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Chapter 1

Introduction

A new generation of particle accelerators is being designed and constructed to explore the frontiers
of high energy physics. This endeavor requires machines that exceed the performance of any of
those currently in operation. The challenges of these new machines come in many forms. Some
issues require greater manufacturing and assembly precision, others require the development of new
technologies, and still others require that we understand in greater detail the physical processes
that can impact the performance of these machines. In this last category, a recurring issue for
both hadron and lepton colliders is the development of electron plasma within the accelerator
vacuum chambers. This plasma, commonly referred to as an “electron cloud,” can interact with
and destabilize the high intensity particle beams required for our exploration of both the intensity
and energy frontiers.

1.1 The CESRTA Research Program

The build-up of the electron cloud (EC) in the positron damping ring (DR) of the International
Linear Collider (ILC) is one of the principal risk factors for the overall physics performance of
the accelerator. In positron storage and damping rings, electrons are produced in the accelerator
vacuum chambers through photoemission and secondary emission. Interaction between the resulting
EC and the beam can lead to single- and multi-bunch instabilities in the beam. The onset of a
single-bunch head-tail instability, which cannot in general be controlled by a conventional feedback
system, will lead to emittance growth in the beam. For the ILC DR, which targets a geometric
vertical emittance of 2 pm-rad, we must ensure that the machine can be operated safely below this
instability threshold. Below the threshold for the onset of single-bunch instabilities, sub-threshold
emittance dilution may still occur through the interaction of the beam with the nonlinear fields of
the EC. With the ultra low emittance target of the ILC DR, there is little margin for such emittance
diluting effects. Hence this area was identified as one requiring further R&D in order to complete
the ILC technical design.

The CESRTA research program was approved in late 2007 to carry out electron cloud R&D in
support of the ILC technical design. The first dedicated experiments using the Cornell Electron-
Positron Storage Ring (CESR) began in March 2008 after the conclusion of 28 years of colliding
beam operations for the CLEO experiment [1, 2]. Two principal goals were specified for the
program. The first was to characterize the build-up of the EC in each of the key magnetic field
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regions of the accelerator, particularly in the dipoles and wigglers, and to study the most effective
methods of suppressing it in each of these regions. This required the design and installation of
detectors to study the local build-up of the cloud in each of these environments as well as a
supporting simulation program to fully characterize and understand the results. A key element
of the experimental approach was to create four dedicated electron cloud experimental regions to
support flexible tests of any mitigation technique under consideration for use in the damping ring.
This approach enabled a comprehensive set of comparisons of the relevant EC mitigation methods
and has provided a solid foundation on which to base the design of future machines. The flexibility
of the machine has enabled detailed probes of the surface parameters of the various mitigations
within an operating accelerator, thus providing a unique physics reach. These studies have relied
on the ability to:

• Operate with beam energies between 1.8 and 5.3 GeV;

• Operate with both electron and positron beams;

• Employ flexible bunch patterns within the beam, including variations in spacing and intensity;

• Operate over a wide range of beam, and bunch, intensities;

• Operate over a wide range of emittances, with and without damping wigglers.

The second principal goal was to study the impact of the EC on ultra low emittance beams.
No positron ring has achieved the 2 pm-rad vertical emittance design target of the ILC DR. By
benchmarking EC instability and emittance growth simulations in an emittance regime near to that
specified for the DR, and by being able to systematically validate those simulations over a range
of operating emittances, our confidence in the projections of the final DR performance has been
significantly improved. These results have helped guide the R&D effort towards a damping ring
design which we are confident can meet the specifications required by the ILC.

In order to carry out this broad experimental program to understand and mitigate the impact of
the electron cloud in future high intensity accelerators, CESR was reconfigured as a damping ring
in 2008. Over the course of the 3-year Phase I R&D program, the ring’s beam instrumentation
was upgraded to allow low emittance optics correction and for the characterization of ultra low
emittance bunch trains. In parallel, a suite of local electron cloud detectors and diagnostics were
deployed throughout the electron cloud experimental regions to characterize the environment of
these beams and the surface physics of the vacuum system. The low emittance tuning techniques
that were developed, along with the physics results obtained, represent one of the most comprehen-
sive experimental studies of accelerator physics issues relevant to future high intensity and ultra
low emittance machines.

1.2 CESRTA Parameters and Experimental Reach

The CESR storage ring, outfitted with independently powered quadrupoles and sextupoles and 18
meters of superconducting damping wigglers is enormously flexible. The linac and synchrotron
provide full energy injection of electron and positron beams. The storage ring magnets allow
operation over an energy range of 1.8 to 5.6 GeV. Multibunch feedback systems stabilize motion in
all three planes of trains of bunches with bunch spacing of as few as 4 ns. The single cell 500 MHz
superconducting RF system operates over a range of gradients that enables investigations of bunch
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Figure 1.1: Design optics functions of low emittance (εx = 2.6 nm-rad) lattice, with horizontal
dispersion, η, at the top and the vertical and horizontal amplitude functions, βy and βx below.
Regions of zero horizontal dispersion where damping wigglers are located are the L0 straight (s =
0 ± 10 m where there are 6 wigglers) and L1 (126.7 m to 132.7 m, 3 wigglers) and L5 (s = 635.8 m
to s = 641.8 m, 3 wigglers). L3 (384.2 ± 9 m) is the experimental straight that includes the
chicane for electron cloud studies and the in-situ SEY station. Retractable mirrors are used to
reflect synchrotron radiation generated in the bends on either side of the L3 straight to the cave
where optical instruments are located.

length dependencies. The complement of more than 100 steering correctors and 25 skew quad
correctors is sufficient to eliminate relevant sources of vertical emittance dilution.

1.2.1 Low Emittance Optics

We achieve minimum emittance at about 2 GeV beam energy with the superconducting damping
wigglers operating at 1.9 T field.The wigglers reduce the radiation damping time by an order of
magnitude and the horizontal emittance by a factor of 5 with respect to the wiggler off condition.
The lattice functions are arranged so that there is zero horizontal dispersion in the wiggler straights.
The relatively strong focusing and high horizontal tune minimizes the dispersion in the bend mag-
nets and the resulting horizontal emittance. The lattice functions for the minimum emittance
2.085 GeV optics are shown in Figure 1.1. The sextupoles are deployed to correct chromaticity in
two families. Dynamic aperture is shown in Figure 1.2.

The damping wigglers are essential to achieving the low emittance in these optics. However it is
worth noting that, in the limit of a wiggler dominated ring, the minimum emittance is determined
by the horizontal emittance generated within the wigglers themselves. With 12 wigglers, that
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Figure 1.2: Simulation of the dynamic aperture for the low emittance lattice at 2.085GeV. The solid
curves are the maximum initial amplitude that survives 1000 turns at betatron tunes Qh = 14.595,
Qv = 9.63, and synchrotron tune Qz = 0.0645. The red, green and blue correspond to initial
energy offsets of 0,±1%. The dashed lines are the maximum initial amplitude that survives for 20
turns and so approximate the physical aperture. Particles are lost at the real physical boundaries
of the vacuum chamber.

minimum is indeed obtained with a 1.9 T wiggler field. Higher wiggler fields will further reduce
the damping time, but will increase the emittance due to the wiggler dispersion. The only way to
further reduce the emittance with wigglers would be to increase the total length of wigglers, rather
than increasing the wiggler field.

1.2.2 Energy Reach

We have designed and commissioned optics at 1.8, 2.085, 2.3 and 2.8 GeV, with all wigglers at
1.9 T field. At beam energy greater than 3 GeV, wiggler operation is limited to the those in the L0
straight. The vacuum chambers adjacent to the arc wigglers cannot sustain the heat load generated
at high energies. Table 1.1 lists some of the CESRTA lattice configurations that have been used for
various measurements.

1.2.3 Knobs

The flexibility of the CESR control system allows the possibility of creating element groups for
closed orbit, β, dispersion, and coupling bumps. We use orbit bumps to align the beam with the
x-ray beam lines for the x-ray beam size monitor. In general, the beam size depends on emittance
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Table 1.1: CESRTA Lattice configurations

Lattice Name Energy Emittance Wigglers βv at xBSM Wiggler
[GeV] [nm-rad] @ 1.9 T e+ source radiation [%]

CTA 2085MEV xr20M 20091205 2.085 2.6 12 20 87
CTA 2085MEV xr40M 20091205 2.085 2.6 12 40 87
CTA 1800MEV xr40M 20110520 1.800 2.0 12 40 90
CTA 2085MEV 20090516 2.085 2.6 12 5.8 87
CTA 2300MEV XR40M 20110531 2.3 3.2 12 40 84
CTA 3000MEV Q0H 20090822 3.0 10.0 6 11.4 58
CTA 4000MEV 23NM 20090816 4.0 23 6 10.7 47
CTA 5000MEV 40NM 20090513 5.0 40 6 7.2 37
CTA 5000MEV 20090311 5.0 74 0 11.3 0

ε, amplitude function β, dispersion (η), and energy spread δ, according to σ =
√
εβ + (η2δ2). It is

often convenient to be able to independently vary β, ε and dispersion to explore beam size monitor
systematics and properties of the lattice. β-bumps are used to manipulate the beta function at the
x-ray and visible light beam size monitor source points. A closed dispersion bump at the source of
the horizontal beam size monitor allows a measurement of the contribution of the energy spread to
the beam size. Closed coupling/dispersion bumps are used to vary vertical dispersion (and therefore
vertical emittance) in a controlled way. We have developed code to automatically compute coeffi-
cients and load into the control system data base, complete sets of orbit, and coupling/dispersion
bumps for each new lattice configuration. An example of the effect of such a coupling/dispersion
bump is shown in Figure 1.3.

1.3 Program Summary

The research encompassed in the CESRTA program will provide critical input to the design of low
emittance positron damping rings, as regards tolerance to the electron cloud effect. A variety
of mitigations have been characterized and compared using retarding field analyzers (RFAs) to
measure growth of the electron cloud in dipoles, quadrupoles, and wigglers, as well as field free
regions. RFAs measure local properties of the electron cloud and are therefore well suited to
testing the effective of mitigations and how it depends on local magnetic fields. Physics parameters,
including secondary emission yield and quantum efficiency have been extracted from the data. The
time development and decay of the cloud has been measured using shielded pickups and time
resolving RFAs, further constraining the model parameters.

In order to learn about the global properties of the cloud, and how the cloud density depends on
location within a train of bunches, we measure the tune shift of each and every bunch. The tune
shift depends on the density of the cloud witnessed by that particular bunch. Indeed the tune shift
is a direct measure of the density of the cloud traversed by each and every bunch in the train.

Finally, a single pass, bunch by bunch beam size monitor provides a measure of the effect of the
cloud on the vertical emittance. Combined with the tune shift measurement, we can identify
precisely the threshold for emittance growth. From the beam spectra we learn about cloud induced
instabilities.
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Figure 1.3: The closed coupling and vertical dispersion bump is generated with seven skew quads.
The theoretical change to the vertical emittance (assuming that the unperturbed machine has zero
coupling and zero vertical dispersion), is 25 pm-rad. The dispersion peak appears in the L1 region
of the west arc wiggler straight. Bumps like this one are used to characterize the vertical beam size
monitor and to vary emittance for investigation of IBS, ion, and electron cloud effect.

The combination of direct measurements and sophisticated modeling is the basis for the design of
the ILC positron damping ring and specification of bunch configuration and beam current.

Along the way we have by necessity developed a variety of wiggler dominated storage ring lattice
configurations, instrumentation and techniques for emittance tuning, and explored sensitivities to
misalignments.

1.4 Content

Chapter II, “The CESR Conversion” describes the reconfiguration of the storage ring for low
emittance operation, the vacuum chamber modifications, and instrumentation for measuring the
properties of the electron cloud and its effect on the beam. In Chapter III we discuss emittance
tuning techniques. Characterization of the electron cloud is to a large extent in terms of the physics
parameters of the model. In chapter IV we introduce the model and the relevant physical processes.
The observations of cloud growth, the comparison of model with the data, and the effectiveness
of various mitigations is the subject of chapter V. Electron cloud beam dynamics are discussed
in chapter VI, including electron cloud induced tune shifts, emittance growth, and single bunch
instabilities.

In chapter VII we attempt to summarize the state of the electron cloud model in view of the
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comparison with the CesrTA measurments. Recommendations for electron cloud mitigations the
ILC damping ring are presented in chapter VIII. A brief discussion of outstanding questions, and
plans for addressing them is the subject of chapter IX.
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Chapter 2

The CESR Conversion to a Damping
Ring Configuration

2.1 Overview of CESR Modifications

The conversion of CESR to permit the execution of the CESRTA program required several extensive
modifications. These included significant reconfiguring of CESR’s accelerator optics by removing
the CLEO high energy physics detector and its interaction region, moving six superconducting
wigglers and reconfiguring the L3 straight section. There were also major vacuum system modifica-
tions to accommodate the changes in layout of the storage ring guide-field elements, to add electron
cloud diagnostics and to prepare regions of the storage ring to accept beam pipes for the direct
study of the electron cloud. A large variety of instrumentation was also developed to support new
electron cloud diagnostics, to increase the capabilities of the beam stabilizing feedback systems and
the beam position monitoring system, to develop new X-ray beam size diagnostics and to increase
the ability for studying beam instabilities. This conversion process and the instruments developed
for the CESRTA program are described in the following sections.

2.2 Vacuum System Modifications

2.2.1 Overview

CESR vacuum system is an essential part of accelerator beam transport lines, capable of storing
total beam currents up to 500 mA (or single beam up to 250 mA) at a beam energy of 5.3 GeV.
As shown in Figure 2.1 the CESR vacuum system, with a total length of 768.44 m, consists of
primarily bending chambers in the arcs, two long straight sections, namely L0 (18.01 m in length)
and L3 (17.94 m in length), and four medium length straights (namely, L1, L5, both 8.39 m in
length and L2, L4, both 7.29 m in length).

With exception of L0 and L3, CESR vacuum beam pipes are made from aluminum extrusions
(Type 6063 alloy), with built-in pumping and cooling channels. The vacuum pumping in the
arcs is dominated by the home-made distributed ion pumps (DIPs) inserted into the pumping
channel of the extrusion, although ion pumps are installed periodically. The L0 straight section
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3840511-022

Figure 2.1: The reconfiguration of the CESR vacuum system provided space in two long regions in
L0 and L3, and two flexible short regions at Q15W and Q15E. Hardware for electron cloud studies
was installed in these regions.

was the interaction region for the CLEO High-Energy Physics (HEP) experiment, hosting the CLEO
Detector at the center of L0. Massive titanium sublimation pumping (TiSP) [3] was implemented
in L0 to achieve ultra-high vacuum (UHV) during the high current HEP operations for CLEO. In
the CESR-c/CLEO-c era, 12 home-built superconducting wigglers (SCWs) were installed in CESR,
with two triplets at L1 and L5, two doublets and two singlet SCWs in the arcs (see Figure 2.1). This
complement of SCWs plays an important role in the CESRTA program. Over the nearly 29 year of
operation prior to the CESRTA conversion the CESR vacuum system performed satisfactorily, with
average dynamic pressure in the low 10−9 torr with more than 400 mA of stored beams of electrons
and positrons.

At the conclusion of CLEO-c HEP program in March 2008, staged modifications were carried out to
convert CESR into the test accelerator CESRTA. The motivation for the vacuum system modification
is to support the physics programs of CESRTA, including: (1) Ultra-low emittance lattice design,
tuning and associated beam instrumentations, and (2) electron cloud studies, suppression technique
development and verification. During the design and implementation of the CESRTA vacuum system
conversion, the following two important aspects were of pre-eminant consideration:

• To create environments where both local- and collaborator-provided test chambers and equip-
ment can be easily installed and tested.

• To ensure the continuing successful operations of Cornell High Energy Synchrotron Source
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(CHESS) at CESR.

The physical modification of CESR vacuum system started in May 2008 during a scheduled ac-
celerator shutdown. But the bulk of the vacuum system reconfiguration was carried out in two
long shutdowns, July 2008 and February 2009. The following list summarizes the scope of vacuum
modifications during scheduled accelerator shutdowns.

1. May 27 – June 3, 2008:

• Implemented a Cornell thin-style RFA on a CESR dipole chamber at B12W location.

• Replaced two CESR-c SCWs with RFA-equipped drift chambers at Q14W location.

2. July 7 – October 23, 2008:

• Replaced four more CESR-c SC wigglers from Q15W, Q14E/Q15E (see Figure 2.1) with
new beam pipes equipped with EC diagnostics.

• Created Q15W and Q15E short experimental sections.

• Completed L0 reconfiguration, including removal of the central part of the CLEO HEP
Detector and the IR vacuum chambers, installation of 6 SCWs (4 CESR-c and two RFA-
equipped CESRTA SCWs) and many new chambers suited with EC diagnostics (such as
RFAs and BPM/TE-wave buttons).

• Partially reconfigured L3 region, including removal of a pair of (high beam impedance)
electrostatic vertical separators.

3. February 23 – March 2, 2009:

• Completed L3 central region reconfiguration, including installation of SLAC PEP EC
beam pipes and chicane magnets.

• Installed a photon-stop vacuum chamber, to replace a CLEO-c HEP-era fast-luminosity
monitor chamber [4], at Q3W location. This new chamber, enabled storing up to 100 mA
positron beam current in CESR at 5 GeV beam energy, with all 6 L0 SCWs in operation.

4. June 16 – July 23, 2009:

• Installed first RFA-equipped quadrupole vacuum chamber, and in-situ SEY measurement
stations in the L3 experimental region.

• Installed test chambers at Q15W/E sectors.

• Implemented three RFA-equipped SCWs in the L0 region.

The CESRTA vacuum system reconfiguration, as depicted in Figure 2.1, created four dedicated
CESRTA experimental regions. The list below highlights the main features of these experimental
sections.

• L0 EC Region: This region hosts a string of 6 superconducting wigglers, having 3 of them
fitted with RFA-equipped beam pipes. The main function of this experimental section is to
investigate EC dynamics and suppression techniques in the wiggler field.

• L3 EC Region: This region features EC studies in dipole and quadrupole fields and field-free
drifts, as well as in-situ SEY measurement stations.
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• Q15W & Q15E Test Sectors: These two short sectors each contain one CESR normal bend
and a short straight and are intended for test new chambers with new EC diagnostics and
EC suppression coatings.

During the reconfiguration and the first 3 years of the CESRTA program, over 40 new vacuum cham-
bers and components were installed in or rotated through CESR vacuum system for the CESRTA
program. Almost all of these new chambers were designed and constructed in-house. Many EC di-
agnostics and/or EC suppression features are successfully incorporated in these new chambers. The
implemented EC diagnostics include RFAs at various types of magnets, shielded pickup buttons,
and beam buttons for TE-wave measurement. The evaluated suppression techniques include many
types of coatings (TiN, amorphous- and diamond-like carbon and non-evaporable getter), grooved
walls and clearing electrode. A summary of the diagnostic chambers, evaluated for EC suppression,
are shown in Table 8.1. Stringent QA/QC procedures were followed in the production of these
new UHV components and chambers, including design reviews/approvals, UHV-compatible prac-
tices during assembly and installation, and pre-installation vacuum bakeouts. These efforts have
resulted in very high degree of availability of the vacuum system for both CESRTA programs and
CHESS operations.

2.2.2 Electron Cloud Experimental Regions

In this section, we provide details of the CESRTA EC experimental regions in terms of the vacuum
system modification and performance.

2.2.2.1 L0 Wiggler Test Region

The CESR L0 long straight section (18.01 m in length), formerly the CLEO-c HEP Interaction
Region (IR), was completely re-configured for the CESRTA research programs, through two major
CESR Shutdowns. The modified L0 EC experimental region is shown in Figure 2.2. During
a 4-month shutdown, starting July 7, 2008, the entire L0 straight section was modified. The
modification included the following tasks:

• All L0 IR vacuum chambers, as well as the central portion of the CLEO detector assembly
were removed.

• A new supporting rail system was designed and installed through the inner-bore of the re-
maining CLEO Outer detector.

• Six superconducting wigglers (SCWs) were moved to the new supporting rails and new cryo-
genic transfer lines were installed. The three SCWs toward the eastern-side of L0 are the
original CESR-c style, while the three SCWs toward the western-side of L0 were fitted with
RFA-equipped beam pipes (see detail in Section 2.2.3.3).

• Additionally 7 new vacuum beam pipes were also constructed, and installed in this region,
in order to bridge between the SCWs. Many EC diagnostics were attached to these new
chambers, including three insertable segmented RFAs, eight sets of beam buttons as BPMs
and TE-Wave transmitters/receivers.

• A pair of RF-shielded expansion bellows assemblies (aka sliding joints) were included with the
new chambers to allow thermal expansions during beam operations and to provide flexibility
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for vacuum components exchange at various stages of the CESRTA program.

Most of the new vacuum chambers in L0 region are made of copper extrusions (the same kind used
as CESR-c SCW beam pipe), having cooling channels welded on both sides of the beam pipes.
Achieving an adequate level of ultra-high vacuum (UHV) during both the CESRTA and CHESS
operations is essential in the vacuum system design for this experimental region. Figure 2.3 shows
installed vacuum pumps and gauges. Two types of UHV pumps in use are sputter ion pumps (SIPs)
and non-evaporable getter pumps (NEGs). At each SCW location one NEG and one small SIP
are installed at a single pumping port. At the center of this region a large SIP was installed. The
6 NEGs provide the main vacuum pumping for the region, though periodic re-activations of these
NEGs are required. The 7 SIPs provide primary pumping during the initial beam conditioning of the
vacuum chambers (after a vacuum intervention of the region), as well as supplementary pumping of
non-gettable gases (such as Ar and CH4). The vacuum performance of the region is monitored by 5
cold-cathode ion gauges (CCGs) and one residual gas analyzer (RGA). During the CESRTA program
the L0 region had been vented three times for installations of RFA-equipped SCWs with different
EC suppression techniques. As expected, a period of beam conditioning is required to achieve
acceptable vacuum level after each vacuum intervention. Typical beam conditioning behavior is
displayed in Figure 2.4, where the beam-induced pressure rise (dP/dI in 10−9torr/Amp) is plotted
against accumulated beam dosage (in Amp · hr).

3840511-040

Figure 2.2: L0 center CESRTA EC experimental region, consists of (1)three RFA-equipped SCWs
and (2) three CESR-c SCWs. Many other EC diagnostics, such as RFA in the drifts, BPMs
and TE-Wave buttons, are also implemented. The six SCWs in the region are labelled, from
west to east, SCW02WB, SCW02WA, SCW01W, SCW01E, SCW02EA and SCW02EB. Detailed
engineering information of the L0 experimental region can be found in two CLASSE drawings with
LEPP Drawing Numbers 6085-012 (Vacuum String + Magnets + Supports) and 6085-045 (Vacuum
String only).
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Figure 2.3: Vacuum Pumping and Instrumentation in the L0 Center CESRTA EC experimental
region. At locations (labeled in GREEN as Q2E2, Q2E1, Q1E, Q1W, Q2W1 and Q2W2), a
combination of a NEG and a small SIP is installed, while at the center of the region (labeled in
GREEN as Q0EW), a large SIP is installed. Five cold-cathode ion gauges and a residual gas analyzer
(as labeled in RED) are also installed in the region to monitor the vacuum system performance.

• Very high pressure rises were observed initially at each startup, due to high SR-induced
desorption yield on exposed surfaces. The beam-induced pressure rise drops quickly with
accumulated beam dosage (D), typically following dP

dI ∝ D
−α, with α = 0.6 ∼ 1.0.

• The vacuum level in the region usually becomes acceptable for beam operation after accumu-
lating 30∼50 Amp · hr beam dose at each startup.

• The vacuum in the L0 West (as measured by C00W, C01W and C02W, see Figure 2.3)
is always significantly worse than the symmetrical locations in the L0 East, during beam-
operations, though the base pressures are comparable throughout the L0 region. L0 West
hosts three RFA-equipped SCWs, while L0 East hosts three CESR-c SCWs. Higher SR-
induced outgassing rate from TiN coated beam pipes at L0 Center and SCWs is a likely
reason for worse vacuum in the L0 West.

• RGA data at L0 Center indicated desorption of nitrogen, most likely from TiN coated surfaces.
As shown in Figure 2.5, the desorption of N2 is even more evident with higher energy SR
photons generated by the SCWs with 4-GeV positron beam.

It is critical to study EC buildup and suppression in the wiggler magnetic field for the ILC Positron
Damping Ring conditions, that is with significant positron beam current at 4∼5 GeV. However,
the string of six SCWs at the L0 region will generate up to 40-kW SR power with 100 mA positron
beam at the beam energy of 5 GeV. To deal with this intense SR power, vacuum chambers on
the west side of the L0 region (that is, down-stream of positron beam relative to the SCW-string)
had to be modified. Figure 2.6 shows the layout of the area. Specifically, a CESR-c era aluminum
vacuum chamber, that was a part of CLEO-c fast luminosity monitor (FLM), could not safely
stop this high SR power from the SCW-string. A new photon-stop (PS) chamber was constructed
to replace FLM chambers. The PS chamber, as shown in Figure 2.7, is made of OFHC copper,
with a ∼2.85 m long water-cooled bar to intercept the main SR power from the SCW-string and
with a large Ti-sublimation pump ante-chamber to deal with expected gas-load from SR-induced
desorption. Thermal analysis (also shown in Figure 2.7) verified the design to have sufficient safety
factor to handle the expected SR power. To ensure proper cooling, eight thermocouples (TCs) are
attached to the PS chamber. The measured temperature rises by these TCs agreed reasonably well
with the values as predicted by the ANSYS calculation.
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Figure 2.4: Beam induced pressure rise in the L0 EC experimental region during CHESS operations
as a function beam dosage. The locations of the vacuum gauges are shown in Figure 2.3
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Figure 2.5: RGA spectra at L0 Center, with 120 mA positron at 4-GeV, with SCWs ON (left) and
OFF (right). The relative peak heights of signals at m

e =28 and 14 clearly indicated desorption of
N2 with SCWs on, due to higher energy SR photons.
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3840511-015

Figure 2.6: A specially designed photon-stop chamber (A) replaced CESR-c era FLM chambers
(B), enabling operations of L0 SCWs with a positron beam at 5 GeV.

2.2.2.2 Arc Test Regions

Upon the removal of the CESR-c SCWs from CESR arcs, two EC experimental sections were
created on both east and west sides of CESR (see Figure 2.1). At the former locations of CESR-c
SCW-doublets, a pair of copper beam pipes were installed for each SCW-doublet, as shown in
Figure 2.8. The longer copper beam pipe of the two was coated with TiN thin film for half of its
length (while the other half remained bare copper). Two segmented RFAs were installed at each
end of this EC test chamber to compare EC-intensity on TiN coated copper to the bare copper.
Since these EC-test chambers reside in long vacuum sectors in CESR, they are not intended to be
frequently replaced.

To allow frequent exchanges of EC test chambers, while the minimizing impact to the accelerator
operations, two very short experimental regions were created in place of two CESR-c SCWs in the
Q15W and Q15E locations in the arcs. Additional RF-shielded UHV gate valves were installed at
these two regions, so that only a very small portions (approximately 8.2 m in length) of the CESR
vacuum, which includes only one dipole bending chamber and a short straight, may be vented to
N2 in order to replace a test chamber in the short straight. Figure 2.9 shows photographs of the
Q15 experimental regions, as they were created during the summer 2008 CESR shutdown. Many
test chambers were rotated through the Q15 test regions during the CESRTA program, as described
in Section 2.2.3.
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Figure 2.7: Drawing of the photon stop chamber (top); ANSYS calculation of temperature rise on
the cooling bar in degrees Celsius (bottom left) and thermal stress in Pascals (bottom right).
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Figure 2.8: EC experiment section created by the removal of SCW-doublets in CESR.

2.2.2.3 L3 Test Region

The CESR L3 long straight section (see Figure 2.1) was another area of major modification of
CESR vacuum system. To accommodate the design and fabrication of the vacuum components
and to be compatible with the availability of the technical resources of the laboratory, this CESRTA
EC experimental region (illustrated in Figure 2.10) was constructed through two major CESR
shutdowns, as summarized below.

• During a 3-month shutdown in the summer 2008, a pair of electrostatic vertical separators
were replaced with beam pipes originally used in the CLEO IR region. These CLEO IR region
beam pipes had adequate cooling and vacuum pumping to handle SR from the hard bends.
They also facilitated smooth transitions of beam aperture cross-section from the rectangular
at the end of the soft bends to the required 90 mm diameter round pipe. A pair of RF-shielded
all-metal gate valves were also installed, thus setting the stage for the final EC experimental
region configuration.

• The L3 center EC experimental region (17.94 m in length) was installed during a 2-week
long shutdown in the spring 2009. With gate valve isolation from the rest of CESR, it is
sufficiently flexible to allow the venting of this experimental section for CESRTA EC studies.
As its location is furthest away from CHESS area, the impact to the CHESS operations
is minimal. Normally, approximately 10 Amp·hr of beam processing is sufficient after each
venting of this region.

As shown in Figure 2.10 vacuum pumping in the L3 experimental region is normally by three
sputter ion pumps (SIPs) and two Ti-sublimation pumps (TiSPs). Vacuum system performance in
the region is monitored by three evenly spaced CCGs (see Figure 2.10) and a RGA at the center.
A typical vacuum beam conditioning performance for the region after venting the L3 experimental
region is displayed in Figure 2.11.
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Figure 2.9: Two very short EC experimental sections were created in the CESR arcs. Top: photo-
graph showing the chamber adjacent to Q15E, including the downstream bending magnet. Bottom:
close-up photographs of the place-holder test chambers in Q15W (left) and Q15E (right).
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Figure 2.10: L3 CESRTA EC experimental region
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Figure 2.11: Typical vacuum beam conditioning performance for the L3 experimental region
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Many EC studies have been conducted in the L3 EC experimental region with several types of
beam- and EC-diagnostic instruments on test chambers in the presence of different configurations
of magnetic fields, as listed below. The details of these test chambers and EC diagnostics are given
in Section 2.2.3 and Section 2.3.

• Diagnostics chambers in dipole magnets (formerly the PEP-II Chicane). Tested chambers
included extruded aluminum chamber with rectangular grooves, and TiN-coating.

• Drift test chambers, including aluminum chamber with rectangular grooves (PEP-II cham-
bers) and stainless chambers with NEG coating.

• A quadrupole chamber fitted with thin-style RFA at Q48W, first with bare aluminum surface,
and then with TiN-coated aluminum.

• Synchrotron light mirrors for electron/positron bunch length measurements. The highly pol-
ished beryllium mirrors are retractable to avoid damage from high SR power during the
CHESS operations. Fully enclosed delivery systems guide the SR light to a Streak-camera.

• An in-situ SEY measurement system allows test samples to be exposed to SR during beam
operations, primarily in CHESS operations, and then the SEY of the exposed samples are
measured in scheduled accelerator accesses. The in-situ SEY measurement system consists of
a PEP-II beam pipe assembly housing the SEY apparatus with two Cornell SEY measuring
stations.

• Special beam-buttons assemblies (with 8 pickup buttons) served as a TE-wave measurement
system for EC studies, as shown in Figure 2.12.

• An RF-Shielded pickup provided by the LBNL team.

2.2.3 Experimental Vacuum Chambers

During CESRTA vacuum system reconfiguration and throughout the CESRTA program, many new
EC experimental vacuum chambers were rotated through CESR. Many EC diagnostics and EC
suppression techniques were integrated into these experimental chambers. The EC diagnostics
included RFAs, SPUs, beam-buttons (for both BPMs and TE-wave), while the tested EC suppres-
sion techniques included coatings, grooved surfaces and a clearing electrode. In this section, we
will describe the design, construction and vacuum characterisitics for these experimental chambers.
The functionality and the associated EC measurement performance of the EC diagnostics, and
efficacy of the EC suppression techniques are presented elsewhere in this report (see Section 2.3
and Section 2.4 and Chapter 5).

In this section the EC experimental chambers are cataloged by the type of magnetic fields where
the chambers resided: the field-free drifts, the dipole fields, the wiggler fields and the quadrupole
field.

2.2.3.1 Drift Chambers

Many new CESRTA vacuum chambers were installed in field-free drifts to complete the beam trans-
port beamlines during the CESRTA vacuum system conversion. To maximize the usage of available
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3840511-041

Figure 2.12: Special 8-button assemblies are used in L3 Experimental region. The vertical and
horizontal buttons were used as TE-wave transmitters/receivers, while the other four are used as
BPM pickups.
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space in the drifts, many functional components were integrated into these new chambers, includ-
ing vacuum pumps and gauges, beam instrumentation (BPMs), EC diagnostics (RFAs, SPUs, etc.)
and EC-suppression coatings (TiN). In this sub-section, only the EC experimental chambers de-
ployed in the dedicated test regions are described in detail. In most cases, other chambers were
installed on a one-time basis in parts of CESR where there could be a major impact to CESR
operations with vacuum interventions. However, a list of these experimental chambers is given here
for completeness.

• Copper chambers at Q14W and Q14E locations in CESR, as shown in Figure 2.8, as re-
placement beam pipes for the CESR-c SCW-doublets. Insertable segmented RFAs (a Cornell
thin-style design, using flexible printed circuits as electron detectors) were installed in these
chambers in the early stage of the CESRTA program, to test and verify the thin-style RFA
design.

• Almost all the copper chambers in the L0 experimental region (see Figure 2.2) are fitted with
beam buttons (as BPMs and as TE-wave transmitters/receivers) and with the insertable
RFAs.

Q15 Region Test Chambers These regions have been used extensively for the study of various
passive coatings, including TiN, amorphous carbon (a-C) and diamond-like carbon (DL-C), in
order to evaluate their EC-suppression effectiveness, as well as their vacuum performance in an
intense SR environment. These studies are in collaborations with the CLIC/CERN and the KEK
groups.

To fulfill the above research goals, an experimental chamber design was developed to allow the
characterization of the EC growth and decay and its transverse distribution within the vacuum
chamber for different wall surfaces and with progressive beam-processed conditions. The design of
this EC experimental chamber is illustrated in Figure 2.13. The beam pipe is machined from a
standard CESR aluminum (Type 6063-T6 alloys) extrusion. For EC measurements an RFA port
and a set of 4 SPUs are added to the chamber. The two sets of SPUs are directly welded to the
top of the beam pipe, using explosion-bonded aluminum-to-stainless steel blocks. Arrays of small
holes (0.75 mm in diameter) that connect the SPUs to the beam space are directly drilled vertically
through the beam pipe top wall (∼2.5 mm in thickness), as shown. Backing plates made of similar
materials were used in drilling these tiny holes to reduce the incidence of burrs. The RFA housing
is machined from a separate block of explosion-bonded aluminum-to-stainless steel material, and is
welded to the cutout on top of the beam pipe. The lower face of the RFA housing matches curvature
of the beam pipe aperture. Small holes are drilled through the three milled flat sufaces, connecting
the RFA port to the beam space. These RFA holes have similar geometrical dimensions as the SPU
holes, 0.75 mm in diameter and ∼2.5 mm in thickness, and are grouped into three ‘segments’ on
each flat, with each segment containing 44 holes (thus a total of 9×44 = 396 holes). The segmented
hole pattern allows the sampling of the transverse distribution of the EC in the beam pipe. The
dimensions of the RFA and SPU holes are chosen to ensure no significant leakage of the beam’s
RF fields into the SPU and RFA, while allowing as much transmission of cloud electrons from the
beam pipe into the SPU and RFA as possible.

Over the past 3-year CESRTA program, five Q15 experimental chambers were fabricated and tested
in the Q15W and Q15E regions. Among these experimental chambers, four types of interior surfaces
and two types of RFA designs were tested. The four types of tested surfaces are: bare aluminum (as
it was originally extruded), amorphous carbon coatings (coated by CERN/CLIC), TiN coating (by
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Figure 2.13: Q15 EC Test Chamber, equipped with a RFA (1) and 4 SPUs (2)

Cornell) and diamond-like carbon coating (by KEK). Table 2.1 summarizes these test chambers.
Figure 2.14 shows a typical installation of these experimental chambers. The vacuum pumping of
the test chamber is by a 110-l/s noble-diode ion pump, and the two adjacent distributed ion pumps
at B13W/E and B15W/E. Since the gas conductance between the beam space and the RFA port is
very limited, a small ion pump (8-l/s) was installed for the RFA port. The vacuum performance of
each test chamber is monitored by a cold-cathode ion gauge (CCG) and an RGA during the beam
runs. SR-induced gas desorption from the chamber surfaces dominates the gas load. As for all
newly installed vacuum chambers, very high SR-induced pressure rises were measured from these
experimental chambers, but the SR-induced desorption decreases rapidly with the accumulated
beam dose. In Figure 2.15, the beam conditioning characteristics of the four surfaces are compared.
To make the SR-induced desorption measurements from the four types of surfaces, all the data
points shown were taken during CHESS operations, when there are roughly equal stored electron
and positron beam currents, making the total SR flux similar at both the Q15W and Q15E locations.
The data in Figure 2.15 indicates:

• All coatings, except the DL-C, have similar beam conditioning characteristics, as compared
to the bare aluminum surfaces. By contrast the DL-C coating indicates significantly higher
outgassing rates.

• However, the RGA data in Figure 2.16 show that DL-C coating has a much ‘cleaner’ desorbed
gas composition, i.e. it is dominated by hydrogen.

Two generations of RFA designs were used on the Q15 experimental chambers. The first generation
was adapted from the thin RFA design used for a CESR dipole chamber (see Section 2.2.3.2 and
Figure 2.32). As listed in Table 2.1, this thin-style design was used in the first four test chambers,
including a bare aluminum chamber, two amorphorous carbon coated chambers, and a TiN coated
chamber (in Runs #1 and #2).

Photos of a thin-style RFA are shown in Figure 2.17. In the thin-style design, UHV-compatible
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Table 2.1: Summary of Q15W and Q15E Experimental Vacuum Chambers (VCs)
VC# Surface RFA Style Test Period Location Note

1 Aluminum Thin 2010.04∼2011.01 Q15W Reference surface

2 TiN Run#1 Thin 2009.12∼2010.01 Q15E TiN coating via DC sput-
tering at Cornell

TiN Run#2 Thin 2010.08∼2011.01 Q15W Same chamber as above
TiN Run#3 Insertable 2011.02∼2011.07 Q15W Cross-comparison of two

RFA designs

3 a-C#1 Thin 2009.12∼2010.04 Q15W a-C coating via DC sput-
tering at CERNa

4 a-C#2 Run#1 Thin 2010.04∼2011.01 Q15E a-C coating via DC sput-
tering at CERNb

a-C#2 Run#2 Insertable 2011.07∼present Q15W Cross-comparison of two
RFA designs

5 DL-C Insertable 2011.02∼present Q15E DL-C coating via pulsed
DC plasma-CVD, supplied
by KEK

aA 150◦C pre-installation bakeout was performed, as a standard CESR practice, after installation of the thin RFA.
An a-C coated coupon went through the bakeout, and was sent back to CERN for analysis. The peak SEY value
δ ∼1.5 was measured on the coupon, much higher than the other coupons (δ ≤ 1.1) at CERN. It was suspected the
sub-monolayer trace of silicon on the a-C coating was responsible for the higher SEY. One possible source of silicon
was the silicone adhesive on the UHV-Kapton tape used on the thin RFA assembly.

bIn this round of RFA installation, efforts were made to reduce adhesive Kapton tape by at least 90%, and the
preinstallation bakeout temperature was reduced to 120◦C. However, higher δ and higher trace levels of Si were still
observed in the witness coupon!

3840511-055

Figure 2.14: A Q15 EC experimental chamber installed at Q15W in CESR.
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Figure 2.15: History of beam-induced vacuum conditioning of four Q15 EC test chambers with
different surfaces.
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Figure 2.16: Typical RGA spectra for four Q15 EC test chambers with different surfaces, as labeled.
All RGA spectra were recorded during CHESS operations, with ∼400 mA stored beam current in
CESR, after significant beam processing (with the beam dose over 400 Amp·Hr).
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3840511-048 3840511-050

Figure 2.17: Photos of the Cornell Dipole thin-style RFA taken while it was being installed into
the Q15 experimental chamber. Left: the three high-transparency retarding grids after installation
onto the beam pipe. The beam pipe holes are clearly visible through the fine meshes of the grids.
Right: installation of the collector circuit, which is clamped down with aluminum bars.

Kapton tape with Silicone adhesive (Model # KAP-TP-36-2S from Accu-Glass Products, Inc.) was
used to electrically isolate the flexible RFA collector circuit. We performed independent vacuum
evaluation of the Kapton tape, by measuring vacuum total pressure as well as the RGA spectrum of
the tape at 230◦C. The vacuum tests indicated no unusual outgassing from the tape, thus qualifying
their applications in CESR vacuum system. However, traces (∼6% mono-layer) of silicon were
measured on the a-C coated samples that were present during the 150◦C bakeout of the first a-C
coated RFA chamber. This trace of silicon contamination may have contributed to a much higher
measured SEY than was observed on the witness sample. In the second a-C coated chamber,
although the amount of Kapton tape was reduced by more than 90%, an even higher level of silicon
contamination and higher SEY was still measured on the witness a-C coated coupons!

Thus a second generation of the Q15 RFA design was developed, to be completely adhesive-free.
This fully insertable RFA assembly is illustrated in Figure 2.18. The insertable RFA consists of
three high-transparency copper meshes, with the bottom mesh grounded and second and third
meshes permitted to be individually biased. These meshes are nested in frames made of PEEK,
and connected through Kapton-coated wires. The flexible circuit RFA collector was replaced with
copper bars. The insertable RFA was installed in the fifth Q15 test chamber, with diamond-like
carbon coating. To provide cross calibration between the two RFA designs, the thin-style RFA in
the TiN coated test chamber was replaced with the insertable one. (Refer to Table 2.1)

L3 Chambers In the east side of the L3 experimental region (see Figure 2.10), a field-free
section (of ∼2-m in length) is allocated for EC studies. Three types of beam pipes were tested in
this section, as listed below.

