attacking π in the F -hybrid model and any environment Z, there exists an adversary S

attacking φ in the G-hybrid model, such that Z have at most negligible probability of

distinguishing whether it is interacting with A in the former model, or S in the latter.

Universal Composition: The security of UC secure protocols is maintained under

general composition with an unbounded number of instances of arbitrary protocols run-

ning concurrently. This follows from the composition theorem, proven by Canetti in

[Can01b, Can05]. The theorem essentially states the following. Given a protocol ρ

that UC-securely implements a functionality G in some H-hybrid model (or the real-

life model), then any protocol π that UC-securely implements a functionality F in the

G-hybrid model can be transformed into a protocol πρ in which all calls to the ideal

functionality G are replaced with calls to protocol ρ, in such a way that protocols πρ in

the H-hybrid model emulates protocol π in the G-hybrid model

Delayed Outputs: In [Can05], Canetti suggests a mechanism that allows parties to

“ask for permission” from the adversary before sending a message to a party, possibly

to model adversarially-controlled delays. A functionality F is said to give (private)

“delayed output” m to party P if, before giving m to P , F sends a message of the form

(AskPermission, sid, P) to the adversary, and only upon receiving a message of the form

(PermissionGranted, sid, P) functionality F gives m to P . This mechanism is explicitly

used in the construction of Section 5.6.

Modeling Synchronous Communication: In [Can05], Canetti suggests a technique

to represent the important network model of synchronous communication (with guar-

27

anteed delivery). Canetti’s idea is to encapsulate the synchronicity capabilities in a

functionality, which can be accessed by the parties seeking for the synchronicity. The

functionality, denoted FSY N , is described in Figure 2.1. We use this functionality in a

crucial way in the construction and analysis of our Simultaneous Broadcast solution in

Section 5.5.

UC Verifiable Secret Sharing

In this section, we revisit the definition of Verifiable Secret Sharing in the Uni-

versally Composable framework. This notion was first formalized by Canetti in [Can01a]

(and later improved in [Can05]). Here we describe the variant proposed by Abe and Fehr

in [AF04] which includes the concept of “spooling” the secret, a syntactic technique that

allows the dealer to announce to the adversary – via a Spool message – that a new

functionality is being called. The adversary is thus able to adaptively corrupt the dealer

before the dealer commits to a value.8 The corresponding UC functionality is FV SS

described in Figure 2.2.

Definition 2.2.2 We say a protocol π achieves UC-VSS if π UC-realizes functionality

FV SS .

In this formalization, the VSS scheme still consists of two phases, the sharing

phase (steps (1), (2)) and the reconstruction phase (step (3)). Unanimity, verifiability,

and acceptance of good secrets properties trivially follow from the functionality code (and

the fact its execution is trusted). Privacy holds because step (3), the reconstruction, is

not executed unless t + 1 parties – that is, at least one honest party – agree on opening

the secret.

8 A similar technique appears in the formalization in [Can05], albeit implicitly in the way the func-
tionality reacts to the corruption messages from the adversary.

28

Functionality FSY N

FSY N expects its SID to be of the form sid = (sid′,P), where P is a list of parties

among which synchronization is to be performed. It proceeds as follows.

(1) At the first activation, initialize a round counter r ← 1.

(2) Upon receiving input (Send, sid,M) from party P ∈ P, where M = {(mi, Ri)}

is a set of pair of messages mi and recipient identities Ri ∈ P, record (P,M, r)

and output (sid, P,M, r) to the adversary. (If P later becomes corrupted then

the record (P,M, r) is deleted.)

(3) Upon receiving a message (Advance-Round, sid,N) from the adversary, do: If

there exist uncorrupted parties P ∈ P for which no record (P,M, r) exists then

ignore the message. Else:

1. Interpret N as the list of messages sent by corrupted parties in this round.

That is, N = {(Si, Ri,mi)} where each Si, Ri ∈ P, mi is a message, and

Si is corrupted. (Si is taken as the sender of message mi and Ri is the

receiver.)

2. Prepare for each party P ∈ P the list Lr
P of messages that were sent to it

in round r by all parties in P, both corrupted and uncorrupted.

3. Increment the round number: r ← r + 1.

(4) Upon receiving input (Receive, sid) from a party P ∈ P, output

(Received, sid, r, Lr−1
P) to P . (Let L0

P = ⊥.)

Figure 2.1 The synchronous communication functionality, FSY N [Can05].

29

Functionality FV SS

FV SS expects its SID to be of the form sid = (sid′, D,P), where P is a list of parties

among which sharing is to be performed. It proceeds as follows.

(1) Upon receiving input (Spool, sid, v) from party D ∈ P, set s ← v and send

(Spooled, sid,D) to adversary S.

(2) Upon receiving input (Share, sid, v ′) from party D ∈ P, do

• If D is corrupted, set s← v′.

• Send (Shared, sid) to each party in P and the adversary S.

(3) Upon receiving input (Open, sid) from t+1 distinct parties, send (Opened, sid, s)

to all parties in P and the adversary S.

Figure 2.2 The Verifiable Secret Sharing (with Spooling) functionality, FV SS .

3

Anonymous Communication

3.1 Introduction

Anonymous channels allow users to send and receive messages without reveal-

ing their identities. There are many applications for such channels, from protecting

“whistle blowers” or guaranteeing source confidentiality in crime tips, to offering ac-

cess to medical information to potential patients without fear of embarrassment, or

protecting voter privacy in electronic voting [FOO92, Nef01]. Chaum [Cha81] initi-

ated the modern study of anonymous communication by introducing the concept of

mix networks (or mix-nets). A mix-net is a protocol in which messages (say, emails)

traverse several routers (or mixers) and, in the process, are “mixed” with other mes-

sages with the intention that the relation to the original sender be lost. Since Chaum’s

seminal paper, research in the area has been extensive, from concrete mix-net proposals

(see [PPW91, Abe98, JJR02, FS01, Gro03, Wik04] among many others) to very practical

protocols based on mix-nets (eg. [GRS96, GT96, KEB98, DDM03, RP04, DMS04] and

references therein). But mix-nets are not the only method to implement anonymous com-

munication. DC-nets (also known as anonymous broadcast networks), also proposed also

by Chaum [Cha88] and later improved by many others [BdB89, Wai90, WP89, GJ04],

allow broadcast of messages without disclosing the sender identity. At least initially,

most of the effort was put into improving the efficiency and reliability of the construc-

tions, so informal or ad-hoc definitions were common. Indeed, only recently the need for

30

31

general (and sound) definitions for these types of primitives has drawn some attention.

Furukawa [Fur04] and Nguyen et al. [NSNK04], in particular, give strong definitions

for “proving shuffles” (shuffles are the basic mixing operation) and Wikström [Wik04]

presents a formal definition of mix-net in the UC model [Can01b]. These definitions,

although helpful in the design and analysis of mix-nets, do not provide a definition of

anonymous channels per se. Indeed, the absence of good anonymity definitions that

capture realistic concerns motivated this work.

Our Contributions: We present a novel framework to organize and compare anonymity

definitions. In this framework, we formalize the notions of unlinkability, sender-anonymity,

receiver-anonymity, sender-receiver anonymity, and unobservability, giving them new,

strong indistinguishability-based formulations without compromising the standard “intu-

itive” meaning they have in the literature [PK01]. We also introduce new notions, namely

weak unlinkability, sender unlinkability and receiver unlinkability. These notions, while

arguably weak, can be used to implement some of the stronger notions. Then we formally

prove some folklore results: we show that sender-receiver anonymity implies both sender

anonymity and receiver anonymity, that sender-anonymity and receiver-anonymity (both

separately) imply unlinkability, and that unobservability implies all the other properties.

In the other direction, we present generic black-box transformations from any “weak”

anonymous protocols (eg. weak unlinkability, unlinkability, or sender anonymity) into

protocols anonymous under “stronger” notions (like sender-receiver anonymity or un-

observability). These transformations are provably optimal in terms of message traffic.

We then revisit the anonymity of constructions based on broadcast channels, DC-nets

and mix-networks, giving an exact characterization of the anonymity they provide in our

framework.

3.1.1 Coping with information leaks

There have been several attempts to characterize the intuitive properties anony-

mous channels should have. Most proposals so far seem to fall into two categories: (a)

they present intuitive but weak definitions (targeted to particular applications with ef-

ficiency in mind), or (b) they present strong definitions with often impractical imple-

32

mentations [BGW88, GMW86, CCD88]. We seek to bridge this gap by providing strong

definitions which can be tailored to specific practical scenarios.

We identify factors or conditions that may realistically limit anonymity. These

conditions are on specific information that, in principle, may be unrealistic to assume

hidden from the adversary. Consider for example,

(a) Total network flow is usually public: the total number of messages sent in a

system is likely to be known to any party in the system, even external observers.

(b) Amount of traffic per party is hard to conceal: the number of messages

sent or received by a particular party is often easily inferred by an observer in the

party’s network vicinity.

(c) Values sent or received by each party are not necessarily private: the

value of each message1 sent or received by a particular party could be guessed,

known, or even influenced by an adversary.

A proper definition of anonymity should take these “leaks” into account but hide any

additional information: hide everything except what follows from the potentially leaked

information. This idea is already present in security definitions of other cryptographic

primitives. For example, if E is a semantically secure encryption function [GM84], it is

standard to assume a ciphertext E(m) hides all partial information about a message m

except its length |m|. This is because |m| can only be hidden at the cost of unneces-

sarily increasing the size of E(m). In fact, the definitions in this work are inspired by

the indistinguishability-based formalization of semantically secure encryption in [GM84],

which guarantees the hiding of all information on the plaintext other than the plaintext

length. Similarly, an anonymous channel should hide all information about the com-

munication except for (some of) the information mentioned above. In this work, we

study the possible combinations of the conditions (a),(b), and (c) above, and analyze

the resulting notions. There are ten (potentially different) notions. Named following the

intuition in [PK01], they are summarized in Table 3.1.

1 We distinguish two properties for each message: its value, that is, the data or payload encoded in
the message, and its destination.

33

Table 3.1 Anonymity variants and their alternative names. The alternative name (X, Y, Z)
encodes what information is not assumed to be protected by the definition (ie. the meaning of
X ,Y , and Z), and from whom the information comes: from each sender (X), each receiver (Y),
or both (Z). ‘U’ stands for “values of the messages sent/received”, ‘Σ’ for “number of

messages sent/received”, ‘#’ for “total number of messages”, and ‘?’ for “nothing”.

Anonymity Variant Alternative Name

Weak Unlinkability (U,U, ·)-anonymity

Sender Unlinkability (Σ,U, ·)-anonymity

Receiver Unlinkability (U,Σ, ·)-anonymity

Sender-Receiver Unlinkability (Σ,Σ, ·)-anonymity

Sender Anonymity (?,U, ·)-anonymity

Receiver Anonymity (U, ?, ·)-anonymity

Strong Sender Anonymity (?,Σ, ·)-anonymity

Strong Receiver Anonymity (Σ, ?, ·)-anonymity

Sender and Receiver Anonymity (?, ?,#)-anonymity

Unobservability (?, ?, ·)-anonymity

Toy examples of the traffic patters protected by all variants are shown in

Section 3.1.2. Weak Unlinkability is the weakest notion of anonymity we consider. A pro-

tocol is weakly unlinkable if it hides any relation between senders and receivers beyond

what is implied by the specific values of the messages exchanged. Compared to Weak

Unlinkability, Sender Unlinkability strengthens the requirements for the sender, hiding

the value of the messages sent by a party, but not necessarily their total size. Its dual no-

tion is Receiver Unlinkability in which the roles of sender and receiver are reversed. Next

notion is Sender and Receiver Unlinkability (or simply Unlinkability), in which protocols

do protect message values, but it may not protect the total size of messages exchanged

by each party. A stronger notion is Sender Anonymity as the number and values of mes-

sages for the sender must remain hidden (but not the values of the received messages for

each party). Compared to Sender Anonymity, Receiver Anonymity simply reverses the

roles of sender and receiver. Further strengthening of these notions are Strong Sender

Anonymity (resp. Strong Receiver Anonymity) in that protocols can afford to leak at

most the amount of traffic per receiver (resp. per sender). The strongest notions are

Sender-Receiver Anonymity, and Unobservability. They differ in that the former may

not protect the total network flow (ie. the total number of messages exchanged), while

the latter must hide this information.

34

3.1.2 Strong, Formal Definitions

We adopt an indistinguishability based formalization under which the adver-

sary produces two message matrices (which encode message senders and receivers in a

standard way), is allowed to passively observe the execution of a communication protocol

under a random one of these two matrices and then is required to have non-negligible

advantage in determining under which of the two matrices the protocol was executed.

Within this framework, each different anonymity variant is defined by requiring the ad-

versary to produce two matrices whose “leaked” information is the same. More precisely,

if for any message matrix M the anonymity variant assumes a certain information f(M)

may not be protected (it may be “leaked”), then the two matrices M,M ′ produced by

the adversary must satisfy f(M) = f(M ′). Indeed, the notions corresponding to the

different anonymity variants mentioned in the previous section follow from instantiating

function f with the appropriate function (eg. one that computes the set of message

values sent per party, their number, or the total number of messages, for example). Our

formalisms build on definitional ideas used for encryption [GM84, MRS88, Gol93] and

signatures [GMR88]. Regarding adversaries, an often adopted adversarial type is that

of honest-but-curious (or passive) adversary, one where the adversary obtains the inter-

nal state of the corrupted party, but the party continues to follow the protocol. For

simplicity of exposition, we consider passive adversaries with no corruptions (also called

outside [DO00] or global passive adversary [Ser04]) as it captures most of the subtleties

of our model. Extensions to allow (passive) corruptions are discussed in Section 3.6.

Since the adversary can freely choose the values and destinations of all messages

in the protocol (ie. the message matrix), it follows that a protocol anonymous under

this definition must hide all partial information on the message matrix M except for

what is implied by the known information f(M). In particular, sources and destinations

of the messages are hidden up to the extent that they do not follow from the known

information. This is quite a strong guarantee.

We stress that we present an unified framework for all the proposed anonymity

variants. We believe this facilitates the organization and comparison of the notions as

well as future extensions.

35

M (1)M (0) M (1)M (0)

WUL

(U, U, ·) a

a

SUL

(Σ, U, ·) b

a

RA

(U, ?, ·)

a

UL

(Σ, Σ, ·) b

a

RUL

(U, Σ, ·) b

a

SA

(?, U, ·)

a

RA∗

(Σ, ?, ·) b

a

SRA

(?, ?, #)

SA∗

(?, Σ, ·)

a

UO

(?, ?, ·)

c

a

a

a

b

a

a

b

c

d

a

a

d

c

d

b

a

Figure 3.1 A pictorial representation of toy examples of communication patterns hidden by each
anonymity notion. For each notion, there are two communication patterns illustrated by graphs
of four nodes: the leftmost graph represents the communication pattern for the combination of
senders, messages, and receivers corresponding to matrix M (0), while the rightmost graph the
pattern specified by M (1). For each graph the nodes which represent parties, arrows represent
messages, and the label is the message value; the nodes where arrows depart represent senders,
and those where arrows arrive represent receivers.

3.1.3 Comparing Notions

The indistinguishability-based definitions presented in this chapter appear to

capture the concerns of most intuitive but informal notions of anonymity proposed in the

past [PK01]. Indeed, in Section 3.1.5 we argue that previous anonymity formalizations

in comparable network models are implied by some of the proposed notions. In addition,

we compare the new notions to each other. The comparison is in terms of reductions.

We distinguish two kind of them: notion A implies (is stronger than) notion B if (1)

any protocol satisfying A can be used to achieve B (via a different protocol), or (2)

any protocol satisfying A also satisfies B. A difficulty arises if we assume point-to-point

channels between parties. In this case, protocols for all notions exist because of general

36

secure multiparty computation results [BGW88, GMW86, CCD88], which makes the

notions trivially equivalent. To avoid this pitfall, we assume that the only communication

channel between the parties is an idealized version of a protocol achieving notion A, and

then we show how to implement a protocol that achieves notion B in this setting. The

communication channel is idealized in the sense that parties only see its input/output

behavior. This effectively gives us black-box reductions.

Results: We show three types of reductions between the anonymity definitions: (1)

Trivial reductions, in which given a protocol for notion A, the same protocol achieves no-

tion B, (2) Reductions that use cryptography, and (3) Reductions that use “padding” (or

“dummy traffic”). Interestingly, in terms of the reductions, cryptography and padding

do not appear exchangeable. Our results suggest that in the reductions that require cryp-

tography padding does not help, while in those where padding is necessary, cryptography

does not help.

Trivial Reductions: There exists a partial order of the notions, starting from the

weakest one, weak unlinkability, and ending in the strongest one, unobservability, such

that if a protocol achieves a certain notion then the same protocol achieves any weaker

notion. These relations give formal justification to previous informal statements such

as sender-receiver anonymity implying both sender anonymity and receiver anonymity,

or that unobservability implies all the other notions. Interestingly, there is no trivial

relation between sender anonymity, unlinkability, and receiver anonymity, which indi-

cates the definitions address incomparable security concerns. In [PK01], however, it is

argued that Unlinkability (called “relationship anonymity” there) is a “weaker property

than each of sender anonymity and recipient anonymity”. The disagreement disappears

when one notices that, under our definitions, such relation is true between strong sender

(or receiver) anonymity and unlinkability. Our framework allows us then to clarify an

implicit assumption in [PK01], namely that messages in the definitions of sender and

receiver anonymity are private.

Using Cryptography: Under standard computational and setup assumptions, we

show that anonymity notions that reveal message values are not intrinsically weaker than

those that keep these values private. In particular, we show reductions from unlinkability

37

to sender (or receiver) unlinkability and, perhaps more surprisingly, from any of them to

weak unlinkability. We also show strong sender (resp. receiver) anonymity is not weaker

than sender (resp. receiver) anonymity.2 The assumptions are standard, namely PKI and

key-private secure encryption schemes [BBDP01].3 The reductions are computationally

efficient and do not have message overhead – they introduce no new messages – therefore

optimal in terms of communication.

Using “Padding”: We conclude showing that our strongest anonymity notions can be

achieved starting from much weaker anonymity notions, but at a cost of message effi-

ciency. In a nutshell, the reductions show that unobservability, sender-receiver anonymity,

strong sender (or receiver) anonymity, and unlinkability are actually equivalent. They

also show that neither sender nor receiver unlinkability are stronger than sender or

receiver anonymity. These reductions do introduce dummy traffic (ie. extra empty mes-

sages) but no more than necessary – they have optimal message overhead. These re-

ductions do not require computational or setup assumptions, and are computationally

efficient.4 The results are summarized in Figure 3.3.

3.1.4 The Anonymity of Previous Protocols

The ultimate purpose of a definition is to be used to properly characterize the

security of concrete protocols. Accordingly, we revisit the security of known constructions

based on broadcast channels [BIK+03], DC-nets or anonymous networks [Cha88, GJ04,

SA00], and mix-nets [Gro03, NSNK04, Fur04]. In Section 3.5, we examine the basic

construction of Blaze et al. [BIK+03], which is based on broadcast channels, and we argue

it can be shown strong receiver anonymous. We also discuss the DC-nets of [GJ04] and

sketch how the construction there can be proven sender anonymous. Finally, we highlight

sufficient conditions to prove the strong receiver anonymity of mix-net constructions

based on shuffles [Gro03, NSNK04]. By combining the constructions that underlie the

2 This proof actually justifies the assumption made in [PK01] mentioned before. We stress that this
is not obvious since anonymity does not necessarily implies message privacy, or viceversa.

3 In fact, based on preliminary results, we conjecture computational or setup assumptions are also
necessary.

4 The reductions to Sender Anonymity, Strong Sender Anonymity, and Unobservability require the
extra (but rather mild) assumption that a known upper bound on the total network flow exists. See
Proposition 3.4.6 and remarks at the end of Section 3.4.2.

38

implications of previous sections, we obtain anonymous protocols provably secure under

the strongest notions: sender-receiver anonymity and unobservability.

3.1.5 Comparison with Previous Anonymity Notions

In this section, we compare the proposed variants with anonymity variants

suggested previously in the literature. When necessary, we relax those definitions to

match our adversarial model (passive adversaries with no corruptions).

Indistinguishability-based definitions: Beimel and Dolev [BD03] define anonymity

in terms of computational indistinguishability of the adversary’s view (i.e. the messages

and any extra information obtained by the adversary) in two cases: when party Pi sends

a message to party Pj , and when Pi′ sends a message to Pj′ , for any i, j, i′, j′. Given that

[BD03] does present protocols for multiple senders, we see the definition as somewhat

unsatisfactory in the following sense. The definition does not specify how the messages

and destinations for parties Pk 6= Pi are selected. If they are chosen either arbitrarily (but

the same for both views) or with some probability distribution, then we can show they

are strictly weaker than sender-receiver anonymity. The alternative, choosing the inputs

for parties Pk 6= Pi, arbitrarily but different in each view, might work (be equivalent to

sender-receiver anonymity) although it is unclear without a formal statement. A similar

concern can be raised on the definition proposed by von Ahn et al. in the context of

k-anonymity [vABH03]. (Essentially the same definition for the case of a fixed receiver).

Golle and Juels [GJ04] present a definition of anonymity (which they called

privacy) in the context of DC-nets [Cha88]. In the definition in [GJ04], a successful

adversary must distinguish between an execution where P1 sends a message to some

party Pb, and one in which P2 sends a message to some party P1−b, where b is a bit

chosen uniformly at random and unknown to the adversary. The rest of the parties

sends messages as instructed by the adversary. Unfortunately, this definition suffers

from a problem similar to the one above. The adversary is unable to exploit possible

correlations between the destination of P1’s message and the destination of some other

party P3’s message. Consequently, this definition can be shown to be strictly weaker

than our definition of sender anonymity. Luckily, the DC-net in [GJ04] is strong enough

39

to be proven sender anonymous (see Section 3.5.2).

Other closely related definitions: Nguyen et al. [NSNK04] define privacy of a

shuffle by a similar experiment to ours (a notion called indistinguishability under chosen

permutation attack or IND-CPAS under an active adversary). In their definition, the

adversary chooses two permutations under which the messages are shuffled and must

distinguish which one was used. Translated to our setting, their definition restricts

message matrices to be permutations such that each party sends exactly a single message.

Also, it does not account for the types of information leaks we consider. The comparison

is somewhat unfair, as their concern – privacy of a single shuffle – is different than ours.

Recently, another related definition was suggested (rather implicitly) by Ishai

et al. in [IKOS06]. There, Ishai et al. describe a functionality for anonymous communi-

cation (synchronous setting with rushing). When paired with the appropriate notions

of multiparty computation [Can00b] (under our adversarial model), their definition be-

comes a special case of ours, without the relaxations for the information leaks. Their

work [IKOS06], however, does not explore the proposed definition but instead use it to

prove the security of other (non-anonymity related) cryptographic protocols. None of

the definitions above incorporates provisions to deal with “leaked” information though.

3.1.6 Discussion and Related work

Dolev and Ostrovsky [DO00] present “xor-trees” protocols, a generalization of

DC-net into a spanning tree, which they prove secure under a notion based on the concept

of anonymity set (see below). Similarly, von Ahn et al. [vABH03] propose the notion of

k-anonymity which can be seen as an extension of the DC-net model to more practical

graph structures (which partition the parties into k-sized autonomous groups). Another

approach was proposed by Rackoff and Simon in [RS93]. They describe a protocol

for anonymous communication based on sorting networks, which is shown to satisfy

some statistical mixing properties. Relaxations to weaker adversaries were proposed by

Reiter and Rubin [RR98] and Berman et al. [BFTS04]. Both works presented alternative

notions of anonymity as well as efficient constructions assuming an adversary that does

not monitor all communication channels. Recently, Camenisch and Lysyanskaya [CL05]

40

give a formal definition of onion routing [GRS96] (along a provable secure protocol) but

they explicitly avoid defining anonymous channels.

An alternative characterization of anonymity has been through the concept of

anonymity set [Cha88, KEB98]. The anonymity set is defined as the set of parties that

could have sent a particular message as seen from the adversary [PK01]. Follow up works

[KEB98, SD02, DSCP02] have proposed new characterizations of anonymity, mostly in

terms of the probability distributions the adversary assigns to each party in order to

represent the likelihood such party is the sender of a message. Finally, definitions based

on formal methods have also been proposed [SS99, HO04, Ser04, MVdV04, GHPvR05].

Organization: The rest of the chapter is organized as follows. Section 3.2, introduces

some notation and details on the execution model. Then, in Section 3.3, we present

the formal definition of anonymous channels. Section 3.4 presents implications between

the notions as well as proofs of their optimality in terms of communication. Then, in

Section 3.5, we revisit previously proposed anonymous protocols and examine their se-

curity in the current framework. We conclude in Section 3.6 mentioning some extensions

to the model.

3.2 Preliminaries

In this chapter, we consider a synchronous point-to-point network of n parties

(see Section 2.2.1). We distinguish two (possibly overlapping) types of parties: senders

and receivers. For any two finite sets A and B, let A]B denote the multiset union (also

called sum or join) of A and B, and |A| denote the size of multiset A. By convention,

we assume the i, j-th element of any matrix M = (mi,j)i,j∈[n] are denoted by the matrix

name in lowercase with subindexes i, j. As usual, M T denotes the transpose of any

matrix M , mi,∗ = (mi,j)j∈[n] is a matrix row.

Messages: We let V = {0, 1}` denote the message space, where ` = `(k) and k ∈ N

is the security parameter. The collection of messages sent by parties as well as their

destinations is an n× n matrix M = (mi,j)i,j∈[n]. For row index i and column index j,

41

mi,j ∈ P(V) is the set of messages from party Pi to party Pj .
5 We call such a matrix

M ∈ Mn×n(P(V)) a message matrix. The size of matrix M , i.e. the total number of

messages sent, is denoted by |M |
def
=

∑

i,j∈[n] |mi,j |.

Adversaries and Protocol Execution: In our setting, adversaries are (possibly

external) PPT parties in the system which can passively monitor all the communication

between parties. We consider only passive adversaries, stateful adversaries that do not

corrupt any party but are able to read (but not alter) all the messages exchanged by the

parties. A protocol π is a sequence of instructions that all parties (senders and receivers)

must follow. The instructions involve local computations and point-to-point message

exchanges between parties. Our execution model is a special case of the model presented

by Canetti [Can00b] (since we consider only passive adversaries). Given a message matrix

M , we define the execution of protocol π with input M under adversary A, as the real

world process where each party Pi follows the instructions of protocol π using as input

the i-th row mi,∗ of matrix M . In this process, we allow the adversary A to obtain a

copy of all messages exchanged in all communication channels. We say protocol π is

a message-transmission protocol if, for any PPT adversary A and any message matrix

M , each receiver Pj ’s local output yj after executing π on input M equals the multiset

]j∈[n]mi,j.

3.3 Security Notions

Our definition is formalized in an indistinguishability-type experiment following

similar approaches used in the formalization of semantically secure encryption schemes

[BDPR98]. We define anonymity via an experiment or game, in which there are two

“worlds” (world 0 and world 1). We allow the adversary to choose the messages (values

and destinations) sent by each party in each world. These choices are represented by

two message matrices M (0) and M (1). Then, world b ∈ {0, 1} is chosen uniformly at

random, and message-transmission protocol π is executed by all parties on input M (b).

We measure the adversary’s success in terms of her ability to distinguish the two worlds.

5 Actually, we abuse the notation and we see elements of P(V) as multisets. This extension is needed
to consider parties that send duplicated messages to the same receiver (see Section 3.4.2).

42

Our definition is inspired by the standard game used to define semantically se-

cure encryption scheme, namely the left-or-right characterization of IND-CPA [BDPR98].

There, the adversary arbitrarily chooses two messages of the same length, is returned

an encryption of a random one of the two messages and then is required to guess under

which message the encryption was generated. The adversary’s inability to distinguish

the plaintext underlying in the ciphertext effectively means she cannot compute any in-

formation on the plaintext except its length [GM84, BDPR98]. Similarly, the definition

of our anonymity game guarantees that no information can be efficiently computed on

the destinations of the messages sent during the protocol.

As mentioned in the introduction, one important difference between our for-

mulation and the left-or-right game mentioned above is that we restrict the adversary’s

choices of the values and destinations of the messages to capture what is known to the

adversary. These restrictions are captured as follows. Let fU, fΣ, and f# be functions

that maps matrices M = (mi,j)i,j∈[n] into P(V)n, N
n, and N respectively, defined by

fU(M)
def
= (]j∈[n]mi,j)i∈[n], fΣ(M)

def
= (

∑

j∈[n] |mi,j|)i∈[n], and f#(M)
def
= |M |. Also, let

fT
U (M)

def
= fU(MT), and fT

Σ (M)
def
= fΣ(MT). Associated to each function f there is a

relation Rf ⊂ Mn×n(P(V))2 where (M,M ′) ∈ Rf if and only if f(M) = f(M ′). For

simplicity, we denote RU = RfU
, RT

U = RfT
U
, RΣ = RfΣ

,RT
Σ = RfT

Σ
, and R# = Rf#

.

We are now ready to present the main definition. Given an n-party message-

transmission protocol π, an adversary A, and label N ∈ {WUL,SUL,RUL,UL,SA,RA,

SA∗,RA∗,SRA, UO}, consider the experiment ExpN−anon
π,A (k) described below. Relation

RN is defined in terms of RU,RT
U ,RΣ,RT

Σ and R# according to the table in Figure 3.2.

We define the success probability of adversary A attacking protocol π under notion N

as AdvN−anon
π,A (k)

def
= 2 ·Pr

[

ExpN−anon
π,A (k) = 1

]

− 1 where the experiment is defined as

follows:

Experiment ExpN−anon
π,A (k)

b
R
← {0, 1}, and 〈M (0),M (1)〉 ← A(k)

if 〈M (0),M (1)〉 /∈ RN then return 0

else Execute π on input M (b) under adversary A until A outputs a bit g.

if (b = g) return 1 else return 0

43

N Notion Description of RN

WUL Weak Unlinkability RWUL
def
= RU ∩RT

U

SUL Sender Unlinkability RSUL
def
= RΣ ∩RT

U

RUL Receiver Unlinkability RRUL
def
= RU ∩RT

Σ

UL Unlinkability RUL
def
= RΣ ∩RT

Σ

SA Sender Anonymity RSA
def
= RU

RA Receiver Anonymity RRA
def
= RT

U

SA∗ Strong Sender Anonymity RRA∗
def
= RΣ

RA∗ Strong Receiver Anonymity RSA∗
def
= RT

Σ

SRA Sender-Receiver Anonymity RSRA
def
= R#

UO Unobservability RUO
def
= Mn×n(P(V))2

Figure 3.2 Anonymity variants and their associated relations RN.

Definition 3.3.1 (Anonymous Channels) A message-transmission protocol π

achieves N-anonymity for N ∈ {WUL,SUL,RUL,UL,SA,RA,SA∗, RA∗,SRA,UO}, if for

all PPT adversaries A, the quantity AdvN−anon
π,A (k) is negligible in k ∈ N.

3.4 Relation between the notions

Black-box implications: As mentioned before, we consider a simplified network where

the only communication channel between the parties is an idealized implementation of a

protocol satisfying a certain anonymity notion N1. We say notion N1 implies notion N2

(or alternatively that N2 reduces to N1), denoted by N1 → N2, if there exists a protocol

θ(·) (with access to the idealized communication channel) such that, for all protocol π,

the following holds: if π achieves N1-anonymity, then θπ achieves N2-anonymity.

Results: Our results are summarized in Figure 3.3. We first describe some easy impli-

cations, most of them folklore results, which until now remained without formal proof.

An interesting aspect of the result is that the transformation which enables the reduc-

tions is the identity function. Therefore, some definitions are stronger than others in the

sense that any protocol achieving one definition also achieves the other one.

44

Proposition 3.4.1 The following implications hold unconditionally UO → SRA →

SA∗ → SA→ SUL→ WUL, SRA→ RA∗ → RA → RUL → WUL, SA∗ → UL → RUL and

RA∗ → UL→ SUL.

Proof of Proposition 3.4.1: First, we notice that, by definition RU ⊂ RΣ ⊂ R#

and RT
U ⊂ RT

Σ ⊂ R#. The results follows easily from these relations. We illustrate this

by proving the implication SUL → WUL. The other implications are similar. In order

to prove that SUL → WUL, it suffices to show that, for any protocol π, given a good

WUL-adversary A, there exists a good SUL-adversary A′. Since RU ⊂ RΣ, then it follows

that RWUL ⊂ RSUL and, in consequence, any WUL-adversary A for protocol π is also a

SUL-adversary for the same protocol, so taking A′ = A suffices.

