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Abstract 

Bacteria and fungi, representing two major soil microorganism groups, play an important role in the 

global carbon (C) cycle. Despite the critical role of fungi and bacteria in C cycling, our understanding of 

their roles in terrestrial C cycling was still unclear. In this dissertation, I investigated the biogeography of 

fungi and bacteria using a synthesized global dataset of fungal (FBC) and bacterial (BBC) biomass C of 

0-30 cm. We observed clear distribution patterns of FBC, BBC, and FBC:BBC (F:B) ratio along latitude 

and environmental gradients including mean annual temperature, mean annual precipitation, net primary 

productivity, root C density, soil temperature, soil moisture, and edaphic factors. Fungal and bacterial 

biomass C and their ratio were dominated by different factors, with FBC and BBC predominated by 

edaphic properties and F:B ratio determined by climates. Combining the empirical model developed for 

F:B ratio with a global dataset of soil microbial biomass C, we estimated global stocks of living microbial 

biomass C as 12.6 (6.6~16.4) PgC for FBC and 4.3 (0.5~10.3) PgC for BBC in topsoil. To 

mechanistically understand microbial role in terrestrial C cycling, I first parametrized the CLM-Microbe 

model, a microbial-explicit model with fungal and bacterial regulatory role on soil processes represented, 

using the compiled time-series data of FBC and BBC from nine natural terrestrial biomes. The 

parameterization suggested the reasonable performance of the CLM-Microbe model in capturing the 

seasonal dynamics of FBC and BBC across biomes. On overage, the CLM-Microbe model explained 70% 

of the variation in FBC (P<0.001) and 26% of the variation in BBC (P<0.05) across biomes. Sensitivity 

analysis showed that microbial turnover rates, biomass carbon-to-nitrogen ratio, and assimilation 

efficiency were the most important parameters regulating FBC and BBC dynamics. Then, we applied the 

CLM-Microbe model and investigated the impacts of microbial seasonality on soil C cycling in terrestrial 

ecosystems. Removing soil microbial seasonality reduced model performance in simulating microbial 

respiration and soil respiration but led to slight differences in simulating root respiration. Removing soil 

microbial seasonality underestimated annual averages of soil C emission (by 0.6%-32% for microbial 

respiration and by 0.4%-29% for soil respiration) and overestimated soil organic C content in the top 1 m 
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(by 0.2%-7%) in natural biomes. Finally, we investigated the historical dynamics of terrestrial C fluxes 

and pools during 1901-2016 using the CLM-Microbe model. The CLM-Microbe model can reproduce the 

global distribution of gross (GPP; R2=0.78) and net (NPP; R2=0.63) primary productivity, heterotrophic 

(HR; R2=0.23) and soil (SR; R2=0.26) respiration, microbial (MBC), the sum of fungal (FBC) and 

bacterial (BBC), biomass C in the top 30 cm (R2=0.22 for FBC and R2=0.32 for BBC) and 1 m (R2=0.21 

for MBC), and dissolved (DOC; R2=0.2 for 0-30 cm and R2=0.22 for 0-1 m) and soil (SOC; R2=0.36 for 

0-30 cm and R2=0.26 for 0-1 m) organic C in the top 30 cm and 1 m. The C fluxes and pool sizes 

increased by about 30 PgC yr-1 for GPP,  15 PgC yr-1 for NPP, 12 PgC yr-1 for HR, 25 PgC yr-1 for SR, 1.0 

PgC for FBC and 0.4 PgC for BBC in 0-30 cm, 1.5 PgC for FBC, 0.8 PgC for BBC, 2.5 PgC for DOC, 40 

PgC for SOC, and 5 PgC for litter C (LitC) in 0-1 m, and 40 PgC for vegetation C (VegC) from 1901 to 

2016. Except for DOC in the top 1 m (increased most in Asia and North America), the absolute increases 

of C fluxes and pools were the largest in Asia and South America, particularly in east Asia and central 

and northern South America. Relative changes of C fluxes and pools exhibited different spatial patterns: 

the relative increase was the largest in Asia and Europe, particularly in east Asia and southern and central 

Europe, for GPP, NPP, HR, and SR, in South America (central and east coast of South America in 

particular) for FBC (0-30 cm and 0-1 m), in Europe (central and northern Europe in particular) for BBC 

(0-30 cm and 0-1 m), in Europe (central and northern Europe in particular) and South America (east coast 

of South America in particular) for DOC (0-1 m), in Arica (central and southern Africa in particular) for 

SOC (0-1 m), and in Europe (southern and central Europe in particular) for VegC and LitC (0-1 m). 

Increases in GPP, NPP, and VegC were closely related to warming and climbing precipitation, while soil 

C fluxes and litter, microbial, and soil C pools were jointly governed by vegetation C input and soil 

temperature and moisture. This study advanced our understanding of fungal and bacterial biogeography 

and assisted our mechanistic understanding of the microbial role in the terrestrial C cycle, providing 

valuable insights into the C cycle research under a changing climate. 
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Introduction 

Ongoing global climate change caused by human-induced increases in greenhouse gases, altered 

precipitation pattern, rising sea level, and rising air temperature has induced profound influences on 

global carbon (C) and nutrient cycle, representing one of the biggest challenges for the upcoming decades 

(Hasselmann et al. 2003, Zeng et al. 2008, Peters et al. 2012, Keohane 2015). Providing reliable 

estimation of the soil C cycle is critical for policymakers and communities in dealing with regional and 

global climate change (Heimann and Reichstein 2008, IPCC 2014). Huge uncertainties of the projection 

results among models challenged the current model framework (Taylor et al. 2011, Luo et al. 2015), the 

implicit representation of soil microbes may account for the great uncertainty in the global C cycle 

projection (Fang et al. 2005, Wieder et al. 2013, Wieder et al. 2015). 

 

Soil microbes influence various ecosystem processes (Crowther et al. 2019), including C cycling 

(HoÈgberg et al. 2001), soil formation (Rillig and Mummey 2006), and nutrient availability (Turner et al. 

2013). In addition, soil microbial groups, such as fungi and bacteria, are different in their role in soil 

biogeochemical processes (Boer et al. 2005). For example, bacteria and fungi have different physiological 

traits, e.g., bacteria prefer to decompose litter low in carbon-to-nitrogen (C:N) ratio, while fungi tend to 

decompose litter with higher C:N ratios (Paul 2016). Incorporating microbial role into ESMs requires a 

clear understanding of the distribution of soil microbes and the underlying mechanisms (Wieder et al. 

2013, Xu et al. 2014). However, our knowledge of soil microbial, particularly fungal and bacterial, 

biogeography is still in its infancy due to the technical limitation and great heterogeneity of soil microbes.  

 

Although the importance of soil microbes on the global C cycle has been widely recognized (Falkowski et 

al. 2008) and major soil microbial processes have been identified in the last decades, soil microbial 

processes are poorly represented in ESMs (Wieder et al. 2015). The ESMs implicitly represent biological 

activity in soil organic matter (SOM) mineralization as proportional to the soil C stock. The transfer of C 
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among different pools is regulated by environmental scalars (Jenkinson et al. 1987, Parton et al. 1987, 

Rodrigo et al. 1997). However, the regulatory roles of microbes in those soil processes are overlooked 

(Hodge et al. 2000, Talbot et al. 2008, Schimel and Schaeffer 2012). The development of soil microbial 

models, such as the SCAMPS model (Sistla et al. 2014), DAISY model (Svendsen et al. 1995), DAMM 

model (Davidson et al. 2012), and MEND model (Allison et al. 2010), proved to be powerful tools for 

improving our understanding of soil C processes. However, these models assumed that biological 

responses to environmental and edaphic conditions are invariant and microbial communities are 

functionally equivalent (Bradford and Fierer 2012). While soil microbial community is not static, 

showing strong temporal dynamics (Díaz-Raviña et al. 1995, Lipson et al. 2002, Lipson and Schmidt 

2004, Cleveland et al. 2007). Recently, the further classification of soil microbes in the TRIPLEX-

Microbe model (active and dormant components) and MIMICS model (K- and r-strategists) advanced the 

representation of soil microbial community in ESMs (Wieder et al. 2014, Wang et al. 2017). However, 

the distinct role of functional groups within active soil microbes in soil processes may lead to different 

trajectories of C responses to changing environments such as atmospheric nitrogen (N) deposition, 

elevated carbon dioxide (CO2), and precipitation change (Hopkins et al. 2006, Strickland and Rousk 2010, 

Rousk and Bååth 2011, Bell et al. 2014). The theoretical characterization of the r-K continuum may limit 

using observational data to constrain the microbial parameters. 

 

The CLM-Microbe model (available at https://github.com/email-clm) represents the soil microbial 

community with fungi and bacteria, two major soil microbial groups and playing distinct roles in soil 

processes (He et al. 2021). The CLM-Microbe model explicitly represents fungi- and bacteria-regulated 

processes such as SOM and litter decomposition, SOM stabilization, microbial C assimilation from SOM 

and litter, microbial death, and heterotrophic respiration into the CLM (He et al. 2021). Different 

parameters for fungi- and bacteria-regulated functions are used to distinguish the physiological traits of 

fungi and bacteria in soil processes. The CLM-Microbe model can simulate fungal and bacterial biomass 
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dynamically and can capture fine time-scale variations of the C cycle based on the fine resolution of 

forcing data input. Therefore, I can use the CLM-Microbe model to simulate fungal and bacterial biomass 

and investigate the controls of soil microbes on the terrestrial C cycle.  

 

In this dissertation, I first synthesized fungal and bacterial biomass measurements from publications. 

Then, I parameterized the soil microbial biomass module and applied the parameterized CLM-Microbe 

model to investigate and understand effects and mechanisms of soil microbes on the C cycle. The specific 

research objectives of my four chapters are: 

1. Identifying the biogeography of soil fungal and bacterial biomass. 

2. Estimating parameters for simulating soil fungal and bacterial biomass dynamics in the CLM-

Microbe model. 

3. Modeling the effects of soil fungal and bacterial biomass dynamics on the C cycle at site scale using 

the CLM-Microbe model. 

4. Investigating the historical dynamics of the terrestrial C cycle using the CLM-Microbe model. 
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Chapter 1. Global Biogeography of Fungal and Bacterial Biomass 
Carbon in Topsoil 

 

This chapter has already been published by Elsevier. 

 

He, L., J. L. M. Rodrigues, N. A. Soudzilovskaia, M. Barceló, P. a. A. Olsson, C. Song, L. Tedersoo, F. 
Yuan, F. Yuan, and D. A. Lipson. 2020. Global biogeography of fungal and bacterial biomass carbon in 
topsoil. Soil Biology and Biochemistry:108024. https://doi.org/10.1016/j.soilbio.2020.108024 

 

Abstract 

Bacteria and fungi, representing two major soil microorganism groups, play an important role in global 

carbon (C) and nutrient biogeochemistry. Biogeographic patterns of bacterial and fungal biomass are of 

fundamental importance for mechanistically understanding C and nutrient cycling. We synthesized 1323 

data points of phospholipid fatty acid-derived fungal biomass C (FBC), bacterial biomass C (BBC), and 

fungi:bacteria (F:B) ratio in topsoil, spanning 11 major biomes. The FBC, BBC, and F:B ratio display 

clear biogeographic patterns along latitude and environmental gradients including mean annual 

temperature, mean annual precipitation, net primary productivity, root C density, soil temperature, soil 

moisture, and edaphic factors. At the biome level, tundra has the highest FBC and BBC densities at 3684 

(95% confidence interval: 1678~8084) mg kg-1 and 428 (237~774) mg kg-1, respectively; desert has the 

lowest FBC and BBC densities at 16.92 (14.4~19.89) mg kg-1 and 6.83 (6.1~7.65) mg kg-1, respectively. 

The F:B ratio varies dramatically, ranging from 1.8 (1.6~2.1) in savanna to 8.6 (6.7~11.0) in tundra. An 

empirical model was developed for the F:B ratio and it is combined with a global dataset of soil microbial 

biomass C to produce global maps for FBC and BBC in 0-30 cm topsoil. Across the globe, the highest 

FBC is found in boreal forest and tundra while the highest BBC is in boreal forest and tropical/subtropical 

forest, the lowest FBC and BBC are in shrub and desert. Global stocks of living microbial biomass C 

were estimated to be 12.6 (6.6~16.4) PgC for FBC and 4.3 (0.5~10.3) PgC for BBC in topsoil. These 

findings advance our understanding of the global distribution of fungal and bacterial biomass, which 
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facilitates the incorporation of fungi and bacteria into Earth system models. The global maps of bacterial 

and fungal biomass serve as a benchmark for validating microbial models in simulating the global C cycle 

under a changing climate. 

Keywords: fungi, bacteria, F:B ratio, biogeography, pattern 

 

Introduction 

Microorganisms play an essential role in soil carbon (C) and nutrient biogeochemistry impacting on 

various ecosystem processes, including organic matter mineralization, soil formation, and nutrient 

availability (Högberg et al., 2001; Rillig and Mummey, 2006; Turner et al., 2013; Crowther et al., 2019). 

Eventually, the ultimate fate of soil C is driven by microbes (Schimel and Schaeffer, 2012). Although the 

critical roles of soil microbes in global C and nutrient cycling have been widely recognized (Falkowski et 

al., 2008; van der Heijden et al., 2008), the research on biogeographic distribution of fungi and bacteria is 

still in its infancy (Fenchel, 2002; Boer et al., 2005; Rousk and Bååth, 2011; Gougoulias et al., 2014). 

Furthermore, microbial community structure is an important factor controlling C and nutrient 

biogeochemistry as bacteria and fungi differ in enzyme production, C use efficiency, and carbon:nitrogen 

ratio (Caldwell, 2005; Six et al., 2006; Mouginot et al., 2014), and respond differently to multiple global 

change factors (Rousk and Bååth, 2007; Rousk et al., 2009). Therefore, biogeographic patterns of bacteria 

and fungi provide pivotal information for understanding microbial contributions to global C and nutrient 

biogeochemistry. 

 

Geographic distribution of soil microbes is driven by a suite of abiotic and biotic factors (Martiny et al., 

2006; Hanson et al., 2012). Previous studies have investigated the factors controlling microbial diversity 

and functions, including soil organic C (SOC), climate, and vegetation (de Vries et al., 2012). Soil 

moisture (SM), soil organic matter quality, and soil pH are among the most important factors influencing 
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soil microbial community composition (Fierer and Jackson, 2006; Eskelinen et al., 2009; Brockett et al., 

2012; Ding et al., 2015). Although these findings provide valuable information for local to regional 

environmental drivers and proxies of soil microbial community structure, a holistic and quantitative 

understanding of soil biogeography of different microbial groups are lacking at the global scale. In 

particular, the lack of clear quantitative understanding of bacterial and fungal biogeography and their 

controls hinders the explicit incorporation of microbial mechanisms into climate models (DeLong et al., 

2011; Wieder et al., 2013; Xu et al., 2014; Xu et al., 2020). 

 

To fill the knowledge gaps in biogeographic patterns for fungi and bacteria, we compiled a global dataset 

of 1323 sets of phospholipid fatty acid (PLFA)-derived fungal biomass C (FBC), bacterial biomass C 

(BBC), and fungi:bacteria (F:B) ratio in topsoil (0-30cm). FBC and BBC derived from other approaches 

(primarily microscopic counting, colony forming units, substrate-induced respiration, and glucosamine 

and muramic acid) were excluded from this study due to large biases in reported values by various 

approaches. The PLFA was the most widely used and likely the most appropriate approach for estimating 

FBC and BBC simultaneously (Waring et al., 2013). In this study, we aimed to answer three research 

questions with the comprehensive dataset of FBC, BBC, and F:B ratio: 1) What are the biogeographic 

patterns of BBC, FBC, and F:B ratio in topsoil? 2) What are the environmental controls of the 

biogeographic patterns of fungal and bacterial biomass C? 3) What are the budgets of FBC and BBC at 

biome and global scales? 
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Materials and Methods 

Data compilation 

We used a combination of keywords, “fung*” or “bacteria*”, “ratio”, and “terrestrial” or “soil”, to search 

peer-reviewed papers in Google Scholar. The papers were selected via the following Criteria: 1) either 

concurrent fungal biomass and bacterial biomass or F:B ratio was clearly reported; 2) the data were 

extractable from tables (assessing the text) or figures (using Engauge Digitizer Version 10.7); 3) the study 

sites were not affected by disturbances such as fire, mining, and heavy metal contamination; and 4) the 

reported data cover 0-30 cm topsoil. Geographical information of the sampling sites was recorded and 

used to locate the sites on the global map (Fig. 1.1). We also collected any available data on soil pH, 

mean annual precipitation (MAP), mean annual temperature (MAT), SOC, total nitrogen (TN) 

concentration, and soil texture, and then plotted these variables against the extracted data from global 

datasets to test the consistency (Fig. 1.S1). 

 

We recorded fungal and bacterial biomass C measured using methods such as phospholipid fatty acid 

(PLFA), direct microscopy (DM), colony forming units (CFU), substrate-induced respiration (SIR), and 

glucosamine and muramic acid (GMA) from peer-reviewed papers. To examine the potential biases in the 

measurement of fungal and bacterial biomass, we did a comparison among those methods (Table 1.1, 

Table 1.S1). To compare FBC and BBC measured using different methods, we used conversion factors 

for PLFA (Frostegård and Bååth, 1996; Klamer and Bååth, 2004), SIR (Beare et al., 1990), CFU (Aon et 

al., 2001), DM (Birkhofer et al., 2008), and GMA (Jost et al., 2011) reported in previous studies. Across 

biomes, FBC, BBC, and the F:B ratio generally followed a similar pattern among different methods. 

However, large variations were found in measured FBC and BBC among different methods. Specifically, 

compared with PLFA, SIR, and GMA, CFU reported dominant fungi over bacteria, while DM estimated a 

higher dominance of bacteria relative to fungi, suggesting that DM may underestimate FBC while CFU 
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may overestimate FBC. Meanwhile, we found overall higher FBC and BBC measured using GMA, which 

was largely distinct from the measurements using other methods. Using data generated from multiple 

methods in one analysis might be problematic. Therefore, we used PLFA data for subsequent analyses. 

This selection was due to two reasons: 1) the PLFA was the most widely used approach, with the PLFA-

derived FBC and BBC measurements accounting for 73% of the whole dataset; 2) the PLFA method has 

been evaluated and proved to be the most appropriate approach for estimating FBC and BBC 

simultaneously (Waring et al., 2013). 

 

The final database included the fungal and bacterial biomass data measured using PLFA from 

publications spanning from the late 1960s to 2018. Collectively, 1323 data points in 11 biomes (i.e., 

boreal forest, temperate forest, tropical/subtropical forest, grassland, shrub, savanna, tundra, desert, 

natural wetlands, cropland, and pasture) across the globe were included in the database (Fig. 1.1). Forest, 

grassland, and cropland contributed approximately 39%, 22%, and 19% of the dataset, respectively, 

whereas all other biomes combined accounted for 20% of the dataset. A majority of the field sites are 

located in North America, Europe, and Asia, and a relatively small number of observations are in South 

America, Africa, North Asia, Australia, and Antarctica. For data points without coordinate information 

being reported, we searched the geographical coordinates based on the location of the study site, city, 

state, and country. Then, the geographical information was used for locating the sampling points on the 

global map to extract climate, edaphic properties, plant productivity, and soil microclimate long-term data 

from global datasets. 

 

Climate, plant, and soil data 

MAT and MAP with the spatial resolution of 30 seconds during 1970-2000 were obtained from the 

WorldClim database version 2 (https://www.worldclim.org/data/worldclim21.html). In addition, monthly 
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mean SM and soil temperature (ST) during 1979-2014 were obtained from the NCEP/DOE AMIP-II 

Reanalysis (https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.gaussian.html). The global 

vegetation distribution data were obtained from a spatial map of 11 major biomes: boreal forest, 

temperate forest, tropical/subtropical forest, mixed forest, grassland, shrub, tundra, desert, natural 

wetlands, cropland, and pasture, which have been used in our previous publications (Xu et al., 2013; Xu 

et al., 2017). We also obtained the data of soil pH, sand, silt, clay, and SOC from the Harmonized World 

Soil Database (HWSD, https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1247) at a 0.5° × 0.5° resolution 

grid. Soil bulk density and TN were extracted from the IGBP-DIS dataset (IGBP, 

https://daac.ornl.gov/SOILS/guides/igbp-surfaces.html), at a spatial resolution of 0.5′ × 0.5′. Since TN in 

IGBP-DIS are for the 0–100 cm soil profile as a whole, we used the factor calculated from the fraction of 

SOC in the top 0-30 cm in the HWSD database. Since SOC and soil TN exhibit large spatial 

heterogeneities, and the variation in fine-scale variation in edaphic properties are underrepresented in 

global datasets, we examined the relationships of FBC, BBC, and F:B ratio with SOC, TN, and C:N ratio 

with the data directly extracted from literature. Due to the poor correlation between bulk density extracted 

from HWSD and the reported bulk density values in the literature, we used the same soil bulk density 

values for the entire top 100 cm soil profile from IGBP, assuming no difference in bulk density between 

top 0-30 cm and 30-100 cm soil profiles. Root C density (Croot) data were extracted from global dataset of 

0.5-degree resolution based on observation data (Ruesch and Gibbs, 2008; Song et al, 2017). Annual net 

primary productivity (NPP) for the period of 2000-2015 was obtained from the MODIS gridded dataset 

with a spatial resolution of 30 seconds (http://files.ntsg.umt.edu/data/NTSG_Products/). These global 

datasets of varied spatial resolutions were interpolated to 0.5 degree using “bilinear” method based on the 

GDAL library (GDAL Development Team, 2018) for generating the global maps of FBC, BBC, and F:B 

ratio. 
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Model selection and validation  

For FBC, BBC, and the F:B ratio, we developed generalized linear models considering the interactive 

roles of climate (MAP and MAT), soil microclimate (ST and SM), plant (NPP and Croot), and edaphic 

properties (clay, sand, soil pH, bulk density, SOC, and TN) to tease apart the controlling factors on fungal 

and bacterial distribution. Based on the generalized linear model of climate, plant, edaphic properties, and 

soil microclimate for FBC, BBC, and the F:B ratio, over 70% of the variation in FBC, BBC, and the F:B 

ratio was explained by the generalized linear model, and FBC and BBC were better explained than the 

F:B ratio (Fig. 1.2).  

 

Considering the higher proportion of missing data in FBC (14.8%) and BBC (16.3%) relative to the F:B 

ratio (1.9%), we built an empirical model for the F:B ratio by randomly splitting the dataset with 75% of 

the data used in training the model. With the generalized linear model of the F:B ratio, we performed the 

principal component analysis to estimate the number of the important components in explaining the 

variations in the F:B ratio. Based on the variations explained by each component and the cumulative 

variation of components, we selected 31 of the most important factors, with 33.0% of the variation in the 

F:B ratio explained by the empirical model (Fig. 1.S7; Table 1.S2). The selected empirical model had the 

formula: log10 (F:B ratio) = 0.6789 - 0.03402 * MAT - 0.000058 * MAP + 0.003772 * ST + 1.542 * SM - 

0.00099 * NPP + 0.01553 * Croot + 0.1226 * bulk density + 0.05991 * soil pH - 0.03631 * clay - 0.0045 * 

sand + 0.002878 * SOC - 0.01607 * TN + 0.000177 * MAT * ST - 0.03955 * MAT * SM - 0.000015 * 

MAP * ST - 0.000335 * MAP * SM + 0.000005 * MAT * NPP - 0.001615 * MAT * Croot + 0.000001 * 

MAP * NPP + 0.000007 * MAP * Croot + 0.02201 * MAT * bulk density - 0.003794 * MAT * soil pH + 

0.002188 * MAT * clay + 0.000137 * MAT * sand - 0.000061 * MAT * SOC + 0.00513 * MAT * TN - 

0.000029 * MAP * soil pH + 0.000001 * MAP * clay + 0.000003 * MAP * sand - 0.000001 * MAP * 

SOC - 0.000043 * MAP * TN 
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After the model was developed, we used 25% of the data that were not used in model development to 

validate the model, and we found a high consistency between model prediction and observed data (Fig. 

1.S8a). We then investigated the F:B ratio model performance by comparing the model simulated values 

and observed data in each biome (Fig. 1.S9). We found good consistency between the simulated and 

observed log-transformed F:B ratio in all biomes except desert. Given the much lower BBC and FBC in 

deserts, this inconsistency does not introduce a large bias to the large-scale estimation of BBC and FBC. 

Additionally, we found some overestimation of the F:B ratio in croplands and pastures, indicating large 

uncertainties in managed systems. 

 

Mapping global soil bacterial and fungal biomass carbon 

We compared the soil microbial biomass C reported in Xu et al. (2013) and the sum of FBC and BBC in 

this study and found a strong agreement in these estimates (Fig. 1.S8b; R2=0.91). This indicated that the 

sum of FBC and BBC constituted a constant proportion of microbial biomass, which provided a feasible 

way to estimate FBC and BBC. Based on the microbial biomass C dataset in Xu et al. (2013) and the 

global map of the F:B ratio generated in this study, we produced the global maps and estimated global 

storage of FBC and BBC. The auxiliary data used included global vegetation distribution (Xu et al., 2013) 

and global land area database supplied by surface data map generated by the Community Land Model 4.0 

(https://svn-ccsm-

models.cgd.ucar.edu/clm2/trunk_tags/clm4_5_1_r085/models/lnd/clm/tools/clm4_5/mksurfdata_map/). 
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Uncertainty analysis 

To estimate the parameter-induced uncertainties in fungal and bacterial biomass distribution and storage, 

we used an improved Latin Hypercube Sampling (LHS) approach to estimate variation in F:B ratio. The 

LHS approach is able to randomly produce an ensemble of parameter combinations with a high 

efficiency. This approach has been widely used to estimate uncertainties in model output (Haefner, 2005; 

Xu, 2010; Xu et al., 2014). Specifically, we assumed that all parameters followed a normal distribution. 

Then, we used LHS to randomly select an ensemble of 3000 parameter sets using the function of 

“improvedLHS” in the R package “lhs” (Carnell and Carnell, 2019) (Table 1.S2). Finally, we calculated 

the 95% confidence interval of fungal and bacterial biomass C density and storage for reporting (Table 

1.2). 

 

Statistical analysis 

We first tested the normality of data distribution using the function of “shapiro.test” in the R package 

“stats” (R Core Team, 2013). We found that FBC, BBC, and F:B ratio in our dataset did not follow a 

normal distribution. Therefore, these variables were log-transformed for subsequent statistical analysis. 

The mean and 95% confidence boundaries of FBC, BBC, and F:B ratio were transformed back to the 

original values for reporting. We constructed a generalized linear model using the function of “glm” in 

the R package “stats” (R Core Team, 2013) to investigate relationships between FBC, BBC, and the F:B 

ratio and long-term climate (MAP and MAT), soil microclimate (ST and SM), plant (NPP and Croot), and 

edaphic properties (clay, sand, soil pH, bulk density, SOC, and TN). We used Akaike information 

criterion (AIC) as a model selection criterion. Before conducting the generalized linear model, we tested 

the multicollinearity for the variables within and among each variable group, i.e., climate, soil 

microclimate, edaphic properties, and plant, and we found no significant multicollinearity (VIF < 5). All 

statistical analyses were performed and relevant figures were plotted using “agricolae” (de Mendiburu 
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and de Mendiburu, 2019), “multcomp” (Hothorn et al., 2016), “soiltexture” (Moeys, 2018), 

“VennDiagram” (Chen and Boutros, 2011), “ggplot2” (Wickham et al., 2016), and “basicTrendline” (Mei 

et al., 2018) packages in R version 3.5.3 for Mac OS X (https://www.r-project.org). Fig. 1.1 and Fig. 1.3 

were produced with NCAR Command Language (version 6.3.0) and ArcGIS (version 10.5), respectively. 

 

Results 

Biome-level FBC, BBC, and F:B Ratio 

There was a large variation in biome-level FBC, BBC, and F:B ratio (Table 1.1; P < 0.001 for FBC, BBC, 

and F:B ratio among biomes). Desert exhibited the lowest FBC of 16.9 (95% range: 14.4~19.9) mg kg-1 

and BBC of 6.8 (6.1~7.7) mg kg-1, while tundra habitats displayed the highest FBC of 3683.6 

(1678.5~8083.9) mg kg-1 and BBC of 428.4 (237.0~774.3) mg kg-1. Boreal forest had significantly higher 

FBC than tropical/subtropical forests and temperate forests (1234.0 mg kg-1 for boreal forests vs. 258.4 

mg kg-1 for temperate forests and 451.4 mg kg-1 for tropical/subtropical forests). Boreal forest and 

tropical/subtropical forests had significantly higher BBC than temperate forests (226.4 mg kg-1 for boreal 

forest, 210.9 mg kg-1 for tropical/subtropical forest vs. 53.0 mg kg-1 for temperate forest), but no 

significant differences in BBC were found between boreal forests and tropical/subtropical forests (Table 

1.1). Pasture had significantly higher FBC and BBC than grasslands (632.2 mg kg-1 soil vs. 215.2 mg kg-1 

soil for FBC and 270.7 mg kg-1 soil vs. 62.7 mg kg-1 soil for BBC). While we did not find differences in 

FBC across unvegetated ground, cropland, shrub, savanna, and natural wetlands, BBC was significantly 

higher in wetlands than in unvegetated ground (Table 1.1).  

 

The F:B ratio varied less across biomes, with the lowest values in savannas and highest values in tundra 

habitats (1.8 for savanna vs. 8.6 for tundra). We also found significantly higher F:B ratios in boreal 



 
 

19 

forests and temperate forests than in tropical/subtropical forests (5.0 for boreal forest, 4.9 for temperate 

forest vs. 2.2 for tropical/subtropical forest). No significant differences in F:B ratio were found among 

natural wetlands, unvegetated grounds, desert, and shrub (Table 1.1). 

 

Quantitative assessment of controls on microbial biogeography 

We constructed generalized linear models to disentangle the effects of climate (MAP and MAT), plant 

(NPP and Croot), soil microclimate (SM and ST), and edaphic properties (SOC, TN, soil pH, clay, sand, 

and bulk density) on the variation in FBC, BBC, and F:B ratio. The variance inflation factor (VIF) test 

showed no multicollinearity among variables. Environmental factors in total explained a large proportion 

of variation in microbial biomass (81.9% for FBC, 84.8% for BBC, and 71.2% for F:B ratio) (Fig. 1.2). 

Notably, the edaphic properties are the most important drivers in FBC and BBC, with 66.4% and 70.4% 

of the variation in FBC and BBC explained by edaphic properties and the interaction with other factors, 

respectively (Fig. 1.2a-b). Complex interactions between the groups of variables explained 23.7% of the 

variation in FBC (Fig. 1.2a). In contrast, variation in BBC was explained primarily by the interactions 

between edaphic properties and climate (13.9%), multiple interaction terms (11.9%), and edaphic 

properties alone (10.2%). Climate alone and climate interactions with other variables explained 11.6% 

and 35.5% of the variation in the F:B ratio, respectively (Fig. 1.2c). 

 

Global carbon storage of fungal and bacterial biomass 

Based on our findings of environmental controls on FBC and BBC at the biome and global scales, we 

further developed an empirical model for the F:B ratio considering the higher proportion of missing data 

in FBC (14.8%) and BBC (16.3%) relative to the F:B ratio (1.9%) (Materials and Methods; Table 1.S2).  

Combined with a global microbial biomass C dataset reported by Xu et al. (2013), we further produced 

global maps of BBC and FBC in topsoil (Fig. 1.3). The global FBC and BBC are estimated to be 12.56 
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(6.64~16.42) PgC and 4.34 (0.47~10.26) PgC, respectively, in 0-30 cm topsoil. Taking the global 

estimates of SOC (684~724 PgC in 0-30 cm), approximately 1.8% and 0.6% of SOC is stored in soil 

fungi and bacteria, respectively. The highest FBC density occurs in northern high-latitude regions while 

the lowest values are characteristic of mid-latitude regions (Fig. 1.3b). Similarly, the highest BBC is 

found in high-latitude and equatorial regions, and the lowest in mid-latitude regions (Fig. 1.3c). 

  

At biome-level, boreal forest stores the largest FBC (3.60 PgC) and tropical/subtropical forests have the 

largest BBC storage (0.85 PgC), while shrubs contribute the least to both FBC and BBC (0.39 PgC for 

FBC and 0.14 PgC for BBC) (Table 1.2). Although boreal forests do not occupy the Earth’s largest 

surface area (11.82 million km2), the high FBC density contributes to its prominent FBC storage. The 

high microbial C in the pasture biome reflect its large area (27.0 million km2). Along with the second 

largest area (16.44 million km2), tropical/subtropical forests thus stored the largest BBC across the globe. 

The smallest FBC and BBC storage in shrub was primarily due to its small area (8.11 million km2) and 

the low FBC and BBC densities (48.06 gC m-2 for FBC and 17.31 gC m-2 for BBC). The small FBC and 

BBC storage in deserts primarily resulted from their low FBC and BBC densities (Fig. 1.S5), while the 

small FBC and BBC storage in tundra and natural wetland may be due to the small area (5.75 million km2 

for tundra and 6.91 million km2 for natural wetlands). Tundra has high densities of FBC and BBC (226.96 

gC m-2 for FBC and 32.65 gC m-2 for BBC). 

 

Discussion 

Biogeographic patterns of microbial biomass 

We found significant global patterns of fungi, bacteria and their balance in topsoil along latitude, climate 

(MAP and MAT), plant (NPP and Croot), soil microclimate (SM and ST), and edaphic factors (SOC, TN, 
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C:N ratio, soil pH, soil texture, and bulk density) (Fig. 1.S2-6) that are consistent with previous studies 

(Fierer et al., 2009; Waring et al., 2013; Chen et al., 2016; Bahram et al., 2018). For example, Bahram et 

al. (2018) reported the inverse unimodal trend of BBC and positive linear trend of F:B ratio along latitude 

and significant positive linear trend of F:B ratio along MAP and MAT. Fierer et al. (2009) reported 

significant controls of plant NPP on microbial biomass, whereas Waring et al. (2013) showed that F:B 

ratio increased along with the increase in C:N ratio, and de Vries et al. (2012) found that finely textured 

soils tend to have higher fungal and bacterial biomass. The key advantage of our study is that all these 

analyses are incorporated into a single study with much improved global sampling. 

 

The discrepancies between this study and previous studies primarily lie in two aspects. First, in contrast to 

the inverse unimodal trend of FBC along latitude, Bahram et al. (2018) found a positive linear 

relationship between FBC and latitude, which we attribute to a small number of data points in the high-

latitudes and the lack of data from high arctic habitats. Furthermore, the difference in overall sample size 

may have led to the variations in the relationships obtained among studies. The dataset in Bahram et al. 

(2018) was compiled using globally selected sampling plots (145 topsoil samples), while the dataset in 

this study is a comprehensive dataset with 1323 data points (Fig. 1.1). Second, we observed the inverse 

unimodal relationship between F:B ratio and soil pH, with lowest the F:B ratio at pH ~6.3, while Chen et 

al. (2015) reported a significant positive relationship between F:B ratio and soil pH for the Mongolian 

Plateau and Eskelinen et al. (2009) found a negative relationship between F:B ratio and soil pH in the 

alpine tundra of northern Europe. These discrepancies may result from differences in the spatial scale and 

range of soil pH. Soil pH values exceeded 6.5 and ranged from 4.7 to 7.0 in the studies of Chen et al. 

(2015) and Eskelinen et al. (2009), respectively. In their range of measurements, these F:B ratio and soil 

pH relationships are consistent with our study. 
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We found lowest FBC and BBC in deserts among biomes (Table 1.1), which was in line with precious 

studies. For example, Fierer et al. (2009) and Xu et al. (2013) also reported lowest soil microbial biomass 

in deserts, the low SOC concentration may result in low FBC and BBC in deserts (Fig. 1.S6). 

Furthermore, both FBC and BBC were significantly higher in tropical/subtropical forests than in 

temperate forests among forest biomes in this study (Table 1.1). In contrast, we found the highest soil 

microbial biomass in tundra, and soil microbial biomass was significantly higher in boreal forests than 

that in temperate forests and tropical/subtropical forests in our previous study (Xu et al., 2013). Fierer et 

al. (2009) reported the higher soil microbial biomass in temperate and tropical forests than that in boreal 

forests, which exhibited opposite patterns with this study. The seasonality of FBC and BBC could be the 

cause of this inconsistency. Microbial biomass showed strong seasonal dynamics, samples taken in 

growing and non-growing seasons are expected to have distinct microbial biomass C density (Lipson et 

al., 2002). 

 

We have also detected that F:B ratio was distinct among biomes, with the smallest F:B ratio in savanna 

and the highest in tundra (Table 1.1). Similar to our findings, Bahram et al. (2018) found significantly 

higher F:B ratio in boreal-arctic biomes (e.g., tundra and boreal forests) and temperate biomes (e.g., 

temperate forests and grassland) than in tropical biomes (e.g., savanna and tropical/subtropical forests). 

The highest F:B ratio in tundra may result from several reasons. First, saprotrophic fungi have more 

efficient enzymatic machinery than bacteria to decompose complex organic material with high C:N ratio 

(de Vries et al., 2012; Chen et al., 2015). Second, highly carbon-rich soils usually display low soil pH that 

is relatively more stressful for bacteria compared with fungi (Eskelinen et al., 2009; Rousk et al., 2010). 

Third, fungi are better adapted to low‐temperature conditions than bacteria (Pietikäinen et al., 2005). 

These three interacting mechanisms may favor fungi-dominated ecosystem C and nutrient cycling in 

tundra and boreal forest biomes. In contrast, Fierer et al. (2009) reported a higher F:B ratio in temperate 

forests than tundra, different methods used to quantify the F:B ratio may explain these differences. The 
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F:B ratio reported in Fierer et al. (2009) was calculated as fungal to bacterial small‐subunit rRNA gene 

copies measured using qPCR, whereas PLFA-measured fungal to bacterial biomass C was employed in 

this study. 

 

Spatial distribution and budget of FBC and BBC 

Densities of both FBC and BBC were highest in arctic regions and lowest in mid-latitude regions globally 

(Fig. 1.3a, b). Importantly, much of the variation in FBC and BBC was determined by edaphic properties 

(Fig. 1.2a-b), indicating that the variation in edaphic factors along a latitudinal gradient may explain the 

global distribution of FBC and BBC. The predominant role of edaphic factors in regulating FBC and BBC 

can be ascribed to the impacts of soil pH, SOC, nutrient concentration, and soil water content on fungal 

and bacterial physiology (Brockett et al., 2012; de Vries et al., 2012). Our models revealed well-predicted 

FBC and BBC along SOC, TN, C:N ratio, bulk density, soil pH, and soil texture (Fig. 1.S6). In addition, 

the interactions between fungi and bacteria may affect spatial distribution of FBC and BBC. Although the 

taxonomic diversity of fungi and bacteria are highest in mid-latitude regions (Tedersoo et al. 2014; 

Bahram et al. 2018), these biomes support the lowest microbial biomass. Severe competition or substrate 

limitation in mid-latitude regions may reduce soil microbial biomass.  

 

Generally, we found that the F:B ratio was low at low latitudes (Fig. 1.S2c). The decrease of soil nutrient 

cycling in ectomycorrhizal habitats (Fernandez and Kennedy, 2016) may result in the gradual increase of 

F:B ratio along latitude (Soudzilovskaia et al., 2019; Crowther et al., 2019). However, we did observe 

some high F:B ratios grids around equatorial regions, the high F:B ratio in these regions might be 

explained by several reasons. First, sand content in equator regions is much higher than other regions due 

to the long period of soil development and clay leaching, sandy texture soil cannot provide good 

protection for bacterial predators despite the relatively low bacterivore and fungivore nematode 
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concentration in low-latitude regions (Hassink, 1992; Hoogen et al., 2019), which will increase the 

proportion of bacteria being consumed. Second, well-weathered soils contain low phosphorus 

concentration, which is known to be an important control of initial litter decay in the tropics. Fungi are 

capable of decomposing recalcitrant organic matter (van der Heijden et al., 2008), and thus the poor-

quality litter may in return facilitate the dominance of fungi. 

 

We estimated FBC and BBC storage in topsoil as 12.56 PgC and 4.34 PgC, respectively (Table 1.2). This 

result is consistent with overall terrestrial biomass estimates of FBC and BBC storage of 12 PgC and 7 

PgC, respectively, as reported by Bar-On et al. (2018). Differences in methods probably account for most 

of the differences between the results reported in these studies. Fungi are more sensitive to anoxic 

conditions, and bacteria and archaea are important components in deep soils such as subsurface 

environments (Bar-On et al., 2018). It is likely that the differences in the soil depths between this study 

(0-30 cm) and Bar-On et al. (2018) (entire soil profile) might underpin the discrepancy in estimated 

global budgets of BBC. 

 

Implications for global carbon cycle 

We estimated the ratio of FBC and BBC to SOC as 1.8% and 0.6%, respectively, which agrees with the 

findings that microbial biomass C generally comprises 0.5-13% of SOC (Insam, 1990; Sparling, 1992; 

Geisseler and Scow, 2014; Ananyeva et al., 2015). Soil microbes have a much faster turnover rate than 

soil organic carbon (Xu et al., 2017). Fungi and bacteria account for >90% of the total soil microbial 

biomass and are the major decomposer groups in soils (Beare, 1997). Necromass of fungi and bacteria is 

one of the major sources of recalcitrant organic compounds in soil (Gougoulias et al., 2014). Soil 

microbial necromass is about three orders of magnitude higher than soil microbial biomass (Glaser et al., 

2004), and can make up more than half of SOC (Liang et al., 2019). Fungal-derived necromass was 
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reported to be dominant over the bacterial-derived necromass in SOC formation, which may be due to the 

higher recalcitrance of their cell walls, the biosynthesis of secondary metabolites, and the hyphae 

structure facilitated mineral protection (Li et al., 2015).  