• Aluminum beam pipe with smooth interior wall, provided by PEP-II

• Aluminum beam pipe with rectangular fins (grooves) provided by PEP-II

• NEG-coated beam pipes
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3840511-049

Figure 2.18: Photographs of insertable RFA used in Q15 experimental chambers. (A) High-
transparency gold-coated copper meshes after mounting in PEEK frames. (B) Copper bar collectors
mounted above the meshes. (C) RFA assembly with PEEK top cap, after soldering all connections
(including 2 grids and 13 collectors). (D) Insertable RFA in the vacuum port of a test chamber
(for clarity, wires are not shown).

PEP-II Chambers Direct measurements and previous simulation work on rectangular groove
samples have shown an SEY well below unity, as low as δmax ∼0.6 [5–8]. Following the successful
tests on several groove samples with different materials and coatings, four aluminum (type 6063-T6
alloy) test chambers were manufactured. Two of the chambers had smooth interior surfaces, as
shown in Figure 2.19. The other two chambers were constructed with rectangular grooves, having
two different groove depths, as detailed in Figure 2.20 and 2.21. All these aluminum extrusions
have effective inner diameters of 89 mm, identical to both the stainless steel chambers located in
the PEP-II straight section, and the nominal CESR L3 beam pipes.

All four test chambers include two vacuum ports (one with 100 mm diameter and one with 38 mm
diameter) on the bottom for insertion of electron collectors. In the larger port, 500 1.6 mm diameter
holes (in a 20 x 25 pattern) connect the beam space to the collector, as shown in Figure 2.22.
Similarly, 50 holes with 1.6 mm diameters (in a 5 x 10 pattern) connect the beam space to the
collector in the smaller port. The diameter of these holes are chosen to meet requirement of
diameter-to-wall-thickness ratio of 1:3 in order to limit the penetration of EM field, generated by
the passing bunch, into the electron collector ports. The electron collector, used in the large port,
is shown in Figure 2.23. The beam pipe assembly is illustrated in Figure 2.24, which includes a
re-entrant SR mask on one end of the chamber. All four EC chambers were then coated with a
TiN thin film.

These four EC chambers were originally tested in the PEP-II LER (see Figure 2.25). Following
the tests in the PEP-II, these chambers were re-deployed in the CESR L3 EC drift section for
continuation of the EC mitigation studies.
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Figure 2.19: Cross section of PEP-II aluminum beam pipe with a smooth interior wall. The beam
pipe was extruded with type 6063-T6 aluminum alloy.
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Figure 2.20: Cross section of PEP-II aluminum beam pipe with a 3.3 mm deep rectangular grooves.
The beam pipe was extruded with type 6063-T6 aluminum alloy.
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Figure 2.21: Details of rectangular grooves of two different groove depths on PEP-II aluminum
beam pipes. The left shows grooves with depth of 4.5 mm, and right with depth of 3.3 mm. The
beam pipes were extruded with type 6063-T6 aluminum alloy.
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Figure 2.22: Beam pipe holes for the large electron detector ports built into each of the four test
chambers. Left: front sectional view. Right: bottom view.
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Figure 2.23: Electron collector plate in the larger port of PEP-II EC chambers.
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Figure 2.24: PEP-II EC vacuum chambers tested in the L3 experimental region.
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3840511-273

Figure 2.25: The four PEP-II drift EC chambers were tested in PEP-II LER, prior to deployment
in CESRTA L3 EC Region.

NEG Test Section A Ti/Zr/V non-evaporable getter (NEG) thin film [9, 10] has been shown to
have a low SEY, after its activation at elevated temperatures under vacuum. The activated NEG
coating also has the benefit of providing vacuum pumping. A NEG-coated test chamber, equipped
with EC diagnostics, was built and tested in the drift section of the L3 experimental region. To
prevent rapid saturation of the activated NEG thin film in the test chamber from residual gases in
the surrounding beam pipes, the test chamber was sandwiched between two 1-m long NEG coated
beam pipes, as shown in Figure 2.26. The EC test chamber was equipped with three APS-style
RFAs at three angles and an RF-shielded pickup on the top (see Figure 2.27). All three chambers
were made of stainless steel (Type 304L).

The NEG thin film deposition was done by SAES Getter Inc., via a DC magnetron sputtering
method, using twisted wires of Ti, Zr and V as the sputtering cathode. The thickness of the NEG
thin film is ∼2 µm. During the coating process, all diagnostic instruments [RFAs and shielded
pickups (SPU)] were removed. A 24-hr 150◦C bakeout was carried out to the NEG-coated beam
pipe string, with RFAs and SPU inserted, prior to the installation in the L3 experimental region.
These NEG-coated beam pipes replaced the PEP-II EC text chambers in the drift section of L3
region.

Fiberglass insulated heating tapes were wrapped around and along the NEG beam pipe string for
the activation. Six large bore (11-inch diameter) Helmholtz coils, evenly spaced along the beam
pipe string (shown in Figure 2.28) replace the normal solenoid winding, found on most of the CESR
beam pipes, as the solenoid windings are incompatible with the high temperature heating required
during the activation of the NEG coating. The NEG coating was activated at 250◦C for a duration
of 24 to 48 hours. After each venting of the L3 region and to preserve pumping capacity of the NEG
thin film, the activation was normally carried out following the initial period of beam conditioning
of the beam pipes.

Vacuum performance of the NEG coated beam pipes was monitored by four CCGs and an RGA
(see Figure 2.26). Figure 2.29 plots the measured SR-induced pressure rises (dPdI ) as a function of
accumulated beam dose. As expected, the RGA showed a residual mass spectrum (Figure 2.30)
that was dominated by hydrogen.
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Figure 2.26: Vacuum chambers with NEG thin film coating in the drift section of the L3 experi-
mental region. The test chamber included: (A) 3 units of APS-style RFAs; (B) RF-shielded pickup
assembly supplied by LBNL.
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Figure 2.27: EC Diagnostic chamber with NEG thin film coating.
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Figure 2.28: NEG-coated beam pipes in L3 after installation of Helmholtz Coils.
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Figure 2.29: Beam conditioning of the NEG coated beam pipes in L3.
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Figure 2.30: A typical RGA spectrum taken with full stored beams in CESR, with accumulated
beam dose of ∼900 Amp·hour.

2.2.3.2 Dipole Chambers

CESR Arc Chamber A thin-style RFA design was developed and implemented in a standard
CESR dipole chamber at the B12W location. The major design challenge of the RFA design is the
very limited vertical space available in order to fit the RFA-equipped chamber within the existing
CESR dipole magnet’s iron poles.

Figure 2.31 gives an overview of the CESR dipole chamber with the two RFA assemblies. In
installation, one of the RFA is placed in the dipole field, while the other in the field-free drift.
Figure 2.32 illustrates the structure of the dipole RFA. As shown in the cross-section view, the
entire RFA structure is fitted within approximately 3-mm vertical space. Some of the key steps of
the dipole RFA construction are summarized as follows:

1. Two RFA openings (see top-left insert in Figure 2.31) were machined into the top of a CESR
dipole chamber. The dipole chamber used in this project was a fully functional spare beam
pipe, containing the inserted distributed ion pump elements in the ante-chamber and a RF-
shielded bellows assembly. The machining of the RFA openings were done completely dry
(i.e.with out any cutting fluids) with a cleaned NC-milling machine and cleaned cutting tools.
In addition special fixtures were designed and used to contain metal chips and particulates
within the opened section and to, thus, prevent them from entering the DIP channels.

2. RFA housing blocks made of 6061-T6 aluminum alloy were placed at the openings and welded
to the beam pipe (see photo A in Figure 2.35). The CAD model of the RFA housing block
is shown in Figure 2.33. Grouped into 9 segments on three flats, 396 small through-holes
(0.75 mm diameter) allow electrons (from the electron cloud), coming from within the beam
space, to drift into the RFA space, while blocking out the beam RF EMI. A vacuum leak
check was performed after welding the RFA housing to ensure the UHV quality.

3. Three retarding grids, made of stainless steel mesh and sandwiched into ceramic frames, were



2.2. Vacuum System Modifications 37

DETAIL  A
RFA Closeup View

A
CESR Dipole Chamber

(Aluminum Extrusion)

RFA #1 (in Dipole Field)

RFA #2 (in Drift)

RF-Shielded Bellows

Cutouts for RFA Housings

3840511-005

Figure 2.31: A CESR dipole chamber with 2 RFAs.

mounted on the three flats (see Photo B in Figure 2.35). The three grids were individually
wired, using Kapton-coated copper wires, which were fed through a ‘tunnel’ (formed by the
RFA housing block) to the connection port. Small amounts of Kapton tape with silicone
adhesive were used to keep the grids in place.

4. Thin (approximately 0.15 mm thick) copper-coated-Kapton flexible circuits were used as the
RFA collectors. As shown in Figure 2.34, it has 9 segmented copper patches that match with
the 9 groups of RFA holes on the housing block. Kapton-coated wires are soldered onto the
circuit. After soldering, each flexible circuit was cleaned and vacuum baked (at 150◦C) before
assembling into the RFA. The flexible circuit was precisely placed on top of the retarding
grid frames with ceramic head-pins (see Photo C in Figure 2.35). The pinned circuit was
further clamped down with two stainless steel bars, also utilized to avoid over-heating of the
circuit in the final step of the assembly, the welding of the RFA vacuum cover. The end of
the circuit, containing the external electric connections for the circuit, was fed through the
‘tunnel’ into the connection port with the 9-pin D-type vacuum feedthrough.

5. After a thorough electrical checkout of the RFA assembly, an aluminum (6061-T6 alloy) cover
was welded to seal the RFA. Heat-sinks were used to prevent over-heating of the RFA collector
circuit as shown (see Photo D in Figure 2.35).

The RFA dipole chamber was then leak checked and a 150◦C pre-installation bakeout was carried
out. The chamber was successfully installed in CESR at B12W location during a one-week shutdown
in May 2008. Both RFAs on the dipole chamber have been continuously functioning since their
installation.
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Figure 2.32: RFA design detail for a CESR dipole chamber.
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Figure 2.33: RFA Housing block for a CESR dipole chamber.
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Figure 2.34: RFA flexible circuit collector for a CESR dipole chamber.
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Figure 2.35: CESR dipole RFA assembly and welding photos.
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Figure 2.36: PEP-II 4-dipole magnet chicane and RFA-equipped EC chambers.

PEP-II Chicane Chambers A PEP-II 4-element dipole-magnet chicane was installed in the
CESRTA L3 experimental region (see Figure 2.10) for the continuation of studies of EC in a dipole
field. The field of the chicane dipoles can be varied over the range of 0 to 1.46 kG, the top limit
corresponding to the nominal magnetic field strength of the ILC DR arc dipoles. As shown in
Figure 2.36, the 4 dipoles are spaced 73 cm apart, with two aluminum beam pipes for a total
length of ∼4.2 m. The beam pipes have smooth inner surfaces with TiN coating. Four RFAs
were installed on these test chambers, with each of the RFAs located within the dipole magnets.
Figure 2.37 shows the structure of these RFAs.

3840511-287 3840511-288

Figure 2.37: Four RFAs were welded onto the chicane beam pipes. LEFT: Cross-section view
showing the structure of these RFAs. RIGHT: Photo showing the assembled RFA in its aluminum
housing, welded on the top of the chicane beam pipes.
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2.2.3.3 Wiggler Chambers

Design Considerations and RFA Structure Superconducting wigglers (SCWs) were designed
and fabricated for the CESR-c/CLEO-c program. The CESR-c wigglers are 8-pole super-ferric
magnets with main period of 40 cm and trimming end poles. The SCWs provide a very uniform
transverse field up to 2.1 T, closely matching the ILC DR wiggler requirements. Therefore, these
SCWs are ideal test vehicles for the study of EC growth and suppression in the wiggler field.
With this motivation, a thin-style RFA design was developed for the wiggler beam pipe and a
set of diagnostic chambers was constructed by a collaboration including Cornell, KEK, LBNL and
SLAC.

Figure 2.38 illustrates the structure of the SCW. The details regarding the design of the CESR-c
SCWs can be found in [11]. In the original SCW production, the beam pipe was assembled into
the magnet’s cold-mass, and the cold-mass with the beam pipe was in turn inserted in the isolation
vacuum vessel. 16 SCWs were constructed for the CESR-c program on a specially designed SCW
assembly line in a dedicated facility that no longer exists. Therefore, the following design constraints
were imposed on the RFA beam pipe design and construction.

• The RFA beam pipe must fit inside the space in the cold-mass thermal shield (see Figure 2.38),
while still providing sufficient beam aperture.

• The removal of the existing beam pipe and the insertion of the RFA beam pipe must be
accomplished without disassembling or disturbing the wiggler magnet structure.

• The RFA beam pipe (including all material used) must be UHV-compatible.

With these requirements the vertical aperture of the RFA beam pipe was reduced from the standard
50 mm to 43.5 mm to provide space for the RFAs, as shown in Figure 2.39. The copper extrusions
were split into top and bottom halves. After trimming the vertical edges, the two halves were
re-joined (via EB-welds) to form the RFA beam pipe. As detailed later in this section, the top
half beam pipe houses the RFA assemblies, while a variety of EC suppression techniques were
implemented on the bottom half beam pipe.

Simulations [12] predicted distinct longitudinal and transverse EC density distributions in wiggler
beam pipes. The design goal of the wiggler RFA beam pipe is to place RFAs at strategic lon-
gitudinal locations in the wiggler magnetic field to measure corresponding transverse EC density
distributions.

The RFA beam pipe design is illustrated in an exploded view in Figure 2.40. As mentioned earlier
the RFA beam pipe is constructed from the top and bottom halves of the original vacuum chamber.
Along the longitudinal direction of the beam pipe, three pockets were machined into the top half of
the beam pipe to form housings for the three RFAs. The three RFAs’ locations together with the
vertical field map of the SCW are depicted in Figure 2.41. After installation in the wiggler magnet,
the RFA #1 is at boundary between two center poles (zero vertical magnetic field), #2 at center of
a pole (maximum vertical magnetic field) and #3 at ‘edge’ of a pole (longitudinal B-field).

Electrons from the EC in the beam pipe drift through transmission holes to the RFA detector.
There are 240 small holes in each of the three RFAs. As shown in Figure 2.42, they are grouped
into 12 segments in the transverse direction to the beam pipe. These holes have a diameter of
0.75 mm (1

3 of wall thickness) to reduce the EMI into the RFA signals.

The retarding grids are nested in ceramic frames with the frames bolted to the RFA housing
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pockets. Two generations of metallic meshes were used as the retarding grids. The first generation
was made of photo-chemically etched 0.15 mm-thick stainless steel (SST) mesh, with an optical
transparency of approximately 38%. The SST mesh is easy to handle and inexpensive. However,
the SST mesh has two drawbacks. Its relatively low transmission not only directly translates to low
EC detection efficiency, but also limits the EC diagnostic accuracy due to significant interaction
the transmitted electrons with the grid. To reduce the secondary emission from the grid, the SST
meshes were coated with approximately 0.3 µm of gold. The second generation grids (by Precision
EForming, Inc) were electroformed copper meshes, bonded to SST frames (supplied by Cornell).
The electroformed copper meshes were also coated with gold (approximately 0.3 µm in thickness)
via electroplating to reduce secondary electron emission. The electroformed meshes consist of
15 µm wide and13 µm thick copper wires with spacing 0.34 mm in both transverse directions and
an optical transparency of approximately 92%. The disadvantage of the copper mesh is that it is
very expensive and fragile.

Similar to the thin RFA design, used in the dipole RFA, a flexible copper-clad/Kapton circuit was
used as RFA electron collector. As shown in Figure 2.43, three sets of RFA pads each contain
12 transverse collectors to match the hole patterns on the RFA beam pipe. After tinning the
soldering pads, the flexible circuits were cleaned and degassed with a 150◦C vacuum bakeout before
insertion in the RFA beam pipe. The flexible circuit strip was laid on top of the ceramic frames
of the grids and precisely positioned with ceramic head-pins. After positioning the flexible circuit
and feeding its connection pad through a ‘duck-under’ channel (see ‘Detail B’ in Figure 2.40) into
the RFA connection port, UHV-compatible Kapton-coated copper wires (42 wires per assembly)
were soldered to the connection pads. The final RFA connections are wired to three 15-pin D-type
vacuum feedthroughs on a 4.5 inch ConFlat c© flange. A copper RFA vacuum cover was electron-
beam welded to the beam pipe’s top half to complete the RFA assembly. Figure 2.44 shows the
cross-section of the RFA beam pipe at one of the RFA locations. The entire RFA structure is
contained within a total vertical space of 2.5 mm.

Preparation of SCW for RFA Beam Pipe Preparations must be undertaken for a CESR-c
SCW to receive an RFA beam pipe assembly. The main task is to extract the existing beam pipe
from a CESR-c SCW without disturbing the magnet’s structure. As shown in Figure 2.38, the
CESR-c SCW beam pipe is attached to the insulating vacuum vessel via two thin stainless steel
disks. The major portion of these disks is about 1.5 mm thick. Called flexible disks, they allow
for differential thermal expansion and contraction of the beam pipe relative to the vacuum vessel.
The flexible disks completed the insulation vacuum envelope after being welded to the beam pipes
and the large end flanges of the vacuum vessel. The sequence of the beam pipe extraction from a
CESR-c SCW is described in Figure 2.45. After the extraction of the beam pipe, all debris from
the extraction operation was thoroughly removed from the magnet and a pair of large end flanges
(with O-ring seals) were mounted to the insulation vacuum vessel. Then the vacuum vessel was
leak checked. The integrity of the wiggler magnet was also verified.

Coated and Uncoated Chambers Over the past three years, four SCWs equipped with RFA
beam pipes were constructed and installed for the CESRTA program. In the first two units, one
has a bare copper beam pipe and the other has a copper beam pipe coated with a TiN thin film
(prepared by the SLAC shop). In the third and fourth units, a grooved plate and an EC clearing
electrode were implemented on the bottom half of the beam pipe. More details on the third and
fourth assemblies are given later.
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Figure 2.38: Exploded view of the structure of a CESR-c superconducting wiggler assembly.
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Figure 2.39: Cross section comparison between a ‘standard’ CESR-c SCW beam pipe and a CESRTA
RFA-equipped SCW beam pipe.
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Figure 2.40: Exploded View of a SCW RFA beam pipe Assembly. The key components are: (1)
beam pipe top half, housing the RFAs; (2) RFA grids (see upper right inset); (3) RFA collector on
a flexible printed circuit board; (4) RFA connection port; (5) RFA vacuum cover. The ‘duck-under’
channel, through which the kapton flexible circuit is fed after all heavy welding is complete, is
shown in detail B.
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Figure 2.41: Three RFAs are built into each SCW RFA beam pipe. A plot of the B-field along
the wiggler (red line with blue dots) is superimposed on the drawing of the wiggler. The RFAs are
located at three strategic B-field locations, as shown.
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Figure 2.42: Small holes are drilled through top beam pipe to allow electrons in the beam pipe drift
into RFAs. There are 240 holes for each RFA, and they are grouped into 12 segments to sample
transverse EC density distribution.

3840511-265

Figure 2.43: Photos of the flexible circuit used as RFA electron collectors in the SCW RFA beam
pipe. The flexible circuit is made of a thin Kapton sheet with copper cladding on both sides, having
a thickness of 0.15 to 0.20 mm and length of 886 mm.
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Figure 2.44: Cross section view of a RFA structure on the SCW beam pipe
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Figure 2.45: Sequence of the extraction of the beam pipe from CESR-c SCW Assembly. (A) One
of end beam pipe flanges is cut off with a saw; (B) A circular cut is made through the flexible disk
(indicated by red line) with a hole saw; (C) The large insulation vacuum vessel flange is demounted;
(D) Another saw cut is made on the beam pipe behind the remainder of the flexible disk; (E) The
remaining beam pipe is then pulled out of the SCW’s warm-bore using the large flange at other
end; (F) Both large vacuum vessel end flanges are remounted, after some surface machining to
remove remnants of the flexible disks.
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Many steps of heavy welding are required as part of the RFA wiggler beam pipe construction. As
illustrated in Figure 2.40, we have designed the equipment in a such way so as to have all the
welding that may overheat the portions of the beam pipe near the RFA flexible circuit completed
prior to the installation of the flexible circuit. This Kapton c©-based circuit has a temperature rating
of 220◦C. To allow for this requirement, a ‘duck-under’ channel was created beneath the stainless
steel flexible disk, which later will be welded to the wiggler insulation vacuum vessel. During the
construction process, all vacuum welds, except the final RFA vacuum cover, can be completed and
leak checked prior to the installation of the heat-sensitive flexible circuit. Utilizing the ‘duck-under’
channel, one can feed the flexible circuit from the RFA portion of the beam pipe (i.e. inside wiggler
insulation vacuum space) to the RFA connection port.

The beam pipe fabrication began by splitting the fully annealed OFE copper extrusion into two
halves. The copper extrusions are the same type used for PEP II LER Quad beam pipe and
the original CESR-c SCW beam pipes. All RFA-related features on the top half were machined
at LBNL’s machine shop with CNC machinery. These include the RFA grid pockets, 720 electron
transmission holes, the ‘duck-under’ channel, and all the EB weld-preps (see photos in Figure 2.46).
After cleaning, an ‘under cover plate’ was EB welded to the top half of beam pipe to form the
‘duck-under’ channel. Then two finished halves were joined together using a CNC EB welder,
with approximately a 1 mm E-beam penetration at the seams. After passing a leak check of the
beam pipe seams, two side cooling channels were also EB welded to the beam pipe (see photos in
Figure 2.47). Measurements using NC coordinate machine found that amount of distortion of the
EB-welded beam pipe is well within design tolerances. Subsequently, all other vacuum components
(including end flanges and transitions, RFA connection port and vacuum pumping port) were
manually welded to the beam pipes with tungsten inert gas (TIG) welding in an argon atmosphere
to avoid the oxidation of the copper beam pipes. A temporary flange was welded to the end of the
beam pipe, which is away from the RFA locations, to facilitate initial leak checking, bakeout and
coating. At this stage all the UHV joints of the beam pipes, with exception of the top RFA vacuum
cover plate, were finished and were ready for the final RFA component assembly. To ensure the
required UHV quality, both beam pipes were baked to 150◦C under vacuum. After the bakeout, one
of the two RFA beam pipes produced at LBNL was coated with TiN thin film on the beam pipe’s
interior by the SLAC team. By comparing with the TiN coated and bare copper chambers using
the CESRTA diagnostics, the effectiveness of TiN coating in suppressing EC in wiggler magnetic
fields can be evaluated.

The first two partially finished wiggler beam pipes at LBNL were shipped to Cornell (in September
2008) for final RFA component assembly and integration into the SC wiggler assemblies. Photos
in Figure 2.48 show some of the key steps of the RFA installation. The entire RFA installation
was performed in a Class 1000 Clean Room. After thorough electrical checks the RFA installation
was finished by E-beam welding on the OFE copper RFA vacuum cover. The finished RFA beam
pipes were baked to 150◦C for 48 hours before final insertion into the prepared wiggler magnet
assemblies.

Before integrating the RFA beam pipe into the SCW, the temporary flanged end (end away from
the RFAs) must be machined off using a clean milling machine with clean cutting tools. Extreme
care was taken in this final machining step, which included blocking metallic debris from entering
the RFA section of the beam pipe and constant purging of the chamber with N2. The RFA beam
pipe was inserted into the wiggler warm-bore and precisely positioned with respect to the wiggler
magnet by optical survey. Extreme care was also taken in the final welding stages (including final
beam pipe flange and seals to the wiggler insulation vacuum vessel) to prevent overheating of the
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3840511-270

Figure 2.46: The copper beam pipes are split into two halves with EB-weld preps ready for cleaning
and EB-welding. (Photos: courtesy of Dawn Munson of LBNL)

3840511-271

Figure 2.47: The beam pipe halves were EB-welded with approximately a 1 mm beam penetration.
Two side cooling channels were also EB-welded to the beam pipes. The inserts show close-up views
of the ‘duck-under’ channel for the RFA flexible circuit (lower right) and the EB-welds (upper left).
The welded beam pipe is shown here on a CMM (coordinates measuring machine), which gave the
total measured distortion of less than 0.15 mm. (Photos: courtesy of Dawn Munson of LBNL)
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Figure 2.48: Photographs of the key steps in the RFA installation on a wiggler beam pipe: (A)
Three grids are installed and individually wired to the connection port; (B ) The flexible circuit
collector is installed and located with 5 ceramic head-pins; (C) With the circuit through the ‘duck-
under’ tunnel, all signal wires are attached in the connector port; (D) After making the final RFA
connections, a vacuum leak-check is performed and a final RFA electrical check-out is done under
vacuum before EB-welding of the RFA cover.

RFA components.

Finally, the completed SCWs with RFA beam pipes were ‘baked’ at 70◦C for 2 days by circulating
hot water through the beam pipe cooling channels in an effort to de-gas the vacuum components
after the prolonged air exposure during the final RFA beam pipe insertion and welding. The first
two SCWs with RFA beam pipe were successfully installed in the west side of the L0 Experimental
region in CESR in October 2008 (see Figure 2.49) in the SCW02WA and SCW02WB locations
(refer to Figure 2.2 in Section 2.2.2.1).

Grooved Chamber Using grooved surfaces to lower effective SEY is a well-known [5–8] passive
technique to suppress EC growth in a magnet field. Having successfully implemented RFAs into
SCWs in CESR, we studied the effects of grooved chambers by constructing an RFA-equipped
SCW chamber with a grooved insert installed on the bottom surface. Figure 2.50 shows the design
of the RFA beam pipe. This beam pipe assembly is basically identical to the design as shown
in Figure 2.40 with the exception that a copper plate with triangular grooves has been attached
to the bottom half via EB-welding. The same procedure (described previously in this section)
was followed for the RFA installation to the beam pipe and the beam pipe integration into the
SCW.

The implementation of a grooved surface in a copper vacuum chamber was found to be quite
challenging. Practical considerations dictated the implementation of the grooved surface using an
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Figure 2.49: SCWs with RFA beam pipes were installed in the L0 Experimental region.

inserted plate. First, it was determined (through test machining) that the copper extrusions used
for the SCW beam pipe were fully annealed, and too soft for machining the tiny groove geometry.
Thus the grooves were machined in a separate plate of harder alloy which could be electron-beam
welded into the vacuum chamber. A further limitation was that, even in the case of machining a
separate plate, it was too costly to machine grooves for the entire length of the chamber. Thus, for
the experimental tests, a grooved plate of sufficient length to span the RFAs was used.

The geometry and dimensions of the grooves are shown in the ‘Detail F’ in Figure 2.50. A cut-out
opening was machined for the grooved plate into the bottom half of the beam pipe (Figure 2.51).
30◦ slope cuts were made on both ends of the groove plate and on the beam pipe wall (shown in
‘Detail D’ in Figure 2.50), which provide a smooth transition from the flat surface to the triangular
groove tips in order to minimize HOML.

The triangular grooves were made with a milling technique using specially designed cutters. In
practice there will be finite radius on the tips and valleys of these grooves. The effective peak SEY
on these triangular grooves was simulated as a function of the tip/valley radius by Wang [13]. As
shown in Figure 2.52 for the grooved surfaces to be effective in suppress SEY, it is essential to
produce these triangular grooves with average radius of their tips and valleys smaller than 0.003”
(75 µm). To qualify this groove fabrication technique, a prototype groove plate (of same width,
but 150 mm long) was produced for inspection. Figure 2.53 shows the prototype groove plate, and
images from optical inspections. The resulted tip and valley radii were approximately 25 µm and
60 µm, which were satisfactory.

The RFA beam pipe assembly, having the RFA features on the top half and the grooved plate on
the bottom half, was fabricated at LBNL and delivered to Cornell in May 2009. The thin RFAs
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Figure 2.50: SCW RFA beam pipe with a groove plate EB welded to the bottom beam pipe.

were assembled into the beam pipe and then the RFA beam pipe was inserted into a SCW, following
a similar procedure as describe previously in this section. Extra measures were taken to protect
the sharp grooves at the bottom of the beam pipe throughout the final stages of assembly. The
completed SCW was successfully installed for the CESRTA program in the L0 EC experimental
region in July 2009 in the SCW02WB location (refer to Figure 2.2 in Section 2.2.2.1).

The SCW beam pipe assembly, containing the grooves and their associated RFAs, was successfully
operated through two CESRTA experimental runs (July 2009 to September 2009, and Novem-
ber 2009 to December 2009) and two CHESS runs (September 2009 to November 2009, and Jan-
uary 2010 to March 2010), accumulating total beam doses of approximately 940 Amp·hr. During
the April 2010 CESR shutdown, this SCW assembly was replaced with a SCW assembly fitted with
RFA beam pipe, having an EC clearing electrode (see the subsequent topic in this sub-section).
After its removal from CESR the following procedures were performed on the grooved RFA beam
pipe as a continuing effort in studying EC suppression in wigglers.

• During the CHESS runs (and some of the CESRTA experimental runs), short electron/positron
bunches with high bunch current were stored. Therefore, concerns were raised as to whether
the high image current density on the sharp groove tips may have caused over-heating that
resulted in damage. Close-up optical inspection of the grooves was carried out with a com-
bination of a specially design ’trolley’ (that locates a mirror above the grooves in the beam
pipe) and a high-zoom digital camera. The entire length of the groove plate was inspected
for damage to the groove tips. No damage was observed.

• Using a DC sputtering technique, a TiN thin film coating was applied to the interior surfaces
of the beam pipe, including the grooved portion at the bottom beam pipe. The coating setup
is shown in Figure 2.54. Figure 2.55 displays the uniform discharge during the TiN thin film
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3840511-251

Figure 2.51: Bottom half of an SCW beam pipe with a cut-out and the groove plate during
inspection on a CMM (Photo courtesy of Dawn Munson of LBNL)
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Figure 2.52: Simulated effective peak SEY on triangular grooves on copper as a function of groove
tip/valley radius (sharpness) for two typical wiggler peak fields. (The simulation assumed the tips
and valleys to have the same radius.) The two peak wiggler fields correspond to CESR beam
energies of 1.8 GeV and 5.2 GeV.
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Figure 2.53: LEFT: A prototype groove plate was fabricated with full-hard OFC copper. A precision
wire-cut across the grooves was performed for groove sharpness inspection. RIGHT: Images of
prototype groove tip and valley, taken with a high-resolution camera on the CMM at LBNL with
back-lighting. The tip radius is estimated to be approximately 0.001” (25 µm) and the valley
approximately 0.0025” (63 µm). (Photo courtesy of Dawn Munson of LBNL)

deposition. The TiN deposition was undertaken in two stages with the titanium cathodes
shifted transversely to minimize the geometric shadowing of the steep grooves. The estimated
TiN film thickness was 150 to 500 nm, based on the on-line measurements of a QCM (Quartz
Crystal Micro-balance) and the off-line measurements of witness coupons.

• Close-up optical inspection of the grooves was done after the TiN coating. Figure 2.56 shows
typical inspection images of a portion of the grooves before and after the TiN coating. Al-
though the camera did not possess sufficient acuity to resolve the fine features of the sharp
tips/troughs, no obvious sign of over-heating and damage to the grooves were visible. The
image also showed relatively uniform TiN coating with no significant shadowing within the
groove troughs.

The TiN coating process was performed in the presence of RFA assemblies with all RFA grids and
collectors grounded. The RFAs were found to be fully operational after coating in this manner.
The TiN coated, grooved RFA SCW assembly was reinstalled in the L0 EC experimental region in
SCW02WA location in January 2011.

Electrode Chamber One of the electron cloud mitigation methods studied at CESRTA makes
use of a clearing electrode, operating with a positive bias voltage to attract the electrons, which
would ordinarily collect around the positron beam. To investigate its EC suppression efficacy in
the wiggler field, a clearing electrode was installed on the bottom of an RFA-equipped beam pipe
in an SCW. The structure of the beam pipe is shown in Figure 2.57. The beam pipe consists of a
top half with three RFAs (identical to the design as shown in Figure 2.40) and a bottom half with
a clearing electrode assembly.
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Figure 2.54: TiN coating setup of the SCW RFA beam pipe with bottom grooved plate. Solid grade
1 titanium rods were used as cathode, biased at a DC voltage of 1.5 kV. Flow rates of sputtering
gases (Ar and N2) were controlled with flow meters, and the sputtering pressure was controlled
at approximately 0.10 torr. A Quartz Crystal Micro-balance (QCM) was used to monitor film
thickness.

3840511-257

Figure 2.55: Glowing discharge during TiN coating of the grooved RFA beam pipe. The coating
was performed in two stages, the first stage using two Ti rods (as shown) and the second stage
with three rod (located in different transverse positions.) The two-stage coating is to minimize
shadowing effects from the steeply grooved troughs.
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Figure 2.56: The grooves of the SCW RFA beam pipe were inspected optically. LEFT: Before TiN
coating; RIGHT:After TiN coating.

The geometry of the clearing electrode is a thin stripline [14], which consists of an alumina ceramic
layer on copper surface (of approx. 0.2 mm in thickness) as an insulator and a thin layer of tungsten
on the ceramic surface (of approx. 0.1 mm in thickness) as the electrode. The area of the alumina
ceramic layer was larger than that of the electrode, so that the required DC voltage could be applied
to the electrode in vacuum. These two layers were deposited via a thermal spray technique and
were tightly bonded to the copper chamber. Tungsten was chosen as the electrode material owing
to its small thermal expansion rate (as compared to the alumina ceramics), good thermal and
electrical properties, and substantial experience in the utilization of thermal spray applications.
The photograph in figure 2.58 shows the finished bottom beam pipe with its deposited electrode.
The insulation resistance between the electrode and the copper chamber was about 5 MΩ (in dry
air) and the electrode is capable of withholding DC voltages above 1 kV.

Since the magnetic field within the wiggler magnet is vertical, electrons will stream along field lines,
impacting the top and bottom walls of the vacuum chamber and produce secondary electrons, which
will again stream to the opposite vacuum chamber wall. Thus the clearing electrode is designed
to have a width of 40 mm and is placed on the lower wall of the vacuum chamber, extending for
1.09 m along the beamline, in order to intercept electrons impacting the bottom of the vacuum
chamber. However, from the beam-impedance point of view, the narrower the electrode is, the
smaller the impedance. To minimize HOML induced by the electrode, the ends of the electrode
are tapered at a 42◦ angle down to a 3 mm radius at its tip. The HV connection is made by a
coaxial line coming through a port located underneath one of the tapered ends of the electrode.
The electrical connection to the electrode is made via a convex button washer (having a 26 mm
diameter) on the top of the electrode, as shown in Figure 2.57 and Figure 2.59. The connection
was designed to make the inner surface (visible to the beam) as smooth as possible, while keeping
a secure electrical contact. Although the effects of the low profile of the discontinuity, the tapered
ends of the electrode and the hidden HV connection have not be calculated in detail, they are
expected to produce a HOML parameter of less than a few times 0.001 V/pC for the 7 to 10 mm
bunch length of CESR. Any heating from the wall currents flowing on the surface of the electrode is
easily handled by conduction to the beam pipe through the thin alumina dielectric layer, which has
good thermal conductivity. Thermocouples mounted on the bottom beam pipe near the electrode
assembly have detected no increase in heating due to HOML at any of the beam currents during
operations.
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Figure 2.57: SCW RFA beam pipe with clearing electrode assembly. Top: sectional view and
clearing electrode as seen from the top. Bottom left: sectional view of the clearing electrode and
the HV input port. Bottom middle: detail of HV coupling port. Bottom right: exploded view
of HV port; electrical contact is made with a vented screw (1), an aluminum alloy button (2),
insulation spacer made of PEEK (3A, 3B), a stainless steel spring washer (4), and a tapered copper
pin (5).

At LBNL the bottom half of the beam pipe (containing the thermal-sprayed electrode) was EB-
welded with the top half beam pipe (with all RFA features as shown in Figure 2.40) to form the
pre-RFA beam pipe assembly and then delivered to Cornell in February 2010. Following the same
procedures described earlier, RFAs were assembled to the electrode beam pipe, integrated into an
SCW and then installed in the L0 experimental region for CESRTA experimental runs beginning
April 2010. After operations for three CESRTA runs and two CHESS X-ray User runs (from April
to December 2010), a visual inspection of the electrode and the electric contact was done during
the January 2011 shutdown. With an accumulated total beam dose exceeding 1000 Amp·hr over
the CESRTA and CHESS runs, the electrode and the electrical contact were found to be in excellent
condition with no sign of arcing or over-heating.

During stored beam operation one concern with the electrode design was the peak voltage induced
by a bunch’s passing. There are two parts to this particular concern. First is that the peak voltage
is high enough to either break down the dielectric layer or produce an electrical discharge in the
vacuum, which could cause metal to be plated onto the dielectric, either of which will degrade the
high voltage standoff capability of the electrode. The second is that the voltage induced onto the
electrode might couple to subsequent bunches causing enhanced HOML or transverse kicks possibly
destabilizing later bunches in the train. This could be particularly a concern for the clearing
electrode, since its structure resembles that of a stripline pickup or stripline kicker. Since the
transmission line impedance of the electrode structure is difficult to match to the external coupling
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Figure 2.58: Photo of deposited electrode on the bottom of the SCW beam pipe.
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Figure 2.59: Photo of electrode connection button on the bottom of the SCW beam pipe.

port, there can be many reflections of the induced voltage before it damps out. If the transmission
line-electrical length of the electrode is chosen poorly, a resonant excitation of the beam-induced
voltage could result in large voltages occurring on the electrode with respect to ground. This
resonant enhancement of the voltage could lead to a sizable multiplication of all effects. Therefore
the 1.05 m length of the clearing electrode was designed, after taking into account the dielectric
constant of alumina of 9.8 (a reduction of the propagation delay of the signal in the stripline by a
factor of 3.13 from the speed of light in vacuum), to have a round trip delay of 21.9 ns, which is
not a multiple of either 4 ns or 14 ns, the primary bunch spacings employed for CESRTA.

To reduce the peak induced voltage, the ends of the electrode are tapered. As a bunch passes by the
tapered end of the electrode the induced wall currents in the electrode spread out over a time equal
to the difference of the propagation delay of the signal in the electrode’s stripline transmission mode
and the transit time of the bunch. With a taper length of 31.3 mm, the duration of the induced
signal at both ends will spread out over 0.2 ns in the forward transit direction and 0.4 ns in the
reverse direction. Since the temporal standard deviation of the bunch ranges between 20 and 35 ps,
spreading the induction of the signal in the electrode over more than ten times the bunch’s rise time
will reduce the peak signal by a comparable factor. Since the wall currents traveling with the beam
are induced into the transmission line composed of the electrode resting on the dielectric layer on
top of the vacuum chamber wall, the induced voltage will be proportional to the impedance of the
transmission line. With a dielectric thickness of 0.2 mm and a maximum electrode width of 44 mm,
the transmission line impedance is 0.59 Ω. At the tapered ends the impedance increases to 3.6 Ω,
thus the reflections off of the ends will cause additional (somewhat more complicated) spreading of
the transmission line signal.

Some care was taken to make a reasonable match of the impedance of the external coaxial HV
connection to the clearing electrode. The effective impedance of the electrode at the point where
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the external port attaches to the electrode’s taper is 0.78 Ω. The hole through the beam pipe under
the taper plus the HV connection post (sticking through the hole) have an impedance of 6.2 Ω,
making it impossible to match the clearing electrode’s impedance at the connection point. However,
some improvement to the mismatch to the 50 Ω type-N connector was accomplished by tapering
the center conductor with a conical taper from the 50 Ω connector to 11.5 Ω where the center
conductor attaches to the HV connection post. So in the final design there are two mismatches
between electrode and the type-N connector: 1) between the electrode and the HV post and 2)
between the HV post and the tapered coaxial feed line, giving reflection coefficients, respectively, of
−0.80 and −0.30. Lastly, for thermal expansion there is a sliding contact where the conical coaxial
center conductor attaches to the constant diameter, 50 Ω center conductor.

After the construction and assembly of the electrode and the coaxial HV connection port, time
domain reflectometer (TDR) measurements were made. The TDR allows a basic check of the
impedance of the entire structure using a step function-signal with a rise-time of 25 ps. However,
since the electrode’s transmission line impedance is so low, only an upper limit may be placed on
its impedance. At the input side, the type-N connector had a reflection of + 6%, while the sliding
contact had additional ± 4% reflections. Neither of these is very serious as they are relatively small
and are contained within regions of less than 0.15 ns propagation delays. The estimated upper limit
of the transmission line impedance of the central section of the clearing electrode itself is 2.6 Ω,
which is consistent with the expected 0.59 Ω.