3.4.1 Implications under computational assumptions

In this section, we show that, under some setup and computational assump-

tions (namely PKI and key-private secure encryption [GM84, BBDP01]), some of the

notions are equivalent in the sense that a protocol achieving one definition can be effi-

ciently transformed into a similar protocol achieving the other definition. In particular,

WUL,RUL,SUL, and UL are all equivalent, as well as SA and SA∗, and RA and RA∗. The

assumptions are formalized in Section 2.

Lemma 3.4.2 Assume key-private semantically secure public-key encryption schemes

and PKI exist. Then WUL→ SUL→ UL, WUL→ RUL→ UL, SA→ SA∗ and RA→ RA∗.

For each implication of the lemma, the structure of the proof is the same and is divided

into two steps. To prove that notion N implies notion N′, we first define an interme-

diate notion, called I-N-anonymity (or value oblivious N-anonymity), which we prove

is implied by N, that is, N → I-N. Then, we prove that I-N→ N′. Interestingly, the

proof that N→ I-N is the same for N ∈ {WUL,SUL,RUL,SA,RA}, so we present it only

once, first. The new notions, although somewhat technical, are the natural extensions of

relations RU and RT
U to capture indistinguishability of the values instead of equality. In-

tuitively, in these notions, the adversary does not get to choose the values in the message

45

RA

(U, ?, ·)

UL

(Σ, Σ, ·)

SA

(?, U, ·)

SUL

(Σ, U, ·)

SA∗

(?, Σ, ·)

RA∗

(Σ, ?, ·)

SRA

(?, ?, #)

RUL

(U, Σ, ·)

WUL

(U, U, ·)

UO

(?, ?, ·)

Triv

Triv

Triv

Triv

Triv

Triv

Triv

Triv

Triv
Triv

Triv

Triv

D2Sink

D2Sink

D2All

D2All

D2All

Comp

Comp Comp

Comp

Triv

Comp

Comp

D2Sink

Figure 3.3 Relations among notions of anonymity. Arrows labeled Triv denote trivial im-

plications (Proposition 3.4.1) and those labeled Comp denote implications under computational

assumptions (Lemma 3.4.2). Arrows labeled D2Sink and D2All denote implications that use the

transformation of the same name (Proposition 3.4.6 and Proposition 3.4.7 respectively).

matrices. Instead, the adversary chooses the distributions under which those values are

drawn before the protocol starts. The adversary, however, does not obtain these values

unless leaked by the protocol implementation. Proving that the resulting notion I-N is

in fact implied by the original notion N is nonetheless non-trivial.

Let N ∈ {WUL,SUL,RUL,SA,RA}. Given N-anonymity, we define notion I-N-

anonymity using an experiment similar to that underlying the definition of N-anonymity.

In fact, the only difference is that the adversary can specify two PPT sampling algorithms

G(0) and G(1) from where the elements of the challenge matrices M (0),M (1) are drawn.

The only restriction is that G(0) and G(1) must induce computationally indistinguishable

ensembles.6 Details follow.

Let k ∈ N be a security parameter. For simplicity, assume that each party only

sends a single message to each other party.7 Two algorithms G(0)(·, ·) and G(1)(·, ·) form

an indistinguishable sampling pair if each is PPT on the first input, and the ensembles
{

G(0)(k, a)
}

k∈N,a∈V
and

{

G(1)(k, a)
}

k∈N,a∈V
are computational indistinguishable. We

6 At first look, this type of adversary may seem artificial, as the restrictions on the sampling algorithms
cannot be efficiently tested. Nonetheless, this is all we need, as Proposition 3.4.5 shows any adversary
attacking one of the stronger notions can be transformed into this type of adversary, which in turn
Proposition 3.4.4 shows can be mapped into an “regular” adversary for the original notion.

7 The implications still hold if more than one message is exchanged between each pair of parties
although the proof becomes a little more involved.

46

say PPT algorithm A is a legal adversary if, on input k, A’s first output is a tuple

(M (0),M (1), 〈G(0)〉, 〈G(1)〉) where M (0),M (1) are message matrices and 〈G(0)〉, 〈G(1)〉 is

the encoding of an indistinguishable sampling pair. Given a legal adversary A, we define

the experiment ExpI-N−anon
π,A as described below. The corresponding success probability

AdvI-N−anon
π,A (k) of adversary A is defined in the usual way.

Experiment ExpI-N−anon
π,A (k)

b
R
← {0, 1}, and (M (0),M (1), 〈G(0)〉, 〈G(1)〉)← A(k)

if (M (0),M (1)) 6∈ RN then return 0

else Parse M (0) as (m
(0)
i,j)i,j∈[n] and M (1) as (m

(1)
i,j)i,j∈[n]

For all i, j ∈ [n], all d = 0, 1,

m̄
(d)
i,j

R
← G(d)(k,m

(d)
i,j) if m

(d)
i,j 6= ∅, and m̄

(d)
i,j ← ∅ otherwise.

M̄ (0) ← (m̄
(0)
i,j)i,j∈[n] and M̄ (1) ← (m̄

(1)
i,j)i,j∈[n]

Execute π on input M̄ (b) under adversary A until A outputs a bit g.

if (b = g) return 1 else return 0

Definition 3.4.3 Let N ∈ {WUL, SUL, RUL, SA,RA}. A message-transmission protocol

π achieves I-N-anonymity if for all legal PPT adversaries A, the quantity AdvI-N−anon
π,A (k)

is negligible in k ∈ N.

We obtain the result of the lemma from the following two propositions. The first

one shows that N→ I-N for any notion N ∈ {WUL,SUL,RUL,SA,RA}, and the second

one proves the results of the lemma starting from I-N. Intuitively, this proposition

states that the adversary’s ability to choose the input values for the messages does not

significantly weaken the notion of anonymity.

Proposition 3.4.4 Let N ∈ {WUL, SUL,RUL,SA,RA}, and let π be a message-trans-

mission protocol that achieves N-anonymity. Then, π achieves I-N-anonymity.

Proof of Proposition 3.4.4: Fix N ∈ {WUL, SUL,RUL,SA,RA}. In this case,

it is easy to see that for any two message matrices M (0) = (m
(0)
i,j)i,j∈[n] and M (1) =

(m
(1)
i,j)i,j∈[n] that belong to relation RN, there exist a permutation ρ: [n]2 → [n]2 mapping

each pair of indexes (i, j) into another pair (i′, j′) = ρ(i, j) such that m
(0)
i,j = m

(1)
ρ(i,j) =

47

m
(1)
i′,j′ . (Since such permutation may not be unique, we let Perm(M (0),M (1)) denote the

smallest one under some standard encoding.)

Let A be an adversary with non-negligible advantage AdvI-N−anon
π,A (k) = ε(k). It suffices

to show that, either A does not output an indistinguishable sampling pair, or there

exist an adversary A∗ with non-negligible advantage AdvN−anon
π,A∗ (k) that breaks the

N-anonymity of π. Indeed, assume we have such A which outputs a sampling pair

〈G(0)〉, 〈G(1)〉. We now show how to build a distinguishing algorithm D for ensembles

X0
def
= {G(0)(k, a)}k,a, and X1

def
= {G(1)(k, a)}k,a. Let Di,j(·) be the following algorithm

parameterized by i, j ∈ [n].

Distinguisher Di,j(x)

Let Bi,j be the following adversary:

Adversary Bi,j(k)

“Run adversary A, which outputs M (0),M (1), 〈G(0)〉, 〈G(1)〉.

Then, define algorithm Hi,j(k, ·) as follows.

For each u, v ∈ [n] define Hi,j(k, ·) as

〈Hi,j(k,m
(1)
u,v)〉

def
=















〈G(1)(k,m
(1)
u,v)〉 for (u− 1)n + v − 1 < (i− 1)n + j − 1

“Output x” for (u− 1)n + v − 1 = (i− 1)n + j − 1

〈G(0)(k,m
(1)
u,v)〉 otherwise

Output M (0),M (1), 〈G(0)〉, 〈Hi,j〉.

From then on, give any input to A, and output what A outputs.

Once A stops, stop.”

return ExpI-N−anon
π,Bi,j

(k)

We claim that there exists i∗, j∗ ∈ [n], and a∗ ∈ V such that Di,j distinguishes ensembles

X0 and X1. Wlog. fix the matrices M (0),M (1) output by A, which we assume belong to

relation RN, and thus permutation ρ = Perm(M (0),M (1)) is well defined. Clearly, for

all i, j, Pr
[

Di,j(G
(0)(k,m

(1)
i,j)) = 1

]

= Pr
[

Di′,j′(G
(1)(k,m

(1)
i′,j′)) = 1

]

if (i′ − 1)n + j′ =

(i− 1)n + j − 1. Thus,

ε(k) = AdvI-N−anon
π,A (k)

48

= 2 ·
∑

i,j∈[n]

(

Pr
[

Di,j(G
(1)(k,m

(1)
i,j)) = 1

]

− Pr
[

Di,j(G
(0)(k,m

(1)
i,j)) = 1

])

+ 2 · Pr
[

D1,1(G
(0)(k,m

(0)
ρ−1(1,1)

) = 1
]

− 1

≤ 2 ·
∑

i,j∈[n]

∣

∣

∣
Pr

[

Di,j(G
(1)(k,m

(1)
i,j)) = 1

]

− Pr
[

Di,j(G
(0)(k,m

(1)
i,j)) = 1

]∣

∣

∣

+ AdvI-N−anon
π,B1,1

(k)

where we used that m
(1)
i,j = m

(0)
ρ(i,j). Notice that B1,1 is the adversary that truthfully

simulates A, except when A outputs a sampling pair 〈G(0)〉, 〈G(1)〉, in which case B1,1

outputs 〈G(0)〉, 〈G(0)〉 instead. We claim that for any such adversary B1,1 there exist an

adversary A∗ (operating in the original experiment) with the same advantage, that is,

AdvN−anon
π,A∗ (k) = AdvI-N−anon

π,B1,1
(k). Before proving this claim, we show how to obtain

the proposition using the claim. In such a case, let (i∗, j∗) ∈ [n]2 be the indices for which

the value in absolute value inside the sum is maximized, and let a∗ = m
(1)
i∗,j∗. Then,

ε(k) ≤ 2n2 ·
∣

∣

∣
Pr

[

Di∗,j∗(G
(1)(k, a∗)) = 1

]

− Pr
[

Di∗,j∗(G
(0)(k, a∗)) = 1

]
∣

∣

∣

+ AdvN−anon
π,A∗ (k)

Therefore, if ε(k) is non-negligible, then either there exist a distinguishing algorithm

D = Di∗,j∗ for X0 and X1 that succeeds with non-negligible probability on index a∗, or

adversary A∗ breaks the N-anonymity of protocol π.

We now prove the claim that such A∗ exists. Given B1,1, we build adversary A∗ as follows.

Adversary A∗ simulates B1,1 until the latter outputs M ′(0),M ′(1), 〈G′(0)〉, 〈G′(1)〉. Assume

wlog. that M ′(0),M ′(1) belong to RN (otherwise abort) and thus ρ = Perm(M ′(0),M ′(1))

is well-defined. Then, A∗ computes m̄
∗(0)
i,j

R
← G(0)(k, i, j) and m̄

∗(1)
ρ(i,j) ← m̄

∗(0)
i,j , for all

i, j ∈ [n]. The matrices M̄∗(0) = {m̄
∗(0)
i,j }i,j∈[n] and M̄∗(1) = {m̄

∗(1)
i,j }i,j∈[n] and then

output. From then on, A∗ simulates B1,1 for the rest of the experiment. It remains to

argue that the success probability of B1,1, which runs in E
def
= ExpI-N−anon

π,B1,1
, is as good as

that of A∗ in E∗ def
= ExpN−anon

π,A∗ . This follows from observing that A∗ perfectly simulates

B1,1 for experiment E∗, so adversary B1,1 cannot distinguish whether is executed as part

of A∗ or inside E. In fact, since 〈G′(0)〉 = 〈G′(1)〉, from the point of view of B1,1 the

distribution of matrix M̄ (b) (for any bit b) is identical in both experiments. Since B1,1’s

49

view depends solely on M̄ (b), the success probability of B1,1 and A∗ are thus the same.

This concludes the proof of the proposition.

Given any N-anonymous protocol π, the simple transformation consisting of

encrypting (under an appropriate scheme) each message under the public key of the

recipient produces a protocol that achieves the notion I-N-anonymity. The next propo-

sition simply shows that breaking the stronger notion gives raise to a legal adversary for

the weaker notion I-N.

Proposition 3.4.5 Assume a semantic secure public-key encryption scheme exists

[GM84]. Then I-SUL→ UL, and I-SA→ SA∗. Moreover, if the encryption scheme is key-

private [BBDP01], then I-WUL → SUL, I-WUL→ RUL, I-RUL → UL, and I-RA→ RA∗.

Proof of Proposition 3.4.5: We exhibit a simple black-box transformation θ (·) that,

when applied to any I-N-anonymous protocol π, where N is either WUL,WUL,SUL,RUL,

SA, or RA, produces a N′-anonymous protocol θπ, where N′ is either SUL,RUL,UL,UL,SA∗,

or RA∗ respectively. This will prove the desired implications. The construction θ (·) is sim-

ple: given an input set of messages to send, each party encrypts (under the appropriate

encryption scheme) each message under the intended recipient’s public key, and use those

as inputs to π; the local output is then the decryptions of the values received from π.

To achieve security, the construction assumes the so-called public key infrastructure (as

described in Section 2) in which parties have access to authenticated copies of the public

keys for all other parties. Formally, let AE = (K, E ,D) be a semantic secure encryption

scheme [GM84] (which in particular implies E is randomized) and IK-CPA [BBDP01],

and let (pki, ski) denote the public/private key pair corresponding to party Pi. For any

public key pk and message m we denote by E(pk,m; r) the encryption of m under public

key pk using random string r.

We now describe protocol θπ given any message-transmission protocol π. Each party Pi

initially holds input {mi,j}j∈[n].

1. For each message mi,j, each party Pi computes the encryption yi,j
R
← E(pkj ,mi,j)

50

of mi,j under party Pj’s public key.

2. Each party Pi, calls protocol π on input {yi,j}j∈[n]. Let {z`,i}` be the lexicographi-

cally-sorted set that represents the party’s local output returned by π.

3. Each party Pi computes the decryption m′
`

R
← D(ski, z`,i) of z`,i under using its

private key, for all received messages z`,i.

4. Each party Pi outputs {m′
`}` as the local output.

The implications stated in the claim are proven next. In what follows, we denote matrices

with uppercase letters (say X), and their (i, j)-th elements by lowercase letters (say xi,j).

I-WUL→ SUL: It suffices to show that given protocol τ
def
= θπ and an arbitrary adversary

Aτ attacking the SUL-anonymity of τ , there exists an adversary Aπ attacking the I-

WUL-anonymity of π. The idea is to let Aπ simulate the encryption and decryption

phases of protocol τ for Aτ as follows. Adversary Aπ on input k, it first executes

Aτ (k). By assumption, Aτ (k) outputs a pair (M (0),M (1)) ∈ RSUL. Adversary Aπ then

generates a random key pair (pk, sk)
R
← K(k) and, for d = 0, 1, it computes 〈Ĝ(d)(k, a)〉

def
=

〈E(pk, a; ·)〉, where 〈E(pk, a; ·)〉 denotes the description of the probabilistic algorithm

that outputs an encryption of a under pk.8 Adversary Aπ then computes new “left-

or-right” matrices M̂ (0), M̂ (1) by selecting a random value z ∈ V and then computing

m̂
(d)
i,j

R
← z if m

(d)
i,j 6= ∅ and m̂

(d)
i,j

R
← ∅ otherwise, for all i, j ∈ [n] and d = 0, 1. The

tuple (M̂ (0), M̂ (1), 〈Ĝ(0)〉, 〈Ĝ(1)〉) is then output by Aπ. From then on, Aπ transparently

follows Aπ’s instructions while attacking π: it forwards all information received from the

execution of π to adversary Aτ until Aτ outputs a bit b and stops, in which case Aπ

outputs the same and stops.9

We claim that, unless AS is not a IND-CPA or IK-CPA secure encryption scheme,

Aπ correctly simulates the experiment for Aτ . First, notice that the “left-or-right”

matrix pair M̂ (0), M̂ (1) output by Aπ belongs to RWUL if the pair (M (0),M (1)) output

8 Note that, in the description of the algorithm Ĝ(d), a denotes a variable which is instantiated when
the algorithm is evaluated.

9 Since we do not allow Aτ to corrupt receivers, there is no need to simulate the decryption of the
values received by the parties from π. If needed, it would be straightforward though.

51

by Aτ belongs to RSUL. Now we show that the distribution obtained by the sampling

from Ĝ(0), Ĝ(1) during the simulation of Aτ and the distribution of the inputs feed to

subprotocol π while running a real execution of τ are computationally close. To see this,

let X = M̄ (b) be the message matrix used as input to protocol π in ExpI−WUL−anon
π,Aπ

;

and Y be the message matrix used as input to subprotocol π while executing τ = θπ

in ExpSUL−anon
τ,Aτ

. Clearly, by definition, xi,j = E(pk, m̂
(b)
i,j) = E(pk, z) if m

(b)
i,j is not

empty (xi,j = ∅ otherwise) for some public key pk and value z chosen anew by Aπ, and

yi,j = E(pkj ,m
(b)
i,j) if m

(b)
i,j is not empty (yi,j = ∅ otherwise) where pkj is the public key for

party Pj . By a standard hybrid argument, any advantage ε(k) in distinguishing inputs X

from Y by Aτ can be transformed into an advantage of at least ε(k)/(2n2) in breaking the

IND-CPA security of the encryption scheme AS, or an advantage of at least ε(k)/(2n2)

in breaking the IK-CPA security of the same scheme. A similar argument shows that Aπ

outputs a legal sampling pair Ĝ(0)(k, a) = Ĝ(1)(k, a) = 〈E(pk, a; ·)〉 if (pk, sk)
R
← K(k).

The proofs for the cases I-WUL → RUL, I-RUL → UL, and I-RA → RA∗ are essentially

the same.

For the cases I-SUL→ UL and I-SA→ SA∗ the proof can be done in similar way as above.

In these cases, however, it is possible to prove correct simulation of Aτ from only the

IND-CPA security of the encryption scheme (no IK-CPA security is needed). To illus-

trate this, we outline the proof of I-SUL→ UL. (The same proof works for I-SA→ SA∗.)

The simulation is analogous to the one above with the following exceptions: adversary Aπ

chooses “left-or-right” matrices M̂ (0), M̂ (1) by first selecting z
R
← V , and then computing,

for all i, j ∈ [n] and d = 0, 1, m̂
(d)
i,j ← 〈j, z〉 if m

(d)
i,j is non-empty and m̂

(d)
i,j

R
← ∅ otherwise.

Clearly, if (M (0),M (1)) ∈ RUL, then (M̂ (0), M̂ (1)) ∈ RSUL. To achieve a correct simu-

lation, Aπ sets the sampling pair 〈Ĝ(0)〉, 〈Ĝ(1)〉) to 〈Ĝ(d)(k, 〈t, a〉)〉
def
= 〈E(PK[t], a; ·)〉,

for d = 0, 1, where PK is a table whose index t contains the public key for party Pt.

(Notice that each sampling algorithm must include table PK in its description). For

the analysis, correct simulation of Aτ by Aπ can be easily argued from the IND-CPA

security. Indeed, for each column j ∈ [n], applying sampling algorithm Ĝ(d) on the

(i, j)-th element of M̂ (d) generates Ĝ(d)(k, 〈j,m
(d)
i,j 〉) = E(PK[j],m

(d)
i,j ; ·) = E(pkj ,m

(d)
i,j)

which follows the same distribution as the inputs of subprotocol π in an actual execu-

tion of τ . Proving that the sampling pair output by Aπ is legal is also simpler. Each

52

“left-or-right” matrix M̂ (d), for d = 0, 1, contains no duplicate elements per row, there-

fore each sampling algorithm is guaranteed to be evaluated over different values per row.

Therefore, no indistinguishability condition for the sampling algorithms is needed among

those indexes – indistinguishability must only hold when evaluated in elements of the

same matrix column, say j. In that case, however, the definition of Ĝ(d), for d = 0, 1,

guarantees that the same public key pkj is used, and IND-CPA security suffices to prove

the algorithms (Ĝ(0), Ĝ(1)) legal. This concludes the proof of the claim.

Proof of Lemma 3.4.2: It follows directly from combining Proposition 3.4.4 and

Proposition 3.4.5.

3.4.2 Implications that require “Dummy Traffic”

In this section, we show that notions UL, SA∗, RA∗, SRA, and UO are equivalent

under reductions that involve sending dummy traffic. Notions SUL and SA, as well as

RUL and RA are also equivalent.

Let D2Sink be the following protocol transformation. Given a message-trans-

mission protocol π, output another protocol that operates like π but where each sender

transmits additional empty messages to a fixed party (the “sink”) until the sender’s

total number equals a given constant. The next proposition shows D2Sink can be used

to achieve stronger notions of anonymity.

Proposition 3.4.6 Assume the total number of messages in any protocol for the notions

SA,SA∗, and UO is upper bounded by a publicly known value. Then, SUL→SA, UL→SA∗,

and RA∗→UO.

Proof of Proposition 3.4.6: The three implications are proven using the same

black-box transformation D2Sink which maps n-party PPT protocols into other n-party

protocols.10 If applied to any N-anonymous protocol, this transformation (where N is

either SUL,UL, or RA∗) outputs a N′-anonymous protocol (where N′ is either SA,SA∗,

or UO respectively). Informally speaking, the construction underlying D2Sink relies

10
D2Sink stands for sending “dummy messages to (single) sink”.

53

on “dummy messages”. Given as input an arbitrary message-transmission protocol π,

D2Sink outputs a protocol δπ
D2Sink

that essentially operates like π but inputs are “padded”

with appropriately-addressed null-valued messages. Indeed, in δπ
D2Sink

, each party’s input

(which is a set of messages to send) is appended with a certain number of null-valued

messages whose destination is party Ps, called the “sink”, whose identity is fixed for all

parties. (Alternatively, Ps can be represented by some non-existent party – the same for

all senders – whose traffic gets discarded.) Then protocol π is invoked on the extended

inputs which are delivered as expected. Party Ps then discards all null-valued messages

it receives. We stress that, in this construction, how to use the “dummy messages” does

not depend on the protocol π input to D2Sink. The construction does assume, however,

that for each notion N ∈ {SA,SA∗,UO} there exists a quantity µN that bounds the

total number of messages that can be sent by any protocol achieving the notion. For

concreteness’ sake, protocol δπ
D2Sink

is show next. Here, each party Pi initially holds input

vector (mi,j)j∈[n].

1. Each party Pi, computes the number of “dummy messages” `i ← µN−
∑

j∈[n] |mi,j|

needed.

2. Each party Pi, sets xi,s ← mi,s] (]i=1...`i
{⊥}), and xi,j ← mi,j if j 6= s.

3. Each party Pi, calls protocol π on input (xi,j)j∈[n]. Let {z`,i}` be the lexicographi-

cally-sorted multiset that represents local output returned by π to Pi.

4. If i = s, party Pi discard any element z`,s = ⊥, and locally output the remaining

elements. Otherwise, party Pi outputs {z`,i}` as the local output.

We now prove SUL → SA. It suffices to show that given protocol ν
def
= δπ

D2Sink
and

an arbitrary adversary Aν attacking the SA-anonymity of ν, there exists an adversary

Aπ attacking the SUL-anonymity of π. The idea is to let Aπ simulate the operation

of protocol ν for Aν as follows. Adversary Aπ on input k, it first executes Aν(k). By

assumption, Aν(k) outputs a pair (M (0),M (1)) ∈ RSA. Adversary Aπ then generates the

appropriate dummy messages for each party Pi by essentially emulating the operation of

ν. Namely, for d = 0, 1, Aπ creates vector (m̂
(d)
i,j)j from each party Pi’s input (m

(d)
i,j)j∈[n]

54

by following steps 1-2 of protocol ν. The pair (M̂ (0), M̂ (1)) is then output by Aπ. From

then on, Aπ transparently follows Aν ’s instructions: it forwards all information received

from the execution of π to adversary Aν and viceversa, until Aν outputs a bit b and stops,

in which case Aπ outputs the same and stops. Correct simulation follows from observing

that the total number of “dummy messages” sent to Ps is the same no matter what bit b

is set in ExpSUL−anon
π,Aπ

. By construction, for d = 0, 1 the number of messages sent by Pi

as instructed by M̂ (d) is fi =
∑

j∈[n] |m̂
(d)
i,j | = µN; the total number of messages is then

nµN =
∑

i∈[n] fi =
∑

i,j∈[n] |m
(d)
i,j |+

∑

i∈[n] `
(d)
i . But since

∑

i,j∈[n] |m
(0)
i,j | =

∑

i,j∈[n] |m
(1)
i,j |

then
∑

i∈[n] `
(0)
i =

∑

i∈[n] `
(1)
i . Moreover, since all dummy messages sent to Ps are equal

to “⊥”, (M̂ (0), M̂ (1)) ∈ RSUL.

The proof for UL→ SA∗ is essentially identical to the one above. The proof for RA∗ →

UO is also very similar but slightly more general, as it holds even under adversaries

that output message matrices for which
∑

i,j∈[n] |m
(0)
i,j | 6=

∑

i,j∈[n] |m
(1)
i,j |, as long as both

quantities are upper bounded by a constant µUO.

Similarly, let D2All be the transformation that instructs senders to transmit

one dummy message to everyone else per each valid message to be sent. D2All is used

to prove the following implications.

Proposition 3.4.7 RUL→RA, UL→RA∗, and SA∗→SRA.

Proof of Proposition 3.4.7: The proof follows the same structure as the one of

Proposition 3.4.6. Given an arbitrary message-transmission protocol π, protocol δπ
D2All

works as follows: for each message mi,j in Pi’s input, Pi sends a single new null-valued

message to all other Pk, k 6= j. Then protocol π is invoked on the modified inputs. From

the output received by π, each party Pi then discards all received null-valued messages.

Let D2All be the transform that maps a message-transmission protocol π to another

message-transmission protocol δπ
D2All

. Protocol δπ
D2All

is described next. As opposed

to transformation D2Sink, this construction does not assume any bounds on the total

number of messages exchanged by the parties. Each party Pi initially holds input vector

(mi,j)j∈[n].

55

1. Each party Pi, computes the number of “dummy messages” `i,j ←
∑

k∈[n]\{j} |mi,j|

needed to send to party Pj .

2. Each party Pi, sets xi,j ← mi,j] (]i=1...`i,j
{⊥}).

3. Each party Pi, calls protocol π on input (xi,j)j∈[n]. Let {z`,i}` be the lexicographi-

cally-sorted multiset that represents the local output returned by π to Pi.

4. Each party Pi discard any element z`,s = ⊥, and locally output the remaining

elements.

We now prove RUL → RA. Let π be a message-transmission protocol, and κ
def
= δπ

D2All
.

We show that given an arbitrary adversary Aκ attacking the RA-anonymity of κ, there

exists an adversary Aπ attacking the RUL-anonymity of π. Adversary Aπ simulates the

operation of protocol κ for Aκ as follows. First, adversary Aπ, on input k, obtains a

pair (M (0),M (1)) from running Aκ(k). From it, Aπ generates two new matrices X (0) =

(x
(0)
i,j)i,j∈[n] and X(1) = (x

(1)
i,j)i,j∈[n], by adding the appropriate dummy messages for each

party Pi according to steps 1-2 of protocol δD2All (as described above). Then Aπ outputs

(X(0), X(1)) as the message matrix pair for experiment ExpRUL−anon
π,Aπ

. From then on,

Aπ transparently follows Aκ’s instructions: it forwards all information received from the

execution of π to adversary Aκ and viceversa, until Aν outputs a bit b and stops, in

which case Aπ outputs the same and stops.

We argue that Aπ is a good adversary for ExpRUL−anon
π,Aπ

if Aκ is good for ExpRA−anon
κ,Aκ

.

It suffices to show that (X (0), X(1)) ∈ RRUL if (M (0),M (1)) ∈ RRA. At this point, we

need to define some quantities. For d = 0, 1, we denote by f
(d)
i =

∑

j∈[n] |m
(d)
i,j | (resp.

f̂
(d)
i =

∑

j∈[n] |x
(d)
i,j |) the total number of messages sent by Pi as encoded by M (d) (resp.

X(d)). Similarly, `
(d)
i,j denotes the number of “dummy messages” send by Pi to Pj as

encoded by X(d), and `
(d)
i =

∑

j∈[n] `
(d)
i,j the total number of such messages. It is easy to

see that f̂
(d)
i =

∑

j∈[n](|m
(d)
i,j |+`

(d)
i,j) = f

(d)
i +`

(d)
i , and f̂

(d)
i = n·f

(d)
i . So `

(d)
i = (n−1)·f

(d)
i .

Moreover, since (M (0),M (1)) ∈ RRA then, in particular (M (0),M (1)) ∈ RU, which implies

f
(0)
i = f

(1)
i , and `

(0)
i = `

(1)
i , for all i ∈ [n]. Combining these, the multiset of messages

56

sent by Pi is then

]j∈[n]x
(0)
i,j =]j∈[n]

(

m
(0)
i,j] (]

i=1...`
(0)
i,j

{⊥})

)

=]j∈[n]m
(0)
i,j] (]

k=1...`
(0)
i

{⊥})

=]j∈[n]m
(1)
i,j] (]

k=1...`
(1)
i

{⊥}) =]j∈[n]

(

m
(1)
i,j] (]

i=1...`
(1)
i,j

{⊥})

)

=]j∈[n]x
(1)
i,j

and (X(0), X(1)) ∈ RU follows.

To argue that (X (0), X(1)) ∈ RT
Σ, it suffices to see that the total number of messages

(“regular” and and “dummy” messages) to be received by any party Pj according to

X(d), d = 0, 1, is
∑

i∈[n] |x
(d)
i,j | =

∑

i∈[n](|m
(d)
i,j | + `

(d)
i,j) =

∑

i,j∈[n] |m
(d)
i,j | = |M (d)|. But

then, |M (0)| = |M (1)| is implied by (M (0),M (1)) ∈ RU, and the result follows.

The proof for UL→ RA∗ is analogous (indeed, simpler since we need to prove the matrix

pair output by the UL adversary satisfies RΣ instead of RU). A similar argument also

proves SA∗ → SRA. We notice that, in this latter case, the proof relies on the condition

|M (0)| = |M (1)| guaranteed by any SRA-adversary.

3.4.3 Message Overhead and Optimality of the Transformations

The black-box transformations D2Sink of Proposition 3.4.6 and D2All of Propo-

sition 3.4.7 output protocols that use “dummy” messages (those whose value is “⊥” which

are ultimately discarded). These messages increase the communication complexity of the

protocol, so it is interesting to ask if there are better solutions, possibly based on crypto-

graphic tools. Interestingly, we show that the single transformations D2Sink and D2All

described in previous section cannot be substantially improved, even in the presence of

PKI.

Thus, we explore the question of whether more message efficient transforma-

tions exist, in terms of generating protocols where fewer messages (dummy or not) are

sent overall.11 For simplicity, we consider transformations where the input protocol is

11 Recall that we say a message m is sent by a message-transmission protocol Π if m is an element
of the message matrix given to the protocol Π as input. This message should not be confused with

57

invoked via a black-box call only once; the general case is discussed at the end of the

section.

Let T be a transformation that maps a protocol ω into another protocol δω
T
. We

measure message overhead by counting the number of extra messages that any protocol

ν = T(ω) = δω
T

adds on the underlying (black-box) protocol π. Concretely, given two

transformations T1, T2, we would say T1 has less message overhead than T2 if protocols

ν1 = T1(ω) = δω
T1

and ν0 = T0(ω) = δω
T0

when executed on the same input matrix M

require subprotocol ω to send t1 (resp. t2) messages when invoked as part of ν1 (resp.

ν2), where t1 < t2 for any protocol ω. More formally, let M = (mi,j)i,j∈[n] be a message

matrix, and denote by δ
[·]
T

(M) ∈ Mn×n(P(V)) the message matrix on which the black-

box protocol (say ω) is invoked via a black-box call during the execution of δω
T

on input

matrix M . We stress that once M is fixed, matrix δ
[·]
T

(M) is well-defined, independently

of the message-transmission protocol ω, as ω is invoked as black-box by δω
T

exactly once.