 

In addition to the formation of recalcitrant organic compounds in soil, soil fungal and bacterial biomass 

are important in conducting biochemical transformation of C and nutrients (Xu et al., 2013). For example, 

as litter quality decreases, fungi are expected to play more important roles (Van Der Heijden et al., 2018). 

Therefore, variations in F:B ratios can imply changes in the decomposer population and the changes in 

soil microbial community composition and function (Six et al., 2006). 

 

However, the balance between fungal and bacterial biomass (F:B ratio) was in large variation. In addition 

to the natural variations due to the seasonal dynamics of fungal and bacterial biomass, fungal and 

bacterial growth are affected by temperature, moisture, soil pH, substrate, vegetation, and toxicity (Rousk 

and Bååth, 2011). Therefore, F:B ratios are highly vulnerable to changing environmental conditions such 

as climate change, land use change, pollution, and soil contamination. For example, Bell et al. (2014) 

found that a 7-year period of surplus watering increased soil F:B ratio due to the deficiency of phosphorus 

in watered plots. Either fungal or bacterial dominance is closely associated with the cycling pace of 

organic carbon from soil to atmosphere (Carvalhais et al., 2014; Crowther et al., 2019). Therefore, the F:B 

ratio is one critical indicator of the global C cycle under the changing environment. 

 

Limitations and prospects 

Some limitations need to be recognized when interpreting the results. First, we assumed that all samples 

were taken from surface soil, representing 0 - 30 cm soil profile; while the sampling depth varies between 
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0 and 30 cm in this study, with 76% of soil samples taken for topsoil of 0 -15 cm. Considering the vertical 

distribution of microbial biomass C (Xu et al., 2013), this bias might lead to a slight overestimation in 

BBC and FBC. Second, the disproportionate number of data points from each biome relative to its land 

area might lead to bias in spatial extrapolation. For example, the data points from forest, grassland, and 

cropland contribute approximately 80% of the dataset, while the land area of these biomes is 

approximately 50% of the global land area (Table 1.2). Third, the sampling date might be another reason 

for uncertainty; the data points were taken from various seasons and we assume the average across 

seasons represent the annual mean. In this aspect, future studies on seasonal variation of soil FBC and 

BBC should address this limitation. Fourth, actinobacteria were categorized as bacteria in a portion of 

studies but not in others (Andersen et al., 2010; Royer-Tardif et al., 2010). Although we reclassified 

bacteria based on the biomarkers used in the literature, i.e., actinobacteria were added into bacteria if the 

papers did not use general bacterial markers (e.g., PLFAs 14:0, 15:0, 16:0, 17:0, and 18:0) for the 

reported bacterial PLFA concentration, the diverse classification may introduce minor uncertainties in 

simulating the relationships between FBC and BBC. 

 

Conclusions 

This study reported the BBC and FBC in major biomes and produced the first global maps of BBC and 

FBC in 0-30 cm topsoil. The global FBC and BBC are estimated to be 12.56 (6.64 ~ 16.42) PgC and 4.34 

(0.47 ~ 10.26) PgC, respectively, in 0-30 cm topsoil. The FBC, BBC, and F:B ratio showed clear 

distribution patterns on a global scale. Significant trends are observed along meteorological parameters 

(MAP, MAT, ST, and SM), vegetation productivity (Croot and NPP), and edaphic properties (soil texture, 

bulk density, soil pH, SOC, TN, and C:N ratio). The FBC and BBC were primarily determined by 

edaphic properties including soil texture, soil pH, bulk density, and SOC. the F:B ratio is primarily driven 

by climatic variables, particularly MAP and MAT. The biogeographic patterns of BBC and FBC suggest 
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that multiple mechanisms synergistically affect soil C and nutrient cycling at the global scale. The 

biogeographic patterns of BBC and FBC and their controls facilitate the development of microbial 

macroecology (Xu et al., 2020) and provide fundamental information for incorporating microbial 

mechanisms into Earth system models, and the estimated budget and maps of FBC and BBC at biome and 

global scales serve as a benchmark for validating the ongoing microbial modeling to enhance climate 

projections. 
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Figures and tables 
Fig. 1.1 Global distribution of data points included in this analysis. 1323 data points with geographical 
coordinates are shown in this map. Circles indicate study sites, with circles in different sizes showing 
variation in the number of data points and different colors representing different biomes 

 

Fig. 1.2 Interactive effects of climate, plant, edaphic properties, and soil microclimate on (a) fungal 
biomass carbon (n=611), (b) bacterial biomass carbon (n=619), and (c) F:B ratio (n=748); Ellipses 
represent the different groups of factors (climate, plant, edaphic properties, and soil microclimate). 
Climate includes MAT and MAP; Plant represents combined information of Croot and NPP; Edaphic 
properties includes bulk density, soil pH, SOC, ST, clay, and sand. Soil microclimate represents ST and 
SM (red ellipse indicates the dominant group of variables). Numbers represents the variation partitioned 
by different sections. 

 

Fig. 1.3 Global maps of (a) fungal biomass C, (b) bacterial biomass C, and (c) F:B ratio in topsoil 

 
Table 1.1 Biome-level fungal biomass carbon (FBC), bacterial biomass carbon (BBC,) and fungi: 
bacteria (F:B) ratio 
 

Table 1.2 Biome- and global level storage and density of soil fungal and bacterial biomass C (95% 
confidence interval are shown in the bracket) 
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Fig. 1.1 Global distribution of data points included in this analysis. 1323 data points with geographical 
coordinates are shown in this map. Circles indicate study sites, with circles in different sizes showing 
variation in the number of data points and different colors representing different biomes 
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Fig. 1.2 Interactive effects of climate, plant, edaphic properties, and soil microclimate on (a) fungal 
biomass carbon (n=611), (b) bacterial biomass carbon (n=619), and (c) F:B ratio (n=748); Ellipses 
represent the different groups of factors (climate, plant, edaphic properties, and soil microclimate). 
Climate includes MAT and MAP; Plant represents combined information of Croot and NPP; Edaphic 
properties includes bulk density, soil pH, SOC, ST, clay, and sand. Soil microclimate represents ST and 
SM (red ellipse indicates the dominant group of variables). Numbers represents the variation partitioned 
by different sections. 
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Fig. 1.3 Global maps of (a) fungal biomass C, (b) bacterial biomass C, and (c) F:B ratio in topsoil

a

b

c
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Supplementary material for chapter 1 
Fig. 1.S1. Climate variables and edaphic properties observed at for the sampling sites (obtained from the 
literature sources used for FBC, BBC, and F:B ratio) and those extracted from the global maps. MAT: 
mean annual temperature; MAP: mean annual precipitation. SOC: soil organic carbon; TN: total nitrogen. 
MAT and MAP with the spatial resolution of 30s during 1970-2000 were obtained from the WorldClim 
database version 2 (http://worldclim.org/version2). Soil pH, sand, silt, clay, and SOC data were from the 
Harmonized World Soil Database (https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1247), while soil bulk 
density and TN data are from the IGBP-DIS dataset (https://daac.ornl.gov/SOILS/guides/igbp-
surfaces.html).  

 

Fig. 1.S2. Latitudinal distribution of fungal (a), bacterial (b) biomass C and F:B ratio (c). Regressions are: 
Y=0.00073X2-0.048X+3 with N=1122 for a; Y=0.00055X2-0.044X+2.6 with N=1140 for b; 
Y=0.0061X+0.32 with N=1300 for c. 

 

Fig. 1.S3. Fungal, bacterial biomass and F:B ratio across MAT (a-c) and MAP (d-f). MAT, mean annual 
temperature; MAP, mean annual precipitation. Regressions are: Y=0.0021X2-0.062X+2.7 with N=1054 
for a; Y=0.0057X+1.8 with N=1069 for b; Y=-0.017X+0.75 with N=1229 for c; Y=-1.5×10-

7X2+0.00065X+2 with N=1054 for d; Y=-1.1×10-7X2+0.00067X+1.4 with N=1069 for e; Y=-
0.00015X+0.74 with N=1229 for f. 

 

Fig. 1.S4. Association between fungal and bacterial biomass C and F:B ratio and soil moisture (a-c) and 
soil temperature (d-f). SM, soil moisture; ST, soil temperature. Regressions are: Y=-5.3X2+6.6X+0.83 
with N=1054 for a; Y=X+1.5 with N=1069 for b; Y=-2.2X2+2.2X+0.14 with N=1229 for c; 
Y=0.0046X+2.4 with N=1054 for d; Y=5.6×10-5X2+0.011X+1.8 with N=1069 for e; Y=-0.0066X+0.62 
with N=1229 for f. 

 

Fig. 1.S5. Fungal, bacterial biomass and F:B ratio across the Croot (a-c) and NPP (d-f). Croot: root carbon 
density; NPP: net primary productivity. Regressions are: Y=-0.00017X2+0.012X+2.3 with N=1037 for a; 
Y=0.011X+1.7 with N=1052 for b; Y=-0.00018X2+0.0025X+0.6 with N=1212 for c; Y=0.00025X+2.3 
with N=1054 for d; Y=0.00052 X+1.6 with N=1069 for e; Y=-0.00033X+0.78 with N=1229 for f. 

 

Fig. 1.S6. Fungal, bacterial biomass and F:B ratio across the SOC (a-c), TN (d-f), C:N ratio (g-i), bulk 
density (a-c), soil pH (d-f), and Soil texture (p-r). SOC, soil organic carbon; TN, soil total nitrogen; C:N 
ratio, SOC:TN ratio. Regressions are: Y=7.4×10-6X2-0.021X+2.4 with N=882 for a; Y=6.7×10-6X2-
0.003X+1.9 with N=900 for b; Y=0.0012X+0.5 with N=1002 for c; Y=0.03X+2.4 with N=647 for d; 
Y=0.017X+1.9 with N=662 for e; Y=-0.00073X2+0.037X+0.48 with N=725 for f; Y=-
0.0016X2+0.065X+2 with N=647 for g; Y=-0.0018X2+0.063X+1.6 with N=662 for h; Y=0.00024X2-
0.0035X+0.53 with N=728 for i; Y=2.3X2-7X+7.6 with N=1054 for j; Y=1.7X2-4.9X+5.3 with N=1069 
for k; Y=-0.55X+1.3 with N=1229 for l; Y=0.086X2-1.3X+7 with N=1054 for m; Y=0.05X2-0.78X+4.7 
with N=1069 for n; Y=-0.071X2-0.89X+3.3 with N=1229 for o. 
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Fig. 1.S7. Scree plots for the proportion of variance explained by components from the generalized mixed 
linear model of F:B ratio. 

 

Fig. 1.S8. Empirical model validation using randomly sampled data of F:B ratio (a) and the relationship 
between microbial biomass and the sum of fungal and bacterial biomass (b).  Sum of fungal and bacterial 
biomass and microbial biomass. were calculated based on fungal and bacterial biomass in this study, 
while microbial biomass carbon data were from Xu et al., (2013). 

 

Fig. 1.S9. Comparison between model simulated and observed F:B ratio for major biomes (boreal forest, 
temperate forest, tropical/subtropical forest, grassland, shrubland, tundra, desert, natural wetland, 
cropland, and pasture). F:B ratio shown in the figures were log-scaled. 

 

Table 1.S1. Biome-level fungal and bacterial biomass carbon and fungi:bacteria biomass ratio measured 
with various approaches (direct microscopy, substrate-induced respiration, colony forming units, and 
glucosamine and muramic acid) (mean and 95% confidence interval are reported); the values in the 
bracket are the number of data points 
 
Table 1.S2. Parameters for estimating global map of F:B ratio
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Fig. 1.S1. Climate variables and edaphic properties observed at for the sampling sites (obtained from the 
literature sources used for FBC, BBC, and F:B ratio) and those extracted from the global maps. MAT: 
mean annual temperature; MAP: mean annual precipitation. SOC: soil organic carbon; TN: total nitrogen. 
MAT and MAP with the spatial resolution of 30s during 1970-2000 were obtained from the WorldClim 
database version 2 (http://worldclim.org/version2). Soil pH, sand, silt, clay, and SOC data were from the 
Harmonized World Soil Database (https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1247), while soil bulk 
density and TN data are from the IGBP-DIS dataset (https://daac.ornl.gov/SOILS/guides/igbp-
surfaces.html).  

 



 45 

 

Both FBC and BBC exhibited inverse unimodal relationships with latitude, with lowest values in the mid-

latitudes (Fig. 1.S2a-b; P < 0.0001 for both FBC and BBC along latitude), whereas the F:B ratio was 

positively correlated with latitude (Fig. 1.S2c; P < 0.0001). Of climatic predictors, MAT showed an 

inverse unimodal relationship with FBC, with the lowest at 14-15°C (Fig. 1.S3a; P < 0.0001). Conversely, 

BBC showed no significant correlation with MAT (Fig. 1.S3b; P = 0.19). The F:B ratio showed a 

significantly negative linear relationship with MAT (Fig. 1.S3c; P < 0.0001).  
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Fig. 1.S2. Latitudinal distribution of fungal (a), bacterial (b) biomass C and F:B ratio (c). Regressions are: 
Y=0.00073X2-0.048X+3 with N=1122 for a; Y=0.00055X2-0.044X+2.6 with N=1140 for b; 
Y=0.0061X+0.32 with N=1300 for c. 
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Both FBC and BBC showed unimodal relationships with MAP, with peak FBC and BBC at 

approximately 2100-mm y-1 and 3000-mm y-1, respectively. While F:B ratio linearly decreased with MAP 

(Fig. 1.S3d-f; PFBC < 0.0001, PBBC < 0.0001, PF:B ratio < 0.0001). The FBC increased in a non-linear manner 

with SM, while BBC linearly increased with SM (Fig. 1.S4a-b; PFBC < 0.0001, PBBC < 0.0001). Both FBC 

and BBC linearly increased with ST (Fig. 1.S4d-e; PFBC < 0.0001, PBBC < 0.0001). The F:B ratio increased 

with SM (Fig. 1.S4c; P < 0.0001) but decreased with ST (Fig. 1.4Sf; P < 0.0001).  



 48 

 

Fig. 1.S3. Fungal, bacterial biomass and F:B ratio across MAT (a-c) and MAP (d-f). MAT, mean annual 
temperature; MAP, mean annual precipitation. Regressions are: Y=0.0021X2-0.062X+2.7 with N=1054 
for a; Y=0.0057X+1.8 with N=1069 for b; Y=-0.017X+0.75 with N=1229 for c; Y=-1.5×10-

7X2+0.00065X+2 with N=1054 for d; Y=-1.1×10-7X2+0.00067X+1.4 with N=1069 for e; Y=-
0.00015X+0.74 with N=1229 for f. 
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Fig. 1.S4. Association between fungal and bacterial biomass C and F:B ratio and soil moisture (a-c) and 
soil temperature (d-f). SM, soil moisture; ST, soil temperature. Regressions are: Y=-5.3X2+6.6X+0.83 
with N=1054 for a; Y=X+1.5 with N=1069 for b; Y=-2.2X2+2.2X+0.14 with N=1229 for c; 
Y=0.0046X+2.4 with N=1054 for d; Y=5.6×10-5X2+0.011X+1.8 with N=1069 for e; Y=-0.0066X+0.62 
with N=1229 for f. 
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Vegetation controls on microbial biomass C differed in fungi and bacteria. While BBC significantly 

increased with Croot (Fig. 1.S5a-b; PFBC = 0.2, PBBC = 0.00035), no significant correlation between FBC 

and Croot occurred. The F:B ratio exhibited a unimodal correlation with Croot, with the peak F:B ratio 

associated with the Croot of 6.9 kg m-2 (Fig. 1.S5c; P < 0.0001). Both FBC and BBC linearly increased 

with NPP, while F:B ratio linearly decreased with NPP (Fig. 1.S5d-f; PFBC = 0.011, PBBC < 0.0001, PF:B 

ratio< 0.0001).  
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Fig. 1.S5. Fungal, bacterial biomass and F:B ratio across the Croot (a-c) and NPP (d-f). Croot: root carbon 
density; NPP: net primary productivity. Regressions are: Y=-0.00017X2+0.012X+2.3 with N=1037 for a; 
Y=0.011X+1.7 with N=1052 for b; Y=-0.00018X2+0.0025X+0.6 with N=1212 for c; Y=0.00025X+2.3 
with N=1054 for d; Y=0.00052 X+1.6 with N=1069 for e; Y=-0.00033X+0.78 with N=1229 for f. 
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Microbial biomass was well correlated with edaphic factors. Both FBC and BBC exhibited inverse 

unimodal relationships with SOC, with minimum FBC and BBC at SOC of 142.1 and 222.7 g kg-1, 

respectively (Fig. 1.S6a-b; PFBC < 0.0001, PBBC = 0.0017), while F:B ratio linearly increased with SOC 

(Fig. 1.S6c; P < 0.0001). Both FBC and BBC linearly increased with TN, while F:B ratio exhibited 

unimodal relationship with TN, with the maximum F:B ratio at TN of 25.4 g kg-1 (Fig. 1.S6d-f; PFBC < 

0.0001, PBBC = 0.011, PF:B ratio < 0.0001). Both FBC and BBC showed unimodal relationships with 

SOC:TN (C:N) ratio, with the maximum FBC and BBC at C:N ratio of 20.1 and 17.7, respectively (Fig. 

1.S6g-h; PFBC < 0.0001, PBBC < 0.0001), while F:B ratio showed inverse unimodal relationship with C:N 

ratio, with minimum F:B ratio at C:N ratio of 7.1 (Fig. 1.S6i; PF:B ratio < 0.0001). In addition, both FBC 

and BBC showed inverse unimodal relationships with soil bulk density, with minimum FBC and BBC at 

bulk density of 1.5 and 1.4 gC m-3, respectively, while F:B ratio linearly decreased with bulk density (Fig. 

1.S6j-l; PFBC < 0.0001, PBBC = 0.00035, PF:B ratio < 0.0001). Furthermore, we found that FBC, BBC, and 

F:B ratio all showed inverse unimodal relationships with soil pH, with minimum FBC, BBC, and F:B 

ratio at soil pH of 7.5, 7.4 and 6.3, respectively (Fig. 1.S6m-o; PFBC < 0.0001, PBBC < 0.0001, PF:B ratio < 

0.0001). We also found the highest FBC and BBC in clayey s, but the highest F:B ratio in sandy soil (Fig. 

1.6Sp-r; PFBC < 0.0001, PBBC < 0.0001, PF:B ratio < 0.0001). 
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Fig. 1.S6. Fungal, bacterial 
biomass and F:B ratio across 
the SOC (a-c), TN (d-f), C:N 
ratio (g-i), bulk density (a-c), 
soil pH (d-f), and Soil texture 
(p-r). SOC, soil organic carbon; 
TN, soil total nitrogen; C:N 
ratio, SOC:TN ratio. 
Regressions are: Y=7.4×10-6X2-
0.021X+2.4 with N=882 for a; 
Y=6.7×10-6X2-0.003X+1.9 with 
N=900 for b; Y=0.0012X+0.5 
with N=1002 for c; 
Y=0.03X+2.4 with N=647 for 
d; Y=0.017X+1.9 with N=662 
for e; Y=-
0.00073X2+0.037X+0.48 with 
N=725 for f; Y=-
0.0016X2+0.065X+2 with 
N=647 for g; Y=-
0.0018X2+0.063X+1.6 with 
N=662 for h; Y=0.00024X2-
0.0035X+0.53 with N=728 for 
i; Y=2.3X2-7X+7.6 with 
N=1054 for j; Y=1.7X2-
4.9X+5.3 with N=1069 for k; 
Y=-0.55X+1.3 with N=1229 for 
l; Y=0.086X2-1.3X+7 with 
N=1054 for m; Y=0.05X2-
0.78X+4.7 with N=1069 for n; 
Y=-0.071X2-0.89X+3.3 with 
N=1229 for o. 
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Fig. 1.S7. Scree plots for the proportion of variance explained by components from the generalized mixed 
linear model of F:B ratio. 
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Fig. 1.S8. Empirical model validation using randomly sampled data of F:B ratio (a) and the relationship 
between microbial biomass and the sum of fungal and bacterial biomass (b).  Sum of fungal and bacterial 
biomass and microbial biomass. were calculated based on fungal and bacterial biomass in this study, 
while microbial biomass carbon data were from Xu et al., (2013). 
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Fig. 1.S9. Comparison between model simulated and observed F:B ratio for major biomes (boreal forest, 
temperate forest, tropical/subtropical forest, grassland, shrubland, tundra, desert, natural wetland, 
cropland, and pasture). F:B ratio shown in the figures were log-scaled.
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Table 1.S2. Parameters for estimating global map of F:B ratio 
  Variables Estimate Standard error P value 
 

Intercept 0.678900 0.622000 0.275455 
Climate MAT -0.034020 0.049210 0.489551 

MAP -0.000058 0.000614 0.925047 
Soil microclimate ST 0.003772 0.005602 0.500997 

SM 1.542000 0.421200 0.000272 
Plant NPP -0.000990 0.000192 0.000000 

Croot 0.015530 0.006976 0.026334 
Edaphic properties bulk density 0.122600 0.206900 0.553724 

pH 0.059910 0.054370 0.270924 
clay -0.036310 0.009657 0.000185 
sand -0.004500 0.004813 0.350152 
SOC 0.002878 0.000755 0.000150 
TN -0.016070 0.011010 0.145044 

Climate * Soil 
microclimate 

MAT * ST 0.000177 0.000360 0.623217 
MAT * SM -0.039550 0.022240 0.075823 
MAP * ST -0.000015 0.000004 0.000873 
MAP * SM -0.000335 0.000200 0.094909 

Climate * Plant MAT * NPP 0.000005 0.000014 0.746016 
MAT * Croot -0.001615 0.000485 0.000911 
MAP * NPP 0.000001 0.000000 0.000019 
MAP * Croot 0.000007 0.000003 0.032850 

Climate * Edaphic 
properties 

MAT * bulk density 0.022010 0.021550 0.307570 

MAT * pH -0.003794 0.004407 0.389535 
MAT * clay 0.002188 0.000624 0.000485 
MAT * sand 0.000137 0.000399 0.730738 
MAT * SOC -0.000061 0.000086 0.475806 
MAT * TN 0.005130 0.001546 0.000957 
MAP * pH -0.000029 0.000060 0.633060 
MAP * clay 0.000001 0.000009 0.906910 
MAP * sand 0.000003 0.000005 0.593044 
MAP * SOC -0.000001 0.000001 0.581057 
MAP * TN -0.000043 0.000014 0.001652 

* MAT, mean annual temperature; MAP, mean annual precipitation; SM, soil moisture; ST, soil temperature; Croot, 
root carbon density; NPP, net primary productivity; SOC, soil organic carbon; TN, total nitrogen; C:N ratio, 
SOC:TN ratio. Characters and numbers in bold indicate that the estimated coefficients are significant at the 0.05 
level. 
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Chapter 2. Dynamics of Fungal and Bacterial Biomass Carbon in 
Natural Ecosystems: Site-level Applications of the CLM-Microbe 

Model 
 

This chapter has already been published by John Wiley and Sons, with a License Number of 
5302640557831 for dissertation use. 

 

He, L., D. A. Lipson, J. L. M. Rodrigues, M. Mayes, R. G. Björk, B. Glaser, P. Thornton, and X. Xu. 
2021. Dynamics of Fungal and Bacterial Biomass Carbon in Natural Ecosystems: Site-level Applications 
of the CLM-Microbe Model. Journal of Advances in Modeling Earth Systems 13:e2020MS002283. 

 

Abstract 

Explicitly representing microbial processes has been recognized as a key improvement to Earth system 

models for the realistic projections of soil carbon (C) and climate dynamics. The CLM-Microbe model 

builds upon the CLM4.5 and explicitly represents two major soil microbial groups, fungi and bacteria. 

Based on the compiled time-series data of fungal (FBC) and bacterial (BBC) biomass C from nine 

biomes, we parameterized and validated the CLM-Microbe model, and further conducted sensitivity 

analysis and uncertainty analysis for simulating C cycling. The model performance was evaluated with 

mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2) for 

relative change in FBC and BBC. The CLM-Microbe model is able to reasonably capture the seasonal 

dynamics of FBC and BBC across biomes, particularly for sites in tropical/subtropical forest, temperate 

broadleaf forest, and grassland, with MAE < 0.49 for FBC and <0.36 for BBC and RMSE <0.52 FBC and 

<0.39 for BBC, while R2 values are relatively smaller in some biomes (e.g., shrub) due to small sample 

sizes. We found good consistencies between simulated and observed FBC (R2=0.70, P<0.001) and BBC 

(R2=0.26, P<0.05) on average across biomes, but the model is not able to fully capture the large variation 

in observed FBC and BBC. Sensitivity analysis shows the most sensitive parameters are turnover rate, 

carbon-to-nitrogen ratio of fungi and bacteria, and microbial assimilation efficiency. This study confirms 

that the explicit representation of soil microbial mechanisms enhances model performance in simulating 
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C variables such as heterotrophic respiration and soil organic C density. The further application of the 

CLM-Microbe model would deepen our understanding of microbial contributions to the global C cycle. 

Key words: bacteria, biomass dynamics, fungi, model, sensitivity 

 

Introduction 

Global climate change is primarily caused by human-induced increases in atmospheric greenhouse gases, 

modulated by terrestrial ecosystems through a multitude of climate–ecosystem feedbacks (Gruber & 

Galloway, 2008; Keohane, 2015; Peters et al., 2012; Zaehle et al., 2010). Heterotrophic respiration, the 

second largest carbon (C) flux in terrestrial ecosystems, is primarily driven by soil microbes (Gougoulias 

et al., 2014; Sulman et al., 2014; Van Der Heijden et al., 2018). Although progress has been made in 

understanding how microbes affect C cycling, more research is needed on how to accurately project 

microbial feedbacks to climate change. Large uncertainties in global C projections challenge the current 

model framework (Luo et al., 2015; Taylor et al., 2011), and the implicit representation of soil microbes 

may account for parts of those uncertainties (Fang et al., 2005; Wieder et al., 2015; Wieder et al., 2013; 

Xu et al., 2014). 

 

The importance of soil microbes in governing the terrestrial C cycle has received growing attention, and 

soil microbial processes have been partially represented in ecosystem models (Schimel & Weintraub, 

2003; Treseder et al., 2012). The development of soil microbial models, such as the SCAMPS model 

(Sistla et al., 2014), DAMM model (Davidson et al., 2012), microbial-enzyme model (Allison et al., 

2010), and MEND model (Wang et al., 2013), proved to be valauble in simulating microbial feedbacks to 

soil C processes. Soil microbial traits such as enzyme production, temperature sensitivity, carbon use 

efficiency (CUE), microbial and abiotic interaction, and priming effects were incorporated into soil 

microbial models (Allison, 2012; Allison et al., 2010; Tang & Riley, 2015). Recently, soil microbes and 
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microbial traits have increasingly been incorporated into Earth system models (ESMs), such as the 

CORPSE model (Sulman et al., 2014). However, these models assumed that biological responses of soil 

microbial community are functionally equivalent and exert invariant effects on soil processes (Bradford & 

Fierer, 2012). Given the large temporal variations in soil microbial community (Cleveland et al., 2007; 

Díaz-Raviña et al., 1995; Lipson et al., 2002; Lipson & Schmidt, 2004), the assumption of a static soil 

microbial community is increasingly questioned (Wang et al., 2015; Wieder et al., 2015; Wieder et al., 

2014). 

 

Developing models that explicitly represent soil microbial processes poses an important challenge for 

ESMs. Recently, the classification of soil microbes in the TRIPLEX-Microbe model (active and dormant 

components) and the MIMICS model (K- and r-strategists) advanced the representation of the soil 

microbial community and its functions in ESMs (Wang et al., 2017; Wieder et al., 2014). However, the 

distinct roles of broad soil microbial groups (e.g., fungi and bacteria) have not yet been considered in 

models. Bacteria and fungi have different physiological traits, e.g., bacteria prefer to decompose litter low 

in carbon-to-nitrogen (C:N) ratio, while fungi tend to decompose litter with higher C:N ratio (Paul, 2016). 

These differences may cause considerable distinct trajectories of C responses to changing environments 

such as atmospheric nitrogen (N) deposition, elevated carbon dioxide (CO2), and precipitation change 

(Bell et al., 2014; Hopkins et al., 2006; Rousk & Bååth, 2011; Strickland & Rousk, 2010). The 

classification of the soil microbial community into K- and r-strategists based on functional traits 

improved the representation of distinct roles of soil microbial groups in biogeochemical processes; 

however, this characterization is largely theoretical and may therefore limit the effort of directly applying 

observational data to constrain the microbial parameters.  
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Fungi and bacteria, two major measurable soil microbial groups playing distinct roles on soil processes, 

comprise over 90% of the total soil microbial biomass and are the major agents responsible for 

decomposition in soils (Beare, 1997). Although fungi are widely believed to decompose low quality 

compounds such as lignin, bacterial ligninases are also commonly found, both fungi and bacteria 

decompose plant residues and soil organic matter (Burns et al., 2013). For example, as litter quality 

decreases, fungi are expected to play more important roles (Van Der Heijden et al., 2018). Soil fungal and 

bacterial biomass are important components of soil microbial community (He et al., 2020), representing 

the microbial ability to conduct biochemical transformation of C and nutrients (Xu et al., 2013). 

Therefore, variations in fungal:bacterial (F:B) biomass ratio can imply changes in the population of 

decomposers as well as changes in soil microbial community composition and function (Six et al., 2006). 

 

To fill the research gap of explicitly representing soil microbial community functions in ESMs, we 

developed the CLM-Microbe model based on the framework in Xu et al. (2014). Fungi- and bacteria-

regulated processes such as the decomposition of plant and microbial residues were added into the 

CLM4.5 to mechanistically represent major soil microbial processes (Fig. 2.1). To distinguish the 

physiological traits of fungi and bacteria in soil processes, different parameters for fungal- and bacterial-

regulated processes were developed and tested. In this study, we reported the model parameterization, 

sensitivity analysis, and uncertainty analysis at the site level for nine different biomes, and we 

emphasized on interpreting and explaining the simulated results. The key objectives were to: 1) 

parameterize the CLM-Microbe model using observed time-series data of fungal (FBC) and bacterial 

(BBC) biomass C in diverse biomes, 2) evaluate the performance of the CLM-Microbe model in 

simulating FBC and BBC dynamics, and 3) identify the key parameters and processes controlling 

variations in FBC and BBC. 

 



 62 

Methodology 

Data sources 

Due to the large variation in soil microbial community among biomes, we parameterized the model by 

biome (Xu et al., 2014). We selected time-series observed data of FBC and BBC from nine natural 

biomes (i.e., tropical/subtropical forest, temperate coniferous forest, temperate broadleaf forest, boreal 

forest, shrub, grassland, desert, tundra, and wetland), with at least two sites in each biome. Then, we 

randomly selected one site for model calibration and the others for model validation. Finally, nine sites 

were used for model calibration and twelve sites for model validation for nine natural biomes. Site 

information, including geographic location, biome type, site name, site ID, sampling years, and the 

measurement methods, was presented in Table 2.1. 

 

The FBC and BBC were derived from multiple approaches, such as direct microscopy using optical 

microscope (DMO) or fluorescence microscope (DMF), plate count (PC), chloroform fumigation (CF), 

fatty acid methyl ester (FAME), and phospholipid fatty acid (PLFA). Based on our previous study, large 

variations exist in measured fungal and bacterial biomass among different approaches (He et al., 2020). 

The PLFA was the most widely used in field observed data (Table 2.2), and likely the most appropriate 

approach for estimating FBC and BBC simultaneously (He et al., 2020; Waring et al., 2013). To reduce 

the biases introduced by various approaches, we converted the reported FBC and BBC measured using 

DMO (Balser et al., 2005; Olsson & Wallander, 1998), DMF (Frostegård & Bååth, 1996; Stahl & Parkin, 

1996), PC (Bai et al., 2013; Priha et al., 1999), CF (Bailey et al., 2002), and FAME (Miura et al., 2017) to 

PLFA measured values using the conversion factors reported by previous studies, which measured the 

FBC and BBC using at least two methods simultaneously. Then, we performed the conversion from the 

measured fungal and bacterial PLFA concentration to FBC and BBC using conversion factors reported by 

Frostegård and Bååth (1996) and Klamer and Bååth (2004). 
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Model improvements 

The CLM-Microbe model was developed based on the default CLM4.5 with vertical profiles of 

biogeochemistry, and we specifically incorporated soil microbial processes into the decomposition 

subroutines (Koven et al., 2013; Thornton et al., 2007; Thornton & Rosenbloom, 2005). The key 

algorithm for simulating microbial controls on C processes is based on the model framework in Xu et al. 

(2014). The CLM4.5 classified litter into three pools, i.e., litter 1 (labile), litter 2 (cellulose) and litter 3 

(lignin), and soil organic matter (SOM) into four pools, i.e., SOM 1, SOM 2, SOM 3, and SOM 4. The 

three litter and four SOM pools differ in base decomposition rate (τ), with turnover time of litter pools 

ranging from 20 hours to 71 days and SOM pools ranging from 14 days to 27 years (Fig. 2.1). Coarse 

woody debris (CWD) is fragmented, decomposed, and gradually transferred into litter pools, and further 

from litter to SOM pools (Koven et al., 2013).  

 

One critical improvement in the CLM-Microbe model is the representation of the pools of dissolved 

organic matter (DOM), fungal and bacterial biomass into the biogeochemistry cascade in the default 

CLM4.5 (Fig. 2.1). The DOM pool is further linked with a microbial functional group-based methane 

module (Wang et al., 2019; Xu et al., 2015). In the decomposition subroutine, we changed the original 

transfers from litter to SOM to mechanisms that were mediated by soil fungi and bacteria. Specifically, 

we added the C transfer from litter and SOM pools to fungal and bacterial biomass pools and DOM, from 

DOM pool to fungal and bacterial biomass and SOM pools, and from fungal and bacterial biomass pools 

to DOM and SOM pools. A certain proportion of C, defined by fraction factors in fungal and bacterial 

biomass pools, will be respired as CO2 into the atmosphere. In total, the CLM-Microbe model included 41 

transitions mediated by fungi and bacteria, which largely increased the accuracy of simulating the 

complex soil processes relative to 9 transitions in the default CLM4.5. In each soil layer, these transitions 
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are regulated by environmental factors (e.g., temperature, moisture, and oxygen) in the soil. We defined 

26 parameters related to fungi and bacteria related processes in the CLM-Microbe model, with the range 

and description of each parameter to be found in Table 2.2. The code for the CLM-Microbe model has 

been archived at https://github.com/email-clm/clm-microbe, since 2015. The model version used in this 

study was checked out from GitHub on June 18, 2018. 

 

Vegetation effects on soil microbial community 

Vegetation also has a significant influence on soil microbial growth through litter input and root 

exudation (Blagodatskaya & Kuzyakov, 2008). Labile C from litter and root exudates, in the form of 

DOM, can be readily used to enhance fungal and bacterial growth (Göttlicher et al., 2006). Therefore, in 

addition to the slow breakdown of SOM and litter, the DOM pool is refreshed by a rapid release from 

living roots and fresh litter, playing an important role in soil microbial activity (Sulman et al., 2014). In 

the CLM-Microbe model, we incorporated the DOM input from fine roots and litter, and the quantity of 

DOM input from these pools are determined by a parameter quantifying the labile C release from pools of 

fine roots and litter and their pool size. The incorporation of DOM input from litter and fine roots 

represents the vegetation effects on soil microbial community.  

 

Decomposition 

The decomposition of SOM, DOM, and litter was controlled by both their potential decomposition rates 

and environmental conditions. The decomposition processes in the CLM-Microbe model were defined 

following the equations as below, 

𝐷! = 𝑘 × 𝑟"#$%&' × 𝑟(&)*+ × 𝑟*,"-. × 𝑟/0*&1 

𝑟(&)*+ = exp	(−
𝑧
𝑧2
) 
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where DC is the rate of substrate (e.g., SOM, DOM, and litter) breakdown; k is the potential 

decomposition rate; roxygen represents environmental modifier determined by soil oxygen concentration, 

which is set as 1 for the single layer model; rdepth is environmental modifier determined by soil depth, 

which is set as 1 for the single layer model; rwater is environmental modifier determined by soil moisture; 

rtsoil means environmental modifier determined by soil temperature; z means soil depth; 𝑧2 is the e-folding 

depth for decomposition; Tsoil, j is soil temperature at layer j; Tref is the reference temperature for 

decomposition, which is set as 25°C; Q10 indicates the temperature dependence of decomposition, it is the 

ratio of the rate at a specific temperature to that at 10°C lower; Ψj is the soil water potential in layer j; Ψmin 

is a lower limit for soil water potential control on decomposition rate (set to -10 MPa), rwater will be set as 

0 if  Ψj is lower than Ψmin; Ψmax is the upper limit for soil water potential control on decomposition, which 

equals to the saturated soil matric potential, rwater will be set as 1 if  Ψj is higher than Ψmax; wsoil, j means 

soil water content in layer j.  

 

Although there are variations in Q10 of substrate mineralization under various land use types, nutrient 

concentrations, moisture contents, property of substrates, and temperature gradients for measurement 

(Fierer et al., 2003; Hopkins et al., 2006; Larionova et al., 2007), the Q10 value is confined close to 1.5 at 

ecosystem-level, which is set as default Q10 value in CLM4.5. There is no difference in decomposition 

between aboveground and belowground substrate, Q10 values of the decomposition of three litter pools 

(Litter 1, Litter 2, and Litter 3) and two less stable SOM pools (SOM 1 and SOM 2) were set as 1.5 in the 

CLM-Microbe model, which is consistent with the default CLM4.5. Stable SOM in deep soils is believed 
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to have higher Q10 value than that in surface soils (Fierer et al., 2003; von Lützow & Kögel-Knabner, 

2009), indicating that the decomposition of stable SOM in subsurface soil is more sensitive to 

temperature change than that in surface soil. Therefore, to differentiate the Q10 of SOM decomposition in 

different soil depths, Q10 values of 3rd SOM pool and 4th SOM pool are set as 2 and 2.5, respectively, in 

the CLM-Microbe model. Due to the simple chemical structure and low activation energy of DOM, Q10 

value of DOM is expected to be lower than SOM and litter (Davidson & Janssens, 2006). Consequently, 

we set the Q10 value of DOM as 1.25 in the CLM-Microbe model. 

 

Microbial lysis 

The microbial biomass turnover is closely associated with the SOM formation, while the contribution of 

microbial biomass residues to the formation of SOM has been largely underestimated (Liang et al., 2019). 

However, growing evidence showed that the soil microbial community made a relatively high 

contribution to soil organic carbon (SOC) due to its large pool size (Xu et al., 2013) and fast turnover rate 

(Glaser et al., 2004). Sinsabaugh et al. (2016) estimated a global mean biomass turnover time of 67 ± 22 

days based on a negative linear relationship between CUE and microbial biomass turnover time, with the 

mean microbial CUE estimated as 0.25-0.30. Xu et al. (2017) also quantified the microbial biomass 

turnover time as 23 and 28 days based on the area-weighted global average of the metabolic quotient in 

soils (1.8 μmol C·mmol microbial biomass C-1·h-1) and reference metabolic quotient (1.5 μmol C·mmol 

microbial biomass C-1·h-1), respectively, from a global microbial metabolic quotient dataset. These 

estimates in soil microbial biomass turnover are generally in the same order and vary slightly; however, 

the turnover rates of different soil microbial groups (e.g., fungi and bacteria) were distinct and in a wide 

range of variation, with fungal and bacterial biomass turnover rate reported as 0.00143 to 2 d-1 (Moore et 

al., 2005; Rousk & Bååth, 2007, 2011) and 0.00027 to 0.05 d-1 (Moore et al., 2005; Rousk & Bååth, 2011; 

Strickland & Rousk, 2010; Wallander et al., 2004), respectively. 
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In addition, bacterial and fungal growth are highly sensitive to environmental conditions, such as soil 

moisture and temperature. As a result, in the CLM-Microbe model, fungal and bacterial biomass lysis 

process is mechanistically represented as the interactive effects of lysis rate constant and environmental 

factors, i.e., roxygen, rwater, rtsoil, and rdepth, described above. 

 

Soil microbial respiration 

Bacteria and fungi assimilate DOM, SOM, and litter to form their biomass, and a proportion of the 

assimilated C is respired (Fig. 2.1). The proportion of C used for fungal and bacterial respiration is 

determined by the factors indicated in Table 2.2 and Table 2.3. In addition, heterotrophic respiration (HR) 

is widely affected by multiple abiotic and biotic factors, such as substrate concentration and availability, 

soil moisture, and soil temperature (Gomez-Casanovas et al., 2012; Zhang et al., 2013). Therefore, fungal 

and bacterial respiration in the CLM-Microbe model are defined as the interactive effects of substrate 

(i.e., DOM, SOM, and litter), fraction factors quantifying C being respired by fungi and bacteria, and 

environmental factors (i.e., roxygen, rwater, rtsoil, and rdepth) regulating the respiration process.  

 

Carbon use efficiency 

The CUE of soil microbes for three litter pools in the CLM-Microbe model are determined following the 

equation in Sinsabaugh et al. (2013). In addition, CUE is reported to vary with temperature, showing a 

coefficient of -0.012 with increasing temperature (Devêvre & Horwáth, 2000; Xu et al., 2014). Therefore, 

we assumed that CUE decreased compared with the ambient thermal regime of microbes’ habitats 

following the equation as below, 

CUE = :CUE9:; − 𝐶𝑈𝐸5 × =𝑇 − 𝑇!<=1&>>< × :
𝑀?:A

𝑆?:A; <
4.C
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where CUE is C use efficiency, which is defined as the growth‐to‐assimilation ratio for soil microbes; 

CUEmax is the maximum value of C use efficiency; CUET is the coefficient indicating the dependence of C 

use efficiency on temperature; TCUEref is the reference temperature of C use efficiency, which is defined as 

15°C in the CLM-Microbe model; MC:N means the C:N ratio of soil microbial biomass, which is defined 

as 8 in the CLM-Microbe model; SC:N represents C:N ratio of substrate (e.g., litter). 