With 5 mA single bunch stored beams, measurements have been made to observe the signal coming
from the type-N connector at the HV input port. The orientation of the clearing electrode after
it was installed in CESR has the HV input port such that the electron bunches pass the end with
the input port first and then the end with no connection afterwards. A positron bunch circulates
in the opposite direction as compared with an electron bunch. All measurements were made with
26 dB of attenuation for signal before connecting to a LeCroy Model Wavemaster 804ZI, 4 GHz
bandwidth oscilloscope. In the subsequent figures the scales have been corrected for the 26 dB
of attenuation. Figures 2.60 and 2.61 show the signal from the positron single bunch on longer
and shorter time scales, respectively. The signal from the positron bunch has a peak value of
13 V at the time of the bunch’s passage by the HV coupling port as is indicated by the 2.9 GHz
burst. Although a detailed model for the coupling from this tapered stripline has not yet been
constructed, this frequency appears to be characteristic of the propagation delay along the taper.
Figure 2.61 shows in more detail the signals induced at the HV coupling port (as described above)
and the open taper at the far end. Although the signal from the positron bunch was induced at
the open taper earlier, due to the propagation delay from the dielectric insulator this signal arrives
at the HV coupling port 0.61 ns later than the signal induced in the tapered end connected to the
HV coupling port. The time segment marked in figure 2.61 is approximately the delay from the
v = c beam transit velocity and the v = 0.31 c signal propagation velocity. Likewise the signal
observed from the 5 mA electron bunch, seen in figures 2.62 and 2.63 (viewed on longer and shorter
timescales, respectively), shows the same high frequency burst from the taper at the HV coupling
port followed by the lower bandwidth pulse from the open tapered end of the electrode. In this case
the peak signal observed in the HV input port is 9 V and the delay between the signals at the two
ends has increased to 1.33 ns. The longer delay is caused by the fact that the bunch must transit
the length of the electrode at v = c and then the signal induced in the open taper must propagate
back at v = 0.31 c. By comparing the delays between these two signals for positrons and electrons,
it is possible to determine the measured propagation delay in the transmission line defined by the
clearing electrode and, hence, the dielectric constant for the alumina. These measurements yield a
dielectric constant of 2.93 in good agreement with the expected 3.13 value.
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Figure 2.60: Clearing electrode HV port signal for a single 5 mA positron bunch

15

10

5

0

–5

–10

–15
0.00E+00 4.00E-09 8.00E-09 1.20E-08 

Vo
lta

ge
 (V

) 

Time (s) 

Clearing Electrode - 5.0 mA 
3840511-259

Figure 2.61: Clearing electrode HV port signal for a single 5 mA positron bunch on an expanded
time scale. The time segment marked with the arrows represents the delay between signals induced
at the HV coupling port end and the far end of the electrode.
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Figure 2.62: Clearing electrode HV port signal for a single 5 mA electron bunch.
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Figure 2.63: Clearing electrode HV port signal for a single 5 mA electron bunch on an expanded
time scale. The time segment marked with the arrows represents the delay between signals induced
at the HV coupling port end and the far end of the electrode.
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Neither of the positron or electron beam induced signals, as viewed at the HV coupling port, suggest
serious peak voltages for the electrode at any typical operating currents for CESRTA. They also
suggest that the reflections die out in only a small number of traversals along the electrode and
that taken with the measured propagation delays imply that resonant build-up of the signals from
multiple bunches within trains will not be a problem.

The last of the installation-related measurements was made after attaching the HV coupling network
and measuring the electrode current vs. electrode voltage for a given beam current. The coupling
network and its HV DC power supply are shown in figure 2.64; the network is constructed from bias
tees, which were purchased from MECA (part number 200N-MF-1) and rated to handle 200 V DC
bias, with 300 W average RF power and 3 kW peak RF power. Two of these were cascaded to
obtain the needed 400 V bias capability for the CESRTA studies. During bench testing of the
MECA units, it was apparent that they had an unpleasant notched response just below about
100 MHz. Anticipating that this could be a problem, the bias tees that were modified by replacing
the originally installed inductor with a 1 kΩ resistor. The frequency response is improved and
now has a single pole high pass cutoff frequency of about 30 MHz. Figure 2.65 gives the measured
clearing electrode current as a function of bias voltage for a train of 20 positron bunches at 5.3 GeV,
while the superconducting wiggler is unpowered. Note that 100 V of bias is enough to saturate the
clearing electrode’s collection current.
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Figure 2.64: Coupling network for the clearing electrode’s HV coupling port.

After eight months the vacuum chamber housing the clearing electrode was opened for a visual
inspection after operating in CESR for CESRTA studies and for CHESS operations with the higher
peak bunch currents of over 9 mA. A visual inspection showed no sign of any arcing or plating
of material anywhere inside of the vacuum chamber. The clearing electrode’s appearance was the
same as it was during its installation.
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Figure 2.65: Beam induced clearing electrode current as a function HV bias setting for a 20 bunch
train of a total current of 150 mA at 5.3 GeV with the wiggler turned off.

2.2.3.4 Quadrupole Chambers

Thin-style RFAs were implemented in beam pipes in a quadrupole magnet in CESR in the L3
experimental region (see Figure 2.10). The design of the quadrupole RFA beam pipe is illustrated
in Figure 2.66. The beam pipe is constructed from thick wall aluminum tube (6061-T6 alloy,
4.5” outside diameter, 3.5” inside diameter), allowing room for a machined RFA housing pocket. A
channel was also machined as a part of the RFA housing pocket for wires connecting the grid and
RFA collectors to the vacuum feedthrough port, which must be outside of the quadrupole magnet.
The structure of the RFA consists of high-transparency gold-plated copper meshes nested in PEEK
frames and a segmented collector made of flexible circuit, similar to the RFA designs used in the
CESR dipole and wigglers. Many small holes (1740-0.75 mm diameter holes) were drilled through
the beam pipe to allow electrons to reach the RFA, while filtering out beam-induced RF EMI.
These 1740 holes are grouped into 12 angular segments, matching the 12 RFA collector elements
on the flexible circuit (Figure 2.67). The angular coverage and resolution of the RFA is shown in
Figure 2.68.

Photos in Figure 2.69 show key steps in the RFA assembly process. Before any RFA assembly the
RFA quadrupole beam pipe vacuum components (minus the RFA vacuum cover) were TIG-welded,
including the cooling channels. A vacuum leak check was performed using a specially constructed
Viton gasket to seal off the RFA pocket to ensure the vacuum integrity for all the major vacuum
welds. Then to ensure that the temperature sensitive RFA parts (the flexible circuits, PEEK
grid frames, etc.) were not subjected to heating from any heavy TIG-welding, water-cooled bars
were added to the cover before welding. The RFA electrical properties (including capacitance
measurements) were checked repeatedly at every step of the assembly. The finished RFA beam
pipe was leak checked, and an 150◦C/24-hr vacuum bakeout was carried out before back-filling
with dry N2 in preparation for installation.

Two RFA quadrupole beam pipe assemblies were constructed during the CESRTA Phase 1 program.
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Figure 2.66: Exploded view of the structure of the RFA within a CESR quadrupole beam pipe. The
major components of the RFA beam pipe include: (1) Aluminum beam pipe with cooling channels;
(2) RFA housing and wiring channels; (3) Retarding grids, consisting of high-transparency gold-
coated meshes nested in PEEK frames; (4) RFA collector flexible circuit; (5) Stainless steel backing
plate; (6) Wire clamps; (7) RFA vacuum cover with connection port; (8) 19-pin electric feedthrough
for RFA connector

The first assembly was with a bare aluminum beam pipe. It was installed in the L3 experimental
region (in the Q48W quadrupole magnet) in July 2009 and tested in CESRTA experimental runs
between July 2009 and March 2010. With the first quadrupole RFA beam pipe successfully assem-
bled and tested in CESR, the second assembly was built with a TiN-coated aluminum beam pipe.
The TiN coating (of 150 nm to 200 nm in thickness) was applied via DC sputtering to the inner
surfaces of the beam pipe before the assembly of the RFA. The same RFA assembly procedure
was followed as was employed for the first assembly. The TiN-coated RFA beam pipe replaced the
bare aluminum RFA beam pipe in April 2010, and has remained in the L3 experimental region
since.

2.3 Electron Cloud Diagnostics

2.3.1 Retarding Field Analyzers

2.3.1.1 Introduction

In order to characterize the distribution of the electron cloud build-up around CESR, retarding field
analyzers have been deployed at multiple locations in the ring. Local EC measurements provided
by these devices represent a central element of the CESRTA experimental program:
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Figure 2.67: The flexible circuit used for the quadrupole RFA collector.
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Figure 2.68: The RFA beam pipe in the Q48W quad (left). The RFA angular coverage (right).
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3840511-060

Figure 2.69: Photos of quadrupole RFA beam pipe construction, showing key steps: (A) Gold-
coated meshes in PEEK frames are mounted and wired; (B) Flexible collector circuit installed.
The circuit is electrically isolated with clean Kapton sheets; (C) Water-cooled bars were used
during final welding of the RFA vacuum cover.
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• They provide a baseline measurement of the EC densities and energy spectrum in each of the
major vacuum chambers and field regions in CESR;

• By using segmented designs, each RFA provides detailed information about the transverse
distribution of the EC in each vacuum chamber;

• In combination with non-local techniques, such as bunch-by-bunch tune measurements of
long trains, the information obtained from these devices can be used to constrain the pri-
mary photoelectron yield and the secondary electron yield models which describe the overall
development of the EC;

• Finally, when employed in vacuum chambers with EC mitigation, these devices directly mea-
sure the efficacy of various mitigation techniques being considered for the ILC Damping
Rings.

This section basically describes the instrumentation for these local measurements of EC buildup.
The hardware description found in this section is supplemented in Chapter 5 with further details
of the hardware, the analysis methodology and the results of measurements.

2.3.1.2 Hardware Design

The RFAs, designed for use in CESR, are primarily intended for vacuum chambers where detector
space is severely limited due to magnet apertures. Thus the design minimizes the thickness of
the structure although this has performance implications for the device. In particular, the maxi-
mum retarding voltage will be limited to a few hundred volts with a somewhat degraded energy
resolution. A self supporting 0.006” thick stainless steel with an etched bi-conical hole structure
(0.007” diameter holes with a 0.01” pitch) was chosen for the grids while the electron collector
pads were laid out on copper-clad Kapton sheet using standard printed circuit board fabrication
techniques. These layers can be supported with machined ceramic or PEEK structures. RFAs for
various vacuum chamber configurations have been created for CESRTA :

• The drift chamber RFAs are found in Figures 2.13, 2.17 and 2.18 for example for the Q15E
location.

• An example of the RFAs for the CESR dipole chamber are seen in Figures 2.31, 2.32, 2.33,
2.35 and 2.35.

• RFAs have been incorporated into the vacuum chambers within the L3 chicane magnets and
one of these is displayed in Figure 2.37.

• Special RFAs were developed for use within superconducting wiggler chamber and these are
found in Figures 2.40, 2.42, 2.43, 2.44 and 2.48.

• A quadrupole RFA has been developed and installed in one of the L3 quadrupoles and is seen
in Figures 2.66, 2.67, 2.68 and 2.69.

The specific RFA structure that was used both for bench testing with an electron gun and for beam
testing in CESR is shown in Figure 2.70. Typically, the grid layers are vacuum-coated with a thin
gold layer (several hundred nm) to reduce their secondary electron yield. Operating voltages are
typically 20− 100 V on the collector and retarding voltages in the range of +100 to −300 V.
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A modular high voltage power supply and precision current monitoring system has been designed
to support RFA measurements at multiple locations around CESR. A block diagram is shown
in Figure 2.71. Each HV supply contains two four-quadrant grid supplies and a single unipolar
collector supply. The standard grid supply can operate from −500 V to +200 V and can provide
−4.4 mA to 2.4 mA at 0 V. The unipolar collector supply can operate from 0 V to 200 V and is
rated for 50 mA. A digital control loop is used to set and stabilize the output of the each supply
with a feedback resolution of 60 mV. The feedback is specially configured to enable high precision
current measurements while the feedback loop is quiescent. Upon receipt of a voltage command,
the HV control sets the voltage and allows it to stabilize. At that point, all feedback corrections are
suspended for a 20 second data acquisition window. The controls for the two grid and single collector
supplies in a full HV supply are configured to make this quiescent period simultaneous.

The RFA data boards distribute bias voltages to the detector elements (up to 17) and measure the
current flow in each. The current is measured by an isolation amplifier looking at a series resistor
(selectable as 1, 10, 100 or 1000 kΩ) in the high side of the circuit with the output going to a 16-bit
digitizer. The various resistors correspond to full scale ranges of 5000, 500, 50, and 5 nA. The finest
resolution is 0.15 pA.

The readout system is in a 9U VMEbus crate with a custom P3 backplane that distributes bias
voltages to the databoards. This backplane is divided into three segments, each with its own HV
power supply. A common controller board controls all of the HV supplies and incorporates voltage
and current trip capability. The entire crate is connected to the CESR control system through the
local fieldbus. Data acquisition code running on the CESR control system is capable of running
energy scans and continuous current monitoring by way of this communications path. Separate
data acquisition servers operate for each of the crates deployed in CESR. Code to support central
control of all servers for simultaneous scanning is currently being implemented.

2.3.1.3 Calibration Studies

Non-beam and beam-based checks of the new RFA design have been performed. Figure 2.72 shows
the results of a number of scans acquired with an electron gun. The RFA configuration which was
tested used a front ‘grid’, which was a slab of copper with holes corresponding to those in the vacuum
chamber of a diagnostic wiggler [15]. Simulations which include the effects of secondary electron
generation in the ‘vacuum chamber’ holes, secondary generation on the surface of the grid, and a
focusing effect of the grid holes when a retarding field is applied are shown overlaid with the data in
each plot in Figure 2.72. Overall, the simulations replicate all of the major features observed in the
data including: the relatively higher collector efficiency than would be expected from the geometric
transparency of the grids (Figure 2.72 top plot); an excess of low energy electrons created in the
holes which is observed as excess low energy current in both the retarding grid and the collectors
(Figure 2.72 middle and bottom plots); as well as the tendency of the net grid current to plummet
or even switch signs due to secondary emission when retarding voltages are applied (bottom plot).
(Figure 2.73 shows beam measurements which compare the performance of a segmented detector
of the new design in a drift region with two adjacent APS-style RFAs [16]. The vacuum chamber
ports were designed so that the outer and inner pairs of collectors in the segmented RFA would
measure the same region as a corresponding RFA of the APS design. Overall the current response
(top plot) and the energy response (bottom plot) of the devices show excellent agreement.
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2.3.1.4 Conclusions

Overall, the thin RFA design appears to provide the necessary performance for application in
CESRTA. Variants of the design have been deployed in drift, dipole and wiggler regions [15, 17]
and are providing useful data [18]. An important conclusion of our studies to date is that the
detailed properties of the RFAs must be included in our physics simulations. This is a particularly
important issue for RFAs deployed in high field magnets.

2.3.2 TE Wave Diagnostics

2.3.2.1 Summary

The analysis of the propagation of electromagnetic waves excited within the accelerator’s beampipe
has recently emerged as a powerful method for the study of the electron cloud [19–22]. Since this
technique does not require the installation of any hardware inside the vacuum chamber, we were
able to implement this method for different sections of the CESRTA ring. Although the fundamental
physical principles of the technique are well understood, its practical implementation requires un-
derstanding and limiting several potential sources of errors for the quantitative determination of the
electron cloud density. It is worth stressing the fact that at the beginning of the CESRTA program,
the technique had only been demonstrated at the PEP-II Low Energy Ring, making CESRTA only
the second accelerator, on which it was successfully implemented. Therefore, a substantial effort
has been dedicated to reaching a better understanding of the technique itself, going beyond simply
measuring the cloud density in a number of locations around the ring. As an additional result of
this effort, we conceived and tested some novel schemes, which could avoid some of the intrinsic
limitations of the original technique.

2.3.2.2 Introduction

The use of microwaves for diagnostic purposes is well established in plasma physics [23]. The unique
characteristics of an accelerator environment and of the electron cloud excited by a circulating
beam make it necessary to adopt different techniques from what is traditionally used, although the
fundamental physics principles are the same. In its simplest formulation, the technique measures the
change in phase delay of an electromagnetic wave propagating in a waveguide mode inside of a length
of the accelerator vacuum chamber. The expression for such a phase delay is particularly simple
when a single waveguide-mode is excited and, since lowest set of TE modes always propagate at the
lowest frequencies in any metallic beam pipe, the method is referred to as ‘TE wave technique’. In
principle, one could also use TM modes or higher TE waveguide modes, after utilizing the proper
phase delay expression, but cross-coupling of the electric field patterns between TE and TM modes,
generated by the numerous discontinuities in an accelerator vacuum chamber, would require a much
more detailed understanding of the beam pipe geometry. This would render the evaluation of the
cloud density from the phase delay data very difficult, if not impossible. Similar coupling is possible
between higher propagation frequencies of the lowest TE mode and those overlapping the next set
of TE modes (occurring at frequencies above that next mode’s cutoff frequency), so for ease of
evaluation this consideration in practice places a frequency bound for the method within a range
of frequencies between the fundamental mode’s cutoff and the next higher waveguide mode’s cutoff
frequency.
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Figure 2.70: The basic retarding field analyzer structure for use in vacuum chambers with limited
external aperture. Two variants of this design have been tested. In the first variant (shown), two
grids are employed in front of a collector made of copper-clad Kapton. In the second variant, the
front grid is replaced by a block of copper with a hole pattern of the same type as implemented
in the walls of the CESRTA diagnostic wiggler vacuum chambers. In these designs, the layers are
supported by a ceramic structure with an interlayer spacing of approximately 1 mm.
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Figure 2.71: Schematic showing the high voltage power supply system and the RFA current
monitor boards.
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Figure 2.72: Plots showing electron gun studies of the performance of the thin RFA structure
with a front plate with holes matching the wiggler vacuum chamber specifications. The top plot
shows the fraction of electrons reaching the collector versus the energy of the incident electrons.
The bottom pair of plots show the collector and grid currents observed during a retarding voltage
scan with 110 eV incident electrons.
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Figure 2.73: Beam comparisons of segmented RFAs with APS-style structures. Top drawing shows
the arrangement of a segmented RFA and 2 APS-style ports where the response of the 2 outer and
2 inner segments can be directly compared with the 2 APS RFAs. Middle plot compares the current
response and the bottom plot compares the energy response of the detectors.
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In the ideal case the choice would be to utilize this lowest set of TE modes for investigation and
to limit the region between the input and output coupling ports for the beam pipe to have the
same cross sectional profile. Furthermore we would assume that the energy in the waveguide mode
would propagate outward from the input coupling port in both directions without any reflections
from upstream and downstream discontinuities in the beam pipe shape. In practice there are
discontinuities in the beam pipe causing reflections and these produce standing waves in addition
to the traveling waves in the experimental region. Another alternative and often the much easier
technique is to study the resonant modes from these standing waves and to measure the tune shift
of the stationary electric field pattern associated with the presence of the electron cloud. This leads
to two potential methods (traveling and standing waves) for using the TE-wave methodology for
studying the electron cloud density within a vacuum chamber. The initial work of this collaboration
has focused on TE Wave studies utilizing the traveling wave technique and so the majority of this
report focuses on this effort.

For the case of a beam pipe filled with an electron cloud of uniform density and in the absence of
an external magnetic field, the plasma-modified dispersion relation causes an additional term ω2

p to
be introduced into the expression for the propagation constant for the guided wave, giving

kz =

√
ω2 − ω2

c − ω2
p

c2
(2.1)

where ωc is the beampipe cutoff angular frequency for the lowest frequency TE mode and ωp =√
ne e2 /me ε0 is the the plasma angular frequency, which is proportional to the square root of the

electron density ne. In the absence of an electron plasma, Eq. 2.1 reduces to the usual dispersion
relation for waveguide propagation. When there is an electron density ne along a length L of the
vacuum chamber, there will be an additional phase delay ∆ϕ occurring for a travelling wave’s
propagation due to the plasma. The phase delay per unit length is then

∆ϕ

L
= kz0

[√
1− 1

k2
z0c

2

(
ne e2

me ε0

)
− 1

]
(2.2)

where the mode propagation constant is given by kz0 = 1
c

√
ω2 − ω2

c . Thus the electron density is
directly related to the measured phase shift. For ∆ϕ/L� 1, Eq. 2.2 can be approximated as

∆ϕ

L
' − 1

2kz0c2

(
ne e

2

me ε0

)
(2.3)

One of the most attractive features of this technique is the ability of excite and detect the propa-
gating wave almost anywhere in an accelerator without the need of any installation of additional
components within the vacuum chamber. Ordinary beam position monitor (BPM) electrodes, which
are generally widely distributed around the storage ring, can be easily converted to this use by just
connecting them to the appropriate RF instrumentation.

Figure 2.74 is a schematic diagram illustrating the principle of the technique. A traveling elec-
tromagnetic wave is excited using the electrodes of a BPM and detected on another BPM after
propagating through a section of the beam pipe containing an electron cloud. The signal is then
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Figure 2.74: Schematic view of the TE-wave transmission technique for measuring the electron
cloud density.

Drive (5 Watts)

The lengths of coax are chosen to give
180º phase shift at the drive frequency.

Pickup

3840511-315

Figure 2.75: Signals from pairs of BPM electrodes are subtracted to improve coupling to the TE1,0

mode electric field and reject direct beam signal. At most locations, pairs are available for both
excitation and/or detection of the waveguide modes.

analyzed to determine the amplitude of the phase modulation, typically using a spectrum ana-
lyzer. For the optimal driving of the TE1,0 mode’s electric field, the drive signal is coupled into
the beam pipe via a top/bottom pair of BPM electrodes with excitations, phase shifted from each
other by 180◦ (as shown in Figure 2.75.) Similarly the TE1,0 mode’s electric field is detected at
the down stream BPM using a top/bottom pair of BPM electrodes, again phase shifted from each
other by 180◦; this configuraion has the side benefit of yielding some level of rejection of the direct
beam-induced pickup signal.

2.3.2.3 Phase Modulation

Given the level of the electron cloud densities typically present in an accelerator, electron cloud
induced phase delays are of the order of a few milli-radians. So a direct measurement, comparing the
small phase shift with and without a circulating beam (and hence the electron cloud), is problematic
due to comparable phase delays introduced by other effects, e.g. temperature variations. TE wave
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Figure 2.76: Qualitative time evolution of beam current (red), electron cloud density (blue) and
phase shift (green).

measurements take advantage of the gaps due to the bunch train, which occupies only a fraction
of the revolution time and thus introduces a periodic modulation in the phase of the propagating
wave. The frequency of this modulation is the ring revolution frequency frev (or a multiple of
it in the case of multiple trains of bunches) and its depth is essentially the phase delay that we
wish to measure, provided the gaps between trains are long enough to clear the electron cloud
(Fig. 2.76).

The spectrum of the signal measured on the receiving BPM contains not only the information about
the modulation depth ∆ϕ, which allows us to estimate the electron cloud density via Eq. 2.3, but
also the electron cloud’s evolution in time. A typical observed spectrum is shown in Fig. 2.77.
The peak corresponding to the TE wave frequency (carrier) and the modulation sidebands are
mixed with the direct beam-induced signal (at the revolution harmonics), which are also spaced
at frev. The carrier excitation frequency can be conveniently chosen so that revolution harmonics
and modulation sidebands are separated in frequency.

The modulation depth can be calculated by comparing the height of the sidebands to the height of
the carrier. The wave attenuation in the propagation between the two BPM’s and the measurement
noise floor are critical for determining the minimum, measurable phase shift, and therefore the
smallest electron cloud density the instrument is able to detect.

2.3.2.4 CESRTA Experimental Setup

An overview of the regions of the CESRTA ring where TE wave measurements have been performed
is given in Fig. 2.78. The 12W-15W region, which is composed of a dipole and a wiggler replace-
ment straight section chamber, was the location, where the technique was first studied. After the
initial studies, more interest developed for observations in the L0 region (wiggler straight) and
the L3 region (having a chicane and a section of straight circular pipe with a clearing solenoid.)
The instrumentation on these regions have been connected to an online data acquisition system.
Software/hardware has been configured so that changes in beam conditions can trigger a full set of
measurements, which are then archived in the control system database. Data can also be taken on
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Figure 2.77: Example of phase modulated TE wave and direct beam-induced signal observed in a
CESRTA beam position monitor.

demand (when the automated software has been disabled) to permit using the same hardware for
specialized measurements.

2.3.2.5 L0 Region

Fig. 2.79 shows the connections permitting the signal generator’s output to three locations in the
L0 region, as well as the routing of the pickup signals from each of these BPM locations to the
spectrum analyzer. Each detector has four available buttons. Vertical pairs of buttons are combined
using RF splitters and unequal lengths of coax, so that the signals from the two buttons will be
exactly out of phase at the drive frequency in order to provide the top/bottom difference signal. In
any given BPM, one vertical pair is used for the drive and the second for the detected signal. The
system uses two RF relays to select excitation/detection pairs. In this way data can be taken using
any excitation/detection combination including driving and detecting at the same location.

2.3.2.6 L3 Region

Fig. 2.80 shows the connection of the signal generator output to four locations in the L3 region, as
well as the routing of the BPM pickup signals from these locations to the spectrum analyzer. The
beam pipe is circular and the buttons available for TE wave measurements are generally on the
same flange as those used for beam position measurements. There are fewer available buttons in
this region as compared to L0. Due to the interest in exploring electron cyclotron resonances via
TE waves, the chosen orientation excites a horizontal electric field. At the detector in the Chicane
magnet, horizontal pairs of buttons are used to excite/detect signals. The central detector near
Q49 has only a single drive pair of buttons (a vertical pair is also available but not used). At
both Q48E and Q48W, the two available horizontal buttons are used individually to give drive and
detection signals.

2.3.2.7 Alternative Microwave Techniques

In the course of our efforts to implement the TE wave experimental methods at CESRTA and
further develop its theoretical background, we also expanded its original concept. This allowed us
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3840511-080

Figure 2.78: TE wave measurement locations in the CESRTA ring. WRC designates the wiggler
replacement chambers for the newly constructed drift space.

to develop new techniques, which circumvent some of the problems that emerged during our earlier
experimental work. These techniques still take advantage of the interaction between electron cloud
and electromagnetic fields: in one adaptation the TE field is non-propagating, while in another
case a constant magnetic field is superposed on the beam pipe.

Resonant BPM As will be discussed in Section 5.2.1 our experimental studies detected a signifi-
cant influence to the measurements from reflections and standing waves within the beampipe. This
influence complicates the simple theoretical model of a wave propagating from the transmitting to
the receiving BPM, making it difficult to properly analyze the measurements, since the effective
propagation length L is difficult to determine.

A new class of studies, called TE wave resonance measurements, treat the beam pipe and its
reflections as producing a standing wave structure (analogous to a cavity) (Ref. [24]) in order to
estimate the EC density. In this case the TE wave may propagate some distance in both directions
before being fully reflected. The vacuum chamber may be configured with the drive/pickup at the
same BPM. There is an additional special case for this type of excitation when the drive frequency
is below the cutoff frequency causing a trapped evanescent mode, in which the TE fields are highly
localized.

Magnetic Resonance During the TE wave measurements in the chicane in the L3 region, we
detected a resonance between the TE wave and the magnetically trapped electron cloud in the
chicane dipoles (Ref. [25]). This resonance has been studied extensively by plasma scientists and
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Figure 2.79: TE wave hardware in the L0 region uses RF relays to route signals to/from the
BPMdetectors.
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Figure 2.80: TE wave hardware in the L3 region uses RF relays to route signals to/from the BPM
detectors.

has been given the name of the upper hybrid resonance: The propagation constant of a wave
with a linearly polarized electric field perpendicular to both the magnetic field and its direction of
propagation exhibits a singularity when

ω2
TE = ω2

p + ω2
cycl (2.4)

where the cyclotron frequency is ωcycl = eB
mec

. In principle, by measuring the resonance frequency
and knowing the magnetic field value, it is possible to calculate the plasma frequency and therefore
the cloud density in the region of the static magnetic field.

2.3.3 Shielded Pickups

Shielded pickup detectors have been installed at three locations in CESRTA for the purpose of
studying time resolved electron cloud build-up and decay. The detectors are located at 15E, 15W
and L3 (see Fig. 2.1). The initial configuration for this pickup uses a BPM, whose button electrode
is recessed back beyond the pipe’s wall that is penetrated with many small holes. This design
provides electromagnetic shielding from the beam wakefield while allowing cloud electrons to enter
the vacuum space of the detector [26]. This section describes the hardware configuration and
capabilities of these detectors at CESRTA.
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Figure 2.81: Shielded pickups are assembled in
pairs. The longitudinal pair provide redundant
measurement of the cloud along the beampipe
centerline.
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Figure 2.82: Photoelectrons pass through the
holes in the beampipe and enter the evacuated
detector volume.

2.3.3.1 Vacuum Chamber

Several chambers have been constructed with various vacuum surfaces: bare aluminum, amorphous-
carbon and TiN, so that their electron cloud growth/decay can be measured and compared [1] [17].

The upper beampipe wall is perforated with a circular pattern of 169 small diameter vertical holes
for each button, and a button assembly welded on top. Typically two pairs of buttons are installed
at a given location with one pair in the ‘normal’ configuration of a position monitor and the other
rotated to put the two button inline with the center of the chamber, the combination allowing
measurements at three transverse positions in the beampipe(Fig. 2.81). So although the buttons
are in the vacuum space, they are electromagnetically isolated from the main beampipe by the
perforated beampipe wall [26] (see Fig. 2.82). The hole geometry favors the detection of electrons
with nearly vertical trajectories.

2.3.3.2 Signal Routing and Electronics

A button bias voltage with a range of +/- 50 V is provided through a 10k ohm resistor mounted at
the vacuum feedthrough. The buttons are typically biased with about +50 V in order to minimize
the emission of secondary electrons from the button.

The voltage induced on the button by the cloud charge is AC coupled via a 0.1 microfarad capacitor
to a coaxial cable as shown in Fig. 2.82. A nearby coaxial relay selects the button signal that is to be
routed outside of the storage ring to a data acquisition station. There, two Mini-Circuits ZFL-500
amplifiers having a bandwidth of 0.05 to 500MHz are connected in series for a total voltage gain
of 100. These amplifiers are at the input of an Agilent 6054A (500MHz) digital oscilloscope that
is also provided with a trigger at the revolution frequency for signal averaging(Fig. 2.83). At each
location one button at a time is connected to the common cable run, amplifiers and oscilloscope.
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Figure 2.83: The shielded pickup signal is se-
lected with a relay and routed to amplifiers and
oscilloscope.
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Figure 2.84: Photo of Shielded Pickups in-
stalled at 15E with the installed solenoid wind-
ing

This relatively simple hardware configuration[27] was chosen to provide reliable signals for long-
term comparisons of the different chamber coatings.

Low field solenoids had been installed in CESRTA that are intended as a mitigation technique to
be studied[28]. In the region of the shielded pickups, bipolar power supplies have been connected
to these solenoids so that they can produce approximately +/-40 Gauss fields(Fig. 2.84). These
solenoids have been used to estimate the energy spectrum of primary electrons and this method is
described in more detail in (Section 5.2.1.3.)

2.3.3.3 Data Collection

Data acquisition software provides control of the relay (which selects of the button to be measured),
the bias voltage, the solenoid field and the scope configuration. Data collection can be either on
demand or triggered by changes in machine conditions, such as a change in the beam current. When
taking data, a text file determines the detector configuration, scope horizontal and vertical scaling,
etc. The software enters information for each measurement as a row in a web table, including links
to the data file and plot, beam currents, bunch spacing, bias, etc. This information is also entered
into a searchable database.

2.3.4 In-Situ SEY Station

We developed and deployed an in-situ system for measurements of the secondary electron yield
(SEY). An in-situ system allows us to observe beam conditioning effects that change the SEY as
a function of exposure to direct synchrotron radiation (SR), scattered synchrotron radiation, and
electron cloud bombardment. Additionally, the in-situ system allows us to compare the SEY be-
tween bare metal surfaces and surfaces with coatings, grooves, or other features for SEY reduction,
in a realistic accelerator environment.

A two-sample SEY system has been installed in the CESRTA beam pipe in CESR. The system
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is installed in the L3 East area of the ring; the bending magnets are located such that the SEY
samples are exposed predominantly to SR from the electron beam. The typical CESR conditions
for the SEY studies are a beam energy of 5.3 GeV and beam currents of 200 mA for electrons and
180 mA for positrons.

Both samples are positioned flush with the inner diameter of the round beam pipe, with one
sample positioned horizontally in the direct radiation stripe, and the other sample positioned at
45◦, beneath the radiation stripe. The SEY of both samples can be measured repeatedly without
having to remove them from the vacuum system. Measurements can be taken in approximately 1.5
hours. This allows us to use the (approximately) weekly tunnel access for SEY measurements to
study the SEY as a function of SR dose.

The design and commissioning of the in-situ system is described in this section. The initial SEY
results are discussed in Section 5.1.5. Additional information can be found in recent papers [29,
30].

2.3.4.1 In-Situ System

Our in-situ measurement system, shown in Figure 2.85, consists of a sample mounted on an electri-
cally isolated linear magnetic actuator1 and a dc electron gun.2 The electron gun and the sample
actuator are attached to a 316 stainless-steel crotch, with the gun at 25◦ to the sample actuator
axis. The gun is mounted onto a screw-based linear motion actuator3 to allow us to move it out
of the sample actuator’s path when the sample is inserted into CESR beam pipe (Figure 2.85b).
When the sample is in the SEY measuring position (Figure 2.85c), the gun is moved forward, such
that the gun-to-sample distance is 32 mm for the SEY measurements. The crotch has a special port
for changing the samples in-situ while flowing nitrogen gas. The SEY system’s vacuum is isolated
from the beam pipe vacuum via gate valves when the sample is changed. With the gas purge, the
ultra-high vacuum fully recovers within 24 hours.

As shown in Figure 2.85d, two samples can be installed in CESR, one mounted at the horizontal
radiation stripe and one mounted at 45◦, below the stripe. A photograph of the horizontal SEY
system after installation into the L3 section of CESR can be seen in Figure 2.85e.

The SEY measurements are taken at 9 points of a 3× 3 grid (7.4 mm × 7.4 mm) on each sample
using the xy deflection mode of the gun, as can be seen in Figure 2.86. The sample has a curved
surface to conform to the circular beam pipe cross-section in this part of CESR.

The SEY measurement circuit is the same as that used in previous studies [31]. A picoammeter4

is used to measure the current from the sample; the sample dc bias is provided by a power supply
internal to the picoammeter. (The data acquisition system is described in detail in Section 5.1.5.2.)
During the SEY measurements, the two gate valves are closed to isolate the CESR vacuum system
from the SEY system.

1Model DBLOM-26, Transfer Engineering, Fermont, CA.
2Model ELG-2, Kimball Physics, Inc., Wilton, NH.
3Model LMT-152, MDC Vacuum Products, LLC, Hayward, CA.
4Model 6487, Keithley Instruments, Inc., Cleveland, OH.
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Figure 2.85: Drawings and photograph of the in-situ SEY system. (a) Isometric view of the
horizontal station; the beam pipe and connecting tube are not shown. Cross-sectional views of in-
situ station with (b) sample inserted in beam pipe and (c) sample retracted for SEY measurements.
(d) Isometric view of the horizontal and 45◦ stations in the ring. (e) Photograph of the horizontal
SEY station in the ring. (S: sample; G: electron gun; BP: beam pipe; C: vacuum crotch; B: ceramic
break; SA: sample actuator; GV: gate valve.)
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Figure 2.86: Isometric view of a sample showing the 9 grid points where the SEY is measured.
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Figure 2.87: Magnetic shielding for SEY system. The sample (S) is inside Magnetic Shield 1
(MS1). The electron gun (G) is inside Magnetic Shield 2 (MS2). Magnetic Shield 1 has a Sample
Replacement Port (RP; the patch is not shown) and a hole at the pumping port for vacuum pumping
(V).

2.3.4.2 Electron Gun Spot Size and Deflection

At low energy (0 to 100 eV), the electrons can be deflected by up to a few millimeters by the stray
magnetic field. To mitigate this problem, we inserted a mu-metal tube inside the crotch and the
electron gun port, as shown in Figure 2.87. The mu-metal shields reduce the stray magnetic field to
about 0.1 gauss or lower. To quantify the deflection after the shielding was installed, a collimation
electrode with a 1 mm slit was positioned in front of the sample. The sample was biased with
+20 V and was used as a Faraday cup. The collimator was electrically isolated from the sample
and centered in front of the sample, with the slit oriented in the y direction. With the electron gun
32 mm from the sample, two picoammeters were used to measure the electron current reaching the
collimator and reaching the sample. At each electron beam energy, the beam was scanned across
the slit using the gun’s x deflection electrode to center the beam spot on the slit by maximizing
the current to the sample and minimizing the current to the collimation electrode. Over the full
range of electron beam energy (0 to 1500 eV), the value of the x deflection voltage to center the
beam spot on the slit was zero, which confirms that the stray magnetic field is well shielded. At
each energy, the gun’s focusing voltage was adjusted to minimize the beam spot size at the sample
location (based on previous measurements).

Figure 2.88 shows the current reaching the sample divided by the total current (current to sample
plus current to collimator) as a function of energy. For beam energies between 200 eV and about
800 eV, nearly all of the current reaches the sample, indicating that the beam spot size is smaller
than 1 mm. Follow-up measurements were done to better characterize the beam spot size. The
measured beam spot size is less than or equal to 0.75 mm for beam energies in the range of 250 eV
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Figure 2.88: Slit collimation measurements for the SEY system. For the vertical axis, Isample is the
current reaching the sample and Itotal is the current reaching the sample plus the current reaching
the collimation electrode.

to 700 eV. Between 20 eV and 200 eV, the spot size is slightly larger than 1 mm; from 800 eV
to 1500 eV the beam spot size increases with energy, reaching about 1.2 mm at 1500 eV. For the
3 × 3 grid for measurements on the sample, the distance between adjacent grid points is 3.7 mm,
which is at least 2.6 times larger than the beam spot size at the sample.

2.4 Beam Instrumentation and Feedback Systems

The undertaking of the CESRTA project required the development or upgrading of several acceler-
ator operating systems. The significant improvements to beam instrumentation are summarized as
follows:

• A major upgrade to the beam position monitor system, which replaced an older relay-based
position monitor system with individual readout modules for each monitor capable of turn-
by-turn and bunch-by-bunch trajectory measurements for bunches spaced as closely as 4 nsec.

• The installation of positron and electron x-ray beam vertical size monitors designed for turn-
by-turn and bunch-by-bunch beam size measurements for 4 nsec spaced bunches.

• Implementation of positron and electron visible-light monitors to measure the horizontal beam
size, including the addition of optical elements to allow streak camera measurements of both
electron and positron bunches.

• Development of software to extract bunch-by-bunch tunes utilizing the new modules for the
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beam position monitors and a second method, which employed video gating of signal from a
few beam position monitors from the older relay system.

• An upgrade for the tune tracker, which is phase locked to the betatron tunes of a bunch. This
device allows the measurement of the betatron phase advance and the horizontal-to-vertical
coupling of CESR permitting their correction.

• Installation of a new beam-stabilizing feedback system, which damps 4 nsec-spaced bunches
for horizontal, vertical and longitudinal motion.

2.4.1 Beam Position Monitors

An upgraded beam position monitor (BPM) system that provides high resolution measurement
capability has been designed and deployed. This system is capable of turn-by-turn measurements
of individual bunches within bunch trains with spacings that are multiples of either 4 ns or 14 ns.
The system provides the ability to make betatron phase, coupling and dispersion measurements
via synchronous detection of a driven beam.

2.4.1.1 System Requirements

The core operational requirements for the CESR BPM (CBPM) system include:

• The ability to operate with counter-rotating beams of electrons and positrons in a single
vacuum chamber for CHESS operations;

• High resolution for low emittance optics correction and tuning;

• Turn-by-turn readout capability for multiple bunches to support beam dynamics studies;

• Capability for digitizing single species bunch trains with bunch spacing as small as 4ns and
dual beam digitization for bunch trains with 14 ns spacing.

The need for dual beam operation of the system places a unique constraint on the CESR BPM
specifications. Since the relative arrival time of the bunches from the two beams varies widely from
location to location around the ring, standard RF processing techniques to optimize resolution and
minimize timing sensitivity cannot be applied to the full system. As a result, the CESR design
utilizes peak sampling with a high bandwidth digitizer and incorporates hardware and software
design features to optimize the system timing performance. Table 2.2 summarizes the design spec-
ifications for the high resolution measurements required for low emittance optics correction.

2.4.1.2 System Design

The CESR BPM system consists of a network of local sensors and processors. Each location has
four beam buttons arranged in a mirror symmetric fashion as shown in Figure 2.89 which provide
relative amplitude signals for a processing module. All modules share a common controls database,
timing and synchronization controls, and networked data storage. This allows for accelerator-wide
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Table 2.2: CESR BPM Module Requirements

Parameter Specification

Front End Bandwidth (for 4 ns bunch trains) 500 MHz
Absolute Position Accuracy (long term) 100 µm
Single Shot Position Resolution 10 µm
Differential Position Accuracy 10 µm
Channel To Channel Sampling Time Accuracy 10 ps
BPM Tilt Errors (after correction) 10 mrad

coordinated measurements.

50 mm

28 mm

3840511-512

Figure 2.89: BPM module functional diagram

Figure 2.90 shows a block diagram of the digital BPM readout modules developed for CESR. Each
module incorporates four front end boards with dual parallel 16-bit digitizer chains based on the
Analog Devices AD9461 operating to digitization rates of 125 MHz. When operating with 4 ns
bunch trains, digitizing is interleaved between the two chains. For 14 ns dual species operation,
each digitizer chain handles a single species. The front end boards have both a fixed gain amplifier
optimized for precision measurements for bunches with Nb ∼ 1×1010 particles and a digital variable
gain amplifier for measurements over a wide dynamic range. Timing configuration is carried out by
a dedicated timing board integral to each module. This board takes a turn marker signal from the
CESR master timing system and provides overall digitization rate control, adjustment capability for
channel-to-channel digitization times, and global adjustment capability for the module digitization
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time relative to the bunch arrival time at the detector. This fine degree of local timing adjustment
is required in order to maintain the resolution and noise performance of each device. Communi-
cations, operational control, and onboard data processing for each device is provided through a
digital board and TigerSharc digital signal processor (DSP). Communication is supported for both
ethernet and dedicated CESR field bus.
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Figure 2.90: BPM module functional diagram

The CESR BPM system is controlled via a custom server application running on the CESR control
system cluster. All system parameters, including pedestal and gain scale calibration values, delay
tables for all supported bunch spacing configurations, and various identification and management
data is stored in a central location. The server application is responsible for loading, managing,
and saving this information with new values generated within the instruments. All control and
data readback is performed via a custom network protocol running over 10-base-T ethernet.

Rapid measurements taking advantage of on-board averaging, pedestal subtraction, and gain scal-
ing can be requested of all or a subset of instruments or detailed turn-by-turn data can be acquired
for an arbitrary combination of bunches and turns in 14 ns or 4 ns bunch spacing modes. The
software on board the instruments is also capable of automatically determining appropriate delays
to use for sampling at the optimal point of the incoming waveform on all channels.