Definition 3.4.8 Let (N′,N) ∈ {(SUL,SA), (RUL,RA), (UL,SA∗), (UL,RA∗), (RA∗,

SRA), (SA∗,SRA)}, and T be any transformation underlying implication N′ → N. The

message overhead of T is overhead(T)
def
= maxM

{
∣

∣

∣
δ
[·]
T

(M)
∣

∣

∣
/|M |

}

where the maximum

is taken over all (allowed) non-empty message matrices |M | for notion N.

First, notice that the message overhead of the transformation behind Propo-

sition 3.4.5 is optimal, as no new messages are introduced. Second, it is easy to see

that, under the assumption that the total number of messages sent is at most µN,

overhead(D2Sink) = n·µN. Similarly, but under no assumptions, overhead(D2All) = n.

The next two propositions show that we cannot do better. The proof is by contra-

diction which is derived from the fact that if there are “too few” messages sent by a

party, the underlying black-box protocol may no longer be invoked in a secure way. For

Proposition 3.4.10, the construction and analysis are similar but considering the number

of messages received by any party.

Proposition 3.4.9 D2Sink is optimal for SUL→SA, UL→SA∗, and RA∗→UO.

the packets sent over the point-to-point communication channels between the parties as the result of a
particular implementation of Π.

58

Proposition 3.4.10 D2All is optimal for RUL→RA, UL→RA∗, and SA∗→SRA.

We now proceed to prove the above propositions.

Proof of Proposition 3.4.9: By contradiction. Assume there exists a transformation

T̄ that proves the implication SUL → SA but for which overhead(T̄) < nµSA. That is,

on input any arbitrary SUL-anonymous protocol π, transformation T̄ outputs an SA-

anonymous protocol T̄(π) = δπ
T̄
. Now, let π be a SUL-anonymous protocol and π ′ be

identical to π with the exception that each party Pi also broadcasts the message “sending

fi messages”, where fi is the number of messages that Pi has been instructed to send, that

is, fi = |]j∈[n] m
(b)
i,j | (where M (b) = (mi,j)i,j∈[n] is the corresponding message matrix).

Notice that such π′ is SUL-anonymous. We then consider the adversary A∗, attacking the

SA-anonymity of δπ′

T̄
, that works as follows. On input k ∈ N, it outputs two matrices: (a)

M (0), which is chosen at uniformly at random among all message matrices with exactly
∑

i,j |m
(0)
i,j | = µSA messages to send. (b) M (1), which contains a single randomly selected

row i∗ for which m
(1)
i∗,j =]i∈[n],jm

(0)
i,j , and for all rows i 6= i∗, m

(1)
i,j = ∅ (that is, in world 1

party Pi∗ is the only sender but it sends to Pj the same set of messages Pj would receive

if it were in world 0). Then, A∗ waits for the message “sending f messages” from Pi∗ : if

f < µSA outputs 0, otherwise outputs 1. Then A∗ halts.

We argue that A∗ is breaks the SA-anonymity of δπ′

T̄
with non-negligible probability.

Clearly, (M (0),M (1)) ∈ RSA. Adversary A∗ will distinguish the execution of δπ′

T̄
on

input M (0) from the one on input M (1) by examining the execution of subprotocol π ′

on those inputs. To see this, let X (d) def
= δ

[·]
T̄

(M (d)), for d = 0, 1, denote the input

matrix for subprotocol π′ when δπ′

T̄
runs on input M (d). (As usual, we use x

(d)
i,j to

denote the (i, j)-th element of X (d)). Assume (for now) that
∣

∣

∣
δ
[·]
T̄

(M (d))
∣

∣

∣
is constant

when seen as function of |M (d)|. If overhead(T̄) < nµSA then it must be the case

that |X(d)| < nµSA. This, in turn, implies there must exist a sender Pi′ that sends
∑

j |x
(0)
i′,j| < µN messages using π′. On the other hand, also by assumption, during the

execution of T̄(π′) = δπ′

T̄
, all communication is done via π′, ie. δT̄ is non-interactive. In

consequence, Pi∗ ’s input to subprotocol π′ is computed by δT̄ solely on Pi∗ ’s current

input (m
(b)
i∗,j)j∈[n] and random coins, and any publicly known information. It follows

that, |]j∈[n] x
(1)
i∗,j| ≥ |]i,j∈[n] m

(0)
i,j | = µSA (ie. Pi∗ must send at least µSA messages via

59

π′) otherwise protocol δπ′

T̄
is not a correct message-transmission protocol. Thus, with

probability at least 1/n (over the choice of i∗), i∗ = i′, and A∗ successfully distinguishes

the two executions.

We conclude showing that
∣

∣

∣
δ
[·]
T̄

(M)
∣

∣

∣
is a constant function of |M | if T̄ is a transformation

from SUL to SA. The proof is by contradiction. Assume there exists matrices M ′ and M ′′

such that |M ′| < |M ′′| ≤ µSA but
∣

∣

∣
δ
[·]
T̄

(M ′)
∣

∣

∣
<

∣

∣

∣
δ
[·]
T̄

(M ′′)
∣

∣

∣
. From the definition of black-box

protocol, we know that in protocol δπ′

T̄
, each sender Pi on input vector mi,∗ = (mi,j)j∈[n]

computes a new vector of messages xi,∗ = (xi,j)j∈[n] which is then used as i-th input

when calling subprotocol π′. Let us denote this computation by xi,∗ = δT̄(mi,∗)i. Thus,

in particular, x′
i,∗ = δT̄(m

′
i,∗)i, and x′′

i,∗ for input m′′
i,∗. Since protocol π′ is only SUL-

anonymous, it must be that
∑

j∈[n] |x
′
i,j| =

∑

j∈[n] |x
′′
i,j|, for any two inputs m′

i,∗ and

m′′
i,∗, otherwise protocol δπ′

T̄
cannot longer be assumed secure. Moreover, since δT̄ is

non-interactive, such value
∑

j∈[n] |x
′
i,j| must be constant, say ci > 0. This implies that

∣

∣

∣
δ
[·]
T̄

(M ′)
∣

∣

∣
=

∑

i∈[n] ci =
∣

∣

∣
δ
[·]
T̄

(M ′′)
∣

∣

∣
which contradicts the hypothesis. Thus, there exists

a constant c =
∑

i∈[c] ci, such that
∣

∣

∣
δ
[·]
T̄

(M)
∣

∣

∣
= c.

Similar arguments prove the optimality of the transform for the implications UL→ SA∗

and RA∗ → UO.

Proof of Proposition 3.4.10: We focus on the case RUL→RA first. The proof is

by contradiction. As before, we assume there exists a transformation T̄ that proves the

implication RUL→ RA for which overhead(T̄) < n. That is, on input any arbitrary RUL-

anonymous protocol π, transformation T̄ outputs an RA-anonymous protocol T̄(π) = δπ
T̄
.

Now, let π be a RUL-anonymous protocol and π ′ be identical to π with the exception

that each party Pi also broadcasts the message “received gi messages”, where gi is the

number of messages that Pi has received after π has ended, that is, gj = |]i∈[n] m
(b)
i,j |

(where M (b) = (mi,j)i,j∈[n] is the corresponding message matrix). Notice that such π ′

is RUL-anonymous. Now, if D2All is not optimal, there exists a transformation T̄ from

RUL to RA with overhead(T̄) = maxM

{
∣

∣

∣
δ
[·]
T

(M)
∣

∣

∣
/|M |

}

< n. Let M ∗ the matrix on

which the maximum is reached. Then,
∣

∣

∣
δ
[·]
T

(M∗)
∣

∣

∣
< n · |M∗|. Notice this implies that

there exists a party Pi′ that receives
∑

j |x
(0)
i′,j| < |M

∗| messages using π′.

60

We then consider an adversary A∗ which attacks the RA-anonymity of δπ′

T̄
. A∗ works

as follows. On input k ∈ N, it outputs (M (0),M (1)) that satisfy (a) M (0) = M∗, and

(b) M (1) contains a single uniformly selected at random column j∗ for which m
(1)
i,j∗ =

]j∈[n],im
(0)
i,j , and for all other columns j 6= j∗, m

(1)
i,j = ∅ (that is, party Pj∗ receives from

Pi all messages sent by Pi in world 0, even those addressed to other recipients). Then, A∗

waits for the message “received g messages” from Pj∗ : if g < |M ∗| outputs 0, otherwise

outputs 1. Then A∗ halts.

We argue that A∗ is breaks the RA-anonymity of δπ′

T̄
with non-negligible probability.

Clearly, by construction, (M (0),M (1)) ∈ RRA. We now argue that A∗ can distinguish the

execution of δπ′

T̄
on input M (0) from the one on input M (1) by examining the execution

of subprotocol π′ on those inputs. For d = 0, 1, let X (d) def
= δ

[·]
T̄

(M (d)) denote the input

matrix for subprotocol π′ when δπ′

T̄
runs on input M (d). (As usual, we use x

(d)
i,j to

denote the (i, j)-th element of X (d)). Recall that,
∣

∣

∣
δ
[·]
T

(M∗)
∣

∣

∣
< n · |M∗|. In our attack,

this implies that, in world 0 there exists a party Pi′ that receives
∑

j |x
(0)
i′,j| < |M∗|

messages using π′. On the other hand, by the non-inactivity of δT̄ after the call to

π′, the correctness of δπ′

T̄
, and since π′ is called only once, it follows that, X (1) must

satisfy |]i∈[n] x
(1)
i,j∗| ≥ |]i,j∈[n] m

(0)
i,j | = |M

∗|, ie. Pj∗ must receive at least |M ∗| distinct

messages in π′. Thus, with probability at least 1/n (over the choice of j∗), j∗ = j′, and

A∗ successfully distinguishes the two executions.

Similar arguments prove the optimality of the transform for the implications UL→ RA∗

and SA∗ → SRA.

Upper bound per Sender: A similar analysis holds if a bound µ̂N on the number of

messages per sender is assumed instead, for SA and SA∗-anonymity. (We stress that the

implication SA → SA∗ of Lemma 3.4.2 is preserved under this restriction). In this case

the overhead is n·µ̂N, which is also optimal. This formulation, although more restrictive,

can be more suitable for certain applications.12 From a theoretical point, however, it is

not clear if there is any advantage to this formulation over the one presented above.

Single vs. Multiple black-box calls: If consider transformations that output pro-

12 Upper bounds on the number of messages sent per party may help to prevent certain flooding attacks
against mix nets [GT96, Ser04].

61

tocols that invoke the input (black-box) protocol more than once, then is it possible to

prove that the optimal overhead is n. A protocol δπ that achieves this is the one that

uses a secure multiparty computation protocol (eg. [BGW88]) to compute |M | using π

as communication channel; then, each party calls ensures it sends |M | messages via π

by adding sufficient dummy messages. Even though such a secure multiparty protocol

can be computed with constant number of invocations to π [BMR90] (and thus, O(n2)

messages), it is likely that invoking π more than once will render the resulting protocol

impractical.

3.5 On the Anonymity of Previous Protocols

3.5.1 Broadcast Networks

Broadcast channels can be used as a straightforward approach to obtain some

form of receiver anonymity [PW87]. In general, the most obvious protocol of transmitting

a message over the broadcast channel is trivially RA-anonymous. Blaze et al. [BIK+03]

recently suggested a protocol for anonymous routing in the context of wireless networks

(Wireless Anonymous Routing or WAR). Very roughly, their basic protocol is an adap-

tation of onion routing [GRS96] to broadcast networks. In an onion routing protocol,

parties act in three different roles: senders, routers, and receivers. A sender Ps who wants

to transmit a message m to receiver Pr, proceeds as follows. First, Ps selects a sequence of

parties (called “routers”). This sequence of router identities R ⊆ [n] is called a “path” for

the message. Then Ps computes an onion for the message m. An onion for m is a nested

encryption of m under encryption keys corresponding to all parties in the path, starting

with the receiver’s public key, and strategically appending the identities of the routers

in the path. For instance, if the path is R = {`1, . . . , `t−1}, then the onion of message

m for receiver Pr equals the ciphertext C = Epk`1
(`2||Epk`2

(`3|| · · · Epk`t−1
(r||Epkr

(m))·))

where AE = (K, E ,D) is an encryption scheme and || denotes concatenation. The onion

C is then sent to the first router P`1 which decrypts C obtaining a pair (`2, C
′). (Notice

that C ′ = Epk`2
(`3|| · · · Epk`t−1

(r||Epkr
(m))·)) is still a nested encryption.) In this case, we

usually say P`1 “peels the onion” C to obtain C ′ and new intermediate destination `2.

P`1 then sends C ′ to P`2 . The process continues until party Pr receives the inner-most

62

part of the onion, ie. E(pkr,m), in which case Pr decrypts it to recover the message m.

The scheme proposed by Blaze et al. specializes this protocol to broadcast chan-

nels (in fact, wireless networks) by noticing that, more efficient protocols can be achieved

if onions are not transmitted by point-to-point channels but broadcasted to all parties.

Indeed, in [BIK+03] Blaze et al. present a modification of the standard onion routing

(called the WAR protocol) in which each transmission of an onion C is done via the

broadcast channel, and all receivers attempt to “peel the onion” (decrypt the ciphertext

C). Implicitly in the construction, there is the assumption that only the intended re-

cipient (say Pi) will succeed in the decryption of C and thus only Pi will obtain a valid

plaintext C ′. Moreover, it is implicitly assumed that Pi is able to tell if C ′ equals to the

message m or if C ′ is still a nested encryption. In the former case, Pi locally outputs

m; otherwise, Pi proceeds to broadcasts C ′. See [BIK+03] for details. In this section,

we formalize the (implicit) assumptions in [BIK+03] in order to precise the anonymity

guarantees provided by their scheme.

Figure 3.4 shows (a slightly simplified version of) the basic protocol by Blaze

et al. [BIK+03], denoted πWAR. The simplification lies in that πWAR does not include

the “dummy traffic” mechanism outlined in [BIK+03]; this simplifies the analysis (but

see discussion at the end of the section) Also, for simplicity, we assume a public key

infrastructure (PKI) is already in place.

Protocol πWAR requires an encryption scheme AE . In order to prove the an-

onymity of this protocol, we first precise some properties the encryption scheme AE

must satisfy. The properties, described below, can be shown to be necessary (for the

WAR protocol) to be secure as concrete attacks to the anonymity of πWAR exist if the

properties do not hold.13

Correctness: There is a subtle issue on the correctness of the protocol as presented

in [BIK+03]. The construction assumes the encryption scheme AE = (K, E ,D) is such

that an encryption C = Epki
(m) of message m under Pi’s public key pki can only be

decrypted “correctly” by Pi (using Pi’s secret key ski), and for any other party Pj 6= Pi

decryption of C under secret key skj “will fail” in a detectable way (e.g. outputting ⊥).

13These properties were apparently overlooked in [BIK+03].

63

Protocol πWAR

Public Inputs: pk1, . . . , pkn, where pki is the public key of party Pi, k ∈ N, the

security parameter, and t ∈ N a fixed integer.

Private Inputs: Pi has input (mi, di) ∈ V × [n], and secret key ski corresponding to

public key pki.

Private Output: Pi obtains a message m ∈ V or the empty message.

(1) In the first round, each party Pi computes an “onion” as follows.

1. First, Pi chooses a (multi)set S = {`1, `2, . . . , `t−1}
R
← [n]t−1 of indexes

for the onion routers.

2. Then, Pi computes C ← Epk`1
(Epk`2

(· · · Epk`t−1
(Epkdi

(mi)) · · ·), and broad-

cast C.

(2) In each subsequent round, each party Pj does: First, receive all broadcast

messages. Let C be such set. Then, for each message C ∈ C, Pi performs the

following steps in parallel:

1. Decrypt C with her own public key, that is, C ′ ← Dskj
(C).

2. If C ′ 6= ⊥, that is, C ′ ∈ V \ {⊥}, locally output C ′ and halts.

3. Otherwise, broadcast C ′′.

(3) If each other party Pj 6= Pi ceases to transmit, Pi outputs the empty message

and halts.

Figure 3.4 A simplified version of the WAR protocol [BIK+03].

64

Next, we formally define this property, which we call multi-key integrity of the ciphertext

(inspired by the integrity of ciphertext under a single key property of [BN00]).

Definition 3.5.1 Let AE = (K, E ,D) be an encryption scheme, k ∈ N be a security

parameter, n ∈ N an integer polynomially related to k, and p = {pk1, . . . , pkn} be a

set of honestly and independently generated public keys (pki, ski)
R
← K(1k). Scheme

AE achieves multi-key integrity of ciphertext (mint-ctxt) if, for any polynomial time

adversary A on input p and k that outputs a message m and indexes i, j, the follow-

ing happens with at most negligible probability: if r is chosen uniformly at random,

D(skj, E(pki,m; r)) 6= ⊥.

Notice that the absence of this property not only affects the correctness of a protocol

but also its security. Indeed, suppose there exists an adversary A that is able to generate

a message m∗ for which an honest sender generates an onion C that, at some point of

the routing, it can be decrypted successfully for two different routers (but only one of

them is the intended router for the onion at that point). Such behavior by the routers

is externally observable, and therefore, can allow the adversary to distinguish between

an execution where m∗ is send and one where it is not.

Key Privacy: We assume the encryption scheme satisfies key-privacy as defined in

[BBDP01]. A formal definition appears in Section 2. We remark that key-privacy implies

another property in the context of nested encryptions. Assume that nested encryptions of

up to t levels are allowed, for t < n. The property requires that no router can distinguish

between a “peeled” onion (the ciphertext C ′ resulting from honestly decrypting a valid

onion between one and t − 1 times), and an “unpeeled” onion (a nested ciphertext as

prepared by the original sender), even under an adversarially chosen message m for the

onion. It is easy to see that this property follows from key privacy. The property is highly

desirable as it prevents the adversary from correlating messages arriving to a corrupted

router, foiling some known attacks [BPS00].

Instantiating the Encryption Scheme: We now show there exists a encryption

scheme that satisfies multi-key integrity of ciphertexts, and key-privacy. We address the

properties one by one, indicating how the encryption scheme satisfies the property or

how it can be modified to satisfy it.

65

Regarding multi-key integrity of ciphertexts, it turns out that, with one ex-

ception, it is not known whether these properties are achievable for standard public-

key schemes. To the best of our knowledge, the only scheme which can be proven to

satisfy this property is the one proposed by Camenisch and Lysyanskaya in [CL05].14

They proposed a scheme specifically designed to implement onion routing, in a prov-

able secure way, so it is not surprising the scheme satisfies the property. The scheme

OR = (FormOnion,ProcOnion) is specified by two functions FormOnion, ProcOnion. (In

what follows, we keep the discussion at high level to avoid cluttering details.) Function

FormOnion creates the onion by taking the list of public keys of the parties in S, the

intended receiver dk, and a message mk, and outputting the onion (nested encryption) C.

Function ProcOnion is executed by each intermediate router or receiver Pi; this function

processes the onion by taking as input the onion (nested encryption) C, and the secret

key ski of the router/receiver and outputs either the plaintext if the party performing

the operation was the receiver, or a new “peeled” onion C ′ if the party performing the

operation was a router. How do parties know if they are the intended receivers of the

onion? Via an identifier which is appended to the “plaintext” of each onion layer. This

identifier specifies the next router in the path. More precisely, in [CL05], each party

Pi is publicly assigned an identifier Li from a set L = {L1, . . . , Ln} of labels chosen

uniformly at random at the beginning of the protocol. Once a sender P has selected a

set S = {`1, `2, . . . , `t−1} of routers for message m, P prepares the onion by calling the

function FormOnion on input the message m, the set of public keys pk1, . . . , pkn, and the

set of labels L`1 , L`2 , . . . , L`k−1
; function FormOnion outputs an onion C. Once the onion

C is transmitted to a receiver Pi, the receiver decrypts it via the ProcOnion function.

Function ProcOnion returns not only the “plaintext” (possibly still a nested encryption)

but also a label L that indicates the next router for the onion. For example, if when Pi

runs ProcOnion(ski, C) it outputs a plaintext C ′ and a label L = Lj ∈ L, then Pi sends

the “peeled” onion C ′ to party Pj ; if L 6∈ L then the decrypted message C ′ is assumed

to be destined for Pi (see details in [CL05]).

We do not further explain here how functions FormOnion and ProcOnion are

14 An ElGamal-based scheme by Sako [Sak00] achieves a similar but substantially weaker property.
In this scheme, D(skj , E(pki, m

∗; r)) 6= m∗ holds with negligible probability but only if message m∗ is
public and fixed in advance.

66

implemented as it is not needed to understand our security proof (the interested reader

is referred to [CL05]). Instead, we point out that the scheme of [CL05] can be seen as

a encryption scheme AE∗ = (K∗, E∗,D∗) by identifying encryption function E ∗ (resp.

decryption function D∗) with FormOnion (resp. ProcOnion) function. Jumping ahead,

it will be a variant of encryption scheme AE ∗ what we use to securely implement of

the WAR protocol.) Camenisch and Lysyanskaya prove a very strong property of the

functions FormOnion and ProcOnion called “onion security”. Such property suffices for

our purposes as it implies the scheme AE ∗ satisfies multi-key integrity of ciphertexts.

We now show a simple variant of AE∗ achieves key privacy. Depending on how

it is implemented, the encryption scheme AE ∗ may not satisfy key-privacy [BBDP01].

There are two reasons for this: first, the encryption scheme used as building block in

[CL05] may not guarantee that ciphertexts do not reveal information on the intended

recipient of a broadcasted onion. And secondly, the particular implementation of function

FormOnion in [CL05] – as outlined before – does reveal the identity of the router to which

the onion must be relayed next, and therefore, the last router that process the onion

before it reaches the receiver can trivially know the identity of the receiver.15

To address the first issue, we note the following. In [CL05], Camenisch and

Lysyanskaya use a IND-CCA secure encryption scheme that support tags (see [SG02])

to implement functions FormOnion and ProcOnion. If this IND-CCA secure encryption

scheme does not satisfy key-privacy, neither does AE ∗. (The security proof in [CL05]

does assume this IND-CCA secure encryption scheme satisfies key-privacy, even though

the requirement is not explicitly made.) Using a standard construction (cf. [SG02]), it

is possible to prove that if given a key-private encryption scheme (with no tags) that

achieves IND-CCA security then it is possible to build a key-private IND-CCA secure

encryption that support tags as long as the tags do not reveal the receiver. Key-privacy

for the encryption scheme AE∗ follows then by noticing that the construction in [CL05]

generates tags that look pseudorandom to anyone other than the final receiver of the

onion. Let AE∗∗ denote the encryption scheme implemented as indicated above.

15 Strictly speaking, this second point is irrelevant under adversaries that do not corrupt parties. We
mention the fix only to highlight one of very few details needed to lift the analysis to the case of (passive)
corruptions.

67

We now address the second problem. Consider the following simple variant of

scheme AE∗∗: it operates exactly as before (in terms of functions FormOnion and ProcO-

nion) but with no initial association between any party and the randomly chosen strings

in L. This means that, even though the sender P picks the labels that identify the routers

for the onion C by choosing them uniformly at randomly from the set {L1, . . . , Ln}, the

receiver Pi does not use these labels to route the onion. If Pi obtains a string Lj ∈ L

as part of the onion decryption C ′, Pi only knows the message is intended for “someone

else”, and consequently, Pi then broadcasts C ′. We denote this variant as AE.

We now prove the RA∗-anonymity of the protocol πWAR. We assume there exists

an encryption scheme AE which satisfies semantic security, key-privacy, and multi-key

integrity of ciphertexts. The above discussion shows that there exists an encryption

scheme, namely AE , which satisfies these properties.

Proposition 3.5.2 Assume there exists an asymmetric encryption scheme AE = (K, E ,

D) which satisfies semantic security [GM84], key-privacy [BBDP01], and multi-key in-

tegrity of ciphertexts. Then, under passive global adversaries, protocol πWAR achieves

RA∗-anonymity.

Proof: The proof is done using the “game-playing” or “sequence of games” argument

[BR04, Sho04], although for simplicity we keep the discussion at a high level. Without

lost of generality, we set t = 2 (the number of “hops” or routers that any onion must travel

before the destination is reached). This suffices passive adversaries with no corruptions.

Let pk(P), sk(P) denote the public/private key of party P , and let A be a successful

adversary breaking the RA∗-anonymity of πWAR. Assume, for simplicity that A only

instructs each sender Pi to send a single message mi,j to some destination Pj (ie. A

outputs message matrices M (0),M (1) where |m
(b)
i,j | = 1 for all i, j ∈ [n], and b = 0, 1.)

Notice that if t = 2, the execution of protocol πWAR can be seen as composed by three

phases. In the first phase, each sender Pi broadcast the nested encryption C1
i of her

message mi (ie. C1
i is Pi’s onion encoding of message mi). In the second phase, each

receiver that correctly decrypts the ciphertext (called a router and denoted by P (C 1
i))

proceeds to resend the decrypted message C2
i = Dsk(P (C1

i))(C
1
i). In this, we say the router

68

has “peeled” and then resent the onion. Then, in the third phase, each intended final

recipient (denoted R(C2
i)) receives the ciphertexts broadcasted in the previous phase

(the once-peeled onions) and obtain the message mi, which they locally output.

First, fix a bit b ∈ {0, 1} and consider a game Gb
0 that consists of running A until it

outputs a pair of message matrices M (0),M (1), and then running protocol ΠWAR on input

M (b) while giving A a copy of all messages exchanged between the parties. Now, consider

the game Gb
1 that operates as Gb

0 but where each router Q = P (C1
k) resends a random

message rQ, instead of the value C2
k obtained by decrypting the message broadcasted

in the first round. (The fact that game Gb
1 does not preserve the correctness of the

protocol is irrelevant for passive adversaries with no corruptions.) We argue that both

games are indistinguishable for an adversary, as any successful distinguisher for games

Gb
0 and Gb

1 can be used to break either the semantic security or the multi-key integrity

of ciphertexts of the encryption scheme AE . As mentioned before, this shows the latter

property (multi-key integrity of ciphertexts) is not only needed for correctness but also

for privacy, as an adversary could attempt to instruct a sender to encrypt a value m such

that the encryption could be decrypted to a meaningful value by two or more receivers,

which would help the adversary to succeed in the anonymity experiment. Now, consider

the game Gb
2 which operates like game Gb

1 but where each sender chooses the destination

for message mi,j uniformly at random between all parties P1, . . . , Pn. It is not hard to

see that any good adversary distinguishing games G1 and G2 can be used to break the

key-privacy of the encryption scheme. At this point, notice that the adversary’s view for

G0
2 and G1

2 is identically distributed, since both games are independent of M (0) and M (1).

We conclude the proof showing that the distinguishing probability of any adversary A

is bounded by the sum of the distinguishing probabilities for the sequence of games

G0
0 → G0

1 → G0
2 → G1

2 → G1
1 → G1

0. Our argument above shows that if the encryption

scheme satisfies semantic security, key-privacy, and multi-key integrity of ciphertexts,

then this sum of probabilities is negligible. In consequence, the success probability of A

must be negligible.

Discussion: As mentioned before, in [BIK+03] a mechanism for “dummy traffic” is

used which we omit. The mechanism presented there is randomized, and requires a

69

party Pi to send a random (“cover”) message in step (2) with probability 1/N at each

round (as long as Pi is not already resending a received onion or sending a message

of her own). It is not clear the relevance of such mechanism in our model, as it does

not seem to be enough to prove SRA or UO-anonymity. Our results show that the

deterministic approach (transform D2Sink, which, in this context, can be built as a

one-layer onion of a fix message, say ⊥) suffices to provide stronger guarantees, namely

UO-anonymity. However, due to the shared nature of the wireless medium, transforming

the WAR protocol into a UO-secure protocol may not be practical given the message

overhead (which by Proposition 3.4.9 is unavoidable).

3.5.2 DC-nets or Anonymous Broadcast

DC-nets [Cha88, GJ04] can be seen as particular instances of anonymous broad-

cast protocols [SA00]. In these protocols, there is a single message sent which is pub-

lic. In [GJ04], Golle and Juels proposed very efficient anonymous broadcast protocol

based on pairings. Whenever a transmission is to take place, all parties participate in

the protocol by transmitting “pads”. Each pad contains the (potentially empty) mes-

sage the party intends to transmit. Golle and Juels show how to combine the pads so

the transmitted messages are recovered with high probability (and therefore theirs is a

message-transmission protocol with high probability). They also show how each party

can provide a non-interactive zero-knowledge (NIZK) proof [FLS99] for the correctness of

her pad without revealing the underlying message. We claim that their protocol (the one

called “short DC-Net”) can be proven SA-anonymous under global passive adversaries.

Intuitively, since our model does not consider party corruptions, the simulatability of the

NIZK proof and the Decisional Bilinear Diffie Hellman assumption [BF01] suffices to

prove the adversary cannot guess which senders were involved from the pads generated

by the parties in the protocol.

Claim 3.5.3 Let πDC be the short DC-Net protocol of [GJ04]. Assume there exist a non-

interactive zero-knowledge proof (NIZK) the correctness of each sender’s pad in πDC (as

described in [GJ04, Section 2.4]) and the Decisional Bilinear Diffie Hellman assumption

[BF01] holds. Then, protocol πDC achieves SA-anonymity.

70

Proof: (Sketch) The proof is a simple extension of the proof of Proposition 1 in

[GJ04]. Loosely speaking, the security model used in [GJ04] – which is referred as the

privacy property there – requires the adversary to identify two parties P1, P2 together

with a message m and then, after a randomly chosen one of them transmits m using

the DC-net protocol, the adversary must guess the sender. The proof in [GJ04] goes

essentially like this: given an adversary B attacking the privacy property, Golle and

Juels create an adversary D that distinguishes between a Bilinear Diffie-Hellman pair

and a random Bilinear pair by embedding some elements of the pair the public keys of

two random chosen parties P1, P2 and some other elements as part of the computation of

P1’s and P2’s pads (if (P1, P2) 6= (P1, P2) the adversary aborts). Adversary D outputs 1

if B guesses correctly, and 0 otherwise. This adversary D is proven to work because the

simulation is perfect if the bilinear pair given to D is a Diffie-Hellman pair, otherwise B

should see random pads and has negligible advantage in breaking the privacy property.

We can extend Golle and Juels’ proof to our setting by simply using a hybrid argu-

ment as follows. Let A be an adversary attacking the SA-anonymity of πDC. Given

two transmission matrices M (0) and M (1), we create a collection of hybrid matrices

M0 = M (0),M1, . . . ,M`−1,M` = M (1), where ` = |M (0)|, such that, for 0 ≤ i < `, Mi

and Mi+1 differ in the messages sent by two parties, namely in Mi party P̃1 sends a

message m̃ and P̃2 sends nothing, while in Mi+1, P̃1 sends nothing and P̃2 sends m.

(This is possible as each sender sends at most one message in both M (0) and M (1).)

Notice that, by construction of the hybrid matrices, for each i, distinguishing the pro-

tocol execution on input Mi from an execution it on input Mi+1 is exactly (under our

adversarial model) what adversary B is assumed to do in the proof of [GJ04]. Therefore,

we can simply create a distinguisher D ′ for the Bilinear Diffie-Hellman problem using

the standard hybrid approach: On input a bilinear pair, distinguisher D ′ first chooses

i
R
← {0, . . . , `}, creates matrices X0 = Mi and X1 = Mi+1, flips a coin d ∈ {0, 1}, sim-

ulates a run of protocol πDC with input Xd under the adversary A while following the

strategy of [GJ04] and embedding elements of the given pair in the pads, and outputs 1

if and only if A guesses correctly d. By the usual hybrid argument, it is easy to show

that, if A has advantage ε in breaking the SA-anonymity of πDC, the new distinguisher

D has advantage ε′ = cε/`, where c is the probability the D aborts (while following the

71

embedding strategy of [GJ04]) which is larger than the inverse of a polynomial on the

security parameter k. Since ε′ is non-negligible, the claim holds.

Notice that this result is not implied by the original security proof in [GJ04]

as the anonymity notion used there is arguably different (see Section 3.1.3). Also, even

if our model is extended to include passive corruptions (see Section 3.6), any corrupted

party would send the same messages in both worlds (i.e. matrices M (0) and M (1)) so the

same argument would work as none of the corrupted parties would be chosen as P̃1 or

P̃2 in the hybrid argument.