 

The C flow from litter and SOM pools to soil microbes will be partitioned by fungal and bacterial 

biomass pools based on the C:N ratio of fungal and bacterial biomass. The fraction factor quantifying 

bacteria C gain from litter and SOM is calculated based on the weighted average of assimilation 

efficiency of fungi and bacteria following the equation as below,  

	𝑓𝑏 =
:𝐵?:A 𝑆?:A; <

4.C

:𝐹?:A 𝑆?:A; <
4.C
+ :𝐹?:A 𝑆?:A; <

4.C 

𝑓𝑓 = 1 − 𝑓𝑏 

where fb is the fraction of C flowing into bacteria; ff is the fraction of C flowing into fungi; BC:N means the 

C:N ratio of BBC; FC:N  means the C:N ratio of FBC; SC:N represents C:N ratio of substrates (e.g., litter and 

SOM). 

 

Model forcing data 

The forcing data for this model include meteorological data such as air temperature, relative humidity, 

incoming solar radiation, longwave radiation, precipitation rate, surface pressure, and surface winds. 

Since the sampling year of the sites spans from 1973 to 2018, which was not fully covered by any 

commonly used forcing datasets of CLM. After examining the data distribution, we found that sites 
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sampling later than 2014 are in North America (Table 2.1). Therefore, for sites sampled before 2014, we 

extracted the forcing data during 1 January 1971 through 31 December 2014 from CRUNCEP Version 4 

provided by Climate Data Gateway at the National Center for Atmospheric Research 

(https://www.earthsystemgrid.org). The forcing data for sites sampled later than 2014 were extracted from 

the Global Land Data Assimilation System Version 2 (https://ldas.gsfc.nasa.gov). Using the latitude and 

longitude information of study sites in each biome (Table 2.2), we extracted the meteorological variables 

for all sites. Since the standardized input forcing data are in half-hourly time steps, the extracted 6-hourly 

data for each study site was interpolated to half-hourly step using linear interpolation via na.approx 

function in R (R for Mac OS X version 3.5.3). 

 

Model implementation  

We used default parameters for the subroutine of soil hydrological properties and methane module 

(Koven et al., 2013; Xu et al., 2015), and we focused on the parameterization for soil microbial 

mechanisms related to FBC and BBC dynamics (Table 2.2). To parameterize the model, we set up model 

simulations separately for nine sites (TSF-HS, TCF-NJ, TBF-VA, BRF-WC, SHB-OB, GRS-IA, DST-

CH, TUN-MH, and WET-EM) in the phase of calibration and twelve sites (TUN-ES, TCF-NT, DST-GB, 

DST-JN, BRF-AL, TSF-OS, GRS-BC, TBF-SH, TBF-MS, TBF-TL, SHB-AC, and WET-EF) in the 

phase of validation (Table 2.1).  

 

The model implementation for all sites was carried out in three stages. First, we ran the accelerated 

decomposition spin-up to make the system reach steady state (Thornton & Rosenbloom, 2005). Due to the 

differences in the length of time to reach steady state among biomes, we set the model run as 1500 years 

for tropical and temperate biomes (i.e., tropical/subtropical forest, temperate coniferous forest, temperate 

broadleaf forest, shrub, grassland, and desert), 2000 years for boreal and arctic biomes (i.e., boreal forest 
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and tundra), and 3000 years for wetlands. Then, we ran a final spin-up of 100 years to make the system 

ready for transient simulations during 1850 - 2018. Since observational FBC and BBC are reported at 

daily scale, we set the output resolution of transient simulations as a daily time step. 

 

To guarantee the reasonable soil and vegetation conditions in each site at the same standard, we extracted 

the SOC of the top 1 m soil profile from the Harmonized World Soil Database (HWSD, 

https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1247) and net primary productivity (NPP) from MODIS 

gridded dataset with a spatial resolution of 30 seconds during 2000-2015 

(http://files.ntsg.umt.edu/data/NTSG_Products/) for each site using their latitude and longitude 

information. Before parameterizing the CLM-Microbe model, we adjusted the parameters related to plant 

photosynthesis (e.g., flnr), C allocation (e.g., froot_leaf), and e-folding depth for decomposition (e.g., 

decomp_depth_efolding) to make all the sites have soil and vegetation conditions reported by global 

datasets. Since soil and vegetation are in high spatial heterogeneity, the global datasets may not be able to 

capture the variation at fine scale. If the SOC and NPP extracted from global datasets were extremely 

high or low for the biome, we used the values reported in the literature. If the SOC and NPP were not 

available from literature, we used the biome average instead (Chapin et al., 2011; Jobbágy & Jackson, 

2000). For tropical/subtropical forest, we had a site specified as needleleaf trees, whereas tropical 

needleleaf tree is not available in default plant function types. Therefore, we modified the parameters for 

needleleaf_evergreen_temperate_tree following the parameters featuring tropical trees such as minimum 

and upper limit of temperature for growth and monthly temperature. Also, we altered the longevity for 

needleleaf_evergreen_temperate_tree following the trend of needle tree leaf longevity reported by Xiao 

(2003). 
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Based on the current knowledge of mechanisms for FBC and BBC dynamics, we primarily focused on 

parameters related to microbial lysis (m_bdom_f, m_bs1_f, m_bs2_f, m_bs3_f, m_fdom_f, m_fs1_f, 

m_fs2_f, m_fs3_f, k_bacteria, and k_fungi), microbial respiration (m_batm_f and m_fatm_f), 

decomposition of litter, DOM and SOM (k_dom, m_domb_f, m_domf_f, m_doms1_f, m_doms2_f, and 

m_doms3_f), and stoichiometric traits of fungal and bacterial biomass (cn_bacteria and cn_fungi). We 

first ran the model for each biome using the average values reported by previous studies, then we 

empirically calibrated the parameters based on the observed FBC and BBC of sites selected in calibration 

phase (Table 2.3). The calibration was based on the model behavior in capturing the seasonal variations in 

FBC and BBC when plotting them against the time axis. Next, we validated the model using the 

parameters in Table 2.3 to test the model simulation performance by plotting simulated FBC and BBC 

against the observed data. 

 

Model evaluation  

We used three metrics to evaluate model performance, including: 

1. Mean absolute error (MAE), a measure of model error, was computed as 

𝑀𝐴𝐸 =
1
𝑁
Q|𝑦- − 𝑦T|
D

-E3

 

where 𝑦- is the simulated value; 𝑦T means the observed value; N is the number of data points. The MAE 

indicates the mean error of the model simulation, and thus lower MAE values are preferred. 

 

2. Root mean square error (RMSE), indicating the model accuracy, was calculated as: 
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𝑅𝑀𝑆𝐸 = V
1
𝑁
Q(𝑦- − 𝑦T)F
D

-E3

 

where 𝑦- is the simulated value; 𝑦T means the observed value; N is the number of data points. Similar with 

MAE, RMSE also indicates the mean error of the model simulation, and the lower values indicate the 

higher model accuracy. The RMSE estimation is equal or larger than MAE estimation in most cases, and 

the degree to which RMSE estimation exceeds MAE estimation depend on the outliers in the simulated 

and observed data. 

 

3. The coefficient of determination (R2), representing the variation in the observations explained by the 

model, was calculated following the equation as below, 

𝑅F = 1 −
∑(𝑦- − 𝑦T)F

∑(𝑦- − 𝑦X)F
 

where 𝑦- is the simulated value; 𝑦T means the observed value; 𝑦X is the mean of the observed value. Higher 

R2 values indicate better performance of the model, while lower R2 values mean the worse model 

performance and smaller proportion of variation being explained by the model. It is noteworthy that R2 is 

not suitable for assessing the goodness-of-fit for a small number of data points due to the large bias in 

small samples. 

 

Sensitivity analysis and uncertainty analysis 

To identify the key processes and parameters for FBC and BBC dynamics across biomes, we conducted 

sensitivity analysis using one site in each biome. We selected 25 parameters related to the decomposition 

of SOM, litter and DOM, fungal and bacterial respiration, CUE, and microbial lysis for identifying key 

processes and parameters in regulating FBC and BBC dynamics, which were also used for uncertainty 
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analysis (Table 2.5). Eventually, nine sites, i.e., DST-CH, GRS-IA, SHB-OB, TUN-MH, BRF-WC, TBF-

VA, TCF-NJ, TSF-HS, WET-EM, were used for sensitivity analysis, and these sites were also used for 

subsequent uncertainty analysis (Fig. 2.7, Table 2.6). For each parameter, we set up model simulations 

with +20% or -20% change in the parameter, and thus we set up 50 model simulations in total for 

sensitivity analysis in each site. Next, we investigated the responses of the simulated FBC, BBC, F:B 

ratio, SOC, and HR in surface soil (0-30 cm) during sampling period of each site. The index S, comparing 

the change in the model output relative to the model response for a nominal set of parameters, was 

calculated based on the equation following Xu et al. (2015). 

𝑆 =
(𝑅𝑎 − 𝑅𝑛)/𝑅𝑛
(𝑃𝑎 − 𝑃𝑛)/𝑃𝑛

 

where S is the ratio of the standardized change in model response to the standardized change in parameter 

values; Ra and Rn are model responses for altered and nominal parameters, respectively; Pa and Pn are the 

altered and nominal parameters, respectively. Negative S values indicate the opposite direction of model 

response with the regards of the direction of parameter change, and vice versa. We visualized the 

sensitivity analysis results using the “ComplexHeatmap” package developed by Gu et al. (2016) in R 

3.5.3 for Mac OS X (R Development Core Team, 2018). 

 

The uncertainties in FBC, BBC, F:B ratio, SOC, and HR in surface soil (0-30 cm) during the sampling 

period of each site were quantified using improved Latin Hypercube Sampling (LHS) approach. The LHS 

approach can randomly produce an ensemble of parameter combinations with high efficiency. This 

approach has been widely used in the modeling community to estimate uncertainties in model output 

(Haefner, 2005; Xu, 2010; Xu et al., 2014). First, we assumed that all parameters follow normal 

distribution, then we used LHS to randomly select an ensemble of 300 parameter sets using the function 

of “improvedLHS” in the R package “lhs” (Carnell & Carnell, 2019). Second, we computed the inverse of 

the standard normal cumulative distribution of 300 parameter sets using “norminv” function in MATLAB 
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2018b (The MathWorks Inc., Natick, Massachusetts, USA), with the standard deviation of each parameter 

set as 20% of its optimal value. Third, we added the filter of setting parameters featuring fraction factors 

(m_rf_s1m, m_rf_s2m, m_rf_s3m, m_rf_s4m, m_batm_f, m_bdom_f, m_bs1_f, m_bs2_f, m_bs3_f, 

m_fatm_f, m_fdom_f, m_fs1_f, m_fs2_f, m_fs3_f, m_domb_f, m_domf_f, m_doms1_f, m_doms2_f, 

m_doms3_f) larger than 1 or smaller than 0 or the sum of an array of parameters (m_batm_f, m_bdom_f, 

m_bs1_f, m_bs2_f, and m_bs3_f, or m_fatm_f, m_fdom_f, m_fs1_f, m_fs2_f, and m_fs3_f, or m_domb_f, 

m_domf_f, m_doms1_f, m_doms2_f, and m_doms3_f) larger than 1 as their optimal values. Finally, we 

implemented the 300 model runs for each biome, and we then calculated the 95% confidence interval of 

FBC, BBC, F:B ratio, SOC, and SR in surface soil (0-30 cm) during experimental period of each site for 

reporting (Table 2.6).  

 

Results 

Model parameterization and validation against observational data 

The comparison between modeled and observed data showed that the CLM-Microbe model can capture 

the average and seasonal variation of FBC and BBC across biomes (Fig. 2.6, Table 2.4). On average, the 

simulated FBC and BBC were consistent with the observed values, with FBC and BBC showing R2 

values of 0.70 (P<0.001) and 0.26 (P<0.05), respectively (Fig. 2.6). However, FBC and BBC were 

underestimated by the CLM-Microbe model. For example, the simulated FBC was approximately 50% 

lower than the observed FBC in BRF-AL (boreal forest, BRF-) and SHB-OB (shrub, SHB-), and 40% 

lower than the observed FBC in DST-GB (desert, DST-) and TBF-VA and TBF-MS (temperate broadleaf 

forest, TBF-). Simulated BBC was 55% lower than the observed BBC in TUN-ES and TUN-MH (tundra, 

TUN-) and GRS-BC (grassland, GRS-), and 45% lower than the observed BBC in BRF-AL and TCF-NT 

(temperate coniferous forest, TCF-). The CLM-Microbe model overestimated FBC compared to the 

observed values in some sites; specifically, the simulated FBC was higher than the observed FBC in 
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WET-EF and WET-EM (wetland, WET-), DST-JN, and GRS-IA. The simulated BBC was higher than 

the observed BBC in WET-EF, WET-EM, DST-CH, BRF-WC, SHB-AC, and TSF-HS and TSF-OS 

(tropical/subtropical forest, TSF-) (Fig. 2.6). To compare the seasonal dynamics between observed and 

simulated FBC and BBC, y axes in Fig. 2.5 were adjusted to facilitate the visualization of modeling 

results due to the systematic underestimation of FBC and BBC. 

 

Additionally, we found relatively smaller variation (indicated as standard error, SE) in simulated FBC (SE 

ranging from 0.04 to 0.90 gC m-2) and BBC (SE ranging from 0.02 to 0.91 gC m-2) compared with the 

observed FBC (SE ranging from 0.26 to 99.11 gC m-2) and BBC (SE ranging from 0.07 to 12.48 gC m-2) 

(Fig. 2.6). On average, the SE of simulated FBC and BBC was approximately 160 and 40 times smaller 

than the SE of observed FBC and BBC, respectively. The difference of SE in observed FBC and BBC 

among biomes was largely dependent on the magnitude of observed FBC and BBC (Fig. 2.6). The highest 

SE of observed FBC was observed in TBF-MS (99 gC m-2), BRF-AL (55 gC m-2), and TUN-MH (57 gC 

m-2). The lowest SE of observed FBC were observed in WET-EF (0.93 gC m-2), WET-EM (0.26 gC m-2), 

and DST-JN (0.26 gC m-2). Compared with SE of observed FBC, SE of observed BBC was much smaller. 

However, SE of observed BBC were distinct among sites. We observed the highest SE of observed BBC 

in TUN-MH (12 gC m-2), and TBF-MS (12 gC m-2). The SE of observed BBC was lowest in TBF-SH 

(0.40 gC m-2), WET-EF (0.24 gC m-2), TSF-HS (0.18 gC m-2), and WET-EM (0.07 gC m-2). 

 

Due to the large difference in variations of simulated and observed FBC and BBC, we estimated the 

simulated FBC and BBC dynamics using relative change in FBC and BBC, i.e., the difference between 

individual and the average of biomass over the average of biomass during the study period (Table 2.4). In 

the calibration phase, MAE ranged from 0.06 to 1.16 for FBC and from 0.06 to 1.04 for BBC, while 

RMSE ranged from 0.07 to 1.43 for FBC and from 0.07 to 1.11 for BBC. In the validation phase, MAE 
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ranged from 0.01 to 0.73 for FBC and from 0.04 to 1.18 for BBC, while RMSE ranged from 0.02 to 0.79 

for FBC and from 0.04 to 2.02 for BBC. Although the model explained the FBC and BBC dynamics well 

in most sites, particularly TBF-MS (R2=0.94 for FBC and R2=0.95 for BBC) and TSF-OS (R2=0.98 for 

FBC and R2=0.52 for BBC), the simulation in some sites for FBC (GRS-IA, SHB-OB, GRS-BC, SHB-

AC, TBF-TL, TBF-SH, TCF-NT, and WET-EF) and BBC (TSF-HS, GRS-BC, TUN-ES, and WET-EF) 

was relatively poor, with R2 smaller than 0.1. It is noteworthy that the number of data points ranges from 

2 to 13 for FBC and BBC data across sites, which is much smaller than 30, the threshold for a large 

sample. The R2 may not be suitable for assessing the goodness-of-fit for a small number of data points 

due to the large bias in small samples, although it is widely used in model performance estimation. For 

example, R2 was 0.005 for FBC and 0.299 for BBC in SHB-OB, while MAE (0.06 for FBC and BBC) 

and RMSE (0.07 for FBC and BBC) were small, indicating small biases in the simulated FBC and BBC. 

 

Sensitivity analysis 

We found high sensitivity of FBC and BBC dynamics to parameters that related to microbial turnover and 

C:N ratio of fungal and bacterial biomass across biomes (Fig. 2.7). Fungal biomass turnover rate 

(k_fungi) had negative effects on FBC and F:B ratio across biomes, while bacterial biomass turnover rate 

(k_bacteria) had negative and positive effects on BBC and F:B ratio, respectively, across biomes. The 

C:N ratio of bacterial biomass (cn_bacteria) had negative, positive, and negative effects on FBC, BBC, 

and F:B ratio, respectively. In contrast, C:N ratio of fungal biomass (cn_fungi) had positive, negative, and 

positive effects on FBC, BBC, and F:B ratio, respectively. A 20% increase or decrease in k_fungi and 

k_bacteria led to different magnitudes of negative effects on FBC and BBC, respectively, across biomes. 

While a 20% decrease in k_fungi and k_bacteria led to the S values around -1.25 and -1.30 for FBC and 

BBC, a 20% increase in k_fungi and k_bacteria resulted in S values around -0.85 and -0.84 for FBC and 

BBC, respectively. Changes in k_bacteria had similar magnitudes of positive effects on F:B ratio, with S 

values around 1.00 for both 20% increase and decrease in k_bacteria. While a 20% increase or decrease 
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in k_fungi had different magnitudes of negative effects on F:B ratio, with a 20% decrease or increase in 

k_fungi leading to S values around -1.27 and -0.85, respectively, across biomes. The higher S values 

suggested that FBC and BBC were more sensitive to decreases in k_fungi and k_bacteria, which would 

induce larger increases in FBC and BBC; in particular, a 20% decrease in k_fungi led to higher sensitivity 

of F:B ratio.  

 

In addition, FBC and BBC were closely correlated with the decomposition of SOM and DOM and 

microbial respiration (Fig. 2.7). Fraction factors quantifying C flow from SOM to soil microbes 

(m_rf_s1m, m_rf_s2m, m_rf_s3m, and m_rf_s4m) were positively correlated with FBC and BBC. 

However, the magnitude of the m_rf_s4m on FBC and BBC were different among biomes. The highest 

response was in TSF-HS (S=1.03 for FBC and S=1.08 for BBC with -20% change vs. S=1.42 for FBC 

and S=1.49 for BBC with +20% change), while the lowest response was in BRF-WC (S=0.28 for FBC 

and S=0.26 for BBC with -20% change vs. S=0.28 for FBC and S=0.24 for BBC with +20% change). In 

addition, we found a positive correlation between the fraction factor quantifying C flow from DOM to 

fungal biomass (m_domf_f) and FBC and F:B ratio and a positive correlation between fraction factor 

quantifying C flow from DOM to bacterial biomass (m_domb_f) and BBC, and a negative correlation 

between m_domb_f and F:B ratio. However, the magnitudes varied among biomes, with FBC being most 

sensitive to m_domf_f in GRS-IA (S=0.432), BBC being most sensitive to m_domb_f in TBF-VA 

(S=0.593), and F:B ratio being most sensitive to m_domf_f in GRS-IA (S=0.415) and m_domb_f in TBF-

VA (S=-0.630) with -20% change. In contrast, FBC, BBC, and F:B ratio were insensitive to m_domb_f 

and m_domf_f in BRF-WC, with the absolute S values close to 0.001. Moreover, we found weak positive 

effects of fraction factors quantifying C flow from DOM to SOM (m_doms1_f, m_doms2_f, and 

m_doms3_f) on FBC and BBC across biomes. Across biomes, FBC, BBC, F:B ratio, SOC, and HR in 

surface soil (0-30 cm) were insensitive to maximum microbial CUE (CUEmax). We observed a higher 

negative correlation between fraction factor quantifying C being respired by fungi (m_fatm_f) and FBC 
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and between the fraction factor quantifying C being respired by bacteria (m_batm_f) and BBC in GRS-IA, 

TSF-SH, and TCF-NJ, with S values ranging from -0.104 to -0.044 of m_fatm_f for FBC and from -0.615 

to -0.023 of m_batm_f for BBC, while FBC and BBC in other biomes were insensitive to m_batm_f and 

m_fatm_f change.  

 

The SOC was positively correlated with fraction factors quantifying C flow from SOM to soil microbes 

(m_rf_s1m, m_rf_s2m, m_rf_s3m, or m_rf_s4m), while SOC was negatively correlated with fraction 

factor quantifying C being respired by bacteria (m_batm_f) and fungi (m_fatm_f), but the magnitudes 

varied among biomes (Fig. 2.7). We found highly positive correlations between m_rf_s1m, m_rf_s2m, 

m_rf_s3m, or m_rf_s4m and SOC across biomes except for tundra and boreal forest. Also, m_batm_f and 

m_fatm_f were negatively correlated with SOC, but the magnitudes varied among biomes. Specifically, 

we found higher negative correlation between m_batm_f and SOC in TBF-VA (S=-0.10 with -20% and 

+20% change), TCF-NJ (S=-0.08 with -20% and +20% change), and TSF-HS (S=-0.10 with -20% and 

+20% change). While m_fatm_f was more negatively correlated with SOC in GRS-IA (S=-0.12 with -

20% and +20% change), TCF-NJ (S=-0.10 with -20% and +20% change), and TSF-HS (S=-0.17 with -

20% and +20% change). The SOC in other biomes were relatively insensitive to changes in m_batm_f (S 

values ranging from -0.06 to -0.02) and m_fatm_f (S values ranging from -0.05 to -0.03). Across biomes, 

we only found strong negative correlations between m_doms1_f, m_doms2_f, and m_doms3_f and SOC in 

TCF-NJ (S=-0.08 for m_doms1, S=-0.12 for m_doms2, and S=-0.18 for m_doms3). 

 

The HR widely responded of to all parameters listed for soil microbial mechanisms, but in low sensitivity 

(Fig. 2.7). Specifically, the HR in sites such as DST-CH, GRS-IA, TBF-VA, TCF-NJ, and TSF-HS 

showed a weak response to changes in all parameters. However, we also found relatively stronger 
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negative correlations between m_batm_f and HR in BRF-WC (S=-0.09 with -20% change and S=-0.12 

with +20% change) and WET-EM (S=-0.08 with -20% change and S=-0.11 with +20% change).  

 

Simulated FBC, BBC, F:B ratio, SOC, and HR at annual scale 

Annual estimation of FBC, BBC, F:B ratio, SOC, and HR in the top 30 cm soils derived from the CLM-

Microbe model showed large variations among biomes (Table 2.6). The simulated FBC was the highest in 

TCF-NJ (380 gC m-2), followed by TBF-VA (259 gC m-2), BRF-WC (205 gC m-2), and TUN-MH (180 

gC m-2), while it was lowest in WET-EM (24 gC m-2) with a range of 14-40 gC m-2. The simulated FBC 

in the top 30 cm of soils in DST-CH, GRS-IA, SHB-OB, TUN-MH, BRF-WC, TBF-VA, TCF-NJ, TSF-

HS, and WET-EM was 1.6 (0-15 cm), 5.9 (0-10 cm), 0.9 (0-10 cm), 1.7 (0-10 cm), 4.0 (5-20 cm), 2.1 (0-5 

cm), 14.0 (0-2.3 cm), 1.7 (0-10 cm), and 22.6 (0-20 cm) times of the observed FBC (at varying soil 

depths), respectively. Compared with the global dataset of FBC and BBC (He et al., 2020), the simulated 

FBC in the top 30 cm of soils was generally consistent with the biome-averaged FBC in the top 30 cm of 

the soils. The model simulated FBC in DST-CH, GRS-IA, TUN-MH, BRF-WC, and TSF-HS was similar 

with the biome-averaged FBC in the top 30 cm of soils. However, we detected extreme FBC simulated by 

the model in some sites compared with the biome-averaged FBC. The CLM-Microbe model simulated 

higher FBC in SHB-OB, TBF-VA, and TCF-NJ and lower FBC in WET-EM relative to their 

corresponding the biome-averaged FBC in the top 30 cm soils.  

 

The simulated BBC was the highest in TCF-NJ (100 gC m-2), followed by TBF-VA (70 gC m-2), BRF-

WC (40 gC m-2), and TUN-MH (30 gC m-2), while the simulated BBC was the lowest in WET-EM (7 gC 

m-2) and DST-CH (9 gC m-2). The simulated BBC in the top 30 cm of soils in DST-CH, GRS-IA, SHB-

OB, TUN-MH, BRF-WC, TBF-VA, TCF-NJ, TSF-HS, and WET-EM was 5.0 (0-15 cm), 2.1 (0-10 cm), 

2.2 (0-10 cm), 1.0 (0-10 cm), 4.1 (5-20 cm), 2.3 (0-5 cm), 13.5 (0-2.3 cm), 6.3 (0-10 cm), and 25.4 (0-20 
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cm) times of the observed BBC (at varying soil depths), respectively. Compared with the global dataset of 

FBC and BBC (He et al., 2020), the simulated BBC in DST-CH, GRS-IA, TUN-MH, and BRF-WC was 

similar with their corresponding biome-averaged BBC in the top 30 cm soils. However, the simulated 

BBC was higher in SHB-OB, TBF-VA, and TCF-NJ and lower in TSF-HS and WET-relative to their 

corresponding biome-averaged BBC in the top 30 cm soils. 

 

The simulated F:B ratio was the highest in TUN-MH (6.30), followed by BRF-WC (5.39), DST-CT 

(4.54), SHB-OB (4.16), and TCF-NJ (3.96), the F:B ratio was the lowest in TSF-HS (2.31). The observed 

F:B ratio was highly variable, with the highest F:B ratio in DST-CH (14.1, 0-15 cm), followed by SHB-

OB (9.1, 0-10 cm) and BRF-WC (5.3, 5-20 cm), while GRS-IA (1.1, 0-10 cm) featured the lowest F:B 

ratio among biomes. Compared with the global dataset of FBC and BBC (He et al., 2020), the CLM-

Microbe model simulated F:B ratio was generally consistent with the biome-averaged F:B ratio in the top 

30 cm soils. Similar with the CLM-Microbe model simulated F:B ratio, the highest biome-averaged F:B 

ratio was found in tundra (8.6), followed by boreal forests (5.0), temperate forests (4.9), and shrub (4.8), 

while the lowest biome-averaged F:B ratio was found in tropical/subtropical forests (2.2). 

 

Large variations were found in the simulated SOC of top 30 cm among biomes, with SOC highest in 

WET-EM (13204 gC m-2), which was 5.3 times of that in the site with the lowest values, i.e., TSF-HS 

(2509 gC m-2). BRF-WC (8685 gC m-2) has the second largest SOC, followed by TCF-NJ (7990 gC m-2), 

TBF-VA (5873 gC m-2), and TUN-MH (3604 gC m-2) (Table 2.6). Similar as the CLM-Microbe model, 

CLM4.5-simulated SOC in the top 30 cm was high in WET-EM (9951 gC m-2) and low in SHB-OB 

(1598 gC m-2) and TUN-MH (2086 gC m-2). In contrast, CLM4.5-simulated SOC in the top 30 cm was 

much higher in GRS-IA (11991 gC m-2), TBF-VA (11239 gC m-2), and TSF-HS (6628 gC m-2) compared 

with that simulated by the CLM-Microbe model. It is worthwhile to note that DST-CH (0 gC m-2) 
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featured the lowest SOC in the top 30 cm simulated by CLM4.5 among sites owing to the vegetation 

mortality. The simulated SOC in the top 30 cm was slightly lower than the average derived from a global 

dataset of SOC (Jobbágy & Jackson, 2000). However, the simulated SOC in BRF-WC was slightly higher 

than that of biome-averaged SOC in the top 30 cm. Excluding wetlands due to lack of available data, the 

biome-averaged SOC is consistent with the simulated SOC in the top 30 cm. The SOC is higher in 

temperate broadleaf forest (10875 gC m-2), temperate coniferous forest (8483 gC m-2), and tundra (7739 

gC m-2). In contrast to the lowest simulated SOC in the top 30 cm in TSF-HS (2509 gC m-2), the biome-

averaged SOC in the top 30 cm was lowest in the desert (2728 gC m-2).  

 

The fraction of SOC in microbial biomass (FBC and BBC combined) showed a large variation among 

biomes, with the proportion ranging from 0.2% to 6.0% (Table 2.6). The proportion was the highest in 

TCF-NJ (6.0%), followed by TUN-MH (5.80%), TBF-VA (5.60%), SHB-OB (5.50%), and GRS-IA 

(5.40%), WET-EM (0.23%) featured the lowest proportion between the sum of FBC and BBC and SOC 

among biomes. Similarly, the biome-averaged proportion between the sum of FBC and BBC and SOC 

ranged from 1.1% to 6.2% among biomes. However, the rank of the biome-averaged proportion between 

the sum of FBC and BBC and SOC was different with that simulated by the CLM-Microbe model. The 

proportion between the sum of FBC and BBC and SOC was highest in boreal forests (6.2%) and lowest in 

temperate broadleaf forests (1.1%). Tundra had the second highest proportion between the sum of FBC 

and BBC and SOC (3.4%), followed by desert (2.7%), grassland (2.2%), shrub (1.5%), and then 

tropical/subtropical forest and temperate coniferous forest (1.4%).  

 

The CLM-Microbe-model-simulated annual estimation of HR was the highest in TCF-NJ (811 gC m-2 yr-

1), which was about 9 times of that in the lowest site, i.e., TUN-MH (93 gC m-2 yr-1) (Table 2.6). We 

found second highest HR in TBF-VA (560 gC m-2 yr-1), followed by WET-EM (540 gC m-2 yr-1), BRF-
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WC (420 gC m-2 yr-1), and TSF-HS (401 gC m-2 yr-1). Compared with the CLM-Microbe model, CLM4.5 

simulated highly consistent HR in TBF-VA, WET-EM, TSF-HS, SHB-OB, and TUN-MH. However, we 

observed much higher HR in GRS-IA simulated by CLM4.5 (757 gC m-2 yr-1), which was 2.4 times of 

that simulated by the CLM-Microbe model (313 gC m-2 yr-1).  

 

Simulated time-series C flow for fungi and bacteria 

The dynamics and magnitude of C flow related to the decomposition of litter, SOM, and DOM, HR, and 

microbial lysis for FBC and BBC were different among biomes, while the seasonal patterns of those C 

flows were similar for fungi and bacteria in each biome (Figs. 2.8-9). In the CLM-Microbe model, FBC 

and BBC receive C from the decomposition of litter, SOM, and DOM, the dominance of these C flows 

varied temporally and among biomes. The C flow from litter decomposition predominated fungal and 

bacterial C gain year-round at a few sites such as DST-CH (Figs. 2.8a and 2.9a), TUN-MH (Figs. 2.8i and 

2.9i), and TSF-HS (Figs. 2.8h and 2.9h). We also observed the dominant role of litter decomposition for 

fungi and bacteria C gain in GRS-IA (Figs. 2.8b and 2.9b), TBF-VA (Figs. 2.8f and 2.9f), and WET-EM 

during the non-growing season (Figs. 2.8i and 2.9i). The fungal and bacterial C gain in sites such as BRF-

WC (Figs. 2.8e and 2.9e), SHB-OB (Figs. 2.8c and 2.9c), and TCF-NJ (Figs. 2.8g and 2.9g) were co-

dominated by the decomposition of litter and SOM. The decomposition of DOM is the least important 

pathway for fungal and bacterial C gain across biomes; however, we observed the predominant role of the 

DOM decomposition for fungal and bacterial C gain in TBF-VA (Figs. 2.8f and 2.9f) and WET-EM 

(Figs. 2.8i and 2.9i) during the whole year, and second largest C gain pathway of DOM decomposition in 

TUN-MH (Figs. 2.8d and 2.9d), and temporarily dominant role of DOM decomposition during winter and 

spring in SHB-OB (Figs. 2.8c and 2.9c). 
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The C loss from fungal and bacterial biomass was primarily represented as microbial respiration and 

microbial lysis in the CLM-Microbe model. The C flow from fungal and bacterial biomass to SOM 

during microbial lysis was the predominant mechanism of C loss in DST-CH (Figs. 2.8a and 2.9a), SHB-

OB (Figs. 2.8c and 2.9c), BRF-WC (Figs. 2.8e and 2.9e), TBF-VA (Figs. 2.8f and 2.9f), and TCF-NJ 

(Figs. 2.8g and 2.9g). However, we also observed the co-dominance of C flow from fungal and bacterial 

biomass to SOM and microbial respiration in GRS-IA (Figs. 2.8b and 2.9b), and TUN-MH (Figs. 2.8d 

and 2.9d) in controlling fungal and bacterial C loss. In WET-EM, fungal and bacterial C loss were co-

determined by C flow from fungal and bacterial biomass to SOM and DOM and microbial respiration 

(Figs. 2.8i and 2.9i). While we found the predominant role of microbial respiration in regulating fungal 

and bacterial C loss in TSF-HS, microbial lysis contributed less to fungal and bacterial C loss (Figs. 2.8h 

and 2.9h). 

 

Discussion 

Model performance and comparison with existing models 

The CLM-Microbe model simulated FBC and BBC are consistent with the observed FBC and BBC, with 

a slight underestimation (Fig. 2.6; Table 2.4), indicating that the CLM-Microbe model can capture fungal 

and bacterial biomass dynamics. Similar with our findings, Wang et al. (2015) reported that the MEND 

model can adequately capture the soil microbial biomass C dynamics with the representation of soil 

microbial processes such as microbial dormancy, microbial enzyme production, and enzyme catalyzing 

effects on decomposition. The TRIPLEX-MICROBE model can also estimate the global- and biome-level 

soil microbial biomass C with reasonable accuracy (Wang et al., 2017). Meanwhile, studies found that 

soil microbial traits play a key role in soil microbial biomass accumulation. Wang et al. (2015) compared 

the simulated soil microbial biomass C by MEND with and without dormancy, and they found that 

MEND model without dormancy largely underestimated the soil microbial biomass C. In the CLM-
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Microbe model, the soil microbial community, represented by active fungi and bacteria, is directly related 

to many biogeochemical processes such as decomposition of litter, DOM, and SOM and soil microbial 

respiration. The increase in FBC and BBC could largely affect soil respiration and soil C pools such as 

SOM. To ensure reasonable soil conditions, we finalized the parameters related to soil microbial 

processes by comparing model simulated SOC with the global datasets of SOC. Therefore, the missing 

representation of dormancy may be responsible for the slight underestimation of FBC and BBC in the 

CLM-Microbe model. 

 

Additionally, the CLM-Microbe model simulated FBC and BBC showed smaller variation compared with 

the observed FBC and BBC, respectively (Fig. 2.6). Soil microbial communities are not static, with 

microbial biomass showing temporal dynamics (Björk et al., 2008; Lipson et al., 2002; Lipson & 

Schmidt, 2004). This variation is highly associated with changing environmental factors such as soil 

temperature and soil moisture (Devi & Yadava, 2006). In addition to environmental factors, C inputs 

derived from plants also control soil microbial growth, and soil microbial biomass is positively affected 

by aboveground litter input (Feng et al., 2009) and root exudates (Göttlicher et al., 2006). Although we 

incorporated the vegetation effects in soil microbial biomass in the form of DOM released into soil, the 

decomposition of DOM will enhance the C availability for soil microbes, the stimulating effects of DOM 

on microbial activity was not included into the CLM-Microbe model. In addition, soil food web was not 

explicitly incorporated into the CLM-Microbe model, even the turnover rate of soil microbial biomass 

was probably regulated by their predators such as nematodes, mites, and protozoa (CPD et al., 1995; 

Ingham et al., 1986). The increasing predator activity can induce abrupt changes in soil microbial 

biomass; for example, Buckeridge et al. (2013) observed seasonal variation in soil microbial community 

structure, and the decline in FBC from winter to late winter, and then again in spring, was closely 

associated with the high abundance of protozoa. Furthermore, only a small proportion of the soil 

microbial community is active, while the majority is dormant, i.e., a reversible state of low to zero 
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metabolic activity (Cole, 1999). Soil microbes can determine whether the environmental conditions are 

suitable for staying viable within short time periods (Garcia-Pichel & Pringault, 2001). Therefore, the 

rapid change in soil microbial state can lead to abrupt changes in soil microbial biomass (He et al., 2015). 

However, in the CLM-Microbe model, we assumed that the activity of fungi and bacteria are regulated by 

soil environmental conditions such as soil temperature, soil moisture, and soil oxygen concentration 

(Decomposition section in Methodology), the dormant soil fungi and bacteria were not incorporated into 

the model.  

 

Controls on soil microbial community composition 

Turnover rates of FBC and BBC are the most important factors regulating FBC and BBC dynamics across 

biomes, respectively, with increasing turnover rate of fungi decreased FBC and F:B ratio, and increasing 

turnover rate of bacteria decreased BBC and increased F:B ratio (Fig. 2.7). Turnover rate, the inverse of 

lifespan, can be mathematically calculated by dividing the production by the biomass pool size. In the 

microbial world, biomass turnover is much faster relative to that of plants and animals in natural 

environments, microbial related biogeochemical fluxes are closely linked to turnover and succession of 

microbial communities (Schmidt et al., 2007). Higher estimates for biomass production consequently 

correspond to lower turnover times, and vice versa (Pritchard et al., 2008; Rousk & Bååth, 2007). 

Therefore, the increase in turnover rate of fungi and bacteria is expected to induce declining FBC and 

BBC, respectively. The increasing turnover rate of fungi will decrease the dominance of fungi, and thus 

narrowed F:B ratio. In contrast, the increasing bacterial turnover rate would suppress the bacterial 

dominance and thus a broadening F:B ratio.  

 

In addition, we observed the important role of fungal and bacterial biomass C:N ratio in regulating FBC, 

BBC, and F:B ratio, with rising fungal biomass C:N ratio increased FBC and F:B ratio and rising bacterial 
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biomass C:N ratio increased BBC and decreased F:B ratio (Fig. 2.7). The C cycle is closely coupled with 

that of other essential elements, and the proportion of substrate C being respired by soil microbes is 

closely related to substrate C:N ratio, with more C being respired when substrate has high C:N ratio or 

low N concentration (Spohn, 2015). In addition, the ratio between the substrate and the microbial biomass 

C:N ratio determines the proportion of C being assimilated by soil microbes (Sinsabaugh et al., 2013), 

which was directly reflected as CUE and adopted into the CLM-Microbe model. Fungi and bacteria have 

distinct C and nutrient compositions, with C:N ratio averaged around 5 for bacteria and 12 for fungi 

(Strickland & Rousk, 2010), their C:N ratios specifically determine the partitioning coefficient of C 

between fungi and bacteria in the CLM-Microbe model. Increasing fungal biomass C:N ratio will thus 

increase the proportion of C assimilated by fungi and promote the dominance of fungi, while increasing 

bacterial biomass C:N ratio stimulates the C flow towards bacteria and suppresses the fungal C gain, and 

thereby decreasing F:B ratio. 

 

The FBC, BBC, and F:B ratio were also positively affected by the C flow from SOM to soil microbes. 

We observed higher sensitivity of FBC and BBC in desert and tropical/subtropical sites to changes in C 

flow from SOM to soil microbes (Fig. 2.7). The increase in microbial C gain from SOM will enhance the 

C and energy availability for soil microbial growth, which is thus reflected as an increase in soil microbial 

biomass. In the model, fungal and bacterial C gain from SOM is first expressed as the C input from SOM 

to soil microbes as a whole, then the C was partitioned by FBC and BBC pools based on the C:N ratio of 

their biomass, the biomass pool with higher C:N ratio is expected to gain higher proportion of C (Fig. 

2.1). In other words, the C flow from SOM to soil microbes will determine the overall received C from 

SOM for both fungi and bacteria. Although there are large variations in fungal (3-60) and bacterial (3-12) 

biomass C:N ratio, indicating that a large proportion of fungi and bacteria overlap with regards to biomass 

C:N ratio, fungi tend to have higher mean C:N ratio (Strickland & Rousk, 2010). Accordingly, we 

assigned higher C:N ratio for fungal (cn_fungi) relative to bacterial (cn_bacteria) biomass, and the 
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reasonability of these parameters were validated and tested by observed FBC and BBC dynamics (Table 

2.3). As a result, the increase in microbial C gain from SOM will enhance FBC and BBC; however, FBC 

increase will be promoted more due to its higher C:N ratio, thereby exhibiting an increase in F:B ratio.  

 

The FBC, BBC, and F:B ratio in DST-CH and TSF-SH showed relatively higher sensitivity to soil 

microbial C assimilation from SOM decomposition, which is likely result from the favorable soil 

moisture and temperature for decomposition. Tropical and subtropical forests are known to have higher 

decomposition rate due to the high annual precipitation and temperature, while decomposition in deserts 

is widely reported to be limited by soil moisture (Chapin et al., 2011). Despite the general recognition of 

water limitation in deserts, the desert site (DST-CH) in this study has a mean annual precipitation of 380 

mm, which is pretty high compared to “common” deserts (Bell et al., 2014). Given the high sensitivity of 

SOM decomposition to soil moisture condition, the higher water availability may enhance SOM 

decomposition in TSF-SH and DST-CH (Chapin et al., 2011). Furthermore, DST-CH is vegetated by 

herbaceous plant species, the higher proportion of non-woody components will improve the 

decomposability of substrates (Koven et al., 2013). In addition, although water limitation decreases the 

activity of soil microbes, primarily bacteria, fungi are more tolerant to drought due to their hyphal water 

uptake capability and dominate SOM decomposition in dry environmental conditions such as deserts 

(Yuste et al., 2011). Therefore, the decomposition of SOM plays an important role for fungal and 

bacterial C turnover, and fungal growth tends to be promoted more due to higher biomass C:N ratio and 

tolerance to water stress, leading to an increase in F:B ratio.  