Data from all detectors is stored in a centrally-located data file. Raw ADC values, along with
pedestals and gain scale factors for all channels and amplifier settings are stored in the data files.
Sufficient information is provided to allow analysis of raw ADC or pedestal-subtracted and gain-
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scaled turn-by-turn button data and/or physical beam positions for every bunch stored and detector
location in the machine.

2.4.1.3 Status and Performance

Presently there are 104 digital BPM readout modules installed in CESR. These modules are in
routine use for beam diagnostics and machine studies. The BPM system has regularly been used
to measure the bunch by bunch positions of a train of 4 ns spaced bunches with a minimum of
cross talk between bunch signals. A special diagnostic triplet location has been used to study the
resolution and stability of the system. The triplet consists of three sets of detectors mounted in
close proximity on a single vacuum chamber. Figures 2.91 shows vertical orbit differences between
pairs of triplet detectors. The histograms include 256K turns of data (0.67 s duration) taken si-
multaneously with each detector. The effective resolution corresponds to the standard deviation of
each distribution is consistent with our target single shot resolution.
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Figure 2.91: Vertical orbit differences between closely located detectors

In summary, the hardware and infrastructure of the CESR BPM system is functioning and in active
use at this time. Development continues on data storage, analysis and diagnostic software. Other
sections of this report discuss various aspects of the performance of the system.

2.4.2 X-Ray Beam Size Monitors

In the CESRTA 2 GeV ultra-low emittance optics configuration, a high resolution x-ray beam size
monitor (xBSM) is required to measure vertical beam sizes of order 10 µm and characterize the
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vertical beam emittance. These measurements are done by imaging 2-4 keV synchrotron radiation
photons emitted from a source point in a dipole magnet onto a one-dimensional photodiode array.
Three types of x-ray optics have been utilized to do this imaging. First, a vertically-limiting heavy
metal (W) slit is used for pin-hole (PH) imaging in the vertical dimension. This slit can be used
over the full range of CESRTA operating energies (1.8-5.0 GeV).

using various types of x-ray optics. Instrumentation in the evacuated x-ray beam line includes
upstream interchangeable optics elements, a monochromator and an InGaAs photodiode detector.
The interchangeable optics include a ‘vertical pin-hole (PH)’, that is a vertically-limiting tungsten
slit, as well as coded aperture and Fresnel zone plates. The signal readout is based on a beam-
synchronized fast analog-to-digital converter, that is capable of parallel measurement of consecutive
bunches with as little as 4 ns spacing.

2.4.2.1 Conceptual Overview

In the x-ray beam size monitor (xBSM), we use synchrotron radiation to measure the vertical bunch
size and thereby vertical emittance. Separate xBSMs have been successfully commissioned in x-ray
beam lines to measure the sizes of the electron and positrons.

2.4.2.2 X-Ray Line

The layout of the positron x-ray beam size monitor beam line is shown in Figure 2.92. Synchrotron
radiation x-rays are emitted in a dipole magnet to the right of the figure. Optical elements vertically
focus an image of the beam onto a detector mounted in the enclosure at the left. In the positron
(electron) line, the optical elements are located 4.36 m (4.23 m) from the x-ray source point and
10.19 m (10.67) from the detector giving a magnification of 2.34 (2.52). Three optical elements are
available for use in 2 GeV stored beam operation. These include include a vertically limiting slit, a
Fresnel Zone Plate (FZP), and a Coded Aperture (CA). These elements reside in the storage ring
vacuum and can be selected and aligned remotely to meet the requirements of various measurements.
At 2 GeV, the typical power load on the optical element is of order 1 mW/mA; the optical elements
are in contact with actively cooled copper supports to remove this heat.

2.4.2.3 X-Ray Optics

The FZP and CA are manufactured on a common silicon substrate. For the positron line, the
patterns are cut into 0.7 µm Au and are supported by a 2.5 µm Si membrane. The FZP pattern
has 120 transmitting rings in a diameter of 1200 µm. The CA pattern has 8 transmitting elements
with total dimensions 310 µm in the imaging direction by 1200 µm wide. For the electron line, the
absorbing material is 4 µm Ta and 0.02 µm Ru. While the FZP pattern is identical, the CA is
reduced in size to limit distortions due to angular misalignment of the CA to the beam plane. This
CA pattern has 8 transmitting elements with total dimensions 155 µm in the imaging direction
by 500 µm wide. For 4 GeV stored beam operation, there is a coded aperture designed for higher
power in each line as well as the vertically limiting slit.
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Figure 2.92: Layout of the positron x-ray beam size monitor beam line. The positron beam
travels from the right through the quadrupole (blue magnet) and then the dipole (red magnet).
x-ray photons emitted from the positrons within 10 cm of the entrance of the bend magnet pass
through the beam line on their way to the detector box at the far left.

2.4.2.4 Detectors and Data Acquisition

The detector is a vertical array of 32 InGaAs diodes with a 50 µm pitch and horizontal width of
400 µm. The InGaAs layer is 3.5 µm thick, which absorbs 73 percent of photons at 2.5 keV; there
is a 160 nm Si3N4 passivation layer. The time response of the detector is sub-nanosecond.

The data acquisition system used in the xBSM is a collection of custom designed hardware and
software. This design uses a modular approach and occupies space both inside and outside of the
detector box. Figure 2.94 presents an overview of this system.

The signals from the diode detector are received, amplified and converted to differential signals
prior to being delivered out of the detector box in bundles of 8 channels of twin-axial cable. The
bundle of 8 differential signals is received by a carrier board which contains 8 channels of signal
conditioning and digitization. Each channel provides 12 dB of fixed gain and -4 dB to 20 dB of
digitally controllable gain. Figure 2.95 shows the functional blocks of a single channel s signal chain.

A 300 MSPS, 10 bit analog to digital converter is utilized to provide the capability of digitizing
4 ns spaced bunches. The data from the converter is streamed through a local FPGA and is stored
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Figure 2.93: xBSM diode detector
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Figure 2.94: xBSM data acquisition system
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Figure 2.95: xBSM signal chain
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Figure 2.96: xBSM internal timing

locally for each channel in an 18 Mbit SRAM. This allows for 1 million samples to be captured
on each channel (without data compression). Each channel receives its own sampling clock and
has an in-channel configurable delay to allow for channel to channel synchronization, as described
below. The digital data from each channel is funneled into the digital signal processing board. This
board allows for on-instrument processing and data manipulation. It also provides the link to the
ethernet interface which is contained on the input-output board. All controls and data retrieval
are accomplished via the ethernet interface. A diagnostic interface is provided via a serial field-bus
(XBUS) connection on the input-output board. Power is delivered to the various boards via the
auxiliary backplane.

Machine Timing And Synchronization The xBSM is synchronized to the CESR accelerator
timing system via a 24 MHz encoded data signal provided from the CESR timing system. This
signal is synchronized to the CESR RF system and also contains revolution markers (turn markers)
as well as acquisition triggers. This same signal is also delivered to all of the storage ring beam
position monitors. This allows for synchronized turn by turn measurements between the two sys-
tems.

xBSM Internal Timing An overview of the internal timing control and distribution is provided
in Fig 2.96. The 24 MHz encoded signal is received by the timing board. This signal is used to
synchronize an on board voltage controlled oscillator which generates a 500 MHz source clock. This
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clock drives a programmable divider with a programmable pulse width to provide a fully config-
urable sampling clock. The sampling clock passes through a series of programmable delays prior to
being fanned out to each of the four carrier boards. Each carrier board then fans the clock out to
the 8 sampling channels. Every channel has its own programmable delay which allows for precise
adjustment of the sample point. The timing board also extracts the turn marker from the 24 MHz
encoded signal. The turn marker then passes through its own set of programmable delays and is
fanned out to all 4 carrier boards where it is delivered to the individual channels. Each channel
can be synchronized to the accelerator revolution frequency. The digitizers run continuously and a
bunch pattern is provided to all channels and serves as a gating signal which determines when the
sample is to be stored in the local SRAM.

2.4.2.5 Performance

As described in section 2.4.2.1, the beam size is measured by analyzing the image of synchrotron
radiation x-rays on a 32 element linear pixel detector. The image is formed by one of the three
available optics elements placed between the source point in the storage ring and the detector; these
are a pin-hole, a Fresnel Zone Plate, and a Coded Aperture as described in section 2.4.2.3.

Images for each of the three optics elements, for a beam with a size of about 16 µm, are shown
in Fig. 2.97. The pinhole image is characterized by a gaussian distribution with a width that
is a convolution of the pinhole size and the beam size. The Fresnel zone plate image has two
components: a narrow peak, with width due only to the beam size, and a wide background which
is due to the chromatic aberration of the focus. The coded aperture image is a complex diffraction
pattern due to the eight transmitting slits in the device. Details of extracting the beam size for
each of the optics elements are described below.

3840511-011

Figure 2.97: Typical images for pinhole, Fresnel zone plate and coded aperture, each with 16 µm
beam size.

The images shown in Fig. 2.97 are taken with 0.75 mA, 0.50 mA, and 0.5 mA per bunch respectively.
Analysis of the turn-by-turn fluctuations of the pulse peak pulse height indicates that the readout
value of 30000 counts corresponds to about 110 photons. Single turn images have about 10% RMS
pulse height fluctuations of the peak. To reduce statistical fluctuations, the images in Fig. 2.97 are
averages of 4096 turns for a single bunch within a train of bunches within the storage ring. With
the onset of instabilities, there can be significant turn-to-turn beam motion. As shown in Fig. 2.98,
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the motion can be several pixel spacings when measured at the detector. For each of the optics
elements, a beam position is determined in a preliminary fit. This motion is removed in building
the average images shown in Fig. 2.97.

3840511-016

Figure 2.98: Beam position as a function of turn number for 4096 storage ring turns. Units are
50 µm pixels measured at the image. The high frequency motion is due to betatron motion. In this
example, with a maximum variation of ±4 pixels, and a magnification of 2.34, the beam motion at
the source is ±85 µm.

3840511-010

Figure 2.99: Schematic showing the convoluted image in pinhole focusing.

As shown in Fig. 2.99, the pinhole image is a convolution of the pinhole size and the beam size.
For large pinhole size, the image approaches a projection of the pinhole and increases linearly
with increasing pinhole size; for small pinhole size, the image approaches a diffraction pattern and
increases with the inverse square of the pinhole size. Thus, the pinhole size is set to the value which
results in a minimum image size and minimum correction as shown in Fig. 2.100. The minimum
image size for the mean x-ray energy of 2 keV is about sigma = 49 µm, found with a pinhole full-
height of 45 µm. The pinhole size, referred to the source, is the minimum image size divided by the
magnification and is estimated to be 21 µm. This sets a limit for accurate measurement of the beam
size. The image is fit to a Gaussian and a flat background. The Gaussian describes the convolution
of the two contributions. The floating background is necessary because the individual pixels are
not independent; charge measurement in illuminated channels results in a baseline depression in
the others. As the image is typically covering only a fraction of the detector pixels, the baseline is
well determined. The beam size is then extracted by subtracting the pinhole size from the image
size, in quadrature.

The Fresnel Zone Plate is a diffractive focusing element; paths through successive rings differ by
one wave length. Unlike the case of refractive focusing, chromatic aberration is severe; calcula-
tions show that the bandwidth is about 0.1 keV, while the x-ray energy distribution has a width
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Figure 2.100: Image size vs pinhole size. The pinhole size (labelled GAP full width) is set to provide
minimum image size for the x-ray energy distribution.

of sigma 0.5 keV. Thus, roughly 20% of the x-ray energy distribution is focused by the Fresnel
zone plate, consistent with the image shown in Fig. 2.97. This causes complications in extracting
the beam size from the image. Attempts to use a monochromator to eliminate the out-of-focus
component resulted in a reduction of the peak intensity to 1%, about one photon per turn at the
peak of the distribution with 0.5 mA per bunch. Analysis of fluctuation in the background in-
dicates that the electronic noise, for the 14 ns readout, corresponds to about 0.3 photons. With
this significant reduction of the in-focus signal, the resulting signal-to-noise ratio leads to decreased
sensitivity. Fresnel zone plate measurements are made without the monochromator. The image
is fit to a narrow Gaussian representing the in-focus signal. The out-of-focus contribution has a
fractional area, intrinsic width, and position relative to the in-focus image that are assumed to be
independent of the beam size. The background is well determined with constant and linear terms.
Thus, the image is fit to five parameters. The beam size is extracted from the narrow Gaussian
width, corrected by removing the pixel size, 6.2 µm (referred to the source).

The Coded Aperture is an array of 8 slits ranging in size from 10 µm to 40 µm at the optics
element. As described for the single slit, diffraction effects become significant for a slit width less
than 45 µm. Thus, the coded aperture image is a complex diffraction pattern. Extracting the beam
size from the coded aperture image requires a parameterization of the image for all beam sizes.
This has been accomplished via two methods. In the first, the images are directly calculated for
many representative values of the beam size and values of the image position with respect a pixel
center. The set of calculated images are then used as the templates in a template fit. In the second
method, only the image for zero beam size is calculated. The result is parameterized by an ensemble
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of Gaussians with fixed values for the widths, relative areas, and relative positions. Fig. 2.101 shows
the parameterization overlaid on the calculation of the zero beam size image. Using Gaussians for
the basis of the parameterization, it is straightforward to extend the parameterization to any beam
size for use as the function is a chi squared fit, as is shown for a beam size of 15 µm. Either of
the fitting methods provides the beam size, image location and overall normalization. Since the
image spreads over the entire detector size, it is difficult to independently extract a background
level.

3840511-009

Figure 2.101: Coded aperture calculated image for zero beam size and for a beam size of
sigma = 15 µm.

Measurements of the beam size, using the three optics elements, are overlaid in Fig. 2.102. In each
sub-figure, beam conditions were similar for the measurements with each of the optics elements.
There is good agreement between the results for the three optics elements for beam sizes below
about sigma = 50 µm. There are discrepancies in some details. For example, in (c), the beam
size for the first two bunches is higher when measured with the coded aperture. However, this is
not the case in the other examples. It has been shown that the increased size of the first bunches
is sensitive to the level of vertical and horizontal feedback. Another detail discrepancy is that, in
(a), for bunches 2 through 15, the beam size is about 1 µm higher when measured with the coded
aperture. Again, this is not the case in the other examples. Thus, both of these discrepancies are
not systematic effects; the effects are due to small differences in the actual beam conditions. Of
significance is that the onset of beam growth is the same for each of the beam conditions when
measured with each of the optics elements, starting at bunch 20 in (a), at bunch 9 in (b), at
bunch 11 in (c) and at bunch 13 in (d).

For beam size above about sigma=50 µm, the measurements using the different optics elements
have significant disagreements. The precision of the beam size measurement is affected by several
factors. Electronic noise and photon statistics contribute to random fluctuations in individual
channel measurements. Inexact pedestal determination and channel-to-channel gain calibration
lead to systematic distortions of the image that can be correlated with the image position. Image
measurements in a storage ring bunch can be distorted by the signal from preceding bunches if the
characteristic amplifier settling time is significant compared to the inter-bunch spacing. Finally,
each of the optics elements has inherent limitations that are described below.

Fig. 2.103 shows the images for the three optics elements with larger beam size. The pinhole, even
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3840511-008

Figure 2.102: Beam size measurements with three optics elements, in four running conditions: (a)
tuned for small beam size with 0.50ma/bunch, (b) same, 0.75 ma/bunch, (c) high chromaticity, (d)
high chromaticity with precursor bunch 182ns before train.

with a beam size of 85 µm, has a well determined background. It is expected that systematic errors
due to the fit if the image will allow accurate measurements to about 100 µm. The lower limit is
determined by the pinhole size. As the size, referred to the source, is 21 µm, the correction leads
significantly increased uncertainty for beam size below about 11 µm. With the Fresnel zone plate,
the beam size is extracted from the width of a narrow gaussian which accounts for only about 13%
of the image area. The out-of-focus contribution to the image has a fixed width that corresponds
to beam size of about 83 µm. For a beam size of 40 µm, the in-focus contribution is not well
separated. More significantly, the modeling of the out-of-focus contribution could be improved to
increase the sensitivity of the fit to the beam size. At this time, measurements with the Fresnel
zone plate are expected to be useful up to 40 µm. With the coded aperture, for a beam size of
60 µm, the separation of the two major features is significantly reduced. In addition, background
is not well determined because the image fills the detector. Measurements with the coded aperture
are expected to be useful up to this beam size. The lower limit is determined by the width of the
features of the image calculated for zero beam size. As this typical feature size, referred to the
source, is 15 µm, accurate measurements can be made for a beam size as low as about 8 µm.

2.4.3 Other Beam Diagnostics

Several instruments have been added or modified for use with the CESRTA program. They include
visible light beam size monitors, position detectors, which measure the tunes and detect some of
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Figure 2.103: Typical image for pinhole, Fresnel Zone Plate and coded aperture, with beam sizes
80 µm, 40 µm and 60µm respectively.

the internal modes of oscillation, beam kickers and tune trackers, which lock on to the bunch’s
betatron or synchrotron tunes.

2.4.3.1 Visible Light Beam Size Monitors

The two visible light beam size monitors (vBSM) are located in the L3 area of the storage ring.
The vBSMs are placed symmetrically at east and west ends of the north area straight, in order to
image visible synchrotron light from the positron and electron beams, respectively. The visible SR
from bending magnets 48E/W (140 m bending radius) is reflected by a Beryllium mirror located
inside the vacuum chamber through a vacuum window out of the chamber and into an optics box.
The angular acceptance of the mirror for light from the source in the bend magnet is 2.5 x 2.2 mrad
(H x V). On exiting the vacuum window, the SR photons pass through an iris with an adjustable
aperture into the optics box. The optics box contains several sets of double slits with different slit
spacings and orientations for interferometric measurement of vertical or horizontal beam size. The
slits are followed by a focusing lens (f=5 m). The lens is 6 m from the source. The light is then
reflected by multiple mirrors, overhead, across the tunnel and eventually through the wall of the
accelerator tunnel to an optical table in an experimental hall. At this point the light has traveled
27 m from the source in the bend magnet. The path of the light, from vacuum window through
tunnel wall, is indicated in Fig. 2.128 . On the optical table in the experimental hall, the SR light
passes through a second lens (f=1 m), a polarizer, a 500-nm narrow bandpass filter and is finally
incident on a CCD camera. A beam splitter can be placed in the path to direct a fraction of the
light into a streak camera, to measure the bunch length. The optical layout is shown schematically
in Fig. 2.104.

The diameter of the iris in the optics box can be varied from 3.0 mm to 22 mm, corresponding to an
acceptance of visible light from a minimum of 0.5 mrad with depth of field 70 mm to 3.5 mrad and
depth of field of 350 mm. The three sets of double slits (vertically and horizontally aligned) each
with fixed slit separation, were machined in a single piece and mounted on a motorized translation
stage and a rotation stage. The stages inside the optics box are remotely controlled. Different sets
of slits can be chosen by appropriate setting of the translation stage. The slits can also be rotated
away from the SR beam to image the beam profile directly. The optics box is shown in Fig. 2.105.
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Figure 2.104: Visible synchrotron light monitor optics.

On the optical table in the experimental hall the optical elements can be adjusted during machine
operation. The polarizer can be rotated 90 deg to select either the 0-polarized or π-polarized
component of SR light. The position of the CCD camera can be adjusted so as to view different
image planes. The CCD camera can be located to image the source point where direct images of
the beam profile or the interference fringes can be recorded. Alternatively the CCD camera images
the double slits, providing a means to determine slit alignment and the imbalance factor.

We are experimenting with both inferometry and π-polarization for measuring vertical beam size,
and direct imaging and interferometry for measuring horizontal size. The streak camera is used to
measure bunch length and longitudinal particle distribution. Our goal is simultaneous measurement
in all three planes.

2.4.3.2 Tune and Motion Detection

The variation of the tunes of individual bunches carries information about the global electron cloud
density. Different methods have been employed to measure the tunes of the bunches during the
beam dynamics studies.

A simple method for determining the tunes for each bunch in a train of bunches is to use a subset
of the complete number of CBPM modules to measure the beam position turn-by-turn for each
bunch. The block diagram for this configuration is shown in Fig. 2.106. The data is read out from
the CBPM modules and written into a raw data file. Each BPM’s position data is then analyzed
offline by performing a Fourier transform, which yields the spectral lines of the beam’s transverse
motion. This method is most often used in conjunction with a kicker that deflects all of the bunches
within the train.

A second method is shown in the block diagram in Fig. 2.107. This detection method makes use
of a few BPM detectors, which are still connected to CESR’s original relay-based BPM system
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Figure 2.105: Visible synchrotron light monitor optics box. The optics box contains an aris with
adjustable aperture, a double slit, a lens, and a mirror.
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Figure 2.106: Block diagram of a betatron tune receiver utilizing the bunch-by-bunch and turn-
by-turn readout capabilities of the CBPM system.

processors. The signal from one BPM button is routed via coaxial relays to one of the analog
processors, where fixed gain amplifiers and/or attenuators may be inserted in the signal path to
maintain the peak signal level within a factor of five over a wide range of currents. After the
gain adjustment the signal passes on to an RF gating circuit, which is triggered by the Fast Timing
System, allowing the selection of the signal from a single bunch, sending it to a peak rectifier circuit
(with approximately 700 MHz bandwidth) and then routing its output video to a spectrum analyzer
in the Control Room. In Fig. 2.108 the timing aperture for the gating circuit was measured by
sweeping the gate delay for the signal coming from a single bunch to observe the signal amplitude vs.
gate delay. A second method for observing the signal crosstalk between bunches is seen in Fig. 2.109.
This plot is obtained by shaking the beam vertically and observing the spectrum analyzer’s signal
amplitude as a function of gate delay. This second observation gives the base timing aperture as
7.5 ns wide, giving more than 20 dB isolation of the signal crosstalk from adjacent 4 ns-spaced
bunches and a signal isolation of greater than 50 dB for 14 ns-spaced bunches.

The initial setup of the storage ring parameters for the tune measurements is performed with a single
stored bunch. The betatron tune instrumentation configuration, capable of detecting the beam’s
tune in both planes, is shown in the block diagram in Fig. 2.110. In this mode the single bunch is
excited with the relatively narrow bandwidth shaker magnets (described below) and detected with
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Figure 2.107: Block diagram of a betatron tune receiver utilizing the bunch-by-bunch and turn-
by-turn readout capabilities of the CBPM system.
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Figure 2.108: Relay BPM processor’s gate timing aperture as measured with the video signal in
the Control Room showing a 77 mV DC offset from its peak rectifier circuit.
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Figure 2.109: Relay BPM processor’s gate timing aperture as measured by driving a single bunch
vertically and measuring its response vs. gate delay.

a swept spectrum analyzer.
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Figure 2.110: Simple block diagram of a narrow-band tune receiver, shown in the mode where it
can detect both the horizontal and vertical betatron tunes.

2.4.3.3 Beam Excitation

To measure the tune spectra of bunches it is necessary to observe them undergoing coherent motion.
In some cases their self-excitation is sufficient for a good tune measurement, but in other cases the
beam must be driven with some type of dipole kicker to cause the bunch(es) to undergo centroid
motion. There are three types of dipole kickers used in CESR for the measurements described
here.

One type of kicker is called a pinger magnet and it is used for single impulse deflection for the beam.
There are three pingers installed in CESR: two are horizontal and one is vertical. A horizontal
pinger is shown in Fig. 2.111 as a single-turn ferrite-core pulsed magnet, which surrounds a Kovar-
coated ceramic vacuum chamber. The horizontal pingers are excited using a thyratron with a
approximately square pulse, having a flattop region about a 2 µsec long. This is more than long
enough to deflect all bunches in one train with the same angle. The pulse shape for the vertical
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pinger has a different waveform; the magnet is driven with a half sine-wave pulse of approximately
2.5 µsec duration. The pingers can be triggered via CESR’s Fast Timing System at repetition
rates as high as 60 Hz and the triggers can be synchronized with the CBPM turn-by-turn and
bunch-by-bunch data acquisition. Because of its half sine-wave shape, the vertical pinger is timed
to have the train of bunches arrive straddling the peak of its deflection.
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Figure 2.111: Horizontal pinger. This is a pulsed ferrite magnet surrounding a metallized coated
ceramic vacuum chamber, which provides deflection to the beam with a single turn’s duration. The
upper two plots display qualitatively the deflection to the beam as a function of time (on the left)
and spatially across the vacuum chamber’s aperture (on the right.)

The second type of deflection element, utilized for beam dynamics measurements, is a stripline
kicker, an example of which is shown in Fig. 2.112. There are two (one horizontal and one vertical)
stripline kickers installed in CESR. They are the deflectors for the transverse dipole bunch-by-
bunch BSF systems for the ring. They have a 3.5 ns long transit time and are excited with 250 W
250 MHz RF amplifiers. As a part of the transverse feedback system for 14 ns-spaced bunches, the
amplifiers are modulated with 14 ns single period sine-wave, producing a constant (±5 %) deflection
to the beam for about 1 ns. Each feedback system modulator has an external modulation input and
when it is enabled, the input will allow the deflection of any combination of 14 ns-spaced bunches.
For beam dynamics measurements, the stripline kickers are most often used to deflect individual
bunches within the train.

For completeness we will mention a third type of deflection component in the storage ring. This is
low-frequency shaker magnet, a multi-turn coil wound around a H-frame ferrite core surrounding
a metallized coated ceramic vacuum chamber. Although this shaker magnet is not in use during
beam dynamics measurements, since it is unable to distinguish motion of individual bunches, it is
important for the detection of the tunes as conditions are re-established at the beginning of each
measurement period.
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Figure 2.112: Stripline kicker, having two plates that are driven differentially to deflect the bunch.

2.4.3.4 Tune Tracker Techniques

Numerous storage ring diagnostic operations require synchronous excitation of beam motion. An
example is the lattice phase measurement[32], which involves synchronous detection of the driven
betatron motion. In the CESR storage ring, the transverse tunes continuously vary by several times
their natural width. Hence, synchronous beam excitation is impossible without active feedback
control. The digital tune tracker [33] consists of a direct digital frequency synthesizer which drives
the beam through a transverse kicker, and is phase locked to the detected betatron signal from
a quad button position detector. This ensures synchronous excitation, and by setting the correct
locking phase, the excitation can be tuned to peak resonance. The fully digital signal detection
allows a single bunch amid a long train to be synchronously driven, which allows lattice diagnostics
to be performed which include collective effects.

The feedback unit operates at a clock frequency of 71.4 MHz, and this clock is used for beam
sampling, filtering, and synthesis of the betatron drive signal. Since only a single bunch is to be
used for phase locking, the instrument can be used with any bunch configuration.

The position signal is taken from a set of microstripline electrodes, which are separated into am-
plitude and displacement signals with a network of sum and difference combiners. The difference
signal is digitized with a 10 bit ADC which is timed to peak signal amplitude, and the signal from
the selected bunch is latched for one turn. The latched amplitude signal is digitally mixed at 71.4
MHz with two square wave representations of the betatron drive signal in quadrature phase. This
produces a vector representation of the phase difference between the synthesized betatron drive
and the actual betatron motion of the beam. The betatron clock is represented as square waves to
eliminate the need for real-time multiplication. The demodulated position signals are filtered in a
pair of single pole IIR (infinite impulse response) filters. Only one of the filtered signals is used to
represent betatron phase error, and the other is only used to reconstruct signal amplitude.

The DDS (direct digital synthesizer) is straightforward, consisting of a phase register which is
incremented by the frequency command at the 71.4 MHz clock rate, a sinusoidal lookup table
implemented in a high speed cache RAM, and a 14 bit DAC. Adjustments of drive phase and
amplitude are effected by changing the contents of the RAM, and the 14 bit output resolution
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gives sufficient dynamic range for all applications without the need for analog attenuation. The
betatron drive signal is coupled to the beam via the feedback kicker, which allows the isolated drive
of a single bunch in the 14 ns spacing configuration. In closer bunch configurations, there is some
crosstalk of the drive signal to bunches adjacent to the one selected for phase locking.

The phase locked loop requires a proportional channel and an integrating channel. The proportional
channel shifts the betatron frequency command by an amount proportional to phase error. This
is necessary to maintain loop stability, and to give the loop sufficient agility to track the tune
fluctuations of the storage ring in real time. The integrating channel increments the frequency
command on every revolution by an amount proportional to phase error. This is necessary to bring
the phase error to zero, and thus provide a stable phase reference for lattice measurements.

The DDS phase register value is latched once per accelerator revolution, and the phase is sent by a
parallel digital link to the clock modulator for the CBPM system[34]. The BPM clock modulator
imposes both the vertical and horizontal phase values from the two tune trackers on the BPM clock
using a pulse width modulation system. The individual BPM modules then extract the phase values
and use them to reconstruct the drive signal, typically one of the three normal mode frequencies,
which is used to synchronously detect corresponding phase at each BPM station. The synchronous
phase measurement is used to determine the phase advance between BPM stations, and hence the
phase function of the entire lattice. The relative phase of horizontal and vertical motion at each
BPM is used to extract coupling information.

The operating configurations of the tune trackers, including center frequencys, gains, and filter
settings, are saved and restored along with the storage ring configuration. This gives a high prob-
ability of successful phase lock without adjustment. The signal acquisition and locking functions
can be operated through a GUI (graphic user interface), and the same functions can be executed
automatically by other system processes using control system subroutines.

The tune tracker can initially acquire a betatron signal by sweeping the drive frequency through
a band, typically 20 kHz wide, and recording betatron amplitude and phase error relative to the
DDS. A fit of center frequency, center phase, peak width, and peak amplitude is then automatically
done to a Lorentzian resonance model as shown in Figure 2.113.

3840511-513

Figure 2.113: Frequency sweep over 10kHz. Blue trace is amplitude and red trace is phase error,
showing fit to Lorentzian resonance model.
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Only a rough fit is possible to the tune of an unlocked beam because of the tune noise of the storage
ring, which is approximately several hundred Hz. Acquisition of phase lock is accompanied by a
large increase in betatron amplitude. Once phase lock is established, a fine fit to the resonance
can be done by sweeping the betatron drive phase, and recording betatron amplitude and drive
frequency. A fit of the same four parameters is automatically done to the Lorentzian model by the
same method described above. This consists mainly of fitting the amplitude to a cosine function,
and gives the closest possible approach to the resonance peak.

2.4.4 Feedback System Upgrade

Three Dimtel iGp-1281F signal processor systems have been added to the CESR ring to supplement
the existing feedback systems. Previously CESR was capable of 14 ns, multiple bunch, turn-by-turn
feedback. The 14 ns system was designed for and constrained by having electrons and positrons in
the ring simultaneously. The Dimtel systems add faster processing capability to the same detection
and kicker hardware to provide feedback for bunches spaced down to 4 ns. This gave CESRTA
the flexibility to transversely and longitudinally stabilize bunch trains with a bunch spacing of any
integer multiple of 2 ns greater than 4 ns.

2.4.4.1 14 ns Feedback System

The 14 ns feedback system uses a standard set of four CESR beam position buttons as the input.
Pairs of button signals are connected to hybrid combiners which output both the sum and difference
of the two signals. The vertical feedback system uses the signals from combining the top and
bottom button signals together, thus yielding a difference signal which is sensitive to vertical
position. Likewise, the horizontal system uses the difference of the combined inner and outer
button signals. The sum of all four button signals is used as the longitudinal system input. The
horizontal system block diagram is nearly identical to the vertical system block diagram and can
be seen in Fig. 2.114.

Signals are acquired at 71.4 MHz by a direct sampling 10 bit analog to digital converter (ADC).
This rate allows sampling at the traditional CESR bunch spacing of 14 ns. Longitudinal signals
are processed with displacement or phase detection, sample and hold, displacement or phase off-
set correction, and filtering circuits. Transverse signals are filtered then sampled in a DSP. The
output is the beam error signal represented by a ±500 mV analog signal that is updated every
14 ns[35].

For the transverse systems, the error signal is modulated into a bipolar pulse. The pulse is amplified
by an ENI3200L 200 watt power amplifier with bandwidth from 250 kHz to 150 MHz. The amplified
pulse is sent to a 1.16 m stripline kicker. The kicker is shorted at one end, with an electrical length
of 3.5 ns. The kicker has an impedance of 50 ohms and is constructed from OFHC (oxygen free,
high thermal conductivity) copper sheet. The stripline kicker is further described and illustrated
in section 2.4.3.3.

The longitudinal error signal is amplified by a 1 kW solid state amplifier. The signal is transmitted
to the beam through an 1142 MHz resonant frequency cavity kicker. The cavity kicker has three
coupling ports for drive and three coupling ports for load, for a total of six ports. The cavity has
a loaded Q of about 14 and a field decay time of 3.9 ns[36]. A block diagram overview of the
longitudinal system is in Fig. 2.115.
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Figure 2.114: System overview of the horizontal 14 ns feedback.



2.4. Beam Instrumentation and Feedback Systems 111

3840511-002

CESR
500MHz

CESR
500MHz

4W
BPM

LO.E. R28

RM101A R31

RM101A R29
phase null
feedback

phase null
feedback

Analog
Modulator

E- Signal
Processor

E- Receiver
(phase detector)

E+ Signal
Processor

E+ Receiver
(phase detector)

E+/E-
Gate

1.142GHz
Reference

Solid State
Amplifier

(1kW)

-50dB

10E
Cavity

filter

filter

filter

CESR Tunnel 10E
Forward Power Cavity Monitor

E+ Digital Gain:
‘CSR FB GAIN’ 6

E- Analog Gain:
‘CSR FB GAIN’ 10

E+ Digital Gain:
‘CSR FB GAIN’ 5

E+ Analog Gain:
‘CSR FB GAIN’ 9

Figure 2.115: System overview of the longitudinal 14 ns feedback.
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The 14 ns feedback system is controlled through the CESR control system multi-port memory
(MPM). The MPM allows many devices to share a memory space. The DSPs access the shared
memory for information on the gains and delays necessary for different CESR ring configura-
tions.

2.4.4.2 4 ns Feedback System

The pre-existing feedback system described above was augmented to provide stability for bunches
spaced down to 4 ns by adding three Dimtel iGp-1281F signal processors, one each for horizontal,
vertical and longitudinal. The processors use the same beam input signals as the 14 ns feed-
back system as well as the same stripline and cavity kickers. A block diagram of the iGp is in
Fig. 2.116.

3840511-036

Figure 2.116: System overview of the Dimtel iGp 4 ns signal processor.

The new signal processors operate at 500 MHz and acquire the input signals with 1.26 GHz band-
width with high speed 8 bit ADCs. The signals are processed by a dual port memory field pro-
grammable gate array (FPGA) for control computations including applying a finite impulse re-
sponse (FIR) filter with up to 16 taps. A high speed DAC drives the output signal with 12 bit
resolution, a rise time under 250 ps and a fall time under 350 ps.

The FPGA is controlled by an embedded EPICS (experimental physics and industrial control
system) input-output controller (IOC). The IOC is connected to the FPGA by universal serial bus
(USB) and to the CESR control system via Ethernet[37]. Computing scripts and display screens, on
the CESR control system, are used to control the parameters of the signal processor and to acquire
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and analyze data. An additional software EPICS IOC running on the CESR control system and a
service program provide an interface from the CESR MPM to the iGp devices.

Completely configurable bunch control allows the setting of any combination of the 1281 available
RF buckets in CESR for feedback or excitation. The 1281 buckets are spaced 2 ns apart and
the iGp has the ability to resolve the individual bunches, however, the system is limited by the
electrical length of the stripline kickers and the field decay time of the cavity kicker to provide
differing feedback kicks 4 ns apart.

2.4.4.3 Feedback System Results

The Dimtel iGp upgrade proved successful in stabilizing both electron and positron beam (sepa-
rately), in a wide array of bunch patterns and spacings. For example, at 5.3 GeV the single bunch
damping in the horizontal system is shown in Fig. 2.117. In this drive-damp measurement, the
beam is driven for 3 ms and then allowed to damp. The black curve shows the natural damping
without any horizontal feedback. The blue curve shows the result with the 4 ns feedback on. The
feedback drops the maximum excitation by about 15 dB and the beam is damped back to its noise
floor within 500 µs.

2.5 General Accelerator Modifications and Upgrades

2.5.1 Alignment and Survey Upgrades

Meeting the more stringent alignment tolerances specified by the CESRTA project required an up-
grade to both the survey monument hardware and the survey equipment. All upgrade changes
essentially revolved around the conversion of main surveying instrument from a Leica TDM5005
total station to an API Tracker III laser tracker with interferometer. The laser tracker required
monument hardware which would accept the 1.5 inch spherically mounted reflectors (SMR’s), and
also supporting instruments which could accurately measure the gravity based heights of the refer-
ence target, since at the time of purchase no laser tracker had an integrated high precision gravity
based level and compensator. Thus, a Leica DNA03 digital level and staffs completed the survey
instrument upgrade.

After some study of the available hardware, and a training and observation trip to Lawrence
Berkeley National Laboratory’s Advanced Light Source we chose to use Hubb’s Machine and Man-
ufacturing, Inc. drift nests and floor targets. (see Fig. 2.118, Fig. 2.119 and Fig. 2.120 below).
Tack welding the drift nests onto Uni-Strut gussets resulted in cost effective and very stable wall
targets, which attached to our existing Uni-Strut ribs in the tunnel walls. The floor targets were
permanently epoxied into holes drilled in the concrete floor of the tunnel with a core drill. The
o-rings covers and stainless steel construction of the floor targets provided good protection against
water infiltration and corrosion. Triplets of two wall targets (on inside and outside tunnel walls)
and one floor target (near the center of the tunnel floor) spaced at approximately 8 to 10 meters
apart provided the necessary geometry to meet the alignment tolerances.



114 Chapter 2. The CESR Conversion

3840511-035

HP 3588 HORZ:  092050.800  20100328

Center: 226.275 kHz Span: 0.000Hz
Sweep Time: 12:800 mS BW Res: 9.100 kHz
Marker Position: 4.768 mHz :   –58.891dBm

Center: 226.275 kHz Span: 0.000Hz
Sweep Time: 12:800 mS BW Res: 9.100 kHz
Marker Position: 4.768 mHz :   –34.694dBm

–25.000 dBm
–25.000 dBm

5.000
dBm/div

5.000
dBm/div

Figure 2.117: A drive-damp measurement with the horizontal 4 ns feedback.
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Figure 2.118: Wall Target attached to tunnel Uni-Strut.
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Figure 2.119: Floor target.
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Figure 2.120: Floor target with cover removed.
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2.5.2 Wiggler Straight Section

The CESR storage ring required extensive modifications for the straight section that contained the
CLEO-c high energy physics (HEP) experimental detector[1]. During HEP operation this straight
section was a micro-beta insert utilizing four superconducting quadrupoles and two permanent
magnet final focus quadrupoles, all of which were oriented with approximately 4◦ tilts to compensate
the CLEO solenoidal magnetic field. There was an additional pair of skew quadrupoles within the
interaction region straight section to complete the solenoid compensation. During HEP operations
the electron and positron bunches crossed at the interaction point with approximately a ±2 mrad
crossing angles, created by four horizontal separators placed symmetrically in the arcs of CESR.
The layout of the HEP interaction region straight section is displayed in Fig. 2.121.
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Figure 2.121: An elevation view of the CESR-c/CLEO-c interaction region before reconfiguration
as the wiggler straight section for CESRTA. The central section of the CLEO-c detector, the final
focusing superconducting quadrupoles and the connecting vacuum chambers were removed during
the CESRTA installation.

As a part of the CESR-c/CLEO-c HEP program, twelve superconducting wigglers (SCWs) were
installed in the southern one third of CESR[38]. For 2.1 GeV operation, these wigglers provided 90%
of the radiation damping in CESR and, in their original arc locations, could be used for emittance
control of the colliding beams. During CESR-c/CLEO-c HEP operations, 6 of the 12 SCWs were
installed as two triplet SCWs, located at two straight sections, namely L1 and L5, and the remaining
6 SCWs were in shorter straight sections between L0 and L1, and between L0 and L5. For ultra low
emittance operation for CESRTA, all twelve wigglers must be located in regions with zero dispersion.
The CESRTA lattice provides for zero dispersion regions in the L0, L1 and L5 straight sections,
which are shown above in Fig. 2.1. Therefore six of the CESR-c wigglers needed to be relocated
to the CESR L0 straight, in place of the CLEO detector. The other six wigglers, located in the L1
and L5 straight sections, were permitted to remain in place.

During the July 2008 shutdown, the central portion of the CLEO detector was decommissioned
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by removing the superconducting, normal conducting and permanent quadrupoles, the steering
magnets for CESR, the CLEO endcap detectors, the vertex detector, the drift chamber and all of
their associated cabling along with approximately 17 meters of vacuum chambers, all of which were
located between the soft bend dipole magnets. A pair of bridging I-beams was installed through
CLEO iron to support the quadrupole and steering magnets and the SCWs, which were positioned
in the central portion of the L0 straight section. The six SCWs originally in the short straight
sections between L0-L1 and L0-L5 were the wigglers relocated to the L0 long straight section.
With the relocation, all 12 SCWs are positioned in the long straight sections, in which the optics
can be configured for zero dispersion, to produce the smallest possible beam emitances. Fig. 2.2
shows the beam pipe, the conventional magnets and the six SCWs placed within the vacated CLEO
detector’s solenoid iron yoke. Fig. 2.122 and Fig. 2.123 display two different views of the wiggler
straight section.

3840511-307

Figure 2.122: View of the wiggler straight section during the operation of CESRTA from the North
on the East side of the wiggler straight section. Two of the wiggler cryostats are visible as is a part
of Q01E (orange magnet to the right of the cryostats.)