3.5.3 MIX networks

A very popular technique for anonymity providing systems is the use of a MIX

network or MIX protocol. Very informally, a MIX network is a protocol that allows

several parties to take a vector of encrypted values and “shuffle” it, ie. permute the

order of the values in the vector, in a way that leaves the particular permutation hidden

to the adversary. More precisely, given a list of ciphertexts, the goal of a MIX network

protocol is to output another list of values (either a list of ciphertexts or just plaintexts)

which contains the same set of plaintexts as those contained in the encrypted input vector

but in a possibly different order. The privacy condition of a MIX protocol requires that

no proper subset of the parties (and consequently, no adversary) knows the permutation

that maps plaintexts in the input list to the same plaintexts in the output list. There

are two main types of MIX networks, re-encrypting and decrypting ones. In the former,

the output vector is a re-encryption of the input vector, while in the latter, the output

vector contains the decryption of the input vector; in both cases, the order of individual

entries in the output vector is potentially different from that of the input vector.

In practice, most MIX protocols work sequentially, where each party (called

mixer) acts on the inputs by taking turns, one per party. Each mixer, in order, performs

a “shuffle” of the list of ciphertexts, proves the correctness of the shuffle operation – via

an interactive protocol–, and then passes the output list to the next mixer. The last

mixer broadcasts the result, the output vector. Robust and efficient MIX-net construc-

tions can be built from efficient schemes to prove a shuffle [FS01, Gro03, NSNK04]. A

72

shuffle by mixer P is the operation whereby P , on input a list of ciphertexts, chooses

a random permutation, computes the new list of encryptions as re-encryptions of the

input list according to the permutation and outputs the resulting list. Decryption MIX

networks can be implemented in settings where mixers share decryption keys (eg. as in

threshold encryption [DF89]). In those cases, each shuffle may include some form of

partial decryption whose correctness is also proven. The advantage of this approach is

that the output of the last mixer consists of only plaintexts.

Mix-net based construction for anonymity: A simple construction for anonymity

based on mix network techniques is the following. It assumes a threshold encryption

scheme AE = (K, E ,D) (see [GJKR99] and references therein), and a (non-threshold)

encryption scheme AE ′ = (K′, E ′,D′). It also assumes there is a protocol for which a

mixer Pi can “prove” the shuffle was correctly performed to another party Pj . Such a

protocol is called an interactive proof system [Gol01] and it is denoted by P = 〈P, V〉

where P is the code run by the prover, say mixer Pi, and V the code run by the verifier,

mixer Pj . If the verifier, after running V outputs 1 (or “accepts”) we say the proof is

correct, and if it outputs 0 (or “rejects”) we say the proof is incorrect. The construction

also assumes a PKI infrastructure where a key pkk is associated to each party Pk (see

Section 2).

The protocol is composed by three phases: (1) key generation, (2) mixing,

and (3) threshold decryption. In the key generation, all mixers run a distributed key

generation algorithm (DKG) where a key pair for a threshold homomorphic encryption

scheme AE = (K, E ,D) is collectively generated, so the secret key sk is shared among the

mixers (cf. [GJKR99]) and the public key pk is broadcasted. In the mixing phase, each

sender P computes a double encryption of the message mi,j by first encrypting message

mi,j under the public key pkj of the receiver using encryption scheme AE ′, and then

encrypting the resulting ciphertext under the public key pk of the mixers. Next, senders

transmit the doubly encrypted ciphertexts to the first mixer, and the mixing process

starts. Sequentially in some predefined order, each mixer P performs the shuffle of the

list of ciphertexts, proves its correctness to an arbitrary party P ′ using the proof system

P = 〈P, V〉, and then passes the resulting list to the next mixer. If at any point, a mixer’s

P proof is incorrect, all parties ignore the offending mixer’s contribution by setting P ’s

73

output vector equal to P ’s input vector, and proceed with the following mixer. The

last mixer broadcast the final list, and all mixers decrypt each element of the vector

using the threshold decryption protocol D. (In the process, each decrypted element is

broadcasted). All potential receivers attempt to decrypt each value. If a receiver Pj

succeeds in decrypting a value, Pj outputs the resulting plaintext as local output. We

call this protocol πMIX[AE ,AE ′,P].

HVZK Proof of Correct Shuffle: Groth [Gro03] and Furukawa [Fur04, Appendix

A] present two shuffles for the ElGamal encryption scheme. They prove the shuffles

are honest verifier zero-knowledge (HVZK) arguments [Gol01]. Both results assume the

underlying encryption scheme AE = (K, E ,D) is homomorphic. At very high level, an

homomorphic encryption scheme guarantees there exists operations + and · such that,

for any public key pk, E(pk,M) · E(pk,M ′) = E(pk,M + M ′) for all messages M,M ′.

More precisely, if E : V → C and E(pk,M ; r) ∈ C denotes the encryption of plaintext M ∈

V under public key pk using randomness r ∈ {0, 1}k , we say a scheme is homomorphic

if there exist operations + and · in V and C respectively, such that for any correctly

generated public key pk, (pk, sk)← K(1k), there exists a random value r∗ ∈ {0, 1}k such

that for any two messages M,M ′ ∈ V, E(pk,M ; r) · E(pk,M ′; r′) = E(pk,M + M ′; r∗).

The proofs by Groth and by Furukawa allow a mixer P to prove in zero-

knowledge to a honest verifier that two vectors of ciphertexts X = (X1, . . . , Xn) and Y =

(Y1, . . . , Yn), each encrypted under some public key pk, encode the same set of plaintexts.

More precisely, given a public key pk, generated by (pk, sk)
R
← K(1k), P can prove that

(X,Y) is in LShuffle. Language LShuffle contains all tuples ((C1, . . . , Cn), (C ′
1, . . . , C

′
n))

for which there exists a permutation π of [n], and a vector of random values (ri)i∈[n],

ri ∈ {0, 1}
k , such that Ci = Cπ(i) · E(pk, 0; ri) for all 1 ≤ i ≤ n, where 0 ∈ V denotes the

null element for the group (V, +). In what follows, to fix ideas, the reader can assume

P denotes the proof system of [Gro03].

Using the appropriate assumptions on the primitives, protocol πMIX[AE ,AE ′,P]

can be proven strong receiver anonymous.

Proposition 3.5.4 Assume AE = (K, E ,D) is a semantically secure threshold homo-

morphic encryption scheme for which there exists an honest-verifier zero-knowledge ar-

74

gument system P for language LShuffle. Also, assume also AE ′ = (K′, E ′,D′) is an

encryption scheme satisfying key-privacy and multi-key integrity of ciphertexts (as in

Definition 3.5.1), and πDKG is a secure distributed key generation protocol. Then, proto-

col πMIX[AE ,AE ′,P] achieves RA∗-anonymity under passive adversaries and no corrup-

tions.

Proof: (Sketch) Let A be an adversary attacking the RA∗-anonymity of protocol

πMIX[AE ,AE ′,P]. First, notice that protocol πMIX does not hide which parties are send-

ing messages, so RA∗-anonymity is the best we can hope to prove. We construct an

algorithm S with black-box access to A. Algorithm S (for simulator) runs A and simu-

lates all parties’ execution of protocol πMIX. We prove our result by showing that, if A

is attacks the RA∗-anonymity of πMIX with non-negligible probability, then we can build

adversaries SCPA, SDKG, SHV ZK , and SKP by simple modifications to S so the new ad-

versaries contradict either the semantic security of AE , the security of the distributed

key-generation algorithm, the honest verifier zero-knowledge property of P or the key-

privacy property of AE ′. Notice that the multi-key integrity of ciphertexts property of

AE ′ is needed for the correctness of the construction but not for its privacy. In fact,

if it does not hold, incorrect decryption of the values output by the threshold decryp-

tion protocol may occur, but those can only affect the (honest) party performing the

decryption.

Algorithm S works essentially by running experiment ExpRA∗−anon
πMIX ,A , that is, by flipping

an unbiased coin b, running A to obtain a pair M (0) and M (1), and honestly simulating

all parties in protocol πMIX on input M (b). This simulation includes the generation of

all public keys, the computation of the encryptions sent by the senders, the execution

of the DKG protocol, the sequential shuffling by the mixers, the threshold decryption,

and the final decryption by the receivers. S has no output. Now, we consider the new

adversaries and then argue about their advantage probabilities.

• We create an adversary SCPA that attacks the semantic security of AE by modify-

ing S as explained next. First, recall semantic security of encryption is equivalent

to the standard notion of indistinguishability under chosen plaintext attack or IND-

75

CPA (see Section 2.1.3 for details on the definition and corresponding experiment).

Adversary SCPA operates as S with the following difference: right after obtain-

ing the message matrices from A, SCPA chooses a random element mi,j ∈ M (b),

computes the encryption ei,j = E ′(pkj ,m
′
i,j) of mi,j where pkj is the public key

of the receiver Pj , exactly as an honest sender Pi would do at this point. Then,

SCPA chooses a random message value r ∈ V and sends the pair (ei,j , r) to the

left-or-right encryption oracle, and obtains a target ciphertext C. From then on,

simulator SCPA uses C as the ciphertext that party Pi would have provided to the

MIX network. The rest of the simulation by SCPA is identical to that of S, except

that once A outputs a guess bit g, SCPA outputs 1 if and only if g equals b, the bit

chosen initially in the simulation.

Suppose the assumption on all primitives stated on the proposition hold

except possibly the semantic security of the threshold encryption scheme AE . First,

following [BDPR98] we notice that SCPA is playing the real or random experiment,

which is essentially equivalent to the IND-CPA notion. By a hybrid argument,

SCPA successfully wins this game (guesses whether C contains ei,j or the random

value r) with probability equal to 1/µ times the success probability that A breaks

the RA∗-anonymity of πMIX, where µ ∈ N is the maximum number of messages sent

overall by the senders in the anonymity experiment.

• Distinguishing adversary SDKG attacks the security of the distributed key genera-

tion protocol πDKG (see [GJKR99]). Loosely speaking, breaking the security of the

DKG protocol amounts to distinguishing the execution of the DKG protocol from

the ideal execution where the key is chosen by a trusted centralized entity and a

simulator S provides a “faked” view to the adversary (and therefore S does not

know the shared key). Formally, a DKG distinguisher outputs 1 in the former case

and 0 in the latter.

We build such a distinguisher as follows. Distinguisher SDKG works as S

does but instead of simulating the execution of πDKG, it feeds A with its input: either

the view of a real execution of protocol πDKG or a simulated view of an execution

of a distributed key generation done by a trusted third party. Afterwards, once A

76

outputs the guess bit g, SDKG outputs 1 if and only if g equals b, the bit chosen

initially in the simulation. Notice that the threshold decryption can be perfectly

simulated by SDKG as, within the simulation for A, SDKG controls all parties, and

any ciphertext can be “decrypted” to the appropriate plaintext sent by the sender.

For the analysis, suppose the assumption on all primitives stated on the

proposition hold except possibly the security of the DKG protocol. (Notice this

includes the semantic security of encryption scheme AE). In that case, the view

provided by any simulator S to A reveals no more information to A beyond what A

can infer from seeing any randomly selected public key of encryption scheme AE ,

as S does not have access to the shared secret. Therefore, adversary A’s advantage

cannot be more than negligible. On the other hand, A’s view of the simulation by

SDKG is exactly as in πMIX, and therefore SDKG’s advantage if the transcript comes

from a real execution of the DKG protocol πDKG must be equal to the probability

A correctly guesses bit b, that is, A’s advantage in the RA∗-anonymity experiment.

• We create an adversary SMIX that breaks the zero-knowledge property of the proof

system P used to prove the shuffle. More precisely, SMIX distinguishes between

a transcript of the interaction between two executions: (1) of a proving mixer Pi

and a verifying party Pj after carrying out the interactive proof P = 〈P, V〉 under

input x = (C,C ′) ∈ LShuffle and (2) a transcript generated by any algorithm S on

the same input x. Note that prover P knows a witness for the proof, that is, the

permutation π that maps plaintexts in C to the same plaintexts in C ′ and the vector

of random values (ri)i∈[n] used to re-encrypt the input vector, while algorithm S

does not know such witness. Distinguisher SMIX , as any distinguisher for the zero-

knowledge property of P, takes as input a transcript T of the interaction between

a prover and an a verifier, and outputs 1 to indicate the transcript comes from a

real interaction and 0 otherwise.

Distinguisher SMIX works as S with the exception that, instead of (hon-

estly) simulating the entire mixing phase, it picks at a random step i ∈ [n] in

the mixing phase sequence and does as follows. Assume that, at such point,

it is the turn of (simulated) party Pi to prove to verifying party Pk that input

77

x = (C(i), C(i+1)) is in LShuffle. Then, SMIX feeds A with transcript T instead of

carrying out the corresponding interaction as S would do (namely, as the parties

Pi and Pj would do in an honest execution of the protocol πMIX). The rest of

SMIX ’s operation is identical to S and concludes with SMIX outputting adversary

A’s view.

As before, suppose the assumption on all primitives stated on the propo-

sition hold except possibly the security of the interactive proof P. By a simple

hybrid argument, it is possible to show that SMIX ’s advantage probability is at

most 1/n the advantage probability of A in the RA∗-anonymity experiment. In-

deed, we only need to argue that if the transcripts of all the interactive proofs are

generated by a simulator with no knowledge of a witness, then A’s advantage in-

side SMIX ’s simulation must be at most negligible (and so it is SMIX ’s advantage).

This is clear as there is no secret that A can use. Therefore, adversary SMIX must

have an advantage probability negligibly close to 1/n the advantage of A in the

RA∗-anonymity experiment.

• We create an adversary SKP that breaks the key privacy property of encryption

scheme AE ′ by modifying S as explained below. First, recall that an adversary

for the key privacy property receives two (honestly generated) public keys pk0 and

pk1, sends a message x to the encryption oracle which returns a target ciphertext

c = E ′(pkb, x), upon which the adversary must decide whether c is the encryption

of x under pk0 or pk1. Also, recall that in protocol πMIX any message mk,` ∈M (b)

sent by Pk to P` is first encrypted to ek,` = E ′(pk`,mk,`) and then doubly-encrypted

using E . We refer to encryption ek,` as the AE ′-encryption of x.

To break the key privacy of AE ′, we rely on a hybrid argument: first, for a

fixed adversary A, we identify the set Y of all senders that are instructed to transmit

the same message m to different parties depending on bit b (ie. the recipient Pj of

m ∈M (0) in “world 0” is different than the recipient Pj′ of m ∈M (1) in “world 1”)

and we randomly pick one sender Pi
R
← Y; then, given public keys pk0, pk1 for the

key-privacy experiment, we set up the simulation so party Pj ’s (respectively Pj′ ’s)

public key is pk0 (resp. pk1). Then, we use the target ciphertext c = E ′(pkb,m)

78

returned by the key privacy oracle as the AE ′-encryption of message m provided by

sender Pi the beginning of the simulation. Provided that messages corresponding

to senders Pk 6= Pi in Y are given the appropriate destination (namely, the recipient

instructed by M (0) if k < i and the recipient instructed by M (1) if k > i), a hybrid

argument can be made that any advantage of A in distinguishing the execution

of πMIX on input M (0) from an execution on input M (1) can be translated to a

distinguishing advantage to break the key privacy of AE ′.

(Note: We skip a formalization of the above adversary because, although

long and involved, it corresponds to a rather standard hybrid argument and hence

it provides no substantial insight into this part of the proof.)

For the analysis, as before, suppose the assumption on all primitives stated

on the proposition hold except possibly the key privacy of encryption scheme AE ′.

Then, by the hybrid argument sketched above, adversary SKP ’s advantage in the

key privacy experiment is at least 1/µ the advantage of A in the RA∗-anon ex-

periment, where µ is the maximum number of messages senders are instructed to

transmit by A during protocol πMIX .

We conclude by noticing that, none of the adversaries mentioned above is guaranteed to

work with non-negligible probability, but all of them combined are. This can be easily

seen by considering an adversary S∗ that it first randomly choose whether to attack the

semantic security of AE (via adversary SCPA), the security of the DKG protocol πDKG

(via adversary SDKG), the HVZK property of proof system P (via adversary SMIX), or

the key privacy of AE ′ (via adversary SKP), and then calls the corresponding adversary.

Clearly, the combined success probability of such adversary S∗ is at least the advantage

probability of A in the RA∗-anonymity experiment. The result then holds.

In [Gro05], a HVZK argument for correct shuffle and decryption for any ho-

momorphic encryption scheme (eg. ElGamal) were also presented. This proof allows to

dispense with the threshold decryption and is therefore more efficient.

In [NSNK04], Nguyen et al. present another scheme to prove a shuffle for the

Paillier encryption scheme [Pai99]; the proof is secure under a specific notion called

79

chosen permutation attack IND-CPAS . This notion is also inspired on the indistin-

guishability of ciphertexts under chosen plaintext attack [BDPR98]. It guarantees that

the adversary, upon seen a transcript of a proof system corresponding to a specific shuf-

fle done by a mixer, cannot distinguish the permutation behind the shuffle even if the

permutation is known to be one of two (adversarially chosen) permutations. Moreover,

the adversary gets to see transcripts of polynomially-many chosen shuffles under chosen

inputs vectors. Nguyen et al. also prove the shuffle of [FS01] secure under the same

notion. Although weaker than HVZK, this notion seem to suffice for the usual privacy

requirements for mix networks. Indeed, our MIX-based construction above can be mod-

ified to use such a proof system. It suffices to instantiate the encryption scheme AE ′

of protocol πMIX with the Paillier cryptosystem, and the proof system P with the proof

of [NSNK04] or [FS01]. Using a very similar argument as the one shown above, we can

obtain an analogous result, namely that the construction is RA∗-anonymous. We do not

pursue this variant here as it is almost identical to the construction proven above.16

3.6 Variants and Extensions

k-anonymity: Intuitively, a protocol achieves k-anonymity if any adversary trying to

determine the sender (resp. receiver) of a message can only narrow the sender’s identity

down to no less than k possible senders (resp. receivers). The concept (along with

efficient constructions) was proposed by von Ahn et al. [vABH03] as a way to improve the

efficiency of DC-nets. We can accommodate the notion of k-anonymity in our framework

by further restricting the relation RN. For each of the message matrices output by the

adversary we require at least k non-empty rows (resp. columns) to capture the restriction

to k senders (resp. receivers).

Passive Adversaries with corruptions: It is possible to extend our framework to

consider party corruptions. The adversary would be allowed to passively (statically or

dynamically) corrupt senders and receivers, with the obvious restrictions that the local

16 One important difference is in the way the security proof handles the generation of “fake” transcripts
by the simulator without knowledge of the secret key for the encryption scheme or the permutation used.
Here, the transcripts can be trivially created by querying the chosen permutation attack oracle in the
definition of IND-CPAS (see [NSNK04]).

80

inputs and outputs corresponding to the corrupted parties must be the same in the two

message matrices output by the adversary. Note that this conditions immediately hold

if the corrupted party that does not send or receive messages and only acts as forwarder

(router). The security proofs for the protocols mentioned in previous section carry to

this stronger model. Extending our framework beyond passive attacks (i.e. to cope with

active adversaries) is currently an open problem.

Reference: Most material in this chapter comes from the manuscript titled

“An Indistinguishability-based Characterization of Anonymous Channels”, Alejandro

Hevia and Daniele Micciancio, and at the time of this writing, in preparation for sub-

mission for publication.

4

Simultaneous Broadcast

4.1 Introduction

Broadcast channels allow one or more senders to efficiently transmit messages to

be received by all parties connected to a (physical or virtual) communication network.

Broadcast is a fundamental communication primitive, both in the design of network

communication protocols, and in the area of secure multiparty computation. The main

security property characterizing broadcast communication is consistency: the messages

received by all players as a result of a broadcast transmission operation are guaranteed

to be the same. The problem of achieving consistency when implementing broadcast on

top of a point to point network (commonly known as the Byzantine agreement problem)

is central not only in cryptography, but also to the area of fault-tolerant distributed

computation, and it has received enormous attention (e.g., [LSP82, PSL80, FM85, CR93,

CKPS01]).

In secure multiparty computation, it is often desirable that the broadcast chan-

nel satisfies some additional properties, besides consistency. In applications where mul-

tiple senders can broadcast messages at the same time (e.g., when running in parallel

many copies of a broadcast protocol with different senders1), it is often important to

1 Also called interactive consistency in [PSL80, BOEY03] and parallel broadcast in [HM05]. To avoid
confusions, we refer to this operation, multiple senders broadcasting messages at the same time, as
multisender broadcast.

81

82

enforce the simultaneous transmission of the messages, so that no sender can decide its

broadcast message based on the values broadcast by the other players. Achieving this

property, also called independence, is not as straightforward as it may seem. In general,

naive parallel execution of broadcast protocols does not suffice, nor the more sophisti-

cated round efficient approaches presented in [BOEY03, LLR02b]. Indeed, a common

conservative assumption in settings where (multisender) broadcast channels are provided

is to assume rushing adversaries – adversaries that, at each round, may see the messages

sent by the honest parties before sending out the messages for the corrupted parties for

the same round [BGW88, BMR90]. The independence property plays a fundamental role

in the secure multiparty computation protocol of [CGMA85] as well as many important

applications (like contract bidding, coin flipping, and electronic voting schemes, as exem-

plified in [CR87, DDN01, Gen00]) where simultaneous broadcast enormously simplifies

the design of the protocols as broadcast is used in a more or less direct way.

The concept of simultaneous broadcast (also called independent broadcast) was

first put forward by Chor et al. [CGMA85] who proposed a simulation-based definition,

and presented protocols that securely implement simultaneous broadcast on top of a net-

work which allows regular broadcast transmission operations, not necessarily satisfying

the simultaneity property. The protocols in [CGMA85] require (for each simultane-

ous broadcast operation) a number of rounds that is linear in the number of parties.

Given the importance of the simultaneous broadcast primitive, subsequent research ef-

forts [CR87, Gen00] focused on reducing the round complexity, obtaining simultaneous

broadcast protocols that run in logarithmically many [CR87] or even constant [Gen00]

number of rounds (the latter result achieved in the common random string model.) Un-

fortunately, a close inspection of [CGMA85, CR87, Gen00] reveals that the definitions

of simultaneous broadcast used in the three papers are quite different. Although, at first

sight, all three definitions may appear appealing and intuitive, the technical differences

among them bring up the following questions: what is the relation between the different

definitions? Are they equivalent? Are they increasingly stronger or weaker? Or are they

perhaps incomparable, in the sense that no one implies the other?

Motivated by the efficiency improvement achieved by [CR87, Gen00] over the

original linear round protocol of [CGMA85], we investigate and compare the definitions

83

proposed in these three papers. (More precisely, we compare their straightforward gen-

eralizations to arbitrary input distributions2.) Informally, our findings rank the original

definition [CGMA85] as the strongest, and the most recent definition [Gen00] as the

weakest. Technically, we prove implications and separations showing that the original

definition [CGMA85] is strictly stronger (in a precise sense to be defined) than the defi-

nition of [CR87], which, in turn, is strictly stronger than the latest definition of [Gen00].

The comparison is not so straightforward because not all definitions are achievable for

any input distribution, and for any pair of definitions (say, definition A and B) it may be

possible to find a protocol Π and a distribution D such that Π is satisfies definition A but

not definition B on input drawn according to D. So, it may seem that the definitions are

incomparable. In order to properly rank the definitions, we first characterize the class of

achievable input distributions for each definition. Our characterization is tight: for each

definition A, we give a class of distributions D(A) such that

• definition A can be achieved in a strong sense: there exists a single protocol Π that

satisfies A for any distribution in D(A)

• the class D(A) cannot be extended even in a weak sense: for any distribution

outside D(A), no protocol can possibly satisfy definition A.

It turns out that the class of distributions associated to the three definitions form a

monotonically decreasing sequence. Let Sb, CR and G stand for the definitions given

in [CGMA85], [CR87] and [Gen00] respectively, and let D(Sb), D(CR) and D(G) be the

corresponding classes of input distributions. We show that

D(Sb) ⊃ D(CR) ⊃ D(G).

Armed with this characterization of the input distributions associated to each definition,

we prove implications and separations between the three definitions as follows.

We prove that definition Sb implies definition CR in the sense that for any

protocol Π, if Π is Sb-Independent for every distribution D ∈ D(CR) (i.e., for any

2 At the time the definitions were suggested, a prime application of simultaneous broadcast was
distributed coin flipping. Apparently influenced by that, the definitions of [CR87, Gen00] were implicitly
understood to be used with uniform input distributions even though no such restriction was stated on
the original papers.

84

distribution for which definition CR is achievable at all), then Π is also CR-Independent

for every such distribution. Moreover, we give a simple example showing the reverse

implication does not hold true, i.e., there exists a class of input distributions (such that

Sb-Independence is achievable) and a protocol Π such that Π is CR-Independent but not

Sb-Independent for every distribution in that class. We conclude that CR-independence

is strictly weaker than Sb-Independence.

Next we prove that definition CR implies definition G in the sense that for any

protocol Π, if Π is CR-Independent for any distribution D ∈ D(G), then Π is also G

independent for any such input distribution. Moreover, we prove that the reverse im-

plication is not true, i.e., there is a protocol Π that satisfies G-Independence for any

distribution in D(G), but it does not satisfy CR-Independence for any nontrivial dis-

tribution (including the uniform). We conclude that G-independence is strictly weaker

than CR-Independence.

We remark that while the relation between Sb-Independence and CR-Indepen-

dence was to be expected because Sb resorts to a general secure multiparty computation

definitional framework, the relation between CR-Independence and G-Independence was

not as clear. In particular, [Gen00] seemed to suggest that the use of statistical notion of

independence makes definition G stronger than CR, which uses a computational notion of

closeness between distributions. Our results show that when restricted to an appropriate

class of distributions, the relation between the two definitions is opposite to the one

suggested in [Gen00].

We also remark that while simulation-based definitions are usually stronger

than other definitions, and in many other cases in cryptography definitions have been

made stronger and stronger over time, to culminate with a definition based on the simu-

lation paradigm, the simultaneous broadcast problem studied in this chapter represents

an interesting case in which the reverse process has occurred: the original and strong

simulation-based definition has been made weaker and weaker over time in order to

achieve greater efficiency. We leave it as an open problem to find a constant-round pro-

tocol (i.e., as efficient as the one of [Gen00]) for simultaneous broadcast that achieves the

stronger notion of CR-Independence [CR87] or even (and preferably) Sb-Independence

[CGMA85].

85

Sb

D(CR)
=⇒

Singleton

6⇐=

CR

D(G)
=⇒

D(G)

6⇐=

G

[CGMA85] [CR87] [Gen00]

Figure 4.1 Our results. An arrow
∆

=⇒ from definition A to B means that any protocol that

achieves definition A under all distributions in ∆ also achieves definition B under the same

distributions. A broken arrow 6
∆

=⇒ from A to B indicates that the implication A
∆

=⇒ B is false.

Using Arbitrary Input Distributions: The question of whether security can be

achieved under input distributions other than the uniform is not only of theoretical in-

terest (comparing definitions) but of very practical relevance. In many applications (like

electronic voting or contract bidding), the parties’ input are not necessarily uniform or

independent from each other – some partial knowledge of the inputs may have leaked.

More general input distributions allow us to capture these cases. As a consequence,

whether or not a definition of security can be achieved under more general input distri-

butions can determine whether or not a given solution suffices for a particular application

(e.g. whether the protocols suggested in [CR87, Gen00] guarantee security in scenarios

with partial knowledge of the inputs, like voting). Given that the original definitions

in [CR87, Gen00] did not explicitly excluded non-uniform input distributions, we see

this contribution as useful in practice. Our characterization of the distributions associ-

ated to the definitions of [CR87] and [Gen00] show that those definitions are of limited

applicability, as they can be achieved only for a restricted class of input distributions.

4.1.1 Discussion and Related Work

In [DDN01], Dolev et al. introduce the notion of malleability of protocols, and

present definitions for non-malleable message encryption, string commitment and zero-

knowledge proofs. Loosely speaking, a protocol run by honest party P on private input

x is non-malleable if no corrupted player P ′ can use (transform) the execution of the

protocol to generate a valid execution of the same protocol under some input x ′ related to

x. Therefore, non-malleability does guarantee some form of independence of the private

86

values used in different protocols. The results of [DDN01], however, focus mostly on two-

party protocols so their definitions do not capture the subtleties underlying the definition

of independence of multisender broadcast protocols with more than two players. Along

the same line, also in the two party setting, Liskov et al. [LLM+01] study mutually

independent commitments whose goal is to ensure the “independence” of the committed

values. They give definitions which seem to capture – in a strong sense – this property.

Their definitions, however, do not immediately extend to the multiparty case.

Organization: The chapter is organized as follows. Section 4.2 presents some termi-

nology, and Section 4.2.1 describes the system model, including the definition of multi-

sender broadcast. In Section 4.3, we present the definitions of independence existing in

the literature, and in Section 4.4, a characterization of the sensible input distributions

that can be associated to the definitions is made. Then, Section 4.5 concludes with

implications and separations between the notions.

4.2 Preliminaries

In this section, we describe some of the basic elements used in this work. We first

describe the network model and then we formalize the concept of multisender broadcast.

4.2.1 The Model

In this chapter, we use the network model outlined in Section 2.2.1, namely

synchronous network with point-to-point channels between all parties and rushing ad-

versary. We remark that our choice of network and adversary model is made mostly

to fix ideas, since the model is rather orthogonal to the main focus of the chapter, the

definition of independence. Towards this end, we formalize the notion of multisender

broadcast in the next section.

87

4.2.2 Multisender Broadcast

Intuitively, a multisender broadcast protocol is a broadcast protocol that allows

all parties to broadcast values at the same time. Notice that, here, the term “multi-

sender” refers to the property that multiple broadcast senders are allowed in the same

protocol execution. The simplest instantiation of a multisender broadcast protocol is the

protocol that performs n sequential executions of a standard (single-sender) broadcast

protocol, where in the i-th execution party Pi acts as the sender.

Formally, assume each player Pi has an input bit xi, and a security parameter

k. (Henceforth, for simplicity, we consider the broadcast messages as bits). Consider a

protocol Π run by the parties, at the end of which each honest party Pi outputs an n-

dimensional vector Bi = (Bi,1, Bi,2, . . . , Bi,n) ∈ {0, 1}n. Protocol Π is said to implement

multisender broadcast if it satisfies the following two properties:

(1) Consistency: For any adversary A, every honest parties Pi and Pj , Bi = Bj with

overwhelming probability.

(2) Correctness: For any adversary A, every honest parties Pi and Pj , Bi,j = xj with

overwhelming probability.

The notion of multisender broadcast was introduced by Pease et al. in [PSL80] where it

was called interactive consistency.

For every protocol that implements multisender broadcast it is possible to as-

sociate a single value to each party as the value announced by the party.

Definition 4.2.1 Assume parties P1, . . . , Pn run some multisender broadcast protocol

Π on input vector x under some polynomial-time adversary A. Then, for each i ∈

{1, . . . , n}, we define the value “announced” by party Pi as the i-th bit output by any

honest party Pk, namely Wi
def
= Bk,i.

3 By the consistency property, the n-dimensional

vector W = (W1, . . . ,Wn) is well-defined with overwhelming probability. For notational

convenience, we let AnnouncedΠ
A(x) denote vector W “announced” by the parties after

running protocol Π under adversary A on input x ∈ {0, 1}n. Similarly, AnnouncedΠ
A(X)

3By convention, if a corrupted party P contributes with an invalid input or no input at all, honest
parties assign the default value 0 as the bit “announced” by P .

88

denotes the induced distribution on AnnouncedΠ
A(x) when x is chosen according to some

distribution X .

We remark that a multisender broadcast protocol does not necessarily guarantees inde-

pendence of any sort – the announced values can be correlated even if the inputs are not.

For example, the simplest instantiation described before (where n single-sender broad-

casts are executed sequentially) satisfies both consistency and correctness but breaks

independence: a dishonest last sender Pn could discard its own input and broadcast one

of the values previously heard (say, the one broadcast by party Pi). In this case, the i-th

and n-th entry in the vector of announced values will always be the equal, no matter

the inputs. More sophisticated multisender protocols like the expected constant-round

interactive consistency protocol of Ben-Or and El-Yaniv [BOEY03] do not guarantee

independence either.