 

Controls on soil organic C density and HR 

The C flow from SOM to soil microbes enhanced SOC, but this enhancement is weak in tundra and 

boreal forest; soil microbial respiration strongly decreased SOC in forests except for boreal forest (Fig. 
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2.7). In addition to processing SOM from other organic C forms, soil microbes contribute to the formation 

of persistent SOM via necromass (Gougoulias et al., 2014). Soil microbial necromass is about three 

orders of magnitude higher than soil microbial biomass (Glaser et al., 2004), and can make up more than 

half of SOC (Liang et al., 2019). Soil microbial necromass is directly related to soil microbial biomass 

turnover rate, the slow biomass turnover rate in boreal forests and tundra might be one of the important 

reasons for low SOC sensitivity to soil microbial biomass C gain from SOM (Table 2.3). Moreover, 

boreal forests and tundra are known to have low soil temperature, indicating smaller temperature effects 

on soil microbial community lysis. As a result, low biomass turnover rate of fungi and bacteria as well as 

low soil temperature may lead to the long persistence of organic C in soil microbial biomass, resulting in 

the lower contribution of soil microbial necromass to SOM. Compared with boreal forests, soil moisture 

and soil temperature in temperate and tropical forests are relatively desirable for soil microbial activity, 

and thus the decomposition process is more favorable in temperate and tropical forests. Higher 

decomposition in temperate and tropical forests is indicated by the C released as CO2 by fungi and 

bacteria in the CLM-Microbe model (Table 2.6). Therefore, in temperate and tropical forests, the higher 

proportion of C respired by fungi and bacteria will more prominently decrease C remaining in the 

ecosystem, leading to a reduction in SOC content.  

 

The HR was generally responsive to all the parameters related to soil microbial processes but in low 

sensitivity (Fig. 2.7). The HR is widely affected by multiple abiotic and biotic conditions, such as 

substrate concentration, soil moisture, and soil temperature (Gomez-Casanovas et al., 2012; Zhang et al., 

2013). In the CLM-Microbe model, HR is explicitly represented as soil microbial respiration under the 

influences of environmental factors (i.e., soil moisture, soil temperature, and oxygen concentration). 

Meanwhile, fungal and bacterial respiration is not only related to C gain through the decomposition of 

DOM, SOM, and litter and microbial DOM uptake, but also to soil microbial lysis (Fig. 2.1). Therefore, 

HR is directly determined by the microbial activities and substrate availability, and indirectly affected by 
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a wide range of environmental factors and parameters. For example, parameters defining C transfer from 

litter and SOM pools to fungal and bacterial biomass pools and DOM, from DOM pool to fungal and 

bacterial biomass and SOM pools, and from fungal and bacterial biomass pools to DOM and SOM pools 

are closely related to soil microbial C gain and loss.  

 

In general, the CLM-Microbe model simulated comparable SOC and HR in grasslands, tundra, temperate 

broadleaf forests, tropical/subtropical forests, and wetlands, but much higher SOC and HR in shrub, 

boreal forests, and temperate coniferous forests compared with CLM4.5 (Table 2.6). This may be due to 

two reasons. First, to produce reasonable vegetation status, we adjusted the parameters related to plant 

photosynthesis (e.g., flnr) and C allocation (e.g., froot_leaf) in the CLM-Microbe model to guarantee 

reasonable vegetation productivity indicated by MODIS dataset. However, when running the CLM4.5, we 

used the default parameters for each plant functional type. Therefore, the difference in vegetation 

condition may induce the discrepancy in simulated SOC and HR. For example, we documented a SOC 

pool of 2568 gC m-2 and HR flux of 277 gC m-2 yr-1, but both SOC and HR were zeros in desert site (DST-

CH) because of vegetation mortality. Litterfall from vegetation serves as the C source for SOM formation 

(Thornton & Rosenbloom, 2005), the difference in vegetation condition may be one of the important 

reasons for the difference in simulated SOC and HR between CLM4.5 and the CLM-Microbe model. 

Second, to produce comparable SOC in the CLM-Microbe model with HSWD dataset, we adjusted active 

soil depth for decomposition (decomp_depth_efolding) to reach the goal. While we used the default value 

of decomp_depth_efolding (0.5) for the CLM4.5 simulation in all sites. decomp_depth_efolding 

determines the vertical distribution of SOC in the soil profile, changes in decomp_depth_efolding may 

account for the differences in simulated SOC, and possibly HR, between CLM4.5 and the CLM-Microbe 

model (Bonan et al., 2013). 
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Limitations and improvements 

The CLM-Microbe model is capable of simulating FBC and BBC dynamics across biomes; a few 

improvements are identified as our future research needs. First, the dormant portion of fungi and bacteria 

were not considered in the CLM-Microbe model. Dormant soil microbes can become viable in short time 

periods due to their capability of rapidly sensing limiting resources change (Garcia-Pichel & Pringault, 

2001). Therefore, dormant soil microbes are able to survive environmental stresses and serve as “seed 

banks” for the soil microbial community (Lennon & Jones, 2011). Representing the dormant portion of 

soil microbes would enhance the model capability in simulating microbial resilience to stressful 

conditions (Wang et al., 2015). Second, fresh C input-induced priming effects is an important pathway 

affecting microbial activity, which needs to be considered in future studies. In addition to environmental 

factors such as temperature, soil moisture, and oxygen concentration, the addition of organic or mineral 

substances available for soil microorganisms may stimulate microbial activities, causing priming effects 

(Blagodatskaya & Kuzyakov, 2008). However, we did not test the model in simulating the priming 

impact within current model structure. Given the different physiology of bacteria and fungi, it would be 

worthwhile to robustly test the model behavior in simulating the priming effect, and further improve the 

model as needed. 

 

Third, the soil food web regulates fungal and bacterial biomass dynamics, thus the inclusion of soil 

trophic interactions would help better understand the effects of soil food web on soil microbial biomass 

dynamics. Soil microbial growth is strongly shaped by predation, Buckeridge et al. (2013), for example, 

observed the seasonal variation in soil microbial community structure, and the decline in FBC from 

winter to late winter, and then again in spring, which was closely associated with the abundance of 

protozoa. Therefore, FBC and BBC may not only be controlled by abiotic factors such as soil 

temperature, soil moisture, oxygen concentration, and C availability, but the seasonal variation in their 

predator communities (Schadt et al., 2003). Fourth, the FBC and BBC data compiled were measured 
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using a wide range of methods, while different methods may introduce a variety of biases (He et al., 

2020). For example, direct microscopy was widely used in early stage of soil microbial studies, but the 

approach has inevitably included dead biomass of soil microbes, especially for fungi, into the estimated 

biomass (Buckeridge et al., 2013). Amino sugars such as glucosamine and muramic acid are used to 

estimate FBC and BBC, respectively; however, this method measures both living and dead microbial 

biomass due to the high stability of amino sugars in soil (Glaser et al., 2004). Therefore, comparing FBC 

and BBC data measured by multiple methods will suffer from uncertainties in data quality due to various 

biases introduced by the different methods. Although data-model integration has been proposed for more 

than four decades, the intimate collaboration between experimentalists and modelers is still needed for 

model development. A standardized microbial data system that contains primary microbial variables with 

consistent measurement approach or after conversion is critical to reduce the bias associated with distinct 

methods (Xu et al., 2020). Last but not least, the observed data for bacterial and fungal biomass C 

commonly vary by more than five orders of magnitude (Guo et al., 2020; He et al., 2020; Sinsabaugh et 

al., 2016; Xu et al., 2017; Xu et al., 2013), while ecosystem-level variables commonly vary by less than 

three orders of magnitude. This large discrepancy makes the validation approach applied to ecosystem-

level C pools and fluxes less robust in microbial models, as shown in this study of model validation 

(Model parameterization section in Results). The CLM-Microbe is able to reasonably capture the 

seasonality of key microbial variables but less robust in simulating the magnitude of microbial variables. 

We call for community-level efforts to develop a new model validation approach that is more applicable 

to microbial models. 

 

Conclusions 

This study reported the model parameterization, validation, uncertainty analysis, and sensitivity analysis 

of the CLM-Microbe model in simulating fungal and bacterial biomass at the site level. The CLM-
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Microbe model could simulate the seasonal variation of FBC and BBC, but the model tended to 

underestimate the magnitude of the observed biomass for most biomes. Sensitivity analysis showed that 

the turnover rates of FBC and BBC are the most important parameters regulating FBC and BBC, 

respectively. Meanwhile, C flow from SOM to soil microbes during decomposition and the C:N ratio of 

fungal and bacterial biomass are also important for FBC and BBC dynamics. We observed an 

enhancement of soil microbial C gain from SOM on SOC, but the enhancement is weak in tundra and 

boreal forests. The simulated HR was responsive to all parameters related to soil microbial processes 

across biomes but exhibited low sensitivity. 

 

The CLM-Microbe model represents the first attempt to simulate the soil microbial effects on the C cycle 

by differentiating fungi and bacteria and their physiology in assimilating C in soils. Along with the 

emerging microbial macroecology (Xu et al., 2020), the improvements in modeling microbial 

mechanisms will likely bring more robust abilities to ESMs to better simulate and project the climate 

system. The explicit representation of soil microbial processes into the CLM-Microbe model will improve 

our mechanistic understanding of ecosystem-level C cycling and improve predictability of microbial 

community structure at regional to global scales, thereby reducing uncertainties in global C projection. 
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Figures and tables 
Fig. 2.1. Conceptual diagram showing the key processes and the roles of fungi and bacteria in the CLM-
Microbe model. CWD, coarse woody debris; SOM, soil organic matter; B, bacteria; F, fungi; DOM, 
dissolved organic matter. In the CLM-Microbe model, number in the box means turnover time of each 
pool.  Black solid lines indicate transitions in the CLM-Microbe model, which generally represents 
processes such as 1) decomposition of coarse woody debris, 2) litter 1 decomposition, 3) litter 2 
decomposition, 4) litter 3 decomposition, 5) soil organic matter 1 decomposition, 6) soil organic matter 2 
decomposition, 7) soil organic matter 3 decomposition, 8) soil organic matter 4 decomposition, 9) fungal 
and bacterial lysis, 10) dissolved organic matter decomposition, 11) dissolved organic matter uptake by 
fungal and bacterial, and 12) fungal and bacterial respiration. Red dash lines represent regulatory role of 
fungi and bacteria on the process, including fungi and bacteria regulation on 13) litter 1, 14) litter 2, 15) 
litter 3, 16) soil organic matter 1, 17) soil organic matter 2, 18) soil organic matter 3, and 19) soil organic 
matter 4 decomposition 

 

Fig. 2.2. Calibration of fungal biomass for a) desert, b) grassland, c) shrub, d) tundra, e) boreal forest, f) 
temperate broadleaf forest, g) temperate coniferous forest, h) tropical/subtropical forest, and i) wetland. 
The blue star indicates the observed fungal biomass, and the black filled circle represents simulated 
fungal biomass. 

 

Fig. 2.3. Calibration of bacterial biomass for a) desert, b) grassland, c) shrub, d) tundra, e) boreal forest, f) 
temperate broadleaf forest, g) temperate coniferous forest, h) tropical/subtropical forest, and i) wetland. 
The blue star indicates the observed bacterial biomass, and the black filled circle represents simulated 
bacterial biomass. 

 

Fig. 2.4. Validation of fungal biomass for a and b) desert, c) grassland, d) shrub, e) tundra, f) boreal 
forest, g, h and i) temperate broadleaf forest, j) temperate coniferous forest, k) tropical/subtropical forest, 
and l) wetland. The blue star indicates the observed fungal biomass, and the black filled circle represents 
simulated fungal biomass. 

 
Fig. 2.5. Validation of bacterial biomass for a and b) desert, c) grassland, d) shrub, e) tundra, f) boreal 
forest, g, h and i) temperate broadleaf forest, j) temperate coniferous forest, k) tropical/subtropical forest, 
and l) wetland. The blue star indicates the observed bacterial biomass, and the black filled circle 
represents simulated bacterial biomass. 

 

Fig. 2.6. Comparison of the averaged observed and simulated a) fungal and b) bacterial biomass. The blue 
star indicates the a) fungal or b) bacterial biomass in calibration phase, and the black filled circle 
represents a) fungal or b) bacterial biomass in validation phase; vertical and horizontal error bars indicate 
standard error of simulated and observed values, respectively, for both a) fungal and b) bacterial biomass.  
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Fig. 2.7. Sensitivity analysis for model response of fungal biomass, bacterial biomass, F:B ratio, soil 
organic carbon, and soil microbial respiration in the top 30 cm to 25 parameters (m_bdom_f, m_bs1_f, 
m_bs2_f, m_bs3_f, m_fdom_f, m_fs1_f, m_fs2_f, m_fs3_f, k_dom, k_bacteria, k_fungi, m_rf_s1m, 
m_rf_s2m, m_rf_s3m, m_rf_s4m, m_batm_f, m_fatm_f, m_domb_f, m_domf_f, m_doms1_f, 
m_doms2_f, m_doms3_f, cn_bacteria, cn_fungi, and CUEmax) in a) desert, b) grassland, c) shrub, d) 
tundra, e) boreal forest, f) temperate broadleaf forest, g) temperate coniferous forest, h) 
tropical/subtropical forest, and i) wetland. “+” and “-” indicate 20% increase or 20% decrease of 
parameter values. FBC, fungal biomass carbon; BBC, bacterial biomass carbon; F:B ratio, 
fungal:bacterial biomass carbon ratio; SOC, soil organic carbon; HR, heterotrophic respiration; Dark red 
and darker blue indicate a stronger positive or negative model response of the variable to parameter 
change. S is negative if the direction of model response opposes the direction of parameter change during 
the sampling years for all sites. 

 

Fig. 2.8. Time-series of simulated carbon flow into and out from the bacterial biomass carbon pool 

 

Fig. 2.9. Time-series of simulated carbon flow into and out from the bacterial biomass carbon pool 

 

Table 2.1. Site information of the observational data 

 

Table 2.2. Key model parameters in processes involving fungal and bacterial biomass  

 

Table 2.3. Key parameters for the different biomes 

 

Table 2.4. Site‐level evaluation of the goodness-of-fit criteria computed for the simulated fungal and 
bacterial biomass dynamics in the calibration and validation phases 

 

Table 2.5. Key parameters for sensitivity analysis and uncertainty analysis 

 

Table 2.6. Annual estimates of fungal and bacterial biomass carbon, fungal:bacterial (F:B) biomass 
carbon ratio, soil organic carbon (SOC), and heterotrophic respiration (HR) with the uncertainties of 
parameters during the sampling years for all sites 
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Fig. 2.1. Conceptual diagram showing the key processes and the roles of fungi and bacteria in the CLM-
Microbe model. CWD, coarse woody debris; SOM, soil organic matter; B, bacteria; F, fungi; DOM, 
dissolved organic matter. In the CLM-Microbe model, number in the box means turnover time of each 
pool. Black solid lines indicate transitions in the CLM-Microbe model, which generally represents 
processes such as 1) decomposition of coarse woody debris, 2) litter 1 decomposition, 3) litter 2 
decomposition, 4) litter 3 decomposition, 5) soil organic matter 1 decomposition, 6) soil organic matter 2 
decomposition, 7) soil organic matter 3 decomposition, 8) soil organic matter 4 decomposition, 9) fungal 
and bacterial lysis, 10) dissolved organic matter decomposition, 11) dissolved organic matter uptake by 
fungal and bacterial, and 12) fungal and bacterial respiration. Red dash lines represent regulatory role of 
fungi and bacteria on the process, including fungi and bacteria regulation on 13) litter 1, 14) litter 2, 15) 
litter 3, 16) soil organic matter 1, 17) soil organic matter 2, 18) soil organic matter 3, and 19) soil organic 
matter 4 decomposition.
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Table 2.3. Key parameters for the different biomes 
Parameters Biomes 

BRF DST GRS SHB TBF TCF TSF TUN WET 

m_bdom_f 0.15 0.1 0.15 0.1 0.15 0.15 0.1 0.1 0.08 

m_bs1_f 0.1 0.03 0.05 0.05 0.05 0.05 0.03 0.03 0.02 

m_bs2_f 0.12 0.06 0.1 0.1 0.1 0.1 0.06 0.06 0.04 

m_bs3_f 0.18 0.12 0.15 0.15 0.15 0.15 0.12 0.12 0.08 

m_fdom_f 0.15 0.1 0.15 0.1 0.15 0.15 0.1 0.1 0.08 

m_fs1_f 0.1 0.03 0.05 0.05 0.05 0.05 0.03 0.03 0.02 

m_fs2_f 0.12 0.06 0.1 0.1 0.1 0.1 0.06 0.06 0.04 

m_fs3_f 0.18 0.12 0.15 0.15 0.15 0.15 0.12 0.12 0.08 

k_dom 0.007 0.007 0.007 0.007 0.008 0.007 0.0005 0.007 0.007 

k_bacteria 0.008 0.0178 0.005 0.0036 0.008 0.004 0.0085 0.0032 0.072 

k_fungi 0.004 0.009 0.0045 0.002 0.0018 0.002 0.01 0.0012 0.032 

m_rf_s1m 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

m_rf_s2m 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 

m_rf_s3m 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 

m_rf_s4m 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

m_batm_f 0.2 0.08 0.12 0.08 0.12 0.12 0.12 0.12 0.1 

m_fatm_f 0.1 0.04 0.08 0.04 0.08 0.08 0.08 0.08 0.06 

m_domb_f 0.008 0.12 0.04 0.16 0.86 0.045 0.05 0.24 0.27 

m_domf_f 0.001 0.18 0.9 0.64 0.04 0.005 0.89 0.56 0.45 

m_doms1_f 0.32 0.24 0.03 0.1 0.06 0.32 0.03 0.1 0.14 

m_doms2_f 0.27 0.2 0.02 0.06 0.03 0.28 0.02 0.06 0.08 

m_doms3_f 0.22 0.15 0.01 0.03 0.01 0.2 0.01 0.03 0.04 

cn_bacteria 5 4 5 5 6 5 5 4 6 

cn_fungi 15 15 15 15 12 15 15 16 12 

CUEmax 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

BRF, boreal forest; DST, desert; GRS, grassland; SHB, shrub; TBF, temperate broadleaf forest; TCF, temperate coniferous 
forest; TSF, tropical/subtropical forest; TUN, tundra; WET, wetland. 
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Fig. 2.2. Calibration of fungal biomass for a) desert, b) grassland, c) shrub, d) tundra, e) boreal forest, f) 
temperate broadleaf forest, g) temperate coniferous forest, h) tropical/subtropical forest, and i) wetland. 
The blue star indicates the observed fungal biomass, and the black filled circle represents simulated 
fungal biomass. 
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Fig. 2.3. Calibration of bacterial biomass for a) desert, b) grassland, c) shrub, d) tundra, e) boreal forest, f) 
temperate broadleaf forest, g) temperate coniferous forest, h) tropical/subtropical forest, and i) wetland. 
The blue star indicates the observed bacterial biomass, and the black filled circle represents simulated 
bacterial biomass. 
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Fig. 2.4. Validation of fungal biomass for a and b) desert, c) grassland, d) shrub, e) tundra, f) boreal 
forest, g, h and i) temperate broadleaf forest, j) temperate coniferous forest, k) tropical/subtropical forest, 
and l) wetland. The blue star indicates the observed fungal biomass, and the black filled circle represents 
simulated fungal biomass. 
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Fig. 2.5. Validation of bacterial biomass for a and b) desert, c) grassland, d) shrub, e) tundra, f) boreal 
forest, g, h and i) temperate broadleaf forest, j) temperate coniferous forest, k) tropical/subtropical forest, 
and l) wetland. The blue star indicates the observed bacterial biomass, and the black filled circle 
represents simulated bacterial biomass. 
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Fig. 2.6. Comparison of the averaged observed and simulated a) fungal and b) bacterial biomass. The blue 
star indicates the a) fungal or b) bacterial biomass in calibration phase, and the black filled circle 
represents a) fungal or b) bacterial biomass in validation phase; vertical and horizontal error bars indicate 
standard error of simulated and observed values, respectively, for both a) fungal and b) bacterial biomass.  
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Table 2.4. Site‐level evaluation of the goodness-of-fit criteria computed for the simulated fungal and 
bacterial biomass dynamics in the calibration and validation phases 

Phase Site Fungi 
 

Bacteria 

MAE RMSE R2   MAE RMSE R2 

Calibration DST-CH 0.45 0.60 0.473   0.56 0.76 0.374 

GRS-IA 0.29 0.34 0.042 
 

0.18 0.21 0.381 

SHB-OB 0.06 0.07 0.005 
 

0.06 0.07 0.299 

TUN-MH 1.16 1.43 0.251 
 

1.04 1.11 0.398 

BRF-WC 0.28 0.37 0.384 
 

0.63 0.69 0.830 

TBF-VA 0.28 0.31 0.157 
 

0.26 0.30 0.217 

TCF-NJ 0.23 0.24 0.066 
 

0.37 0.38 0.067 

TSF-HS 0.19 0.24 0.156 
 

0.14 0.17 0.002 

WET-EM 0.41 0.73 0.59   0.42 0.72 0.63 

Validation DST-GB 0.54 0.65 0.513 
 

0.32 0.33 0.269 

DST-JN 0.14 0.14 -- 
 

0.15 0.16 -- 

GRS-BC 0.30 0.37 0.010 
 

0.20 0.27 0.046 

SHB-AC 0.73 0.79 0.004 
 

1.18 2.02 0.111 

TUN-ES 0.27 0.33 0.411 
 

0.17 0.19 0.014 

BRF-AL 0.41 0.41 -- 
 

0.04 0.04 -- 

TBF-TL 0.49 0.52 0.064 
 

0.13 0.16 0.625 

TBF-SH 0.17 0.19 0.092 
 

0.24 0.33 0.183 

TBF-MS 0.29 0.35 0.935 
 

0.36 0.39 0.945 

TCF-NT 0.45 0.56 0.014 
 

0.19 0.20 0.450 

TSF-OS 0.01 0.02 0.980 
 

0.19 0.22 0.520 

WET-EF 0.25 0.31 0.071   0.30 0.37 0.052 

MAE, mean absolute error; RMSE, root mean square error; R2, R square. -- indicates not applicable. MAE and RMSE values 
indicate the mean error of the model, smaller values represent higher model performance. R2 values mean the proportion of 
variation being explained by the mode, higher R2 values indicate better model performance. Due to the difference in variations of 
simulated and observed fungal and bacterial biomass and our focus of estimating fungal and bacterial biomass dynamics, we did 
the evaluation using relative change in fungal and bacterial biomass instead, i.e., the difference between simulated/observed 
fungal/bacterial biomass and the average of simulated/observed fungal/bacterial biomass over the average of simulated/observed 
fungal/bacterial biomass; R2 is not suitable for assessing the goodness-of-fit for a small amount of data due to the large bias in 
small samples. 
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Table 2.5. Key parameters for sensitivity analysis and uncertainty analysis 
Parameters Ecological meanings 

k_dom decomposition rate constant of dissolved organic matter 

k_bacteria lysis rate constant of bacteria 

k_fungi lysis rate constant of fungi 

m_rf_s1m fraction factor quantifying carbon from soil organic matter1 to microbes 

m_rf_s2m fraction factor quantifying carbon from soil organic matter2 to microbes 

m_rf_s3m fraction factor quantifying carbon from soil organic matter3 to microbes 

m_rf_s4m fraction factor quantifying carbon from soil organic matter4 to microbes 

m_batm_f fraction factor quantifying carbon respired by bacteria 

m_bdom_f fraction factor quantifying carbon from dissolved organic matter to bacteria 

m_bs1_f fraction factor quantifying carbon from bacteria to soil organic matter1 

m_bs2_f fraction factor quantifying carbon from bacteria to soil organic matter2 

m_bs3_f fraction factor quantifying carbon from bacteria to soil organic matter3 

m_fatm_f fraction factor quantifying carbon respired by fungi 

m_fdom_f fraction factor quantifying carbon from dissolved organic matter to fungi 

m_fs1_f fraction factor quantifying carbon from fungi to soil organic matter1 

m_fs2_f fraction factor quantifying carbon from fungi to soil organic matter2 

m_fs3_f fraction factor quantifying carbon from fungi to soil organic matter3 

m_domb_f fraction factor quantifying carbon from dissolved organic matter to bacteria 

m_domf_f fraction factor quantifying carbon from dissolved organic matter to fungi 

m_doms1_f fraction factor quantifying carbon from dissolved organic matter to soil organic matter1 

m_doms2_f fraction factor quantifying carbon from dissolved organic matter to soil organic matter2 

m_doms3_f fraction factor quantifying carbon from dissolved organic matter to soil organic matter3 

cn_bacteria C:N ratio of bacteria 

cn_fungi C:N ratio of fungi 

CUEmax maximum carbon use efficiency of microbes 
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Fig. 2.7. Sensitivity analysis for model response of fungal biomass, bacterial biomass, F:B ratio, soil 
organic carbon, and soil microbial respiration in the top 30 cm to 25 parameters (m_bdom_f, m_bs1_f, 
m_bs2_f, m_bs3_f, m_fdom_f, m_fs1_f, m_fs2_f, m_fs3_f, k_dom, k_bacteria, k_fungi, m_rf_s1m, 
m_rf_s2m, m_rf_s3m, m_rf_s4m, m_batm_f, m_fatm_f, m_domb_f, m_domf_f, m_doms1_f, 
m_doms2_f, m_doms3_f, cn_bacteria, cn_fungi, and CUEmax) in a) desert, b) grassland, c) shrub, d) 
tundra, e) boreal forest, f) temperate broadleaf forest, g) temperate coniferous forest, h) 
tropical/subtropical forest, and i) wetland during the sampling years for all sites. “+” and “-” indicate 20% 
increase or 20% decrease of parameter values. FBC, fungal biomass carbon; BBC, bacterial biomass 
carbon; F:B ratio, fungal:bacterial biomass carbon ratio; SOC, soil organic carbon; HR, heterotrophic 
respiration; Dark red and darker blue indicate a stronger positive or negative model response of the 
variable to parameter change. S is negative if the direction of model response opposes the direction of 
parameter change.
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Fig. 2.8. Time-series of simulated carbon flow into and out from the fungal biomass carbon pool 
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Fig. 2.9. Time-series of simulated carbon flow into and out from the bacterial biomass carbon pool 
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Chapter 3. Microbial Seasonality Promotes Soil Respiratory Carbon 
Emission in Natural Ecosystems: A Modeling Study 

 

This chapter has already been published by John Wiley and Sons, with a License Number of 
5302650019308 for dissertation use. 

 

He, L., C.-T. Lai, M. A. Mayes, S. Murayama, and X. Xu. 2021. Microbial seasonality promotes soil 
respiratory carbon emission in natural ecosystems: a modeling study. Global change biology 27:3035-
3051. 

 

Abstract 

Seasonality is a key feature of the biosphere and the seasonal dynamics of soil carbon (C) emissions 

represent a fundamental mechanism regulating the terrestrial – climate interaction. We applied a 

microbial explicit model - CLM-Microbe - to evaluate the impacts of microbial seasonality on soil C 

cycling in terrestrial ecosystems. The CLM-Microbe model was validated in simulating belowground 

respiratory fluxes, i.e., microbial respiration, root respiration, and soil respiration at the site-level. On 

average, the CLM-Microbe model explained 72% (n=19, P<0.0001), 65% (n=19, P<0.0001), and 71% 

(n=18, P<0.0001) of the variation in microbial respiration, root respiration, and soil respiration, 

respectively. We then compared the model simulations of soil respiratory fluxes and soil organic C 

content in the top 1 m between the CLM-Microbe model with (CLM-Microbe) and without (CLM-

Microbe_wos) seasonal dynamics of soil microbial biomass in natural biomes. Removing soil microbial 

seasonality reduced model performance in simulating microbial respiration and soil respiration, but led to 

slight differences in simulating root respiration. Compared with the CLM-Microbe, the CLM-

Microbe_wos underestimated the annual flux of microbial respiration by 0.6% - 32% and annual flux of 

soil respiration by 0.4% - 29% in natural biomes. Correspondingly, the CLM-Microbe_wos estimated 

higher soil organic C content in the top 1 m (0.2% - 7%) except for the sites in Arctic and boreal regions. 

Our findings suggest that soil microbial seasonality enhances soil respiratory C emissions, leading to a 
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decline in SOC storage. An explicit representation of soil microbial seasonality represents a critical 

improvement for projecting soil C decomposition and reducing the uncertainties in the global C cycle 

projection under the changing climate. 

Key words: microbial seasonality, microbial respiration, root respiration, soil respiration 

 

Introduction 

Soil respiration (SR), the second largest terrestrial C flux, has been increasing over the last five decades 

and is projected to further increase under a warming climate (Schlesinger and Andrews 2000; Bond-

Lamberty and Thomson 2010). The SR is the sum of C emission from soil organisms and plant roots from 

the soil surface to the atmosphere, with approximately 2/3 contributed by soil organisms, primarily soil 

microbes (i.e., microbial respiration, MR), and the rest from plant roots (i.e., root respiration, RR) (Bond-

Lamberty et al. 2004; Tang and Baldocchi 2005). Consequently, understanding the effects of soil 

microbial community on SR and its component respiration fluxes, particularly MR, is critical for 

accurately quantifying and projecting the terrestrial C-climate feedbacks (Schlesinger and Andrews 2000; 

Bond-Lamberty et al. 2004; Bond-Lamberty and Thomson 2010; Xu et al. 2013; Xu et al. 2014; Xu et al. 

2017; Tang et al. 2020). 

 

Due to the irreplaceable role of soil microbes in C biogeochemical cycling in soils, the explicit 

representation of soil microbial processes in Earth system models (ESMs) has been undertaken to address 

the large uncertainties in terrestrial C cycle projections (Wang et al. 2013a; Wieder et al. 2015; Wang et 

al. 2017). Although microbial traits, such as enzyme production, temperature sensitivity, dormancy, and 

microbial turnover, have been incorporated into ESMs (Wang et al. 2013a; Wieder et al. 2013; Xu et al. 

2014; Wang et al. 2015a; Wang et al. 2017), the potential influence of seasonal variations of soil 

microbial community composition on ecosystem process rates is overlooked. Studies proposed close links 
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between microbial community composition and ecosystem function. For example, variations in soil 

microbial community composition could influence soil respiration rates (Cleveland et al. 2007; Monson et 

al. 2006; Whitaker et al. 2014). However, soil microbial community in the models is generally 

represented as an aggregated pool of total soil microbial biomass; the response of different soil microbial 

groups (e.g., fungi and bacteria) has not been explicitly represented. Fungi and bacteria, the two major 

soil microbial groups, respond differently to environmental change, which may lead to changes in the 

pool size of soil microbial biomass and further influence soil microbial community structure (Pietikäinen 

et al. 2005; Manzoni et al. 2012; He et al. 2020). Shifts in soil microbial community composition have 

profound influences on the C cycle (Lipson et al. 2002). Nevertheless, an explicit representation of 

variations in soil microbial community composition in ESMs is still in infancy and the influence of soil 

microbial seasonality on the C cycle is far from clear (Wieder et al. 2015, He et al. 2021; Xu et al., 2014). 

 

To fill the gaps, we investigated the effects of soil microbes (fungi and bacteria in the CLM-Microbe 

model) on belowground respiratory fluxes using the CLM-Microbe model. The CLM-Microbe model, 

mechanistically represented soil microbial community dynamics by differentiating fungal and bacterial 

physiology, provides a feasible way to investigate the effects of soil microbial variation on C cycling (He 

et al. 2021). In this study, we aimed to investigate the effects of microbial seasonality on soil respiratory 

fluxes and annual estimation of soil respiratory fluxes and soil organic C (SOC) pool size in natural 

biomes. We first evaluated the performance of the CLM-Microbe model in simulating soil respiratory 

fluxes in major biomes. Then, we compared the simulated soil respiratory fluxes by the CLM-Microbe 

model with (CLM-Microbe) and without (CLM-Microbe_wos) soil microbial seasonality. Finally, we 

compared the annual budgets of soil respiratory fluxes and SOC in the top 1 m soil profile simulated by 

the CLM-Microbe and CLM-Microbe_wos to quantify the impacts of microbial seasonality on soil 

respiratory fluxes and soil C storage. 
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Materials and Methods 

Model representation of fungal and bacterial biomass  

The CLM-Microbe model was built on the model framework developed by Xu et al. (2014) and the 

default CLM4.5 (Koven et al. 2013), and it has been coupled with a microbial functional group – based 

methane module (Xu et al. 2015; Wang et al. 2019) and applied to quantify the fugal and bacterial 

biomass dynamics in natural ecosystems (He et al. 2021). The CLM4.5 classifies litter into three pools, 

i.e., litter 1 (labile), litter 2 (cellulose) and litter 3 (lignin), and soil organic matter (SOM), materials left 

during later stages of organic C decay, into four pools, i.e., SOM 1, SOM 2, SOM 3, and SOM 4. The 

three litter pools and four SOM pools differ in base decomposition rate (τ), with turnover time of litter 

pools ranging from 20 hours to 71 days and turnover time of SOM pools ranging from 14 days to 27 years 

(Fig. 3.S1). Coarse woody debris (CWD) is fragmented, decomposed, and gradually transferred into litter 

pools, and further from litter to SOM pools (Thornton et al. 2007; Koven et al. 2013). In addition to the 

eight soil C pools (three litter, four SOM, and CWD pools) in the CLM4.5, we introduced dissolved 

organic matter (DOM) and fungal and bacterial biomass pools in the CLM-Microbe model. The code for 

the CLM-Microbe model has been archived at https://github.com/email-clm/clm-microbe since 2015. The 

model version used in this study was checked out on June 18, 2018. 

 

In the CLM-Microbe model, fungal and bacterial biomass are the balance of C input from the 

decomposition of SOM, DOM, and litter and C loss through the microbial lysis and microbial respiration. 

Specifically, fungi and bacteria receive C through the transitions from litter, DOM, and SOM pools; fungi 

and bacteria lose C through the transitions from fungal and bacterial biomass pools to DOM and SOM 

pools and the atmosphere. 

 



 130 

The decompositions of SOM, DOM, and litter are controlled by both their potential decomposition rates 

and environmental conditions. The decomposition processes in the CLM-Microbe model are defined 

following the below equations, 

𝐷! = 𝑘 × 𝑟(&)*+ × 𝑟*,"-. × 𝑟/0*&1 × 𝑟G*                  equation (1) 

𝑟(&)*+ = exp	(− H
H+
)                                                                               equation (2) 

𝑟*,"-. = 𝑄34
,!"#$,&-,'()

./          equation (3) 

𝑟/0*&1 =

⎩
⎪
⎨

⎪
⎧0																																																																										𝑓𝑜𝑟	𝜑7 <	𝜑8-'

."%IJ0#1 J&K L

."%IJ0#1 J023K L
																													𝑓𝑜𝑟	𝜑8-' ≤	𝜑7 ≤	𝜑80#

1																																																																										𝑓𝑜𝑟	𝜑7 >	𝜑80#

              equation (4) 

𝑟G* = 𝑓1 × (1 − 𝑓-'M') × 𝑚𝑎𝑥=𝑂FM',0* , 𝑂F8-'> + 𝑓-'M' ×𝑚𝑎𝑥=𝑂F,0* , 𝑂F8-'>             equation (5) 

where DC is the rate of substrate (e.g., SOM, DOM, and litter) breakdown; k is the potential 

decomposition rate; 𝑟G* represents the environmental modifier determined by soil oxygen concentration; 

rdepth is the environmental modifier determined by soil depth; rwater is environmental modifier determined 

by soil moisture; rtsoil means the environmental modifier determined by soil temperature; z means soil 

depth; 𝑧2 is the e-folding depth for decomposition; Tsoil, j is soil temperature at layer j; Tref is the reference 

temperature for decomposition, which is set as 25°C; Q10 indicates the temperature dependence of 

decomposition, it is the ratio of the rate at a specific temperature to that at 10°C lower; Ψj is the soil water 

potential in layer j; Ψmin is a lower limit for soil water potential control on decomposition rate (set to -10 

MPa), rwater will be set as 0 if  Ψj is lower than Ψmin; Ψmax is the upper limit for soil water potential control 

on decomposition, which equals to the saturated soil matric potential, rwater will be set as 1 if  Ψj is higher 

than Ψmax; wsoil, j means soil water content in layer j; fr is the rooting fraction by soil depth; finun means the 

fraction of inundated area; 𝑂FM',0* represents the oxygen available to that demanded by roots and aerobic 

microbes in unsaturated area; 𝑂F8-' denotes the ratio between minimum anaerobic decomposition rate 
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and potential aerobic decomposition rate in soil (set to 0.2); 𝑂F,0* represents the oxygen available to that 

demanded by roots and aerobic microbes in saturated area; 𝑟G* will be set as 1 in oxic conditions, while it 

will be estimated as the weighted average of oxygen stress in saturated and unsaturated areas in anoxic 

conditions. 

 

Bacterial and fungal growth are highly sensitive to environmental conditions, such as soil moisture and 

temperature. Fungi and bacteria are different in turnover time, different lysis rate constants were therefore 

adopted for fungi and bacteria in the CLM-Microbe model (He et al., 2021). As a result, in the CLM-

Microbe model, the fungal and bacterial biomass lysis is mechanistically represented as the interactive 

effects of their lysis rate constants and environmental factors, i.e., 𝑟G*, rwater, rtsoil, and rdepth, as described 

above. Microbial respiration is widely affected by multiple abiotic and biotic factors, such as substrate 

concentration and availability, soil moisture, and soil temperature (Gomez-Casanovas et al. 2012; Zhang 

et al. 2013). Therefore, in the CLM-Microbe model, fungal and bacterial respiration is represented as the 

interactive effects of substrate (i.e., DOM, SOM, and litter), environmental factors (i.e., 𝑟G*, rwater, and 

rtsoil), and fraction factors quantifying C being respired by fungi and bacteria in transitions (Table 3.S1).  

 

Data source 

In this study, we evaluated the performance of the CLM-Microbe model in nine natural biomes, including 

tropical/subtropical forest, temperate coniferous forest, temperate broadleaf forest, boreal forest, 

shrubland, grassland, desert, tundra, and wetland. To compile the data to test the CLM-Microbe model in 

simulating soil respiratory fluxes, we searched peer-reviewed literatures for observational data. To 

investigate the contribution of soil microbes to respiratory fluxes, we selected sites that reported MR 

independently from other respiration components, i.e., separating MR either from SR or ecosystem 

respiration (ER). Due to the distinct seasonal and diurnal cycles of those respiratory fluxes, the exact 
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sampling time, at least the exact sampling day, needs to be clearly reported in selected sites. Given the 

large spatial variation in respiratory fluxes due to the heterogeneity in vegetation, abiotic factors, and the 

legacy effect by disturbance, we selected data from at least two sites to represent each biome.  

 

Multiple approaches have been used to separate MR from SR or ER, and each method has its advantages 

and disadvantages (Hanson et al. 2000). To minimize the bias resulting from data collection methods, 

same method is preferred when compiling dataset for model testing. Among multiple approaches, 

trenching was the most widely used one for the soil profile and ecosystem-scale experiments focusing on 

the contribution of MR to SR (Table 3.1). Due to the similarity in methodology, trenching, root removal, 

and gap analysis are generally classified as root exclusion in distinguishing MR versus RR (Hanson et al. 

2000). Finally, 19 studies that separated MR from soil respiratory fluxes using root exclusion (i.e., 

trenching, comparison, and extraction) were included in this study. Site information, including geographic 

location, country, biome type, site name, site ID, sampling years, measurement method, and sampling 

time, was summarized in Table 3.1. 

 

Model forcing data 

The forcing data for the CLM-Microbe model include meteorological variables such as air temperature, 

relative humidity, incoming solar radiation, longwave radiation, precipitation rate, surface pressure, and 

surface winds. Considering the availability of those variables from eddy covariance (EC) tower 

measurements and a wide array of global datasets, we searched the forcing data from multiple sources to 

fulfil the data needs with the emphasis on observational data for sites in diverse biomes (Table 3.1). 
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We first searched the FLUXNET database (https://fluxnet.org) for the site information (844 sites) to 

identify the closest EC station for each site presented in Table 3.1. We calculated the geographical 

distances between those site pairs, i.e., each selected site in Table 3.1 and its corresponding closest EC 

station. Site pairs with geographical distance exceeding 1 degree were excluded for further consideration. 

Then, we compared the plant functional type documented in the FLUXNET database and the reported 

vegetation type for each site. Site pairs with different vegetation types were excluded. Although a large 

number of EC sites are registered on FLUXNET, only a small number of sites made the data available. To 

generate reliable output, the length of forcing data is required to be longer than the observed soil 

respiratory flux and the two datasets need to be consistent in their sampling years. Therefore, we excluded 

site pairs without available EC data or when measurement periods were inconsistent with the 

FLUXNET2015 Dataset (Pastorello et al. 2020). Since data gaps are common in EC tower measurements, 

time periods with large gaps (more than 2 months of consecutive missing data) were not considered to 

drive the model. For relatively small gaps (less than 2 months of consecutive missing data), we filled the 

gaps by applying a 30-day running mean diurnal cycle forwards and backwards through the yearly time 

series. After filtering the criteria described above, the forcing data from CA-Obs (1997-2010), DE-Hai 

(2000-2012), and US-Prr (2011-2014) from FLUXNET2015 Dataset were selected to force the model run 

for sites of BRF-CA (a boreal forest site), TBF-GM (a temperate broadleaf forest site), and BRF-US (a 

boreal forest site), respectively, in Table 3.1. Since the EC tower height was not provided in the 

FLUXNET site information database, we found the instrument measurement height for CA-Obs from site 

location summary provided by Oak Ridge National Laboratory (https://www.ornl.gov), and we retrieved 

the EC tower instrument measurement height for DE-Hai and US-Prr from previous studies (Rebmann et 

al. 2005; Nakai et al. 2013). 