2.5.3 L3 Straight Section

During CESR-c/CLEO-c HEP operations the straight section diametrically opposite to the wiggler
straight section was configured to have a pair of electrostatic vertical separators, necessary to
separate electron and positron bunches at the second horizontal angle crossing point for CESR,
plus an additional six quadrupoles forming a mini-beta insert. A schematic of the original optics
layout for the central region of the L3 straight section is found in Fig. 2.124. To accommodate
the planned experimental regions in this straight section, a major change to the accelerator optics
was undertaken. After the removal of the pair of electrostatic vertical separators (outboard of the
Q48W and Q48E quadrupoles), a long experimental straight section was established in the north
region of CESR (L3). This 12-meter section, as shown in Fig. 2.125, is currently hosting many
SLAC EC beam pipes for study and diagnostics, including a set of 4-dipole chicane magnets with
beam pipes equipped with EC detectors, and an aluminum beam pipe with grooved interior. A
pair of retractable synch-light mirrors (highly polished beryllium) are set up for diagnostics and
are used for beam profile measurements. A load-lock system for different surface samples was
also installed in this section for measurements of secondary electron emission yield (SEY) as a
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Figure 2.123: View of the wiggler straight section taken from the West side of the wiggler straight
section looking into the former CLEO detector’s pole tip.
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function of synchrotron beam doses for commonly used vacuum chamber materials. Pictures of
the experimental region are found in Fig. 2.126 and Fig. 2.127 and an assembly drawing of the
L3 region is found in Fig. 2.128.
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Figure 2.124: Schematic layout of the L3 optics between the vertical separators before reconfigu-
ration for CESRTA operations.
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Figure 2.125: Schematic layout of the L3 experimental region. The experimental area includes
the following vacuum chamber test regions: a chicane section, a region that has Helmholtz coils
around the beam pipe to allow for chamber processing via bakeout etc., and an SEY apparatus
with a lock-load mechanism to permit easy access for changing vacuum chamber wall surfaces.

2.5.4 Solenoid Windings

Solenoid windings on drift sections of storage rings have been successfully employed to reduce the
effect of electron clouds in other storage rings.[39],[40]. Although the total drift section length of
CESR is only approximately 15% of the circumference and is not expected to play a major role
in the electron cloud dynamical effects for the entire ring, elliptical solenoid windings have been
added to cover approximately 80% of this drift length. The windings were wrapped directly on the
CESR vacuum chamber after a thin Kapton insulating layer was added around the radial outside
of the chamber to enlarge the radius of these corners. In a few sections of the storage ring the
beam pipe is circular so in these places the windings are cylindrical solenoids. In the experimental
region in the L3 straight section, several Helmholtz coils were employed to allow better access to
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Figure 2.126: View of the L3 experimental region looking to the East and showing two of the
chicane magnets in the foreground followed by Q49.

3840511-311

Figure 2.127: L3 experimental region viewing Q49 from the East and having the Helmholtz
coils around the beam pipe for studies of Electron Cloud suppression. The picture also shows the
Helmholtz coils surrounding the vacuum chamber as it is being prepared for a bakeout.
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Figure 2.128: Final assembly drawing of the CESRTA beam line viewing L3 from above and the
North and East. The pipes coming off of the CESR beam line to the south, transport the light
from the vBSM’s mounted just to the North (center of straight section) of the Q48W and Q48E
quadrupoles (the outermost large blue magnets.)
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the vacuum chamber; the spacing between the coils was set to have the longitudinal field for these
coils approximately the same as in the standard solenoid windings. The cable, employed for the
windings wrapped directly on the beam pipe, is radiation hard number 10 (AWC) gauge insulated
wire, which is wound in a single close-packed single layer. A few examples of the solenoid windings
maybe seen in Fig. 2.127, Fig. 2.129, Fig. 2.130 and Fig. 2.131. Windings in adjacent drift sections
are clustered together and connected in series to one switching DC power supply, where an effort has
been made to reduce the net longitudinal magnetic field by arranging the polarity of the windings to
roughly balance the number of turns which have the current flowing clockwise around the vacuum
chamber with those where it is flowing counter-clockwise. This reduces the local horizontal-vertical
coupling of the beam’s motion caused by each supply powering an individual cluster of solenoid
windings.

The power supplies are generally unipolar 25 A switching DC power supplies operating off of the
common 65 VDC ring magnet power supply bus. The power supplies function with the same control
system hardware and software as the CESR steering power supplies. The winding resistance for
the adjacent drift sections, as clustered together and connected in series, is less than 2.5 Ω. This
resistance is low enough to allow the full 25 A of current. In two instances where the solenoid
windings surround the shielded pickups, 100 A bipolar supplies were installed (and limited to
± 25 A operation) to permit sweeping the solenoid field over both polarities for the shielded pickup
measurements.

During installation the polarities of the windings for all of the separate drift sections was verified
to have the required alternation needed to reduce the horizontal-vertical coupling effects. After
installation the magnitude of the longitudinal magnetic field was measured to be approximately
40 G for a 25 A excitation in the standard CESR beam pipe windings. A positron single bunch
in 2 GeV conditions was used to check the coupling error caused by each of the 16 clusters of
windings. After adjusting the minimum tune split on the coupling resonance to be less than
0.0002, the change in the global coupling of the bunch was measured when all of the solenoid power
supplies were excited to their full currents. With all solenoid power supplies at full current the
accelerator minimum tune split on the coupling resonance was 0.0027. Since the solenoids were
installed primarily to study their effect on the cloud’s density, they are usually powered only during
mitigation or shielded pickup measurements.

2.5.5 Controls and Software Upgrades

The conversion of CESR to a test accelerator to study low emittance beams and the effects of
electron clouds has required significant additions or changes to the accelerator controls. The first
set of changes is obvious from the preceding sections: the reconfiguration of the magnet controls
for the convention accelerator magnet system. The change to CESR’s optics and steering controls
required the removal, installation, reconfiguration or re-cabling of 48 separate magnets in the ring
for the wiggler and L0 straight sections. The elements, which are presently installed for CESRTA
operations, are summarized in Table 2.3.

In addition to the aforementioned magnet supplies several other types of magnets were either moved
or installed around the ring for CESRTA use. These include the wigglers that were moved into the
wiggler straight section from their location in the storage ring’s arcs between L0 and either L1
or L5 straight sections. Fig. 2.132 presents a view of some of the wigglers in the wiggler straight
section and Fig. 2.133 shows one of the power supply control racks. The wiggler straight section’s
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Figure 2.129: View of solenoid windings on one typical arc vacuum chamber.

3840511-317

Figure 2.130: View of solenoid windings on a second typical arc vacuum chamber.
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Table 2.3: Listing of standard CESR accelerator elements, which were installed, re-cabled or
reconfigured for CESRTA operation.

Name(s) of CESRTA Type of Maximum Maximum Quantity
Element Power Supply Current Voltage

Q00W Linear Pass-bank 250 A 28 V 1
Regulated

Q01W, Q01E Precision Chopper 80 A 55 V 2
Switching Regulator

Q02W (16T), Precision Regulated 1000 A 20 V 2
Q02E (16T) EMI PS

Q48W (6T dipole PS) In series with dipole 700 A 300 V 1
Q48E (6T dipole PS) magnets - Transrex PS’s

Q48W (22T), Linear Pass-bank 250 A 28 V 2
Q48E (22T) Regulated

Q49W (22T) Precision Regulated 1000 A 20 V 1
EMI PS

H01W Bipolar Chopper ±12.5 A ±55 V 1
Switching Regulator

V01E Bipolar Chopper ±12.5 A ±55 V 1
Switching Regulator

V02W, V02E Bipolar Chopper ±12.5 A ±55 V 2
Switching Regulator

SQ01E Bipolar Chopper ±12.5 A ±55 V 1
Switching Regulator

SQ02W, SQ02E Bipolar Chopper ±12.5 A ±55 V 2
Switching Regulator

H49E Bipolar Chopper ±12.5 A ±55 V 1
Switching Regulator

V49E Bipolar Chopper ±12.5 A ±55 V 1
Switching Regulator

V48W, V48E Bipolar Chopper ±12.5 A ±55 V 2
Switching Regulator

SQ48W, SQ48E Bipolar Chopper ±12.5 A ±55 V 2
Switching Regulator
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Figure 2.131: View of solenoidal field windings on the L3 straight section vacuum chambers.

construction required the relocation of six wigglers, their cryogenic controls and power supplies.
The rack of control electronics includes a number of control and monitoring functions. The first
is the “Ready Chain” for the protection of the magnets and power supplies, which requires such
elements as the primary power, water and cryogenic cooling, the quench protection be enabled
and heat sink temperature monitor be below its trip level, in order for the power supplies to turn
on. The power supplies are a 300 A-3.3 V wiggler main supply and an 8 A-15 V steering trim
supply. There is also monitoring circuitry including 16 channels of cryogenic temperature readouts,
20 channels of voltage, current, cryogen level and pressure sensor slow readouts, 8 channels of fast
quench protection readouts.

The chicane magnets and their power supplies in the L3 experimental area are on loan from SLAC
during the CESRTA experimental run. The chicane consists of four dipole magnets wired with field
polarities of +, -, -, and +. They are powered with two DC supplies having a total of 235 A at 56 V.
The system is current regulated using a Danfysic current transformer connected to a modified CESR
16-bit unipolar regulator card, which provides a 10 V maximum control signal to the main DC power
supplies. The integrator in the lead-lag circuit of the regulation loop is adjusted to compensate the
magnets’ time constant of 0.074 sec. The modified CESR 16 bit magnet controller card was chosen
as it has a common connection to the CESR magnet clock, which allows for coordinated excitation
of the chicane magnets with other CESR magnets. This permits the simultaneous scaling of the
current command to the chicane magnets with any other CESR magnet, e.g. to have coordinated
scaling of the chicane field with other CESR steering elements.

During most of its operations, CESR stored beams with bunches spaced in multiples of 14 ns. As
a result, all of the current monitoring instrumentation was configured for 14 ns as the minimum
spacing. To accommodate the multiple of 4 ns-spaced bunches for CESRTA, a new current monitor
was developed. This current monitor utilizes a standard BPM button position monitor connected
to one of the new CBPM modules (section 2.4.1), which was programmed specifically to return
a constant times the sum of the button signals as the bunch current. This monitor is capable of
measuring all stored bunches with a minimum of a 4 ns-spacing over the desired bunch current
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Figure 2.132: Wigglers in the wiggler straight section with their controls. The picture shows a
view looking into the former CLEO detector with two of the three wigglers displayed to the left
and the cabling of rightmost of these two in the center of the picture.

3840511-305

Figure 2.133: This picture presents view of the wiggler control rack containing all of the controls
and the power supplies for the wiggler and its steering trim coils.
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range with an update rate of 3 to 4 Hz.

The current monitor is an integral component utilized by the injection software. This program reads
the current monitor to obtain the charge in each of the bunches, it then turns on the appropriate
triggers to the gun pulser in order to accelerate a set of bunches to fill the storage ring. Substantial
revisions were needed for this software to accommodate more general timing patterns for the stored
bunches in CESR. This is the case since the lowest common harmonic frequency shared by the
LINAC injector RF, the LINAC RF accelerator cavities, the synchrotron accelerator cavities and
CESR’s RF system is 71.4 MHz, equaling a bunch spacing of 14 ns. Injecting any multiple of
14 ns-spaced bunches only requires turning on triggers for the gun pulser at the correct time and
the bunches can be accelerated and be stored in CESR with no change of any RF system phase.
However, injecting 4 ns-spaced bunches requires an additional shift of all of the injector’s RF phases
for bunches to line up with proper CESR RF buckets. The upgraded injection software employed a
new operator interface to specify which RF buckets were to be filled in CESR while accomplishing
the required triggering for the gun pulser and injector RF phase shifts to store these bunches.

The injection software had new protection algorithms added, which limit the total current that
can be stored in CESR. This is necessary for several reasons. When the superconducting wigglers
are powered, software interlocks limit the total beam current to prevent their X-ray flux from
damaging the downstream vacuum chamber walls. When the xBSM’s optics chip is inserted in the
X-ray beam, both software and hardware interlocks limit the total stored beam current. Also as a
failsafe mechanism for communications failure of the bunch-by-bunch current monitor, the injection
triggers are disabled whenever the sum of the bunch currents significantly disagrees with the DC
current monitor.

Additionally hardware and software infrastructure was created for for xBSM, CBPM and RFA
detectors. This included the installation of modest bandwidth and wide bandwidth interfaces to
all of these detectors. It also included the software interfaces and data structures to operate this
hardware and to communicate their data to the data acquisition software.
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Chapter 3

Low Emittance Tuning Program

3.1 Introduction

Investigation of electron-cloud effects relevant to the performance of positron damping rings for
linear colliders requires that we be able to circulate low emittance positron beams in CESR. We
are interested especially in exploring the sensitivity to the emittance growth induced by electron
cloud to the zero current equilibrium emittance. The specifications for the ILC damping ring
are vertical and horizontal geomtric emittances εv = 2 pm-rad and εh = 0.5 pm-rad respectively.
The CESR layout, with rather long dipoles and relatively few quadrupoles, is not by design a
low emittance machine. In order to achieve horizontal emittance of a few nm-rad we exploit the
installed superconducting damping wigglers which at 1.9T peak field reduce the radiation damping
time by an order of magnitude. Lacking the precision girder based magnet alignment and stability
of modern low emittance synchrotron light sources, we set our vertical emittance target at 10-
20 pm-rad, anticipating that target to be both realistic and sufficient to the requirements of the
electron cloud R&D program. We note that in recent years, order 1 pm-rad vertical emittance has
been achieved in electron storage ring sychrotron light sources [41, 42].

The goals of the CesrTA low emittance tuning program are to develop beam based techniques
for measuring sources of emittance dilution, and correction algorithms for minimizing the residual
vertical emittance. Ideally, the procedure will routinely yield vertical emittance less than 10 pm and
require only a few minutes (perhaps 10) of dedicated machine time. There are a variety of strategies
that have proven effective at synchrotron light sources for extracting information about lattice
errors from beam based measurements. Our technique is predicated on the requirement that it be
readily extended to a ring with larger circumference (several kilometers) and many more magnetic
elements than CESR. To that end we exploit the turn by turn capability of the precision beam
position monitors to measure orbit, betatron phase advance and transverse coupling, and dispersion.
We measure and then minimize closed orbit errors with dipole correctors, and focusing errors by
adjustment of the independent quadrupole power supplies. Transverse coupling is minimized with
skew quadrupoles. There are 25 skew quads in the storage ring, strategically located adjacent to
the wiggler straights. Finally we minimize vertical dispersion using vertical steering magnets and
skew quadrupoles.

Vertical dispersion is the principle source of vertical emittance and accurate measurement is obvi-
ously essential in order to minimize it. In CESRTA the accuracy of the dispersion measurement is
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limited by systematics associated with the beam position monitors. The systematic effects include
BPM button to button gain variation and physical tilt of the monitors. Beam based techniques for
measuring gain and tilt are described in Section 3.3.

The low emittance tuning techniques that we are developing are applicable to all of the various
lattice configurations deployed in CESR. But the development of the tuning methods is based
almost exclusively on the 2.085 GeV lattice with 2.5 nm-rad horizontal emittance, that being the
minimum that can be achieved in the storage ring with 12 damping wigglers operating at 1.9 T peak
field. We routinely achieve vertical emittance less than 10 pm-rad, corresponding to an effective
emittance coupling of < 0.4%.

We have developed elaborate modeling and simulation codes to test the capability of the beam based
diagnostics and the correction algorithms. When the simulation includes a random distribution of
magnet misalignments consistent with known survey errors, and measurement errors based on the
established BPM resolution and systematics, we find that the modeled results are consistent with
the emittance that we measure after correction.

The simulations indicate that the effectiveness of the correction is indeed limited by the accuracy
of the beam position monitor systematics, the sources of the BPM error being timing jitter, and as
note above, button to button gain variation and BPM tilt.

Simulations further suggest that the number and placement of corrector magnets is more than
adequate, and that additional skew quads for example would not yield better correction. We also
find that the measured misalignments of quadrupoles, dipoles, wigglers and sextupoles, that are
the principal source of vertical emittance, do not at present limit the emittance that we can achieve
with our correction procedure. If, for example, the BPMs returned exact positions, then our tuning
procedure would yield vertical emittance of order < 1 pm-rad.

It should be noted that the goal of the Phase I program is vertical emittance less than 20 pm-rad.
The resolution of the beam position monitors and the tuning techniques we have developed readily
yield vertical emittance below the 20 pm-rad target.

3.2 Sources of Vertical Emittance

We consider sources of emittance dilution in the zero current limit. Here we ignore electron cloud
interactions, intrabeam scattering and other collective effects. In the ideal machine, the closed
orbit lies in the horizontal plane. There are no vertical kicks and therefore, there is no vertical
dispersion. Vertical emittance arises exclusively from coupling and vertical dispersion generated
by magnet misalignments. (In fact that is not quite true. The emission of photons contributes to
emittance via dispersion due to the change in energy of the emitting particle. But in addition to the
change in energy, the emission of a photon at a finite angle with respect to the particle trajectory
changes the transverse momentum of the particle, generating a finite emittance even in the ideal
machine. We estimate that the vertical emittance in the limit of zero coupling and zero vertical
dispersion is ∼ 0.1 pm-rad [43, p. 19-22])

It is important to distinguish the normal mode emittance from the horizontal/vertical emittance
that we measure in the laboratory. We identify the A-mode with horizontal motion and the B-mode
with vertical. Transverse coupling will in general locally increase vertical beam size at the expense of
horizontal, but it has no effect on the B-mode emittance unless it occurs in dipoles or wigglers where
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there is synchrotron radiation. Otherwise, the vertical/horizontal aspect ratio can be restored by
suitable decoupling. Transverse coupling that propagates into regions of finite horizontal dispersion
will of course generate vertical dispersion. If that vertical dispersion is permitted to propagate
through a bending magnet or a wiggler then the B-mode emittance is increased.

3.2.1 Misalignments

As noted, vertical dispersion can be generated directly by vertical dipole kicks, and indirectly
via coupling of horizontal dispersion into the vertical plane. Sources of vertical kicks include
quadrupoles vertically offset from the plane of the orbit and horizontal dipole magnets with non-
zero roll. Wigglers produce no net dispersion, but do generate dispersion internally. A wiggler that
is rotated (tilted) about the beam axis will generate vertical dispersion internally.

Tilted quadrupoles couple horizontal dispersion into the vertical plane as do sextupoles that are
vertically offset from the plane of the ideal orbit. In addition, even perfectly aligned sextupoles
introduce coupling if the vertical orbit is distorted by offset quadrupoles or rolled dipoles.

In order to quantify the sensitivity to alignment errors we consider the contributions to vertical
dispersion, transverse coupling and vertical emittance of misalignments of the various guide field
elements in turn. The procedure is to create a large number (N) of sets of randomly generated
misalignments. We apply each set of misalignments to the lattice and compute dispersion, coupling
and vertical emittance.

3.2.2 Machine Model

Lattice parameters and the effect of misalignments are modeled using the BMAD library[44]. The
linear guide field elements are characterized by 6 × 6 matrices. Sextupoles are treated using a
kick-drift-kick model. The wiggler magnet is modeled as a symplectic map that is based on an
expansion of the field in terms of trigonometric and hyperbolic functions [45] . Misalignments
are included by offseting and/or rotating the relevant phase space coordinates that are tracked
through the misaligned element. Once the closed orbit has been computed, magnet matrices are
recalculated so that offset and tilted quadrupoles include dipole and skew quad components, etc.,
yielding Twiss parameters and dispersion function appropriate to the orbit. The determination of
the normal mode emittances is then based on that set of lattice functions that corresponds to the
real closed orbit.

3.2.3 Quadrupole Offsets and Dipole Rolls

We begin by quantifying the effect of quadrupole vertical offsets and dipole rolls on the vertical
closed orbit. We suppose that there is a distribution of alignment errors. That distribution will be
based on the real survey of magnet positions. The measured distribution of quadrupole offsets (as
of May 2011) is shown in Figure 3.1(left). The standard deviation of the distribution is 35 µm. The
measured distribution of rolls for all of the storage ring dipoles is shown in Figure 3.1(right) and
the standard deviation is 152 µrad. We assume that the standard deviation of the measurements is
representative of the fundamental uncertainty of the magnet positions and roll angles. We generate
a large number of configurations (1000) each with a Gaussian distribution of vertical quad offsets
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and dipole rolls and compute the closed orbit for each configuration and the root mean square of
the residual vertical orbit error, namely

σy =

√√√√ 1

N

N∑
i=1

y2
i (3.1)

where N is the number of beam position measurements.
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Figure 3.1: (Left) Distribution of measured vertical offsets of ring quadrupoles. The root mean
square of the distribution is 35 µm. (Right) Distribution of measured rolls of ring dipoles. σθ =
152 µ-rad.

Figure 3.3 is a histogram of the rms vertical orbit error for the 1000 seeds with quadrupole and
dipole alignment errors summarized in Table 3.1. The measured, uncorrected CESR orbit is shown
in Figure 3.2. The rms residual vertical orbit error is 1.06 mm, near the peak of the distribu-
tion of possible orbit residuals for the 1000 seeds shown in Figure 3.3. We see that the measured
zero corrector orbit is consistent with the measured distribution of quadrupole and bend misalign-
ments.

In order to appreciate the sensitivity of vertical emittance to misalignments and the critical role
of emittance tuning, it is useful to consider the effect of the quadrupole offsets. We compute
the vertical emittance for 200 different machines, each with a distribution of vertical quadrupole
offsets with standard deviation corresponding to the measured value of σv = 35 µm. The resulting
distribution of emittances is shown in Figure 3.4. Over 90% of the seeds have vertical emittance
greater than our 20 pm-rad target. Evidently beam-based measurement and compensation of
emittance diluting misalignments will be essential to achieve our emittance goal.

Table 3.1: RMS quadrupole and dipole misalignments

Parameter RMS

Quad vertical offset [µm] 35
Dipole roll [µrad] 152
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Figure 3.2: Measured vertical orbit in CESR with all vertical correctors turned off. The rms of
the residual is 1.06 mm

3.2.4 Sextupoles

In CESR, the sextupoles are mounted on the same tables as the quadrupoles on keyed alu-
minum blocks. There is no independent means of adjusting sextupole position with respect to
the quadrupole. Furthermore, as there are no survey monuments on the sextupole magnets, pre-
cision alignment is not practical. We estimate that the uncertainty of the alignment of sextupole
centers is 250 µm.

3.2.5 Wigglers

Because of the very high dipole field in the wigglers, even small amounts of residual vertical dis-
persion can contribute significantly to the vertical emittance. The equilibrium vertical emittance
in the storage ring is given by

εy = Cq
γ2

Jy

I5y

I2
(3.2)

where the quantum constant Cq = 55
32
√

3
~
mc = 3.84× 10−13 m, Jy is the vertical damping partition

number, γ = E/mc2, and

I5y =

∫
(η2
y + (βyη

′
y + αyηy)

2)/βy

|ρ3|
ds. (3.3)

The contribution to I5y due to residual vertical dispersion in the wigglers is

∆I5y ∼
〈η2
y〉
βy

∫ | cos3(kps)|
ρ3
w

ds (3.4)

∼
〈η2
y〉
βy

4l

3πρ3
w

(3.5)

In the CESRTA wigglers, λ = 0.4 m, and in the low emittance 2.085 GeV optics ρw = 3.66 m at
Bmax = 1.9 T , βy ∼ 10 m, and the wiggler length l =1.3 m. Then we find that the contribution
to I5y due to dispersion in the wiggler is

∆I5y ∼ 1.1× 10−3〈ηy[m]2〉m−1
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Figure 3.3: Distribution of residual vertical orbit offset for 200 configurations each generated with
gaussian vertical quadrupole offsets with σy = 35µm and bend rolls with σθ =152 µm.

For a typical E = 2.085 GeV CESRTA lattice, I2 ∼ 0.71 m−1. Therefore the contribution to the
vertical emittance due to residual vertical dispersion in one of the 12 damping wigglers in the
CESRTA lattice is

∆εy ∼ Cq
γ2

Jy

∆I5y

I2
∼ 10〈ηy[m]2〉nm− rad

A residual vertical dispersion of 1 cm in a single wiggler will generate a vertical emittance of 1
pm-rad.

The on axis integrated wiggler kick is zero. Rotation about the beam axis (tilts) and horizontal
displacements do not generate closed orbit or dispersion errors. But because there is a vertical
focusing component, vertical displacement of the wiggler generates vertical orbit and dispersion
in the same manner as a vertically focusing quadrupole. In addition the internally generated
dispersion can contribute directly to the emittance. Internally generated horizontal dispersion and
the associated emittance is the principal component of the horizontal emittance for this wiggler
dominated lattice. If the wiggler is tilted, so that there is a component of the nominally vertical
magnetic field in the horizontal plane, then it will generate vertical dispersion and emittance. If we
assume that the radiation is overwhelmingly generated by the wigglers (as is the case in CESRTA
at 2.085 GeV and in the ILC damping ring), then the contribution to the vertical emittance if all
of the wigglers are tilted by θ about the beam z-axis, is

∆εy ≈ Cq
γ2

Jy

8βy
15πk2

p(ρ
y
w)3

(3.6)

where ρyw is the peak wiggler bending radius in the vertical plane:

ρyw = ρw/ sin θ
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Figure 3.4: Vertical emittances of 200 configurations in the case that quadrupoles in each config-
uration are vertically offset with a Gaussian distribution with σy = 150 µm.

Then

∆εy ≈ (3.8× 10−13 m)(4080)2 8(10 m)

15π(15.71 m−1)2(3.66 m)3
sin3 θ = 0.9 sin3 θ nm− rad (3.7)

If the wiggler is tilted (rotated about the beam axis) by θ = 100 mrad, it will generate ∆εy ∼ 1 pm.
We believe the actual tilt angle to be less than ∼ 200µrad. Therefore the contribution to vertical
emittance from wiggler misalignment is negligible.

3.2.6 Survey

The alignment tolerances for the guide field magnets are summarized in Table 3.2. The table gives
the root mean square of the measured distribution of positions for the elements for which data is
available. The distribution of quadrupole tilts is shown in Figure 3.5. The values for sextupoles
and wigglers are estimates. As noted above, the misalignments associated with vertical orbit
errors, namely quadrupole offsets and dipole rolls, are consistent with the measured zero corrector
orbit.

3.3 Beam-based Measurements

The low emittance tuning procedure relies on beam based measurements both to calibrate the beam
position monitors and to determine sources of emittance dilution. The tuning procedure typically
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Figure 3.5: Distribution of measured tilt of ring quadrupoles with root mean square 133 µrad.

Table 3.2: Alignment tolerances after survey

Parameter RMS

Quad tilt [µrad] 133
Quad vertical offset [µm] 35

Dipole roll [µrad] 152
Sextupole vertical offset [µm] 250

Wiggler roll [µrad] 200

begins with a measurement of the closed orbit. As described in Chapter 2 of this report, the beam
position monitors have a single shot resolution of about 10 µm. After correcting closed orbit errors
we measure and correct betatron phase and coupling, and finally vertical dispersion. Techniques
for measuring the linear lattice functions are described in the remainder of this chapter.

Systematic effects limit the accuracy of our measurements of closed orbit, vertical dispersion, and
to some extent, transverse coupling. The most significant systematic in the measurement of the
closed orbit is a result of the uncertainty of the offset of the BPM with respect to the center of
the adjacent quadrupole. Beam based BPM/quad centering is discussed below. The accuracy of
the measurement of vertical dispersion is limited by variations in the gains of the BPM button
electrodes and related electronics, and the physical tilt of the beam position monitors. We attempt
to resolve these systematics with beam based measurement techniques.
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Figure 3.6: Button layout at a beam position detector

3.3.1 Phase and Coupling Correction

Betatron amplitude, phase and transvserse coupling are measured simultaneously. A circulating
bunch is driven resonantly with magnetic shakers with the aid of a tune tracker at the transverse
normal mode tunes.

At each of the four button electrodes (see Fig. 3.6) of each beam position monitor, we measure
the intensity of the signal on each turn. Typically N = 30, 000 turns of data are recorded. For
the motion at the “horizontal” frequency the amplitude and phase of the motion at each button is
extracted as follows

Aj,sin,h =
2

N

N∑
i=1

sin(θt,h(i)) aj(i)

Aj,cos,h =
2

N

N∑
i=1

cos(θt,h(i)) aj(i) (3.8)

where Aj,sin,h and Aj,cos,h are the “in-phase” and “out-of-phase” components of the horizontal beam
motion at button j = 1, . . . , 4. In the above equation θt,h(i) is the phase of the reference signal
from the horizontal tune tracker at turn i and aj(i) is the signal on button j at turn i. There is a
similar equation for the vertical motion. In order to speed up the data taking process, horizontal
and vertical measurements are done simultaneously. The above analysis depends upon the tunes
being well enough separated from any low-order resonance so that the “cross-talk” between the
horizontal and vertical mode sums in Eqs. 3.8 is negligible. In practice it is always easy to satisfy
this condition.

After the button amplitudes have been measured and summed, the in-phase amplitudes in the x
and y planes are given by

Ax,sin,h = Cx
A4,sin,h +A2,sin,h −A3,sin,h −A1,sin,h

A4,sin,h +A3,sin,h +A2,sin,h +A1,sin,h

Ay,sin,h = Cy
A4,sin,h +A3,sin,h −A2,sin,h −A1,sin,h

A4,sin,h +A3,sin,h +A2,sin,h +A1,sin,h
(3.9)

Similar equations describe the out-of-phase component at the horizontal tune and then a corre-
sponding set gives the in-phase and out-of-phase response to vertical shaking. Cx and Cy are
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constants dependent upon the geometry of the BPM. Here we are writing the dependence of po-
sition on button amplitude assuming linear dependence for illustration. In practice we include
nonlinear depenence with the help of a nonlinear model of the BPM pickup response [46].

The next step is to turn the sine and cosine components into phase and amplitude

Ax,h =
√

(Ax,sin,h)2 + (Ax,cos,h)2

φx,h = tan−1
Ahx,sin,h

Ahx,cos,h
(3.10)

and similarly for vertical shaking. In general, the horizontal mode motion of the beam can be
written in the form [47]

x = γc ax
√
βh cos(ψh,i)

y = −ax
√
βv [C22 cos(ψh,i) + C12 sin(ψh,i)] (3.11)

where βh and βv are the beta functions at the BPM, Cij are components of the coupling matrix,
and

ψh,i = i µh + φh,β + φh,0 (3.12)

with i being the turn number, µh being the horizontal tune, φh,β being the horizontal betatron phase
at the BPM, and φ0 being an overall phase offset independent of the BPM. In the above equation
γc is a parameter dependent upon the coupling. γc is generally near 1 and can be ignored.

Comparison of Eq. 3.11 with the measured beam amplitude components gives

βh = kh,β A
2
x,h

φh,β = φx,h + dφh

C12 =

√
βh
βv

Ay,h
Ax,h

sin(φy,h − φx,h) (3.13)

C22 = −

√
βh
βv

Ay,h
Ax,h

cos(φy,h − φx,h)

where kh,β and dφh are overall constants dependent upon the amplitude and phase of the shaker
drive. A similar analysis is carried out for the vertical shaking data. Here the x and y motions
are

x = ay
√
βh [C11 cos(ψv,i)− C12 sin(ψv,i)] (3.14)

y = γc ay
√
βv cos(ψv,i) (3.15)

where ψv,i is the analog of ψh,i in Eq. 3.12

ψv,i = i µv + φv,β + φv,0 (3.16)
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Figure 3.7: Example betatron phase and coupling correction. A) Measured betatron phase and
C12 coupling matrix element before a correction. Plotted are the difference between the measured
values and the design values as computed from the theoretical design lattice. B) Measured values
after correction. A perfect correction would result in the measured values being equal to the design
ones.

Comparison of this with the measured beam amplitude components gives

βv = kv,β A
2
x,v

φv,β = φx,v + dφv

C12 =

√
βv
βh

Ax,v
Ay,v

sin(φx,v − φy,v) (3.17)

C11 = −

√
βv
βh

Ax,v
Ay,v

cos(φx,v − φy,v)

The data is collected and analyzed for all 100 BPMs in less than 10 seconds.

Once a measurement is completed, the strengths of the quadrupoles and skew quadrupoles can be
adjusted to correct the Twiss parameters and coupling. This is done using a software model of the
CESRTA lattice. The correction procedure is in two steps. The first step is to vary the quadrupole
and skew quadrupoles in the model until the betatron phases and the C12 as computed from the
model most closely match the measured phases and measured C12. The measured beta is generally
ignored since the betatron phase gives a cleaner signal. This is true since the betatron phase is
insensitive to variations in the gains of the button signals. Similarly, the C11 and C22 data is
typically ignored since the C12 data is generally cleaner. This is due to the insensitivity of the C12

data to button gain errors and rotations of the BPM in the x-y plane.

An example correction is shown in Fig. 3.7. Fig. 3.7A shows the difference between measured and
design betatron phase and coupling before correction. Since the betatron phase can always be
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scaled by an arbitrary additive constant, the phase constants dφh and dφv are taken to be such
that the average measured phase is equal to the average phase as calculated from the design lattice.
Fig. 3.7B shows the measured phase and coupling after correction. The deviation between actual
and design values is now quite small. The vertical emittance ratio εv/εh due to coupling effects
is roughly σ2

C12
- the square of the RMS sigma of C12. After correction, σC12

is 0.004 so εv/εh

due to coupling is of order 2× 10−5 which is very small. The RMS betatron phase deviation after
correction is about 0.5 degrees which translates to an RMS deviation of the actual β relative to the
design β of less than 1%.

3.3.2 DC Dispersion

We have developed two techniques for measuring dispersion. The conceptually most straightforward
method and the one that is conventionally used at other machines, is to measure the change in the
closed orbit for a given change in beam energy. The beam energy is related to the RF frequency via
the momentum compaction, typically αp = 6.8×10−3 for low emittance CESRTA optics. RF cavity
bandwidth and energy aperture limit the frequency change to ±4 kHz and energy offset to about
0.24%. Sensitivity to a vertical dispersion of 1 cm, requires that we measure an orbit difference of
24µm. The CESRTA beam position monitors nominally have turn by turn reproducibility of order
10µm and the orbit measurement is based on an average of several thousand turns. (The accuracy
of the orbit measurement is limited by systematic rather than statistical effects.)

The disadvantage of this so-called DC measurement is that the speed with which the RF frequency
can be changed is very slow. It is limited by the speed with which the cavity tuners can respond.
A single measurement takes of several minutes.

3.3.3 AC dispersion

The AC dispersion method is a generalization of the phase and coupling measurement described
above. A single tune tracker is set to lock on the synchrotron tune, so that we drive the beam on
the synchrotron resonance via modulation of the RF phase. From the phase and amplitude of the
horizontal and vertical components of the motion at each of the beam position monitors we extract
the horizontal and vertical dispersion. The amplitude of the energy oscillations is determined by
fitting the measured horizontal dispersion signal to the design values. We also rely on the design
values of the longitudinal phase at each BPM, as it is not measured. Because the overall longitudinal
phase advance is much less than a wavelength (νs ∼ 0.05), the error from using calculated rather
than measured phase is small.

The amplitude of the energy oscillation is limited by the electronics that modulate the RF phase.
It is typically of order 0.2% so that the measurement accuracy is comparable to that obtained from
the DC technique. The AC measurement of dispersion is subject to somewhat different systematic
limitations than the DC measurement. The AC dispersion is based on the BPM response exclusively
at the synchrotron tune, whereas noise is filtered out of the DC measurement by averaging a large
number of turns. Perhaps the most important advantage of the AC measurement is that as no
change in RF frequency is required, the data can be collected in la few seconds.
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3.3.4 BPM/quad centering

To reach the lowest vertical emittance it is necessary for the vertical closed orbit to be as close
to the centers of the quadrupoles as possible to minimize vertical kicks which would contribute to
the vertical dispersion. Correction of the closed orbit can be compromised by offsets between the
magnetic center of a quadrupole and the electrical center of a near-by BPM.

To correct for this, these offsets are measured with the circulating beam. The standard beam
based technique involves measurement of orbit changes with variation of the quadrupole’s strength
k [48]. One common method for determining the quadrupole center involves taking measurements
at various beam positions and then interpolating the results to find the quadrupole center which is
the position where the beam orbit does not change with variation of the quadrupole strength. This
method can be slow due to the number of measurements needed. For large rings, this technique is
not practical.

The measurement method developed at Cornell uses a variation of this technique:

1. Betatron phase and orbit are measured at two different strength settings for a given quadrupole
at some location sq. To differentiate the two measurements, one measurement is called the
“base” measurement and is denoted with a subscript “0” and the other is called the “non-
base” measurement.

2. The change in vertical orbit dy ≡ y − y0 due to the variation in quadrupole strength is given
by

dy(s) = dy′
√
βy(s)βy(sq)

2 sinπνy
cos(|φy(s)− φy(sq)| − πνy) (3.18)

where dy′ is the kick due to the change in quadrupole strength, and the Twiss parameters β, φ
and ν are evaluated in the non-base configuration. From the phase data, the Twiss parameters
can be calculated. Using the calculated Twiss parameters, a fit to the orbit difference data
gives a measurement of dy′.

3. Using a fit to the betatron phase data, the change in quadrupole strength dk and the beta at
the quadrupole can be calculated. The change in orbit dy can be written in the form

dy(s) = [yqc − y0(sq)] dk L

√
βy(s)βy(sq)

2 sinπνy
cos(|φy(s)− φy(sq)| − πνy) (3.19)

where yqc is the quadrupole center, and L is the quadrupole length. Comparing the above
two equations gives

yqc =
dy′

Ldk
+ y0(sq) (3.20)

A similar analysis holds for the horizontal plane.

4. The accuracy of the calculation depends upon the displacement of the beam from the quadrupole
center dybeam. This separation is given by

dybeam = yqc − y0(sq) =
dy′

Ldk
(3.21)

The closer the beam is to the quadrupole center, the more accurate the calculation of yqc.
If the beam is too far off from the center, an orbit bump is used to steer the beam towards
the center and the measurement cycle is repeated until |dybeam| is within a set tolerance.
Typically this is 300µm.
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The important innovation here is that the analysis incorporates the phase measurement which leads
to a more accurate determination of the Twiss parameters and dk. This, in turn, leads to to a
more accurate determination of yqc. The result is that the tolerance on dybeam can be increased
which leads to a reduced number of measurement cycles and hence a shorter measurement time.
The entire procedure in CESR — calibrating all 100 or so BPMs — has been automated and takes
somewhat less than two hours.

3.3.5 BPM gains

The principal systematics limiting the accuracy of our measurement of vertical dispersion are vari-
ation of BPM button gains and BPM tilts. There are several effects that will contribute to gain
errors, beginning with the button itself and extending through the cabling and electronics. Small
variations in how the button is seated in the BPM block will affect the response to the beam signal,
as will cable and connector dependent attenuation. Finally, each of the four BPM button electrodes
drives a dedicated front end amplifier, each of which do not in general respond identically.

It is easy to see that our measurement of vertical dispersion is especially sensitive to gain errors.
Suppose for example, at a particular detector there is finite horizontal but identically zero vertical
dispersion. If there is any variation in button gains, a component of vertical dispersion will appear
in the measurement.

We estimate sensitivity of the measurement of vertical dispersion to gain errors with a simple
example. Consider a BPM where there is finite horizontal dispersion ηx and zero vertical dispersion,
and the on energy orbit is at precisely zero in both horizontal and vertical. The position for an
energy offset ∆E/2, is given by

x+ = x0

(
B+

4 −B
+
3 +B+

2 −B
+
1∑

Bi

)
where x0 = 19.6 mm is the BPM horizontal scale factor and the labels are defined in Figure 3.6.
We assumed that there is zero vertical orbit offset, and since there is zero vertical dispersion and no
change in vertical position with the energy, it must be that B+

4 = B+
2 and B+

3 = B+
1 so that

x+ = 2x0

(
B+

4 −B
+
3∑

Bi

)
Then with energy offset −∆E/2,

x− = x0

(
B−4 −B

−
3 +B−2 −B

−
1∑

Bi

)
By symmetry, B−3 = B+

4 and B−1 = B+
2 . Therefore

∆x = x+ − x− = 4x0

(
B+

4 −B
+
3∑

Bi

)
(3.22)

and ηx = ∆x/∆E. Now suppose that there is a fractional gain error f for B3 so that B3 → (1+f)B3.
Then we will measure

y+ = y0

(
fB+

3∑
Bi

)
, y− = y0

(
fB−3∑
Bi

)
= y0

(
fB+

4∑
Bi

)
, since B+

4 = B−3 .
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Finally

∆y = y0

(
f(B+

3 −B
+
4 )∑

Bi

)
(3.23)

(y0 = 26 mm for the CESR BPM.) Combining the equations 3.22 and 3.23 we find that

∆y =
f

4
∆x

y0

x0
→ ∆ηy ∼ 0.34fηx.

The peak horizontal dispersion in the CESRTA lattice is about 2 m. Therefore a 1% gain error on
a single button will introduce an error in the measurement of the vertical dispersion of ∆ηy ∼ 6.8
mm.

To calibrate the gains, we take advantage of the fact that a position measurement in a 4 button
detector is over constrained. Indeed, the signals on any three of the four buttons locates the beam
in the detector. We find that the four button signals are related as follows [49]

Bi
1 −Bi

2 −Bi
3 +Bi

4 =
c

I
(Bi

1 −Bi
2 +Bi

3 −Bi
4)(Bi

1 +Bi
2 −Bi

3 −Bi
4) (3.24)

where Bi
j is the intensity on the jth button on the ith measurement. c is a constant determined by

the BPM geometry and I the bunch current. If we suppose that there is a variable gain associated
with each button then we can write

g1B
i
1 − g2B

i
2 − g3B

i
3 + g4B

i
4 =

c

I
(g1B

i
1 − g2B

i
2 + g3B

i
3 − g4B

i
4)(g1B

i
1 + g2B

i
2 − g3B

i
3 − g4B

i
4) (3.25)

The next step is to measure response to the beam over the entire active area of the detector so that
we have a set Bi

j , for i = 1, . . . , N where N is a large number. Then we fit the gj to minimize

χ2 =

N∑
i=1

(
g1B

i
1 − g2B

i
2 − g3B

i
3 + g4B

i
4 −

c

I
(g1B

i
1 − g2B

i
2 + g3B

i
3 − g4B

i
4)(g1B

i
1 + g2B

i
2 − g3B

i
3 − g4B

i
4)
)2

(3.26)
In order to sample the active region of all of the BPMs, we resonantly drive the beam simultaneously
at the horizontal and vertical tunes, and collect turn by turn data. Because the measurement and
fitting can be completed in just a few minutes, it is straightforward to maintain up-to-date gain
calibrations. An example of fitted gains for all 100 beam position monitors is shown in Fig. 3.8.