4.3 Simultaneous Broadcast: Notions of Independence

Informally, a protocol Π is said to implement simultaneous broadcast (SB) if

Π implements multisender broadcast where the values announced are “independent” of

each other. Intuitively, the independence property sought must guarantee that no group

of corrupted parties may announce values which may somehow depend on the values

announced by any subset of the uncorrupted parties. In this section, we review some of

the notions of independence previously proposed in the literature.

4.3.1 Chor, Goldwasser, Micali and Awerbuch’s definition

In their seminal paper [CGMA85], Chor et al. define simultaneous broadcast

as a network property that can be emulated starting from a network which provides a

broadcast channel. Loosely speaking, Chor et al. show how to build a “compiler” that

transforms protocols in a simultaneous broadcast network into protocols in a regular

(non-simultaneous) broadcast network such that whatever an adversary can do in the

latter network, there exists some adversary that can do the same in the former network.

89

Extracting a Simulation-based definition: We adapt the definition of [CGMA85]

to the framework of secure function evaluation of [Can00a] as follows. The case in which

the parties have access to a simultaneous broadcast network is cast as the “ideal” pro-

cess of Canetti’s framework [Can00a]. There, all parties have access to a trusted third

party which computes the function fSB(x) = (x, . . . ,x). In the notation of [Can00a], we

call this protocol Ideal(fSB). On the other hand, to capture a regular (non-broadcast)

network, we consider a “real” process in which a protocol Π is executed in a partially

synchronous network under adversary A. Here, ExecΠ
A(k, z,x) denotes the (n + 1)-

dimensional vector formed by the output of adversary A and the parties after executing

protocol Π in the real process with inputs z and x respectively, and Exec
Ideal(fSB)
S (k, z,x)

denotes the corresponding vector of outputs after Ideal(fSB) is executed with ideal adver-

sary S in the ideal process (see Section 2.2.3 for details). Independence is then captured

by requiring that Π securely implements fSB in the sense of [Can00a]. Thus, we obtain

the following definition

Definition 4.3.1 [Sb-Independence] Protocol Π achieves Sb-independence if for any

PPT adversary A corrupting up to t < n parties, there exists a PPT simulator S such

that, the ensembles (indexed by k ∈ N, x ∈ {0, 1}n, and z ∈ {0, 1}∗),

ExecΠ
A

def
=

{

ExecΠ
A(k, z,x)

}

Exec
Ideal(fSB)
S

def
=

{

Exec
Ideal(fSB)
S (k, z,x)

}

are computationally indistinguishable.

Using input distributions: We also consider an alternative simulation-based defini-

tion which explicitly involves input distributions. This new definition, described next,

is called (All,Sb)-Independence and it is shown to be equivalent to Sb-Independence

in Section A.1.1.

Definition 4.3.2 [(∆,Sb)-Independence] Let ∆ be a class of input distribution ensem-

bles over n-bit strings. Protocol Π achieves (∆,Sb)-independence if for any PPT ad-

versary A corrupting up to t < n parties, there exists a PPT simulator S such that for

every distribution ensemble D ∈ ∆, the ensembles (indexed by k ∈ N, and z ∈ {0, 1}∗)

XExecΠ
A

def
=

{

x
R
← D(k) :

(

x, ExecΠ
A(k, z,x)

)

}

(4.1)

90

XExec
Ideal(fSB)
S

def
=

{

x
R
← D(k) :

(

x, Exec
Ideal(fSB)
S (k, z,x)

)}

(4.2)

are computationally indistinguishable. In this case, we say Π is Sb-Independent under

class ∆. If ∆ = All, the class of all input distributions over n-bit strings, then we say Π

achieves (All,Sb)-Independence.

4.3.2 Chor and Rabin’s definition

Chor and Rabin [CR87] proposed another definition of independence. Intu-

itively, their definition seems to come from the following idea. Let A be an adversary

not corrupting party Pi. Any computable information on the n − 1 bits announced by

any party other than Pi can be cast as a (polynomial-time) predicate R on those bits.

After fixing the adversary, whether or not this predicate is true defines an event. Then,

if the bit output by Pi is probabilistically independent of any such event, then the output

of Pi is effectively oblivious (unaffected) by the actions of adversary, thus guaranteeing

some independence. A formal definition follows, slightly generalized to consider input

distributions. The definition of [CR87], which was presented in a different but equivalent

formulation (see Section A.1.2), is obtained as a special case when the input distribution

is uniform.

Definition 4.3.3 (CR-Independence) Let D be an input distribution over {0, 1}n. A

protocol Π achieves CR-independence under input distribution D if, for any adversary

A, all honest party Pi, all polynomial-time predicate R, the quantity

∣

∣

∣
Pr [Wi = 0] · Pr

[

R(W{i})
]

− Pr
[

Wi = 0 ∧ R(W{i})
]
∣

∣

∣
(4.3)

is negligible (in the security parameter k) when W← AnnouncedΠ
A(D(k)).

4.3.3 Gennaro’s definition

The third definition of independence considered here was presented by Gennaro

in [Gen00].4 Loosely speaking, a protocol achieves independence under this definition

4 A different definition was originally described in a preliminary version [Gen95]. Since such definition
evolved into the one of [Gen00], we do not considered it in this work.

91

if the bit announced by each corrupted party is not correlated with the bits announced

by all the honest parties. In [Gen00], it is (implicitly) assumed the inputs to the parties

follow the uniform distribution. Below, we slightly generalize the definition of [Gen00]

to consider arbitrary input distributions.

Definition 4.3.4 (G-Independence) Let D be an input distribution over {0, 1}n. A

protocol Π achieves G-independence under input distribution D if, for all adversaries A

corrupting a subset B of parties (where |B| = t < n), for each corrupted party Pi, for all

bit bi ∈ {0, 1}, and for all vectors r, s ∈ {0, 1}n−t that occur with non-zero probability

as DB, the quantity

∣

∣Pr
[

Wi = bi | WB = r
]

− Pr
[

Wi = bi | WB = s
]
∣

∣ (4.4)

is negligible (in the security parameter k) when W← AnnouncedΠ
A(D(k)).

A related, simpler definition: The idea behind the definition of [Gen00] is that,

the probability that a corrupted party Pi outputs a bit bi in the probability space where

honest parties end up outputting a vector r must be about the same for any vector r.

This approach may lead to technical difficulties when proving properties of the definition

over arbitrary distributions, since the definition may involve conditioning over possibly

negligible events. To overcome this problem, we define a related (and possibly stronger)

definition which implies Definition 4.3.4. The new definition, called G∗∗-Independence,

is presented and shown to imply G-Independence in Section A.1.3. The fact that this

new definition implies G-Independence will suffice to show implications and separations

with respect to the other notions considered in this work.

4.4 The Role of the Input Distributions

The original definition of [CGMA85], although informal, is based on a general

simulation paradigm and is arguably the strongest: a simultaneous broadcast protocol

is a protocol that securely computes a function f(x1, . . . , xn) that on input n values

x1,. . . , xn (provided by the n protocol participants) returns to each player the vector

x = (x1, . . . , xn) containing all the input values. Part of the power of this definition

92

comes from the fact that security is required for any fixed input (x1, . . . , xn). This

allows to model arbitrary input probability distributions, partial information about the

inputs, etc.

In contrast, the definitions proposed in [CR87, Gen00] consider a specific in-

put distribution and are statistical in nature: motivated by coin flipping applications,

the definitions of [CR87, Gen00] consider the execution of the protocol when the input

values x1, . . . , xn are chosen independently and uniformly at random, and propose a

formalization of the intuitive requirement that

• the value broadcast by any honest party is independent from all other broadcast

values [CR87], or

• the value broadcast by any corrupted party is independent from the values broad-

cast by all honest parties [Gen00].

Moreover, the notion of independence used in [CR87] is computational (i.e., it is only

required that no polynomial time observer can detect dependencies), while the notion

considered in [Gen00] is information theoretic. Both definitions can be generalized to

arbitrary input distributions, but the generalization immediately highlights the limita-

tions of the definitions in [CR87, Gen00]: if the input values x1, . . . , xn are strongly

correlated, then the desired (correct) output also need to be correlated, and no protocol

can possibly achieve the definition. In other words, there are probability distributions

for which no protocol can possibly achieve the definitions in [CR87, Gen00]. At the same

time, there are trivial distributions (e.g., any singleton distribution that concentrates all

probability on a single input vector) for which any protocol vacuously satisfies the defi-

nition of [CR87, Gen00]. In other words, there are distributions for which the definitions

of [CR87, Gen00] are not meaningful.

In this section, we formalize this intuition and for each definition of indepen-

dence, we identify the largest class of distributions under which the definition is “achiev-

able”. More precisely, for each notion of independence, we prove there is a class of

distributions under which the definition of independence can be realized – there exist

a protocol that achieves the notion under such a class – but whose complement is not

93

achievable in a strong sense: no protocol achieves the notion even for a single distribu-

tion outside the class. For any definition N ∈ {CR,G}, we say a protocol Π achieves

(∆,N)-independence if Π achieves N-independence under every distribution in class ∆.

We start by describing the input distributions for CR-Independence in next section.

4.4.1 Distributions for CR-Independence

Computationally independent distributions: Let X = {X (k)}k∈N be a distribu-

tion ensemble such that every distribution X (k) is the product of n arbitrary but indepen-

dent distributions X1, . . . , Xn over {0, 1}, that is, X (k) = X1×X2×· · ·×Xn. Ensembles

with distributions of this form are called independent. Let Φn = {X 〈`〉}`∈D be the class

of all independent n-dimensional ensembles, indexed by some (possibly uncountable) set

D. Let ΨC,n be the class that contains all distributions ensembles computationally close

to some distribution ensemble in Φn, that is, for each D ∈ ΨC,n there exist a distribution

ensemble X in Φn such that D is computationally close to X . If D ∈ ΨC,n we say D is

a computationally independent distribution ensemble. Note that the ensembles for the

uniform and all singleton distributions are indeed independent.

Achieving CR-Independence: It is possible to show that, if the input distributions

are computationally independent then CR-independence can be achieved. The proof of

this result is postponed until Section 4.5.2.

Claim 4.4.1 Under the assumption that enhanced trapdoor permutations exist (cf. [Gol01,

Sec. C.1]), there exists a protocol that achieves (ΨC,n,CR)-independence.

Conversely, unless the input distribution D is computationally independent, no protocol

can achieve independence according to Definition 4.3.3.

Lemma 4.4.2 Let Π be any multisender broadcast protocol and let D 6∈ ΨC,n be an

input distribution ensemble. Then, Π does not achieve CR-independence under input

distribution D.

Proof of Lemma 4.4.2: The proof uses the distinguisher that comes from D not

being computationally independent to build a polynomial-time computable relation R

94

and an adversary A that breaks the CR-independence of any protocol which runs on

input distribution D. Details follow.

Suppose n ≥ 2 (otherwise the result holds vacuously). Let D be the input distribution

ensemble not in ΨC,n and, for some arbitrary index i ∈ [n], consider the induced ensem-

bles Di and D{i}

def
= D[n]\{i}. (Observe that all distributions over 1-bit are independent

and Di must be in Φ1.) For distribution D
{i}

there are two cases depending on whether

D
{i}
∈ ΨC,n−1 or not.

Let’s analyze the first case, where D{i} ∈ ΨC,n−1. Since D 6∈ ΨC,n, we know D is not

computationally close to any distribution in Φn. This means that, for every distribution

X ∈ Φ, there exists a probabilistic polynomial-time adversary T and a constant c > 0

such that (w.l.o.g.) Pr
[

T (D(k)) = 1
]

− Pr
[

T (X (k)) = 1
]

> k−c for infinitely many

values of the security parameter k. Take X = X ′ t Di where X ′ is the ensemble in

Φn−1 which is computationally close to D
{i}

. We want to prove that, in this case, Π

cannot be CR-independent under input distribution D: There must exist an adversary

A, a polynomial-time predicate R, and a bit b such that
∣

∣

∣
Pr [Wi = b] · Pr

[

R(W{i})
]

−

Pr
[

Wi = b ∧ R(W{i})
]
∣

∣

∣
is non-negligible. Indeed, it suffices to consider the trivial

adversary A, which corrupts no party, and the predicate R defined by the execution of

adversary T under the randomness that gives the “best” distinguishing advantage. Fix

some arbitrary party i ∈ [n], bit b ∈ {0, 1} and security parameter k. In what follows, we

write Tr to denote running machine T with randomness fixed to the (sufficiently long)

string r ∈ {0, 1}∗. Then, for all bit b, for all Z{i} ∈ {0, 1}
n−1, we define a predicate R on

Z
{i}

as Rb(Z
{i}

)
def
= Tr(Z{i}

t b), where r is the value of τ that maximizes the difference

Pr
[

Tτ (D
(k)) = 1

]

− Pr
[

Tτ (X (k)) = 1
]

.

In what follows, we prove that, independently of protocol Π, there is a bit b such that

adversary A and relation Rb violate the CR-independence of Π under input distribu-

tion D. For simplicity, let D and X denote the random variables corresponding to to

distributions D
(k)

{i}
and X

(k)

{i}
respectively. Then, for b ∈ {0, 1}, we have

pb
def
= Pr

[

Wi = b ∧ Rb(W
{i}

)
]

− Pr [Wi = b] · Pr
[

Rb(W
{i}

)
]

= Pr [Tr(D t b) | Di = b] · Pr [Di = b]− Pr [Di = b] Pr [Tr(D t b)]

95

and, therefore

p0 + p1 = Pr [Tr(D)]− (Pr [Di = 0] · Pr [Tr(D t 0)]

+ Pr [Di = 1] · Pr [Tr(D t 1)]) (4.5)

Now, let us consider the probability that T outputs 1 under distribution X ∈ Φn. Since

X is the product of independent distributions

Pr [Tr(X)] = Pr [Xi = 0] · Pr [Tr(X t 0)] + Pr [Xi = 1] · Pr [Tr(X t 1)] (4.6)

Subtracting Equation (4.6) from Equation (4.5), and using that Xi = Di and triangular

inequality we obtain

|p0|+ |p1| ≥ k−c + Pr [Di = 0] · (Pr [Tr(X t 0)]− Pr [Tr(D t 0)])

+ Pr [Di = 1] · (Pr [Tr(X t 1)]− Pr [Tr(D t 1)]) ≥ k−c′ .

for some constant c′ > 0. Notice that the last inequality above follows from D
{i}
∈

ΨC,n−1.

For the second case, D{i} 6∈ ΨC,n−1, we can apply the above argument on distribution

D
{i}

instead, and inductively on n if necessary. This is possible if we pick i so the resulting

distribution D{i} is not computationally independent. (If that is not possible, the first

case above applies and the result holds.) The base case occurs when a distribution of

the form Dj1 × Dj2 is reached. Then, Dj1 is clearly computationally close to itself and

the first case above applies. This concludes the proof.

4.4.2 Distributions for G-Independence

Locally Independent distributions: We say distribution ensemble D is locally in-

dependent if for all subset B ⊂ [n], all string u ∈ {0, 1}|B|, and all string w ∈ {0, 1}n−|B|

that occurs with non-zero probability as DB , the quantity

∣

∣

∣
Pr

[

D
(k)
B = u | D

(k)

B
= w

]

− Pr
[

D
(k)
B = u

]
∣

∣

∣

is negligible in the security parameter k. We denote by ΨL,n the class of all locally

independent distribution ensembles.

96

Achieving G-Independence: We prove that G-independence can be achieved under lo-

cally independent inputs. Again, the proof of this result is postponed until Section 4.5.2.

Claim 4.4.3 Under the assumption that enhanced trapdoor permutations exist (cf. [Gol01,

Sec. C.1]), there exists a protocol that achieves (ΨL,n,G)-independence.

On the other hand, the following result shows that no protocol is G-independent under

input distributions which are not locally independent.

Lemma 4.4.4 Let Π be any multisender broadcast protocol and D 6∈ ΨL,n be an input

distribution. Then, Π does not achieve G-independence under input distribution D.

Proof of Lemma 4.4.4: Fix a multisender broadcast protocol Π. Let D be a distri-

bution not in ΨL,n. Then, by definition, there exist a subset B ⊂ [n], |B| = t, a string

u ∈ {0, 1}t, and a string w ∈ {0, 1}n−t, such that

∣

∣

∣
Pr

[

D
(k)
B = u

]

− Pr
[

D
(k)
B = u | D

(k)

B
= w

]∣

∣

∣

is not negligible. To prove the result it suffices to choose an arbitrary index i ∈ B,

and an adversary A that works as follows: A corrupts parties in B and announces 1

for (corrupted) party Pi only when xB = u. Also, with overwhelming probability, since

x
R
← D(k) we know that WB = AnnouncedΠ

A(x)B follows distribution D
(k)

B
. Then,

Pr
[

D
(k)
B = u

]

− Pr
[

D
(k)
B = u | D

(k)

B
= w

]

= Pr [Wi = 1]− Pr
[

Wi = 1 | WB = w
]

=
∑

v∈{0,1}n−t

(Pr
[

Wi = 1 | WB = v
]

· Pr
[

WB = v
]

)− Pr
[

Wi = u | WB = r
]

≤ Pr
[

Wi = 1 | WB = v∗
]

− Pr
[

Wi = 1 | WB = r
]

is not negligible either when v∗ ∈ {0, 1}n−t is the value v that maximizes the conditional

probability Pr
[

D
(k)
B = u | D

(k)

B
= v

]

. The symmetric case follows from taking v∗ to be

the value that mimimizes the probability. The result of the lemma then follows.

97

4.4.3 Distributions for Sb-Independence

In this section, we show that Sb-Independence can be achieved under any input

distribution. We first notice that Sb-Independence under class Singleton and (All,Sb)-

Independence are equivalent (this follows from Proposition A.1.1). Then, we recall the

results by Yao and (independently) by Goldreich et al. [Yao86, GMW87] which present

protocols that securely implement any function. In particular, these protocols securely

implement fSB. By observing that such protocols work for any fixed input, we then have

Corollary 4.4.5 [Yao86, GMW87] Under the assumption that enhanced trapdoor per-

mutations exist (cf. [Gol01, Sec. C.1]), there exists a protocol that achieves Sb-independence

for any input distribution.

4.4.4 Relations between Distributions

We introduce some notation first. Let Singleton be the class of all singleton

input distribution ensembles. That is, for each string α ∈ {0, 1}n, the distribution

Dα = {D
(k)
α }k∈N is in Singleton if for every k, D

(k)
α assigns probability one to the string

α. Let Uniform be the class whose only element is the uniform distribution ensemble, and

let All be the class of all input distribution ensembles over n-bit strings. For notational

convenience, in the rest of the chapter, we denote by D(N) the class of distributions

associated to definition N, that is, D(CR)
def
= ΦC,n, D(G)

def
= ΦL,n, and D(Sb)

def
= All.

The following claim shows that the input distributions under which G, CR, and

Sb are achievable are strictly contained in the same order. All classes also contain the

class of all singleton distributions and the class of the uniform distribution. The proofs

are easy and therefore omitted.

Claim 4.4.6 Singleton,Uniform ⊂
6= D(G) ⊂

6= D(CR) ⊂
6= D(Sb).

4.5 Implications and Separations

In this section, we compare the definitions of independence of [CR87, Gen00]

with the simulation-based definition. We say a distribution is trivial for notion N if

98

every protocol achieves N-independence under that input distribution. Also, a class is

trivial for notion N if every protocol achieves N-Independence under all distributions in

the class. Our first implication shows that any protocol that achieves Sb-Independence

must achieve CR-Independence for all achievable distributions.

Lemma 4.5.1 For every protocol Π, if Π achieves (D(CR),Sb)-Independence then Π

also achieves (D(CR), CR)-Independence.

Proof of Lemma 4.5.1: Assume multisender broadcast protocol Π is not CR-independent

for some input distribution D ∈ D(CR). Then, there exists an adversary A, honest party

P`, and a polynomial-time predicate R such that the quantity defined in Definition 4.3.3

is not negligible under input distribution D. We show how to transform A, R and D,

into an adversary A′, and an algorithm T such that Π is not (D(CR),Sb)-independent.

Details follow.

First, since Π is not CR-independent under input distribution D ∈ D(CR), there must ex-

ist an adversary A (corrupting players in B ⊂ [n]), an honest party Pi, and a polynomial-

time computable predicate R such that there exists constant c > 0 and infinitely many

values of k for which (w.l.o.g.)

Pr
[

W` = 1 ∧ R(W
{`}

)
]

− Pr [W` = 1] · Pr
[

R(W
{`}

)
]

≥ k−c (4.7)

Now, let adversary A′ be identical to A. We build distinguisher T from predicate R as

follows:

Distinguisher T (1k, z,x, τ) : From transcript τ extract unique W

Output 1 if
(

W` = 1 and R(W{`}) = 1
)

and 0 otherwise.

Algorithm T is polynomial-time since R is so. It remains to prove that T successfully

distinguishes ensembles XExecΠ
A′ and XExec

Ideal(fSB)
S (as defined in equations (4.1) and

(4.2)) when the input distribution is D.

Let S be an ideal process adversary (simulator). We denote by S(xB ; z) the |B|-

dimensional vector given by simulator S to function fSB (in the ideal world) as the input

99

corresponding to corrupted parties. String z is the auxiliary input of S. Let Pr1 [E] be

the probability of event E under the case x
R
← D(k) and W ← AnnouncedΠ

A(x), and

Pr0 [E] be the probability of event E under the choice x
R
← D(k) and W← xB tS(xB).

Then,5

p1
def
= Pr

[

x
R
← D(k) : T (1k, z,x,ExecΠ

A′(k, z,x)) = 1
]

= Pr1

[

W` = 1 ∧ R(W
{`}

) = 1
]

p0
def
= Pr

[

x
R
← D(k) : T (1k, z,x,Exec

Ideal(fSB)
S (k, z,x)) = 1

]

= Pr0

[

x` = 1 ∧ R(xB\{`} t S(xB ; z)) = 1
]

At this point, we use that D is computationally independent. Let X
def
= D{`} tD`. By a

hybrid argument, we assume X ∈ Φn. Then, there exists a negligible function ε(k) such

that |Pr
[

F (D(k)) = 1
]

−Pr
[

F (X (k)) = 1
]

| < ε(k) for any probabilistic polynomial-time

distinguisher F , in particular F (Z)
def
= (Z` = 1 ∧ R(ZB\{`} t S(ZB ; z)) = 1). Therefore,

p0 < Pr
[

u
R
← X (k) : u` = 1 ∧ R(uB\{`} t S(uB ; z)) = 1

]

+ ε(k)

= Pr
[

u{`}

R
← D

(k)
B : R(uB\{`} t S(uB ; z)) = 1 | u` = 1

]

· Pr
[

u`
R
← D

(k)
` : u` = 1

]

+ ε(k)

= Pr0

[

R(xB\{`} t S(xB ; z)) = 1
]

· Pr0 [W` = 1] + ε(k)

< Pr1

[

R(W{`})
]

· Pr0 [W` = 1] + ε(k)

We justify last inequality as follows: (a) if Pr1

[

R(W
{`}

)
]

< Pr0

[

R(W
{`}

)
]

then it

suffices to consider the negated predicate R instead of R, and (b) any adversary A

cannot use the simulator S’s strategy otherwise A would contradict Equation (4.7) since

D ∈ D(CR). Also, by the correctness of Π, Wi = xi for all honest i ∈ B. Combining the

above equations with Equation (4.7), we obtain

p1 − p0 > Pr1

[

W` = 1 ∧ R(W
{`}

) = 1
]

− Pr1

[

R(W
{`}

)
]

· Pr1 [W` = 1]− ε(k)

> k−c′

5In the rest of the proofs in this chapter, for simplicity, we assume that W` = x` with probability one
for all uncorrupted P`. The cases when the equality holds with overwhelming probability are analogous,
although slightly more involved.

100

for some constant c′ > 0 and infinitely many values of k.

Similarly, all protocols that achieve CR-Independence under all distributions

for which G-Independence is achievable must indeed achieve G-Independence under the

same class.

Lemma 4.5.2 For every protocol Π, if Π achieves (D(G),CR)-Independence then Π also

achieves (D(G),G)-Independence.

Proof of Lemma 4.5.2: Let Π be a multisender broadcast protocol. Assume Π

is not G-Independent under some distribution D. We want to prove that there exist

a distribution D′ under which Π is not CR-Independent. By Proposition A.1.7, if Π

does not achieve G-Independence under distribution D, then Π is not G∗∗-Independent.

Therefore, there exists an polynomial-time adversary A corrupting set B ⊂ [n], a string

z ∈ {0, 1}∗, i ∈ B, and vectors w ∈ {0, 1}B , r, s ∈ {0, 1}B such that the quantity
∣

∣

∣
Pr

[

W←AnnouncedΠ
A(k,z)(w t r) : Wi = 1

]

− Pr
[

W←AnnouncedΠ
A(k,z)(w t s) : Wi = 1

]∣

∣

∣

is not negligible. By a hybrid argument, we can assume r and s differ on a single bit,

the `-th one, so rB\{`} = sB\{`}. W.l.o.g. r` = 0 and s` = 1.

We build a new adversary A′ identical to A and fix the honest player P`. We also

define the predicate R(Z`)
def
= (Zi

?
= 1). Now, consider the distribution D ′ that assigns

some non-negligible probability p` to the event D
′(k)
` = 1, and probability one to D

′(k)

{`}
=

(wtrB\{`}). Notice that D′(k) is in D(G) but it is not trivial. Let PrD′ [E] the probability

of event E when W ← AnnouncedΠ
A(k,z)(D

′(k)). Since P` is honest PrD′ [W` = 1] =

Pr
[

D
′(k)
` = 1

]

= p`. Then,

PrD′

[

R(W{`}) = 1
]

= (1− p`) · Pr
[

W← AnnouncedΠ
A(k,z)(w t r) : Wi = 1

]

+ p` · Pr
[

W← AnnouncedΠ
A(k,z)(w t s) : Wi = 1

]

and

PrD′

[

W` = 1 ∧ R(W{`}) = 1
]

= PrD′ [W` = 1 ∧ Wi = 1]

= p` · Pr
[

W← AnnouncedΠ
A(k,z)(w t s) : Wi = 1

]

101

Putting it all together,

∣

∣

∣
PrD′ [W` = 1] · PrD′

[

R(W{`}) = 1
]

− PrD′

[

W` = 1 ∧ R(W{`}) = 1
]
∣

∣

∣

= p` · (1− p`) ·
∣

∣

∣
Pr

[

W← AnnouncedΠ
A(k,z)(w t r) : Wi = 1

]

− Pr
[

W← AnnouncedΠ
A(k,z)(w t s) : Wi = 1

]
∣

∣

∣

which is not negligible.

4.5.1 Separations

At this point, we look into whether the definitions are equivalent when restricted

to achievable input distributions. Proposition 4.5.3 shows this is not the case. We prove

that there are distributions for which the definition of [CR87] always holds no matter

the protocol, but that this cannot happen with Sb-Independence.

Proposition 4.5.3 The class Singleton is trivial for CR independence but not trivial for

Sb independence.

Proof of Proposition 4.5.3: The proof follows easily from the definition of CR inde-

pendence – under a fixed input all probabilities collapse to either 0 or 1 with overwhelm-

ing probability, for any protocol. Then, consider a protocol that does not achieve Sb-

Independence (we know such protocol exist). Since (Singleton,Sb)-Independence is equiv-

alent to Sb-Independence, it follows that such protocol cannot achieve Sb-Independence

under class Singleton.

It is also possible to show that the definitions of [CR87] and [Gen00] are not equivalent,

but instead that G-independence is strictly weaker than CR-independence.

Lemma 4.5.4 There exists a protocol ΠG which achieves (D(G),G)-independence but

does not achieve CR-independence for any input distribution in D(G). In particular, ΠG

is G-Independent for the uniform distribution, but not CR-Independent for the uniform

distribution.

102

Proof: We show a protocol implementing multisender broadcast that, even though it

satisfies Definition 4.3.4 (i.e., the notion of simultaneous broadcast of [Gen00]), it violates

Definition 4.3.3 (i.e., the definition of independence of [CR87]). The “flawed” protocol

ΠG uses a subprotocol Θ which essentially performs a simultaneous broadcast unless

two corrupted parties misbehave in a very controlled manner – by setting some auxiliary

input bit to 1. In such case, protocol Θ reveals some information about the honest

parties’ inputs to two corrupted parties. The leakage of information is done in such a

way that the output of each single corrupted party is not correlated to the outputs of

honest parties, but the combined outputs are.

We describe protocol Θ first. Protocol Θ is a n-party protocol that securely implements

function g(v) on input v = (v1, . . . , vn) defined as

g(v)
def
=







































































First, parse each vi as (xi, bi)

Pick r
R
← {0, 1} and set L ← { i : bi = 1 }

If |L| = 2 then set `1, `2 ∈ L, `1 < `2, otherwise set `1, `2 ← 0

Compute y
R
←

⊕

i6∈{`1,`2}
xi

Set wi ←















r if |L| = 2 and i = `1

r ⊕ y if |L| = 2 and i = `2

xi if i 6= `1, `2

Set w← (w1, . . . , wn) and output the n-dimensional vector (w,w, . . . ,w)

For simplicity, we write the input vector v as v = (x,b), where x,b ∈ {0, 1}n. We

first notice that a protocol that securely implements function g can be built using known

techniques (cf. [BGW88, GMW87, CCD88]) as long as t < dn/2e.

Claim 4.5.5 There exist a protocol Θ that securely implements function g (in the sense

of [Can00a]).

We now describe protocol ΠG. On private input xi ∈ {0, 1}, each party Pi sets up an

auxiliary bit bi ← 0. Then, all parties call subprotocol Θ on input ((x1, b1), (x2, b2), . . . ,

(xn, bn)). Let Wi be the vector obtained as the output of protocol Θ by party Pi. Each

party Pi outputs Wi as the final protocol result.

103

We show that protocol ΠG is not CR-Independent under any non-trivial input distribu-

tion. Indeed, there exists an adversary A∗ such that, when protocol ΠG is executed on

any input x under adversary A∗, the sum (mod 2) of the announced bits is always zero.

Adversary A∗ corrupts only two parties and instructs them to set their auxiliary bits to

1. The next claim follows directly from the definition of g.

Claim 4.5.6 Assume parties have inputs chosen according to some arbitrary distribu-

tion D ∈ D(G). There exists an adversary A∗ such that the execution of protocol ΠG

on input x ∈ D under adversary A∗ defines a vector of announced bits W satisfying
⊕

i Wi = 0.

The attack works for any non-trivial distribution, i.e., any distribution that is not sta-

tistically close to a singleton. For any such distribution, there must exists and index i

such that 1/poly < Pr [Wi = 0] < 1− 1/poly. The above claim gives an adversary and

a polynomial-time predicate we can use to correlate the output of the corrupted parties

with the output of an honest party Pi, namely R(Z{i})
def
= (⊕j 6=iZj = 0). Notice that

the predicate holds if and only if Pi announces 0.

We now show that protocol ΠG achieves G-Independence for any non-trivial, locally

independent input distributionD. Indeed, for any adversary A that succeeds on attacking

the G-Independence of ΠG under D, we exhibit a distinguisher Q that contradicts the

security of Θ (Claim 4.5.5). We proceed as follows. Assume ΠG is not G-Independent.

By Proposition A.1.7, ΠG is not G∗∗-Independent. Then there is an adversary A which

corrupts parties in B, an auxiliary input τ , and a corrupted party Pi, for which there

are vectors w ∈ {0, 1}B , r, s ∈ {0, 1}B , such that
∣

∣

∣
Pr

[

W← AnnouncedΠG

A(k,τ)(w t r) : Wi = 1
]

−Pr
[

W← AnnouncedΠG

A(k,τ)(w t s) : Wi = 1
]
∣

∣

∣

is not negligible. By a hybrid argument, we can assume r and s differ in a single bit, the

`-bit, so r` 6= s`, and w.l.o.g, r` = 0 and s` = 1.

The above adversary gives us a procedure to guess the input bit used by honest party P`

in protocol Θ as long as the inputs vector for the remaining parties is equal to wtrB\{`} .