 

For other sites without available meteorological data from the FLUXNET2015 Dataset (Pastorello et al. 

2020), we chose the CRUNCEP Version 7 - Atmospheric Forcing Data for the Community Land Model, 
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considering the sampling year spanning from 1999 to 2015. The CRUNCEP Version 7 dataset was 

produced by Research Data Archive at the National Center for Atmospheric Research, Computational and 

Information Systems Laboratory (https://rda.ucar.edu/datasets/ds314.3/), which has been widely used to 

force the community land model. Finally, we extracted the forcing data during 1 January 1981 through 31 

December 2016 from CRUNCEP Version 7 dataset using the latitude and longitude information of each 

study site (Table 3.1). Since the standard model forcing data are in half-hourly time steps, the extracted 6-

hourly data for each study site were interpolated to half-hourly step using linear interpolation via 

na.approx function in R (R for Mac OS X version 3.5.3). 

 

Model implementation 

The model implementation was carried out in three stages. First, we ran the accelerated decomposition 

spin-up to allow the system to reach its steady state (Thornton and Rosenbloom 2005; Koven et al. 2013). 

Due to the differences in the length of time to reach steady state among biomes, we set the model 

simulations as 1500 years for tropical and temperate biomes (i.e., tropical/subtropical forest, temperate 

coniferous forest, temperate broadleaf forest, shrubland, grassland, and desert), 2000 years for boreal and 

Arctic biomes (i.e., boreal forest and tundra), and 3000 years for wetlands. Then, we ran a final spin-up of 

100 years to ensure the system was ready for transient simulations during 1850 - 2016. Since the 

observational respiratory fluxes from most sites were reported at hourly intervals, we set the output 

resolution of transient simulations at an hourly time step. The initial setting for microbial parameters was 

adopted from He et al. (2021), with the parameter set same for sites from the same biome but distinct 

among biomes. 

 

To produce realistic soil and vegetation conditions in the CLM-Microbe model for each site, we extracted 

the SOC of the top 1 m soil profile from the Harmonized World Soil Database (HWSD, 
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https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1247) and gross primary productivity (GPP) and net 

primary productivity (NPP) from the MODIS gridded dataset with a spatial resolution of 30 seconds 

during 2000-2015 (http://files.ntsg.umt.edu/data/NTSG_Products/). For sites with GPP available from EC 

measurements, i.e., BRF-CA and BRF-US (boreal forest sites), TBF-GM and TBF-JP (temperate 

coniferous forest sites), TCF-US (a temperate coniferous forest site), and TSF-CN (a tropical/subtropical 

forest site), we optimized the model parameters to match with the GPP from EC measurements (Saigusa 

et al. 2005, Pastorello et al. 2020). We estimated NPP by multiplying the NPP/GPP ratio from the 

MODIS gridded dataset and GPP derived from the EC measurements, and then optimized parameters to 

match the estimated NPP of each site. Furthermore, we calibrated the model to match the SOC within the 

1 m soil profile reported by the HWSD database. If the extracted SOC from the HWSD dataset and NPP 

from the MODIS dataset were 100% higher or 50% lower than the corresponding biome averages 

reported in Jobbágy and Jackson (2000) and Chapin et al. (2011), respectively, we calibrated model to 

match the recorded SOC and NPP in their source articles. If the SOC and NPP were not available from 

literature, we used the reported biome average instead (Jobbágy and Jackson 2000; Chapin et al. 2011).  

 

For tropical/subtropical forests, we had a site specified as needleleaf trees, whereas tropical needleleaf 

tree is not a default plant function type. Therefore, we adjusted the parameters for tropical trees (e.g., 

minimum and upper limit of temperature for growth) to represent needleleaf_evergreen_temperate_tree. 

Also, we altered the longevity for needleleaf_evergreen_temperate_tree following the trend of needle tree 

leaf longevity reported by Xiao (2003). 

 

The SR and RR may exhibit different seasonal patterns. We therefore calibrate both MR and RR to 

reproduce the seasonal variation of SR. To calibrate the model to fit the observed MR, RR, and SR, we 

adjusted soil microbial parameters related to microbial turnover (k_fungi and k_bacteria), microbial C 
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assimilation efficiency (m_rf_s1m, m_rf_s2m, m_rf_s3m, and m_rf_s4m), and the proportion of C being 

released as respiration (m_batm_f and m_fatm_f), decomposition temperature sensitivity (Q10) of SOM, 

litter, and DOM decomposition, and C allocation (e.g., froot_leaf) to optimize the model simulations of 

soil respiratory fluxes. Our previous studies (Xu et al. 2014; He et al. 2020) showed a large variation in 

soil microbial community among biomes, we therefore performed biome-specific parameterization for 

microbial processes. Final adjusted soil microbial parameters for nine natural biomes were compiled and 

displayed in Table 3.S2.  

 

Taken together, we optimized the model parameters based on soil and vegetation conditions reported by 

HWSD, MODIS, and EC measurements and soil respiratory fluxes from peer-reviewed publications. We 

primarily focused on the parameters related to plant photosynthesis (e.g., flnr), maintenance respiration 

(br_mr), C allocation (e.g., froot_leaf), e-folding depth for decomposition (e.g., decomp_depth_efolding), 

microbial parameters (e.g., k_fungi, k_bacteria, m_rf_s1m, m_rf_s2m, m_rf_s3m, m_rf_s4m, m_batm_f, 

m_fatm_f), and Q10 values of SOM, litter, and DOM decomposition to fit the observed data. 

 

Removal of soil microbial seasonality 

To investigate the effects of soil microbial biomass dynamics on respiratory fluxes, we set up the model 

simulation without soil microbial biomass dynamics (CLM-Microbe_wos). Soil temperature and moisture 

play an important role in regulating soil microbial growth and activity (Curiel Yuste et al. 2007, Bell et al. 

2008), which represents the seasonal controls on microbial activities (He et al., 2021). In the CLM-

Microbe model, top 10 soil layers are active for soil microbial and hydrological processes, extending to a 

depth of 3.8 m. In the CLM-Microbe_wos, we removed soil microbial biomass seasonal dynamics by 

setting soil temperature and water scalars to their annual averages for each layer in the biogeochemistry 

cascade. The temperature and water scalar constants at each site were calculated as the arithmetical mean 
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of temperature and water scalars during corresponding sampling period of soil respiratory fluxes by top 

10 soil layers. Consequently, in the CLM-Microbe_wos, soil microbial community impacts 

biogeochemical processes in a soil environment without variations in temperature and moisture. 

 

Model evaluation 

To evaluate the model performance in capturing the seasonality in soil C fluxes, we compared the 

observed soil C fluxes with the simulated fluxes during corresponding sampling time period for each site 

(Table 3.1). For sites with exact sampling time reported, we did the comparison between the observed soil 

respiratory fluxes and the simulated values of the same sampling time. For sites with unspecified 

sampling time, we compared the simulations during 20:00-8:00 with measurements during nighttime and 

simulations during 8:00-20:00 with measurements during daytime or three times a day (morning, 10:30-

12:30, and afternoon) for each respiratory flux. For sites with observed data indicated as daily average or 

no sampling time reported, we compared hourly averages of model outputs with the observed data in a 

given sampling day. 

 

Then, we used three metrics to evaluate the model performance, including: 

1. Mean absolute error (MAE), a measure of model error, was computed as 

𝑀𝐴𝐸 = 3
D
∑ |𝑦- − 𝑦T-|D
-E3                   equation (6) 

where 𝑦- is the observed value; 𝑦T- means the simulated value; N is the number of data points. The MAE 

indicates the mean error of the model simulation, and thus lower MAE values are preferred. 

 

2. Root mean square error (RMSE), indicating the model accuracy, was calculated as: 
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𝑅𝑀𝑆𝐸 = a3
D
∑ (𝑦- − 𝑦T-)FD
-E3         equation (7) 

where 𝑦- is the observed value;	𝑦T- means the simulated value; N is the number of data points. Similar with 

MAE, RMSE also indicates the mean error of the model simulation, with low values indicating high 

model accuracy. The RMSE estimation is equal to or larger than MAE estimation in most cases, and the 

degree to which RMSE estimation exceeds MAE estimation depend on the outliers in the simulated and 

observed data. 

 

3. The coefficient of determination (R2), representing the variation in the observations explained by the 

model, was calculated following the equation as below, 

𝑅F = 1 − ∑ ($#6$P#)*4
#5.
∑ ($#6$R)*4
#5.

         equation (8) 

where 𝑦- is the observed value; 𝑦T means the simulated value; 𝑦X is the mean of the observed value; N is the 

number of data points. Higher R2 values indicate better performance of the model, while lower R2 values 

mean the worse model performance and smaller proportion of variation being explained by the model. It 

is noteworthy that R2 is not suitable for assessing the goodness-of-fit for dataset with a small sample size. 

 

Comparison between two model outputs 

To test the impacts of soil microbial biomass seasonality on annual estimation of soil respiratory fluxes 

and SOC pool size, we calculated the arithmetic mean and 95% confidence interval of simulated MR, SR, 

and SOC in the top 1 m soil during 2000-2009. In addition, we used two-tailed paired t-tests to examine 

the statistical differences in average values of MR, SR, and SOC between the CLM-Microbe and CLM-

Microbe_wos. These tests were applied to nine natural biomes. We therefore separately analyzed ten 

paired annual output of MR, SR, and SOC of top 1 m soil between the CLM-Microbe and CLM-
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Microbe_wos for each biome. The statistical analyses of two-tailed paired t-tests were performed using 

the t.test function in R (R for Mac OS X version 3.5.3) at a significance level of 0.05.  

 

Results 

Model simulations of soil respiratory fluxes 

The CLM-Microbe model was able to reconstruct the observed MR well (Fig. 3.1; Table 3.2). The 

reported R2 values were larger than 0.40 for most sites; in particular, the comparisons produced R2 values 

of 0.63 at BRF-CA (boreal forest, BRF-), 0.76 at DST-XJ (desert, DST-), 0.85 at TBT-JP (temperate 

broadleaf forest, TBF-), and 0.91 at TUN-RU (tundra, TUN-). However, we also observed small R2 

values at some sites. For example, the R2 values at BRF-SW, DST-NX, GRS-HU (grassland, GRS-), 

TBF-GM, and WET-SJ (wetland, WET-) were smaller than 0.20. The MAE and RMSE values for MR 

were distinct among sites, with MAE and RMSE varying within a range of 27- and 23-fold, respectively. 

Similar with the R2 values, the MAE and RMSE values for MR were smaller than 0.8 and 1.0 µmol m-2 s-

1, respectively, at most sites. However, we found relatively large MAE and RMSE values at BRF-SW, 

TSF-TH (tropical/subtropical forest, TSF-), WET-PY, WET-SJ, and GRS-HU. 

 

The CLM-Microbe-simulated RR agreed well with the observed data (Fig. 3.2; Table 3.2). The R2 values 

for RR were larger than 0.40 at the majority of sites; the comparisons produced R2 values of 0.80 at BRF-

CA, 0.76 at BRF-SW, 0.61 at SHB-MX (shrubland, SHB-), and 0.63 at TBT-JP, but we also observed 

small R2 values at sites such as DST-NX. Both MAE and RMSE values for RR showed 11-fold variation 

among sites, with MAE and RMSE values for RR of most sites smaller than 0.8 and 1.0 µmol m-2 s-1, 

respectively. However, we found relatively large MAE and RMSE values at WET-SJ and GRS-HU. 
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The CLM-Microbe model produced consistent results of SR (Fig. 3.3; Table 3.2). The R2 values for SR 

were higher than 0.40 at most sites. In particular, the comparisons produced R2 values of 0.84 at BRF-CA, 

0.79 at SHB-NE, 0.85 at TBF-JP, 0.71 at TSF-CN, and 0.69 at WET-PY. However, we also observed 

small R2 values at some sites such as DST-NX. The MAE and RMSE values for SR showed large 

variations among sites, with MAE and RMSE exhibiting 10- and 7-fold variation, respectively. Similar 

with the R2 values, MAE and RMSE values for SR at most sites were smaller than 1.0 and 1.3 µmol m-2 s-

1, respectively. However, some relatively large MAE and RMSE values were found at BRF-SW, GRS-

HU, GRS-US, TCF-SP (temperate coniferous forest, TCF-), TCF-US, and WET-SJ. 

 

Taken together, the CLM-Microbe model produced MR, RR, and SR that were consistent with the 

observed data on average across sites (Fig. 3.4). Specifically, across-site comparisons returned R2 values 

of 0.72 (n=19, P<0.0001), 0.65 (n=19, P<0.0001), and 0.71 (n=18, P<0.0001) for the linear regression 

models between simulated and observed means of MR, RR, and SR, respectively. 

 

Microbial seasonality on soil respiratory fluxes 

Microbial seasonality yielded impacts on soil respiratory fluxes in different magnitudes, depending on 

biomes and variables (Figs. 3.5 and 3.6; Table 3.S4). Among soil respiratory fluxes, MR was strongly 

influenced by the removal of soil microbial biomass seasonality, and the reduction of MR seasonal 

variation was widely observed across sites (Fig. 3.5a; Table 3.S4). Statistically, the removal of soil 

microbial biomass seasonality generally decreased MR across sites, with the annual range and standard 

deviation of MR reduced by 72.0%-99.6% and 65.5%-99.6%, respectively, across sites (Table 3.S4). In 

addition, the removal of soil microbial seasonality generally increased MAE and RMSE values while 

slightly decreased RMSE for MR at TSF-CN. The R2 values for MR decreased for all sites (Fig. 3.6). 

Large variations existed in the magnitude of alterations with respect to MAE, RMSE, and R2 values. For 
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example, the increases in MAE and RMSE values for MR exceeded 100% at TBF-JP and TUN-RU, 

while MAE and RMSE at SHB-NE and TSF-CN changed less than 15%. Similarly, the response of R2 

values to the removal of soil microbial biomass seasonality for MR varied across sites, with R2 of GRS-

US, SHB-NE, and TSF-CN decreased by >90% and that of DST-XJ decreased less than 6%. 

 

Compared with MR, the response of RR to the removal of soil microbial biomass seasonality was much 

weaker, with MAE, RMSE, and R2 values slightly changed across biomes (Figs. 3.5 and 3.6; Table 3.S4). 

Despite the weak response of RR to the removal of soil microbial biomass seasonality, MAE, RMSE, and 

R2 values varied in direction and magnitude across biomes. The removal of soil microbial biomass 

seasonality increased MAE and RMSE for RR at GRS-US (+6% for MAE and +4% for RMSE) and BRF-

CA (+23% for MAE and +24% for RMSE) and decreased MAE and RMSE for RR at SHB-NE (-15% for 

MAE and -13% for RMSE), TCF-US (-1% for MAE and -3% for RMSE), and TSF-CN (-3% for MAE 

and -3% for RMSE). The MAE and RMSE values for RR at DST-XJ, TBF-JP, and WET-PY changed 

less than 1% with the removal of soil microbial biomass seasonality. The R2 values generally showed 

little change for RR without soil microbial biomass seasonality across sites except the TSF-CN, with R2 

values changed less than 2%. 

 

The response of SR to the removal of soil microbial biomass seasonality was different across biomes with 

respect to MAE, RMSE, and R2 values (Figs. 3.5 and 3.6; Table 3.S4). Similar with MR, the removal of 

soil microbial biomass seasonality decreased variations in SR, with the range and the standard deviation 

reduced by 24%-71% and 33-69%, respectively, across sites (Fig. 3.5; Table 3.S4). Removing soil 

microbial biomass seasonality increased MAE and RMSE values for SR at most sites, with the most 

pronounced increase in MAE and RMSE values at BRF-CA (+64% for MAE and +79% for RMSE). 

However, we also observed decreases in MAE and RMSE values for SR at SHB-NE (-16% for MAE and 
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-13% for RMSE) and TSF-CN (-46% for MAE and -43% for RMSE). Compared with the bias indicated 

by MAE and RMSE values, removing soil microbial biomass seasonality had smaller influences on R2 

values, with most R2 values changed less than 12% despite in different directions. For example, the R2 

value for SR at TBF-JP decreased by 11%, while that at WET-PY increased by 9%. We also observed 

relatively large changes in R2 values at some sites, with R2 values of GRS-US and SHB-NE decreased by 

25% and 24%, respectively. 

 

Annual budgets of soil carbon storage and respiratory fluxes  

Overall, removing soil microbial biomass seasonality largely decreased MR and SR across biomes but in 

different magnitudes (Table 3.3). The MR significantly decreased at boreal forest, grassland, shrubland, 

tropical/subtropical forest, temperate forest, and tundra sites in the absence of soil microbial biomass 

seasonality (P<0.05), with MR decreased by >30% at BRF-CA, >15% at GRS-US, TSF-CN, and TUN-

RU, >10% at SHB-NE, and relatively small at TBF-JP (4%), and TCF-US (5%). The MR decreased the 

least at wetland and desert site, with MR decreased by <1% at WET-PY (P=0.11) and DST-XJ (P=0.19). 

Similarly, SR significantly decreased at boreal forest, grassland, shrubland, tropical/subtropical forest, 

temperate forest, and tundra sites (P<0.05). The SR decreased most at boreal forest and tundra sites when 

removing soil microbial biomass seasonality, with SR decreased by >15% at BRF-CA and TUN-RU, 

followed by GRS-US (14%), TSF-CN (11%), and SHB-NE (9%). The SR has a relatively small decrease 

in temperate forests, with SR decreased by 3% at TBF-JP and 4% at TCF-US. Wetland and desert sites 

exhibited the least response to the removal of soil microbial biomass seasonality, with SR decreased by 

0.5% at WET-PY (P=0.09) and DST-XJ (P=0.19). 

 

In contrast, we observed a general increase of SOC within the top 1 m soil profile, ranging from 0.2% to 

7.4% (Table 3.3). The increase of SOC in the top 1 m soil profile varied across sites, with the most 
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pronounced increase at DST-XJ (7.4%) and WET-PY (6.8%), followed by TBF-JP (5.3%), GRS-US 

(3.1%), and TCF-US (1.0%). The least increase was found at SHB-NE (0.6%) and TSF-CN (0.2%). We 

also observed a decreased SOC in response to the removal of soil microbial seasonality. Specifically, 

compared with the CLM-Microbe, the CLM-Microbe_wos simulated a decrease of 1.6% at BRF-CA and 

<1% at TUN-RU for SOC in the top 1 m soil. 

 

Discussion 

Model performance 

The CLM-Microbe model produced consistent results with the observed soil respiratory fluxes in natural 

ecosystems (Figs. 3.1 and 3.4; Table 3.2), as a result of the explicit representation of soil microbial 

processes in the model (Wang et al. 2013a; Wieder et al. 2014; Wang et al. 2017). However, we also 

observed a relatively poor model performance at some sites, such as MR at BRF-SW and WET-SJ and 

MR, RR, and SR at DST-NX (Figs. 3.1 and 3.3, Table 3.2). A few reasons may be responsible for the 

relatively poor performance of the CLM-Microbe model at those sites. First, the small sample size 

contributes to the small R2 values observed at those sites. The R2 is not suitable for assessing the 

goodness-of-fit for a small amount of data due to the large bias in small samples (Wang et al. 2015a). For 

example, compared with GRS-HU, we observed smaller MAE and RMSE values as well as smaller R2 

values in BRF-SW and WET-SJ. Second, the large variation in high-frequency sampling of soil C fluxes 

is another important factor. Although the effects of soil temperature, moisture, and vegetation DOM input 

have been mechanistically represented in the model, factors such as the displacement of carbon dioxide 

(CO2) accumulated in soil pores with infiltrated water during a rainfall and priming effects by plant labile 

C input that may induce large fluctuation of CO2 fluxes are not considered in the CLM-Microbe model 

(Huxman et al. 2004; Blagodatsky et al. 2010; He et al. 2021). For example, rainfall is an important factor 

affecting soil C fluxes not only by biologically altering soil microbial processes, but also physically 
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changing the porous proportion occupied by CO2 (Huxman et al. 2004). Following a rainfall event, 

observations often reveal an abrupt increase in SR, which is not expected to be captured by the CLM-

Microbe model.  

 

Microbial seasonality and soil respiratory fluxes 

The removal of soil moisture and temperature variation largely reduced the seasonality of fungal and 

bacterial biomass (Fig. 3.S2), indicating that the soil moisture and temperature had profound influence on 

fungal and bacterial biomass dynamics. A constant soil moisture and temperature condition is expected to 

weaken soil microbial community variation (Sharon 1972; Tang and Baldocchi 2005; Wang et al. 2013b). 

In addition, the removal of soil moisture and temperature variation largely reduced the biomass C pool 

sizes of fungi and bacteria (Fig. 3.S2). Similar with our findings, Salamanca et al. (1998) compared the 

litter decomposition between field and greenhouse microcosm implementations. They found significantly 

slower litter decomposition in the greenhouse than in field conditions, indicating higher soil microbial 

activity in field conditions. Microbial processes are strongly mediated by the intervening microclimate, 

and fluctuations in soil temperature and moisture were shown to increase microbial activity compared to 

those observed under constant conditions with the same mean values (Soulides and Allison 1961). In the 

CLM-Microbe model, fungal and bacterial biomass is directly controlled by the net balance between C 

gain through DOM uptake and the decomposition of litter and SOM and C loss through microbial lysis 

and microbial respiration (He et al. 2021). Despite the slight decrease in fungal and bacterial lysis with 

the removal of soil moisture and temperature seasonal variation, the decrease in C gain from the 

decomposition of litter and SOM, accompanied by the decreased uptake of DOM by fungi and bacteria 

can explain the decrease in fungal (FBC) and bacterial biomass C (BBC) (Figs. 3.S3-4). 
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The removal of soil microbial biomass seasonality generally reduced MR and SR, but had little influence 

on RR across sites (Figs. 3.5 and 3.6; Table 3.S4). The MR is significantly positively correlated with soil 

microbial biomass (Colman and Schimel 2013; Wei et al. 2019). The reduction in FBC and BBC is one of 

the key reasons responsible for the decrease in MR (Fig. 3.S2; Table 3.S4). The response of MR and SR 

to the removal of fungal and bacterial biomass seasonality varied among biomes, with large decreases in 

MR (10-32%) and SR (9-29%) in boreal forests, deserts, grasslands, tropical/subtropical forests, tundra, 

and grassland, while HR (0.4-5.7%) and SR (0.3-5.8%) slightly decreased at shrublands, temperate 

broadleaf forests, temperate coniferous forest, desert, and wetland sites (Table 3.S4). Soil microbial 

community composition has important impacts on soil C emissions (Cleveland et al. 2007; Monson et al. 

2006; Whitaker et al. 2014). The shifts of soil microbial composition (i.e., F:B ratio) in response to the 

removal of soil microbial biomass seasonality may explain the different responses of MR and SR among 

sites. We observed decreases in F:B ratio in temperate broadleaf forests, temperate coniferous forests, 

deserts, shrubland, tundra, and wetlands compared with other biomes (Fig. 3.S2c). Fungi and bacteria are 

different in physiological traits. Fungi tend to have higher C use efficiency (CUE) than bacteria 

(Strickland and Rousk 2010). The increasing dominance of bacteria in temperate broadleaf forests, 

temperate coniferous forests, deserts, shrublands, and wetlands can explain the smaller decrease in MR 

and SR, despite the decrease in fungal and bacterial biomass with the removal of soil microbial biomass 

seasonality.  

 

Annual budgets of MR, RR, and soil organic carbon storage 

The removal of soil microbial seasonality generally caused the decline in annual estimation of MR and 

SR, and thus higher soil C storage (Table 3.3). Consistent with our findings, previous studies reported 

significant positive relationships between soil microbial biomass and MR or SOC decomposition rate 

(Colman and Schimel 2013; Wei et al. 2019). Soil microbial activity is controlled by a combination of 

multiple factors; substrate quality, temperatures, and water availability are reported to be critical controls 
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for soil microbial metabolism (Curiel Yuste et al. 2007; Zhou et al. 2007; Baumann et al. 2013; Xu et al., 

2017). In the CLM-Microbe model, the decomposition of litter, DOM, and SOM are regulated by fungal 

and bacterial biomass, which are interactively affected by soil moisture, temperature, oxygen 

concentration, and the pool sizes of litter, DOM, and SOM (He et al. 2021). Removing soil microbial 

biomass seasonality decreased fungal and bacterial biomass C pool sizes (Fig. 3.S2), which subsequently 

reduced enzyme production (Nannipieri et al. 1983). Decreases in soil fungal and bacterial biomass led to 

declining decomposition (Figs. 3.S3-4), and thus lowered CO2 emissions. 

 

In contrast to the evident decline (>11%) in annual estimation of MR in most biomes, we found weak 

responses (<5%) in wetlands, deserts, temperate broadleaf forests, and temperate coniferous forests in 

annual estimation of MR with the removal of soil microbial biomass seasonality (Table 3.3). 

Concurrently, we observed a reduction in F:B ratios at those sites, indicating different fungal and bacterial 

responses to the removal of soil moisture and temperature seasonal variation (Fig. 3.S2c). Therefore, the 

removal of soil moisture and temperature seasonality influences the F:B ratio, while soil microbial 

activity and function are closely related to the soil microbial community composition (Bell et al. 2009). 

Fungi and bacteria have distinct physiological traits. Fungal-dominated soils tend to have higher CUE 

than bacterial-dominated ones (Strickland and Rousk 2010), which is believed to result from the tradeoff 

between growth rate and yield (Lipson 2015). The difference in CUE between fungi and bacteria has been 

incorporated in the CLM-Microbe model (He et al. 2021). Therefore, the increasing dominance of 

bacteria in soil microbial community can be responsible for the smaller decrease in MR in wetlands, 

temperate broadleaf forests, and temperate coniferous forests with the removal of soil microbial biomass 

seasonality. Similarly, we observed the overall large decrease (>9%) of SR across biomes, but weak 

response (<5%) in wetlands, deserts, temperate coniferous forests, and temperate broadleaf forests with 

respect to annual estimation of SR with the removal of soil microbial biomass seasonality (Table 3.3). As 

an important component of SR, MR largely dominated the response pattern of SR in response to the 
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removal of soil microbial biomass seasonality (Bond-Lamberty et al. 2004; Tang and Baldocchi 2005). 

Consequently, similar with MR, SR decreased across biomes with the removal of soil microbial biomass 

seasonality, but the decrease was relatively small in wetlands, deserts, temperate coniferous forests, and 

temperate broadleaf forests in magnitude compared with other biomes.  

 

We observed an overall increase of SOC with the removal of soil microbial biomass seasonality across 

biomes. However, we also observed a decrease of SOC at the boreal forest site and neutral changes in 

SOC at the tundra site with the removal of soil microbial biomass seasonality (Table 3.3). Fungi and 

bacteria are major agents in SOM decomposition. The decreases in fungal and bacterial biomass can 

explain the overall increase of SOC (Fig. 3.S2). In addition to biomass, variations in soil microbial 

diversity and community structure seriously affect SOM turnover and thus affect the function of a given 

ecosystem (Stroud et al. 2007; Baumann et al. 2013; Wang et al. 2013b). Bacteria are better consumers of 

simple organic compounds. The increasing dominance of bacteria at tundra sites will facilitate the 

decomposition of SOM and increase the C and nutrient cycling, leading to a declining SOC pool size 

(Myers et al. 2001). In addition, the lower CUE of bacteria can also contribute to the decrease in SOC 

(Lipson 2015). It is expected that fungi produce more biomass C per unit of C metabolized than bacteria. 

Moreover, the contribution of microbial necromass to SOC pool size is also linked to the relative 

dominance of fungi and bacteria, with fungal necromass contributed more to the formation of recalcitrant 

SOM. Therefore, the increasing dominance of bacteria may alleviate C stabilization and dampen the 

contribution of soil microbes to SOM formation in tundra. In contrast to the increasing dominance of 

bacteria in tundra, the removal of soil microbial biomass seasonality increased the dominance of fungi in 

boreal forests (Fig. 3.S2c). Fungi are more advantageous at decomposing low-quality substrate and better 

adapt to low temperatures (Lipson et al. 2002; Pietikäinen et al. 2005; He et al. 2020), resulting in the 

increasing dominance of fungi in boreal forests. Surprisingly, the increasing dominance of fungi did not 

enhance the formation of SOC in boreal forests given the higher CUE and higher contribution of fungi 
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relative to bacteria in stabilizing SOM. The NPP is the direct determinant of organic C input in a system. 

Changes in organic C input can result in variations in the amount of organic C stored in soil. When 

removing soil microbial biomass seasonality, we observed a decrease of NPP by 33% at the boreal forest 

site (BRF-CA) and by 16% at the tundra site (TUN-RU), indicating that constant soil moisture and 

temperature conditions suppressed vegetation productivity in boreal-arctic biomes. Therefore, lower 

organic C input may explain the decrease of SOC in the top 1 m soil in boreal forests, while the decrease 

of SOC in the top 1 m soil in tundra is due to both increasing dominance of bacteria and decreasing NPP.  

 

Future improvements 

Despite the CLM-Microbe model produced comparable results between our simulated soil C fluxes (MR, 

RR, and SR) and field observations, a few improvements have been identified in future work. First, 

although the CLM-Microbe model explicitly represents fungi and bacteria that regulate C transfers among 

different soil C pools, and the vegetation effects on soil microbial community, the missing representation 

of physical replacement of CO2 by percolating water in soil pores during precipitation events and priming 

effects may induce the poor performance of the CLM-Microbe model in capturing CO2 flux variations 

with high-sampling frequency (Huxman et al. 2004; Blagodatsky et al. 2010). For example, in arid and 

semiarid regions, precipitation is a key limiting factor for ecosystem processes such as plant growth and 

soil microbial activity (Bell et al. 2008). Following a precipitation event, water percolated can 

biologically stimulate soil microbial activity and physically replace the air in soil pores, leading to the 

abrupt release of CO2 and large variations in soil C fluxes (Huxman et al. 2004). 

 

In addition, the missing representation of fungal and bacterial dormancy may have led to the 

overestimation of respiratory fluxes but underestimation of SOC pool size. Soil microbial activity is 

primarily controlled by soil moisture and temperature, and soil microbes are active within well-confined 
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soil temperature and moisture ranges (Pietikäinen et al. 2005; Frindte et al. 2019). In the CLM-Microbe 

model, soil fungal and bacterial activity are simultaneously affected by soil moisture and temperature 

scalars, with higher fungal and bacterial activity at more optimal soil temperature and moisture 

conditions, and vice versa. Nevertheless, no soil moisture and temperature thresholds were defined to 

classify the dormant state of fungi and bacteria in the model (He et al. 2021). An improvement in 

representing microbial dormancy in the CLM-Microbe is underway that will likely produce more accurate 

projection of microbial impacts on C cycling in extreme environments such as deserts and tundra. 

 

Conclusion 

Microbes predominately drive the SOC turnover and nutrient cycling in soils, soil microbial seasonal 

variation thus has profound implications on terrestrial C and nutrient cycling. The CLM-Microbe model 

produced good performance in capturing the seasonality in soil respiratory fluxes. Removing soil 

microbial biomass seasonality yielded minor impacts on RR, but significantly increased the simulation 

bias and reduced the goodness-of-fit in MR and SR. The model simulation without soil microbial 

seasonality led to lower soil respiratory fluxes across sites, leading to higher SOC pool size except for 

boreal-arctic sites. These lines of evidence confirmed that microbial seasonality promotes soil C emission. 

The different roles of bacteria and fungi in regulating C flux suggest the important regulation of soil 

microbial community on belowground C biogeochemistry. Our findings highlight the importance of 

explicit representation of microbial mechanisms at the seasonal scale on simulated C cycling in ESMs, 

which will both improve the simulation performance of soil respiratory fluxes and reduce the 

uncertainties associated with model projection in the global C cycle under the changing climate. 
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Figures and tables 
Fig. 3.1. Observed and the CLM-Microbe simulated microbial respiration (MR) in deserts (a and b), 
grasslands (c and d), shrublands (e and f), boreal forests (g, h, and i), temperate broadleaf forests (j and k), 
temperate coniferous forests (l and m), tropical/subtropical forests (n and o), wetlands (p and q), and 
tundra (r and s). 
 
Fig. 3.2. Observed and the CLM-Microbe model simulated root respiration (RR) in deserts (a and b), 
grasslands (c and d), shrublands (e and f), boreal forests (g, h, and i), temperate broadleaf forests (j and k), 
temperate coniferous forests (l and m), tropical/subtropical forests (n and o), wetlands (p and q), and 
tundra (r). 
 
Fig. 3.3. Observed and the CLM-Microbe model simulated soil respiration (SR) in deserts (a and b), 
grasslands (c and d), shrublands (e and f), boreal forests (g, h, and i), temperate broadleaf forests (j and k), 
temperate coniferous forests (l and m), tropical/subtropical forests (n and o), wetlands (p and q), and 
tundra (r). 
 
Fig. 3.4. Comparison of the averaged observed and simulated microbial respiration (MR) (a), root 
respiration (RR) (b), and soil respiration (SR) (c). Vertical and horizontal error bars indicate standard 
error of simulated and observed values, respectively, for a) heterotrophic respiration, b) root respiration, 
and c) soil respiration. 
 
Fig. 3.5. Observed versus simulated a) microbial respiration (MR), root respiration (RR), and soil 
respiration (SR) by the CLM-Microbe_wos. CLM-Microbe_wos indicates the model simulation scenario 
without the seasonality of fungal and bacterial biomass. 
 
Fig. 3.6. Comparison of the model goodness-of-fit in microbial respiration (MR) (a, d, and g), root 
respiration (RR) (b, e, and h), and soil respiration (SR) (c, f, and i). MAE, mean absolute error; RMSE, 
root mean square error; R2, R square. Solid line indicates not applicable. MAE and RMSE values indicate 
the mean error of the model, smaller values represent higher model performance. R2 values mean the 
proportion of variation being explained by the mode, higher R2 values indicate better model performance. 
R2 is not suitable for assessing the goodness-of-fit for a small amount of data due to the large bias in small 
samples. CLM-Microbe represents the default model simulation with the seasonality of fungal and 
bacterial biomass; CLM-Microbe_wos indicates the model simulation scenario without the seasonality of 
fungal and bacterial biomass. 
 
Table 3.1. Site information of the observational respiration flux data 
 
Table 3.2. Site‐level evaluation of the goodness-of-fit criteria computed for the simulated microbial 
respiration (MR), root respiration (RR), and soil respiration (SR) 
 
Table 3.3. Annual budgets of microbial respiration (MR), soil respiration (SR), and soil organic carbon 
(SOC) during 2000-2009 for the representative sites in natural biomes 
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Table 3.2. Site‐level evaluation of the goodness-of-fit criteria computed for the simulated microbial 
respiration (MR), root respiration (RR), and soil respiration (SR) 

Biome Site MR (µmol m-2 s-1)   RR (µmol m-2 s-1)   SR (µmol m-2 s-1) 
MAE RMSE R2   MAE RMSE R2   MAE RMSE R2 

Boreal Forest BRF-CA 0.41 0.49 0.63 
 

0.46 0.72 0.80 
 

0.67 0.82 0.84 
BRF-SW 1.30 1.53 0.02 

 
0.18 0.22 0.76 

 
1.16 1.38 0.32 

BRF-US 0.31 0.36 0.36 
 

0.53 0.68 0.37 
 

0.75 0.97 0.41 
Desert DST-NX 0.38 0.47 0.14 

 
0.18 0.28 0.02 

 
0.52 0.66 0.03 

DST-XJ 0.05 0.07 0.76 
 

0.14 0.21 0.52 
 

0.17 0.27 0.57 
Grassland GRS-HU 1.36 1.63 0.14 

 
1.02 1.30 0.22 

 
1.76 2.12 0.38 

GRS-US 0.66 0.88 0.36 
 

0.60 0.95 0.29 
 

1.15 1.54 0.53 
Shrub SHB-MX 0.69 0.80 0.29 

 
0.09 0.12 0.61 

 
0.74 0.84 0.19 

SHB-NE 0.45 0.53 0.56 
 

0.25 0.31 0.39 
 

0.68 0.74 0.79 
Temperate 
broadleaf forest 

TBF-GM 0.60 0.69 0.12 
 

0.69 0.82 0.49 
 

0.91 1.10 0.41 
TBF-JP 0.31 0.37 0.85 

 
0.34 0.40 0.63 

 
0.57 0.66 0.85 

Temperate 
coniferous forest 

TCF-SP 1.01 1.21 0.35 
 

0.46 0.61 0.18 
 

1.20 1.47 0.30 
TCF-US 0.39 0.47 0.47 

 
0.78 0.99 0.14 

 
0.95 1.26 0.36 

Tropical/subtropical 
forest 

TSF-CN 0.64 0.85 0.58 
 

0.59 0.77 0.24 
 

1.00 1.25 0.71 
TSF-TH 0.92 1.12 0.42 

 
0.51 0.65 0.21 

 
0.81 1.03 0.54 

Tundra TUN-GL 0.27 0.36 0.39 
 

0.70 0.78 0.21 
 

0.97 1.01 0.12 
TUN-RU 0.20 0.25 0.91 

 
-- -- -- 

 
-- -- -- 

Wetland WET-PY 0.81 1.06 0.52 
 

0.54 0.70 0.13 
 

1.03 1.21 0.69 
WET-SJ 1.02 1.21 0.09   0.87 1.20 0.18   1.48 1.78 0.29 

MAE, mean absolute error; RMSE, root mean square error; R2, R square. -- indicates not applicable. MAE and RMSE values 
indicate the mean error of the model, smaller values represent higher model performance. R2 values mean the proportion of 
variation being explained by the mode, higher R2 values indicate better model performance. R2 is not suitable for assessing the 
goodness-of-fit for a small amount of data due to the large bias in small samples.  
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Fig. 3.1. Observed and the CLM-Microbe simulated microbial respiration (MR) in deserts (a and b), 
grasslands (c and d), shrublands (e and f), boreal forests (g, h, and i), temperate broadleaf forests (j and k), 
temperate coniferous forests (l and m), tropical/subtropical forests (n and o), wetlands (p and q), and 
tundra (r and s). 
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Fig. 3.2. Observed and the CLM-Microbe model simulated root respiration (RR) in deserts (a and b), 
grasslands (c and d), shrublands (e and f), boreal forests (g, h, and i), temperate broadleaf forests (j and k), 
temperate coniferous forests (l and m), tropical/subtropical forests (n and o), wetlands (p and q), and 
tundra (r). 
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Fig. 3.3. Observed and the CLM-Microbe model simulated soil respiration (SR) in deserts (a and b), 
grasslands (c and d), shrublands (e and f), boreal forests (g, h, and i), temperate broadleaf forests (j and k), 
temperate coniferous forests (l and m), tropical/subtropical forests (n and o), wetlands (p and q), and 
tundra (r). 
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Fig. 3.4. Comparison of the averaged observed and simulated microbial respiration (MR) (a), root 
respiration (RR) (b), and soil respiration (SR) (c). Vertical and horizontal error bars indicate standard 
error of simulated and observed values, respectively, for a) heterotrophic respiration, b) root respiration, 
and c) soil respiration. 
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Fig. 3.5. Observed versus simulated a) microbial respiration (MR), root respiration (RR), and soil 
respiration (SR) by the CLM-Microbe_wos. CLM-Microbe_wos indicates the model simulation scenario 
without the seasonality of fungal and bacterial biomass. 
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Fig. 3.6. Comparison of the model goodness-of-fit in microbial respiration (MR) (a, d, and g), root 
respiration (RR) (b, e, and h), and soil respiration (SR) (c, f, and i). MAE, mean absolute error; RMSE, 
root mean square error; R2, R square. Solid line indicates not applicable. MAE and RMSE values indicate 
the mean error of the model, smaller values represent higher model performance. R2 values mean the 
proportion of variation being explained by the mode, higher R2 values indicate better model performance. 
R2 is not suitable for assessing the goodness-of-fit for a small amount of data due to the large bias in small 
samples. CLM-Microbe represents the default model simulation with the seasonality of fungal and 
bacterial biomass; CLM-Microbe_wos indicates the model simulation scenario without the seasonality of 
fungal and bacterial biomass. 
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Supplementary material for chapter 3 
Fig. 3.S1. Conceptual diagram showing the key processes and the roles of fungi and bacteria in the CLM-
Microbe model. CWD, coarse woody debris; SOM, soil organic matter; B, bacteria; F, fungi; DOM, 
dissolved organic matter. In the CLM-Microbe model, number in the box means turnover time of each 
pool. Black solid lines indicate transitions in the CLM-Microbe model, which generally represents 
processes such as 1) decomposition of coarse woody debris, 2) litter 1 decomposition, 3) litter 2 
decomposition, 4) litter 3 decomposition, 5) soil organic matter 1 decomposition, 6) soil organic matter 2 
decomposition, 7) soil organic matter 3 decomposition, 8) soil organic matter 4 decomposition, 9) fungal 
and bacterial lysis, 10) dissolved organic matter adsorption, 11) dissolved organic matter uptake by fungal 
and bacterial, and 12) fungal and bacterial respiration. Red dash lines represent regulatory role of fungi 
and bacteria on the process, including fungi and bacteria regulation on 13) litter 1, 14) litter 2, 15) litter 3, 
16) soil organic matter 1, 17) soil organic matter 2, 18) soil organic matter 3, and 19) soil organic matter 4 
decomposition (He et al. 2021). 
 
Fig. 3.S2. Simulated a) fungal biomass carbon (FBC), b) bacterial biomass carbon (BBC), and c) 
fungi:bacteria (F:B) ratio under scenarios with and without microbial biomass seasonality for 
representative sites. The CLM-Microbe represents the default model simulation with the seasonality of 
fungal and bacterial biomass; the CLM-Microbe_wos is the model without the seasonality of fungal and 
bacterial biomass. 
 