A histogram of the individual gains is shown in Fig. 3.9a. The accuracy of the beam based method
for determining button gains is reflected in the reproducibility of the fitting procedure. Fig. 3.9b
shows the distribution of the variation in fitted gains for seven distinct sets of turn by turn data.
Evidently we characterize gains with fraction of a percent precision.

3.3.6 BPM Tilts

BPM tilts couple measured horizontal and vertical dispersion. In particular for a BPM tilt θ,
∆ηy ∼ ηxθ. Peak horizontal dispersion in the CESRTA lattice is about 1-2 m. In order that the
error in measured vertical dispersion be less than 10 mm, we require that uncertainty in BPM
tilts be less than 10 mrad. BPM tilts can be extracted from the coupling measurements by taking
advantage of the fact that the out of phase component of the coupling matrix C12 is insensitive to
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Figure 3.8: Measured BPM button gains. Note that there are four data points for each BPM.

tilt. Then if C12 is corrected with skew quads, the in phase components C11 and C22 provide a
direct measure of the physical tilt.

The algorithm for extracting BPM tilt from the coupling data is as follows:

1. Measure and correct coupling based on C12

2. Remeasure coupling, specifically C11 and C22.

3. Model the measured C11 and C22 by fitting BPM tilts.

The procedure has been applied to 58 sets of coupling data, all collected during the course of the
June 2011 run. The 58 data sets include measurements in five distinct lattice configurations and at
four different beam energies. The average along with the rms of the residuals of the fitted tilts are
shown in Fig. 3.10a. A histogram of the rms of the residuals is shown in Fig. 3.10b. Uncertainty
in the measured tilts is less than 10 mrad.
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Figure 3.9: (Left) Distribution of measured button gains, with standard deviation 4.2%. (Right)
Distribution of the variation in fitted button gains for seven sets of turn by turn data.
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Figure 3.10: (Left) Measured BPM tilts. The error bars are σ = 1
N

√∑N
i=1(θ − 〈θ〉)2 of 58 data

sets. (Right) The distribution of the rms residuals.

3.4 Performance of Low Emittance Instrumentation

3.4.1 Orbit

We estimate the intrinsic resolution of the orbit measurement in terms of reproducibility. The
variation in the measured positions for twenty consecutive measurements is shown in Figure 3.11.
The standard deviation of horizontal and vertical position measurements is 7.8µm and 5.8µm
respectively.

3.4.2 AC & DC Dispersion

The distribution of the variation of the measured horizontal and vertical dispersion is shown in
Figure 3.12. The standard deviations are 4.6 mm for horizontal and 2.3 mm for vertical dispersion,
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Figure 3.11: Reproducibility of horizontal (left) and vertical (right) orbit measurements. The
standard deviation of the measurements is 7.8µm and 5.8µm respectively.

corresponding to the intrinsic resolution of the dispersion measurement. The accuracy of the
dispersion measurement is limited by the systematics described above, rather than the instrinsic
resolution of the beam position monitors.
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Figure 3.12: Reproducibility of horizontal (left) and vertical (right) dispersion measurements. The
standard deviation of the measurements is 4.6 mm and 2.3 mm respectively.

3.4.3 Phase/coupling

In order to determine the intrinsic resolution limit of the phase and coupling measurement, we
repeat the measurement 20 times consecutively. Differences from one measurement to the next are
due either to some machine instability or statistical limitation of the technique. The distribution
of the residuals with respect to the average measurement of vertical phase for each BPM is shown
in Figure 3.13a, and the distribution of residuals with respect to the average coupling (C12) are
shown in Figure 3.13b.
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Figure 3.13: Reproducibility of vertical (left) betatron phase measurements, and transverse cou-
pling (right).

3.4.4 xBSM - vertical beam size

The X-ray beam size monitor images synchrotron radiation x-rays emitted in a hard bend dipole
onto a linear array of 32 photodiodes (see section 2.4.2). The xBSM is the principle tool for
measurng vertical emittance and determining the effectiveness of our low emittance tuning.

The pinhole image (as compared to that of the Fresnel zone plate and coded aperture) is the
most straightforward to interpret and is the basis for most of the low emittance tuning studies.
(The optic that we refer to as the pinhole is in reality a horizontal gap with adjustable width.)
Neglecting diffraction, light from a point source passing through a slit of width G produces an
image of width σpointsource = G

xs
(xi + xs), where xi and xs are distances from optic-to-image

and source-to-optic, respectively. The “effective height” of the pinhole can then be taken to be
σp = σpointsource/M , where M = xi/xo is the magnification of the pinhole. The pinhole (gap
height) is set to give minimum image size for the mean X-ray energy of 2 keV (at 2.085 GeV beam
energy). The effective height, σp = 21± 2µm, is defined as the convolution of magnified gap image
and diffraction distribution.

The final beam image will be computed as the convolution of the image of the source from an
infinitely small pinhole and the image of a finite-width gap from a point source σp. The width
of the final image will therefore be σim

2 = M2 ·
(
σy

2 + σp
2
)
. Solving this for the source size

yields

σy
2 =

σim
2

M2
− σp2 (3.27)

Systematic uncertainties that contribute to the error in the measurement of the beam size include
the location of the source point and the effective gap width. The magnification is inversely propor-
tional to the distance from the pinhole to the source and the effective gap width is subtracted in
quadrature to determine source size.

We estimate the uncertainty in the location of source point as follows. We note that X-rays are
emitted in a narrow cone with axis tangential to the orbit. The result is that there will be no
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light on the detector unless the X-ray beam-line corresponds to an orbit tangent. Now suppose the
angle of the orbit as it enters the bend is changed by ∆θ due to some change to the closed orbit.
The X-ray beam-line will no longer be tangent to the orbit at the nominal source point. There
will be some new point along the orbit whose tangent is parallel to the beam-line. In general that
new point will be displaced from the X-ray beam-line but we assume that the orbit can always be
translated radially to compensate for that displacement. We want to determine the distance along
the orbit from the nominal source point to the new tangent point.

The angle of the closed orbit varies through the bend by θ(s) = s/R where R is the radius of
curvature. The angle corresponding to the nominal source point is θn = sn/R where sn is the
location of the source. Now due to the shift in the closed orbit, the angle of every point along
the orbit inside the bend is shifted to θ → θ(s) + ∆θ. The angle of the X-ray beam line does not
change, (and that angle is θn), so the position of the source does. The change in position ∆s to
the point along the orbit with the original angle θn is given by

θn =
sn
R

+
∆s

R
+ ∆θ → ∆s

R
+ ∆θ = 0→ ∆s = −R∆θ

Therefore, the uncertainty in s corresponds to the uncertainty in the orbit angle offset ∆θ. And in
general, angle errors translate to position errors as ∆s = −R∆θ.

An inspection of a typical measured orbit with the xBSM bump shows that the angle of the orbit
through the bend is about 3 mrad. The uncertainty in the angle is certainly no more than 3 mrad.
(If we tried to increase the angle from 3 mrad to 6 mrad we would lose the beam since that would
correspond to a 30 mm displacement.) So let ∆θco = 3 mrad due to uncertainty in the closed orbit,
or we could take something larger for the angle uncertainty to be more conservative. But with
∆θ = 3 mrad, according to the above, |∆s| = R∆θ = (33 m)(3 mrad) = 10 mm.

Now consider the effect of the uncertainly in the direction of the beam-line. The beam-line is
defined by the aperture of the optical element (1.2 mm) and the detector width (0.5 mm). We
estimate the uncertainty in their positions very conservatively to be ±1 cm. A 1 cm uncertainty in
the location of the optic and another 1 cm uncertainty in the location of the detector, corresponds
to an uncertainty in the angle of the line by 2 cm/Lline, where Lline = 10.19 m is the distance from
optic to detector. Therefore the uncertainty in the angle of the line is ∆θl < 2 mrad.

We note in addition, that there is some finite angular spread in the light emitted by the beam which
means that the orbit at the source does not have to be precisely tangent to the beam line. The

angular spread is the quadrature combination of the angular divergence of the beam θdiv =
√

εx
βx

and the opening angle θopen = 1
γ .

Putting all the pieces together we have

∆θ =
√

(∆θco)2 + (∆θl)2 + (θdiv)2 + θ2
open =

√
32 + 22 + (0.00025) + (0.25)2 mrad = 3.6 mrad

(To compute θdiv we assume εx = 2.5 nm and βx = 10 m. For θopen we use γ = 2 GeV/0.51 MeV).
Then the uncertainty in position is

∆s = ±∆θR = ±12 cm

The nominal distance from source to lens is xs = 4 m and the fractional uncertainty is ∆s/s ∼ 3%.
Finally the uncertainty in the magnification is ∆M/M = ∆s/s ∼ 3%.
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The combined systematic uncertainty is computed from Equation 3.27:

∆σ =

√(
1

σ

σ2
im

M2

∆M

M

)2

+

(
1

σ
σ2
p

∆σp
σp

)2

∼ 2.5µm

Evidently the systematic error is dominated by uncertainty in the width of the gap.

3.4.5 Measurement resolution summary

The resolution of measurements of beam position, dispersion, coupling, betatron phase advance,
and vertical beam size are summarized in Table 3.3.

Table 3.3: Accuracy of beam based measurements

Parameter RMS

BPM position (absolute) [µm] 100
BPM position (differential) [µm] 10

Dispersion [mm] 10

Coupling(C12)[%] 0.2
Betatron phase [deg] 2

Vertical beam size [µm] 1

3.5 Ring Correction Methods

3.5.1 Tuning algorithm

The CESRTA low emittance tuning technique relies on a complete characterization and then cor-
rection of lattice errors. The procedure is to:

• Measure and correct closed orbit using all steerings.

• Measure betatron amplitudes, phase advance and coupling and correct with all skew quads
and lattice quads. The phase and coupling derives from turn by turn position data of a
resonantly excited beam[32] as described above.

• Remeasure closed orbit, phase and coupling, and measure dispersion. Simultaneously min-
imize closed orbit errors, coupling and vertical dispersion using vertical steerings and skew
quadrupoles.

The efficacy of the low emittance tuning algorithm is explored with simulations. We introduce ran-
dom misalignments of quadrupoles, sextupoles, wigglers, beam position monitors and quadrupole
focusing errors into the machine model. The standard deviations of the misalignments are consis-
tent with the survey as summarized in Table 3.2. We model the correction process by simulating
first the measurement of orbit, betatron phase, coupling, dispersion etc., including measurement
errors as given in Table 3.3. The vertical emittance at the conclusion of each step of the emittance
tuning process, for 1000 seeds, is shown in Figure 3.14.
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Figure 3.14: Simulation of effectiveness of low emittance tuning algorithm for machines with mis-
alignments as in Table 3.2 and measurement accuracy from Table 3.3, for 1000 seeds. The red line
is the distribution of vertical emittance in the event of no correction. The green line corresponds
to emittance after correction of closed orbit, blue after correction of closed orbit and coupling and
purple after correction of orbit, coupling and dispersion.

With these assumptions the low emittance tuning procedure yields εy < 8.9 pm-rad for 95% of
seeds, consistent with our control room experience where we routinely achieve sub 10 pm-rad
vertical emittance.

The simulations also show that if the BPM tilt is reduced from 22 mrad to 10 mrad, then 95% of
the seeds yield a corrected emittance less than 5 pm-rad. If, in addition, the differential resolution
of the BPMs is reduced from 10 µm to 4µm, then 95% of the seeds can be corrected to less than
2 pm-rad. Clearly the ability to identify sources is limited by the differential BPM resolution
and systematics, and not by the number or position of correctors. Absolute BPM position is not a
fundamental limit, as the measurement of dispersion is independent of BPM offsets. The systematic
that limits the quality of the dispersion measurement in CESRTA is the BPM tilts, and the energy
aperture that restricts the amplitude of the energy offset.

3.5.2 Normal Mode Dispersion Measurement and Correction

An alternative technique for low-emittance tuning, based on calibration of the BPMs with respect
to the beam normal modes, has been developed at CESRTA. Although this technique was initially
suggested by the turn-by-turn data provided by the new BPM digital signal processing electronics,
the necessary data can also be acquired using the well-established betatron phase measurement
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Table 3.4: Magnet misalignment and beam position measurement resolution

Parameter Initial

Quadrupole vertical offset [µm] 250

Quadrupole tilt [µrad] 300

Bend roll [µrad] 300

Sextupole vertical offset [µm] 250

Wiggler tilt [µrad] 200

BPM absolute resolution [µm] 100

BPM differential resolution [µm] 10

BPM tilt [mrad] 22

method. The basic principle behind the technique is that quantum excitation of betatron oscil-
lations in a particular mode results from photon emission at a location in the ring where the
dispersion has some non-zero component along an axis corresponding to motion in that mode. For
example, in a perfectly aligned planar ring without coupling, horizontal dispersion in a dipole leads
to excitation of the horizontal emittance. With zero vertical dispersion, there is no excitation of
vertical betatron motion, and the vertical emittance will damp to a (very small) value determined
by the opening angle of the synchrotron radiation. Alignment errors in a storage ring will lead to
generation of vertical dispersion and betatron coupling. If the coupling is reasonably small, then it
may be characterized by a (local) rotation of the axes corresponding to betatron motion in each of
the two transverse normal modes, which we denote mode I (close to the horizontal) and mode II
(close to the vertical). However, if the vertical dispersion is such that the total dispersion vector in
a dipole is parallel to an axis corresponding to mode I, then photon emission will lead to excitation
of motion in only this mode. If the BPMs can be calibrated to measure the beam motion along the
normal modes (rather than purely horizontal and vertical motion), then they can be used to mea-
sure directly the components of the dispersion parallel to the normal mode axes. Correction of the
mode II dispersion should then minimize the mode II emittance. Of course, the BPM calibration
will be dependent on the coupling, and is therefore likely to change after an applied correction.
However, if the calibration can be performed quickly and easily, then it should be possible to iterate
the correction procedure, including re-calibration at each step, to minimize the mode II emittance.
Calibration of a BPM to measure the motion along the normal mode axes may be achieved by
exciting beam motion in each of the normal modes in turn, while observing the response on the
BPM buttons. The relative changes in the button signals when the beam is observed over many
turns can be used to characterize the BPM response to motion in the corresponding normal mode.
Since collection of turn-by-turn data can be carried out simultaneously for all BPMs, the calibration
can be performed quickly and easily. Fig. 3.15 shows an example of calibration data collected for
BPM 7W with resonant excitation in mode I. The BPM calibration (which allows changes in beam
position along the normal mode axes to be calculated from measured changes in button signals)
is obtained from the gradients of line fits to the correlation plots. With high-resolution BPMs
(capable of turn-by-turn position measurements with resolution of order 10 µm), it is possible to
obtain high quality calibration data while maintaining an excitation amplitude below the point
where the nonlinear response of the BPM buttons becomes significant. The effectiveness of the
calibration may be tested by computing the Fourier spectra of the turn-by-turn data for excitation
in each normal mode. For a correct calibration, the spectrum obtained from each coordinate should
contain only a single peak, for the corresponding normal mode. Fig. 3.16 shows an example for
data collected with BPM 7W.
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Figure 3.15: Correlations between turn-by-turn button signals on BPM 7W during resonant
excitation of mode I. The beam is driven by the tune tracker at the mode I (horizontal) tune.
The five plots along the top of the figure show the signals on buttons b2, b3, b4, and horizontal
and vertical position versus the signal on button b1. Button signals are given in digitizer units.
Horizontal and vertical positon are in microns. The next four plots give dependencies of buttons
b3, b4 and horizontal and vertical position on button b2. The next three plots give dependencies on
button b3 and the next two on button b4. The last plot is vertical versus horizontal position. The
number g for each is the fitted gradient.

Following calibration, the normal mode dispersion may be measured in the conventional way, by
varying the RF frequency and observing the resulting change in closed orbit. Correction of the mode
II dispersion can be achieved using skew quadrupoles: the appropriate changes in strength of the
skew quadrupoles can be determined from a response matrix relating the skew quadrupole strengths
to the normal mode dispersion. In CESRTA, measurements have been made of the response of the
mode II dispersion to changes in strength of the skew quadrupoles. The results suggest that a
response matrix computed from an ideal model of the machine should be good enough to calculate
the skew quadrupole strengths needed to achieve correction of the mode II dispersion in the real
machine.

It should be emphasized that correction of the mode II dispersion effectively minimizes the quantum
excitation of particle motion in normal mode II: thus, there is no need to correct separately the
dispersion and the coupling. Also, since the BPMs are calibrated with respect to the normal modes
using direct observations of beam motion, the correction is insensitive to BPM gain errors. Fig. 3.17
shows the results of simulations of low-emittance tuning of CESRTA using correction of the mode
II dispersion. The technique is robust (correction was achieved for all seeds) and effective (in the
great majority of cases, the correction results in a mode II emittance below 20 pm).
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Figure 3.16: Fourier spectra of turn-by-turn signals recorded on BPM 7W. Top: “nominal” (x−y)
calibration, showing peaks corresponding to the mode I frequency in both x and y coordinates.
Bottom: “normal mode” calibration, showing the normal mode frequencies appearing in only the
corresponding normal mode coordinate.

Tests at CESRTA have demonstrated that normal mode calibration of the BPMs can be achieved
using either turn-by-turn data (with excitation in each normal mode successively), or using phase
advance data (with excitation in both normal modes simultaneously). The normal mode dispersion
can be measured with calibrated BPMs, using either the conventional method of RF frequency vari-
ation, or using the AC dispersion technique. Tests indicate that the resolution of the measurement
should be around 6 mm. Application of the technique to reduction of the mode II emittance was
tested by starting from a condition in which the machine was tuned to a vertical emittance of about
14 pm (based on measurements using the fast X-ray beam size monitor), then turning off the skew
quadrupoles. At this point, the emittance increased to 24 pm. After normal mode BPM calibration,
measurement and correction of the normal mode dispersion using new skew quadrupole settings,
the vertical emittance of 14 pm was restored. However, after a further iteration (re-calibration
of the BPMs, then further measurement and correction of the mode II dispersion), the vertical
emittance increased to 21 pm. This may have been because the correction was applied with equal
weight given to the mode II dispersion at each BPM: however, it is really the mode II dispersion
at the locations where synchrotron radiation is generated (i.e. the dipoles and, in particular, the
wigglers) that really counts for the excitation of mode II emittance. It is possible that overall
reduction of the mode II dispersion results in a (maybe small) increase in the mode II dispersion
in the dipoles and wigglers, and hence in an overall increase of the mode II emittance.

Further tests of low-emittance tuning based on measurement and correction of mode II dispersion
could be carried out using an optimized algorithm, in which greater weight is put on the mode II
dispersion measurements close to the dipoles and wigglers. The performance of the technique in
simulation is encouraging. Also, it has a number of advantages over other low-emittance tuning
techniques (such as orbit response matrix analysis), in that the required data can be collected
quickly and easily (within a few minutes), and the technique can be applied to a large ring as
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Figure 3.17: Results of simulation of low-emittance tuning in CESRTA using: (top) correction
of vertical orbit and vertical dispersion; (bottom) correction of mode II dispersion, using BPMs
calibrated to measure beam motion in the normal modes. The lines show the distribution of final
mode II emittance over 1000 seeds of random machine errors, for different cases of BPM gain errors.

easily as to a small ring. The insensitivity of the technique to BPM gain errors is also an attractive
feature.

3.6 Results

3.6.1 Effectiveness of Corrections

We summarize the effectiveness of our low emittance tuning in terms of corrections of betatron
phase and coupling, vertical dispersion and the resulting vertical emittance.

3.6.1.1 Betatron Phase and Coupling

Figures 3.18 and 3.19 show typical betatron phase and coupling measurement (C12) after performing
low-emittance tuning. We routinely correct betatron phase to an RMS (measurement - design) of
less than 2 degrees. Typical levels of RMS coupling after correction are C12 < 0.01.
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Figure 3.18: Typical horizontal and vertical betatron phase measurements (measured - design)
after corrections. The constant slope indicates a difference in measured and design tunes, which is
usually intentional when exploring a different working point. Accounting for the tune difference,
RMS (measured - design) φa = 1.7◦, φb = 0.64◦. This corresponds to a beta beat of ∼ 3% and 2%,
respectively.

3.6.1.2 Dispersion

The low-emittance tuning procedure typically reduces the vertical dispersion by a few millimeters.
Figure 3.20 shows a typical vertical dispersion measurement after the low-emittance tuning proce-
dure, using both AC dispersion and traditional dispersion methods. The two measurements were
taken within five minutes of each other, and in identical machine conditions.

The residual of the measured vertical dispersions and the best fit model using standard correc-
tor magnets, quadrupole offsets and tilts, defines the noise level of both the AC dispersion and
traditional dispersion measurements.
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Figure 3.19: Cbar12 coupling after a typical low-emittance correction. The RMS is 0.006.
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Figure 3.20: Typical vertical dispersion after a low-emittance correction, measured using both
resonant excitation (“AC” dispersion) and traditional orbit difference (“DC” dispersion) techniques.
For AC dispersion, RMS = 19 mm. For traditional dispersion measurement, RMS = 12 mm.

3.6.1.3 Emittance

The vertical emittance εy is related to beam size σy according to

σy =

√
βyεy +

(
ηy
σE
E

)2
, or (3.28)

εy =
σy

2 −
(
ηy

σE
E

)2
βy

(3.29)

For maximal sensitivity to small emittance, we typically employ a lattice with the relatively large
βsourcey = 40 m to image using the pinhole optic.

After low-emittance tuning, we routinely measure beam sizes below 20µm with 0.75 mA in a single
bunch (1.2×1010 positrons). With βsourcey = 40 m and assuming zero dispersion, this yields εy = 10
pm. From Eq. 3.29, for a fixed beam size measurement, any vertical dispersion at the source point
will reduce the contribution to the beam size from emittance. We therefore conclude this is an
upper bound on the typical emittance correction.

As a test of the veracity of the vertical beam size monitor we arrange skew quads to introduce
closed vertical dispersion bumps in the damping wigglers so that we can vary the beam size in
a controlled way. These coupling/dispersion bumps are designed to couple the large horizontal
dispersion (adjacent to the wiggler straight) into the vertical plane such that ηy 6= 0 in the wigglers,
thus increasing vertical emittance and beam size in a predictable way (see Fig. 1.3). The bumps
are closed such that the global coupling and dispersion outside the bump remain unaffected, in
particular at the xBSM source point. The actual response of the beam size to the coupling knob
will depend on the residual vertical emittance. An example of a scan of beam size vs. the dispersion
bump is shown in figure 3.21 for measurements made in April 2011.

There are a number of systematic uncertainties associated with interpretation of emittance from
measurements of beam size. Emittance depends on vertical beta at the source. We determine βy
by fitting to the betatron phase advance and amplitude data and extrapolating to the source point.
There is some uncertainty in the location of the source point, as discussed in Sec. 3.4.4. Vertical
dispersion is measured with a resolution of order 5 mm and it too depends on the location of the
source. Dispersion affects the emittance asymmetrically: that is, any nonzero dispersion will lead to
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Figure 3.21: Beam size as a function of a closed dispersion and coupling bump through one of the
arc wiggler triplets. The units of the horizontal scale are arbitrary Computer Units, proportional to
the strength of the coupling bump. Here, βsourcey = 40 m. Data is shown in red, with error bars from
fitting the beam profile from the xBSM for 100 consecutive turns. The blue points correspond to
the beam size calculated in a model lattice given the skew quad values used to generate the bump.
The model lattice includes a Gaussian distribution of vertical quadrupole offsets that generate a
residual emittance (with the dispersion bump off) of 6.3 pm of vertical emittance. Residual vertical
emittance of 6 pm is typical after low emittance tuning. The agreement between data and model
confirms the calibration and resolution of the beam size monitor

an overestimate of the emittance. In addition there are systematics associated with the instrument
itself. There is some uncertainty in the effective height of the gap (“pinhole”) as noted in Sec. 3.4.4.
We also need to evaluate possible intensity dependence of the detector response, channel to channel
bleedthrough between photodiodes, backgrounds, etc.

The parameters used to compute the error in the emittance measurement are summarized in Ta-
ble 3.5 below. Table 3.6 shows uncertainties on those parameters, and their contributions to the
emittance uncertainty.

3.6.1.4 Zero current emittance

As noted above, we typically, we execute the emittance tuning with about 0.75 mA (1.2 × 1010

particles) in a single bunch. At this bunch current, the beam position monitors operate in a
fixed gain mode and are optimally sensitive. We expect that collective effects that might generate
emittance growth will be very small.
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Table 3.5: Parameter values used for calculating beamsize.

Parameter Value

σim 60.6 µm
σp 21 µm
βy 39.2 m
ηy 0.75 mm

∂βy/∂s −8.98 m/m
∂ηy/∂s 0.52× 10−3 m/m
∂M/∂s 0.6/m
σE/E 8.125× 10−4

Table 3.6: Parameter uncertainties used for calculating uncertainty in emittance, and their relative
contributions to δεy. The statistical uncertainties in optics functions are determined by recording
several consecutive measurements in identical machine conditions, and noting the scatter between
measurements.

Parameter Value |∂εy/∂xi| × δxi Reference

δσim ±2.2 µm

{
+1.21 pm
−1.08 pm

100 consecutive turns; 〈σy〉 = 14± 1.6µm

δσp ±2.0 µm

{
+2.04 pm
−2.25 pm

Analytic estimate

δβsysy ±0.75 m ±0.09 pm RMS residual (measured - model)
δβstaty ±0.75 m ±0.09 pm See caption

δηsysy ±7mm

{
+1.00 pm
−0.65 pm

Fitting model to measurement

δηstaty ±2 mm

{
+0.67 pm
−0.80 pm

See caption

δssys ±2 cm ±0.14 pm Analytic estimate
δsstat ±0.2 cm ±0.01 pm Analytic estimate

3.6.2 Tune Scans

We explore the dependence of vertical beam size on betatron tunes with scans. A scan relies on an
automated measurement of beam size, as the tunes are varied across a grid.

For the scan shown in Figure 3.22 we use a lattice with βsourcey = 16.8 m at the x-ray beam size
monitor source point. Chromaticity is compensated to ∼ +1 in both horizontal and vertical using
a simple two-family sextupole distribution. The low-emittance tuning algorithm is applied prior to
intitiating the scan.

The width of various resonances in general depends on the details of the misalignments and the
deployment of compensating correctors. Tune scans are used to find a region of the tune plane in
which vertical beam size is a minimum, and is sufficiently clear of resonances so that measurements
of current (and other dependencies) will not be complicated with simple tune dependencies. From
the tune scan shown in Fig. 3.22, we identified the working point (Qx, Qy) = (0.584, 0.639), which
after application of the low-emittance tuning procedure, yielded emittance < 5 pm with 0.5 mA
bunch current.
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Figure 3.22: Beam size measured across a grid of working points. Each data point represents a
100-turn average. The color scale shows beam size in microns, where βsourcey = 16.8 m.

3.7 Summary and Further Investigations

We have developed a procedure for tuning for low emittance that routinely yields vertical emittance
of less than 10 pm (and as low as 5 pm), as measured with the X-ray beam size monitor. Correction
is based on measurements of closed orbit, betatron phase and coupling, and vertical dispersion.
Simulation of the tuning procedure applied to model machines with misalignments also yields
vertical emittance less than 10 pm when BPM accuracy is as summarized in Table 3.3.

The measurement of the vertical dispersion, essential to its correction, is limited by the systematic
uncertainty of the BPM tilt angles and BPM button to button gain variation. With the development
of beam based techniques for calibrating both BPM tilt and gains, we have been able to reduce
these systematics to the point where other sources of emittance blowup are beginning to appear.
For example, we observe a significant contribution to vertical size due to coherent motion of the
beam. Spectral analysis of turn by turn position data collected with the BPM system, and position
and size data from the x-ray beam size monitor, indicate beam motion with amplitude on the order
of the vertical beam size at the betatron tunes. We are in the midst of a thorough investigation
to identify the drivers of that motion. The possibilities include high frequency (10-100 kHz) noise
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from corrector magnet power supplies, feedback amplifiers, RF klystrons, etc. We believe that
the CesrTA instrumentation provides the capability to consistently achieve vertical emittance less
than 5 pm-rad, once coherent beam motion is eliminated. We further note that the emittance
tuning algorithm developed for CesrTA is easily extrapolated to a much larger ring. All of the
data from each of the beam position monitors is collected in parallel, so the time required for a
complete characterization with beam based measurements is essentially independent of the size of
the ring.



Chapter 4

Description of the Electron Cloud
Model

4.1 Description of the EC Model

4.1.1 Brief Historical Context

The buildup of high densities of low-energy electrons produced by the intense synchrotron radi-
ation in electron and positron storage rings has been under active study since the phenomenon
was identified in the mid-90’s in the KEK Photon Factory (PF) when operated with a positron
beam [50]. While this phenomenon did not present an operational limitation at the PF under nom-
inal conditions, the observation raised immediate concerns for both B Factories, then under design,
and triggered significant simulation efforts [51] and analytical work [52] aimed at quantifying the
phenomenon and designing mitigation techniques. Indeed the luminosity in the B-Factories was
eventually limited by the electron cloud effect (ECE). Mitigating this effect at both machines was
essential to reach, and then exceed, the design luminosity [40].

Almost concurrently with the above-mentioned developments at the PF and the B Factories, con-
cerns arose in 1995-96, based on prior experience at the ISR, that electrons might spoil the LHC
vacuum [53]. Early 1997 calculations showed that the LHC would be subject to an ECE [54],
chiefly because the beam emits copious synchrotron radiation upon traversing the dipole bending
magnets, in analogy with e+e− storage rings. Indeed, the LHC is the first proton storage ring
ever built in which synchrotron radiation is significant: although the critical photon energy is only
∼ 44 eV at 7 TeV beam energy (as opposed to several keV in typical e+e− storage rings), this value
is well above the work function of the chamber metal, hence photoemission inside the chamber is
unavoidable. A straightforward calculation yields an estimate of 0.4 photons emitted per proton
per dipole magnet traversal, also at 7 TeV beam energy. Although ∼50% of these photons have
energies below the work function of the metal, the remaining 50% lead to a substantial number
of photoelectrons. Further calculations [54, 55], including the effects of secondary electron emis-
sion, quickly revealed the possibility of a substantial ECE. In the case of the LHC, the primary
concern from the ECE is the power deposited on the beam screen by the electrons as they rattle
around the chamber under the action of successive bunch passages. This power must be dissipated
by the cryogenic system if the LHC superconducting magnets are to work as specified. Since the
cryogenic system was designed before the prediction of the ECE in the LHC, a significant “crash
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programme” was launched in 19971 to better estimate the power deposition, to identify the condi-
tions under which the cooling capacity might be exceeded, and to devise mitigation mechanisms if
necessary [56]. As part of this effort, the ECE has been experimentally studied at the SPS and the
PS at the high beam intensities required for nominal LHC operation (recent experience at the LHC
has confirmed the expectation of a significant ECE, even though the beam energy is presently only
3.5 TeV [57]). The LHC EC crash programme was almost certainly the single most comprehensive
effort to understand the electron cloud in a hadron machine, and was comparable in scope to the
present program at CESRTA for an e+e− machine.

The above-mentioned ECE’s are related to previously observed electron-proton dynamical effects
such as beam-induced multipacting (BIM), first observed at the CERN proton storage ring ISR [58]
when operated with bunched beams. Closely related to BIM is trailing-edge multipacting observed
at the LANL spallation neutron source PSR [59], where electron detectors register a large signal
during the passage of the tail of the bunch even for stable beams. All ECEs in e+e− as well as
in hadron storage rings have precursors in the e-p instabilities for bunched and unbunched beams
first seen at BINP in the mid-60s [60]. Another precursor to the presently observed EC phenomena
was a coupled-bunch instability observed at CESR, although in that case the photoelectrons were
trapped and localized in a section of the ring rather than spread out over most of the circumference
[61].

For the above reasons, 1995 marks the beginning2 of the Common Era (CE) of the ECE, i.e.,
common to lepton and hadron rings. Before the Common Era (BCE), the only beam dynamics
phenomena that were understood to be caused by electrons pertained to proton beams. As far as
we know, 1997 was the first year in which ECEs from both positron and proton storage rings were
discussed at the same meeting [62, 63].

The interest generated by the observations at the PF published in 1995 triggered a series of ded-
icated workshops the most recent of which was held in Italy in 2012 [64]. The similarities of the
ECE’s in e+e− and hadron storage rings is evidenced by the simultaneous and comparable partici-
pation, since 1997, of both communities in these workshops. Phenomena related to electron cloud
buildup have been reported, and in some cases have been a performance- limiting factor, at the
Advanced Photon Source at ANL [65], BEPC [66], the Spallation Neutron Source at ORNL [67],
the Relativistic Hadron Collider at BNL [68], the Proton Storage Ring at LANL [69], the DAΦNE
Φ-factory at the INFN-LNF in Frascati [70], PEP-II at SLAC [71, 72], the Tevatron Main Injector
at FNAL [73], the CERN Proton Synchrotron [74], the Super Proton Synchrotron [75], and the
LHC [57].

The enhanced understanding of electron cloud physics has identified the phenomenon as a primary
potential limiting factor in the operation of damping rings for future e+e− linear colliders [76–78].
The determining physical phenomena governing the characteristics of the clouds are the generation
of photoelectrons, their trajectories in the transient and ambient electric and magnetic fields, and
the secondary electron yield properties of the vacuum chamber. Thus the RF structure of the
beams, their intensities, the shape and dimensions of the vacuum chamber, and especially the
electronic properties of those chambers affect the production of electrons by incident electrons, and
are therefore important factors in the rates of buildup and decay. A variety of mitigation techniques
have been experimentally studied and implemented in other operating storage rings, such as grooves

1The website http://ab-abp-rlc.web.cern.ch/ab-abp-rlc-ecloud/ provides documentation and software tools
related to this effort.

2We choose the dividing line to be the publication year, 1995, even though the PF instability had been under
study well before publication.
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Figure 4.1: Cartoon illustrating the build-up of the electron cloud in the LHC for the case of 25-ns
bunch spacing. The process starts with photoelectrons and is amplified by the secondary emission
process. This cartoon was generated by F. Ruggiero.

on the chamber surface of the LHC arcs, TiN coating in the PEP-II ring [79] and at the Spallation
Neutron Source, and the use of weak solenoidal magnetic fields at both B Factories [72, 80].

4.1.2 The Basic Physical Picture

The qualitative description of the development of an electron cloud for a bunched beam is as
follows:

1. Upon being injected into an empty chamber, a beam generates electrons by one or more
mechanisms, usually referred to as “primary,” or “seed,” electrons.

2. These primary electrons get rattled around the chamber from the passage of successive
bunches.

3. As these electrons hit the chamber surface they yield secondary electrons, which are, in turn,
added to the existing electron population.

Figure 4.1 illustrates the build-up of the electron cloud in the LHC.

In essentially all cases of practical interest, it is the secondary electron emission process that
dominates the build-up of the electron cloud because this process leads to a compounding effect
of the electron density under the action of successive bunches traversing the chamber: the more
electrons are present in the chamber, the more electrons are generated upon striking the chamber
walls. A notable exception to this general rule is CESRTA because the beam can be adjusted in
length, energy, bunch spacing and bunch intensity so as to make either the primary or the secondary
component dominate the electron cloud.

As successive bunches go by, the EC density ne grows until a saturation level is reached. The
density gradually decays following beam extraction, or during the passage of a gap in the beam. In
many cases of interest, the net longitudinal motion of the electrons, i.e., along the beam direction,
is not significant; therefore, in first approximation, it makes sense to study the electron density and
its distribution at various locations around the ring independently of the others.
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The above considerations lead us to define “the EC model,” for the purposes of this report, as
follows: a set of physical formulas and specific parameter values, combined with a calculational
method, that allows one to determine the intensity, 6D distribution and time evolution of the
electron cloud in a given region of a ring, for a given vacuum chamber, under the action of a given
beam.

It should be clear that, with this definition, we are excluding from consideration the combined
action of the beam and the electron cloud (except in very limited circumstances—see below) under
their mutual influence. For example, the beam can become unstable under the action of the electron
cloud it generated, hence it can no longer be considered “given.” The full-fledged, fully coupled
beam–electron-cloud dynamical system is interesting in its own right, and advanced simulation
tools exist to study it [81], but is outside the scope of the research program presented here. In
any case, a fully unstable beam is of limited practical use, hence our interest is more in identifying
the conditions under which the instability arises, and/or to investigate the initial stages of the
unstable dynamics, and/or to investigate the effects from the EC on the beam in those cases when
the beam–electron-cloud coupling is sufficiently weak and the beam instability has small amplitude.
Such cases are discussed in Chapter 6. In all cases when the beam instability is relatively weak, a
detailed knowledge of the EC density and distribution is an essential first step to understand the
response of the beam.

4.1.3 Simulation Programs

As implied by the above physical picture, the codes employed in the simulation of the EC build-up
consist of some or all of the following actions:

1. Simulate the emission of photons off the beam particles as the beam traverses magnetized
sections of the storage rings, especially bending magnets and wigglers.

2. Track each of the simulated photons until they hit the vacuum chamber downstream of the
emission point. Decide whether any given photon yields a photoelectron, or whether it is
reflected. If it is reflected, keep tracking it.

3. Simulate the emission of photoelectrons at the photon-wall collision point.

4. Compute the forces that act on the electrons (from the beam, space-charge and external
fields).

5. Apply these forces to the electrons and track their motion.

6. Simulate the emission of secondary electrons as the electrons hit the walls of the chamber.

Simultaneously with the above actions, collect individual or statistical electron data via multiple
diagnostic modules interspersed throughout the simulation. These yield many details of the electron
distribution as a function of time, or time-averaged quantities.

Each of the above steps is performed during a time interval ∆t sufficiently small (typically 10−12−
10−10 s) to resolve the relevant ingredients of the physical model. The above processes are iterated
as needed, for a sufficiently long time (typically 105 − 107 time steps), in order to simulate the
overall development of the EC for a sufficiently long time that a comparison with experimental
data becomes possible and meaningful (typically 10−9 − 10−6 s).
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Since the electron motion in the cloud is usually negligible in the longitudinal direction (as compared
to the transverse dimension), the codes are typically 2D, and thus simulate the EC build-up and
decay at a given, short, section of the storage ring. The overall picture for the entire ring is obtained
by stitching together, in the post-processing phase, the results for each section with the appropriate
weight. The 2D approximation is a particularly good one for field-free regions, and for dipole and
quadrupole magnets provided they are significantly longer than the transverse size of the chamber.
In certain cases, the 3D-ness of the EC has been shown to be important, and hence not amenable
to 2D simulations. For example, the electron cloud has significant longitudinal motion at the
edge of quadrupole magnets; the resulting electron “leakage” into adjacent regions is important in
understanding the EC build-up in such regions [82, 83]. Wiggler magnets have magnetic fields whose
characteristic range of variation is typically comparable to the transverse size of the chamber in all
3 dimensions. For the case of the CESRTA wigglers, detailed 3D simulations show that the electron
dynamics in the regions where the vertical magnetic field By is maximum is qualitatively different
from that in the regions where By is minimum [84]. In the maximum-By regions, not surprisingly,
the electron dynamics is similar to that in a dipole magnet. In the minimum-By regions there is
significant drift of electrons across the mid plane of the chamber, leading to horizontal electron
density stripes, a phenomenon somewhat analogous to the generation of vertical stripes in dipole
magnets. The relative electron density in vertical vs. horizontal stripes in a wiggler is sensitive to
the photon reflectivity; therefore, the relative contributions to the vertical vs. horizontal coherent
tune shifts from the electron cloud in a wiggler is sensitive to the photon reflectivity. Not only
the distribution, but also the longevity of the electron cloud is different in these two regions. The
stripes in the maximum-By regions dissipate much faster than those in the minimum-By regions.
These long-lived electrons are trapped within the magnetic field, mirroring back and forth in the
longitudinal direction along field lines. Therefore, although these minimum-By regions are of limited
length, they may have a disproportionate effect on the beam.

The simulation codes employ the macroparticle method to represent the electrons in the cloud,
and a prescribed function of space and time to represent the beam. The computation of the
forces on individual electrons (due to the beam, external fields and the EC self-field), as well as the
tracking of individual macro-electrons under the action of such forces, are carried out via well-known
techniques [85]. Action 3 is implemented via a Monte Carlo algorithm by virtue of which macro-
electrons are generated randomly given the value of the quantum efficiency and the energy-angle
emission spectrum. A similar method is used to simulate the generation of secondary electrons in
action 6. In the case of the code POSINST [55, 71, 86, 87], a very detailed phenomenological model
of the secondary yield and the emission spectrum is implemented [86], some of whose parameter
values are obtained by fitting simulation results to the measurements. Other codes used simpler
models, although the basic physical model is the same.

At present, there is no single code that encompasses all 6 above-mentioned actions. All codes we
know about, however, do encompass, in various degrees of detail, actions 3-6. Actions 1-3 are typ-
ically implemented via a simplified model for the photoemission spectrum and quantum efficiency.
A major advancement of the CESRTA program over the past 2 years has been the development
of the simulation code Synrad3D [88] (see detailed description below), which implements in great
detail actions 1-3; the resultant temporal, geometrical and energetic distribution of the photoelec-
trons is then used in the Monte Carlo simulation of the generation of macro-photoelectrons in the
codes.

A broad-based program of developing, comparing and benchmarking electron cloud buildup simu-
lation codes was initiated in the CESRTA collaboration in 2008 and continues today. We have used
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CESRTA input parameters as input to the simulation codes ECLOUD [89, 90], CLOUDLAND [91, 92],
POSINST [71, 86], WARP/POSINST [93] and PEHTS [94], and compared the results against measure-
ments. By iterating this process, we are able to pin down parameters that are not well known and
thereby make more reliable extrapolations to the future ILC damping rings. The main parameters
that are not well known are those pertaining to the electronic surface properties, i.e. photon re-
flectivity, photoemission yield (QE) and photoemission spectrum, and secondary electron yield and
spectrum.