104

Indeed, starting from A we show how to build an adversary A′ for Θ, such that for any

ideal-process adversary S for Ideal(g), there exist a distinguisher Q, an auxiliary input

z′, an input vector v′ = (x′,b′), such that the quantity
∣

∣

∣
Pr

[

Q(1k, z′,v′,ExecΘ
A′(k, z′,v′)) = 1

]

− Pr
[

Q(1k, z′,v′,Exec
Ideal(g)
S (k, z′,v′)) = 1

]∣

∣

∣

is not negligible. Adversary A′ is simple. It corrupts the same parties as B, and works

as follows. On input (xB ,bB), A′ simply discards bB and then simulates A. We now set

b′ = 0 and z′ = τ . For simplicity, for any vector x ∈ {0, 1}n, denote

qreal,x
def
= Pr

[

Q(1k, z′, (x,b′),ExecΘ
A′(k, z′, (x,b′))) = 1

]

,

qideal,x
def
= Pr

[

Q(1k, z′, (x,b′),Exec
Ideal(g)
S (k, z′, (x,b′))) = 1

]

It remains to show a distinguisher algorithm Q that works with good probability. Our

algorithm Q takes as input a security parameter k ∈ N, an auxiliary string z ∈ {0, 1}∗,

a vector v = (x,b) ∈ {0, 1}n × {0, 1}n, and a string Z drawn either from distribution

ExecΘ
A′(k, z,v) or distribution Exec

Ideal(g)
S (k, z,v). Thus, on input (1k, z, (x,b), Z),

algorithm Q first extract the corrupted set B and the unique vector W = (W1, . . . ,Wn)

of announced values from transcript Z. Then, it simply outputs 1 if (Wi = W`), and 0

otherwise. Let xr = wtr and xs = wts. By definition of distinguisher Q and adversary

A′, in the real model we have that

qreal,xs = Pr
[

W← AnnouncedΠG

A(k,τ)(x
s) : Wi = 1

]

qreal,xr = Pr
[

W← AnnouncedΠG

A(k,τ)(x
r) : Wi = 0

]

In the ideal model, on the other hand, the adversary S has access only to xB = w, and

therefore

qideal,xr = 1− Pr [S(w; τ)i = 1] and qideal,xs = Pr [S(w; τ)i = 1]

Combining the above equations, we obtain

|qreal,xs − qideal,xs |+ |qreal,xr − qideal,xr | ≥ |qreal,xs − qreal,xr − (qideal,xr + qideal,xs)|

=
∣

∣

∣
Pr

[

W←AnnouncedΠG

A(k,τ)(x
s) : Wi = 1

]

− Pr
[

W←AnnouncedΠG

A(k,τ)(x
r) : Wi = 1

]∣

∣

∣

which is not negligible by the G∗∗-Independence. Therefore, for either input x′ = xs or

input x′ = xr, the quantity |qreal,x′ − qideal,x′ | is not negligible. This concludes the proof

of the lemma.

105

We remark that the previous lemma indicates that G-Independence is not only

weaker than the other definitions, but also rather unsatisfactory. Indeed, by following

G-Independence, we may deem protocols like ΠG “secure”, when in reality they fail to

provide even a very intuitive notion of independence – namely the one that requires the

announced bits do not always sum 0. We stress the above result holds even for the

uniform distribution.

4.5.2 Feasibility of CR and G independence

At this point, we have all the tools needed to prove the feasibility results for

CR and G-Independence, namely that there exist protocols that achieve (D(CR),CR)-

Independence as well as (D(G),G)-Independence. Indeed, Corollary 4.4.5 together with

Claim 4.4.6 and the results of this section provide concise proofs for Claim 4.4.1 and

Claim 4.4.3. Claim 4.4.1 follows from the existence of a protocol achieving (D(Sb),Sb)-

Independence (by Corollary 4.4.5), and that (D(CR),Sb)-Independence implies (D(CR),

CR)-Independence. Claim 4.4.3 is proved analogously.

Reference: Most material in this chapter is a reprint from the material appearing in

“Simultaneous Broadcast Revisited,” Alejandro Hevia and Daniele Micciancio, in the

proceedings of 24th ACM Symposium on Principles of Distributed Computing (PODC

2005), Marcos Kawazoe Aguilera, James Aspnes Eds., ACM Press, 2005.

5

Universally Composable

Simultaneous Broadcast

5.1 Introduction

5.1.1 The Need for Efficient Simultaneous Broadcast with Strong

Security Guarantees

As mentioned in Chapter 4, the concept of simultaneous broadcast was first in-

troduced by Chor et al. in [CGMA85], along with a simulation-based definition. In terms

of efficiency (round complexity), the n-party protocol presented by Chor et al. required

O(n) rounds for each simultaneous broadcast operation. Chor and Rabin [CR87] reduced

the round complexity to O(log n) rounds, and finally Gennaro [Gen00], working in the

common random string model, obtained a protocol with constant round complexity. Our

results in the previous chapter showed that, even as the round-efficiency of the solutions

increased, the definitions of security did not remain the same, and they actually became

increasingly restricted. In particular, the protocol presented in [Gen00], the most round

efficient protocol so far, is secure under a definition of security strictly weaker than the

original simulation-based definition of [CGMA85].1 Nonetheless, the round efficiency

1Indeed, the definition of simultaneous broadcast proposed in [Gen00] may not exclude protocols
that fail to achieve the intuitive notion of independence captured by the simulation-based definition of

106

107

of Gennaro’s protocol made the search attractive for either a proof that such protocol

achieves a stronger notion of simultaneous broadcast (eg. [CGMA85]), or for a variant

of that protocol that does it.

Concurrent Execution and Universal Composability: Until recently, most

cryptographic primitives were seen as stand-alone protocols and analyzed as such. The

development of increasingly complex computing environments, brought the concern that

previously secure protocols (proven as stand-alone primitives) might not remain secure

under stronger adversarial conditions, like parallel or concurrent execution of many (pos-

sibly different) protocols [GK96, DDN01], or if invoked by other (possibly unknown)

protocols. It was in such context that several security frameworks were developed

(see [MR91, BCG93, Can00a, HM00, DM00, PSW00, PW00, PW01, Can01b, Can05]).

Among those, in [Can01b, Can05], Canetti presented the Universally Composable (UC)

Security framework, which allows modular description and analysis of protocols under

concurrent execution and provides strong composability guarantees. Very informally,

in the UC framework, security of a protocol is formalized in terms of an ideal object,

a functionality, which acts as a reactive trusted party and performs computations on

behalf of the users. A protocol is secure if it is a good “replacement” of a given function-

ality, where the quality of replacement is measured in terms of how well an execution

of the protocol against a realistic adversary “emulates” an ideal process in which the

computation is done by the functionality (see [Can05] for details). Indeed, UC secure

protocols remain so under general composition with an unbounded number of instances

of arbitrary protocols running concurrently. Thus, given the benefits of achieving UC

security, the security of many cryptographic primitives has been revisited to explore

whether these stronger UC guarantees can be achieved, and if so, at what cost (in terms

of efficiency or assumptions). As we will see in the next section, simultaneous broadcast

can be achieved under UC security not only at no extra cost, but also with gains in

terms of efficiency.

[CGMA85].

108

5.1.2 New Results

In this work, we present a communication and round efficient solution for the

simultaneous broadcast problem. Our solution is based on verifiable secret sharing

(VSS) [CGMA85] and does not uses zero-knowledge proofs, zero-knowledge proofs of

knowledge, or commitments schemes as previous constructions [CR87, Gen00]. More-

over, our construction is provably secure in the Universally Composable framework

against computationally-unbounded adaptive adversaries assuming an honest majority,

with negligible error probability.2 To achieve this, we introduce a natural definition

of Simultaneous Broadcast in the UC framework which implies all previous definitions.

Our simultaneous broadcast construction is very efficient: we run one VSS per party in

parallel. While the construction is technically simple, proving UC security present some

subtleties, like dealing with rushing adversaries or parties simply “copying” someone

else’s sharing. We overcome some of the problems by defining a synchronous variant

of verifiable secret sharing, which we call Terminating VSS (TVSS), and building our

simultaneous broadcast protocol invoking such TVSS functionality. We then show that,

when formalized as UC functionality, TVSS is intrinsically synchronous. A benefit of

this approach is that our simultaneous broadcast protocol does not explicitly requires

global synchronous communication since all the synchronicity is provided by the Ter-

minating VSS functionality. Our construction and proof exemplifies the approach, first

suggested by Canetti in [Can05], of abstracting synchronous communication as a func-

tionality rather than embedding it in the execution model [Nie03, HMq04]. We believe

this approach leads to modular analysis, simple protocol design and simpler proofs.

5.1.3 Discussion and Related Work

Simultaneous Broadcast: As mentioned above, the simultaneous broadcast problem

was put forward by Chor et al. [CGMA85] who proposed a simulation-based definition

and a linear-round protocol. This protocol essentially executed n sequential VSS pro-

tocols, where n is the number of communicating parties. The sequential execution was

2 Most of the properties of our solution – namely communication and round complexity, reliability
and negligible error probability – are inherited from the VSS used as building block [CDD+99].

109

needed to prevent corrupted parties from broadcasting the same value as an honest party,

for instance by reusing (copying) the VSS data sent out by the honest party. Then, Chor

and Rabin in [CR87] showed how to reduce the round complexity to O(log(n)) rounds.

Their protocol requires, among other things, that each party first broadcast a commit-

ment of her input and then proves knowledge of the broadcasted value. The reduction

in rounds comes from using a clever scheduling technique for doing the proofs – for any

two players, there is a step in the protocol where one player acts as prover and the other

one acts as verifier of the proof of knowledge. Such a scheduling prevents “copying” the

proofs. Finally, Gennaro in [Gen00] put forward a protocol that greatly simplifies the

one in [CR87] by showing how to run the proofs of knowledge in parallel, essentially

employing non-interactive proofs of knowledge [SP92].

In terms of the previous definitional work for simultaneous broadcast problem,

it turns out that each result in [CGMA85, CR87, Gen00] presents a different definition. In

the previous chapter we show that these definitions form a strict hierarchy when consid-

ered in terms of input distributions. There, we pointed out that the strongest definition

(in a well-defined sense, see Section 4.5) is the simulation-based notion of [CGMA85],

which preserves security under sequential composition. The notions in [CR87, Gen00]

targeted stand-alone execution and thus provide no composition guarantees.

Verifiable Secret Sharing: The notion of Verifiable Secret Sharing (VSS) was first

proposed by Chor et al. [CGMA85] inspired by the need of adding robustness to standard

secret sharing (eg. Shamir’s [Sha79], independently invented by Blakley [Bla79]). The

problem has been extensively studied both in the synchronous setting (see for example

[FM88, BGW88, GMW91, RBO89, FM97, CDD+99, AF04]) and in the asynchronous set-

ting [BCG93, BOKR94, CR93, CKPS01, CKLS02]. In the information-theoretic model

with adaptive adversaries, Rabin and Ben-Or [RBO89] proposed a VSS secure under

an honest majority, by allowing negligible failure probability. Subsequently, in the same

model, Cramer et al. [CDD+99] improved the information checking protocols of [RBO89]

and presented a very efficient constant-round VSS protocol. In this thesis, we observe

that Cramer et al.’s protocol achieves the stronger TVSS definition achieved in this the-

sis, and we use it we obtain our constant-round solution.

110

Related Protocols and Generic Solutions: The simultaneous broadcast problem

is related to the idea of common-coin protocols (Feldman and Micali [FM97], and Micali

and Rabin [MR90]), where several parties want to generate one or more unbiased coins, in

a distributed way. Indeed, the constructions proposed in [FM97, MR90] involve executing

VSS protocols in parallel, in a similar approach as ours. We remark, however, that the

goals are different: while for common-coin generation it suffices that the broadcast value

of a single (uncorrupted) value is not correlated to the output of corrupted parties,3 in

the simultaneous broadcast problem we seek to guarantee that every single component

of the output vector of the broadcast values remains “uninfluenced” by the other values

in the same vector. In addition, our construction must guarantee security under general

(UC) composition.

A related, although orthogonal issue, is the problem of simultaneous termi-

nation, which has been studied by Lindell et al. [LLR02b]. The problem arises in the

context of parallel composition of multiparty protocols in synchronous networks, where

certain protocols (including broadcast protocols) may not terminate in the same round

when composed in parallel, thus complicating their sequential composition with other

protocols. (We note that, in [LLR02b], the term simultaneous broadcast is used but

with a different meaning than ours, as they refer to what we call parallel broadcast.)

The methods in [LLR02b] do not attempt to achieve independence (in fact, they do

not) since their concern is not ensuring new functional properties of the resulting par-

allel protocol, but ensuring that they can be safely composed sequentially with other

protocols while preserving round efficiency. Also in the context of composition of broad-

cast protocols, Lindell et al. discussed some pitfalls in the composition of Authenticated

Byzantine Agreement [LLR02a]. They show that unless session identifiers are available,

no parallel or concurrent composition of Authenticated Byzantine Agreement is secure

if more than one third of the parties are faulty. In our work, we do assume the avail-

ability of broadcast channels (in the form of the broadcast functionality FBC) but we

put no restrictions on how they are implemented. For example, session identifiers for the

broadcast protocols could be initialized using the techniques of Barak et al. [BLR04], or

by standard techniques under setup assumptions [CLOS02].

3 In all fairness, in general the mentioned protocols do achieve more than that.

111

Lastly, there are powerful UC constructions for secure multiparty computation

of generic protocols (cf. [CLOS02, DN03]) which could certainly be used to provide a

solution to the simultaneous broadcast problem. Indeed, techniques of [CLOS02] do pro-

vide such a solution tolerating any number of corrupted parties in the common random

string model. However, as done in the context of many other examples of multiparty se-

cure computation (eg. threshold signatures, key-exchange, voting), our goal is to look for

more specialized, and therefore more efficient, solutions for the simultaneous broadcast

problem.

5.1.4 Comparison with previous solutions

Communication and round efficiency: In terms of efficiency, the number of rounds

required in our construction is equal to the number of rounds of the terminating VSS

construction we use, which is the one proposed by Cramer et al. [CDD+99]. Similarly,

the computational complexity of our construction is n times that of the terminating

VSS in [CDD+99]. Concretely, our solution requires O((k + log n)n4) bits of commu-

nication, and only 14 rounds (or 12 if no faults occur). If the model is extended so

parties can use digital signatures, the protocol takes only 7 rounds, although security

holds only against computationally-bounded adversaries. In comparison, the previous

constant round solution [Gen00] uses a comparable number of rounds (seven for the VSS

protocol [BGW88], plus six for the computational zero-knowledge proof [GMW91], plus

three rounds) but requires the communication of a large number of bits (n copies of a

non-interactive zero-knowledge proof of knowledge for a generic NP statement [SP92],

plus n times the communication complexity of the VSS protocol of [GMW91], at total

that in most implementations is often orders of magnitude larger than O((k+log n)n4)).

Adversaries and Resilience: In terms of the tolerated adversary our solution is

similar to Gennaro’s. The construction of [Gen00] works over public channels under

computationally-bounded static adversaries and can be made secure under adaptive ad-

versaries using the compiler of [CFGN96]. In comparison, assuming secure channels,

our solution tolerates computationally unbounded adaptive adversaries, and security in

the public channel setting (and computationally-bounded adversaries) can be obtained

112

by standard techniques (like non-committing encryption [CFGN96, DN00]). In terms of

resilience, our construction tolerates at most t < n/2 corrupted parties as Gennaro’s so-

lution. The constructions of Chor et al. [CGMA85] and Chor and Rabin [CR87] tolerate

t < n/4 and t < n/2 respectively.

Organization: The chapter is organized as follows. In the next section, we briefly

recall our model of computation (the UC framework). Then, in Section 5.3, we describe

and justify our formalization of the notion of Terminating VSS (denoted UC-TVSS), the

synchronous variant of VSS considered here, and we mention how it can be efficiently

implemented. Section 5.5.1 presents our notion of security for simultaneous broadcast

(denoted UC-SB), and shows how to implement it from UC-TVSS. We conclude in

Section 5.6 by discussing how to extend our results to the public channel model, and

how to model simultaneous broadcast under purely asynchronous communication.

5.2 Preliminaries

The UC Framework: Our results are in the Universally Composable framework of

Canetti [Can05] as described in Section 2.2.4. For convenience, we briefly outline the

basic underlying ideas here. In the UC framework, the desired properties of crypto-

graphic protocols are defined in terms of tasks or functionalities. A functionality is a

“trusted third party” that first obtains inputs directly from the parties, performs cer-

tain instructions on these inputs, and provides the parties with the appropriate outputs.

A protocol securely implements a given cryptographic task, if executing the protocol

against a realistic (i.e. real-life) adversary “emulates” the execution of an ideal process.

In the ideal process, the task is computed by the functionality directly interacting with

the parties against a very limited adversary (called the ideal-adversary). The notion of

“emulation” involves a distinguisher Z which, by providing the parties with inputs and

seeing their outputs, and by interacting with the adversary, attempts to tell whether it

is interacting with a real protocol and the real-life adversary, or with the functionality

and the ideal-adversary. Good emulation means no such environment is successful. For

more details and proofs the reader is referred to [Can05].

113

In this chapter, we consider a network of n parties, P1, . . . , Pn, connected with

perfectly private and authenticated channels plus a broadcast channel. In the UC ter-

minology, this translates to working in the (FSMT ,FBC)-hybrid model, where FSMT is

the secure message transmission functionality [Can05] and FBC is the broadcast chan-

nel functionality, which does not satisfy any independence or “fairness” property (i.e. it

allows rushing). There is a computationally unbounded adversary that can adaptively

corrupt up to t < n/2 parties. Upon corruption, parties follow the instructions by the

adversary – the adversary is active. Our protocols allow an error probability negligible

in the security parameter k.

5.3 Terminating VSS (UC-TVSS)

One inconvenience of the definition of standard VSS schemes (as in Definition

2.2.1 or even in Definition 2.2.2) for our purposes is that it does not guarantee the pro-

tocol terminates if the dealer is corrupted. Nonetheless, all synchronous VSS protocols

in the literature [BGW88, GMW91, RBO89, FM97, GRR98, CDD+99, AF04] seem to

satisfy some form of terminating condition: there is a round in the execution in which all

parties agree that the sharing phase has “timed-out” and the secret is fixed. To capture

this property while preserving the possibility that the VSS protocol being used from

higher-level asynchronous protocols, we define the notion of Terminating VSS (TVSS).

TVSS protocols are guaranteed to conclude independently of the dealer’s ac-

tions. We characterize TVSS as a functionality in the UC framework, FTV SS , which is

shown in Figure 5.1. Intuitively, FTV SS extends the VSS functionality so that even if a

corrupted dealer D fails to call the functionality, a fixed value is eventually associated to

D. Indeed, honest parties can “force” the functionality to fix a value for D by sending

EndSharing messages. Our formulation of FTV SS , is inspired by the UC VSS variant of

Abe and Fehr (see [AF04] and Section 2.2.4), which includes the concept of “spooling”

the secret, a syntactic technique that allows the dealer to announce to the adversary –

via a Spool message – that a new functionality is being called. The adversary is thus able

to adaptively corrupt the dealer before the dealer commits to a value. Another purely

syntactic choice is allowing the adversary to trigger the end of the sharing phase as it is

114

easy to see that alternative formulations like triggering the end sharing after “enough”

(say t + 1) honest parties have sent EndSharing mesages are equivalent.

Definition 5.3.1 We say a protocol π achieves UC-TVSS if π UC-realizes functionality

FTV SS.

The name Terminating VSS reflects that a protocol that UC-realizes FTV SS will

conclude (terminate) as long as the adversary delivers all sent messages. The adversary

can still delay or block some messages forever – but nothing more. In particular, the

protocol does not stall even if the corrupted dealer is irresponsive. This adversarial

behavior is a concern in protocols that depend on the termination of a VSS subprotocol,

even in the authenticated transmission model, as the parties waiting for a successful

completion of the VSS functionality may not have access to synchronous communication

or some “time-out” mechanism.4 In this context, termination means that, once honest

parties are instructed to start executing the TVSS protocol, then no matter what the

actions of the dealer are, π will terminate with some (possibly empty) output if the

adversary delivers all the messages.

Discussion: One may argue that termination issue seem to disappear if one considers a

synchronous version of the UC model (as done in [Nie03, HMq04]). While synchronous

communication among all parties certainly allows to implement time-outs (and thus have

default sharings if the dealer does not participate), we believe that “encapsulating” syn-

chronicity inside the primitive that requires it is useful as higher-level protocols do not

need to be aware of it. Concretely, TVSS not only captures a form of synchronous VSS

but also keeps the dependence on synchronous communication modularized, as any re-

liance on it is explicitly and independently handled inside the TVSS functionality. In

particular, even though it is possible to show that any implementation of TVSS requires

synchronous communication (at least twice) among the parties running it,5 a higher-level

protocol ρ using the TVSS functionality can run in an asynchronous way. In practice,

this means that ρ could be implemented in an asynchronous network where only lim-

4 We remark that, in some applications, the parties “waiting” for the completion of a VSS subprotocol
may not be the same as the ones executing the VSS protocol.

5This is implied by Claim 5.5.2 where TVSS is shown to be equivalent to functionality FSYN , syn-
chronous communication with guaranteed delivery [Can05].

115

Functionality FTV SS

FTV SS expects its SID to be of the form sid = (sid′, D,P), where P is a list of

parties among which sharing is to be performed. It proceeds as follows.

(1) At first activation, initialize s as ⊥.

(2) Upon receiving input (Spool, sid, s) from party D ∈ P, set s ← s and send

(SpoolRcvd, sid,D) to adversary A. (Any subsequent input Spool is ignored.)

(3) Upon receiving input (Share, sid, s′) from party D ∈ P, set s ← s′ and send

(ShareRcvd, sid,D) to adversary A. (Any subsequent input Share is ignored.)

(4) Upon receiving input (EndSharing, sid) from uncorrupted party P ∈ P, record

(EndSharing, P) and send (EndSharingRcvd, sid, P) to adversary A.

(5) Upon receiving message (Corrupt, sid, P) from the adversary, do: If P = D

then send s to the adversary. Otherwise, delete record (EndSharing, P), if

exists. In both cases, send (Corrupt, sid) message to P .

(6) Upon receiving message (DoEndSharing, sid) from the adversary do: If there

is at least one record of the form (EndSharing, sid, P), and

• D is honest and a message (Share, sid, u) from D has been received, or

• D is corrupted,

then send (Shared, sid) to each party in P and the adversary A. (Any sub-

sequent input Share or message DoEndSharing is ignored.) Otherwise, ignore

the message.

(7) Upon receiving input (Open, sid) from uncorrupted party P , output

(Opened, sid, s) to P and the adversary A.

Figure 5.1 The Terminating Verifiable Secret Sharing (with Spooling) functionality,
FTV SS .

116

ited synchronicity is available (say only within certain subsets of the parties, or when

synchronous communication can only be provided very infrequently) as long as the sub-

protocol that realizes the TVSS functionality has “enough” access to the synchronization

capability. For example, applications in cluster networks [vABH03] may exploit the ad-

vantage of implementing TVSS locally in each cluster (where synchronization is easier)

while the inter-cluster protocol ρ can run asynchronously. Even our concrete application

of TVSS, building simultaneous broadcast, where each TVSS involves all the parties,

may benefit from this modular approach: dealers in different TVSS subprotocols could

start the execution at different rounds (because of lack of network connectivity, for exam-

ple) and still be able to achieve simultaneous broadcast. Furthermore, the simplicity of

our construction for simultaneous broadcast shows that this approach may also simplify

protocol design and security proofs.

5.3.1 Instantiating TVSS

In this section, we revisit the very efficient VSS protocol presented by Cramer

et al. in [CDD+99] in a synchronous model of computation with some negligible error

probability. The scheme is based on the bivariate solution of Feldman [FM88, BGW88]

and builds on the information checking techniques of Rabin and Ben-Or [RBO89, Rab94].

The construction is very efficient: the sharing phase takes fourteen rounds and recon-

struction takes two rounds,6 while the total communication cost is O((k + log n)n3) bits

for an error probability of 2−k+O(log n). For completeness, their construction πTV SS is

presented in Section 5.4.

In [CDD+99], Cramer et al. prove their construction is information-theoretic

secure against adaptive corruptions under the classical definition of security (Definition

2.2.1). The next proposition shows that their protocol can be proven a secure Terminat-

ing VSS in the UC hybrid model we consider here if the model includes the synchronous

communication (with guaranteed delivery) functionality FSYN proposed in [Can05]. The

proof is postponed until Section 5.4.

6 If the model is extended to allow digital signatures, the round complexity can be reduced by half,
but the resulting scheme is secure only against computationally-bounded adversaries.

117

Proposition 5.3.2 Protocol ΠTV SS UC-securely realizes FTV SS in the (FBC ,FSMT ,

FSY N)-hybrid model for n > 2t.

Other Alternatives: Other VSS schemes than can potentially be used to achieve

UC-TVSS are the ones presented by Goldreich et al. [BGW88], and Feldman and Micali

[FM97]. They achieve resilience n > 3t and constant-round complexity but they are

less communication efficient than the protocol by Cramer et al.Also, the VSS scheme

proposed by Rabin and Ben-Or [RBO89] with resilience n > 2t (which is slightly less ef-

ficient than the one in [CDD+99]) can also be used. In the context of the computational

variant of the UC model (where security holds against computationally bounded adver-

saries), Abe and Fehr [AF04] introduce the notion of committed VSS, in which the VSS

protocol generates a commitment to the secret during the sharing phase. They present a

very round and communication efficient protocol based on the Feldman’s scheme [Fel87],

and another (less efficient) based on the Pedersen’s scheme [Ped91]. Unfortunately, the

protocol based on Feldman’s VSS does not suffice for our application as it leaks a Feld-

man commitment on the secret. The protocol based on Pedersen’s VSS, however, can

be proven UC-TVSS, but since it needs to generate a trapdoor-commitment key in a

distributed way (see [AF04]), the resulting scheme is less efficient than the construction

used above.

5.4 Adaptively secure VSS of Cramer et al.

In [CDD+99], Cramer et al. presented a very efficient adaptively secure VSS

protocol in the secure-channel model. In this section, we describe the protocol and we

prove it is also UC-TVSS. This section is adapted from Cramer et al. [CDD+99]. Let k

be a security parameter, and K = GF (q) a finite field such that q > max(n, 2k).

5.4.1 Information Checking Protocol

An information checking protocol is the information-theoretic analogous of a

“digital signature”. Informally, an information checking protocol is a three party protocol

that allows an intermediary I to obtain data from a dealer (or signer) D so later I can

118

convince a recipient D that the data actually comes from the dealer D. A more formal

description follows, which is taken mostly verbatim from Cramer et al. [CDD+99].

Consider a protocol IC = (D,A,R) that consist of three phases (or subproto-

cols) executed between a dealer D, with input s ∈ K, an intermediary I, and a recipient

R. The phases operate as follows.

• D is the distribution phase. This phase is initiated by the dealer D on input s. In

this phase, D hands the secret s to the intermediary I and some auxiliary data to

both I and the recipient R.

• A is the authorization phase. This phase is initiated by I and carried out by D, I,

and R using as inputs the outputs obtained in the previous phase. In this phase, I

ensures that in the protocol R, the recipient R (if honest) will accept s, the secret

held by I.

• R is the reveal phase. This phase is initiated by I and carried out by I and R. In

this phase, R receives a value s′ from I, along with some auxiliary data, and either

accepts s′ or rejects it.

We say protocol IC is a secure information checking protocol if satisfies the following

properties

Correctness: If D, I, and R are honest, and D has a secret s then R will accept s in

phase R.

Binding-D: If I, and R are honest then after the phases D and A, I knows a value v

such that R will accept v in the phase R (except with probability 2−k).

Binding-I: If D, and R are honest then in phase R, with probability at least 1− 2−k,

party R will reject every value s′ different than s.

Secrecy: The information that D hands R in phase D is distributed independently of

the secret s. (Consequently, if D and I are honest, and I has not executed R, then

R has no information on the secret s.)

119

The CDDHR Information Checking Protocol: Cramer et al. [CDD+99] (build-

ing on [RBO89]) proposed a very efficient information checking protocol which assumes

synchronous communication and secure channels. Before describing it, we need a def-

inition. A vector e = (a, b, c) ∈ K3 is 1α-consistent, denoted e ∈ R1α , if there exists

a degree 1 polynomial w(x) of degree at most t such that w(0) = a, w(1) = b, and

w(α) = c.

The proposed information checking protocol IC = (Distr, AuthVal, RevealVal)

is shown in Figures 5.2, 5.3 and 5.4. We adopt the convention that, at the end of each

protocol step, the parties running the protocol (i.e. D,I, and R) invoke FSY N .7

Sub-Protocol Distr(D, I, s)

Public Input: field K description, session identifier sid∗

Private Input: D holds s ∈ K. I and R have no inputs.

(1) The dealer D chooses a random value α ∈ K \ {0, 1} and additional random

values r, r′, s′
R
← K and computes y ← r + s, y′ ← r′ + s′, z ← rα + s, and

z′ ← r′α + s′. Notice that vectors (s, y, z) and (s′, y′, z′) are 1α-consistent.

Then D sends (s, s′, y, y′) to the intermediary I, and (z, z ′, α) to the recipient

R.

(2) The intermediary I’s local output is (s, s′, y, y′). The recipient R’s local output

is (z, z′, α). The dealer’s local output is (s, s′, y, y′, z, z′, α).

Figure 5.2 Information Checking Protocol IC [CDD+99], Sub-Protocol Distr.

The following result is proven by Cramer et al. in [CDD+99].

Lemma 5.4.1 [CDD+99] The tuple IC = (Distr, AuthVal, RevealVal) is a secure in-

formation checking scheme.

IC-Signatures: For notational simplicity, following [CDD+99] we cast the usage of

an information checking protocol in the terminology of “digital signatures”. Informally

7 Each protocol step is done in a synchronous round, where the synchronicity is only for D,I, and R.
Other parties may run asynchronously.

120

Sub-Protocol AuthVal(D, I,R)

Public Input: field K description, session identifier sid∗

Private Input: For each party, the local outputs obtained in Distr(D, I, s).

(1) Intermediary I chooses a random element d
R
← K, sets (d, a, b) = (d, s′+ds, y′+

dy) and broadcasts (d, a, b).

(2) In this step, there are two possible actions:

1. If dealer D sees that the values broadcasted by I are incorrect (that is,

a 6= s′ + ds or b 6= y′ + dy), then D broadcasts (Corrupted, I, s, y). In

this case, R’s local output is the vector (s, y, z) ∈ R1α where (s, y) are the

ones broadcasted by D. The protocol ends here.

2. Recipient R broadcasts AcceptAuth if (a, b, z ′+dz) 6∈ R1α and RejectAuth

otherwise.

(Notice that the broadcast done by D and R in this step can be done in

parallel.)

(3) Depending on whether R’s actions, there are two cases:

1. If D sees that R has acted incorrectly, D broadcasts (Corrupted, R, z, α).

Party I’s local output is the vector (s, y, z) ∈ R1α . The protocol ends up

here.

2. If R broadcasted RejectAuth, and D did not claim him faulty, then D

broadcast (CorrectValues, s, y), and the broadcasted values will be using

in the following. Recipient R adjust z so (s, y, z) ∈ R1α .

(Notice that the broadcast done by D and R in this step can be done in

parallel.)

(4) The intermediary I’s local output is (s, y). The recipient R’s local output is

(z, α). The dealer’s local output is empty.

Figure 5.3 Information Checking Protocol IC [CDD+99], Sub-Protocol AuthVal.

121

Sub-Protocol RevealVal(I,R)

Public Input: field K description, session identifier sid∗

Private Input: For each party, the local outputs obtained in AuthVal(D, I,R).

(1) The intermediary I broadcasts (s, y).

(2) The recipient R broadcasts AcceptReveal if (s, y, z) ∈ R1α , and RejectReveal

otherwise.

Figure 5.4 Information Checking Protocol IC [CDD+99], Sub-Protocol RevealVal

speaking, the execution of the first two phases of the information checking protocol

between a dealer D and an intermediary I on some input m, is somewhat reminiscent

of D giving I a digital signature of m, since I can now convince R that m was indeed a

valid message. Clearly, information checking protocols do not achieve the properties of

the digital signatures, but they suffice for the VSS application.

Giving a IC-signature: We say that the dealer D gives a IC-signature

σm(D, I) to intermediary I, if the dealer D and intermediary I run the two first phases

of the IC protocol. This process can be seen as “signature generation and first-time

verification”, as D “produces a signature” on the message and simultaneously I verifies

the validity of the “signature” for the first time .

More precisely, given a party D acting as dealer and a party I acting as in-

termediary, we define a protocol ICSignVrfy as shown in Figure 5.5. Notice that, after

the execution of ICSignVrfy(D, I, s) only party I may be convinced of the validity of

the signature. For notational simplicity, somewhat reminiscent of the generation of a

digital signature, we write σm(D, I)← ICSignVrfy(D, I,m) to denote that σm(D, I) is

the concatenation of the local outputs of dealer D, intermediary I, and all parties P` ∈ P

after these parties execute protocol ICSignVrfy(D, I,m).