Fig. 3.S3. Simulated a) fungal carbon gain from litter decomposition (Lit2Fun), b) fungal dissolved 
organic matter uptake (DOM2Fun), c) fungal carbon gain from soil organic matter decomposition 
(SOM2Fun), and d) fungal lysis under scenarios with and without microbial biomass seasonality for 
representative sites. The CLM-Microbe represents the default model simulation with the seasonality of 
fungal and bacterial biomass; the CLM-Microbe_wos is the model without the seasonality of fungal and 
bacterial biomass. 
 
Fig. 3.S4. Simulated a) bacterial carbon gain from litter decomposition (Lit2Bac), b) bacterial dissolved 
organic matter uptake (DOM2Bac), c) bacterial carbon gain from soil organic matter decomposition 
(SOM2Bac), and d) bacterial lysis under scenarios with and without microbial biomass seasonality for 
representative sites. The CLM-Microbe represents the default model simulation with the seasonality of 
fungal and bacterial biomass; the CLM-Microbe_wos is the model without the seasonality of fungal and 
bacterial biomass. 
 
Table 3.S1. Key model parameters in processes involving fungal and bacterial biomass  
 
Table 3.S2. Key parameters used for constraining the model for different biomes 
 
Table 3.S3. Statistics of fungal biomass carbon (FBC), bacterial biomass carbon (BBC), and 
fungal:bacterial biomass carbon (F:B) ratio with and without microbial biomass seasonality for 
representative sites during sampling years 
 
Table 3.S4. Statistics of simulated microbial respiration (MR), root respiration (RR), and soil respiration 
(SR) with and without microbial biomass seasonality for representative sites during sampling years 
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Fig. 3.S1. Conceptual diagram showing the key processes and the roles of fungi and bacteria in the CLM-
Microbe model. CWD, coarse woody debris; SOM, soil organic matter; B, bacteria; F, fungi; DOM, 
dissolved organic matter. In the CLM-Microbe model, number in the box means turnover time of each 
pool. Black solid lines indicate transitions in the CLM-Microbe model, which generally represents 
processes such as 1) decomposition of coarse woody debris, 2) litter 1 decomposition, 3) litter 2 
decomposition, 4) litter 3 decomposition, 5) soil organic matter 1 decomposition, 6) soil organic matter 2 
decomposition, 7) soil organic matter 3 decomposition, 8) soil organic matter 4 decomposition, 9) fungal 
and bacterial lysis, 10) dissolved organic matter adsorption, 11) dissolved organic matter uptake by fungal 
and bacterial, and 12) fungal and bacterial respiration. Red dash lines represent regulatory role of fungi 
and bacteria on the process, including fungi and bacteria regulation on 13) litter 1, 14) litter 2, 15) litter 3, 
16) soil organic matter 1, 17) soil organic matter 2, 18) soil organic matter 3, and 19) soil organic matter 4 
decomposition (He et al. 2021).
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Table 3.S2. Key parameters used for constraining the model for different biomes 
Parameters Biomes 

BRF DST GRS SHB TBF TCF TSF TUN WET 
k_bacteria 0.008 0.0178 0.005 0.0056 0.02 0.012 0.01 0.0042 0.072 
k_fungi 0.004 0.009 0.0045 0.004 0.0048 0.006 0.01 0.0021 0.03 
m_rf_s1m 0.40 0.40 0.40 0.40 0.40 0.20 0.40 0.40 0.75 
m_rf_s2m 0.60 0.60 0.60 0.60 0.60 0.30 0.60 0.60 0.85 
m_rf_s3m 0.70 0.70 0.70 0.70 0.70 0.40 0.70 0.70 0.95 
m_rf_s4m 0.80 0.80 0.80 0.80 0.80 0.50 0.80 0.80 1.00 
m_batm_f 0.20 0.08 0.12 0.08 0.12 0.12 0.12 0.12 0.10 
m_fatm_f 0.10 0.10 0.08 0.04 0.08 0.08 0.08 0.08 0.08 

BRF, boreal forest; DST, desert; GRS, grassland; SHB, shrub; TBF, temperate broadleaf forest; TCF, temperate coniferous 
forest; TSF, tropical/subtropical forest; TUN, tundra; WET, wetland. 
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To examine the efficiency of setting soil moisture and moisture scalars as constants in removing soil 

microbial biomass seasonality, we compared the model simulations of fungal (FBC) and bacterial (BBC) 

biomass carbon (C) between the CLM-Microbe and CLM-Microbe_wos. Compared with the CLM-

Microbe, the CLM-Microbe_wos with constant soil moisture and temperature scalars produced weaker 

seasonality in FBC, BBC, and F:B ratio across sites (Fig. 3.S2; Table 3.S3). Compared with the CLM-

Microbe, the seasonal variation of FBC, BBC, and F:B ratios simulated by the CLM-Microbe_wos were 

dampened, with FBC decreased by 47.0-99.6% and 51.3-99.7%, BBC decreased by 48.2-99.7% and 36.6-

99.5%, and F:B ratio decreased by 9.38-100.0% and 10.0-100.0%, respectively, in range and standard 

deviation across biomes. In addition, the removal of soil moisture and moisture seasonal variation led to 

suppressed FBC and BBC. Compared with the CLM-Microbe, the CLM-Microbe_wos simulated smaller 

pool sizes of FBC and BBC, with the magnitude varied across biomes. For example, the decrease in FBC 

ranging from 5.9% at TBF-JP (temperate broadleaf forest, TBF-) and 22.7% at BRF-CA (boreal forest, 

BRF-) and BBC ranging from 2.3% at TBF-JP and 23.4% at BRF-CA. The response of F:B ratio to the 

removal of soil moisture and moisture seasonal variation were varied in magnitude and direction among 

biomes (Fig. 3.S2c; Table 3.S3). We found decreases in F:B ratio at DST-XJ (desert, DST-; 1.6%), TBF-

JP (4.6%), TCF-US (temperate coniferous forest, TCF-; 1.3%), WET-PY (wetland, WET-; 8.1%), SHB-

NE (shrubland, SHB-; 0.6%), and TUN-RU (tundra, TUN-; 4.9%). In contrast, compared with the CLM-

Microbe, F:B ratios increased in the CLM-Microbe_wos at TSF-CN (tropical/subtropical forest, TSF-; 

3.9%) and BRF-CA (0.7%). In addition, the removal of fungal and bacteria biomass seasonality changed 

the seasonal pattern of F:B ratio at some sites. For example, we detected the peak F:B ratio in summer in 

the CLM-Microbe and in autumn in the CLM-Microbe_wos at BRF-CA.  
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Fig. 3.S2. Simulated a) fungal biomass carbon (FBC), b) bacterial biomass carbon (BBC), and c) 
fungi:bacteria (F:B) ratio under scenarios with and without microbial biomass seasonality for 
representative sites. The CLM-Microbe represents the default model simulation with the seasonality of 
fungal and bacterial biomass; the CLM-Microbe_wos is the model without the seasonality of fungal and 
bacterial biomass. 
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To identify the pathways resulting in the shifts in soil microbial biomass and community composition, we 

examined the C flow in and out of fungal and bacterial biomass pools (Figs. 3.S3-4). Compared with the 

CLM-Microbe, the CLM-Microbe_wos with constant soil moisture and temperature scalars generally 

suppressed soil fungal and bacterial C gain from litter decomposition across sites (Figs. 3.S3a and 3.S4a). 

The decrease in fungal and bacterial C gain from litter decomposition was in different magnitudes among 

sites, ranging from 0.2% at TBF-JP and 27.8% at BRF-CA for both fungi and bacteria. Similarly, the 

removal of soil microbial seasonality decreased the DOM uptake by fungi and bacteria across sites, with 

the magnitude varying among sites (Figs. 3.S3b and 3.S4b). For example, the DOM uptake by fungi and 

bacteria decreased the most at DST-XJ (34.0% for fungi vs. 34.0% for bacteria) and the least at GRS-US 

(grassland, GRS-; 2.9% for fungi vs. 3.7% for bacteria). The removal of soil microbial biomass 

seasonality decreased fungal and bacterial C gain from SOM decomposition, but the magnitude varied 

among sites (Figs. 3.S3c and 3.S4c). Compared with the CLM-Microbe, the CLM-Microbe_wos 

simulated declines in fungal and bacterial C gain from SOM decomposition. The decreases of fungal and 

bacterial C gain were the most at DST-XJ (53.7% for bacteria vs. 51.5% for fungi), BRF-CA (21.8% for 

bacteria vs. 22.7% for fungi), TSF-CN (20.7% for bacteria vs. 18.7% for fungi), TUN-RU (13.4% for 

bacteria vs. 14.4% for fungi), and TBF-JP (15.1% for bacteria vs. 14.2% for fungi). The TCF-US (9.5% 

for bacteria vs. 9.3% for fungi) featured the least fungal and bacterial C gain from SOM decomposition 

when removing soil microbial biomass seasonality. The removal of soil microbial biomass seasonality 

generally decreased fungal and bacterial lysis rate, with the least decline at TCF-US (8.2% for bacteria vs. 

8.9% for fungi) and most at DST-XJ (37.8% for bacteria vs. 37.9% for fungi) (Figs. 3.S3d and 3.S4d). 
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Fig. 3.S3. Simulated a) fungal carbon gain from litter decomposition (Lit2Fun), b) fungal dissolved 
organic matter uptake (DOM2Fun), c) fungal carbon gain from soil organic matter decomposition 
(SOM2Fun), and d) fungal lysis under scenarios with and without microbial biomass seasonality for 
representative sites. The CLM-Microbe represents the default model simulation with the seasonality of 
fungal and bacterial biomass; the CLM-Microbe_wos is the model without the seasonality of fungal and 
bacterial biomass. 
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Fig. 3.S4. Simulated a) bacterial carbon gain from litter decomposition (Lit2Bac), b) bacterial dissolved 
organic matter uptake (DOM2Bac), c) bacterial carbon gain from soil organic matter decomposition 
(SOM2Bac), and d) bacterial lysis under scenarios with and without microbial biomass seasonality for 
representative sites. The CLM-Microbe represents the default model simulation with the seasonality of 
fungal and bacterial biomass; the CLM-Microbe_wos is the model without the seasonality of fungal and 
bacterial biomass. 
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Chapter 4. Historical Dynamics of Terrestrial Carbon during 1901-
2016 as Simulated by the CLM-Microbe Model  

 

Abstract 

Environmental changes have had drastically altered global carbon (C) cycle; however, the role soil 

microbes play in those alterations remains unclear. In this study, we applied a microbial-explicit model – 

the CLM-Microbe – to investigate the dynamics of vegetation, litter, soil, and microbial C during 1901-

2016. Compared with observations, the CLM-Microbe model was able to reproduce global annual 

averages and latitudinal trends of gross (GPP) and net (NPP) primary productivity, heterotrophic (HR) 

and soil (SR) respiration, microbial (MBC), the sum of fungal (FBC) and bacterial (BBC), biomass C in 

the top 30 cm and 1 m, and dissolved (DOC) and soil (SOC) organic C in the top 30 cm and 1 m. In 

addition, the CLM-Microbe model can significantly (P<0.05) capture the grid-level variation in GPP 

(R2=0.78), NPP (R2=0.63), SR (R2=0.26), HR (R2=0.23), DOC in 0-30 cm (R2=0.2) and 0-1 m (R2=0.22),  

SOC in 0-30 cm (R2=0.36) and 0-1 m (R2=0.26), FBC (R2=0.22) and BBC (R2=0.32) in 0-30 cm, and 

MBC in 0-1 m (R2=0.21). Compared with the 1900s, C fluxes and pool sizes increased by about 30 PgC 

yr-1 for GPP,  15 PgC yr-1 for NPP, 12 PgC yr-1 for HR, 25 PgC yr-1 for SR, 1.0 PgC for FBC and 0.4 PgC 

for BBC in 0-30 cm, 1.5 PgC for FBC, 0.8 PgC for BBC, 2.5 PgC for DOC, 40 PgC for SOC, and 5 PgC 

for litter C (LitC) in 0-1 m, and 40 PgC for vegetation C (VegC). Except for DOC in the top 1 m 

(increased most in Asia and North America), the absolute increases of C fluxes and pools were the largest 

in Asia and South America, particularly in east Asia and central and northern South America. Relative 

changes exhibited different spatial patterns: the relative increase was the largest in Asia and Europe, 

particularly in east Asia and southern and central Europe, for GPP, NPP, HR, and SR, in South America 

(central and east coast of South America in particular) for FBC (0-30 cm and 0-1 m), in Europe (central 

and northern Europe in particular) for BBC (0-30 cm and 0-1 m), in Europe (central and northern Europe 

in particular) and South America (east coast of South America in particular) for DOC (0-1 m), in Arica 

(central and southern Africa in particular) for SOC (0-1 m), and in Europe (southern and central Europe in 
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particular) for VegC and LitC (0-1 m). Increases of GPP, NPP, and VegC were closely related to warming 

and climbing precipitation, while soil C fluxes and litter, microbial, and soil C pools were jointly 

governed by vegetation C input and soil temperature and moisture. Incorporating microbial roles into the 

terrestrial C framework assist our mechanistic understanding of the global C cycle and the insightful 

analysis of microbial roles in the C-climate feedback. 

Key words: environmental change, carbon cycle, soil, microbial, temporal trend, global pattern 

 

Introduction 

The atmospheric concentration of carbon dioxide (CO2) has been drastically increased due to fossil fuel 

combustion, cement production, and land-use change since the Industrial Revolution (IPCC 2001, Lal 

2004, 2008, IPCC 2013). The cumulative radiative forcing caused by the enrichment of CO2 in the 

atmosphere has led to an increase in the average global surface temperature, known as global warming 

(IPCC 2001). Meanwhile, the increase in gaseous forms of nitrogen (N) in the atmosphere due to 

anthropogenic activities, including agriculture and fossil fuel combustion, have accelerated atmospheric N 

inputs into terrestrial ecosystems (Galloway et al. 2008, Van Damme et al. 2021). The increase in 

atmospheric CO2, surface temperature, atmospheric particles, and N deposition has induced cascading 

environmental issues and disrupted carbon (C) and nutrient cycles (Matson et al. 2002, Meeran et al. 

2021, Soong et al. 2021).  

 

Previous studies have assessed the effects of increasing atmospheric CO2, global mean temperature, and 

N deposition on the global C cycle using Earth system models (ESMs) (Todd-Brown et al. 2013, Bonan et 

al. 2019). For example, Bonan et al. (2019) compared vegetation productivity, heterotrophic respiration, 

and vegetation and soil C stocks in the community land model forced by two climate reconstructions 

(CRUNCEPv7 and GSWP3v1). These models, however, were developed with the implicit representation 
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of microbial processes. Given the critical role that soil microorganisms play in soil biogeochemical 

processes and their sensitivity to environmental changes, their explicit incorporation into models is 

needed to improve predictions of the global C cycling (Wieder et al. 2013, Wang et al. 2015, Wang et al. 

2017, He et al. 2021a). Recently, researchers have applied microbial-explicit ESMs in investigating 

responses of the global C cycle to environmental change. For example, Wieder et al. (2015) have 

examined the responses of soil, vegetation, and litter C pools to environmental change using the MIMICS 

model. Wang et al. (2017) also investigated the impacts of environmental change on enzyme, soil, and 

microbial biomass C pools in the TRIPLEX-MICROBE model. However, the rough comparison of 

microbial biomass at global or biome levels as the validation may introduce uncertainties in the model, 

particularly soil microbial biomass and microbe-mediated processes, which can further affect the soil C 

cycle in those models. 

 

Fungi and bacteria, the two major soil microbial groups, respond differently to environmental change, and 

differences in their physiological traits concerning biogeochemical processes have been incorporated into 

the CLM-Microbe model (He et al. 2021a, He et al. 2021b). Therefore, validating fungal and bacterial 

biomass in the CLM-Microbe model at fine scales can reduce uncertainties in model predictions. Changes 

of fungi and bacteria can largely affect soil biogeochemical processes (Hršelová et al. 1999, Bailey et al. 

2002, Boer et al. 2005). Predicting changes in the spatial pattern of fungi and bacteria at the global scale 

and identifying their controls are essential for understanding the impacts of environmental changes on the 

terrestrial C cycle (e.g., vegetation, litter, soil, and microbes). 

 

To fill the gaps, we investigated the effects of environmental change (climate change, N deposition, rising 

CO2, and aerosols) on the global C cycle using the CLM-Microbe model. The CLM-Microbe model, 

mechanistically representing soil microbial community dynamics by differentiating fungal and bacterial 



 187 

physiology, provides a feasible way to investigate the effects of environmental change on soil C cycling 

mediated by soil microbes (He et al. 2021b). This study aimed to examine the effects of environmental 

changes on the global C cycle from 1901 to 2016. We first evaluated the performance of the CLM-

Microbe model in reproducing soil, vegetation, and microbial C variables, including gross (GPP) and net 

(NPP) primary productivity, fungal (FBC) and bacterial (BBC) biomass C in the top 30 cm and 1 m, 

heterotrophic (HR) and soil (SR) respiration, and dissolved (DOC) and soil (SOC) organic C in the top 30 

cm and 1 m. Then, we investigated the effects of environmental change on the temporal trend of variables 

related to soil, vegetation, microbial, and litter C, including GPP, NPP, HR, SR, FBC and BBC in the top 

30 cm, FBC, BBC, DOC, SOC, and litter C (LitC) in the top 1 m, and vegetation C (VegC), from 1901 to 

2016. Finally, we investigated changes in spatial patterns and controls of those fluxes and pools from 

1901 to 2016. 

 

Materials and Methods 

Model representation of fungal and bacterial biomass 

The CLM-Microbe model was built on the model framework developed by Xu et al. (2014) and the 

default CLM4.5 (hereafter CLM4.5) (Koven et al. 2013), and it has been coupled with a microbial 

functional group – based methane module (Xu et al. 2015, Wang et al. 2019) and applied to quantify the 

fugal and bacterial biomass dynamics in natural ecosystems (He et al. 2021b). The CLM4.5 classifies 

litter into three pools, i.e., litter 1 (labile), litter 2 (cellulose) and litter 3 (lignin), and soil organic matter 

(SOM), materials left during later stages of organic C decay, into four pools, i.e., SOM 1, SOM 2, SOM 

3, and SOM 4 (low-high recalcitrance). The three litter pools and four SOM pools differ in base 

decomposition rate (τ), with turnover time of litter pools ranging from 20 hours to 71 days and turnover 

time of SOM pools ranging from 14 days to 27 years (Fig. 4.S1). Coarse woody debris (CWD) is 

fragmented, decomposed, and gradually transferred into litter pools, and further from litter to SOM pools 
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(Thornton et al. 2007; Koven et al. 2013). In addition to eight C pools (three litter, four SOM, and CWD 

pools) in the CLM4.5, we introduced dissolved organic matter (DOM) and fungal and bacterial biomass 

pools in the CLM-Microbe model. The code for the CLM-Microbe model has been archived at 

https://github.com/email-clm/clm-microbe. The model version used in this study was checked out on May 

1, 2021. 

 

In the CLM-Microbe model, fungal and bacterial biomass are simulated as the balance of C input from 

the decomposition of SOM, DOM, and litter and C loss through the microbial lysis and microbial 

respiration. Specifically, fungi and bacteria receive C through the transitions from litter, DOM, and SOM 

pools; fungi and bacteria lose C through the transitions from fungal and bacterial biomass pools to DOM 

and SOM pools and the atmosphere. The conceptual diagram of the CLM-Microbe model and major 

parameters were compiled and displayed in Fig. 4.S1 and Table 4.S1. 

 

The decomposition rates of SOM, DOM, and litter are controlled by both their potential decomposition 

rates and environmental conditions. The decomposition processes in the CLM-Microbe model are defined 

following the below equations, 

𝐷! = 𝑘 × 𝑟(&)*+ × 𝑟*,"-. × 𝑟/0*&1 × 𝑟G*                  equation (1) 

𝑟(&)*+ = exp	(− H
H+
)                                                                               equation (2) 

𝑟*,"-. = 𝑄34
,!"#$,&-,'()

./          equation (3) 

𝑟/0*&1 =

⎩
⎪
⎨

⎪
⎧0																																																																										𝑓𝑜𝑟	𝜑7 <	𝜑8-'

."%IJ0#1 J&K L

."%IJ0#1 J023K L
																													𝑓𝑜𝑟	𝜑8-' ≤	𝜑7 ≤	𝜑80#

1																																																																										𝑓𝑜𝑟	𝜑7 >	𝜑80#

               equation (4) 
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𝑟G* = 𝑓1 × (1 − 𝑓-'M') × 𝑚𝑎𝑥=𝑂FM',0* , 𝑂F8-'> + 𝑓-'M' ×𝑚𝑎𝑥=𝑂F,0* , 𝑂F8-'>              equation (5) 

where DC is the rate of substrate (e.g., SOM, DOM, and litter) breakdown; k is the potential 

decomposition rate; 𝑟G* represents the environmental modifier determined by soil oxygen concentration; 

rdepth is the environmental modifier determined by soil depth; rwater is environmental modifier determined 

by soil moisture; rtsoil means the environmental modifier determined by soil temperature; z means soil 

depth; 𝑧2 is the e-folding depth for decomposition; Tsoil, j is soil temperature at layer j; Tref is the reference 

temperature for decomposition, which is set as 25°C; Q10 indicates the temperature dependence of 

decomposition, it is the ratio of the rate at a specific temperature to that at 10°C lower; Ψj is the soil water 

potential in layer j; Ψmin is a lower limit for soil water potential control on decomposition rate (set to -10 

MPa), rwater will be set as 0 if  Ψj is lower than Ψmin; Ψmax is the upper limit for soil water potential control 

on decomposition, which equals to the saturated soil matric potential, rwater will be set as 1 if  Ψj is higher 

than Ψmax; wsoil, j means soil water content in layer j; fr is the rooting fraction by soil depth; finun means the 

fraction of inundated area; 𝑂FM',0* represents the oxygen available to that demanded by roots and aerobic 

microbes in unsaturated area; 𝑂F8-' denotes the ratio between minimum anaerobic decomposition rate 

and potential aerobic decomposition rate in soil (set to 0.2); 𝑂F,0* represents the oxygen available to that 

demanded by roots and aerobic microbes in saturated area; 𝑟G* will be set as 1 in oxic conditions, while it 

will be estimated as the weighted average of oxygen stress in saturated and unsaturated areas in anoxic 

conditions. 

 

Bacterial and fungal growth are highly sensitive to environmental conditions, such as soil moisture and 

temperature. In addition, fungi and bacteria have different turnover times, hence, different lysis rate 

constants were adopted for fungi and bacteria in the CLM-Microbe model (He et al. 2021b). As a result, 

in the CLM-Microbe model, fungal and bacterial biomass lysis is mechanistically represented as the 

interactive effects of their lysis rate constants and environmental factors, i.e., 𝑟G*, rwater, rtsoil, and rdepth, as 
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described above. Microbial respiration is widely affected by multiple abiotic and biotic factors, such as 

substrate concentration and availability, soil moisture, and soil temperature (Gomez-Casanovas et al. 

2012, Zhang et al. 2013). Therefore, in the CLM-Microbe model, fungal and bacterial respirations are 

represented as the interactive effects of substrates (i.e., DOM, SOM, and litter), environmental factors 

(i.e., 𝑟G*, rwater, and rtsoil), and fraction factors quantifying C being respired by fungi and bacteria in 

transitions (Table 4.S1).  

 

Representation fungal- and bacterial-mediated processes by column 

In the CLM-Microbe model, land surface heterogeneity was represented using a hierarchical data 

structure, which is adapted from the CLM4.5. Each land grid cell can contain multiple land units (e.g., 

glacier, lake, wetland, urban, vegetated land, and cropland) and each land unit can be further divided into 

multiple soil/snow columns. On the vegetated land units, multiple (up to 16) plant functional types (PFTs) 

distinct in physiology and structure from different climate zones (e.g., needleleaf-evergreen-tree-boreal 

vs. needleleaf-deciduous-tree-boreal, broadleaf-evergreen-tree-tropical vs. broadleaf-deciduous-tree-

tropical, and c3-arctic-grass vs. c3-non-arctic-grass) can occupy space on the column. All vegetation 

fluxes and state variables were defined at the PFT level, while soil fluxes and state variables were defined 

at the column level. 

 

In the CLM4.5 and early version of the CLM-Microbe model, microbial and decomposition parameters 

were assumed to be homogenous across data structure levels. Our previous work suggested the 

differences in microbial processes among biomes (He et al. 2021b), the implicitly accounted sub-grid 

microbial processes may introduce uncertainties in the estimation of soil and microbial fluxes and state 

variables. Since soil fluxes and state variables in the CLM-Microbe model are defined at the column 

level, we represented the heterogeneity of microbial-mediated processes by column. The PFTs, plant 
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group sharing similar physical, phylogenetic and phenological characteristics, are a good approximation 

of biomes. We thus assigned the parameter set of microbial properties by PFT. Furthermore, we 

determined the microbial properties of each column by the relative weight of PFTs occupied on the 

column, with the parameter set of the most dominant PFT adopted to represent the microbial and soil 

processes (e.g., fungal and bacterial biomass turnover rate, DOM degradation rate, and fungal and 

bacterial C assimilation proportion from SOM, litter, and DOM) on the column. 

 

Model forcing data 

The forcing data for the CLM-Microbe model include meteorological variables such as air temperature, 

relative humidity, incoming solar radiation, longwave radiation, precipitation rate, surface pressure, and 

surface winds. In this study, we used the CRUNCEP dataset to force the CLM-Microbe model, which has 

been widely used to force the community land model. The CRUNCEP dataset is a combination of two 

existing datasets, i.e., Climate Research Center timeseries (CRU TS) dataset of 0.5° × 0.5° at monthly 

scale and the National Centers for Environmental Prediction (NCEP) reanalysis dataset of 2.5° × 2.5° at 

6-hourly scale. In the CRUNCEP dataset, the diurnal and daily variation of variables such as the air 

temperature, precipitation, humidity, solar radiation, surface pressure, downward longwave radiation, and 

wind speed were derived from NCEP dataset, while their monthly means are bias corrected by the CRU 

TS dataset. In this study, the CRUNCEP dataset version 7, with a spatial resolution of 0.5° × 0.5°, 

spanning from 1901 to 2016, was used to drive the model simulation (Viovy 2018). More information 

about the CRUNCEP dataset version 7 is available at https://rda.ucar.edu/datasets/ds314.3/. 

 

In addition to the meteorological data, we forced the CLM-Microbe model using time-varying CO2 

concentration, N deposition, and aerosol concentration to estimate the C cycle change in the last century, 

which were provided by NCAR for forcing community land model offline simulations. Atmospheric N 
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deposition during 1849-2006 with a spatial resolution of 1.25° longitude × 0.9° latitude were applied for 

all simulations. The CO2 concentrations remained fixed at 1850 levels (284.7 ppm) for accelerated 

decomposition and final runs, and followed with transient historical (1849-2006) changes in transient run. 

The aerosol concentration in accelerated decomposition and final runs for offline simulation was 

prescribed at 1850 level, while aerosol concentration with a spatial resolution of 1.25° longitude × 0.9° 

latitude during 1765-2005 was used in transient simulation. 

 

Model implementation 

The model implementation was carried out in three stages, with the spatial resolution of the simulations 

being 2.5° longitude × 1.9° latitude. First, we ran the accelerated decomposition spin-up to allow the 

system to reach its steady state (Thornton and Rosenbloom 2005, Koven et al. 2013). We set the model 

simulations to 1200 years for the accelerated decomposition phase. Then, we ran a final spin-up of 100 

years to ensure the system was ready for transient simulations during 1850-2016. For the model years of 

1850-1900 in transient simulations, we cycled atmospheric forcing during the period 1901-1910 of the 

CRUNCEP dataset version 7 to force the model. Then, we used the atmospheric data during 1901-2016 of 

the CRUNCEP dataset version 7 to drive the simulation during the period of 1901-2016. The CLM-

Microbe model was initially parameterized by biome, the initial setting for microbial parameters was 

adopted from He et al. (2021b). 

 

Validation data 

Several datasets were employed in this study for model validation. To produce realistic soil conditions in 

the CLM-Microbe model at the grid level, we used datasets  
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 of SOC in the top 1 m soil profile from the Harmonized World Soil Database (HWSD, 

https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1247) at 0.05-degree spatial resolution archived at Oak 

Ridge National Laboratory and SOC in the top 30 cm from the Global Soil Organic C Map (GSOCmap) 

version 1.5 at a spatial resolution of 1 km provided by Food and Agriculture Organization of the United 

Nations, which is available at http://54.229.242.119/GSOCmap/ to validate the SOC in the top 1 m and 30 

cm of the CLM-Microbe model, respectively. To guarantee the reasonability of vegetation productivity, 

GPP and NPP of MODIS gridded datasets with a spatial resolution of 30 seconds during 2000-2015 

(http://files.ntsg.umt.edu/data/NTSG_Products/) were used to compare with the simulated GPP and NPP, 

respectively. To reproduce the soil C emission flux, SR and HR from Global Gridded 1-km Annual Soil 

Respiration Database (SRDB) version 3 available at Oak Ridge National Laboratory 

(https://daac.ornl.gov/CMS/guides/CMS_Global_Soil_Respiration.html) were used to validate SR and 

HR, respectively. For FBC and BBC in the top 30 cm, the dataset of FBC and BBC with a resolution of 

0.5 degree obtained from He et al. (2020) were used to validate FBC and BBC in the top 30 cm in the 

CLM-Microbe model, respectively. Microbial biomass C (MBC), the sum of FBC and BBC, in the top 1 

m of the CLM-Microbe model outputs were compared with Xu et al. (2013) for accuracy. The DOC (0-30 

cm and 0-1 m) with a resolution of 0.5 degree derived from Guo et al. (2020) were used to compare with 

that in the top 30 cm and 1 m from the CLM-Microbe output for validation. Ten-year (2000-2009) 

averages of simulated soil, vegetation, and microbial variables from the CLM-Microbe output were 

calculated to compare with those from observed datasets previously described. 

 

Taken together, we optimized the model parameters related to plant, soil, microbial processes based on 

SOC in the top 30 cm from GSOCmap and that in the top 1 m from HWSD dataset, vegetation GPP and 

NPP from MODIS, SR and HR from SRDB, FBC and BBC (0-30 cm) in He et al. (2020), MBC in Xu et 

al. (2013), and DOC (0-30 cm and 0-1 m) in Guo et al. (2020). We primarily focused on parameters 

related to plant photosynthesis (e.g., flnr), e-folding depth for decomposition (e.g., 
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decomp_depth_efolding) to match the reported GPP, NPP, and SOC in the top 0-30 cm and 1 m. To 

calibrate the model to fit the observed FBC, BBC, and DOC, we adjusted soil microbial parameters 

related to microbial (k_fungi and k_bacteria) and DOC (k_dom) turnover, microbial C assimilation 

efficiency (m_rf_s1m, m_rf_s2m, m_rf_s3m, and m_rf_s4m), the proportion of C being released as 

respiration (m_batm_f and m_fatm_f), plant C allocation (froot_leaf), and the N concentration of plant 

tissues (leafcn and frootcn) to optimize the model simulations of FBC, BBC, MBC, DOC, SR, and HR.  

 

To assess the efficacy of the CLM-Microbe model, the available soil and vegetation variables from the 

CLM4.5, including GPP, NPP, HR, SR, and SOC in the top 30 cm and 1m, were adopted for comparison. 

The simulation results during 1850-2014 was forced using GSWP3v1, with environmental changing 

factors including N deposition and rising CO2 considered in the historical simulation. The GPP, NPP, HR, 

SR, and SOC in the top 30 cm and 1m were provided by Climate Data Gateway at National Center for 

Atmospheric Research (NCAR). The GPP, NPP, HR, SR, and SOC in the top 30 cm and 1m were from 

CLM land-only release, more details can be found at 

https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.CLM_LAND_ONLY.html. All variables were 

at a resolution of 0.9° latitude × 1.25° longitude. The temporal resolutions were different among 

variables; GPP, NPP, SR, and HR are of a monthly output, whereas SOC (0-30 cm and 0-1 m) are of 

yearly simulations. Ten-year (2000-2009) averages of the CLM4.5-simulated GPP, NPP, HR, SR, and 

SOC (0-30 cm and 0-1 m) were calculated to represent the long-term soil and vegetation status and for 

comparison with observed variables. 

 

Since datasets and model simulations are of different resolutions and 0.5 degree is the most widely used, 

we used the function of linint2 in NCAR Command Language to interpolate those datasets and model 

outputs from their original resolutions to 0.5 degree. To make the maps comparable, we used the nibble 
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and extracted by mask functions provided by ArcGIS version 10.2 (ESRI, Redlands, California, USA) to 

make all maps consistent in geographical boundary and missing values. 

 

Model evaluation 

To evaluate the model performance in capturing the spatial variation in soil and vegetation variables, we 

compared GPP, NPP, HR, SR, FBC and BBC in the top 30 cm, MBC (0-1 m), and DOC and SOC (0-30 

cm and 0-1 m) reported by the observational datasets and simulated averages of these variables during 

2000-2009. The coefficient of determination (R2) was used to evaluate the overall model performance for 

those variables. R2, representing the variation in the observations explained by the model, was calculated 

following the equation as below, 

𝑅F = 1 − ∑ ($#6$P#)*4
#5.
∑ ($#6$R)*4
#5.

          equation (6) 

where 𝑦- is the observed value; 𝑦T means the simulated value; 𝑦X is the mean of the observed value; N is the 

number of data points. Higher R2 values indicate better performance of the model, while lower R2 values 

mean the worse model performance and smaller proportion of variation being explained by the model. It 

is noteworthy that R2 is not suitable for assessing the goodness-of-fit for datasets with a small sample size 

(Wang et al. 2015). 

 

Statistical analysis 

Due to the non-normality of GPP, NPP, HR, SR, FBC and BBC in the top 30 cm, MBC (0-1 m), and 

DOC and SOC (0-30 cm and 0-1 m), we performed a 10-base logarithm transformation for robust 

analyses. To examine the agreement between simulated and observed GPP, NPP, HR, SR, FBC and BBC 
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in the top 30 cm, MBC (0-1 m), and DOC and SOC (0-30 cm and 0-1 m) at the grid level, we performed 

linear regression models to examine the consistency between simulated and observed values.  

 

To identify environmental controls of soil, vegetation, litter, and microbial variables, we examined the 

correlations between vegetation productivity and mean annual temperature (MAT) and precipitation 

(MAP) and correlations of soil temperature (ST) and moisture (SM) with soil, litter, and microbial 

variables with respect to their area-weighted averages at the grid level from 1901 to 2016. Considering 

the consistent but stronger environmental influence on soil and microbial variables in the top 30 cm than 

in the top 1 m, only correlations between environmental factors and soil and microbial variables in the top 

1 m were assessed whether an association exists. 

 

The correlations between environmental factors (e.g., MAP, MAT, SM, and ST) and annual averages of 

GPP, NPP, HR, SR, VegC, and FBC, BBC, DOC, SOC, and LitC in the top 1m at the global level during 

1901-2016 were estimated using the Pearson’s correlation. All statistical analyses above were performed 

and relevant figures (Figs. 4.1-4.8 & 4.14) were plotted using “ggcorrplot” (Kassambara and Kassambara 

2019) and “basicTrendline” (Mei et al. 2018) packages in R version 3.5.3 for Mac OS X (https://www.r-

project.org).  

 

To estimate the changing rate of GPP, NPP, HR, SR, FBC and BBC in the top 30 cm, FBC, BBC, DOC, 

LitC, and SOC in the top 1 m, and VegC during 1901-2016, we conducted linear regression models for 

these variables with time at the grid level, with the changing rate indicated by the slope of the regression 

model. In addition, correlations between environmental factors (e.g., MAT, MAP, ST, and SM) and 

vegetation, soil, litter, and microbial variables including GPP, NPP, HR, SR, VegC, FBC, BBC, DOC, 

SOC, and LitC in the top 1m at the grid level were estimated using Pearson’s correlation. Such statistical 
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analyses were performed using NCAR Command Language (https://www.ncl.ucar.edu). Relevant figures 

(Figs. 4.9-4.13 & 4.15) were produced using Matlab version 2021b (The MathWorks, Inc.). 

 

Results 

Model validation 

The CLM-Microbe-model-simulated GPP, NPP, HR, SR, FBC and BBC in the top 30 cm, MBC (0-1 m), 

DOC (0-30 cm and 0-1 m), and SOC (0-30 cm and 0-1 m) were comparable with observed data with 

respect to global budget (Table 4.1), latitudinal trend (Fig. 4.1), and individual grid (Fig. 4.3). However, 

the performance of the CLM-Microbe model in reproducing latitudinal trends varied among variables and 

with soil depth (Fig. 4.1). The latitudinal trends of both GPP and NPP in the CLM-Microbe model were 

overestimated at northern latitudes and in equatorial regions, but NPP was underestimated while GPP was 

well predicted at southern latitudes (Fig. 4.1a-b). The CLM4.5 produced similar latitudinal patterns of 

GPP and NPP (Fig. 4.2a-b). Both HR and SR in the CLM-Microbe model agreed well with observed data 

at southern latitudes. Such variables were overestimated in equatorial regions and at middle and high 

latitudes in the Northern Hemisphere but underestimated at low latitudes in the Northern Hemisphere 

(Fig. 4.1c-d). The similar latitudinal trends of HR and SR were also observed in the CLM4.5 simulation 

(Fig. 4.1c-d). Soil pools showed similar latitudinal patterns across soil depths (Fig. 4.1e-k). Specifically, 

DOC (0-30 cm and 0-1 m) was overestimated in equatorial regions but underestimated in northern 

temperate regions (Fig. 4.1e-f). Meanwhile, we observed the overestimation of SOC (0-30 cm and 0-1 m) 

in equatorial and northern high-latitude regions, but underestimation in northern mid-latitude regions 

(Fig. 4.1g-h). As opposed to the CLM-Microbe model, the CLM4.5 consistently underestimated SOC (0-

30 cm and 0-1 m) along latitudes, except for SOC (0-1 m) at latitudes of >60° N. Similarly, both FBC and 

BBC in the top 30 cm were overestimated in equatorial and at northern high latitudes but underestimated 

in northern mid-latitude regions (Fig. 4.1i-j). Overall, FBC (0-30 cm) at southern latitudes was well 
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predicted by the CLM-Microbe model, but BBC (0-30 cm) in that region was underestimated, while MBC 

(0-1 m) was overestimated across latitudinal gradients (Fig. 4.1k). 

 

At the grid scale, the CLM-Microbe-model-simulated vegetation, soil, and microbial variables were 

significantly (P<0.05) consistent with the observed values (Fig. 4.3). The CLM4.5 also indicated 

significant (P<0.05) consistency between simulated and observed vegetation and soil variables (Fig. 4.4). 

Overall, both the CLM-Microbe model and CLM4.5 performed better at simulating GPP and NPP, while 

soil variables were relatively worse reproduced. The CLM-Microbe-model-simulated GPP (R2=0.78) and 

NPP (R2=0.63) were significantly and positively related to their observed values (Fig. 4.3a-b). The GPP 

(R2=0.76) and NPP (R2=0.6) in the CLM4.5 were also significantly and positively associated with 

observed values (Fig. 4.4a-b).  The SR tended to be better predicted than HR in both the CLM-Microbe 

model (R2=0.26 for SR vs. R2=0.23 for HR) and the CLM4.5 (R2=0.27 for SR vs. R2=0.23 for HR) (Fig. 

4.3c-d, Fig. 4.4c-d). The DOC in 0-1 m (R2=0.22) was slightly better reproduced than in 0-30 cm (R2=0.2) 

in the CLM-Microbe model (Fig. 4.3e-f), while both the CLM-Microbe model (R2=0.36 for 0-30 cm vs. 

R2=0.26 for 0-1 m) and CLM4.5 (R2=0.3 for 0-30 cm vs. R2=0.24 for 0-1 m) performed better at 

simulating SOC in the top 30 cm than in the top 1 m (Fig. 4.3g-h, Fig. 4.4e-f). Similarly, the CLM-

Microbe model performed better in simulating FBC and BBC in the top 30 cm than MBC in the top 1 m 

(R2=0.21) (Fig. 4.3i-k). In addition, BBC (R2=0.32) was better reproduced than FBC (R2=0.22) in the top 

30 cm. 

 

The CLM-Microbe model and the CLM4.5 overestimated the GPP by 15.7% and 7.3%, respectively 

(Table 4.1). However, NPP simulated by the CLM-Microbe model and the CLM4.5 was overestimated by 

1.3% and underestimated by 8.1%, respectively. Similarly, SR was overestimated in both the CLM-

Microbe model (15.6%) and the CLM4.5 (4.0%). While HR in the CLM-Microbe model and the CLM4.5 
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was overestimated by 1.7% and underestimated by 4.4%, respectively. Both the CLM-Microbe model and 

the CLM4.5 underestimated SOC (0-30 cm), by 8.5% and 22.4%, respectively, while SOC (0-1 m) in the 

CLM-Microbe model and the CLM4.5 was overestimated by 32.4% and underestimated by 21.4%, 

respectively. The FBC, BBC, MBC, and DOC, only available in the CLM-Microbe model, were better 

predicted in the top 30 cm than 1 m. The simulated FBC, BBC, and DOC in the top 30 cm were 

underestimated by 3.3% and overestimated by 26.7% and 24.9%, respectively, while MBC and DOC in 

the top 1m were overestimated by 69.5% and 75.0%, respectively.  