4.1.4 Primary Electron Sources

In lepton storage rings, including CESRTA and the proposed ILC damping rings, the beam typically
emits copious synchrotron radiation with a ∼keV critical energy upon traversing the dipole bending
magnets and/or the wigglers. On striking the vacuum chamber the synchrotron radiation photons
emit photoelectrons. For this reason, in such machines, the primary electrons are essentially all
photoelectrons. In hadron rings, with the notable exception of the LHC (see above), photoemission
is negligible; in such cases the primary electrons are typically generated by ionization of residual
gas, or by stray beam particles striking the chamber walls. In this report we will wholly ignore
these two latter sources.

4.1.4.1 Photon Transport

Introduction The Bmad software library [44] has been used very successfully at Cornell for
modeling relativistic charged particles in storage rings and linacs. Associated with this library are
a number of programs used for lattice design and analysis. Recently, a new program that uses the
Bmad library, called Synrad3D [88], has been developed to track synchrotron radiation photons
generated in storage rings and linacs.

The motivation for developing Synrad3D was to estimate the energy and position distribution of
photon absorption sites, which are critical inputs to codes which model the growth of electron
clouds. Synrad3D includes photon scattering from the vacuum chamber walls, based on X-ray data
from an LBNL database [95] for the smooth-surface reflectivity, and an analytical model [96, 97]
for diffuse scattering from a surface with finite roughness. Synrad3D can handle any planar lattice
and a wide variety of vacuum chamber profiles. A simpler, earlier code [98] was applied to the
synchrotron radiation in the LHC.

In the following sections, the general approach used in Synrad3D will be described.

Approach Synrad3D uses Monte Carlo techniques to generate simulated photons based on the
standard synchrotron radiation formulas for charged beam particles traversing dipoles, quadrupoles
and wigglers, in the lattice of an accelerator. Any planar lattice can be handled. The lattice can be
specified using Bmad, MAD, or XSIF formats. Photons are generated with respect to the particle
beam’s closed orbit, so the effect of variations in the orbit can be studied. In a linear accelerator
lattice, since there is no closed orbit, the orbit is calculated from the user supplied initial orbit.
The particle beam size is also taken into account when generating the photon starting positions.
The emittance needed to calculate the beam size can be supplied by the user or is calculated from
the standard synchrotron radiation formulas.
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Figure 4.2: Specular reflection probability [96], vs. photon energy and angle, for an rms surface
roughness of 200 nm.

Scattering Model Simulated photons are tracked until they hit the wall, where the probability
of being scattered, and the scattering angle, are determined by their energy and angle of incidence.
This section describes the scattering model.

Generally, the probability of specular reflection of a photon from a rough surface depends on the
the rms surface roughness σ, the photon wavelength λ, and the grazing angle. An explicit formula
for this probability is [96]

Pspec = e−g(x,y), (4.1)

in which

g(x, y) =
4π2σ2(x+ y)2

λ2
(4.2)

where x is the cosine of the incident polar angle, and y is the cosine of the scattered polar angle. For
a typical technical vacuum chamber surface, the rms surface roughness σ & 200 nm is greater than
most of the X-ray wavelengths of interest, for all except the lowest energy photons. In this regime,
except at very small grazing angles, diffuse scattering from the surface dominates over specular
reflection. This is illustrated in Fig. 4.2.

The theory of diffuse scattering of electromagnetic waves from random rough surfaces is a well-
developed subject, and is covered in detail in references [96] and [97]. The model we use here is
based on scalar Kirchhoff theory; this model has been used successfully to describe the scattering of
soft X-rays from metal surfaces [99, 100]. In our case, we assume a Gaussian distribution for both
the surface height variations (rms σ) and for the transverse distribution (equal in both transverse
directions, with autocorrelation coefficient T ).

The most general expression for the diffusely scattered power is complex, and involves an infinite
sum. However, the expression simplifies substantially in the limit g(x, y) � 1. For very rough
surfaces corresponding to technical vacuum chambers, for which typically σ � λ, this condition is
satisfied over much of the region of interest. In this limit, the diffusely scattered power per unit
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solid angle is given by

dPdiff

dΩ
= P0

〈R〉
4πy

(1 + xy)2

(x+ y)4
τ2e
− (2−x2−y2)τ2

4(x+y)2 (1− a cosφ)2eb cosφ, (4.3)

with

a =
h(x, y)

1 + xy
, (4.4)

b =
2h(x, y)τ2

4(x+ y)2
, (4.5)

h(x, y) =
√

1− (x2 + y2) + x2y2. (4.6)

In this expression, P0 is the incident power, and 〈R〉 is the smooth-surface reflectivity, which is
determined by the atomic structure of the surface material. φ is the scattering angle out of the
plane of incidence. Note that the relative power depends on the ratio τ = T/σ, and not on the T
or σ separately.

The smooth-surface reflectivity 〈R〉 depends on the atomic structure of the surface materials (in-
cluding any thin layers which may be deposited on the surface). The surface roughness parameters
σ and T depend on the geometry of the surface deviations from a perfect plane. These parameters
may be determined from inspection of the vacuum chamber surface, for example, using an atomic
force microscope.

To derive a working model for the smooth surface reflectivity and the surface parameters for a
typical vacuum chamber surface, we have relied on measurements [101] of X-ray scattering from
an aluminum vacuum chamber surface made at DAPHNE. For these measurements, the rms surface
roughness of the sample was reported to be 200 nm.

The theory of diffuse scattering discussed above has been used, together with smooth surface re-
flectivity results taken from an X-ray database [95], to predict the scattering and compare with
the measurements. From these comparisons, the best-fit value for the transverse autocorrelation
parameter, T , was found to be 5500 nm. In addition, it was found that the smooth-surface reflec-
tivity corresponding to a 10 nm carbon film on an aluminum substrate was needed to fit the data.
The assumption of an aluminum oxide surface film was not consistent with the data. The data and
the corresponding fits are shown in Fig. 4.3, 4.4, and 4.5.

With the smooth-surface reflectivity determined, and the surface parameters established, the scat-
tering model in Synrad3D is completely determined. The model currently in use has a smooth-
surface reflectivity illustrated in Fig. 4.6. Diffuse scattering distributions for 30 eV photons are
shown in Fig. 4.7 and Fig. 4.8. At this low photon energy, the approximation g(x, y)� 1 does not
hold in general, and the full diffuse scattering formalism is used to compute these distributions.
Diffuse scattering distributions for high energy photons, for which g(x, y)� 1 are shown in Fig. 4.9
and Fig. 4.10. These distributions have been computed from Eq. 4.3.

Vacuum Chamber Model The vacuum chamber wall is characterized at a number of longi-
tudinal positions by its cross-section. The cross section model is shown in Fig. 4.11. As shown
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Figure 4.9: Diffuse scattering polar angular distributions for high energy photons
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in the figure, antechambers can be included. A vacuum chamber wall cross-section may also be
characterized using a piecewise linear outline.

In between the cross-sections, linear interpolation or triangular meshing can be used. Linear inter-
polation is faster but is best suited for convex chamber shapes.

4.1.4.2 Photoelectron Models

The simple photoelectron generation model implemented at present uses a single energy-independent
value for the quantum efficiency, ignores the incident photon energy spectrum and generates an
ad-hoc photoelectron energy distribution which must be re-tuned for each set of beam conditions
under study. The reasonableness of these empirically determined values may be checked by compar-
ing with direct measurements of the quantum efficiency. Since the quantum efficiency is a function
of the energy of the absorbed photons, we need to know the photon energy spectrum to do this.
This spectrum is provided by the photon transport simulations described in Section 4.1.4.1.

In connection with studies of electron cloud effects for the LHC, direct measurements [102] have
been made of the quantum efficiency, and the photoelectron energy spectrum, for VUV photons
in the energy range up to about 120 eV. The measurements were made for a variety of surfaces,
including aluminum. To estimate the relative quantum efficiency above 120 eV, we refer to tables of
the photoabsorption cross section as a function of energy, as given in the Atomic Data and Nuclear
Data Tables [103, p.34]. The relative quantum efficiency obtained in this way for an aluminum
surface is shown in Fig. 4.12.

The information from Fig. 4.12 can be folded with the photon energy spectrum from the photon
transport simulations to estimate the effective quantum efficiency for different beam energies at
different points in the CESRTA ring. This provides additional information that is useful in con-
straining the quantum efficiency when comparing with CESRTA data, and in extrapolating electron
cloud effects to future positron rings.

Absolute quantum efficiencies, averaged over a VUV photon energy spectrum, were also measured
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Figure 4.12: Relative quantum efficiency for an aluminum surface vs. photon energy. Left: energy
range up to 0.5 keV. Right: energy range up to 10 keV. The L- and K-edges are evident at energies
near 0.1 keV and 2 keV, respectively.

in Ref. [102]. These results were quite sensitive to the surface material and conditioning, but were
in the range of 4% to 11%. Quantum efficiency values found for the best fits to the CESRTA data
are roughly similar to these numbers.

4.1.5 Secondary Electron Emission

The above-mentioned primary mechanisms are usually insufficient to lead to a significant EC den-
sity. However, the average electron-wall impact energy is typically∼100–200 eV, at which secondary
electron emission is significant. As implied by the above description, secondary emission readily
exponentiates in time, which can lead to a large amplification factor, typically a few orders of
magnitude, over the primary electron density, and to strong temporal and spatial fluctuations in
the electron distribution [104]. This compounding effect of secondary emission is usually the main
determinant of the strength of the ECEs, and is particularly strong in positively-charged bunched
beams (in negatively-charged beams, the electrons born at the walls are pushed back into the wall
with relatively low energy, typically resulting in relatively inefficient secondary emission).

We remind the reader, however, that the broad flexibility of the CESRTA beam allows the estab-
lishment of experimental conditions in which one can selectively emphasize either the primary or
the secondary electron components of the electron cloud.

The ECE combines many parameters of a storage ring such as bunch intensity, size and spacing,
beam energy [105], vacuum chamber geometry, vacuum pressure, and electronic properties of the
chamber surface material such as photon reflectivity Rγ , effective photoelectric yield (or quantum
efficiency) Y , secondary electron yield (SEY), characterized by the function δ(E) (E =electron-wall
impact energy), secondary emission spectrum [106, 107], etc. The function δ(E) has a peak δmax

typically ranging in ∼ 1− 4 at an energy E = Emax typically ranging in ∼ 200− 400 eV.

A convenient phenomenological parameter is the effective SEY, δeff, defined to be the average of δ(E)
over all electron-wall collisions during a relevant time window. Unfortunately, there is no simple
a-priori way to determine δeff, because it depends in a complicated way on a combination of many
of the above-mentioned beam and chamber parameters. If δeff < 1, the chamber walls act as net
absorbers of electrons and ne grows linearly in time following beam injection into an empty chamber.
The growth saturates when the net number of electrons generated by primary mechanisms balances
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the net number of electrons absorbed by the walls. If δeff > 1, the EC grows exponentially. This
exponential growth slows down as the space-charge fields from the electrons effectively neutralize
the beam field, reducing the electron acceleration. Ultimately, the process stops when the EC
space-charge fields are strong enough to repel the electrons back to the walls of the chamber upon
being born, at which point δeff becomes = 1. At this point, the EC distribution reaches a dynamical
equilibrium characterized by rapid temporal and spatial fluctuations, determined by the bunch size
and other variables. For typical present-day storage rings, whether using positron or proton beams,
the spatio-temporal average ne reaches a level ∼ 1010−12 m−3, the energy spectrum of the electrons
typically peaks at an energy below ∼ 100 eV, and has a high-energy tail reaching out to keV’s.

If there is a gap in the beam, or if the beam is extracted, the cloud dissipates with a fall time that
is controlled by the low-energy value of δ(E) [108]. In general, there is no simple, direct correlation
between the rise time and the fall time.

In regions of the storage ring with an external magnetic field, such as dipole bending magnets,
quadrupoles, etc., the EC distribution develops characteristic geometrical patterns. For typical
fields in the range B = 0.01− 5 T and typical EC energies < 100 eV, the electrons move in tightly-
wound spiral trajectories about the field lines. In practice, in a bending dipole, the electrons are
free to move in the vertical (y) direction, but are essentially frozen in the horizontal (x). A cloud
electron in a dipole field gets a kick from a bunch which is proportional to the bunch charge and
inversely proportional to the distance from the beam orbit to the cloud electron (assuming the
electron is outside the core of the bunch). Secondaries produced when that electron strikes the top
or bottom of the chamber are trapped at the same horizontal position, and these secondaries will
be subjected to the same x dependent kick. As a result, the x dependence of the kick imparted
by the beam on a given electron is remembered by the electron for many bunch passages. It
often happens that for a given value of the bunch charge, the kick imparted by the bunch, which
corresponds to the electron-wall impact energy, equals Emax. At this location δ(E) = δmax, hence
ne is maximum, leading to characteristic high-density vertical stripes symmetrically located about
x = 0 [109]. For quadrupole magnets, the EC distribution develops a characteristic four-fold
pattern, with characteristic four-fold stripes [110].

The secondary emission yield (SEY) function δ(E0, θ0) is the average number of electrons emitted
when an electron of kinetic energy E0 impinges on a surface at an incident angle θ0 (conventionally
measured relative to the normal to the surface). The SEY reaches a peak value δmax (convention-
ally specified at normal incidence) at an energy E0 = Emax. A fairly detailed phenomenological
probabilistic description of the secondary emission process is presented in Refs. [86, 87], upon which
we base our analysis.

Closely related to δ is the emitted-energy spectrum of the secondary electrons, dδ/dE at given
incident energy E0, where E is the emitted electron energy. The spectrum covers the region
0 ≤ E < E0, and it exhibits three fairly distinct main components: elastically reflected electrons
(δe), rediffused (δr), and true secondaries (δts). The SEY is given by δ = δe + δr + δts. The
three components are emitted with qualitatively different energy spectra. Depending upon various
features of the storage ring considered, the three components can contribute differently to various
aspects of the ECE. Detailed analyses are presented in Ch. 5 and Ch. 6.
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4.2 Summary

In summary, the electron-cloud model:

• Is characterized by rich physics, involving many ingredients pertaining to the beam and its
environment.

• Involves a broad range of energy and time scales.

• Is always undesirable in particle accelerators.

• Is often a performance-limiting problem, especially in present and future high-intensity storage
rings.

As a consequence, the physics of the formation and dissipation is challenging to accurately quantify,
predict and extrapolate. The main goals of current research in electron-cloud physics are, in no
particular order of importance or relevance:

• Identify the relevant variables in each case.

• Estimate the electron density, time dependence, incident flux at the walls of the chamber,
etc.

• Compare predictions against measurements as thoroughly as possible; iterate the process and
pin down the values of the relevant parameters.

• Predict the magnitude of the effect in other cases; if possible, minimize the effect at the design
stages of new machines.

• Define a relatively simple set of rules of thumb, or a simple effective theory, to approximately
determine the severity of the effect.

• Design and implement mitigation or suppression mechanisms.

The R&D program on electron cloud at CESRTA described in this Phase-I Report addresses all the
above.



Chapter 5

Studies of Electron Cloud Growth
and Its Mitigation

5.1 Local EC Build-Up and Mitigation Studies

5.1.1 Overview

The buildup of high densities of low-energy electrons produced by the intense synchrotron radiation
in electron and positron storage rings has been under active study since it was identified in the
mid-90’s in the KEK Photon Factory (PF) when operated with a positron beam [50]. While
this phenomenon did not present an operational limitation at the PF under nominal conditions,
the observation raised immediate concerns for both B Factories, then under design, and triggered
significant simulation efforts [51] aimed at quantifying the phenomenon and designing mitigation
techniques. Several years later, as the luminosity performance in the B Factories was pushed
towards its specified goal, the electron cloud became at some point the most significant limitation.
Mitigating this effect at both B Factories then became essential to reach, and then exceed, the
design performance [40]. For a more complete historical summary, see Sec. 4.1.1.

Simple analytic examinations of the electron dynamics under the influence of the beam soon re-
vealed that, for essentially all the high-energy storage rings in which the phenomenon has been
observed, the electron motion takes place predominantly in the transverse plane, i.e., in the plane
perpendicular to the beam direction. While a certain amount of longitudinal electron drift is al-
ways present, it is generally a good approximation to analyze the electron-cloud density locally,
independently of the other regions of the ring. This is particularly true in regions where there is
no external magnetic field, or when this field is uniform. For the same reasons, the analysis of the
build-up and decay of the electron cloud at any given location is quite amenable to a 2D analysis.
For this reason, 2D build-up codes have been extensively used and have led to substantial progress
in the field. It should be kept in mind, however, that there are regions in the machine, particularly
in small rings, in which the 3D nature of the external field demands 3D simulation codes. Such is
the case, for example, of wiggler magnets and the ends of dipole bending magnets. In case that
the bunch is very long, such as in the spallation neutron source PSR [59], the E × B drift of the
electrons is significant, and a 3D analysis become necessary in many cases.
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5.1.2 Special Features of the CESRTA EC Program

The CESRTA program is the single most comprehensive effort to measure and characterize the EC,
and to assess techniques for its mitigation, in e+e− storage rings to date [1]. Mitigation techniques
studied include low-emission coatings such as TiN, amorphous carbon and diamond-like carbon on
aluminum chambers; grooves etched in copper chambers; clearing electrodes; and more. Combined
with an extensive array of instrumentation and diagnostic tools such as retarding-field analyzers and
shielded-pickup detectors, much has been learned to date about the physics governing the buildup
of electron clouds. While some of these diagnostics instruments had been employed in previous
studies elsewhere in various combinations, the CESRTA program includes all of them in a single
storage ring, with measurements analyzed by the same group of researchers. In addition, several
pre-existing simulation codes have been augmented, cross-checked, and in some cases debugged,
and applied to the analysis of the data.

In essentially all cases of practical interest, it is the secondary electron emission process that
dominates the build-up of the electron cloud because this process leads to a compounding effect
of the electron density under the action of successive bunches traversing the chamber: the more
electrons are present in the chamber, the more electrons are generated upon striking the chamber
walls. The flexibility of the beam formatting at CESRTA affords the unique and valuable possibility
of studying the electron cloud formation and dissipation with a beam consisting of an almost
arbitrary fill pattern and bunch intensity. This flexibility allows, in principle, to tease out the
contributions to the electron cloud due to photoemission from those due to secondary electron
emission. This is a consequence of the fact that short bunch trains (typically fewer than 10 bunches)
lead to an electron cloud dominated by photoemission, while long bunch trains (say, more than
40) lead to an electron cloud typically dominated by secondary electron emission (unless the peak
value of the SEY is unusually low, say < 0.9). In addition, an isolated “witness bunch” can be
placed at varying distances from the end of the train, thus affording the possibility of studying the
dissipation of the electron cloud as a function of time.

In addition, the beam energy can be varied in the range ∼ 2 − 5 GeV, which provides a powerful
handle on the synchrotron radiation intensity and hence on the photoelectron creation rate. As if the
above features were not enough, the instrumentation installed at CESRTA allows the measurement
of the electron cloud density bunch by bunch, which provides yet another handle to disentangle the
intensity of the photoelectrons from the secondaries, as well as a more detailed and time-resolved
analysis of the build-up of the EC density.

5.1.3 Simulation Program

A broad-based program of developing, comparing and benchmarking electron cloud buildup sim-
ulation codes was initiated in the CESRTA collaboration in 2008 and continues today. We have
used CESRTA parameters as input to the simulation codes ECLOUD [89, 90], CLOUDLAND [91, 92],
POSINST [71, 86], WARP/POSINST [93] and PEHTS [94], and compared the results against measure-
ments. By iterating this process, we are able to pin down parameters that are not well known and
thereby make more reliable extrapolations to the future ILC damping rings. The main (indeed, the
only) parameters that are not well known are those pertaining to the electronic surface properties,
i.e., photon reflectivity, quantum efficiency, and secondary electron emission.
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5.1.3.1 EC Build-Up Modeling

Essential components of the codes are photoelectron generation models, time-sliced calculations
of macroparticle dynamics including beam kicks, the space charge force from the cloud itself, the
Lorentz forces of ambient magnetic fields, and the the model describing the various components of
the secondary yield (SEY). The ECLOUD and POSINST models use two-dimensional approximations
for the electric fields and have successfully reproduced a variety of coherent tune shift measurements,
as well as local RFA and shielded-pickup measurements. These 2D codes are relatively fast, and are
generally successful in predicting the features of the electron cloud in regions of the ring that are
essentially 2D, namely field-free regions and long magnets, especially dipoles. The CLOUDLAND [111]
and WARP/POSINST [84] codes are 3D and therefore far more computationally expensive, and have
been used to model the electron cloud in essentially 3D regions such as the ends of quadrupoles and
sextupoles, and wiggler magnets, providing information on the long-term trapping of electrons. In
addition, it should be pointed out that ECLOUD and POSINST are build-up codes. They assume that
the beam is a prescribed function of space and time and therefore does not respond to the electron
cloud. CLOUDLAND and WARP/POSINST, in addition to being 3D, have the option of describing
the beam fully dynamically, so that the beam and the electron cloud respond to their mutual
simultaneous influence.

5.1.3.2 Photon Production, Transport and Absorption

In Section 4.1.4.1, we have described the code Synrad3D, which models photon production, trans-
port, scattering, and absorption in beam lines and storage rings. In this section, we present five
examples of Synrad3D photon production, transport and absorption simulations using CESRTA lat-
tices and vacuum chambers. The examples are presented in order of increasing sophistication.

Example 1: Photon Emission in a Dipole As the first example, we consider the CESRTA
ring with a 5.3 GeV positron beam, and use Synrad3D to simulate photon emission only in the
arc dipole at B12W. The vacuum chamber is a simple ellipse (dimensions 9 cm horizontal by 5 cm
vertical), and the scattering is purely specular. The photons are generated only in the upstream
end of this dipole but propagate downstream and can scatter.

In Fig. 5.1, we show a collection of photon trajectories, projected onto the bend plane. Photons
generated by the beam in B12W strike the B12W vacuum chamber a short distance downstream.
Some are absorbed here, but most scatter and strike the vacuum chamber further downstream, in
B13W. More are absorbed here, but many others scatter again.

These photon trajectories in three dimensions are shown in Fig. 5.2. Photons from the source (on
the right) propagate and strike the vacuum chamber. Blue dots represent absorption sites. For this
simple example, in which the photon source is localized longitudinally, the absorption site locations
tend to be clumped in several clusters (at the location of downstream dipoles), with decreasing
intensity as we get further from the source.

Other features of the photon scattering and absorption process are shown in Fig. 5.3 and Fig. 5.4.

In Fig. 5.3(left), a histogram of the number of reflections is presented. Many photons suffer no
reflections, that is, they are absorbed as soon as they hit the vacuum chamber, but most are
reflected several times before being absorbed. The mean number of reflections is 5.1.
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3840511-156

Figure 5.1: Photon trajectories from B12W: projections onto bend plane. The red dots at the
lower right are the photon source (the radiating beam in a section of the dipole). Black lines are
photon trajectories, and blue dots are photon absorption sites. The green lines in the lower right
are the edges of the vacuum chamber in B12W; the red lines are the edges in a straight section,
and the green lines on the left are the edges of the vacuum chamber in the next dipole, B13W. The
geometry has been distorted for purposes of illustration.
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Figure 5.2: Photon trajectories from B12W in three dimensions. The photon source is on the right.
Black lines are trajectories, and blue dots are photon absorption sites. The transverse geometry
has been distorted from an ellipse to a circle, and the longitudinal dimension has been rectified and
divided by 10, for purposes of illustration.
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Figure 5.3: Reflection distribution (left) and energy distribution (right). The mean number of
reflections is 5.1.
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Figure 5.4: Distribution of photon absorption sites around the vacuum chamber perimeter
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Figure 5.5: Distribution of photon absorption sites vs. longitudinal position, for different magnetic
environments. The origin for the longitudinal coordinate is the center of the L0 straight section.
The ring circumference is about 760 m.
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Figure 5.6: Photon intensity distribution (in photons/meter/radian) vs. polar angle (measured
around the vacuum chamber, with zero angle corresponding to the radial outside direction), av-
eraged over each type of magnetic environment. A 9 cm (horizontal) by 5 cm (vertical) elliptical
vacuum chamber profile is assumed throughout the ring, and all scattering is specular. Top-bottom
symmetry is assumed.



186 Chapter 5. Electron Cloud Growth and Mitigation

In Fig. 5.3(right), a histogram of the energy of all absorbed photons is presented. This is strongly
peaked at zero but has a long tail out to at least 5 keV.

In Fig. 5.4, a two dimensional histogram of the number of photons vs. location of the absorption
site along the vacuum chamber perimeter is presented. This is is peaked at the outside edge of the
vacuum chamber, where the direct photon strikes occur, but there is long tail extending around
the entire surface of the vacuum chamber, due to the reflected photons.

Example 2: Photon emission throughout the ring, elliptical vacuum chamber, no dif-
fuse scattering For the second example, photon emission throughout the CESRTA ring from
a 2.1 GeV positron beam is simulated. (The lattice name is 2085mev_20090516). The vacuum
chamber is again a simple ellipse, and the scattering is purely specular.

In Fig. 5.5, the distribution of photon absorption sites around the ring is shown, sorted by the type of
magnetic environment in which the absorption occurs. This information is important for simulations
of electron cloud growth, which is strongly influenced by the magnetic environment.

The wigglers in the L0 straight section are responsible for the large peaks near s = 0. The large
peaks near s = ±130 m are due to wigglers in the arcs near these locations. The small peaks in
the arcs are due to the regular CESRTA dipoles.

In Fig. 5.6, we present the photon intensity distribution (in photons/meter/radian) vs. polar
angle (measured around the vacuum chamber, with zero angle corresponding to the radial outside
direction), averaged over each type of magnetic environment.

In the wigglers, most of the photons come from the radiation fans in an upstream wiggler region, so
there are strong peaks on both edges of the vacuum chamber. In the bends, most of the radiation is
from direct strikes from upstream dipoles, so there is only a strong peak on the radial outside edge,
together with a long tail, due to scattering. In the quadrupoles and drifts, there are two peaks, with
the higher one at the radial outside, and a distribution between the peaks due to scattering.

Example 3: Photon emission throughout the ring, realistic vacuum chamber, no diffuse
scattering For the third example, photon emission throughout the CESRTA ring from a 2.1 GeV
positron beam is simulated again, with a realistic vacuum chamber profile. The scattering is purely
specular, as in the previous example.

In Fig. 5.7, we present the photon intensity distribution (in photons/meter/radian) vs. polar
angle (measured around the vacuum chamber, with zero angle corresponding to the radial outside
direction), averaged over each type of magnetic environment.

Compared to the previous example, the photon intensity on the top and bottom of the chamber
(polar angles of π/2 and 3π/2) is substantially suppressed, while the radiation striking the radial
inside edge of the vacuum chamber (polar angle near π) is enhanced. This is primarily due to the
local shape of the vacuum chamber at the strike point of the direct synchrotron radiation. For the
elliptical chamber, the wall is curved at the radiation strike point, which, for a finite sized radiation
stripe, enhances scattering out of the median plane. For the real CESRTA chamber, for most of the
ring, the wall is vertical at the radiation strike point (see Figure 2.32), so that scattering out of the
median plane is limited.
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Figure 5.7: Photon intensity distribution (in photons/meter/radian) vs. polar angle (measured
around the vacuum chamber, with zero angle corresponding to the radial outside direction), aver-
aged over each type of magnetic environment. A realistic model for the CESRTA vacuum chamber
throughout the ring is used. All scattering is specular. Top-bottom symmetry is assumed.
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Figure 5.8: Photon intensity distribution (in photons/meter/radian) vs. polar angle (measured
around the vacuum chamber, with zero angle corresponding to the radial outside direction), aver-
aged over each type of magnetic environment. A realistic model for the CESR vacuum chamber
throughout the ring is used, and diffuse scattering is included. Top-bottom symmetry is assumed.

Example 4: Photon emission throughout the ring, realistic vacuum chamber, diffuse
scattering included. For the fourth example, photon emission throughout the CESRTA ring
from a 2.1 GeV positron beam is simulated again, with a realistic vacuum chamber profile. In this
case, diffuse scattering is included, using the parameters and model described in Sect. 4.1.4.1.

In Fig. 5.8, we present the photon intensity distribution (in photons/meter/radian) vs. polar
angle (measured around the vacuum chamber, with zero angle corresponding to the radial outside
direction), averaged over each type of magnetic environment.

Compared to the previous example, the photon intensity on the top and bottom of the chamber
(polar angles of π/2 and 3π/2) is now much higher, and is comparable to that seen in Example 2.
This is due to the out-of-plane diffuse scattering, which results in substantial amounts of radiation
scattering out of the median plane. In addition, the radiation striking the radial inside edge of the
vacuum chamber (polar angle near π) is also increased.

Example 5: Effect of variation of the diffuse scattering parameters For the fifth example,
photon emission throughout the CESRTA ring from a 2.1 GeV positron beam is simulated again,
with a realistic vacuum chamber profile. In this case, the effects of varying the diffuse scattering
parameters (using the model described in Sect. 4.1.4.1) is illustrated.

In Fig. 5.9, the photon intensity distribution, averaged over each type of magnetic environment,
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Figure 5.9: Photon intensity distribution (in photons/meter/radian) vs. polar angle (measured
around the vacuum chamber, with zero angle corresponding to the radial outside direction), aver-
aged over each type of magnetic environment. A realistic model for the CESR vacuum chamber
throughout the ring is used. The different colors correspond to: red, diffuse scattering parameters
σ = 200 nm and T = 5500 nm; blue, diffuse scattering parameters σ = 100 nm and T = 5500 nm;
cyan, diffuse scattering parameters σ = 4 nm and T = 200 nm; black, pure specular scattering.
Top-bottom symmetry is assumed.

is shown, for four different cases. The red points correspond to the diffuse scattering parameters
σ = 200 nm and T = 5500 nm (same as Fig. 5.8). The black points correspond to pure specular
reflection (same as Fig. 5.7). Two intermediate cases are also shown: the blue points correspond
to still a rough surface, but with σ = 100 nm, and T = 5500 nm; and the cyan points correspond
to a polished surface (σ = 4 nm, with T = 200 nm).

It can be seen that there is not much dependence on σ for the two rough surface cases. A polished
surface gives considerably less scattering, as expected, but there is still a significant difference
between this case and pure specular reflection.

5.1.3.3 Photoelectron Models

The components of the photoelectron generation model are the quantum efficiency as a function of
photon energy, the angular function governing the initial momentum direction of the photoelectrons,
and their kinetic energy spectrum. The azimuthal distribution of photoelectrons produced on
the wall of the vacuum chamber is the same as that of the absorbed photons, and is provided
by the photon transport simulations discussed in the previous section. The code benchmarking
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project revealed that reconciliation of the time structure of density buildup in the ECLOUD and
POSINST codes for CESRTA conditions required a modification of the ECLOUD model for the angular
distribution to match that employed by POSINST. The simple model implemented at present uses
a single energy-independent value for the quantum efficiency, ignores the incident photon energy
spectrum and uses an ad-hoc photoelectron energy distribution which must be re-tuned for each
set of beam conditions under study.

While the modeling for the coherent tune measurements proved to be rather insensitive to the as-
sumed photoelectron energy distribution (see Section 6.3.1.7), the local RFA measurements, and es-
pecially the time-resolved shielded-pickup pulse shapes have been shown to impose strict constraints
on the photoelectron generation model. These results are described in Sect. 5.2.2 below.

On the other hand, the modeling of the coherent tune shift measurements depends critically on
the azimuthal distribution of the produced photoelectrons. As the bunch current increases, the
contribution from the dipole regions begins to dominate the total tune shift, since the cloud electrons
are trapped on field lines near the vertical plane of the beam. If photon reflection were to be
ignored in the model, this dominant contribution would be absent, since no photoelectrons would be
produced on the top or bottom of the beampipe. The CESRTA cloud modeling effort thus required
a substantial effort to develop a photon transport model, as described in Section 4.1.4.1.

5.1.3.4 RFA Modeling

In principle, a single RFA voltage scan, in which data is collected while the retarding voltage is
varied (see Section 2.3.1), gives a great deal of information about the local behavior of the electron
cloud. In practice, however, it is a highly nontrivial task to map a data point from a voltage scan
to any physical quantity, such as cloud density. Typically, this gap is bridged through the use of
cloud simulation programs, which track the motion of cloud particles during and after the passage
of a bunch train (Section 5.1.3.1). Generally speaking, there are two ways to obtain a predicted
RFA signal from a cloud simulation program: by post-processing the output of the program, or by
integrating an RFA model into the actual code. Both methods are discussed below.

Drift RFA Simulations The simplest method for simulating the output of an RFA for a given set
of beam conditions is post-processing the output of a cloud simulation program, such as POSINST [86]
or ECLOUD [112]. More specifically, these codes can output a file containing information on each
macroparticle-wall collision, and one can perform a series of calculations on this output to determine
what the RFA would have seen had one been present.

A basic post-processing script does the following:

• Determine if the macroparticle has hit in the azimuthal region where one of the RFA collec-
tors exists.

• Calculate an efficiency (probability of passing through the beam pipe hole) based on the in-
cident angle and energy of the particle.

• Choose an energy “bin” for the particle based on its transverse energy.
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Figure 5.10: Bench measurement of RFA efficiency, showing an enhancement at low energy.

• Deposit the final charge (equal to the macroparticle charge times the overall RFA efficiency)
into the appropriate and collector and energy bin

• To replicate an RFA measurement at a given retarding voltage, add up all the signal in bins
with higher energy than the voltage.

Note that by proceeding in this way one implicitly assumes that the presence of the RFA has no
effect on the development of the cloud. This assumption is probably justified for a drift RFA,
but may not be in the presence of a magnetic field. The latter case is discussed in the next
subsection.

Bench measurements of RFA efficiency have shown an enhancement of the signal at low retarding
voltage due to the production of low energy secondary electrons inside the beam pipe holes [113].
An example bench measurement is shown in Fig. 5.10. It was taken using a monoenergetic beam of
200 eV electrons, and shows a large increase in the signal at positive retarding voltage, where these
low energy secondaries are guided into the RFA. We have developed a specialized particle tracking
simulation to quantify this effect. It uses a Monte Carlo method to calculate the average efficiency
for an incident electron, as a function of energy and angle, including beam pipe hole secondaries.
Fig. 5.11 shows the effect of this enhancement for two different incident energies. This is included
in the analysis as an additional charge added to the simulated RFA signal at zero retarding voltage.
We are currently doing more rigorous bench measurements to fully quantify this effect.

In a drift region, qualitative agreement between data and (post-processed) simulation can generally
be obtained without fine tuning of the simulation parameters. For example, Fig. 5.12 shows the
measured and simulated (with POSINST [86]) RFA signal for voltage scan done under a typical set
of beam conditions. The plots give collector signal as a function of collector number and retarding
voltage. Here the data and simulation are similar both in general shape and magnitude. Getting
closer quantitative agreement, however, requires a more systematic approach; see Section 5.1.4.2
for details.
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Figure 5.11: Simulated RFA efficiency vs incident angle, including secondary electrons produced in
the beam pipe holes. The geometric efficiency (not including secondaries) is shown for comparison.
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Figure 5.12: Comparison of data (left) and un-optimized simulation (right), Aluminum drift RFA.
Beam conditions are 45 bunches of positrons at 1.25 mA/bunch, 14 ns spacing, 2.1 GeV.
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Figure 5.13: Simulated RFA efficiency vs incident angle for a CESR dipole RFA, with a 790 G
magnetic field. This corresponds to operation at 2.1 GeV.

Dipole RFA Simulations Simulations have also been done for an RFA located inside a CESR
dipole (see Section 2.3.1), using the same method described above. Simulated efficiency curves for
different incident energies are shown in Fig. 5.13. The simulation gives a very high efficiency for
low energy electrons, due to their small cyclotron radius.

Fig. 5.14 shows a typical example of a simulation done for a dipole RFA. The results are again
roughly consistent with the data, except at low energy (Vret = 0). Here, the simulation significantly
overestimates the signal observed by the RFA. One possible explanation for this discrepancy is
an over-counting of the effect of individual macroparticles in the simulation. If a macroparticle
collides with the vacuum chamber wall in the area covered by the RFA and creates a signal there,
it should lose a corresponding amount of charge. However, this cannot be accomplished with a
post-processing method. In a dipole region, a single macroparticle will move up and down along
the same field line, potentially striking the RFA area several times. The post-processing script will
treat each of these collisions separately, and obtain a spuriously high signal. This effect will be
become worse as the macroparticle becomes more tightly constrained along the field line (i.e. as
its cyclotron radius becomes smaller). So we expect it to be worse for low energy electrons (as in
Fig. 5.14), and for high magnetic fields (as we will see in the section on wiggler simulations).

Quadrupole RFA Simulations Some preliminary simulations have been done for the quadrupole
RFA installed in CESR. The simulations generally reproduce the behavior, discussed in section 5.1.4.1,
where the majority of the signal is concentrated in one collector. Interestingly, they also give
some indirect evidence that the cloud can become trapped in the quadrupole for long periods of
time.

Fig 5.15 shows the signal in collector no. 10 for a voltage scan done with a 45 bunch train of
positrons at 1 mA/bunch. Also plotted are simulations done in ECLOUD [112] of these conditions.
If one does a simulation for only one beam revolution period (2.56 µs), the simulated signal is too
low at all energies by over an order of magnitude. However, if one continues the simulation for
multiple turns, one finds that the data and simulation start to get closer. By 19 turns, they are in
very good agreement at high energy, and within a factor of 2 at low energy. This implies that the
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Figure 5.14: Comparison of data (left) and un-optimized simulation (right), Aluminum dipole
RFA. Beam conditions are 45 bunches of positrons at 1.25 mA/bunch, 14 ns spacing, 2.1 GeV.
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Figure 5.15: Quadrupole RFA simulation showing long term cloud buildup: 45 bunches, 1
mA/bunch, e+, 5.3 GeV, 14 ns

cloud is building up over several turns, and that the RFA is sensitive to this slow buildup.

Wiggler RFA Simulations One major disadvantage of using a post-processing RFA model is
that one cannot accurately model any interaction between the RFA and the cloud. For an example
of such an interaction, see Fig. 5.16. It shows a voltage scan done with an RFA in the center
pole of a wiggler (approximated by a 1.9 T dipole field). Here one can see a clear enhancement in
the signal at low (but nonzero) retarding voltage. Since the RFA should simply be collecting all
electrons with an energy more than the magnitude of the retarding voltage, the signal should be a
monotonically decreasing function of the voltage. So the RFA is not behaving simply as a passive
monitor. Furthermore, the spike in collector current is accompanied by a corresponding dip in the
grid current, suggesting that the grid is the source of the extra collector current.

We believe this spurious signal comes from a resonance between the bunch spacing and retarding



5.1. Local EC Build-Up and Mitigation 195

 

Collector 6
Grid / 12

–100      –50          0           50        100       150       200

60

50

40

30

20

10

0

–10

Retarding voltage (V)

C
ur

re
nt

 (n
A)

3840511-228

Figure 5.16: Resonant enhancement in wiggler data, 45 bunches, 1.25 mA/bunch, e+, 2.1 GeV.
Note that there are 12 collectors, so collector 6 is one of the central ones. Also note that the grid
signal is divided by 12.

voltage. To understand this, consider an electron which collides with the retarding grid and gen-
erates a secondary. Because electrons are so strongly pinned to the magnetic field lines in a 1.9 T
field, this electron is likely to escape through the same beam pipe hole that the primary entered.
In other words, the motion of the electrons is approximately one-dimensional. An electron ejected
from the grid will gain energy from the retarding field before it re-enters the vacuum chamber. If
it is given the right amount of energy, it will be near the center of the vacuum chamber during
the next bunch passage, and get a large beam kick, putting it in a position to generate even more
secondaries. The net result is a resonance condition for the retarding voltage that is inversely pro-
portional to the square of the bunch spacing, since the shorter the bunch spacing, the more kinetic
energy an electron needs to arrive at the beam in time for the next bunch passage [114]. Fig. 5.17
shows that this dependence is (roughly) present in the data, though the low energy spike in the 4
ns data is not predicted by this model.

Motivated by these measurements, we have incorporated into POSINST a model of the RFA geared
toward reproducing the geometry of the devices installed in the vacuum chambers of the CESRTA
wigglers. The motion of the electrons within the RFA, including the electrostatic force from the
retarding field, is tracked using a special routine. The grid is modeled realistically, and secondary
electrons can be produced there, with the same secondary yield model used for normal vacuum
chamber collisions. The peak secondary electron yield and peak yield energy can be specified
separately for the grid.

Because the actual retarding field is included in this model, the retarding voltage must be specified
in the input file, and a separate simulation must be run for each voltage desired. Fig 5.18 shows
the result of running this simulation for a series of different retarding voltages, for one set of beam
conditions. Notably, the simulation reproduces the resonant enhancement seen in the data, at
approximately the same voltage (∼ 10 V for 14 ns spacing).