Revealing (and verifying) an IC-signature: We now define the protocol

that a party I executes with all other parties to reveal a valid IC-signature. Given

dealer D and intermediary I, and a local state σm(D,P) (see above) we define protocol

122

ICRevealVrfy as shown in Figure 5.5.

Round Complexity of IC-Signatures: It is easy to see that, assuming

broadcast channels and point-to-point secure channels, ICSignVrfy takes four rounds

(three if no faults occur) and ICRevealVrfy takes two rounds.

5.4.2 The Verifiable Secret Sharing Protocol of Cramer et al.

The protocol uses the information checking subprotocol defined above. We

need a definition first.

Definition 5.4.2 A vector e = (e1, . . . , en) ∈ Kn is t-consistent, denoted e ∈ Rt, if

there exists a polynomial w(x) of degree at most t such that w(i) = ei, for 1 ≤ i ≤ n.

The protocol proposed in [CDD+99] is described in Figures 5.6 and 5.7.

Conventions for the description of πTV SS:

• At the end of steps S-1 through S-5 and R-1 we add the instruction: “Then, all

parties call FSY N .”

• When we write “P privately sends m” it means that P invokes FSMT with input

m, and when we write “P broadcast m” it means that P invokes FSB with input

m.

• In the protocol description, “All parties call FSY N” denotes the operation where

each party Pi does the following: Pi first sends message (Send, sid, “⊥”) to FSY N ,

then sends (Receive, sid) to FSY N , and finally receives (Received, sid, r, Lr−1
P)

which Pi discards.

• Protocol πV SS can also be shown adaptively secure in the (FSMT ,FSY N)-hybrid

model since there are efficient implementations of FBC in the FSMT -hybrid model.

Yet again, we preserve it for clarity of exposition.

• When we write “Party D gives an IC-signature on m1, . . . ,mn to party R.” it

means D runs n parallel executions of protocol ICSignVrfy(D,R,m1), . . . , proto-

123

Protocols ICSignVrfy and ICRevealVrfy

Public Input: session identifier sid∗

Protocol ICSignVrfy(D, I, s)

Private Input: D holds s ∈ K. I and R hold no input.

Private Output: σs(D, I)

(1) D and I execute protocol Distr(D, I,m), and

(2) For all parties P` 6∈ {D, I}, parties D, I, and P` execute in parallel pro-

tocol AuthVal(D, I, P`) on the output resulting from the above execution of

Distr(D, I,m).

(3) Party D’s local output is empty. Party I’s local output is the vector

((s`, y`))`∈[n] where (s`, y`) is I’s local output in AuthVal(D, I, P`). For each

P` 6∈ {D, I}, party P`’s local output is (z`, α`) which are P`’s local output in

AuthVal(D, I, P`).

Set σs(D, I)← 〈(D, ∅), (I, (s`, y`))`∈[n]), (P`, (z`, α`))`∈[n]〉.

Protocol ICRevealVrfy

Private Input: σm(D, I).

(1) Parse σs(D, I) as 〈(D, ∅), (I, (s`, y`))`∈[n]), (P`, (z`, α`))`∈[n]〉. That is, the input

for D is empty, for I is (s`, y`))`∈[n], and for P` ∈ P is (z`, α`).

(2) For each party P` 6∈ {D, I}, I executes in parallel protocol RevealVal(I, P`).

(3) If there are at least t+1 of these parallel runs in which P` broadcasts “accept”,

each party P ∈ P locally outputs (ValidICSignature, D, I,m).

Figure 5.5 Protocols for “giving” and “revealing” IC-signatures.

124

Protocol πTV SS – Sharing Phase

Private Inputs: D = P1 holds s ∈ X (the “secret”)

Public Input: session identifier sid∗

Private Outputs for each party Pi: a value si ∈ X (a “share”)

S-1. The dealer D chooses a random polynomial f(x, y) of degree at most t in each

variable, such that f(0, 0) = s. Let si,j = f(i, j), and ak,i = sk,i, bi,k = si,k,

for k = 1, . . . , n. The dealer D gives an IC-signature on ak,i and bi,k, for

k = 1, . . . , n, to each party Pi.

S-2. Each party Pi checks that the vectors (a1,i, . . . , an,i) and (bi,1, . . . , bi,n) are t-

consistent. If not Pi broadcasts ((a1,i, . . . , an,i), (bi,1, . . . , bi,n)). Then Pi reveals

the IC-signatures for the broadcasted values.

If a party Pj hears a broadcast of inconsistent values with correct

dealer’s signature then D is disqualified and the sharing phase ends.

S-3. Each party Pi sends aj,i privately to Pj and gives an IC-signature on aj,i to

Pj .

S-4. Each party Pi compares the value ai,j received from Pj to the value bi,j received

from D. If there is any inconsistency (or no value is received, or the signature

is invalid), Pi broadcasts bi,j , and reveals the corresponding IC-signature by

D.

S-5. Each party Pi checks if Pj broadcasted a value bj,i which is different than the

value aj,i which Pi holds. If such a broadcast exists (and Pi hears a correct

dealer’s signature for the value), then Pi broadcasts aj,i and reveals its corre-

sponding IC-signature.

S-6. If for an index pair (i, j) a party Pk hears two broadcasts with correct signatures

from the dealer on different values, then D is disqualified and the sharing phase

ends.

Figure 5.6 Adaptively secure VSS πTV SS [CDD+99] in the (FBC ,FSMT ,FSY N)-
hybrid model, Sharing Phase.

125

Protocol πTV SS – Reconstruction Phase

Private Inputs for party Pi:

(If D = P1): secret s ∈ X (the “secret”)

(If any Pi): values (ak,i)k∈[n] and (bi,k)k∈[n] (the “shares”)

Public Input: session identifier sid∗

Private Outputs for each party Pi: a value y ∈ X (the “reconstructed secret”)

R-1. Each party Pi broadcasts the values bi,1, . . . , bi,n and reveals the signature for

value bi,j which Pi received from party Pj . (If the dealer was disqualified at

any step before, the secret is set to a default value.)

R-2. Each party Pi checks whether party Pj ’s shares broadcasted in the previous

step are t-consistent and all the signatures heard are correct. If not, then Pj

is disqualified.

R-3. The values of all non-disqualified parties are taken and interpolated to compute

the secret.

Figure 5.7 Adaptively secure VSS πTV SS [CDD+99] in the (FBC ,FSMT ,FSY N)-
hybrid model, Reconstruction Phase.

126

col ICSignVrfy(D,R,mn). Let σm(D,R) denote the local output after executing

ICSignVrfy(D,R,mn).

• When we write “P reveals the IC-signatures for value m”, it means party P executes

protocol ICRevealVrfy(σm(D,P)).

• When we write “P hears a value m with correct signature by D”, it means P ’s

local output in the last execution of ICRevealVrfy(·) was ValidICSignature (see

protocol ICRevealVrfy ini Figure 5.5).

• If multiples signatures are to be given, all protocols ICSignVrfy are run in parallel.

The same for signature verification (ie. protocol ICRevealVrfy.)

We are now ready to analyze the security of πTV SS, proving Proposition 5.3.2.

Proof of Proposition 5.3.2: The proof is a simple extension of the proof presented

in [CDD+99]. To prove UC security, we present an ideal adversary S that given any

adaptive adversary A, is able to perfectly simulate A’s view without the secret. Indeed,

it suffices that S does the following. First, S picks t vectors e1, . . . , et uniformly at

random in Kn+1 subject to that each ei = (ei,k)0≤k≤n is t-consistent. These t vectors

represent t arbitrary columns of the (n+1)× (n+1) matrix where the i, j-th entry is the

value f(i, j), for a (still arbitrary) bivariate polynomial f . Without lost of generality,

assume e1, . . . , et are the columns numbered 1 through t of this matrix. Then, S picks

t random values d0,1, . . . , d0,t ∈ K and interpolate a vector dk using Lagrange interpola-

tion from values d0,k, e1,k, . . . , et,k. Since each new vector dk ∈ Kn+1 is t-consistent and

matches in t coordinates with vector ei, for i = 1, . . . , t, this process generates t com-

plete rows of the matrix (wlog, rows numbered 1 through t). Then, S hands vector pairs

(e1,d1), . . . , (et′ ,dt′) to the t′ < t statically corrupted parties (those corrupted before

the protocol execution starts) as the values ak,i, bi,k of step (S-1). Similarly, S hands out

(et′+1,dt′+1), . . . , (et,dt) to the parties subsequently corrupted by A. Meanwhile, the

ideal adversary can simulate all honest (uncorrupted) parties without problems, as each

value sent by a honest party Pi to a corrupted party Pj (namely ai,j) is already part

of the corrupted party Pj ’s t-consistent vectors distributed initially. Moreover, as long

as the party acting as the intermediary for the IC-signatures is honest, S can “forge”

127

a correct signature by running the information checking protocol (Distr and AuthVal)

using an arbitrary value as the secret. The secrecy property of the IC-signatures (more

precisely, of the information checking protocol) guarantees that no corrupted party can

distinguish a correct IC-signature from a forged one. Also, honest parties never com-

plain about any other honest party so the simulation can proceed using only values in

the 2t vectors e1, . . . , et,d1, . . . ,dt until step (S-6). At that moment, S sends a mes-

sage DoEndSharing, and waits until it receives message Opened containing the secret

s. At this point, S waits until A sends message Advance-Round, and then simulates

the execution as if the honest parties had sent empty inputs to the functionality FSY N ,

which causes step (S-6) to conclude. The rest of the simulation – the reconstruction

phase – can be simulating by interpolating the bivariate polynomial f(x, y) from the

2nt − t2 + 1 ≥ (t + 1)2 precalculated values of the matrix (including the one in posi-

tion 0, 0 which is f(0, 0) = s). From the interpolated polynomial f(x, y), S computes

the shares (and vectors (ak,i)k∈[n], (bi,k)k∈[n]) corresponding to each honest party Pi and

honestly simulates reconstruction. The correctness of the simulation follows from the

correctness and termination properties proved in [CDD+99].

5.5 UC Simultaneous Broadcast (UC-SB)

In this section, we generalize the simulation-based definition of Simultaneous

Broadcast put forward by Chor et al. [CGMA85] to the UC framework. We achieve

this by providing a simultaneous broadcast functionality FSB , which is a variant of the

synchronous functionality [Can05] that provide “fairness”, in the sense that the adversary

is not allowed rushing. The functionality FSB is shown in Figure 5.8. We say a protocol

π achieves UC-SB if π UC-securely implements functionality FSB .

Intuitively, the definition of FSB guarantees independence as the adversary

cannot access any honest party’s input until the broadcast is authorized to proceed,

when it is “too late”. Notice also that the functionality guarantees output delivery. In

some applications, it may be useful to relax this condition.

UC-SB and previous simultaneous broadcast definitions: It is not hard to

128

Functionality FSB

FSB expects its SID to be of the form sid = (sid′,P), where P is a list of parties

among which broadcast is to be performed. It proceeds as follows.

(1) Upon receiving input (Broadcast, sid,m) from party P ∈ P, record (P,m)

and output (sid, P) to the adversary. (If P later becomes corrupted then the

record (P,m) is deleted.)

(2) Upon receiving message (Proceed, sid,N) from the adversary, do: If there exist

uncorrupted parties P ∈ P for which no record (P,m) exists then ignore the

message. Else:

1. Interpret N as the list of messages sent by corrupted parties. That is,

N = {(Si,mi)} where each Si ∈ P is corrupted, and mi is a message.

2. Prepare a vector m = (mi)i∈P of messages sent by all parties in P, both

corrupted and honest.

(3) Send (Broadcast, sid,m) to the adversary.

(4) Upon receiving input (Receive, sid) from a party P ∈ P, output

(Received, sid,m) to P .

Figure 5.8 The simultaneous broadcast functionality, FSB .

129

see that UC-SB implies the (stand-alone) simulation-based definition of simultaneous

broadcast in [CGMA85]. This is immediate since UC security implies stand-alone secu-

rity [Can01b]. Then, by the results of the previous chapter, it holds that UC-SB implies

all the other notions of Simultaneous Broadcast [CR87, Gen00].

5.5.1 A Generic Construction of UC-SB from UC-TVSS

In this section, we present our main construction. We show how to implement

simultaneous broadcast (UC-SB) using Terminating VSS (UC-TVSS). The construction

is simple: each party first runs the share phase of the TVSS in parallel; once all sharings

have concluded (terminated), each party starts the reconstruction phase, gather all other

parties’ secrets and output the vector of values. (see Figure 5.9). Moreover, the con-

struction works for any t; the final condition of honest majority comes from instantiating

FTV SS with πTV SS (Proposition 5.3.2). Protocol πSB is described in Figure 5.9.

Theorem 5.5.1 Protocol πSB UC-securely realizes FSB in the FTV SS-hybrid model for

any t.

Proof: Let A be a real-life adversary for πSB. Note that A expects to interact with

n parties running πSB with access to n copies of functionality FTV SS. Given A, the

ideal adversary S simulates the execution of protocol πSB for adversary A by simulating

the parties and functionalities as follows. Let P1, . . . , Pn denote the simulated parties,

P̃1, . . . , P̃n the ideal-world parties. Let sid∗ be the session identifier under which each

(simulated) party is first invoked (by the environment Z), and F 1
TV SS, . . . ,Fn

TV SS be

the (simulated) n copies of functionality FTV SS , where Fk
TV SS denotes the functionality

invoked by Pk with session identifier sidk = (sid∗, Pk, P[n]).
8 Adversary S maintains a

set N with the corrupted parties and their inputs, initially N ← ∅, and proceeds as

follows. If A corrupts any party Pi before the party has submitted a Share message to

F i
TV SS then S corrupts ideal-world party P̃i, obtains its input xi, and pass it to A. If

A instructs corrupted party Pi to submit (Share, x′
i) to F i

TV SS , then S simulates the

8Notice that, such functionality may also be invoked (and instantiated) by some other party Pj on
message EndSharing if Pk is not activated by Z.

130

Protocol πSB

Private Inputs: Each Pi holds xi ∈ X

Public Input: session identifier sid∗

Private Outputs: a vector yi ∈ (X ∪ {⊥})n for each Pi

Each party Pi ∈ P runs sequentially the following steps:

(1) For each j ∈ P[n], set sidj ← (sid∗, Pj , P[n]).

(2) Send (Spool, sidi, xi) to FTV SS .

(3) Send (Share, sidi, xi) to FTV SS .

(4) For each j ∈ P[n], send (EndSharing, sidj) to FTV SS.

(5) Upon receiving (Shared, sidj) from FTV SS, record (Shared, sidj). Repeat this

step until there is a record (Shared, sidj) for each j ∈ [n]

(6) For each j ∈ P[n], send (Open, sidj) to FTV SS .

(7) Upon receiving (Opened, sidj , vj) from FTV SS , record (sidj , yj). Once a record

(sidj , yj) for each j ∈ [n] exists, output vector yi = (yj)j∈[n] and halt.

Figure 5.9 Simultaneous Broadcast protocol in the FTV SS-hybrid model.

131

operation, and adds (P̃i, x
′
i) to N . For all uncorrupted parties Pk, S sets Pk’s input to an

arbitrary value (eg. x′
k ← ⊥) and simulates Pk’s interaction with Fk

TV SS by simulating

both, party and functionality. Notice that S can do such simulation without the real Pk’s

input because adversary A’s view of the interaction between Pk and Fk
TV SS during the

share phase of TVSS (steps (1)-(6) of Figure 5.1) is independent of Pk’s input. Indeed,

consider the event Ek defined as “Fk
TV SS has at least one record (EndSharing, P) and

then it receives a message DoEndSharing from A”. As long as Pk is corrupted anytime

before Ek is true, S can proceed as before, that is, S obtains xk from corrupting P̃k and

pass it to A. Notice, however, that adversary A must corrupt a party Pi before Pi sends

out message Share to F i
TV SS if A wants to change the value submitted by Pi.

At some point in the simulation, A may send a DoEndSharing message to some TVSS

functionality. Then, S partitions the simulated parties in four sets. These sets are

dynamic in the sense that S may move parties from one set to another depending on

the subsequent instructions of A. The corrupted parties are partitioned into BSh and its

complement, where BSh is the set of parties which have submitted a message Share to

FTV SS. (Notice that for all Pi ∈ BSh, N contains an entry (P̃i, x
′
i).) Similarly, any honest

party Pi is either in GSh or its complement, where GSh is the set of parties that have

submitted a message Shared to its F i
TV SS. Notice that if Pi ∈ GSh, then Pi has sent or is

about to send a EndSharing message. Let Bend (resp. Gend) be the set of corrupted (resp.

uncorrupted) parties whose corresponding TVSS functionalities have at least one record

of the form (EndSharing, Pj). Assume A sends a message DoEndSharing to functionality

Fk
TV SS. Then,

(1) If Pk 6∈ Bend∪Gend, that is, Fk
TV SS has no EndSharing records, then S does nothing

(since those messages would be ignored by the TVSS functionality).

(2) If Pk ∈ Gend but Pk 6∈ GSh, that is, Fk
TV SS has one or more EndSharing records

but Pk has yet to submit a Share request to F k
TV SS, then S does nothing (since

those messages would be ignored by the TVSS functionality).

(3) If Pk ∈ Bend ∩ BSh or if Pk ∈ Gend ∩ GSh, then S simulates Fk
TV SS ’s execution

by having the functionality send messages (Shared, sidk) to all parties Pi and the

adversary A. If Pk ∈ Bend ∩BSh, then S does the same but also adds (Pk,⊥) into

132

set N .

(4) If A instructs a corrupted party Pi to send a message Open to some F k
TV SS, then

S honestly simulates the functionality.

We also let J ⊆ (Gend∩GSh)∪Bend be the set of parties to whose functionality A has sent

a message DoEndSharing. S continues the simulation following the above rules (possibly

moving parties into GSh, BSh, Gend, Bend, and J as new messages are delivered by A)

until J = [n]. Assume this happens when A sends a message DoEndSharing to F k
TV SS .

Before applying rule 3 from above, S sends (Proceed, sid∗, N) to ideal functionality

FSB , and obtains (Broadcast, sid∗,m). S uses m to set the secret in each simulated

(uncorrupted) F i
TV SS to si = mi, where m = (m1, . . . ,mn). Only then S applies rule 3

from above for party Pk. From then on, S honestly simulates the execution of πSB for

A.

We claim that the simulation is perfect. Indeed, observe that adversary A’s view

before set J becomes equal to [n] is independent of the input of the simulated par-

ties, as it consists of the corrupted parties’ inputs, and messages (SpoolRcvd, sidi, Pi),

(ShareRcvd, sidi, Pi), (EndSharingRcvd, sidi, Pi), and

(Shared, sidj , Pi) for one or more party Pi ∈ (Gend ∩ GSh) ∪ Bend. The crucial ob-

servation is that no uncorrupted party Pk issues an Open message unless Pk has received

Shared messages for all parties. This only happens if DoEndSharing messages have been

received by each functionality F j
TV SS, Pj ∈ J , which only happens after J is set to [n].

At that point, the ideal adversary S has obtained the inputs for all parties, so the adver-

sary’s view from then on is identical to the real-world experiment. Notice also that once

adversary A sends DoEndSharing messages to each functionality F j
TV SS, Pj ∈ J = [n],

A cannot issue a Share message for any (corrupted) party Pi. This is because Pi must

also be in J ⊆ (Gend∩GSh)∪Bend which implies Pi is either in Gend∪Bend, and therefore

functionality F i
TV SS has successfully executed step (6) where (Shared, sidi) was sent out

to all parties; after this step, no new Share orDoEndSharinginput is accepted by F i
TV SS .

This concludes the proof.

On the Synchronicity of Simultaneous Broadcast and TVSS: We conclude

this section showing that requiring Simultaneous Broadcast is essentially as strong as

133

requiring synchronous communication, namely FSY N [Can05]. One direction is pro-

vided by the reduction to UC-TVSS described above, which says that any solution for

UC-TVSS can be used to achieve UC-SB. Notice also that FSYN implies UC-TVSS by

Proposition 5.3.2. The other direction follows from the fact UC-SB can be used to im-

plement FSYN as follows: first parties (non-simultaneously) broadcast their values, and

then use simultaneous broadcast to transmit the same values (i.e. those broadcasted

non-simultaneously before). Thus, the following claim holds.

Claim 5.5.2 Let π be a protocol that UC-securely realizes FSB in the FSMT -hybrid

model. Then, there exists a protocol that UC-securely realizes FSY N in the (FSB ,FSMT)-

hybrid model.

5.6 Extensions

Removing secure channels: Our protocol for simultaneous broadcast is only se-

cure in the secure channel model. To obtain a protocol secure in the public channel

model (i.e. authenticated channels), we can use known techniques, like those proposed

by Lysyanskaya [Lys00] which require secure erasures. Another alternative is to use non-

committing encryption [CFGN96], in particular the efficient scheme of Damg̊ard and

Nielsen [DN00]. For the case of static corruption is much simpler, as encrypting the

messages with a semantic secure encryption scheme suffices.

Asynchronous Simultaneous Broadcast (UC-ASB): It is well known that in a

synchronous network, no functionality that depends on all the inputs can be computed

[PSL80, CM89]. This is because it is impossible to distinguish between failed processes

(that is, those instructed to not send messages) and very slow processes. Therefore,

no process can afford to wait for messages coming from more than n − t distinct other

processes. In this section, we adapt the functionality of Simultaneous Broadcast to

comply with this restriction, at the cost of weakening the guarantee that all players

can participate in the broadcast (which is unavoidable). We remark that, nonetheless,

the modified functionality still preserves the intuitive notion of independence, as long as

parties that do not participate in the broadcast are not allowed to contribute later with

134

their inputs. The corresponding functionality FASB is shown in Figure 5.10. We say a

protocol π achieves UC-ASB if π UC-securely realizes functionality FASB .

Functionality FASB

FSB expects its SID to be of the form sid = (sid′,P, t), where P is a list of parties

among which broadcast may potentially be performed, and t < n is an integer, where

n
def
= |P|. It proceeds as follows.

(1) Upon receiving input (Broadcast, sid,m) from party P ∈ P, record (P,m)

and output (sid, P) to the adversary. (If P later becomes corrupted then the

record (P,m) is deleted.)

(2) Upon receiving a message (Proceed, sid,N,W) from the adversary, do: If W

is a subset of parties in P of size at least n − t, and there exist uncorrupted

parties P ∈W for which no record (P,m) exists then ignore the message. Else:

1. Interpret N as the list of messages sent by corrupted parties. That is,

N = {(Si,mi)} where Si ∈W and Si is corrupted, and mi is a message.

2. Prepare a vector m = (mi)i∈W of messages sent by all parties in W , both

corrupted and honest.

(3) Send (Broadcast, sid,m) to the adversary.

(4) Upon receiving input (Receive, sid) from a party P ∈ P, send

(Received, sid,m) as delayed output to P .

Figure 5.10 The asynchronous simultaneous broadcast functionality, FASB .

We claim (without proof) that there exists a simple construction that achieves

UC-ASB for the case n > 3t. It suffices to run first the initial phase of the secure

multiparty computation of Ben-Or et al. [BOKR94]. Spelled out, first, parties run n

parallel copies of the ultimate secret sharing protocol; then the protocol for agreement

on a common subset is run. (Both protocols are described in [BOKR94].) In this

way, all parties agree on the set W of parties that have properly shared their input.

135

The reconstruction protocol is executed next, where the secrets of all parties in W is

reconstructed. For computationally bounded adversaries, a similar approach can be

obtained using the initialization phase of the computationally efficient construction of

[HNP05]. It is an open problem whether more communication efficient solutions exist.

Reference: Most material in this chapter is a reprint from the material appearing

in “Universally Composable Simultaneous Broadcast”, A. Hevia, in the proceedings of

the 5th Security and Cryptography for Networks (SCN 2006), LNCS, Springer-Verlag,

2006.

Appendix A

Appendix

A.1 Alternative Characterization of Simultaneous Broad-

cast Notions

A.1.1 Sb-Independence

We prove here that Sb-Independence is equivalent to (All,Sb)-Independence.

Proposition A.1.1 A protocol Π achieves Sb-Independence if and only if Π achieves

(All,Sb)-Independence.

Proof: One direction is trivial since Singleton ⊂ All. We prove the other direction,

namely that (Singleton,Sb)-Independence implies (All,Sb)-Independence. Assume Π is

Sb-Independent. Then, for every polynomial-time adversary A attacking Π there exists

a simulator S for Ideal(fSB). Then, by conditioning on the success probability of the

distinguisher T on each particular value of the input distribution we get

∣

∣

∣
Pr

[

x
R
← D(k) : T (1k, z,x,ExecΠ

A(k, z,x)) = 1
]

− Pr
[

x
R
← D(k) : T (1k, z,x,Exec

Ideal(fSB)
S (k, z,x)) = 1

]
∣

∣

∣

=
∑

y∈{0,1}n

(

Pr
[

T (1k, z,x,ExecΠ
A(k, z,y)) = 1

]

136

137

− Pr
[

T (1k, z,x,Exec
Ideal(fSB)
S (k, z,y)) = 1

])

· Pr
[

D(k) = y
]

≤
∑

y∈{0,1}n

(

k−c
)

· Pr
[

D(k) = y
]

= k−c .

for some constant c > 0 and infinitely many values of k. Notice that the last inequality

follows from the Sb-Independence of Π. This proves the result.

A.1.2 CR-Independence

In this section, we present the definition of independence of [CR87], slightly

generalized for arbitrary input distributions.

Definition A.1.2 [CR87] Let D be an input distribution over {0, 1}n. A protocol Π

achieves independence under input distribution D if, for all adversary A, all honest party

Pi, all “good” polynomial-time predicate R, all constant c > 0, and all sufficiently large

k,

∣

∣

∣
Pr [Wi = 0]− Pr

[

Wi = 0 | R(W
{i}

) = 1
]∣

∣

∣
< k−c (A.1)

where W ← AnnouncedΠ
A(D). Predicate R is “good” if it occurs with non-negligible

probability under adversary A and distribution D. Formally, for i ∈ [n] the polynomial-

time computable predicate R(W1, . . . , Wi−1,Wi+1, . . . ,Wn) is said to be good with

respect to adversary A and distribution D if whenever party Pi is honest the event

R(W{i}) = 1 happens with non-negligible probability. That is,

Pr
[

W← AnnouncedΠ
A(D(k)) : R(W{i}) = 1

]

is non-negligible in the security parameter k.

We now show that Definition 4.3.3 and Definition A.1.2. are in fact equivalent.

Proposition A.1.3 A protocol Π achieves CR-Independence if and only if Π achieves

independence under Definition A.1.2.

Proof: We first prove that Definition 4.3.3 implies Definition A.1.2. Let Π be a multi-

sender broadcast that achieves CR-Independence. It follows that, in particular, for all

138

“good” predicates R
∣

∣

∣
Pr [Wi = 0] · Pr

[

R(W{i}) = 1
]

− Pr
[

Wi = 0 ∧ R(W{i}) = 1
]
∣

∣

∣

is negligible. Using this and that R is good, we get that the quantity
∣

∣

∣
Pr [Wi = 0]− Pr

[

Wi = 0 | R(W
{i}

) = 1
]∣

∣

∣

= Pr
[

R(W
{i}

) = 1
]−1
·

∣

∣

∣
Pr [Wi = 0] · Pr

[

R(W
{i}

) = 1
]

− Pr
[

Wi = 0 ∧ R(W
{i}

) = 1
]∣

∣

∣

is negligible too.

We now prove that Definition A.1.2 implies Definition 4.3.3. Indeed, assume Π be a

multisender broadcast that achieves independence according to Definition A.1.2. We

analyze four cases depending on the probability p that the event R(W
{i}

) = 1 (when

W← AnnouncedΠ
A(D(k))) occurs.

Case (a): p is negligible but non-zero, Then,
∣

∣

∣
Pr [Wi = 0] · Pr

[

R(W{i}) = 1
]

− Pr
[

Wi = 0 ∧ R(W{i}) = 1
]
∣

∣

∣

= Pr
[

R(W{i}) = 1
]

·
∣

∣

∣
Pr [Wi = 0]− Pr

[

Wi = 0 | R(W{i}) = 1
]
∣

∣

∣
(A.2)

is negligible, since p = Pr
[

R(W{i}) = 1
]

is so.

Case (b): p is non-negligible. Since Π satisfies Definition A.1.2, the rightmost factor of

Equation A.2 is negligible too.

Case (c): p = 0, that is, R does never happen. Then, Pr
[

Wi = 0 ∧ R(W{i}) = 1
]

= 0 ,

and
∣

∣

∣
Pr [Wi = 0] · Pr

[

R(W{i}) = 1
]

− Pr
[

Wi = 0 ∧ R(W{i}) = 1
]
∣

∣

∣
= 0 .

Case (d): p is neither negligible nor non-negligible. We prove the contrapositive. If

Definition 4.3.3 does not hold for such R, there exist a constant c > 0 such that for

infinitely many values of k
∣

∣

∣
Pr [Wi = 0] · Pr

[

R(W
{i}

) = 1
]

− Pr
[

Wi = 0 ∧ R(W
{i}

) = 1
]∣

∣

∣
≥ k−c (A.3)

139

Let S be the set of all values of k for which Equation (A.3) holds. Now, consider the

following relation R′ which equals R when k ∈ S and equals one (ie. it is true) otherwise.

Then, clearly R′ is non-negligible and

∣

∣

∣
Pr [Wi = 0]− Pr

[

Wi = 0 | R′(W
{i}

) = 1
]∣

∣

∣

= Pr
[

R′(W{i}) = 1
]−1
·

∣

∣

∣
Pr [Wi = 0] · Pr

[

R′(W
{i}

) = 1
]

− Pr
[

Wi = 0 ∧ R(W
{i}

) = 1
]∣

∣

∣

≥
∣

∣

∣
Pr [Wi = 0] · Pr

[

R(W
{i}

) = 1
]

− Pr
[

Wi = 0 ∧ R(W
{i}

) = 1
]∣

∣

∣

≥ k−c

for all (infinitely many) k ∈ S. The result then holds.

A.1.3 G-Independence

In this section, we present two equivalent notions of independence, and then

show they imply G-Independence. Our first definition is expressed in terms of distribu-

tions ensembles.

Definition A.1.4 (G∗-Independence) Protocol Π achieves G∗-independence if for all

adversaries A corrupting parties in B ⊂ [n] (where |B| = t < n), for each corrupted

party Pi, the ensembles (indexed by k ∈ N, x ∈ {0, 1}n, and z ∈ {0, 1}∗)

E
def
=

{

W← AnnouncedΠ
A(k,z)(x) : Wi

}

E0
def
=

{

W← AnnouncedΠ
A(k,z)(xB t 〈0〉B) : Wi

}

are statistically close (in the security parameter k).

Our second definition, although more technical, is useful when proving impli-

cations or separations between G and other notions.

Definition A.1.5 (G∗∗-Independence) Protocol Π achieves G∗∗-independence if for all

adversaries A corrupting parties in B ⊂ [n] (where |B| = t < n), for each corrupted

140

party Pi, for all vectors r, s ∈ {0, 1}B , all vectors w ∈ {0, 1}B , and all auxiliary input

z ∈ {0, 1}∗, the quantity

∣

∣

∣
Pr

[

W←AnnouncedΠ
A(k,z)(w t s) : Wi = 1

]

− Pr
[

W←AnnouncedΠ
A(k,z)(w t r) : Wi = 1

]
∣

∣

∣

is negligible in the security parameter k.

The two definitions are equivalent.

Proposition A.1.6 Let Π be a correct multisender broadcast. Then, Π achieves G∗∗-

Independence if and only if Π achieves G∗-Independence.

Proof:

G∗∗ ⇒ G∗: Assume Π is not G∗-Independent. We want to prove Π is not G∗∗-Independent.

Indeed, if Π is not G∗-Independent then ensembles E and E0 must not be statistically

close, and there exists x ∈ {0, 1}n, k ∈ N, and z ∈ {0, 1}∗, for which there exists a

constant c > 0 and infinitely many k such that (w.l.o.g.)

Pr
[

W← AnnouncedΠ
A(k,z)(xB t xB) : Wi = 1

]

− Pr
[

W← AnnouncedΠ
A(k,z)(xB t 0B) : Wi = 1

]

> k−c

The result follows immediately from taking w = xB , r = xB and s = 0B .