 

Carbon fluxes and pools associated with vegetation, litter, microbes, and soil 

The GPP, NPP, HR, and SR displayed increasing trends from 1901 to 2016 (Fig. 4.5). The magnitudes of 

increase were different among variables. By 2016, GPP (30 PgC yr-1) increased about two times more 

than NPP (15 PgC yr-1). Similarly, the increase of SR (25 PgC yr-1) was about twice that of HR (12 PgC 

yr-1) from 1901. Their increasing rates showed variations with time. We observed relatively modest 

increase in GPP, NPP, HR, and SR during 1901-1980, whereas the increase in GPP, NPP, HR, and SR 

were more rapid from 1981 to 2016. 

 

Microbial, vegetation, litter, and soil C pools increased from 1901 to 2016 despite the year-to-year 

variability (Fig. 4.5). The VegC, FBC and BBC in the top 30 cm, and FBC, BBC, DOC, SOC, and LitC in 

the top 1 m increased by about 40, 1.0, 0.4, 1.5, 0.8, 2.5, 40, and 5 PgC, respectively, from 1901 to 2016. 

However, the temporal trends of those variables varied during 1901-2016. The VegC and LitC and SOC 

in the top 1 m showed steady increase during 1901-2016 (Fig. 4.2f-h), while FBC (0-30 cm and 0-1 m) 

decreased from 1901 to 1940 and increased since 1940 (Fig. 4.2a-b). The BBC (0-30 cm and 0-1 m) 

exhibited little change through 1901-1940, but increased greatly from 1940-2016 (Fig. 4.2c-d). The DOC 

(0-1 m) slightly decreased from 1901 to 1920, but increased since 1920 (Fig. 4.2e). Similar to vegetation 
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and soil C fluxes, vegetation, microbial, soil, and litter C pools showed faster rate of increase during 

1981-2016 relative to 1901-1980. 

 

During both 1901-1910 and 2007-2016, the decadal average of soil C (4527 PgC for 1901-1910 and 4564 

PgC for 2007-2016) was the largest C pool in the soil-vegetation-litter system, about 15 times of the sum 

of vegetation (193 PgC for 1901-1910 and 230 PgC for 2007-2016) and litter (63 PgC for 1901-1910 and 

68 PgC for 2007-2016) C (Table 4.3). Soil, litter, and vegetation C increased by 2007-2016 relative to 

1901-1910. However, the absolute increase in those C pools were different, with soil (37.0 PgC) and 

vegetation (37.1 PgC) increased to a larger extent than litter (5.1 PgC). Although soil and vegetation 

increased to a similar extent, vegetation (19.2%) showed a much larger relative increase than soil (0.8%) 

due to its smaller pool size. Despite the smallest absolute increase, litter (8.0%) showed a larger increase 

than soil.  

 

Spatial pattern of vegetation and soil carbon fluxes 

Compared with 1901-1910, GPP, NPP, HR, and SR increased across latitudinal gradients during 2007-

2016 (Fig. 4.7). However, the magnitude of increase differed among latitudinal gradients. Specifically, 

increases of GPP, NPP, HR, and SR were larger at northern latitudes and equatorial regions than at 

southern latitudes.  

 

The ten-year averages of GPP, NPP, HR, and SR were distinct among continents during 1901-1910 and 

2007-2016 (Table 4.2). However, the ranking of continents by GPP, NPP, HR, and SR were consistent 

between 1901-1910 and 2007-2016. Asia and South America had the largest GPP, NPP, HR, and SR 

during both time periods, followed by Africa, North America, and Europe, whereas Australia/Oceania had 
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the smallest fluxes. The absolute increases of GPP, NPP, HR, and SR from 1901-1910 to 2007-2016 were 

the largest in Asia and South America, followed by Africa, North America, and Europe. While 

Australia/Oceania witnessed the smallest absolute increases. Compared with the absolute changes, the 

relative changes of GPP, NPP, HR, and SR were more similar across continents. Asia and Europe 

displayed the largest relative changes. While North America, Africa, South America, and 

Australia/Oceania showed relatively smaller and comparable relative changes.  

 

Across the globe, GPP, NPP, HR, and SR showed similar spatial patterns and evident absolute increases 

from 1901-1910 to 2007-2016 in east coast of North America, central and northern South America, 

central Africa, east Asia, and west Europe (Fig. 4.9a-b, d-e, g-h, and j-k). Correspondingly, we observed 

positive relative change in those regions from 1901-1910 to 2007-2016 (Fig. 4.9c, f, i, and l). The relative 

change was mostly positive across the globe, with >6.25% in relative change commonly observed and 

most prominent changes (>50%) in east Asia, southern and central Europe, central Africa, central North 

America, and east coast of South America. However, we also observed decreases in GPP, NPP, HR, and 

SR, with prominent negative relative changes found in Middle East (>50%). In addition, we also found 

subtle negative relative changes in grids of northeast North America. 

 

The GPP, NPP, HR, and SR displayed similar spatial patterns of changing rates (Fig. 4.12a-d). We found 

the largest positive changing rates of GPP, NPP, HR, and SR in east coast of North America, central and 

northern South America, central Africa, east Asia, southern and central Europe, and island southeast Asia 

from 1901 to 2016. In addition, we also found subtle negative changing rates of GPP, NPP, HR, and SR 

in Greenland, South Asia, and the Sahara. 
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Spatial pattern of vegetation, litter, microbial, and soil carbon stocks 

Similar with vegetation and soil C fluxes, vegetation, soil, microbial, and litter C pools increased across 

latitudinal gradients during 2007-2016 compared with those during 1901-1910 (Fig. 4.8). Overall, FBC 

and BBC in the top 30 cm, FBC, BBC, DOC, SOC, and LitC in the top 1 m, and VegC showed small but 

to a different extent of increase across latitudinal gradients. Specifically, the increases were larger at 

northern high latitudes and in equatorial regions than at other latitudes.  

 

The FBC and BBC in the top 30 cm and FBC, BBC, DOC, and SOC in the top 1 m were distinct among 

continents during 1901-1910 and 2007-2016 (Table 4.2). However, the ranking of continents by their pool 

sizes was consistent between 1901-1910 and 2007-2016. Asia had the largest reservoirs of FBC (0-30 cm 

and 0-1 m) during both time periods. North America had the second largest FBC (0-30 cm) during both 

time periods, followed by South America, Africa, and Europe, and Australia/Oceania. The BBC (0-30 

cm) were the largest in Asia, followed by North and South America, during both time periods. The BBC 

(0-30 cm) were the same in Europe and Africa during both time periods. While Australia/Oceania has the 

smallest and same BBC in the top 1 m during both time periods. The BBC (0-1 m) was the largest in 

Asia, followed by South America, North America, Africa, and Europe, during both time periods. While 

BBC (0-1 m) was the smallest and same in Australia/Oceania during both time periods. The DOC and 

SOC in the top 1 m were the largest in Asia during both time periods, followed by North America. The 

DOC (0-1 m) was comparable between 1901-1910 and 2007-2016 in Europe and South America, but not 

SOC (0-1 m). The DOC and SOC in the top 1 m were the second smallest in Africa and the smallest in 

Australia/Oceania. While Asia and South America had the largest ten-year averages of VegC and LitC (0-

1 m) during both time periods, followed by Africa, North America, and Europe. While such pools were 

the smallest in Australia/Oceania during both time periods.  
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The FBC and BBC in the top 30 cm and FBC, BBC, DOC, and SOC in the top 1 m widely increased from 

1901-1910 to 2007-2016 across continents (Table 4.2). However, we also found slight decreases of FBC 

(0-1 m) in Europe and decreases of FBC and BBC in the top 30 cm and 1 m and DOC (0-1 m) in 

Australia/Oceania. The absolute increase of FBC (0-30 cm and 0-1 m) were the largest in Asia and South 

America, followed by North America and Africa. The smallest absolute increase of FBC (0-30 cm) was 

observed in Europe. Similarly, the absolute increase of BBC (0-30 cm and 0-1 m) was the largest in Asia 

and South America, followed by North America, Europe, and Africa. The absolute increases in DOC and 

SOC in the top 1 m were the largest in Asia. However, the absolute increase in DOC (0-1 m) was the 

second largest in North America, followed by South America, Europe, and Africa, whereas that of SOC 

(0-1 m) in South America was the second largest, followed by Europe, Africa, and North America. 

Australia/Oceania had the smallest increase of SOC (0-1 m). The absolute increases of VegC and LitC (0-

1 m) were the largest in South America and Asia, followed by North America, Africa, and Europe, 

whereas Australia/Oceania witnessed the smallest absolute change of VegC and LitC (0-1 m).  

 

In contrast to the absolute changes, the magnitude of relative changes of FBC and BBC in the top 30 cm 

and FBC, BBC, DOC, and SOC in the top 1 m were similar from 1901-1910 to 2007-2016 (Table 4.2). 

The largest relative increases of FBC (0-30 cm and 0-1 m) were in South America, whereas that of BBC 

(0-30 cm and 0-1 m) were in Europe. The second largest relative change in FBC (0-1 m) was in Africa, 

while the second largest relative change in BBC (0-30 cm and 0-1 m) were found in Africa and South 

America. Relative changes in FBC (0-30 cm) were comparable among Asia, North America, Europe, and 

Africa. Asia and North America were similar in the magnitude of relative changes in FBC (0-1 m) and 

BBC (0-30 cm and 0-1 m). The relative change of DOC (0-1 m) was largest in Europe and South 

America. Such changes were of a similar magnitude among Asia, North America, and Africa, while the 

largest relative increase of SOC (0-1 m) was in Africa, followed by Europe, South America, and 

Australia/Oceania. Such relative increases were comparable between Asia and North America for SOC 
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(0-1 m). The relative changes of VegC and LitC (0-1 m) were to a similar extent. Europe displayed the 

largest relative changes in VegC and LitC (0-1 m), while Asia, North America, Africa, South America, 

and Australia/Oceania showed relatively smaller and comparable relative increases of VegC and LitC (0-

1 m).  

 

At the global scale, FBC and BBC in the top 30 cm and 1 m showed similar spatial patterns and widely 

increased from 1901-1910 to 2007-2016 (Fig. 4.10a-b, d-e, g-h, and j-k). For example, we found higher 

increases of FBC and BBC in the top 30 cm and 1 m at northern high latitudes of Europe and Asia, 

central and northern South America, east coast of South America, and central Africa. Correspondingly, 

we observed positive relative changes of FBC and BBC in the top 30 cm and 1 m in such regions from 

1901-1910 to 2007-2016 (Fig. 4.10c, f, i, and l). Similarly, positive relative changes of FBC and BBC in 

the top 30 cm and 1 m were widely observed across the globe, with most prominent changes (>50%) in 

east Asia, central and northern Europe, and central North America. However, we also observed negative 

relative changes in FBC and BBC in the top 30 cm and 1 m. The largest relative decreases (>50%) were 

found in southern Europe and central North America. In addition, we also found grids with negative 

relative changes in FBC and BBC in the top 30 cm and 1 m in South Asia, southern Australia/Oceania, 

central Africa, and central South America.  

 

Similarly, DOC (0-1 m) showed higher increases in central and northern Europe, east and northern Asia, 

east coast of South Africa, central and northern South America, and central and southern Africa from 

1901-1910 to 2007-2016 (Fig. 4.11a-b). The relative changes in DOC (0-1 m) also suggested positive 

values in those regions from 1901-1910 to 2007-2016 (Fig. 4.11c). Positive relative changes in DOC (0-1 

m) were commonly found across the globe, with most prominent changes (>50%) in east Asia, central 

and northern Europe, central North America, and east coast of South America. However, we also 
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observed negative relative changes in DOC (0-1 m) in South Asia, southern Europe, central and southern 

North America, southern Australia/Oceania, and central Africa. We also widely observed increases in 

SOC (0-1 m) by 2007-2016 relative to 1901-1910 (Fig. 4.11d-e). The highest relative increases were 

found in east Asia and central and northern South America, while South Asia displayed decreases in SOC 

(0-1 m) (Fig. 4.11f). The VegC and LitC (0-1 m) exhibited similar spatial patterns and widely increased 

across the globe (Fig. 4.11g-l). The most distinct absolute increases of such variables were in west North 

America, east Asia, central and northern South America. The relative change in both VegC and LitC (0-1 

m) were mostly positive across the globe, but the magnitudes were different. The most prominent 

increases of VegC and LitC in the top 1 m were in central Europe, east Asia, central and northern South 

America, and central North America. However, the relative change of VegC was to a larger extent than of 

LitC (0-1 m). Despite the widely increase, both VegC and LitC (0-1 m) decreased in South Asia. 

 

The FBC and BBC in the top 30 cm, DOC, SOC, and LitC of top1 m, and VegC showed similar spatial 

patterns of changing rates (Fig. 4.13a-h). Increasing temporal trends of such variables were widely 

observed across the globe, but weak decreasing trends were also found in Greenland, the Sahara, South 

Asia, and southern Australia/Oceania. However, the distribution of fastest increasing rates was different 

among variables. Grids with fastest increasing rates of FBC and BBC in the top 30 cm and 1 m were at 

northern latitudes of Northern America and Asia, east Asia, central and northern South America, and 

central Africa, and island southeast Asia (Fig. 4.13a-d). Similarly, DOC in the top 1 m showed the fastest 

increasing rates at northern latitudes of Northern America and Asia, east Asia, and some grids along the 

east coast of South America (Fig. 4.13e). Spatial patterns of SOC and LitC in the top 1 m and VegC 

changing rates were similar (Fig. 4.13f-h). The fastest increasing rates of such variables were observed in 

east coast of North America, central and northern Europe, east Asia, island southeast Asia, central and 

northern South America, and central Africa. 
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Environmental controls on C cycling 

The area-weighted average of GPP, NPP, and VegC were significantly correlated with that of MAT and 

MAP (Fig. 4.14a). However, the strength of correlations varied, with MAT associated correlations 

stronger than MAP associated ones. The area-weighted MAP and MAT had widely significant 

correlations with GPP, NPP, and VegC, and the spatial patterns of those correlations were similar among 

GPP, NPP, and VegC. However, the spatial patterns of correlations with MAT were different with those 

with MAP (Fig. 4.15). The significant positive correlations of MAT with GPP, NPP, and VegC were 

found at middle and high latitudes of North America, Europe, and Asia, central Africa, east coast of South 

America, and southern edge of Asia, South America, and Australia/Oceania (Fig. 4.15a, c, and e). In 

addition, we also found significant negative correlations of MAT with GPP, NPP, and VegC in southeast 

North America, South Asia, southern Africa, and central and northern Australia/Oceania. Despite the 

similar spatial pattern, there were differences in the strengths and signs of those correlations. For 

example, both GPP and VegC had significant correlations with MAT in northeast South America, while 

correlations between NPP and MAT were weak negative in such regions. The GPP and NPP showed 

significant negative correlations with MAT in northwest South America, but the correlation between 

MAT and VegC was weak (P>0.05). In addition, GPP and NPP showed significant positive correlations 

with MAT in central Africa, while the correlation between VegC and MAT was weak in that area 

(P>0.05).  

 

Significant positive correlations of GPP, NPP, and VegC with MAP were also widely found (Fig. 4.15b, 

d, and f). However, we also found weak negative correlations in some grids in northern and east edge of 

Asia and central Africa. In addition, although correlations of MAP with GPP, NPP, and VegC were 

similar in spatial patterns, correlations with GPP and NPP tended to be stronger than with VegC. For 

example, strong (r>0.5) correlations of MAP with GPP and NPP were commonly observed across the 
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globe, while the proportion of grids with strong correlations were to a lesser extent for VegC in central 

Australia/Oceania and southern Africa. 

  

The area-weighted average of HR, SR, and FBC, BBC, DOC, SOC, and LitC in the top 1 m were 

significantly correlated with that of ST and SM in the top 1 m (Fig. 4.14b). However, the strengths of 

correlations depended on both environmental controls (ST and SM) and variables (HR, SR, FBC, BBC, 

DOC, SOC, and LitC in the top 1 m). For example, correlations of HR and SR with ST and SM in the top 

1 m were of the same magnitude, while the FBC, BBC, DOC, SOC, and LitC were more strongly 

correlated with ST than with SM in the top 1 m. 

 

In contrast, soil, litter, and microbial variables were more widely and positively correlated to ST than SM 

in the top 1 m (Fig. 4.16). Correlations of ST (0-1 m) with HR and SR were similar in spatial pattern. We 

observed significant positive correlations of HR and SR with ST (0-1 m) at middle and high latitudes of 

North America, Europe, and Asia, central Africa, northeast South America, and southern edge of Asia, 

South America, and Australia/Oceania (Fig. 4.16a and c). While negative correlations of HR and SR with 

ST (0-1 m) were found in southwest Asia, southeast North America, central North America, central 

Africa, and central and northern Australia/Oceania. The FBC, BBC, DOC, and SOC in the top 1 m 

displayed similar spatial patterns (Fig. 4.16e, g, i, and k). We found significant and positive correlations 

of FBC, BBC, DOC, and SOC with ST in the top 1 m at middle and high latitudes of North America, 

Europe, and Asia, central Africa, northeast South America, and southern edge of Asia, South America, 

and Australia/Oceania. In addition, we also found some girds with negatives correlations scatterly 

distributed in central North America, Europe, Asia, South America, Africa, and Australia/Oceania. In 

contrast, correlations between LitC and ST in the top 1 m were equally found for being positive and 

negative (Fig. 4.16m). Significant positive correlations were observed in central Europe and Asia, 
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northeast South America, central and east coast of Africa, and southern and central Australia/Oceania. 

While significant negative correlations distributed in northeast Asia. 

 

Correlations of HR, SR, and FBC, BBC, DOC, and SOC with SM in the top 1 m were similar in spatial 

patterns, with significant and positive correlations observed at high latitudes in North America, Europe, 

and Asia, some grids of central Africa, and central and northern Australia/Oceania and negative 

correlations at middle and low latitudes in North America, Europe, and Asia, east coast of South America 

and Africa, and southern Australia/Oceania (Fig. 4.16b, d, f, h, j, and l). In contrast, correlations between 

LitC and SM in the top 1 m were mostly negative, which reached the significance level of 0.05 at high 

latitudes of North America, Asia, and northwest Asia, southern and central Africa, and southern 

Australia/Oceania (Fig. 4.16n). In addition, some grids with significant and positive correlation 

coefficients were scattered throughout central Africa, southwest Asia, and central and northern 

Australia/Oceania.  

 

Discussion 

Comparison with previous studies 

The CLM-Microbe model can well reproduce the latitudinal trends and grid-level distribution of GPP, 

NPP, HR, and SR (subfigures a-d of Figs. 4.1 and 4.3). Compared with the CLM4.5, the CLM-Microbe 

model was comparable or better at simulating the distribution of GPP, NPP, HR, and SR (subfigures a-d 

of Figs. 4.2 and 4.4). Plotting against the observational data, the CLM-Microbe model showed good 

performance in simulating GPP (R2=0.78; P<0.0001) and NPP (R2=0.63; P<0.0001) (Fig. 4.3a-b). 

Although the performance in simulating HR (R2=0.23; P<0.0001) and SR (R2=0.26; P<0.0001) was 

relatively poor (Fig. 4.3c-d), the model efficacy was comparable with that of the CLM4.5 (R2=0.23; 
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P<0.0001 for HR and R2=0.27; P<0.0001 for SR) (Fig. 4.4c-d). In line with our results, multiple models 

have reported the well-captured spatial variation of GPP, NPP, HR, and SR by ESMs (Kim et al. 2019, 

Delire et al. 2020, Zheng et al. 2020, Wiltshire et al. 2021). This may be due to the explicit representation 

of plant physiology and soil processes and their environmental control in the model (Mathieu and O'Neill 

2008, Flato 2011). 

 

The latitudinal trends and grid-level distribution of FBC and BBC in the top 30 cm and FBC, BBC, DOC, 

and SOC in the top 1 m were well-reproduced in the CLM-Microbe model (subfigures e-k of Figs. 4.1 

and 4.3). Compared with the CLM4.5 (R2=0.3 for 0-30 cm and R2=0.24 for 0-1 m), the CLM-Microbe 

model performed better in simulating SOC in 0-30 cm (R2=0.36) and 0-1 m (R2=0.26) (Fig. 4.3g-h, Fig. 

4.4e-f). In line with our results, Wieder et al. (2015) also reported a high spatial correlation (r = 0.46) of 

SOC (0-1 m) between MIMICS outputs and HWSD. In addition, Wang et al. (2017) observed the high 

consistency in SOC (0-1 m) (R2=0.96; P<0.01) between the TRIPLEX-MICROBE model and HWSD by 

vegetation type. The well-developed soil biogeochemical module in those ESMs may explain the good 

performance of such models. However, the latitudinal trends and grid-level distribution of DOC, SOC, 

and MBC (sum of FBC and BBC) in the top 1 m were relatively worse reproduced than those in the top 

30 cm (subfigures e-k of Figs. 4.1 and 4.3, subfigures e-f of Figs. 4.2 and 4.4), indicating that the vertical 

distribution of processes related to decomposition, microbial turnover, and plant C input needs further 

improvements. Although parameters classifying the active decomposition depth and biological function to 

perturbation were defined in the CLM-Microbe model, the gradual change of microbial turnover and 

activity defined along soil profile may need to be improved in future models (Preusser et al. 2019, Zhu et 

al. 2021). In addition, processes or parameters related to the active layer for decomposition and 

perturbation caused by biological (e.g., nematode) and abiotic (e.g., drying and rewetting) activities can 

cause uncertainties in the vertical distribution of C cycle, which needs further efforts and attention in 



 210 

model development (Ettema and Wardle 2002, Gabet et al. 2003, Kuzyakov and Blagodatskaya 2015, 

Schimel 2018). 

 

We estimated global annual averages of 129.5, 56.5, 99.8, and 49.8 PgC yr-1 for GPP, NPP, HR, and SR, 

respectively (Table 4.1). Consistent with our results, previous studies suggested similar simulations of 

GPP, NPP, HR, and SR (Cramer et al. 1999, Nemani et al. 2003, Hashimoto et al. 2015, Zhao et al. 2017, 

Huang et al. 2020, Zheng et al. 2020, Lu et al. 2021). The consistent simulation and good estimation of 

GPP, NPP, HR, and SR across model may indicate the convergent and well-defined plant physiology and 

soil processes in models. In addition, when comparing with observed data, the CLM-Microbe model 

produced more consistent NPP and HR but overestimated GPP and SR (Table 4.1). The overestimation of 

GPP and SR may be due to the lower ecosystem-scale C use efficiency (CUE) in the CLM-Microbe 

model. The vegetation physiology module in the CLM-Microbe model is adapted from CLM4.5. The 

ecosystem-scale CUEs between the CLM-Microbe model (0.44) and the CLM4.5 (0.43) were 

comparable, but lower than in MODIS (0.5). Correspondingly, we observed higher contribution of roots 

to total SR in the CLM-Microbe model (0.5) and the CLM4.5 (0.48) than in the observed SRDB dataset 

(0.43). Therefore, the well simulated NPP and HR but higher predicted GPP and SR in the CLM-Microbe 

model was attributed to the low ecosystem-scale CUE in the CLM-Microbe. Increasing ecosystem-scale 

CUE in the CLM-Microbe model will improve the modeling performance of GPP and SR in model 

development. 

 

We estimated the global budget of FBC, BBC, and DOC in the top 30 cm and MBC and DOC in the top 1 

m as 13.1, 4.2, 8.9, 40.2, and 22.6, respectively (Table 4.1). Compared with observed data, the CLM-

Microbe model can reasonably predict FBC, BBC, and DOC in the top 30 cm well at the global level, 

indicating the well-represented microbial processes in surface soils. However, MBC and DOC in the top 
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1m were largely overestimated, with MBC and DOC in the top 1 m overestimated by 69.5% and 75.0%, 

respectively. Inconsistent with our results, previous studies suggested the underestimation of MBC (0-1 

m). For example, Wang et al. (2017) estimated the global MBC as 21 Pg C. Wieder et al. (2015) 

suggested the steady-state MBC (0-1 m) of 16.3 Pg C in MIMICS. The relatively poor performance of the 

CLM-Microbe model in simulating DOC and MBC in the top 1 m and the discrepancy in MBC (0-1 m) 

among studies may result from several reasons. First, the active layer for decomposition in the CLM-

Microbe model may not be sufficient to define soil microbial processes along soil profile. We observed 

better performance of the CLM-Microbe model in simulating FBC, BBC, and DOC in the top 30 cm 

relative to MBC and DOC in the top 1 m, indicating that the representation of microbial and soil 

processes along soil profile may need improvements. Second, the difference in calibration for MBC may 

cause the discrepancy between studies. The SOC in Wieder et al. (2015) was calibrated to observed data 

but not MBC, Wang et al. (2017) calibrated the MBC (0-1 m) in the TRIPLEX-MICROBE by vegetation 

type, while we calibrated both MBC (0-30 cm and 0-1 m) by grid in the CLM-Microbe model. The 

differences in variables and depths calibrated between studies can partly explain the difference. Third, the 

difference in simulated vegetation, litter, and soil C pools among studies can result in the discrepancy. 

Vegetation C as litter and volatile C input, DOC, and SOC are the C source for microbial C assimilation 

through decomposition (Fig. 4.S1). Consequently, the overestimation of SOC and DOC can partly explain 

the overestimation of MBC in the top 1 m (Table 4.1). 

 

The CLM-Microbe model suggested pool sizes of 605.3 PgC in 0-30 cm and 1630.9 PgC in 0-1 m, 

indicating an underestimation of 8.5% for SOC (0-30 cm) and an overestimation of 32.4% for SOC (0-1 

m) when comparing with observed data (Table 4.1). Compared with the CLM4.5, the CLM-Microbe 

predicted larger stocks of SOC (0-30 cm and 0-1 m). Previous studies suggest large variations in 

simulated SOC (0-1 m) among models. For example, Todd-Brown et al. (2013) reported the SOC (0-1 m) 

stock ranging from 510 to 3040 Pg C among 11 CMIP5 ESMs. The TRIPLEX-MICROBE modeled the 
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global SOC (0-1 m) stock as 1195 Pg C (Wang et al. 2017). Wieder et al. (2015) documented the steady-

state SOC pool in the MIMICS as 1530 Pg C. Delire et al. (2020) reported the SOC (0-1 m) as 1611 PgC 

and 1520 PgC in the new (ISBA_bgc6) and old (ISBA_bgc5) versions, respectively, of ISBA‐CTRIP. 

Given the wide range (510 to 3040 Pg C) of simulated SOC (0-1 m) in models, the CLM-Microbe model 

thus predicted reasonable SOC stocks. 

 

Temporal trends of carbon fluxes and stocks 

The area-weighted average of GPP, NPP, HR, and SR in the CLM-Microbe model increased by about 30, 

15, 12, and 25 PgC yr-1, respectively, from 1901 to 2016 (Fig. 4.5). Consistent with our findings, 

Wiltshire et al. (2021) also observed the increasing trends of GPP and NPP in the JULES model, with 

GPP and NPP increased by about 12 and 25 PgC yr-1 from 1901 to 2005. Bonan et al. (2019) observed the 

increase of about 20 PgC yr-1 of GPP, 10 PgC yr-1 of NPP, and 8 PgC yr-1 of HR in the CLM4.5 forced 

using CRUNCEP dataset from 1850 to 2014. The global increasing rate of SR was estimated as 0.04-0.14 

Pg C year-1 by Huang et al. (2020). Temperature, water, CO2 concentration, and N are key factors 

determining plant photosynthesis, the increasing N deposition and rising CO2 concentration and 

temperature may explain the enhancement of vegetation productivity under environmental change 

(Piñeiro et al. 2017, Dusenge et al. 2019). In this study, we observed significant and positive correlations 

of GPP and NPP with MAT and MAP (Fig. 4.S2a). Although the compounding effects of such 

environmental change factors also have positive effects on autotrophic respiration, but to a lesser extent, 

leading to increasing vegetation productivity in terrestrial ecosystems (Delire et al. 2020). Since ST (0-1 

m) is positively correlated to HR, the rising ST (0-1 m) may explain the observed increase in HR (Fig. 

4.14, Fig. 4.S2b). The increase of HR can partly explain the rising SR from 1901 to 2016 given its critical 

contribution to SR. In addition to HR, the increase in root respiration (RR) due to increasing C 

availability and rising temperature accounted for a crucial proportion of the SR increase (Bond-Lamberty 

and Thomson 2010, Hashimoto et al. 2015, Zhou et al. 2016, Piñeiro et al. 2017). Therefore, the increase 
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of GPP and NPP can be associated with environmental change (e.g., rising MAP and MAT), such 

increase of GPP and NPP together with rising ST and SM in the top 1 m enhanced HR and SR in the last 

century. Similar with GPP and NPP, by 2007-2016, both LitC (0-1 m) (5 PgC) and VegC (40 PgC) 

increased (Fig. 4.6g-h), which is consistent with previous study (Bonan et al. 2019). VegC indicates the C 

stock of vegetation biomass, while LitC is the C loss of vegetation biomass. Increasing water availability 

and temperature usually have negative impacts on maintenance of vegetation biomass and litter in the soil 

(Delire et al. 2020), while we observed positive correlations of VegC with MAT and MAP and of LitC 

with SM and ST in the top 1 m (Fig. 4.14). Therefore, the increase in GPP and NPP is primarily 

responsible for the increase of LitC (0-1 m) and VegC in the last century. 

 

The area-weighted FBC and BBC in 0-30 cm increased by 1.0 and 0.4 PgC yr-1 and those in 0-1 m 

increased by 1.5 and 0.8 PgC yr-1, respectively, in the CLM-Microbe model from 1901 to 2016 (Fig. 4.6a-

d). In addition, both DOC (2.5 PgC) and SOC (40 PgC) in the top 1 m increased from 1901 to 2016 (Fig. 

4.6e-f). Similarly, Bonan et al. (2019) also observed the increase of SOC (0-1 m) by about 30 PgC from 

1850 to 2014 in the CLM4.5 forced using CRUNCEP dataset. Rising temperature has negative impacts on 

fungal and bacterial biomass due to its facilitating effects on microbial turnover (He and Xu 2021). 

Meanwhile, the observed increase in FBC and BBC in the top 30 cm and 1 m in the CLM-Microbe 

model, indicating the higher decomposition potential of soil microbial community (Fig. 4.S1). In addition, 

rising temperature and water availability promotes microbial decomposition (Wardle and Parkinson 1990, 

Qiu et al. 2005, Allison et al. 2010). Despite those negative impacts on microbial biomass maintenance 

and SOC stabilization, we observed increases in microbial and soil C pools from 1901 to 2016. 

Vegetation provides the major C source for soil C formation; therefore, increases in GPP and NPP can 

explain the increasing trends of soil C pools during 1901-2016. Litter, SOM, and DOC are three C 

sources for soil microbes in the CLM-Microbe model (Materials and Methods; Fig. 4.S1). The positive 
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temporal trends of DOC, LitC, and SOC can explain the increase in FBC and BBC in the CLM-Microbe 

model (Fig. 4.6). 

 

The annual averages of fluxes (GPP, NPP, HR, and SR) and pools (FBC, BBC, DOC, LitC, and SOC in 

the top 1 m and VegC) exhibited more rapid increases since year 1980 (Fig. 4.5-6). Concurrently, we 

observed more rapid increase in MAT, MAP, and ST and SM in the top 1 m since year 1980 (Fig. 4.S2). 

In line with this study, Cheng et al. (2017) analyzed SM simulations during historical (1920–2005) and 

future (2006–2080) periods in the Community Earth System Model from CIMP5, they also found 1980 as 

a transition for a subsequent increase of variation during 1920-2005, indicating more rapid changes in SM 

after 1980. We observed significant associations of GPP, NPP, and VegC with MAT and MAP (Fig. 

4.14a) and of HR, SR, and FBC, BBC, DOC, LitC, and SOC with ST and SM in the top 1 m (Fig. 4.14b). 

Therefore, more rapid increases in MAT, MAP, and ST and SM in the top 1 m after 1980 may explain the 

more rapid increases of such variables since year 1980. 

 

Changes in carbon fluxes and stocks over the space and their controls 

The GPP and NPP increased across latitudinal gradients and over continents from 1901-1910 to 2007-

2016 (Fig. 4.7a-b, Table 4.2; Fig. 4.9a-f, Fig. 4.12a-b). Across the globe, absolute increases of GPP and 

NPP were the largest in Asia (particularly east Asia) and South America (particularly central and northern 

South America), while relative increases of GPP and NPP were the largest in Asia (particularly east Asia) 

and Europe (particularly southern Europe) at the continental scale (Table 4.2; Fig. 4.9a-f, Fig. 4.12a-b). 

Their largest increase of GPP and NPP was evidenced by the fastest increasing rate of GPP and NPP in 

those areas (Fig. 4.12a-b). The grids with fast increasing rate of GPP and NPP and the higher number of 

such grids were responsible for the largest absolute increase of GPP and NPP in Asia and South America. 

While grids with fast increasing rate of GPP and NPP and the higher proportion of such grids can explain 
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the largest relative increase of GPP and NPP in Asia and Europe. In line with this study, Zheng et al. 

(2020) reported that GPP in vegetated areas, particularly in temperate and humid regions (e.g., most of 

Asia and central and southern Africa), increased in the revised EC-LUE model from 1982 to 2017. Yue et 

al. (2015) observed distinguishing increases of GPP and NPP in central Africa, the Amazon, Europe, east 

Asia, and North America in the YIBs model. The broad increase of vegetation productivity may be due to 

the positive effects of elevated CO2 and N deposition (Zheng et al. 2020). In addition, temperature and 

water availability have profound influence on plant growth and land C fluxes (Yue et al. 2015, Zheng et 

al. 2020). Our results showed significant correlations of GPP and NPP with MAT and MAP (Fig. 4.15a-

d). The widely increase in MAP and MAT can partly explain the increase in GPP and NPP along latitudes 

and over continents (Fig. 4.S3a-b). Large increases in east Asia, central and northern South America, and 

southern Europe may be related to changes in MAT and MAP, considering their significant correlations 

from 1901-1910 to 2007-2016 (Fig. 4.S3a-b). Given the significant positive correlations of GPP and NPP 

with MAT and MAP in southern Europe, the large relative increase of GPP and NPP may be associated 

with the increasing MAT and MAP in that area. However, correlations of GPP and NPP with MAT and 

MAP varied with latitude in Asia, correlations of GPP and NPP with MAT and MAP were significant and 

positive at middle and high latitudes, but negative at low latitudes. Therefore, increases of GPP and NPP 

at middle and high latitudes may be related to rising MAT and those at low latitudes were associated with 

decreasing MAP. In central and northern South America, correlations between GPP and NPP and MAT 

and MAP were complex. Correlations of GPP and NPP with MAT were not consistent in such area, while 

GPP and NPP were consistently and positively correlated with MAP in central and northern South 

America. As a result, the increase of GPP and NPP in central and northern South America may be related 

to the increasing MAP. In addition, we also observed decreases of GPP and NPP in Middle East (Fig. 

4.9a-f). The decreases of GPP and NPP can be explained by the increases in MAT and decreases in MAP 

(Fig. 4.15a-d, Fig. 4.S3a-b). In contrast to our results, Zheng et al. (2020) observed decreased GPP in 

tropical regions such as the Amazon Forest using the revised EC-LUE model. In addition to CO2, N 

deposition, and meteorology, vegetation cover and type play an important role on GPP (Zheng et al. 
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2020). Land use and land cover change due to management practices have substantial effects on plant 

growth, such effects on leaf area index were considered in the revised EC-LUE model but not in our 

simulation. Therefore, the discrepancy between studies may be caused by land-use effects. 

 

The HR and SR showed a widely increase from 1901-1910 to 2007-2016 along latitude, across the globe, 

and over continents (Table 4.2; Fig. 4.7c-d, Fig. 4.9k-l, Fig. 4.12c-d). Consistent with our findings, Huang 

et al. (2020) observed a globally significant increase of SR, particularly in boreal and tropical regions 

(e.g., northern Asia, central South America, and central and southern Africa) from 2000 to 2014. Bond-

Lamberty et al. (2018) also observed the increase of HR in multiple biomes during 2000-2015. In 

addition, we observed the largest absolute increase of HR and SR in Asia and South America (e.g., east 

Asia and central and northern South America) and relative increase the largest in Asia and Europe (e.g., 

east Asia and southern and central Europe) at the continental scale, which was similar with GPP and NPP 

(Table 4.2; Fig. 4.9k-l, Fig. 4.12c-d). These results indicated that soil C fluxes were largely dependent on 

vegetation productivity, which can enhance soil C fluxes due to higher C allocation to belowground 

(Pendall et al. 2004, Prescott et al. 2020). Furthermore, soil C fluxes can be further increased due to 

facilitated decomposition in a warming world (Zhou et al. 2007, Noh et al. 2017). Temperature and water 

availability have profound influence on root respiration and HR (Bond-Lamberty and Thomson 2010, 

Hashimoto et al. 2015, Sinsabaugh et al. 2016). We also found significant correlations of HR and SR with 

ST and SM in the top 1 m (Fig. 4.16a-d). The large increases in east Asia, central and northern South 

America, and southern and central Europe may be related to changes in SM and ST in the top 1 m 

considering their significant correlations (Fig. 4.S3c-d). Given the significant positive correlations of HR 

and SR with ST (0-1 m) and negative correlations of HR and SR with SM (0-1 m) in southern and central 

Europe, the increases of HR and SR were related to the rising ST and decreasing SM in the top 1 m in that 

area. However, correlations of HR and SR with ST (0-1 m) varied with latitude in east Asia, with 

significant positive correlations of HR and SR with ST and SM in the top 1 m at middle and high latitudes 
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but negative correlations at low latitudes of east Asia. Therefore, increases of HR and SR at middle and 

high latitudes may be related to rising ST (0-1 m) and those at low latitudes were associated with 

decreasing SM (0-1 m). In central and northern South America, correlations of HR and SR with ST (0-1 

m) were complex. The HR and SR were positively correlated to ST (0-1 m) in the east part, but negative 

correlations with SM (0-1 m) in central and northern South America. As a result, the increase of HR and 

SR in central and northern South America was associated with decreasing SM (0-1 m) and increasing ST 

(0-1 m). In addition, we also observed decreases of HR and SR in Middle East (Fig. 4.9c-d). The 

decreases of GPP and NPP in such region can explain the decrease of HR and SR (Fig. 4.9a-f). 

 

The VegC and LitC (0-1 m) also increased across latitudinal gradients and the globe by 2007-2016 

relative to 1901-1910 (Fig. 4.8g-h, Fig. 4.11g-l). The VegC and LitC (0-1 m) widely increased across 

continents, with the most distinct absolute increase in Asia (e.g., east Asia) and South America (e.g., 

central and northern South America) and relative increase in Europe (e.g., southern and central Europe) 

(Table 4.2; Fig. 4.13g-l). The VegC is the biomass C of vegetation, while LitC is the C loss of vegetation 

biomass. This can partly explain the similar spatial patterns of VegC and LitC (top 1 m) with GPP and 

NPP. In addition, VegC and LitC (0-1 m) are affected by environmental factors such as temperature and 

water availability. We found significant correlations of VegC with MAT and MAP (Fig. 4.15e-f) and of 

LitC with ST and SM in the top 1 m (Fig. 4.16m-n). Similar with GPP and NPP, the increase of VegC 

may be associated with the increasing MAT and MAP in southern and central Europe, increases of VegC 

at middle and high latitudes may be related to rising MAT and those at low latitudes associated with 

decreasing MAP in east Asia, while the increase of VegC in central and northern South America may be 

related to the increasing MAP. We observed significant negative correlations between SM and LitC in the 

top 1 m in east Asia, southern and central Europe, and central and northern South America (Fig. 4.16m-

n). The LitC and ST in the top 1 m were weakly and negatively correlated in southern and central Europe, 

significantly and positively correlated in east parts but weakly and negatively correlated in rest areas of 



 218 

central and northern South America, and weakly correlated in southern Europe. Temperature has positive 

impacts on decomposition processes, leading to the decrease in litter residue (Pendall et al. 2004, 

Pietikäinen et al. 2005, Qiu et al. 2005). Therefore, increasing LitC in the top 1 m in east Asia and in 

southern and central Europe was related to their increased GPP, NPP, and VegC, while increases in LitC 

at low latitudes of east Asia and in southern and central Europe may be also associated with the 

decreasing SM.  

 

The DOC and SOC in the top 1 m also increased across latitude by 2007-2016 relative to 1901-1910 (Fig. 

4.8e-f). In line with our results, Eglin et al. (2010) also recorded increasing soil C stock in Asia and South 

America in response to combined effects of atmospheric CO2 concentration and climate simulated by 

ORCHIDEE–LUC from 1901 to 2002. In addition, DOC and SOC in the top 1m widely increased over 

continents, with the most prominent absolute increase in Asia (e.g., east Asia) and relative changes of 

DOC in Europe (e.g., central and northern Europe) and South America (e.g., east coast of South America) 

and of SOC in Africa (e.g., central Africa), but slight decreases of DOC (0-1 m) were found in 

Australia/Oceania (southern Australia/Oceania) (Table 4.2; Fig. 4.11a-c, Fig. 4.13e-f). As vegetation C 

input provides the major C source for SOC stabilization, the large increases in GPP, NPP, VegC, and LitC 

(0-1 m) in east Asia may partly explain the large absolute increase of SOC in those regions (Fig. 4.9a-f, 

Fig. 4.11g-l, Fig. 4.12a-b, Fig. 4.13g-h). The changes in environmental conditions can also affect SOC 

stock. Significant correlations of SOC with ST and SM in the top 1 m were observed (Fig. 4.16k-l). We 

found significant and positive correlations between ST and SOC in central and southern Africa and at 

middle and high latitudes of east Asia and between SM and SOC at low latitudes of east Asia, while 

significant and negative correlation between SM and SOC at low latitudes of east Asia were documented 

in the top 1 m. Since rising temperature exerts negative impacts on SOC stock, the increasing SOC in 

Africa, east Asia, and central Africa was associated with the increasing C input from vegetation, while 

increasing SOC at low latitudes of east Asia was also related to rising SM in the top 1 m (Fig. 4.12-b, Fig. 
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4.16k-l). However, contrary to our result, Eglin et al. (2010) found a slight decrease in soil C stock in 

Africa from 1901 to 2002. The decrease of SOC in Africa may be due to the missing temporal dynamics 

of N deposition in the ORCHIDEE–LUC. N has important impacts on plant growth and vegetation 

productivity and SOC formation, especially in N-limited areas such as arid and semiarid regions such as 

most African regions. The DOC is the balance among SOC and litter decomposition, microbial lysis, and 

DOC degradation (Fig. 4.S1). The large increase of GPP, NPP, VegC, LitC and SOC in the top 1 m in 

Asia, South America, and Europe can explain the increase of DOC (0-1 m) in those regions (Table 4.1; 

Fig. 4.7a-b, Fig. 4.8f-h, Fig. 4.9a-f, Fig. 4.11d-l, Fig. 4.12a-b, Fig. 4.13f-h). In addition, we observed 

significant and positive correlations between DOC and ST in the top 1 m in east Asia, central and 

northern Europe, and east coast of South America. Significant and positive correlations between DOC and 

SM in the top 1 m were observed in central and northern Europe and east Asia, while significant and 

negative correlations between DOC and SM in the top 1 m were observed at low latitudes of east Asia 

and along east coast of South America. Therefore, increasing DOC in Europe, South America, and east 

Asia were partly due to increasing C input from litter and SOC decomposition, while increases in DOC at 

low latitudes of east Asia and along east coast of South America were also related to decreasing SM in the 

top 1 m.  

 

The FBC and BBC in the top 30 cm and 1 m increased across latitudes during 2007-2016 compared with 

1901-1910 (Fig. 4.8a-d). The FBC and BBC in the top 30 cm and 1 m widely increased at the continental 

level, with the absolute increase largest in Asia (e.g., east Asia) and South America (e.g., central and 

northern South America) for FBC and BBC in the top 30 cm and 1 m and relative increase largest in 

South America (e.g., central and northern and east coast of South America) for FBC (0-30 cm and 0-1 m) 

and in Europe (e.g., central and northern Europe) for BBC (0-30 cm and 0-1 m). Vegetation is the major 

C source for soil microbes in terrestrial ecosystems, determining the total amount of C available for 

microbes through regulating microbial C assimilation through SOC, DOC, and litter (Schimel 1995, 
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Vance and Chapin 2001, Xu et al. 2014). This large increase of GPP and NPP in east Asia and central and 

northern South America could explain the largest absolute increase of FBC and BBC in the top 30 cm and 

1 m in such areas. However, fungi and bacteria have different preferences in using those C sources, with 

fungi generally better at using recalcitrant C (e.g., SOC) and bacteria generally preferring labile C (e.g., 

DOC). The fast-increasing rate of SOC in South America and DOC in Europe can partly explain the 

highest relative change of BBC (0-30 cm and 0-1 m) in Europe and FBC (0-30 cm and 0-1 m) in South 

America (Fig. 4.13e-f). Moreover, microbial biomass is closely associated with environmental factors, 

which highly impact microbial processes such as lysis. Microbial turnover is negatively affected by rising 

temperature, with bacteria more affected than fungi due to the faster turnover rate of bacteria than fungi 

(Rousk and Bååth 2011, He and Xu 2021). The high air and soil temperature in central and northern and 

east coast of Southern America may cause the faster turnover of bacteria than fungi, leading to faster 

increase of bacteria in northern Europe and fungi in central and northern and east coast of South America. 

However, we also found slight decreases of FBC in the top 1 m in Europe (e.g., southern Europe) and 

decreases of FBC and BBC in the top 30 cm and 1 m in Australia/Oceania (e.g., southern 

Australia/Oceania) (Table 4.2; Fig. 4.10; Fig. 4.13a-d). The decrease of DOC (0-1 m) may explain the 

widespread decrease of FBC and BBC of 30 cm and 1 m in southern Europe and southern 

Australia/Oceania (Fig. 4.10, Fig. 4.13a-d). In addition, in the top 1 m, FBC and BBC were negatively 

correlated with ST and positively correlated to SM in southern Australia/Oceania (Fig. 4.16e-h). The 

increase of ST and SM in the top 1 m can also explain the decrease of FBC and BBC in 0-30 cm and 0-1 

m in southern Australia/Oceania (Fig. 4.S3c-d). 

 

Future improvements 

Although the CLM-Microbe model can well reproduce the global distribution of vegetation, soil, and 

microbial variables, several aspects were identified as future work for our research. First, soil and 

microbial processes need to be better defined vertically. Soil and microbial variables such as DOC, SOC, 
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FBC, and BBC in 0-30 cm were better simulated than those in 0-1 m (Table 4.1; Figs. 4.1-3), indicating 

that soil and microbial processes along soil profile may not that well represented in the CLM-Microbe 

model. Therefore, better defining soil and microbial processes along soil profile can help improve the 

model efficacy in capturing soil and microbial processes, and further reduce uncertainties in future 

projections of the C cycle. Second, land use change needs to be considered in future work. In addition to 

meteorology, N deposition, aerosol, and elevated CO2, land-use change also has profound influences on 

plant, soil, and microbial processes. Drastic changes in vegetation, soil, and microbial processes due to 

land-use change can occur at small scales, spatial pattern of those processes can also be changed (Pascual 

et al. 1997, Sampaio et al. 2007, Stevenson et al. 2016). Therefore, considering land-use change in the 

CLM-Microbe model can help improve the model efficiency in capturing spatial patterns of C density and 

stocks in terrestrial ecosystems. Lastly, factorial attribution of variations in terrestrial C fluxes and pools 

will be addressed in our future work. Variations in terrestrial C fluxes and pools are driven by multiple 

environmental change factors that contribute individually or in combination, attributing the variations in 

terrestrial C fluxes and pools to environmental change factors is important for understanding of terrestrial 

C fluxes and pools dynamics (Xu et al. 2010). 

 

Conclusion 

The ESMs incorporating microbial processes are expected to represent uncertainties in the terrestrial C 

cycle more comprehensively. The CLM-Microbe model can well reproduce the distribution of vegetation 

(GPP and NPP), soil (HR, SR, DOC, and SOC), and microbial (FBC, BBC, and MBC). In addition, 

fluxes (GPP and NPP) and pools (HR, SR, FBC and BBC in the top 30 cm, FBC, BBC, DOC, SOC, and 

LitC in the top 1 m, and VegC) increased from 1901 to 2016. We generally observed the largest absolute 

increases of such variables in Asia and South America, particularly in east Asia and central and northern 

South America. While relative increases of such variables varied over continents, with the largest relative 
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increases of GPP, NPP, HR, and SR in Asia and Europe (particularly east Asia and southern and central 

Europe), FBC (0-30 cm and 0-1 m) in South America (particularly central and east coast of South 

America), BBC (0-30 cm and 0-1 m) in Europe (particularly central and northern Europe), DOC (0-1 m) 

in South America and Europe (particularly east coast of South America and northern Europe), SOC (0-1 

m) in Africa (particularly central and southern Africa), and VegC and LitC (0-1 m) in Europe 

(particularly southern and central Europe). Slight decreases of DOC (0-1 m) in Europe and FBC and BBC 

in the top 30 cm and FBC, BBC, and DOC in the top 1 m in Australia/Oceania were also observed. The 

increase in GPP, NPP, and VegC were significantly related to rising MAT and MAP, while increases in 

FBC and BBC in the top 30 cm and FBC, BBC, DOC, SOC, and LitC in the top 1 m were closely 

associated with increasing C input from vegetation and SM and ST in the top 1 m.  

 

This study represents one of the first attempts to simulate the temporal trend and spatial distribution of 

soil, vegetation, litter, and microbial C fluxes and pools during the last century using the microbial-

explicit model, i.e., the CLM-Microbe model. The historical trend and changes in spatial pattern of 

vegetation, soil, and microbial fluxes and pools and their controls have critical significance for 

understanding C dynamics in a changing world. 
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Figures and tables 
Fig. 4.1. Comparison between observed (black line) and the CLM-Microbe-simulated (red line) 
latitudinal gradients of (a) GPP, (b) NPP, (c) HR, (d) SR, (e) DOC in the top 30 cm, (f) DOC in the top 1 
m, (g) SOC in the top 30 cm, (h) SOC in the top 1 m, (i) FBC in the top 30 cm, (j) BBC in the top 30 cm, 
and (k) MBC (0-1 m). GPP, gross primary productivity; NPP, net primary productivity; HR, heterotrophic 
respiration; SR, soil respiration; DOC, dissolved organic carbon; SOC, soil organic carbon; FBC, fungal 
biomass carbon; BBC, bacterial biomass carbon; MBC, microbial biomass carbon. 

 

Fig. 4.2. Comparison between observed (black line) and the CLM4.5-simulated (red line) latitudinal 
gradients of (a) GPP, (b) NPP, (c) HR, (d) SR, (e) SOC in the top 30 cm, and (f) SOC in the top 1 m. 
GPP, gross primary productivity; NPP, net primary productivity; HR, heterotrophic respiration; SR, soil 
respiration; SOC, soil organic carbon. 

 

Fig. 4.3. Comparison between observed and the CLM-Microbe-simulated grid cells of (a) GPP, (b) NPP, 
(c) HR, (d) SR, (e) DOC in the top 30 cm, (f) DOC in the top 1 m, (g) SOC in the top 30 cm, (h) SOC in 
the top 1 m, (i) FBC in the top 30 cm, (j) BBC in the top 30 cm, and (k) MBC (0-1 m). Black lines are 
linear regressions, red lines are 1:1 lines. GPP, gross primary productivity; NPP, net primary productivity; 
HR, heterotrophic respiration; SR, soil respiration; DOC, dissolved organic carbon; SOC, soil organic 
carbon; FBC, fungal biomass carbon; BBC, bacterial biomass carbon; MBC, microbial biomass carbon. 

 

Fig. 4.4. Comparison between observed and the CLM4.5-simulated grid cells of (a) GPP, (b) NPP, (c) 
HR, (d) SR, (e) SOC in the top 30 cm, and (f) SOC in the top 1 m. Black lines are linear regressions, red 
lines are 1:1 lines. GPP, gross primary productivity; NPP, net primary productivity; HR, heterotrophic 
respiration; SR, soil respiration; SOC, soil organic carbon. 

 

Fig. 4.5. Evolution of annual carbon flux of area-weighted (a) GPP, (b) NPP, (c) HR, and (d) SR  

simulated by the CLM-Microbe model since 1901. The baseline was the ten-year average of 
corresponding variables during 1901-1910. GPP, gross primary productivity; NPP, net primary 
productivity; HR, heterotrophic respiration; SR, soil respiration. 

 

Fig. 4.6. Evolution of global carbon stocks of area-weighted (a) FBC in the top 30 cm, (b) FBC in the top 
1 m, (c) BBC in the top 30 cm, (d) BBC in the top 1 m, (e) DOC in the top 1 m, (f) SOC in the top 1 m, 
and (g) VegC, and (h) LitC in the top 1 m simulated by the CLM-Microbe model since 1901. The 
baseline was the ten-year average of corresponding variables during 1901-1910. DOC, dissolved organic 
carbon; SOC, soil organic carbon; FBC, fungal biomass carbon; BBC, bacterial biomass carbon; MBC, 
microbial biomass carbon; VegC, vegetation carbon; LitC, litter carbon. 
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Fig. 4.7. Latitudinal gradients of the CLM-Microbe model simulated ten-year averages of (a) GPP, (b) 
NPP, (c) HR, and (d) SR during 1901-1910 and 2007-2016. GPP, gross primary productivity; NPP, net 
primary productivity; HR, heterotrophic respiration; SR, soil respiration. 

 

Fig. 4.8. Latitudinal gradients of the CLM-Microbe model simulated ten-year averages (a) FBC in the top 
30 cm, (b) FBC in the top 1 m, (c) BBC in the top 30 cm, (d) BBC in the top 1 m, (e) DOC in the top 1 m, 
(f) SOC in the top 1 m, and (g) VegC, and (h) LitC in the top 1 m during 1901-1910 and 2007-2016. 
DOC, dissolved organic carbon; SOC, soil organic carbon; FBC, fungal biomass carbon; BBC, bacterial 
biomass carbon; MBC, microbial biomass carbon; VegC, vegetation carbon; LitC, litter carbon. 

 

Fig. 4.9. Ten-year averages of (a-b) GPP, (d-e) NPP, (g-h) HR, and (j-k) SR during (a, d, g, and j) 1901-
1910 and (b, e, h, and k) 2007-2016 and relative changes of (c) GPP, (f) NPP, (i) HR, and (l) SR by 2007-
2016 relative to 1901-1910. GPP, gross primary productivity; NPP, net primary productivity; HR, 
heterotrophic respiration; SR, soil respiration. 

 

Fig. 4.10. Ten-year averages of (a-b) FBC in the top 30 cm, (d-e) FBC in the top 1 m, (g-h) BBC in the 
top 30 cm, and (j-k) BBC in the top 1 m during (a, d, g, and j) 1901-1910 and (b, e, h, and k) 2007-2016 
and relative changes of (c) GPP, (f) NPP, (i) HR, and (l) SR by 2007-2016 relative to 1901-1910. FBC, 
fungal biomass carbon; BBC, bacterial biomass carbon. 

 

Fig. 4.11. Ten-year averages of (a-b) DOC in the top 1 m, (d-e) SOC in the top 1 m, (g-h) VegC, and (j-k) 
LitC in the top 1 m during (a, d, g, and j) 1901-1910 and (b, e, h, and k) 2007-2016 and relative changes 
of (c) DOC in the top 1 m, (f) SOC in the top 1 m, (i) VegC, and (l) LitC in the top 1 m by 2007-2016 
relative to 1901-1910. DOC, dissolved organic carbon; SOC, soil organic carbon; VegC, vegetation 
carbon; LitC, litter carbon. 

 

Fig. 4.12. Changing rates of the CLM-Microbe model simulated (a) GPP, (b) NPP, (c) HR, and (d) SR 
from 1901 to 2016. GPP, gross primary productivity; NPP, net primary productivity; HR, heterotrophic 
respiration; SR, soil respiration. DOC, dissolved organic carbon; SOC, soil organic carbon; FBC, fungal 
biomass carbon; BBC, bacterial biomass carbon; MBC, microbial biomass carbon; VegC, vegetation 
carbon; LitC, litter carbon. Black dots indicate significant regression coefficients (P<0.05). 

 

Fig. 4.13. Changing rates of the CLM-Microbe model simulated (a) FBC in the top 30 cm, (b) FBC in the 
top 1 m, (c) BBC in the top 30 cm, (d) BBC in the top 1 m, (e) DOC in the top 1 m, (f) SOC in the top 1 
m, and (g) VegC, and (h) LitC in the top 1 m from 1901 to 2016. DOC, dissolved organic carbon; SOC, 
soil organic carbon; FBC, fungal biomass carbon; BBC, bacterial biomass carbon; MBC, microbial 
biomass carbon; VegC, vegetation carbon; LitC, litter carbon. Black dots indicate significant regression 
coefficients (P<0.05). 

 



 234 

Fig. 4.14. Heatmap showing Pearson’s correlation between the CLM-Microbe model simulated (a) GPP, 
NPP, and VegC and MAT and MAP and (b) HR, SR, FBC in the top 1 m, BBC in the top 1 1m, DOC in 
the top 1 m, SOC in the top 1 m, and LitC in the top 1 m and SM and ST in the top 1 m from 1901 to 
2016. GPP, gross primary productivity; NPP, net primary productivity; HR, heterotrophic respiration; SR, 
soil respiration; DOC, dissolved organic carbon; SOC, soil organic carbon; FBC, fungal biomass carbon; 
BBC, bacterial biomass carbon; VegC, vegetation carbon; LitC, litter carbon; MAT, mean annual 
temperature; MAP, mean annual precipitation; ST, soil temperature; SM, soil moisture. Black stars 
indicate significant correlates (P<0.05). 

 

Fig. 4.15. Pearson’s correlation between the CLM-Microbe model simulated (a-b) GPP, (c-d) NPP, and 
(e-f) VegC and (a, c, and e) MAT and (b, d, and f) MAP from 1901 to 2016. GPP, gross primary 
productivity; NPP, net primary productivity; VegC, vegetation carbon; MAT, mean annual temperature; 
MAP, mean annual precipitation. Black dots indicate significant correlates (P<0.05). 

 

Fig. 4.16. Pearson’s correlation between the CLM-Microbe model simulated (a-b) HR, (c-d) SR, (e-f) 
FBC in the top 1 m, (g-h) BBC in the top 1 m,  (i-j) DOC in the top 1 m, (k-l) SOC in the top 1 m, and 
(m-n) LitC and (a, c, e, g, i, k, and m) ST and (b, d, f, h, j, l, and n) SM in the top 1 m from 1901 to 2016. 
HR, heterotrophic respiration; SR, soil respiration; DOC, dissolved organic carbon; SOC, soil organic 
carbon; FBC, fungal biomass carbon; BBC, bacterial biomass carbon; VegC, vegetation carbon; LitC, 
litter carbon; ST, soil temperature; SM, soil moisture. Black dots indicate significant correlates (P<0.05). 

 

Table 4.1. Annual flux of GPP, NPP, HR, and SR and carbon stocks of FBC in the top 30 cm, BBC in the 
top 30 cm, MBC (0-1 m), DOC in the top 30 cm, SOC in the top 30 cm, and SOC in the top 1 m by 
observed datasets and by simulations of the CLM-Microbe model and CLM4.5 at the global scale 
 
Table 4.2. Ten-year averages of GPP, NPP, HR, and SR and carbon stocks of FBC in the top 30 cm, FBC 
in the top 1 m, BBC in the top 30 cm, BBC in the top 1 m, DOC in the top 1 m, and SOC in the top 1 m 
and their absolute and relative changes by simulations of the CLM-Microbe model at the continental scale 
 
Table 4.3. Carbon stock of vegetation, litter, and soil pools and absolute and relative changes from 1901-
1910 to 2007-2016 
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Table 4.1. Annual flux of GPP, NPP, HR, and SR and carbon stocks of FBC in the top 30 cm, BBC in the 
top 30 cm, MBC (0-1 m), DOC in the top 30 cm, SOC in the top 30 cm, and SOC in the top 1 m by 
observed datasets and by simulations of the CLM-Microbe model and CLM4.5 at the global scale 

Variables Unit Global estimation 

Observed CLM-Microbe CLM4.5 

GPP PgC yr-1 111.94 129.53 120.13 

NPP 55.76 56.49 51.26 

SR 86.34 99.80 89.79 

HR 49.01 49.84 46.87 

FBC (0-30 cm) PgC 13.57 13.12 -- 

BBC (0-30 cm) 3.29 4.17 -- 

MBC (0-1 m) 23.70 40.18 -- 

DOC (0-30 cm) 7.16 8.94 -- 

DOC (0-1 m) 12.90 22.57 -- 

SOC (0-30 cm) 661.71 605.27 513.40 

SOC (0-1 m) 1231.99 1630.90 967.87 

GPP, gross primary productivity; NPP, net primary productivity; HR, heterotrophic respiration; SR, soil respiration; DOC, 
dissolved organic carbon; SOC, soil organic carbon; FBC, fungal biomass carbon; BBC, bacterial biomass carbon; MBC, 
microbial biomass carbon. -- denoted not available. The SOC (0-1 m) data were from the Harmonized World Soil Database 
(HWSD, https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1247); the SOC (0-30 cm) data were from the Global Soil Organic 
Carbon Map (GSOCmap) version 1.5; GPP and NPP data were from MODIS gridded datasets 
(http://files.ntsg.umt.edu/data/NTSG_Products/); the SR and HR data were from Global Gridded 1-km Annual Soil Respiration 
Database (SRDB) version 3 (https://daac.ornl.gov/CMS/guides/CMS_Global_Soil_Respiration.html); the FBC and BBC in the 
top 30 cm were from He et al. (2020); MBC (0-1 m) was compared with Xu et al. (2013); the DOC (0-30 cm and 0-1 m) was 
derived from Guo et al. (2020). Output of the CLM-Microbe model during 2000-2009 (ten-year average) were used to compare 
with observational data. 
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Table 4.2. Ten-year averages of GPP, NPP, HR, and SR and carbon stocks of FBC in the top 30 cm, FBC 
in the top 1 m, BBC in the top 30 cm, BBC in the top 1 m, DOC in the top 1 m, and SOC in the top 1 m 
and their absolute and relative changes by simulations of the CLM-Microbe model at the continental scale 

  Variables Unit Continent 
Asia North America Europe Africa South America Australia/Oceania 

1901-1910 GPP PgC yr-1 28.7 16.6 9.2 20.8 31.0 3.3 
NPP 12.2 7.3 4.3 9.4 12.3 1.5 
HR 11.1 6.7 4.0 8.0 11.1 1.3 
SR 22.1 13.7 7.7 15.3 21.7 2.7 
FBC (0-30 cm) PgC 4.5 3.5 1.3 1.5 1.9 0.4 
FBC (0-1 m) 10.3 7.8 2.7 3.6 5.5 0.9 
BBC (0-30 cm) 1.4 1.0 0.4 0.4 0.7 0.1 
BBC (0-1 m) 3.6 2.3 0.9 1.2 2.5 0.2 
DOC (0-1 m) 7.5 6.5 2.6 1.9 2.7 0.6 
SOC (0-1 m) 563.8 415.9 206.4 170.8 311.3 29.6 
VegC 49.9 23.3 12.5 34.6 69.8 3.2 
LitC (0-1 m) 8.5 3.1 1.1 5.6 13.5 0.7 

2007-2016 GPP PgC yr-1 38.1 20.9 12.4 25.8 38.3 4.1 
NPP 16.3 9.2 5.8 11.6 15.3 1.8 
HR 14.7 8.3 5.4 9.8 13.8 1.7 
SR 30.1 17.2 10.4 19.4 27.5 3.4 
FBC (0-30 cm) PgC 4.8 3.8 1.4 1.6 2.1 0.4 
FBC (0-1 m) 10.7 8.0 2.7 3.8 5.9 0.9 
BBC (0-30 cm) 1.6 1.1 0.5 0.5 0.8 0.1 
BBC (0-1 m) 3.7 2.4 1.0 1.3 2.6 0.2 
DOC (0-1 m) 8.3 7.2 3.0 2.1 3.1 0.6 
SOC (0-1 m) 572.8 421.4 212.3 176.5 318.9 30.3 
VegC 58.7 29.0 16.5 39.0 83.2 3.9 
LitC (0-1 m) 9.6 3.5 1.3 6.3 15.0 0.8 

Absolute 
change 
from 1901-
1910 to 
2007-2016 

GPP PgC yr-1 9.39 4.23 3.20 4.98 7.32 0.86 
NPP 4.11 1.91 1.55 2.21 2.99 0.34 
HR 3.61 1.62 1.43 1.79 2.70 0.31 
SR 8.02 3.48 2.76 4.03 5.83 0.74 
FBC (0-30 cm) PgC 0.35 0.21 0.10 0.13 0.22 0.00 
FBC (0-1 m) 0.37 0.26 -0.01 0.21 0.38 -0.04 
BBC (0-30 cm) 0.11 0.07 0.06 0.05 0.09 0.00 
BBC (0-1 m) 0.18 0.11 0.10 0.09 0.18 -0.01 
DOC (0-1 m) 0.75 0.67 0.40 0.21 0.41 -0.04 
SOC (0-1 m) 8.96 5.46 5.90 5.67 7.65 0.69 
VegC 8.82 5.71 4.06 4.46 13.39 0.68 
LitC (0-1 m) 1.06 0.45 0.26 0.75 1.42 0.10 

Relative 
change 
from 1901-
1910 to 
2007-2016 

GPP % 32.7 25.4 34.9 23.9 23.6 26.4 
NPP 

 
33.6 26.3 36.0 23.6 24.4 23.0 

HR 
 

32.5 24.2 36.0 22.3 24.4 23.1 
SR 

 
36.2 25.5 36.0 26.2 26.9 27.9 

FBC (0-30 cm) 
 

7.8 6.0 7.6 8.7 12.0 -0.9 
FBC (0-1 m) 

 
3.6 3.3 -0.3 5.7 6.8 -4.2 

BBC (0-30 cm) 
 

7.9 6.5 14.9 11.0 13.2 -1.9 
BBC (0-1 m) 

 
5.0 4.9 11.5 7.4 7.3 -2.7 

DOC (0-1 m) 
 

10.0 10.2 15.1 11.1 15.1 -7.2 
SOC (0-1 m) 

 
1.6 1.3 2.9 3.3 2.5 2.3 

VegC 
 

17.7 24.5 32.5 12.9 19.2 21.2 
LitC (0-1 m)   12.4 14.5 23.4 13.4 10.5 14.5 

GPP, gross primary productivity; NPP, net primary productivity; HR, heterotrophic respiration; SR, soil respiration; DOC, 
dissolved organic carbon; SOC, soil organic carbon; FBC, fungal biomass carbon; BBC, bacterial biomass carbon. 
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Table 4.3. Carbon stock of vegetation, litter, and soil pools and absolute and relative changes from 1901-
1910 to 2007-2016 

Pool Total Carbon stock (PgC)   Change from 1901-1910 to 2007-2016 

1901-1910 2007-2016   Absolute change (PgC) Relative change (%) 

Soil 4527 4564 
 

37.0 0.8 

Litter 63 68 
 

5.1 8.0 

Vegetation 193 230   37.1 19.2 
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Fig. 4.1. Comparison between observed (black line) and the CLM-Microbe-simulated (red line) 
latitudinal gradients of (a) GPP, (b) NPP, (c) HR, (d) SR, (e) DOC in the top 30 cm, (f) DOC in the top 1 
m, (g) SOC in the top 30 cm, (h) SOC in the top 1 m, (i) FBC in the top 30 cm, (j) BBC in the top 30 cm, 
and (k) MBC (0-1 m). GPP, gross primary productivity; NPP, net primary productivity; HR, heterotrophic 
respiration; SR, soil respiration; DOC, dissolved organic carbon; SOC, soil organic carbon; FBC, fungal 
biomass carbon; BBC, bacterial biomass carbon; MBC, microbial biomass carbon. 
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Fig. 4.2. Comparison between observed (black line) and the CLM4.5-simulated (red line) latitudinal 
gradients of (a) GPP, (b) NPP, (c) HR, (d) SR, (e) SOC in the top 30 cm, and (f) SOC in the top 1 m. 
GPP, gross primary productivity; NPP, net primary productivity; HR, heterotrophic respiration; SR, soil 
respiration; SOC, soil organic carbon. 
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Fig. 4.3. Comparison between observed and the CLM-Microbe-simulated grid cells of (a) GPP, (b) NPP, 
(c) HR, (d) SR, (e) DOC in the top 30 cm, (f) DOC in the top 1 m, (g) SOC in the top 30 cm, (h) SOC in 
the top 1 m, (i) FBC in the top 30 cm, (j) BBC in the top 30 cm, and (k) MBC (0-1 m). Black lines are 
linear regressions, red lines are 1:1 lines. GPP, gross primary productivity; NPP, net primary productivity; 
HR, heterotrophic respiration; SR, soil respiration; DOC, dissolved organic carbon; SOC, soil organic 
carbon; FBC, fungal biomass carbon; BBC, bacterial biomass carbon; MBC, microbial biomass carbon. 
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Fig. 4.4. Comparison between observed and the CLM4.5-simulated grid cells of (a) GPP, (b) NPP, (c) 
HR, (d) SR, (e) SOC in the top 30 cm, and (f) SOC in the top 1 m. Black lines are linear regressions, red 
lines are 1:1 lines. GPP, gross primary productivity; NPP, net primary productivity; HR, heterotrophic 
respiration; SR, soil respiration; SOC, soil organic carbon. 
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Fig. 4.5. Evolution of annual carbon flux of area-weighted (a) GPP, (b) NPP, (c) HR, and (d) SR 
simulated by the CLM-Microbe model since 1901. The baseline was the ten-year average of 
corresponding variables during 1901-1910. GPP, gross primary productivity; NPP, net primary 
productivity; HR, heterotrophic respiration; SR, soil respiration. 
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Fig. 4.6. Evolution of global carbon stocks of area-weighted (a) FBC in the top 30 cm, (b) FBC in the top 
1 m, (c) BBC in the top 30 cm, (d) BBC in the top 1 m, (e) DOC in the top 1 m, (f) SOC in the top 1 m, 
and (g) VegC, and (h) LitC in the top 1 m simulated by the CLM-Microbe model since 1901. The 
baseline was the ten-year average of corresponding variables during 1901-1910. DOC, dissolved organic 
carbon; SOC, soil organic carbon; FBC, fungal biomass carbon; BBC, bacterial biomass carbon; MBC, 
microbial biomass carbon; VegC, vegetation carbon; LitC, litter carbon. 
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Fig. 4.7. Latitudinal gradients of the CLM-Microbe model simulated ten-year averages of (a) GPP, (b) 
NPP, (c) HR, and (d) SR during 1901-1910 and 2007-2016. GPP, gross primary productivity; NPP, net 
primary productivity; HR, heterotrophic respiration; SR, soil respiration. 
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Fig. 4.8. Latitudinal gradients of the CLM-Microbe model simulated ten-year averages (a) FBC in the top 
30 cm, (b) FBC in the top 1 m, (c) BBC in the top 30 cm, (d) BBC in the top 1 m, (e) DOC in the top 1 m, 
(f) SOC in the top 1 m, and (g) VegC, and (h) LitC in the top 1 m during 1901-1910 and 2007-2016. 
DOC, dissolved organic carbon; SOC, soil organic carbon; FBC, fungal biomass carbon; BBC, bacterial 
biomass carbon; MBC, microbial biomass carbon; VegC, vegetation carbon; LitC, litter carbon. 
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Fig. 4.9. Ten-year averages of (a-b) GPP, (d-e) NPP, (g-h) HR, and (j-k) SR during (a, d, g, and j) 1901-
1910 and (b, e, h, and k) 2007-2016 and relative changes of (c) GPP, (f) NPP, (i) HR, and (l) SR by 2007-
2016 relative to 1901-1910. GPP, gross primary productivity; NPP, net primary productivity; HR, 
heterotrophic respiration; SR, soil respiration. 
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Fig. 4.10. Ten-year averages of (a-b) FBC in the top 30 cm, (d-e) FBC in the top 1 m, (g-h) BBC in the 
top 30 cm, and (j-k) BBC in the top 1 m during (a, d, g, and j) 1901-1910 and (b, e, h, and k) 2007-2016 
and relative changes of (c) GPP, (f) NPP, (i) HR, and (l) SR by 2007-2016 relative to 1901-1910. FBC, 
fungal biomass carbon; BBC, bacterial biomass carbon. 
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Fig. 4.11. Ten-year averages of (a-b) DOC in the top 1 m, (d-e) SOC in the top 1 m, (g-h) VegC, and (j-k) 
LitC in the top 1 m during (a, d, g, and j) 1901-1910 and (b, e, h, and k) 2007-2016 and relative changes 
of (c) DOC in the top 1 m, (f) SOC in the top 1 m, (i) VegC, and (l) LitC in the top 1 m by 2007-2016 
relative to 1901-1910. DOC, dissolved organic carbon; SOC, soil organic carbon; VegC, vegetation 
carbon; LitC, litter carbon. 
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Fig. 4.12. Changing rates of the CLM-Microbe model simulated (a) GPP, (b) NPP, (c) HR, and (d) SR 
from 1901 to 2016. GPP, gross primary productivity; NPP, net primary productivity; HR, heterotrophic 
respiration; SR, soil respiration. DOC, dissolved organic carbon; SOC, soil organic carbon; FBC, fungal 
biomass carbon; BBC, bacterial biomass carbon; MBC, microbial biomass carbon; VegC, vegetation 
carbon; LitC, litter carbon. Black dots indicate significant regression coefficients (P<0.05). 
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Fig. 4.13. Changing rates of the CLM-Microbe model simulated (a) FBC in the top 30 cm, (b) FBC in the 
top 1 m, (c) BBC in the top 30 cm, (d) BBC in the top 1 m, (e) DOC in the top 1 m, (f) SOC in the top 1 
m, and (g) VegC, and (h) LitC in the top 1 m from 1901 to 2016. DOC, dissolved organic carbon; SOC, 
soil organic carbon; FBC, fungal biomass carbon; BBC, bacterial biomass carbon; MBC, microbial 
biomass carbon; VegC, vegetation carbon; LitC, litter carbon. Black dots indicate significant regression 
coefficients (P<0.05). 
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Fig. 4.14. Heatmap showing Pearson’s correlation between the CLM-Microbe model simulated (a) GPP, 
NPP, and VegC and MAT and MAP and (b) HR, SR, FBC in the top 1 m, BBC in the top 1 1m, DOC in 
the top 1 m, SOC in the top 1 m, and LitC in the top 1 m and SM and ST in the top 1 m from 1901 to 
2016. GPP, gross primary productivity; NPP, net primary productivity; HR, heterotrophic respiration; SR, 
soil respiration; DOC, dissolved organic carbon; SOC, soil organic carbon; FBC, fungal biomass carbon; 
BBC, bacterial biomass carbon; VegC, vegetation carbon; LitC, litter carbon; MAT, mean annual 
temperature; MAP, mean annual precipitation; ST, soil temperature; SM, soil moisture. Black stars 
indicate significant correlates (P<0.05). 
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Fig. 4.15. Pearson’s correlation between the CLM-Microbe model simulated (a-b) GPP, (c-d) NPP, and 
(e-f) VegC and (a, c, and e) MAT and (b, d, and f) MAP from 1901 to 2016. GPP, gross primary 
productivity; NPP, net primary productivity; VegC, vegetation carbon; MAT, mean annual temperature; 
MAP, mean annual precipitation. Black dots indicate significant correlates (P<0.05). 
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Fig. 4.16. Pearson’s correlation between the CLM-Microbe model simulated (a-b) HR, (c-d) SR, (e-f) 
FBC in the top 1 m, (g-h) BBC in the top 1 m,  (i-j) DOC in the top 1 m, (k-l) SOC in the top 1 m, and 
(m-n) LitC and (a, c, e, g, i, k, and m) ST and (b, d, f, h, j, l, and n) SM in the top 1 m from 1901 to 2016. 
HR, heterotrophic respiration; SR, soil respiration; DOC, dissolved organic carbon; SOC, soil organic 
carbon; FBC, fungal biomass carbon; BBC, bacterial biomass carbon; VegC, vegetation carbon; LitC, 
litter carbon; ST, soil temperature; SM, soil moisture. Black dots indicate significant correlates (P<0.05). 
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Supplementary material for chapter 4 
Fig. 4.S1. Conceptual diagram showing the key processes and the roles of fungi and bacteria in the CLM-
Microbe model. CWD, coarse woody debris; SOM, soil organic matter; B, bacteria; F, fungi; DOM, 
dissolved organic matter. In the CLM-Microbe model, number in the box means turnover time of each 
pool. Black solid lines indicate transitions in the CLM-Microbe model, which generally represents 
processes such as 1) decomposition of coarse woody debris, 2) litter 1 decomposition, 3) litter 2 
decomposition, 4) litter 3 decomposition, 5) soil organic matter 1 decomposition, 6) soil organic matter 2 
decomposition, 7) soil organic matter 3 decomposition, 8) soil organic matter 4 decomposition, 9) fungal 
and bacterial lysis, 10) dissolved organic matter adsorption, 11) dissolved organic matter uptake by fungal 
and bacterial, and 12) fungal and bacterial respiration. Red dash lines represent regulatory role of fungi 
and bacteria on the process, including fungi and bacteria regulation on 13) litter 1, 14) litter 2, 15) litter 3, 
16) soil organic matter 1, 17) soil organic matter 2, 18) soil organic matter 3, and 19) soil organic matter 4 
decomposition (He et al. 2021). 

 

Fig. 4.S2. Evolution of annual averages of (a) MAT, (b) MAP, (c) ST of top 1m, and (d) SM of top 1m 
weighted by area in the CLM-Microbe model since 1901. The baseline was the ten-year average of 
corresponding variables during 1901-1910. MAT, mean annual temperature; MAP, mean annual 
precipitation; ST, soil temperature; SM, soil moisture. 

 

Fig. 4.S3. Changes of (a) MAT, (b) MAP, (c) ST (0-1 m), and (d) SM (0-1 m) by 2007-2016 relative to 
1901-1910. MAT, mean annual temperature; MAP, mean annual precipitation; ST, soil temperature; SM, 
soil moisture. 

 
Table 4.S1. Key model parameters in processes involving fungal and bacterial biomass  
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Fig. 4.S1. Conceptual diagram showing the key processes and the roles of fungi and bacteria in the CLM-
Microbe model. CWD, coarse woody debris; SOM, soil organic matter; B, bacteria; F, fungi; DOM, 
dissolved organic matter. In the CLM-Microbe model, number in the box means turnover time of each 
pool. Black solid lines indicate transitions in the CLM-Microbe model, which generally represents 
processes such as 1) decomposition of coarse woody debris, 2) litter 1 decomposition, 3) litter 2 
decomposition, 4) litter 3 decomposition, 5) soil organic matter 1 decomposition, 6) soil organic matter 2 
decomposition, 7) soil organic matter 3 decomposition, 8) soil organic matter 4 decomposition, 9) fungal 
and bacterial lysis, 10) dissolved organic matter adsorption, 11) dissolved organic matter uptake by fungal 
and bacterial, and 12) fungal and bacterial respiration. Red dash lines represent regulatory role of fungi 
and bacteria on the process, including fungi and bacteria regulation on 13) litter 1, 14) litter 2, 15) litter 3, 
16) soil organic matter 1, 17) soil organic matter 2, 18) soil organic matter 3, and 19) soil organic matter 4 
decomposition (He et al. 2021).
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Fig. 4.S2. Evolution of annual averages of (a) MAT, (b) MAP, (c) ST of top 1m, and (d) SM of top 1m 
weighted by area in the CLM-Microbe model since 1901. The baseline was the ten-year average of 
corresponding variables during 1901-1910. MAT, mean annual temperature; MAP, mean annual 
precipitation; ST, soil temperature; SM, soil moisture. 
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Fig. 4.S3. Changes of (a) MAT, (b) MAP, (c) ST (0-1 m), and (d) SM (0-1 m) by 2007-2016 relative to 
1901-1910. MAT, mean annual temperature; MAP, mean annual precipitation; ST, soil temperature; SM, 
soil moisture. 
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Conclusion 

This dissertation investigated microbial controls on the terrestrial C cycle at multiple scales. I first 

investigated the biogeographical patterns of fungal and bacterial biomass C and their controls based on a 

synthesized global dataset. Second, I parameterized the CLM-Microbe model using the time-series FBC 

and BBC data from nine major natural terrestrial biomes. Then, I further conducted the model sensitivity 

analysis for simulating C cycling with a focus on microbial mechanisms. Third, I applied the CLM-

Microbe model to assess the effects of seasonality on the soil C cycle in terrestrial ecosystems. Lastly, I 

investigated the historical dynamics of terrestrial C fluxes and pools using the CLM-Microbe model. The 

key conclusions are listed as below, 

 

1. The FBC, BBC, and F:B ratio showed clear biogeographic patterns at a global scale. 

2. The FBC and BBC were primarily determined by edaphic properties, whereas F:B ratio is primarily 

driven by climatic variables. 

3. We produced the first global maps of BBC and FBC in 0-30 cm topsoil and estimated global FBC and 

BBC as 12.56 (6.64 ~ 16.42) PgC and 4.34 (0.47 ~ 10.26) PgC, respectively, in 0-30 cm topsoil. 

4. Model parameterization suggested the reasonable performance of the CLM-Microbe model in 

capturing the seasonal variation of FBC and BBC and good performance in simulating FBC and BBC 

across biomes. 

5. Sensitivity analysis showed that microbial turnover rates, biomass carbon-to-nitrogen ratio, and 

carbon assimilation efficiency were the most critical parameters regulating FBC and BBC dynamics.  

6. Removing soil microbial biomass seasonality underestimated soil respiratory fluxes across biomes, 

leading to overestimated soil organic C pool size in the CLM-Microbe model.  

7. The CLM-Microbe model can well reproduce the distribution of vegetation (GPP and NPP), soil (HR, 

SR, DOC, and SOC), and microbial (FBC, BBC, and MBC) C variables. 
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8. Vegetation (GPP, NPP, and VegC), litter (LitC in 0-1 m), soil (HR, SR, and DOC and SOC in the top 

1 m), and microbial (FBC and BBC in the top 30 cm and 1 m) C variables increased from 1901 to 

2016.  

9. The absolute increases of C fluxes and pools were generally the largest in Asia and South America, 

particularly in east Asia and central and northern South America. 

10. Relative changes of C fluxes and pools at the continental level varied among variables, with the 

largest relative increases of GPP, NPP, HR, and SR in Asia and Europe (particularly east Asia and 

southern and central Europe), FBC (0-30 cm and 0-1 m) in South America (particularly central and 

east coast of South America), BBC (0-30 cm and 0-1 m) in Europe (particularly central and northern 

Europe), DOC (0-1 m) in South America and Europe (particularly east coast of South America and 

northern Europe), SOC (0-1 m) in Africa (particularly central and southern Africa), and VegC and 

LitC (0-1 m) in Europe (particularly southern and central Europe). 

11. The increase in GPP, NPP, and VegC were significantly related to rising MAT and MAP, while 

increases in FBC and BBC in the top 30 cm and FBC, BBC, DOC, SOC, and LitC in the top 1 m 

were closely associated with increasing C input from vegetation and SM and ST in the top 1 m. 

 

This dissertation represents one of the first attempts to investigate microbial control over the terrestrial C 

cycle at multiple scales. The improvements in understanding fungal and bacterial biogeography and 

microbial role in the terrestrial C cycle will broaden our knowledge of microbial contributions to climate 

change and rethink the functional role of soil microbes in the C cycle. The explicit representation of 

microbial processes will likely bring more robust abilities to ESMs to better simulate and project the 

climate system. 

 