G∗ ⇒ G∗∗: Assume Π is not G∗∗ independent. We want to prove Π is not G∗-Independent.

Indeed, if Π is not G∗∗-Independent then there exists a vector w ∈ {0, 1}B , distinct

vectors r, s ∈ {0, 1}B , an integer k ∈ N, and a string z ∈ {0, 1}∗, for which there exists

a constant c > 0 and infinitely many k such that (w.l.o.g.)

∣

∣

∣
Pr

[

W← AnnouncedΠ
A(k,z)(w t s) : Wi = 1

]

− Pr
[

W← AnnouncedΠ
A(k,z)(w t r) : Wi = 1

]
∣

∣

∣
> k−c (A.4)

For simplicity, we define D(a)
def
= Pr

[

W← AnnouncedΠ
A(k,z)(a) : Wi = 1

]

, for any

vector a ∈ {0, 1}n. Let x
def
= w t r and x′ def

= w t s. Then, Equation (A.4) can be

141

rewritten as |D(x)−D(x′)| > k−c. In consequence, using that xB = x′
B = w we have

∣

∣D(x)−D(xB t 0B)
∣

∣ +
∣

∣D(x′)−D(x′
B t 0B)

∣

∣ ≥
∣

∣D(x)−D(x′)
∣

∣ > k−c

which implies that either |D(x)−D(xBt0B)| > k−c/2 or |D(x′)−D(x′
Bt0B)| > k−c/2,

and the result follows.

The following result shows that both G∗ and G∗∗-Independence imply G-Inde-

pendence for any distribution for which G can be achieved.

Proposition A.1.7 , If a protocol Π achieves G∗∗-Independence then Π achieves G-

Independence for any distribution D ∈ ΨL,n.

Proof: Let D be an arbitrary distribution in ΨC,n and r, s ∈ {0, 1}n−t two strings such

that the probability DB equals r or s is not null. Also, let A be an arbitrary polynomial-

time adversary that corrupt players in B (t = |B|) and let i ∈ B. For fixed values of

k ∈ N and z ∈ {0, 1}∗, we denote by PrD,A [E] the probability of event E under the

choice x
R
← D(k) and W ← AnnouncedΠ

A(k,z)(x). Now, for simplicity, we define the

quantities

P (a,b)
def
= PrD,A

[

Wi = 1 | xB = a ∧ xB = b
]

Q(a,b)
def
= Pr

[

x
R
← D(k) : xB = w | xB = b

]

.

First, notice that WB = xB , since all uncorrupted parties always output their inputs.

Then

PrD,A

[

Wi = 1 | WB = r
]

− PrD,A

[

Wi = 1 | WB = s
]

=
∑

w∈{0,1}t

(P (w, r) ·Q(w, r)− P (w, s) ·Q(w, s)) (A.5)

By G∗∗-Independence, for all w′ ∈ {0, 1}t, all r′, s′ ∈ {0, 1}n−t, |P (w′, r′) − P (w′, s′)| <

ε(k) where ε(k) is some negligible function in k. Let P (w, t∗)
def
= maxt∗{P (w, t)}.

Then, by definition it follows that P (w, r) ≤ P (w∗, t) and, by G∗∗-Independence, that

P (w, s) < P (w, t∗) + ε(k). Then, plugging these in Equation (A.5) we have

∑

w∈{0,1}t

(P (w, r) ·Q(w, r)− P (w, s) ·Q(w, s))

142

≤
∑

w∈{0,1}t

(P (w, t∗) · (Q(w, r) −Q(w, r))) + ε(k) (A.6)

Now, define R(w, r, s)
def
= Q(w, r) −Q(w, s). We claim that |R(w, r, s)| is negligible in

k. Indeed, since D ∈ ΨL,n,

|R(w, r, s)| = |Q(w, r)−Q(w, s)|

=
∣

∣

∣
Q(w, r)− Pr

[

D
(k)
B = w

]

+ Pr
[

D
(k)
B = w

]

−Q(w, s)
∣

∣

∣

≤
∣

∣

∣
Pr

[

x
R
← D(k) : xB = w | xB = r

]

− Pr
[

D
(k)
B = w

]∣

∣

∣

+
∣

∣

∣
Pr

[

x
R
← D(k) : xB = w | xB = r

]

− Pr
[

D
(k)
B = w

]
∣

∣

∣

< 2 · ε′(k) (A.7)

for some negligible function ε′(k). Combining Equations (A.5), (A.6) and (A.7) we obtain

∣

∣Pr
[

Wi = 1 | WB = r
]

− Pr
[

Wi = 1 | WB = s
]
∣

∣ < 2 · ε′(k) + ε(k) .

This proves the result.

Bibliography

[Abe98] M. Abe. Universally verifiable mix-net with verification work independent of
the number of mix-servers. In Kaisa Nyberg, editor, Advances in Cryptology
— EUROCRYPT’98, volume 1403 of Lecture Notes in Computer Science,
pages 437–447. Springer–Verlag, 1998.

[AF04] M. Abe and S. Fehr. Adaptively secure feldman vss and applications to
universally-composable threshold cryptography. In Advances in Cryptology–
CRYPTO ’04, volume 3152 of Lecture Notes in Computer Science, pages
317–334. Springer-Verlag, 2004.

[BBDP01] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in
public-key encryption. In Colin Boyd, editor, Advances in Cryptology –
ASIACRYPT’ 2001, Lecture Notes in Computer Science, pages 566–582.
International Association for Cryptologic Research, Springer-Verlag, 2001.

[BBM00] M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-
user setting: Security proofs and improvements. In Bart Preneel, editor,
Advances in Cryptology – EUROCRYPT ’ 2000, volume 1807 of Lecture
Notes in Computer Science, pages 259–274. Springer-Verlag, 2000.

[BCG93] M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous secure computa-
tion. In Proceedings of the 25th Annual ACM Symposium on the Theory of
Computing, pages 52–61. ACM Press, 1993.

[BD03] A. Beimel and S. Dolev. Buses for anonymous message delivery. Journal of
Cryptology, 16, 2003.

[BdB89] J. Bos and B. den Boer. Detection of disrupters in the DC protocol.
In J.-J. Quisquater and J. Vandewalle, editors, Advances in Cryptology–
EUROCRYPT ’ 89, volume 434 of Lecture Notes in Computer Science,
pages 320–328. Springer-Verlag, 1990, 10–13 April 1989.

[BDPR98] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among
notions of security for public-key encryption schemes. In Hugo Krawczyk,

143

144

editor, Advances in Cryptology - CRYPTO ’98, Proceedings, volume 1462
of Lecture Notes in Computer Science, pages 26–45. Springer, 1998.

[BF01] D. Boneh and M.K. Franklin. Identity-based encryption from the weil pair-
ing. In Advances in Cryptology - CRYPTO 2001, Proceedings, volume 2139
of Lecture Notes in Computer Science, pages 213–229. Springer, 2001.

[BFTS04] R. Berman, A. Fiat, and A. Ta-Shma. Provable unlinkability against traffic
analysis. In International Conference on Financial Cryptography – FC’04,
volume 3110 of Lecture Notes in Computer Science. Springer-Verlag, 2004.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for
noncryptographic fault-tolerant distributed computations. In Proceedings
of the 20th Annual ACM Symposium on Theory of Computing, pages 1–10.
ACM Press, 1988.

[BGW01] N. Borisov, I. Goldberg, and D. Wagner. Intercepting mobile communica-
tions: the insecurity of 802.11. In MOBICOM, pages 180–189, 2001.

[BIK+03] M. Blaze, J. Ioannidis, A.D. Keromytis, T. Malkin, and A. Rubin. WAR:
Wireless anonymous routing. In Security Protocols Workshop, volume 3364
of Lecture Notes in Computer Science, pages 218–232. Springer-Verlag,
2003.

[Bla79] G. R. Blakley. Safeguarding cryptographic keys. In Proc. AFIPS 1979
National Computer Conference, pages 313–317. AFIPS, 1979.

[BLR04] B. Barak, Y. Lindell, and T. Rabin. Protocol initialization for the framework
of universal composability. Cryptology ePrint Archive, Report 2004/006,
2004. http://eprint.iacr.org/.

[BMR90] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure
protocols. In Baruch Awerbuch, editor, Proceedings of the 22nd Annual
ACM Symposium on the Theory of Computing – STOC’90, pages 503–513,
Baltimore, MY, May 1990. ACM Press.

[BN00] M. Bellare and C. (Meaw) Namprempre. Authenticated encryption: Rela-
tions among notions and analysis of the generic composition paradigm. In
Advances in Cryptology - ASIACRYPT ’00, volume 1976 of Lecture Notes
in Computer Science, pages 531–545. Springer-Verlag, 2000.

[BOEY03] M. Ben-Or and R. El-Yaniv. Resilient-optimal interactive consistency in
constant time. Distributed Computing, 16(4), 2003.

[BOKR94] M. Ben-Or, B. Kelmer, and T. Rabin. Asynchronous secure computations
with optimal resilience (extended abstract). In Proceedings of the 13th An-
nual ACM Symposium on Principles of Distributed Computing, pages 183–
192, 1994.

145

[BPS00] O. Berthold, A. Pfitzmann, and R. Standtke. The disadvantages of free MIX
routes and how to overcome them. In H. Federrath, editor, Proceedings of
Designing Privacy Enhancing Technologies: Workshop on Design Issues in
Anonymity and Unobservability, pages 30–45. Springer-Verlag, LNCS 2009,
July 2000.

[BR93] M. Bellare and P. Rogaway. Entity authentication and key distribution. In
Douglas R. Stinson, editor, Advances in Cryptology—CRYPTO ’93, volume
773 of Lecture Notes in Computer Science, pages 232–249. Springer-Verlag,
22–26 August 1993.

[BR04] M. Bellare and P. Rogaway. Code-based game-playing proofs and the se-
curity of triple encryption. Cryptology ePrint Archive, Report 2004/331,
2004. http://eprint.iacr.org/.

[BTH06] Z. Beerliová-Trub́ıniová and M. Hirt. Efficient multi-party computation
with dispute control. In Shai Halevi and Tal Rabin, editors, 3rd Theory
of Cryptography Conference, TCC 2006, volume 3876 of Lecture Notes in
Computer Science, pages 305–328. Springer-Verlag, 2006.

[Can00a] R. Canetti. Security and composition of multiparty cryptographic protocols.
Journal of Cryptology, 13(1):143–202, 2000.

[Can00b] R. Canetti. Security and composition of multiparty cryptographic protocols.
Journal of Cryptology, 13(1):143–202, 2000.

[Can01a] R. Canetti. A unified framework for analyzing security of protocols. In
ECCCTR: Electronic Colloquium on Computational Complexity, technical
reports, 2001.

[Can01b] R. Canetti. Universally composable security: a new paradigm for crypto-
graphic protocols. In Proceedings of the 42nd IEEE Symposium on Founda-
tions of Computer Science, pages 136–145. IEEE Computer Society Press,
2001.

[Can05] R. Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. Report 2000/067, Cryptology ePrint Archive, January
2005. Revised version of [Can01b]. Updated Jan. 28, 2005.

[CCD88] D. Chaum, C. Crepeau, and I. Damg̊ard. Multiparty unconditional secure
protocols. In Proceedings of the 20th Annual ACM Symposium on Theory
of Computing, pages 11–19. ACM Press, 1988.

[CDD+99] R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Rabin. Efficient
multiparty computations secure against an adaptive adversary. In EURO-
CRYPT’99, pages 311–326, 1999.

146

[CFGN96] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-
party computation. In STOC: ACM Symposium on Theory of Computing
– STOC’96, 1996.

[CGMA85] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret shar-
ing and achieving simultaneity in the presence of faults. In Proceedings of
the 26th Annual Symposium on Foundations of Computer Science, pages
383–395. IEEE Computer Society Press, 1985.

[Cha81] D. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the Association for Computing Machin-
ery, 24(2):84–88, February 1981.

[Cha88] D. Chaum. The Dining Cryptographers Problem: Unconditional sender and
recipient untraceability. Journal of Cryptology, 1(1):65–75, 1988.

[CK02] Ran Canetti and Hugo Krawczyk. Universally composable notions of key
exchange and secure channels. In EUROCRYPT, volume 2332 of Lecture
Notes in Computer Science, pages 337–351. Springer-Verlag, 2002.

[CKLS02] C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl. Asynchronous
verifiable secret sharing and proactive cryptosystems. In ACM Conference
on Computer and Communications Security, pages 88–97, 2002.

[CKPS01] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and efficient
asynchronous broadcast protocols. In Advances in Cryptology – CRYPTO
’ 2001, volume 2139 of LNCS, pages 524–541. Springer-Verlag, 2001.

[CL05] J. Camenisch and A. Lysyanskaya. A formal treatment of onion routing.
In Victor Shoup, editor, Advances in Cryptology – CRYPTO’05, volume
3621 of Lecture Notes in Computer Science, pages 169–187. Springer-Verlag,
August 2005.

[CLOS02] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable
two-party and multi-party secure computation. In STOC: ACM Symposium
on Theory of Computing (STOC), 2002.

[CM89] B. Chor and L. Moscovici. Solvability in asynchronous environments. In
FOCS: IEEE Symposium on Foundations of Computer Science (FOCS),
1989.

[CR87] B. Chor and M. O. Rabin. Achieving independence in logarithmic number
of rounds. In Proceedings of the 6th Annual ACM Symposium on Principles
of Distributed Computing, pages 260–268. ACM Press, 1987.

[CR93] R. Canetti and T. Rabin. Fast asynchronous Byzantine agreement with
optimal resilience (extended abstract). In Proceedings of the 25th Annual
ACM Symposium on the Theory of Computing, pages 42–51, 1993.

147

[DDM03] G. Danezis, R. Dingledine, and N. Mathewson. Mixminion: Design of a
Type III Anonymous Remailer Protocol. In Proceedings of the 2003 IEEE
Symposium on Security and Privacy, May 2003.

[DDN01] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM
Journal on Computing, 30(2):391–437, April 2001.

[DF89] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In Gilles Brassard,
editor, Advances in Cryptology - CRYPTO ’89, Proceedings, volume 435 of
Lecture Notes in Computer Science, pages 307–315. Springer-Verlag, 1989.

[DM00] Y. Dodis and S. Micali. Parallel reducibility for information-theoretically
secure computation. In CRYPTO, pages 74–92, 2000.

[DMS04] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation
onion router. In Proceedings of the 13th USENIX Security Symposium,
August 2004.

[DN00] I. Damg̊ard and J.B. Nielsen. Improved non-committing encryption schemes
based on a general complexity assumption. In CRYPTO, pages 432–450,
2000.

[DN03] I. Damg̊ard and J. B. Nielsen. Universally composable efficient multiparty
computation from threshold homomorphic encryption. In CRYPTO: Pro-
ceedings of Crypto, 2003.

[DO00] S. Dolev and R. Ostrobsky. Xor-trees for efficient anonymous multicast and
reception. ACM Trans. Inf. Syst. Secur., 3(2):63–84, 2000.

[DSCP02] C. Dı́az, S. Seys, J. Claessens, and B. Preneel. Towards measuring
anonymity. In Roger Dingledine and Paul Syverson, editors, Proceedings
of Privacy Enhancing Technologies Workshop – PET ’ 02, volume 2482 of
Lecture Notes in Computer Science. Springer-Verlag, April 2002.

[Fel87] P. Feldman. A practical scheme for non-interactive verifiable secret sharing.
In 28th Annual Symposium on Foundations of Computer Science, pages
427–437, Los Angeles, California, 12–14 October 1987. IEEE.

[FLS99] U. Feige, D. Lapidot, and A. Shamir. Multiple noninteractive zero knowl-
edge proofs under general assumptions. SICOMP: SIAM Journal on Com-
puting, 29(1), 1999.

[FM85] P. Feldman and S. Micali. Byzantine agreement in constant expected time
(and trusting no one). In Proceedings of the 26th Annual Symposium on
Foundations of Computer Science, pages 267–276. IEEE Computer Society
Press, 1985.

148

[FM88] P. Feldman and S. Micali. Optimal algorithms for byzantine agreement.
In Richard Cole, editor, Proceedings of the 20th Annual ACM Symposium
on the Theory of Computing, pages 148–161, Chicago, IL, May 1988. ACM
Press.

[FM97] P. Feldman and S. Micali. An optimal probabilistic protocol for synchronous
byzantine agreement. SIAM J. Comput, 26(4):873–933, 1997.

[FOO92] A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting scheme
for large scale elections. In J. Seberry and J. Pieprzyk, editors, Advances
in Cryptology– AUSCRYPT ’92, volume 718 of Lecture Notes in Computer
Science, pages 244–251. Springer-Verlag, 1992.

[FS01] J. Furukawa and K. Sako. An efficient scheme for proving a shuffle. In
Advances in Cryptology – CRYPTO ’ 2001, volume 2139 of Lecture Notes
in Computer Science. Springer-Verlag, 2001.

[Fur04] J. Furukawa. Efficient, verifiable shuffle decryption and its requirement of
unlinkability. In International Workshop on Practice and Theory in Pub-
lic Key Cryptography – PKC ’ 04, Lecture Notes in Computer Science.
Springer-Verlag, 2004.

[GBW98] I. Goldberg, M. Briceno, and D. Wagner. Gsm cloning, 1998. Available
from http://www.isaac.cs.berkeley.edu/isaac/gsm-faq.html.

[Gen95] R. Gennaro. Achieving independence efficiently and securely. In Proceedings
of the 14th Annual ACM symposium on Principles of Distributed Comput-
ing, pages 130–136. ACM Press, 1995.

[Gen00] R. Gennaro. A protocol to achieve independence in constant rounds. IEEE
Transactions on Parallel and Distributed Systems, 11(7):636–647, July 2000.

[GHPvR05] F.D. Garcia, I. Hasuo, W. Pieters, and P. van Rossum. Provable anonymity.
In Proceedings of the 3rd ACM Workshop on Formal Methods in Security
Engineering – FMSE’05, pages 63–72. ACM Press, November 2005.

[GJ04] P. Golle and A. Juels. Dining cryptographers revisited. In Proceedings of
Eurocrypt’04, volume 3027 of Lecture Notes in Computer Science. Springer-
Verlag, May 2004.

[GJKR99] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Se-
cure distributed key generation for discrete-log based cryptosystems. In
EUROCRYPT, pages 295–310, 1999.

[GK96] O. Goldreich and H. Krawczyk. On the composition of zero-knowledge proof
systems. SIAM J. Comput, 25(1):169–192, 1996.

149

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer
and System Science, 28:270–299, 1984.

[GMR88] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme se-
cure against adaptive chosen-message attacks. Siam Journal of Computing,
17(2):281–308, April 1988.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[GMW86] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but
their validity and a methodology of cryptographic protocol design. In 27th
Symposium on Foundations of Computer Science, pages 174–187. IEEE,
1986.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game —
A completeness theorem for protocols with honest majority. In Proceedings
of the 19th Annual ACM Symposium on Theory of Computing, pages 218–
229. ACM Press, 1987.

[GMW91] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but
their validity or all languages in NP have zero-knowledge proof systems.
Journal of the ACM, 38(3):691–729, July 1991.

[Gol93] O. Goldreich. A uniform complexity treatment of encryption and zero-
knowledge. Journal of Cryptology, 6(1):21–53, 1993.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools (Appendix).
Cambridge University Press, 2001.

[Gol04] O. Goldreich. Foundations of Cryptography: Volume 2: Basic Applications.
Cambridge University Press, 2004.

[Gro03] J. Groth. A verifiable secret shuffle of homomorphic encryptions. In Inter-
national Workshop on Practice and Theory in Public Key Cryptography –
PKC ’ 03, Lecture Notes in Computer Science. Springer-Verlag, 2003.

[Gro05] J. Groth. A verifiable secret shuffle of homomorphic
encryptions. Full version of [Gro03], available from
http://www.brics.dk/∼jg/JournalShuffle.ps, 2005.

[GRR98] R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS and fast-track mul-
tiparty computations with applications to threshold cryptography. In pro-
ceedings of the 17th Annual ACM Symposium on Principles of Distributed
Computing (PODC ’98), pages 101–112. ACM Press, June 1998.

150

[GRS96] D.M. Goldschlag, M.G. Reed, and P.F. Syverson. Hiding Routing Infor-
mation. In R. Anderson, editor, Proceedings of Information Hiding: First
International Workshop, volume 1174 of Lecture Notes in Computer Sci-
ence, pages 137–150. Springer-Verlag, May 1996.

[GT96] C. Gülcü and G. Tsudik. Mixing E-mail with Babel. In Proceedings of
the Network and Distributed Security Symposium – NDSS ’96, pages 2–16.
IEEE Press, February 1996.

[HM97] M. Hirt and U. Maurer. Complete characterization of adversaries tolerable
in secure multi-party computation (extended abstract). In Proceedings of the
Sixteenth Annual ACM Symposium on Principles of Distributed Computing,
pages 25–34, Santa Barbara, California, 21–24 August 1997.

[HM00] M. Hirt and U. M. Maurer. Player simulation and general adversary struc-
tures in perfect multiparty computation. J. Cryptology, 13(1):31–60, 2000.

[HM05] A. Hevia and D. Micciancio. Simultaneous Broadcast Revisited. In the 24th
annual ACM symposium on Principles of distributed computing PODC’05,
pages 324–333. ACM Press, 2005.

[HMq04] D. Hofheinz and J. Muller-quade. A synchronous model for multi-party
computation and the incompleteness of oblivious transfer. Available from
http://eprint.iacr.org/2004/016, 2004.

[HNP05] M. Hirt, J. B. Nielsen, and B. Przydatek. Cryptographic asynchronous
multi-party computation with optimal resilience (extended abstract). In
Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT’05, volume
3494 of Lecture Notes in Computer Science, pages 322–340. Springer-Verlag,
2005.

[HO04] J.Y. Halpern and K.R. O’Neill. Anonymity and information hiding in mul-
tiagent systems. Journal of Computer Security, 2004.

[IKOS06] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Cryptography
from anonymity. Cryptology ePrint Archive, Report 2006/084, 2006.
http://eprint.iacr.org/.

[JJR02] M. Jakobsson, A. Juels, and R.L. Rivest. Making mix nets robust for elec-
tronic voting by randomized partial checking. In Proceedings of the 11th
USENIX Security Symposium (SECURITY-02), pages 339–353, Berkeley,
CA, USA, August 5–9 2002. USENIX Association.

[KEB98] D. Kesdogan, J. Egner, and R. Büschkes. Stop-and-go MIXes: Providing
probabilistic anonymity in an open system. In Proceedings of Information
Hiding Workshop – IH ’ 98, volume 1525 of Lecture Notes in Computer
Science. Springer-Verlag, 1998.

151

[KSRW04] T. Kohno, A. Stubblefield, A.D. Rubin, and D.S. Wallach. Analysis of an
electronic voting system. In IEEE Symposium on Security and Privacy,
pages 27–. IEEE Computer Society, 2004.

[LLM+01] M. Liskov, A. Lysyanskaya, S. Micali, L. Reyzin, and A. Smith. Mutually
independent commitments. In Advances in Cryptology – ASIACRYPT’01,
LNCS. Springer-Verlag, 2001.

[LLR02a] Y. Lindell, A. Lysyanskaya, and T. Rabin. On the composition of authenti-
cated byzantine agreement. In Proceedings of the 34th Annual ACM Sym-
posium on Theory of Computing (STOC-02), pages 514–523. ACM Press,
2002.

[LLR02b] Y. Lindell, A. Lysyanskaya, and T. Rabin. Sequential composition of pro-
tocols without simultaneous termination. In Proceedings of the twenty-first
Annual Symposium on Principles of Distributed Computing (PODC-02),
pages 203–212. ACM Press, 2002.

[LSP82] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem.
ACM Transactions on Programming Languages and Systems, 4(3):382–401,
July 1982.

[Lys00] A. Lysyanskaya. Threshold cryptography secure against the adaptive ad-
versary, concurrently. Report 2000/019, Cryptology ePrint Archive, 2000.

[MR90] S. Micali and T. Rabin. Collective coin tossing without assumptions nor
broadcasting. In CRYPTO: Proceedings of Crypto, 1990.

[MR91] S. Micali and P. Rogaway. Secure computation (abstract). In J. Feigenbaum,
editor, Advances in Cryptology—CRYPTO ’91, volume 576 of Lecture Notes
in Computer Science, pages 392–404. Springer-Verlag, 1992, 11–15 August
1991.

[MR04] S. Micali and L. Reyzin. Physically observable cryptography (extended
abstract). In Moni Naor, editor, Theory of Cryptography, First Theory of
Cryptography Conference, TCC 2004, Cambridge, MA, USA, February 19-
21, 2004, Proceedings, volume 2951 of Lecture Notes in Computer Science,
pages 278–296. Springer-Verlag, 2004.

[MRS88] S. Micali, C. Rackoff, and B. Sloan. The notion of security for probabilistic
cryptosystems. Siam Journal of Computing, 17(2):412–426, April 1988.
Special issue on cryptography.

[MVdV04] S. Mauw, J.H.S. Verschuren, and E.P. de Vink. A formalization of
anonymity and onion routing. In European Symposium on Research in
Computer Security – ESORICS ’ 04, Lecture Notes in Computer Science.
Springer-Verlag, 2004.

152

[Nef01] A. Neff. A verifiable secret shuffle and its application to E-
voting. In SIGSAC: 8th ACM Conference on Computer and Commu-
nications Security. ACM SIGSAC, 2001. Full version available from
http://www.votehere.net/vhti/documentation/egshuf.pdf.

[Nie03] J. B. Nielsen. On Protocol Security in the Cryptographic Model. Ph.D.
thesis, Aarhus University, 2003.

[NSNK04] L. Nguyen, R. Safavi-Naini, and K. Kurosawa. Verifiable shuffles: A formal
model and a paillier-based efficient construction with provable security. In
International Conference on Applied Cryptography and Network Security –
ACNS’04, volume 2 of Lecture Notes in Computer Science. Springer-Verlag,
2004.

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In EUROCRYPT, pages 223–238, 1999.

[Ped91] T. P. Pedersen. Non-interactive and information-theoretic secure verifi-
able secret sharing. In J. Feigenbaum, editor, Advances in Cryptology—
CRYPTO ’91, volume 576 of Lecture Notes in Computer Science, pages
129–140. Springer-Verlag, 1992, 11–15 August 1991.

[PK01] A. Pfitzmann and M. Köhntopp. Anonymity, unobservability, and
pseudonymity — A proposal for terminology. Lecture Notes in Computer
Science, 2009:1–9, 2001.

[PPW91] A. Pfitzmann, B. Pfitzmann, and M. Waidner. Isdnmixes: Untraceable
communication with very small bandwidth overhead, 1991.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching agreements in the presence
of faults. Journal of the ACM, 27(2):228–234, April 1980.

[PSW00] B. Pfitzmann, M. Schunter, and M. Waidner. Secure reactive systems. Re-
search Report RZ 3206 (#93252), IBM Research, February 2000.

[PW87] A. Pfitzmann and M. Waidner. Networks without user observability. Com-
puters & Security, 6(2):158–166, April 1987.

[PW00] B. Pfitzmann and M. Waidner. Composition and integrity preservation of
secure reactive systems. In Sushil Jajodia, editor, Proceedings of the 7th
ACM Conference on Computer and Communications Security, pages 245–
254, Athens, Greece, November 2000. ACM Press.

[PW01] B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems
and its application to secure message transmission. In Francis M. Titsworth,
editor, Proceedings of the 2001 IEEE Symposium on Security and Privacy
(S&P-01), pages 184–201, Los Alamitos, CA, May 14–16 2001. IEEE Com-
puter Society.

153

[Rab94] T. Rabin. Robust sharing of secrets when the dealer is honest or cheating.
JACM: Journal of the ACM, 41, 1994.

[RBO89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority. In Proceedings of the 21st Annual Symposium on
Theory of Computing (STOC ’89), pages 73–85, New York, May 1989. ACM
Association for Computing Machinery.

[Rey01] L. Reyzin. Zero-knowledge with public keys. PhD thesis, MIT, 2001.
Supervisor-Silvio Micali.

[RP04] M. Rennhard and B. Plattner. Practical anonymity for the masses with
morphmix. In Ari Juels, editor, Proceedings of Financial Cryptography –
FC ’04, volume 3110 of Lecture Notes in Computer Science. Springer-Verlag,
February 2004.

[RR98] M.K. Reiter and A.D. Rubin. Crowds: Anonymity for web transactions.
ACM Transactions on Information and System Security, 1(1):66–92, 1998.

[RS91] C. Rackoff and D.R. Simon. Non-interactive zero-knowledge proof of knowl-
edge and chosen ciphertext attack. In J. Feigenbaum, editor, Advances in
Cryptology—CRYPTO ’91, volume 576 of Lecture Notes in Computer Sci-
ence, pages 433–444. Springer-Verlag, 1992, 11–15 August 1991.

[RS93] C. Rackoff and D. R. Simon. Cryptographic defense against traffic analysis.
In Proceedings of the Twenty-Fifth Annual ACM Symposium on the Theory
of Computing, pages 672–681, May 1993.

[SA00] F. Stajano and R. Anderson. The cocaine auction protocol: On the power
of anonymous broadcast. In Andreas Pfitzmann, editor, Information Hid-
ing —3rd International Workshop, IH’99, volume 1768 of Lecture Notes in
Computer Science. Springer-Verlag, October 2000.

[Sak00] K. Sako. An auction protocol which hides bids of losers. In Public Key
Cryptography – PKC’00, volume 1751 of Lecture Notes in Computer Science,
pages 422–432. Springer–Verlag, 2000.

[SD02] A. Serjantov and G. Danezis. Towards an information theoretic metric for
anonymity. In Roger Dingledine and Paul Syverson, editors, Proceedings
of Privacy Enhancing Technologies Workshop – PET ’ 02, volume 2482 of
Lecture Notes in Computer Science. Springer-Verlag, April 2002.

[Ser04] A. Serjantov. On the Anonymity of Anonymity Systems. PhD thesis, Uni-
versity of Cambridge, June 2004.

[SG02] V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen
ciphertext attack. J. of Cryptology, 15(2):75–96, 2002.

154

[Sha79] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–
613, November 1979.

[Sho04] V. Shoup. Sequences of games: a tool for taming complexity in
security proofs. Cryptology ePrint Archive, Report 2004/332, 2004.
http://eprint.iacr.org/.

[SP92] A. De Santis and G. Persiano. Zero-knowledge proofs of knowledge without
interaction (extended abstract). In 33rd Annual Symposium on Founda-
tions of Computer Science, pages 427–436, Pittsburgh, Pennsylvania, 24–27
October 1992. IEEE.

[SS99] P.F. Syverson and S.G. Stubblebine. Group principals and the formalization
of anonymity. In Proceedings of the World Congress on Formal Methods (1),
volume 1708 of Lecture Notes in Computer Science, pages 814–833. Springer,
1999.

[vABH03] L. von Ahn, A. Bortz, and N.J. Hopper. k-Anonymous message transmis-
sion. In Vijay Atluri and Peng Liu, editors, Proceedings of the 10th ACM
Conference on Computer and Communication Security – CCS’03, pages
122–130, New York, October 27–30 2003. ACM Press.

[Wai90] M. Waidner. Unconditional sender and recipient untraceability in spite of
active attacks. In J-J. Quisquater and J. Vandewalle, editors, Advances in
Cryptology – EUROCRYPT ’ 89, volume 434 of Lecture Notes in Computer
Science, pages 302–319. Springer-Verlag, 1990.

[Wik04] D. Wikström. A universally composable mix-net. In Theory of Cryptography
TCC’04, volume 2951 of Lecture Notes in Computer Science, pages 317–335.
Springer-Verlag, Feb 2004.

[WP89] M. Waidner and B. Pfitzmann. The dining cryptographers in the disco:
Unconditional sender and recipient untraceability with computationally se-
cure serviceability. In J.-J. Quisquater and J. Vandewalle, editors, Advances
in Cryptology–EUROCRYPT’89, volume 434 of Lecture Notes in Computer
Science, page 690. Springer-Verlag, 1990, 10–13 April 1989.

[Yao86] A. C.-C. Yao. How to generate and exchange secrets. In Proceedings of
the 27th Annual Symposium on Foundations of Computer Science, pages
162–167. IEEE Computer Society Press, 1986.