The resonant enhancement is present in much of the wiggler data, so an integrated RFA model will
be needed to obtain a more complete understanding of the cloud behavior in a wiggler magnet.
This effect is also present to a lesser extent in our dipole data, indicating that a post-processing
model may not be sufficient there either.
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Figure 5.17: Resonant spike location at different bunch spacings, 45 bunches, 1.25 mA/bunch, e+,
5 GeV. Only the signal in the central collector is plotted
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Figure 5.18: POSINST simulation showing resonant enhancement, 45 bunches, 1.2 mA/bunch, e+,
2.1 GeV, 14 ns, central collector
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Table 5.1: RFA styles deployed in CESR

Type Magnetic Field Grids Collectors

APS Drift 2 1
Insertable I Drift 2 5
Insertable II Drift 3 11

Thin Drift, Dipole 1 9
SLAC Dipole 3 17
Quad Quadrupole 1 12

Wiggler Wiggler 1 12

Table 5.2: Common beam conditions for electron cloud mitigation studies

Parameter Typical Values Units

Number of bunches 9, 20, 30, 45 -
Bunch current .75, 1.25, 2.8, 3.8, 10 mA
Bunch spacing 4, 14, 280 ns

Species Electron, positron -
Beam energy 2.1, 4, 5.3 GeV

5.1.4 EC Mitigation Observations in RFAs and Comparison with Simulations

5.1.4.1 Measurements

We have used RFAs to probe the local behavior of the cloud in different magnetic field elements,
and in the presence of different mitigation schemes. Table 5.1 gives a list of the various RFA types
discussed in this section. Most of the data presented here is one of two types: “voltage scans,” in
which the retarding voltage is varied while beam conditions are held constant, or “current scans,” in
which the retarding grid is set to a positive voltage (typically 50V), and data is passively collected
while the beam current is increased.

At CESRTA, we have been able to study the electron cloud under a wide variety of beam conditions,
varying the number of bunches, bunch current, bunch spacing, beam energy, and species. As
described in Section 5.1.4.2, this is very helpful for independently determining the photoelectron
and secondary electron properties of the instrumented chamber. Table 5.2 lists some of the more
common (but by no means only) beam parameters used for electron cloud mitigation studies with
RFAs.

Drift Data Many of our earliest detailed measurements were done with “Insertable I” style RFAs
(Table 5.1). Fig 5.19 shows an example of a voltage scan done with one of these RFAs, in typical
CESRTA beam conditions. It plots the RFA response as a function of collector number and retarding
voltage. Roughly speaking this is a description of the transverse and energy distribution of the
cloud. In this example, the signal is fairly broad across all five collectors, indicating that the cloud
density is not strongly peaked around the beam. It also falls off quickly with retarding voltage,
indicating that the majority of cloud particles have low energy. The RFA signal is expressed in
terms of current density in nA/mm2, normalized to the transparency of the RFA beam pipe and
grids. In principle, this gives the time averaged electron current density incident on the beam pipe
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Figure 5.19: RFA voltage scan with an insertable segmented drift RFA in a Cu chamber, 1x45x1.25
mA e+, 14 ns, 5.3 GeV
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Figure 5.20: Comparison of insertable drift RFAs, 1x20 e+, 5.3 GeV, 14 ns

wall. The beam conditions are given as “1x45x1.25 mA e+, 14 ns, 5.3 GeV.” This notation, which
will be used throughout this section, indicates one train of 45 bunches, with 1.25 mA/bunch (1 mA
= 1.6× 1010 particles), with positrons, 14 ns spacing, and at beam energy 5.3 GeV.

Fig 5.20 compares a current scan measurement done with two adjacent RFAs, one in a bare Copper
chamber, and one in a TiN coated Copper chamber. Here we compare the average collector current
density in the two detectors, as a function of beam current, and find that it is lower in the coated
chamber by a factor of two.

“Thin” style RFAs (Table 5.1) were developed to fit inside the aperture of a CESR dipole, but they
have also been deployed in drift regions. These RFAs have since been replaced by “Insertable II”
style detectors, which have more collectors and can support higher voltages. Example measurements
done with both of these RFA styles, in a TiN coated chamber, can be found in Fig. 5.21.

We have installed RFAs in arc drift sections adjacent to the 15E and 15W quadrupoles in CESR.
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Figure 5.21: Example voltage scans with thin (left) and insertable (right) style drift RFAs in the
same location. Both are TiN coated, beam conditions are 1x45x1.25 mA, 5.3 GeV, 14 ns.
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Figure 5.22: Comparison of different beam pipe coatings, 15E (left), and 15W (right) drift RFAs.
Plots show average collector signal vs beam current for 20 bunches of positrons with 14 ns
spacing, at beam energy 5.3 GeV. Note that the aluminum chamber signals are divided by 3.

The photon flux for a positron beam at 15W is about twice that of 15E, and vice versa for an
electron beam. Measurements have been taken at both locations with TiN and amorphous carbon
coatings, as well as with an uncoated aluminum chamber. In addition, a chamber with diamond-like
carbon (DLC) coating has recently been installed at 15E. By comparing measurements taken at the
same location in CESR, we ensure the comparisons can be made under identical beam conditions,
including photon flux. Figs. 5.22 through 5.24 compare the RFA signal with each of these coatings
for typical sets of CESRTA beam conditions. We have generally found that data taken with 20
bunches of positrons at high current shows the biggest difference between the different chambers.
It is under these conditions that we expect to be most sensitive to the peak secondary electron
yield (δmax).

All coated chambers show a sizeable reduction in signal when compared to uncoated aluminum.
After extensive processing, both TiN and amorphous carbon coated chambers show similar miti-
gation performance. The details of the small difference between 15E and 15W (where in one case



200 Chapter 5. Electron Cloud Growth and Mitigation

0 50 100 150 200
0

2

4

6

8

10

beam current (mA)

av
g 

co
lle

ct
or

 c
ur

re
nt

 d
en

si
ty

 (n
A/

m
m

2 )

 

 

11/19/09 (Aluminum) / 3
11/28/09 (TiN, unprocessed)
3/22/10 (TiN, processed)
12/7/10 (Amorphous Carbon)
4/12/11 (Diamond Like Carbon)

3840511-463

0 50 100 150 200
0

5

10

15

beam current (mA)

av
g 

co
lle

ct
or

 c
ur

re
nt

 d
en

si
ty

 (n
A/

m
m

2 )

 

 
3/22/10 (Amorphous Carbon)
4/29/10 (Aluminum) / 3
9/4/10 (TiN, unprocessed)
12/7/10 (TiN, processed)

3840511-466

Figure 5.23: Comparison of different beam pipe coatings, 15E (left), and 15W (right) drift RFAs.
Plots show average collector signal vs beam current for 20 bunches of electrons with 14 ns
spacing, at beam energy 5.3 GeV. Note that the aluminum chamber signals are divided by 3.
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Figure 5.24: Comparison of different beam pipe coatings, 15E (left), and 15W (right) drift RFAs.
Plots show average collector signal vs beam current for 9 equally spaced (280 ns) bunches of
positrons, at beam energy 5.3 GeV. Note that the aluminum chamber signals are divided by 3.
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Figure 5.25: NEG RFA comparison, 1x20 e+, 5.3 GeV, 14 ns.

TiN appears slightly better and in the other amorphous carbon does) require further analysis to
understand fully.

Diamond-like carbon may perform better than other coatings at very high beam current. It should
be noted that bench measurements of the Secondary Electron Yield (SEY) of DLC have found that
the material can retain charge if bombarded with a sufficiently high electron flux, thus modifying
the apparent SEY performance (Section 5.1.5). This effect may also be influencing the in situ
measurements presented here.

We have also installed a NEG coated chamber in our L3 straight region. This chamber is in-
strumented with three single collector RFAs, located at different azimuthal positions. Fig. 5.25
compares the current measured by one of these RFAs on several different dates, corresponding to
different states of activation and processing of the NEG coating. It was observed that both activa-
tion and initial processing reduced the signal measured by this RFA. After a CESR down (during
which the NEG was activated again), the signal rose somewhat, but it processed back down to
its minimum value after a few months of beam time. The other two detectors showed a similar
trend.

Dipole Data RFA data have been taken in the presence of a dipole field, both in a standard
CESR dipole (the “Thin” style in Table 5.1), and in a specially designed chicane which was built
at SLAC [115]. The field in the chicane magnets is variable, but most of our measurements were
done in a nominal dipole field of 810 G. Of the four chicane chambers, one is bare Aluminum, two
are TiN coated, and one is both grooved and TiN coated. The grooves are triangular with a depth
of 5.6 mm and an angle of 20◦. Fig. 5.26 shows a retarding voltage scan done with both the CESR
dipole and Aluminum chicane RFAs. In both cases, one can see a strong multipacting spike in the
central collector.

Mitigation studies Fig. 5.27 shows a comparison between three of the chicane RFAs. We found
the difference between uncoated and coated chambers to be even stronger than in a drift region.
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Figure 5.26: Typical Al dipole RFA voltage scans: 1x45x1.25 mA e+, 5.3 GeV, 14 ns. Left: SLAC
chicane RFA; Right: CESR dipole RFA
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Figure 5.27: Dipole RFA mitigation comparison, 1x20 e+, 5.3 GeV, 14 ns
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Figure 5.28: Bifurcation of peak cloud density in a Al dipole: 1x20 e+, 5.3 GeV, 14 ns

At high beam current, the TiN coated chamber shows a signal smaller by two orders of magnitude
than the bare Al chamber, while the coated and grooved chamber performs better still.

Central peak bifurcation For high bunch currents, we have observed a bifurcation of the central
multipacting peak into two peaks with a dip in the middle. This is demonstrated in Fig 5.28, which
shows the signal in all 17 RFA collectors vs beam current. Bifurcation occurs when the average
energy of electrons in the center of the beam pipe is past the peak of the SEY curve, so that the
transverse location of the effective maximum yield is actually off center. The higher the bunch
current, the further off center these peaks will be.

Cyclotron resonances By varying the strength of the chicane magnets, we can also study the
behavior of the cloud at different dipole magnetic field values. Fig. 5.29 shows an example of RFA
data taken as a function of magnetic field strength. The most prominent feature of the data is
regularly occurring spikes or dips in all three plotted chambers. These correspond to “cyclotron
resonances,” which occur whenever the cyclotron period of cloud electrons is an integral multiple of
the bunch spacing [116]. For 4 ns bunch spacing we expect them every 89 Gauss, which is what is
seen in the data. Another interesting feature of this measurement is that these resonances appear
as peaks in the RFA signal in the Aluminum chamber, but as dips in the coated chambers. The
cyclotron resonance measurements corroborated the earlier SLAC measurements made under very
different beam conditions [115–117]. The electron cloud modeling program POSINST successfully
modeled the SLAC measurements, showing that the resonant cloud buildup enhancements observed
for the uncoated aluminum vacuum chamber can follow from higher energy electrons striking the
bottom and top of the vacuum chamber at more grazing angles [116, 117]. We have undertaken
similar modeling studies with the ECLOUD program package, extending them to describe the resonant
suppression mechanism observed in the TiN-coated chamber which is shown in Fig. 5.29. Figure 5.30
shows the ECLOUD result around the first cyclotron resonance (n=1, B=89 G) in 2 G steps for the
case of an uncoated aluminum chamber.

This simple model defines each collector signal by the impact position of electrons on the top of
the vacuum chamber. The collector current is derived by the collector area, a transparency factor
of 15%, and the size of the time interval. No kinematic RFA acceptance function is applied, nor
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Figure 5.29: RFA signal as a function of chicane magnetic field: 1x45x1 mA e+, 5 GeV, 4 ns.
Cyclotron resonances are observed every 89 G. Note that the Aluminum chamber signal is divided
by 20.

is any interaction between the RFA and the cloud taken into account. Collector signal sums are
accumulated over a time span of 360 ns, the first half of which comprises 45 4-ns-spaced bunches
populated with 1.44 × 1010 2-GeV positrons. A secondary yield value of 2.0 is assumed, as is
an elastic yield of 1.0. No rediffused component in the secondary yield is included in the model.
The sum of the 17 collector signals clearly show the resonant behavior. The individual collector
contributions show that the central collector (collector 7-11) signals vary little with magnetic field,
while the resonant effect is clear in the outer collectors. Figures 5.31 and 5.32 show how the
increased signal on resonance arises. The upper plots show the secondary yield as a function of
incident electron energy, while the lower plots show the distribution of incident energies. The plot
on the upper right shows that on resonance there is a class of electrons with increased energies
between about 50 and 300 GeV, resulting in higher yields since for this bunch population the cloud
energies are generally below the peak energy of the secondary yield curve (300 eV). In addition,
the spread in true secondary yields near the peak energy is larger. This spread shows the range
of incident angles, since the peak yield value of 2.0 is increased by a factor of up to 1.5 at more
grazing incidence. The resonance is enhanced by the circular shape of the vacuum chamber in the
chicane, since the beam kicks from the centered beam are radial. A model with an elliptical vacuum
chamber showed negligible RFA signal increase on resonance, since the incident angles were more
grazing both on and off resonance, raising the off-resonance signal relative to the on-resonance
signal.

This simple explanation for the resonant RFA signals is apparently contradicted by the resonance
suppression exhibited in a TiN-coated chamber (see Fig. 5.29) under the same beam conditions.
Since the cloud electron energy distribution and incident angles must be very similar, we investi-
gated the possibility of a secondary yield curve decreasing with energy below the peak yield. We
chose a value of 1.0 for the elastic yield at low incident energy and a value of 0.5 for the peak
true secondary yield. The result, shown in 5.33, demonstrates that the resonant suppression effect
can be modeled in this manner. Figures 5.34 and 5.35 show the corresponding secondary yield
population curves. Further modeling studies showed the transition from resonant suppression to
enhancement observed in the PEP-II data [115] in the same field scan over multiple resonances can
also be reproduced.
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Figure 5.30: ECLOUD model for the RFA signals measured with the SLAC RFA in the PEP-II
chicane for a 45-bunch train of 2 GeV positrons. The sum of the 17 collector signals is shown in
green in the upper left plot as a function of the ratio of bunch spacing to dipole magnetic field as
the field is varied in 2 G steps around the resonant value of 89 G. The central collector signal is
shown in the upper right plot. The signals from the remaining 16 collectors are shown in left-right
symmetric pairs. This result showing the resonant enhancement of the RFA signal was obtained
with a secondary yield model appropriate for an uncoated aluminum chamber.
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Figure 5.31: Population of the modeled
secondary yield curve for the case of an
uncoated aluminum chamber and a chicane
magnetic field value of 129 G, halfway be-
tween the first and second cyclotron reso-
nances for the 4 ns bunch spacing.
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Figure 5.32: Population of the modeled
secondary yield curve for the case of an
uncoated aluminum chamber and a chicane
magnetic field value of 89 G, which corre-
sponds to the first cyclotron resonance for
the 4 ns bunch spacing.

However, there is no independent empirical evidence for such behavior in the secondary yield for
a TiN-coated chamber. The in situ measurements of TiN-Al samples described in Sect. 5.1.5 have
measured true secondary yield values near 1.0, not 0.5. And the shielded pickup measurements
of cloud lifetime described in Sect. 5.2.2 clearly exclude values for the elastic yield greater than
0.1. Further modeling studies will be needed to understand the physical basis for the resonant
suppression.

Multipacting resonances Because the properties of the electron cloud can change significantly
over the course of nanoseconds, it is interesting to investigate its behavior as a function of bunch
spacing. At CESRTA we have taken RFA data with bunch spacings varying from 4 ns to 112
ns.

Fig. 5.36 shows the signal in the central collector of two dipole RFAs as a function of bunch spacing.
The left plot is for the Aluminum SLAC chicane RFA; the right is for the CESR dipole RFA (see
Fig. 5.26). The SLAC chamber has a half-height of 4.4 cm, while the CESR RFA has a half-height
of 2.5 cm.

For the SLAC RFA, we observe two distinct peaks in the positron data, at approximately 14 ns
and 60 ns. The electron beam data shows almost no signal before 36 ns, and is peaked around the
same place as second the positron peak. The enhancement of the signal at 60ns could be due to
a resonance between the bunch spacing and the cloud development (often called a “multipacting
resonance”). This effect will be enhanced by the dipole field, which renders the motion of the
electrons mostly one dimensional.

A very simple model for a multipacting resonance is that if the time for a typical secondary electron
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Figure 5.33: ECLOUD model for the resonant suppression observed in the TiN-coated chamber in
the PEP-II chicane. This result was obtained under the assumptions of a peak secondary yield of
0.5 and an elastic yield value of 1.0.
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ondary yield curve for the case of an TiN-
coated aluminum chamber and a chicane
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sponds to the first cyclotron resonance for
the 4 ns bunch spacing.

0 20 40 60 80 100 120
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

bunch spacing (ns)

ce
nt

ra
l c

ol
le

ct
or

 s
ig

na
l (

a.
u.

)

Positron beam
Electron beam

3840511-458

0 20 40 60 80 100 120
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bunch spacing (ns)

ce
nt

ra
l c

ol
le

ct
or

 s
ig

na
l (

a.
u.

)

 

 
Positron beam
Electron beam

3840511-456

Figure 5.36: Central collector signal in a dipole RFA as a function of bunch spacing, for a 20
bunch train with 3.5 mA (5.6 × 1010 particles) per bunch, at 5.3 GeV. Left: SLAC chicane RFA,
right: CESR dipole RFA
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to travel to the center of the beam pipe is equal to the bunch spacing, this electron will be kicked
strongly by the beam, and is likely to produce more secondary electrons. In reality, peak secondary
production will occur when this electron is given an amount of energy corresponding to the peak
of the SEY curve. However, for aluminum the SEY is greater than 1 well into the keV range, so
an electron anywhere near the beam is a candidate to produce more secondaries. Thus we expect
the “resonance” to be somewhat broad.

If we ignore the time for the kicked electron to travel to the beam pipe wall (which will be small if
the kick is strong), the resonance condition is simply tb = a/vsec, where tb is the bunch spacing, a
is the chamber half-height (i.e. the distance from the wall to the beam), and vsec is a characteristic
secondary electron velocity. For a 1.5 eV electron, this peak will occur at 61 ns. The fact that
there is a finite width to the secondary energy distribution will further smear out the peak.

The lower energy peak in the positron data could be a higher order multipacting resonance, where
it takes two bunch passages to set up the resonance condition. Here we consider the case where
the first bunch gives some additional energy to the electron, so that it makes it to the center of the
chamber in time for the second bunch. If we again neglect the time for the kicked electron to reach
the beam pipe wall, the resonance condition becomes:

tb,2 =
a− r1

vsec
=
r1

v2
(5.1a)

v2 = vsec +
2cNbre
r1

(5.1b)

Here r1 is the distance from the electron to the beam during the first bunch passage, v2 is the
velocity of the electron after it is kicked by the first bunch, Nb is the bunch population and re is the
classical electron radius. Solving for tb,2 gives us Eq. 5.2, where we have defined k ≡ 2cNbre.

tb,2 =
k + 3avsec −

√
k2 + 6kavsec + a2v2

sec

4v2
sec

(5.2)

For a 1.5 eV secondary electron, tb,2 is 11 ns, somewhat less than the 14 ns that is observed. A more
sophisticated model (which would include, among other things, the time for the kicked electron to
reach the wall) may yield a more accurate result. Note that this resonance condition applies only
to positron beams, so only one peak is predicted for the electron data (which is what we find).
Overall, a multipacting scenario with a 1.5 eV peak secondary energy is approximately consistent
with the SLAC chicane data, for both the positron and electron beam data.

The predictions for our CESR dipole (Fig. 5.36, right) would then be tb = 34 ns and tb,2 = 4 ns.
The former is higher than what is observed, though the latter is consistent with the data. A better
fit would be for an 8 eV electron, then tb = 15 ns and tb,2 = 3 ns. It is also possible that a more
sophisticated model would fit the CESR dipole data better.

Quadrupole Data Another development at CESRTA has been the incorporation of an RFA into
a quadrupole chamber. This RFA wraps azimuthally around the chamber, from about 70 to 150
degrees (taking zero degrees to be the source point). A typical quadrupole RFA measurement is
shown in Fig. 5.37. We find that the collector that is lined up with the quad pole tip (no. 10) sees a
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Figure 5.37: Quadrupole RFA voltage scan: 1x45x1.25 mA e+, 5.3 GeV, 14 ns
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Figure 5.38: Quadrupole mitigation comparison, 1x20 e+, 5.3 GeV, 14 ns

large amount of current, while the rest of the collectors see relatively little. This suggests that the
majority of the cloud in the quad streams along the field lines between adjacent pole tips.

Fig. 5.38 shows a comparison of a bare Aluminum (both processed and unprocessed) quadrupole
chamber with the TiN coated chamber that has replaced it. In this comparison only collector 10
is being plotted. The signal in the TiN chamber was found to be reduced by well over an order of
magnitude.

One potential side effect of the cloud mirroring between the quad pole tips is that it may become
trapped for a long time. As seen in Fig. 5.39, for a positron beam we do not observe a strong
dependence on bunch spacing, though there does seem to be a modest enhancement around 14 ns.
The data for an electron beam is even more surprising, actually showing a monotonic increase with
bunch spacing. Both of these measurements point to a timescale for cloud development in the quad
that is much longer than 100 ns.
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Figure 5.39: Signal in a quadrupole RFA as a function of bunch spacing, for the same beam
conditions as in Fig. 5.36. The collector which is in line with the quad pole tip is plotted.

Wiggler Data The L0 straight section of CESR has been reconfigured to include six supercon-
ducting wigglers, three of which are instrumented with RFAs (see Section 2.3.1). Each wiggler has
three RFAs: one in the center of a wiggler pole (where the field is mostly vertical), one in between
poles (where the field is mostly longitudinal), and one in an intermediate region. Fig. 5.40 shows
a typical voltage scan done in the center pole RFA of a Cu wiggler chamber, for a 45 bunch train
of positrons at 1.25 mA/bunch, 14 ns spacing, and 2.1 GeV. The signal is fairly constant across
all the collectors at low retarding voltage, but does become peaked at the center at high energy.
There is also an anomalous spike in current at low (but nonzero) retarding voltage; we believe this
is due to a resonance between the bunch spacing and retarding voltage (see Section 5.1.3.4).

As with the drift RFAs, cycling the location of the different wigglers has allowed us to compare
the RFA response with different mitigation techniques at the same longitudinal position in the
ring. We have tested chambers with bare Copper, TiN coating, triangular grooves, TiN coating
on grooves, and a clearing electrode. Fig. 5.41 shows an example voltage scan from the grooved
chamber; it is interesting to note that the RFA is sensitive to the grooved structure. The grooves
have 2 mm depth and 20◦ angle, and the spacing between the RFA collector strips is 3.4 mm (see
Fig. 2.42)

Fig. 5.42 compares the average collector current (in the center pole RFA) vs. beam current for
different mitigation schemes, at both the 2WA and 2WB locations. These locations have slightly
different photon fluxes, but as the TiN coated chamber has been installed in both, it can be used
(roughly) as a reference. Note that TiN coating by itself does not appear to lead to a reduction
in the wiggler RFA current relative to bare copper. Grooves do lead to an improvement, and TiN
coated grooves are better still. The chamber instrumented with a clearing electrode shows the
smallest signal by a wide margin, improving on TiN by approximately a factor of 50. The electrode
was set to 400 V for this measurement.

Very little dipole radiation is expected to reach the downstream vacuum chambers in the L0 straight,
but they will be illuminated by radiation from the wigglers. Therefore, by varying the field in the
wiggler magnets, we can vary the number of photons striking the wall at a given point along
the straight. This will also vary the number of photoelectrons produced there, so electron cloud
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Figure 5.40: Cu wiggler RFA measurement: 1x45x1.25 mA e+, 2.1 GeV, 14 ns
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Figure 5.41: Grooved wiggler RFA measurement: 1x45x1.25 mA e+, 2.1 GeV, 14 ns
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Figure 5.42: Wiggler RFA mitigation comparison: 1x45 e+, 2.1 GeV, 14 ns. Left: 2WA location,
right: 2WB location. The 2WB location is further downstream in the wiggler straight, and therefore
has a slightly higher photon flux.

diagnostic devices located in L0 can provide an indirect measurement of the properties of the wiggler
photons.

Fig. 5.43 shows the signal in three center-pole wiggler RFAs as a function of wiggler field strength.
We observe a “turn on” of the signal in each detector at a specific wiggler field value. Note that
the detectors that are further downstream (i.e. those with a higher s value) turn on first. This is
because as the wiggler field is increased, the radiation fan becomes wider. The farther downstream
a detector is, the less wide the fan must be for photons to hit at that location. This measurement
can help us understand the scattering of photons in L0, since only photoelectrons produced on the
top or bottom of the beam pipe can initiate the build-up of the part of the cloud detected by the
RFA.

During normal operation, essentially no signal is observed in longitudinal field detectors, because
there are no electrons with sufficient energy to cross the field lines. Fig. 5.44 shows the signal in a
longitudinal field RFA (in the uncoated Copper wiggler), as a function of magnetic field strength.
The signal is effectively gone by 1000 Gauss, well below the 1.9 T full field value.

Mitigation Summary In terms of the effectiveness of mitigation types, several qualitative com-
ments can be readily made:

• We have found beam pipe coatings (TiN, amorphous carbon, diamond-like carbon, and NEG)
to be effective at mitigating the cloud in drifts.

• TiN coating was also found to be effective in a dipole and quadrupole; using a grooved and
coated chamber in a dipole is even more effective.

• In a wiggler, a clearing electrode appears to be the most effective mitigation technique.

A systematic study to obtain more quantitative information about the different chambers, in par-
ticular the primary and secondary electron yield properties of the surface, is discussed in the next
section.
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Figure 5.43: Wiggler ramp measurement: 1x45x.75 mA e+, 2.1 GeV, 14 ns
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Figure 5.44: Wiggler ramp measurement in longitudinal field region: 1x45x.75 mA e+, 2.1 GeV,
14 ns



5.1. Local EC Build-Up and Mitigation 215

5.1.4.2 Comparison with Simulation

The large quantity of RFA data obtained during the CESRTA program necessitates a systematic
method for detailed analysis. The goal is, given a set of voltage scan data, to find a set of simulation
parameters that bring data and simulation into as close to agreement as possible.

A chi-squared analysis has been employed to accomplish this. In short, we want to minimize χ2,
as defined in Eq. 5.3. Here y a vector containing the difference between the data and a nominal
simulation, X is the Jacobian matrix, and β is the a vector containing the change in each of the
parameters under study. W is a diagonal matrix whose elements are 1

σ2
i
, where σi is the error on

the data-simulation difference for point i. Note that both the data and simulation can contribute to
this error. The value of β which will minimize χ2 is given in Eq. 5.4. Once a new set of parameter
values is obtained, the process can be repeated with this new set as the “nominal” values. This
method will generally need to be iterated a few times before it converges on the actual minimum
value of χ2.

χ2 = (y −Xβ)T W (y −Xβ) (5.3)

β = (XT W X)−1 XT W y (5.4)

There are many subtleties in the precise definitions of the terms in Eq. 5.4. For the RFA analysis,
the points in the vector y come from voltage scan data. To determine the parameters independently,
one should use several different voltage scans, which cover a wide range of beam conditions. Since a
voltage scan is actually a measurement of the integrated energy spectrum, once should differentiate
the signal to obtain a set of independent data points. These points may not individually have
enough signal to be meaningful, so one can group them together (i.e. make energy “bins” of
varying width) to get one element of the y vector.

The choice of which simulation parameters to fit is also essential. There are many parameters that
characterize the production of secondary electrons in POSINST [86], but a few stand out as being
especially important. Among them are:

• dtspk, the peak true secondary electron yield

• P1epk, the low energy elastic yield

• P1rinf, the rediffused yield at infinity

• E0epk, the energy at which peak secondary production occurs

• powts, the “shape parameter,” which determines the rise and fall of the SEY curve

• pangsec, the angular distribution of secondary electrons
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• enpar and pnpar, which determine the energy distribution of secondary electrons

In general, primary photoelectrons are less well understood than secondary electrons. Some impor-
tant primary emission parameters include:

• queffp, the effective quantum efficiency

• ek0phel and eksigphel, the peak energy and width of the photoelectron energy distribution

Generally speaking, dtspk and queffp need to be included in the fitting procedure to get good
agreement with the RFA data. Other sensitive parameters include P1epk, P1rinf, and powts, but
they are highly correlated with each other (i.e., they have similar effects on the RFA simulation),
so only one of the three is needed.

The starting points for several SEY parameters (dtspk, E0epk, powts), were chosen based on
fits to the in situ SEY measurements in CESR (Section 5.1.5).

We have found that, in order to have any RFA signal for a high current electron beam, some high
energy photoelectrons need to be generated. Currently this is accomplished by using a Lorentzian
photoelectron energy distribution (rather than the default Gaussian distribution), with a low peak
energy (ek0phel = 10eV), but a large width (eksigphel = 150 eV). However, the drift RFA data
do not seem to constrain the exact shape of the distribution. Measurements with a shielded pickup
detector (Section 5.2.2) provide a method to probe these parameters in more detail.

The photon flux and reflectivity at the RFA are kept fixed, based on a 3 dimensional simulation
of photon production and reflection in the CESRTA vacuum chamber using the code Synrad3D

(Section 4.1.4.1). Photoelectron parameters were allowed to be different for different beam energies
and species, because the photon energy spectrum at any given location in CESR will be different
for the two species. Plans are underway to develop a model for photoelectron production which
takes into account the energy of the incident photon.

In order to get a good fit to the data, one should choose parameters which have a strong effect on
the simulations, and are relatively independent of each other. We have found that a reasonable
fit can be obtained with as little as three parameters, typically the true secondary yield (dtspk),
elastic yield (P1epk), and effective quantum efficiency (queffp). The true secondary yield has
the strongest effect on data taken with short bunch spacings, high bunch currents, and positron
beams. The elastic yield, meanwhile, is best determined by data with large bunch spacing, while
the quantum efficiency prefers low beam current. Table 5.3 gives a list of data sets used in one
round of fitting, and indicates which parameter is most strongly associated with it.

Several sources of error must be taken into account when constructing the error matrix (W in
Eq. 5.3). They include:

• Noise in the measurements (typically quite small)

• Statistical errors in simulations. This is a major source of error. It can be reduced by
increasing the number of macroparticles used in the simulation, at the cost of increased run
time.

• A general error of 10% was added to account for systematic uncertainties in the data. One
such uncertainty is unevenness in bunch currents along the train, which is not accounted for
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Table 5.3: List of beam conditions used for one round of fitting, and which parameter(s) they help
determine
Bunches Bunch current (mA) Species Bunch Spacing Beam Energy (GeV) Parameter(s)

45 2.3 e+ 14 2.1 dtspk
20 2.8 e+ 4 4 dtspk
20 7.5 e+ 14 2.1 dtspk
20 2.95 e+ 14 4 dtspk
45 2.67 e+ 14 5.3 dtspk
45 1.25 e+ 4 5.3 dtspk
45 2.89 e− 4 5.3 dtspk, queffp
20 2.6 e− 14 2.1 queffp
45 0.8 e− 14 5.3 queffp
45 0.75 e+ 14 5.3 queffp
45 0.75 e− 14 2.1 queffp, P1epk
9 3.78 e+ 280 2.1 queffp, P1epk
45 0.75 e+ 14 4 queffp, P1epk
9 3.78 e− 280 2.1 P1epk
9 3.78 e− 280 5.3 P1epk
9 3.78 e+ 280 4 P1epk
9 4.11 e+ 280 5.3 P1epk

in the simulation.

• We have observed a slow drift of baseline (zero current value) in measurements, on the order
of ∼ 2% of full scale. This amounts to ∼20 nA on the lowest gain setting, and ∼0.02 nA on
the highest one.

• An extra 20% error was added to signal in the simulation caused by beam pipe hole secon-
daries, to account for uncertainty in the modeling of this phenomenon.

• Since the gradient for Jacobian matrix (X) is determined by simulation, it will also have an
associated error. This cannot be included in the W matrix, because it will be different for
each parameter. However, it can still be calculated, and its effect on the final parameter
errors can be estimated.

We have found that, in general, one can obtain a reasonable fit to the data with only three (well
chosen) parameters. As mentioned above, one good set consists of the true secondary yield, elastic
yield, and quantum efficiency. Using more parameters does allow for a slightly better fit, at the
cost of uniqueness and clarity.

Fig. 5.45 shows some of the results of the parameter finding method for an uncoated aluminum drift
chamber. The plots compare the data and simulation for the signal across the 9 RFA collectors at
three different retarding voltages. Overall there is good agreement between data and simulation
for a wide variety of beam conditions.

In principle, errors on the final parameter values are readily obtainable during the course of the
analysis from the covariance matrix for the parameters, (XT W X)−1. Standard errors on each
parameter can be derived from the diagonal elements of the covariance matrix, and the correlations
between each parameter from the off-diagonal elements. However, it should be noted that this
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Table 5.4: Best fit parameters, 15W aluminum chamber

Parameter Description Base Value Final Value

dtspk Peak true secondary yield 1.37 1.74 ± 0.02
P1epk Elastic yield at E = 0 0.5 0.43 ± 0.01
P1rinf Rediffused yield at E = ∞ 0.2 0.2
E0epk Peak yield energy 280 eV 280 eV
powts Shape parameter 1.54 1.54
queffp Quantum efficiency, 2.1 GeV, e− 0.1 0.034 ± 0.004
queffp Quantum efficiency, other 0.1 0.111 ± 0.006

Table 5.5: Best fit parameters, 15E amorphous carbon coated chamber

Parameter Description Base Value Final Value

dtspk Peak true secondary yield 0.76 0.55 ± 0.02
P1epk Elastic yield at E = 0 0.5 0.29 ± 0.02
P1rinf Rediffused yield at E = ∞ 0.2 0.2
E0epk Peak yield energy 300 eV 300 eV
powts Shape parameter 1.77 1.77
queffp Quantum efficiency, 2.1 GeV, e+ 0.1 0.021 ± 0.003
queffp Quantum efficiency, other 0.1 0.081 ± 0.017

analysis will only seek out the nearest local minimum in parameter space. It is always possible that
a better fit can be achieved with a different set of values, especially if one uses many parameters
in the fit. Therefore, these errors should be understood as the width of the local minimum, rather
than an absolute determination of the uncertainty in the parameter. Nonetheless, the ability of
this method to achieve a good fit for data taken under a wide variety of beam conditions strongly
implies that the PEY and SEY models used are reproducing reality to a reasonable degree.

The best fit values and confidence intervals for an Aluminum chamber are shown in Table 5.4. This
chamber was installed in the drift region adjacent to the 15W quadrupole (see Section 5.1.4.1),
and the fit used the data taken during May 2010 (listed in Table 5.3). The values listed for the
error bars also include an estimate of the uncertainty introduced by errors in the Jacobian matrix,
which is added in quadrature to the standard error. Table 5.5 lists the best fit values for the 15E
amorphous Carbon coated chamber, using the same data sets. Finally, Table 5.6 gives the values for
a TiN coated chamber, installed at 15W during December 2010. As mentioned above, the starting
point for all the listed SEY parameters were taken from fits to measured in situ data. It is worth
noting that this analysis indicates a very low secondary yield for both coated chambers.

One somewhat strange result of this analysis is that the quantum efficiency at 2.1 GeV was found
to be quite low for positron beams at 15E, and electron beams at 15W. The value for the other
species, and for 4 and 5.3 GeV, are all consistent with each other. The anomalous value is quoted
separately from the other best fit values. This discrepancy appeared for both the 15W Al chamber
and the 15E carbon coated chamber (it did not appear for the 15W TiN chamber, because no 2.1
GeV electron beam data was used in the fit). It is most likely a reflection of the incompleteness of
our photon and photoelectron modeling.
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Figure 5.45: Comparison of RFA data and simulation, using best fit parameters. The plots show
the signal across the 9 RFA collectors at three different retarding voltages.
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Table 5.6: Best fit parameters, 15W TiN coated chamber

Parameter Description Base Value Final Value

dtspk Peak true secondary yield 0.73 0.54 ± 0.01
P1epk Elastic yield at E = 0 0.5 0.36 ± 0.01
P1rinf Rediffused yield at E = ∞ 0.2 0.2
E0epk Peak yield energy 370 eV 370 eV
powts Shape parameter 1.32 1.32
queffp Quantum efficiency 0.1 0.068 ± 0.007

Summary A systematic method for fitting RFA simulation to data has been presented, and best
fit values for PEY and SEY parameters of some materials have been given. Future work on this
topic includes:

• Repeating the analysis for other surface types

• Repeating the analysis for RFAs in magnetic fields, including dipoles, quadrupoles, and wig-
glers

• Comparing with other local cloud measurements, such as shielded pickups

• Incorporating a more complete description of photoelectron emission

The end result of this analysis will be a detailed and self-consistent description of the in situ primary
and secondary emission properties of the materials under investigation.

5.1.5 In situ SEY Studies

We used the in situ secondary electron yield (SEY) station described in Section 2.3.4 to take
measurements on samples roughly once a week. Measurements were done on samples coated with
SEY-reducing films and bare metal samples.

5.1.5.1 Secondary Electron Yield

The SEY is operationally defined as

SEY = ISEY/Ip , (5.5)

where Ip is the current of the primary electrons incident on the sample and ISEY is the current
of the secondary electrons expelled by the bombardment of primary electrons. The SEY depends
on the energy and angle of incidence of the primary electron beam. The primary current Ip is
measured by firing electrons at the sample with the electron gun and measuring the current from
the sample with a positive bias voltage. A high positive biasing voltage of +150 V is used to
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recapture secondaries produced by the primary beam, so that the net current due to secondaries is
zero.

The current ISEY due to secondary electrons is measured indirectly. The total current It is measured
by again firing electrons at the sample, but with a low negative bias (−20 V) on the sample to repel
secondaries produced by the primary electron beam, and also to repel secondaries from “adjacent
parts of the system that are excited by the elastically reflected primary beam” [79]. Since It is
effectively the sum of Ip and ISEY (It = Ip + ISEY, with ISEY and Ip having opposite signs), we
calculate SEY as

SEY = (It − Ip)/Ip . (5.6)

Some SEY systems include a third electrode for a more direct measurement of ISEY, for example
the system at KEK [118]. Our in situ setup cannot accommodate the extra electrode, so we cannot
use the more direct method; we must use the indirect method described above.

5.1.5.2 Data Acquisition System

An electrical schematic of the system is shown in Figure 5.46. The current on the sample is
measured during three separate electron beam energy scans. Each scan automatically steps the
electron gun energy from 20 eV to 1500 eV in increments of 10 eV. For each energy, the focusing
voltage is set to minimize the beam spot size on the sample, based on previous measurements. This
process is controlled by a LabVIEW interface we developed [29] incorporating existing software
from Kimball Physics and Keithley. The first scan is done with a 150 V biasing voltage on the
sample to measure Ip, with gun settings for Ip ≈ 2 nA. This measurement is taken between grid
points 5 and 9 to avoid processing the measurement points with the electron beam during the Ip
measurement.

The second scan steps through the same gun energies with a bias voltage of −20 V on the sample
to measure It. At each gun energy, the beam is rastered across all 9 grid points while the program
records the current for each point.

To minimize error due to drift in the gun output current, we take a second Ip scan after the It scan.
The two Ip sets are averaged and the SEY is calculated at each energy. Identical measurements are
performed on the 45◦ system and the horizontal system.

5.1.5.3 Results

In-situ measurements have been done on bare aluminum, titanium nitride, and amorphous carbon
surfaces. Preliminary SEY measurements have been carried out in the laboratory for diamond-like
carbon (DLC) surfaces, but no in-situ measurements have yet been made.

Aluminum Samples with TiN Coatings Aluminum samples with titanium nitride coatings
provided by M. Pivi (SLAC National Accelerator Laboratory) were installed in CESR in both the
horizontal and 45◦ stations from January to August 2010 and their SEYs were measured roughly
once a week. These results are summarized in Figure 5.47. There is a peak in the SEY for an
incident electron energy near 400 eV. A significant decrease in the SEY is evident between the
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Figure 5.46: Left: Data acquisition schematic. Right: 9 grid points where the SEY is measured.

first round of measurements and subsequent measurements. As the SEY decreases, there is a slight
upward shift in the energy at which the peak in the SEY occurs, as indicated by the dotted lines
in Figure 5.47.

The value of the SEY peak and the energy Emax at which the peak occurs are useful metrics for
tracking the SEY behavior as a function of exposure. The beam conditioning behavior of the
samples is illustrated in Figure 5.48, which shows the peak SEY and Emax for the center grid
point as a function of accumulated dose. The bottom axis indicates the electron beam current
integral in ampere·hours; the top axis indicates the calculated SR dose to the vacuum chamber wall
in photons per meter. Neither of these values includes the contribution from the positron beam,
because the dominant source of SR for the SEY stations is the electron beam. The SR photon
dose in Figure 5.48 accounts for direct SR from the beam onto the chamber wall at the location of
the SEY stations: it represents the “source term” and does not attempt to include the effects of
scattering of photons (or production of photoelectrons). The dose calculation does not differentiate
between the horizontal and 45◦ stations, even though the 45◦ station does not receive direct SR
and the stations’ distance from the bending magnet is not exactly the same.

As can be seen in Figure 5.48, the “fresh” sample in the horizontal setup began with a peak SEY of
almost 1.8 and reached a minimum SEY peak of just under 1. At this point the sample remained
under ultra-high vacuum (high 10−9 torr) for 2 weeks without exposure to beam. Under these
conditions, the SEY increased by about 1%. After that, the sample was exposed to nitrogen gas
for 1 hour and then the system was pumped down again. The measured peak SEY increased from
1 to 1.12 after exposure to nitrogen. The sample was once again processed in CESR for about 10
weeks, with weekly SEY measurements; the peak SEY decreased to about 1.

The “fresh” sample in the 45◦ station started with a peak SEY of just above 1.7 and reached a
minimum SEY peak of around 1.2. After that the sample in the 45◦ station was left under ultra-
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Figure 5.47: Repeated measurements of SEY as a function of energy for TiN-Al samples in the
horizontal station (left) and the 45◦ station (right).
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high vacuum in the SEY system for 2 weeks, and the peak SEY increased from 1.2 to 1.4. At that
point we realized that the miniature hot filament vacuum gauge of the system had been left on,
and that this could explain why the peak SEY of the fresh sample after it reached a peak SEY of
about 1.2 was increasing by few percent every week instead of decreasing as the horizontal sample
had been by 1 to 2 percent per week. At that point, we turned the hot filament gauge off and
processed the sample in CESR for about 10 weeks. The peak SEY decreased to about 1.2, as can
be seen in the 45◦ “contaminated” curve in Figure 5.48.

A test was done to evaluate the effect of vacuum contamination from a vacuum gauge. We found
that the emission from a hot-filament vacuum gauge can produce an increase in the SEY of the
sample. Based on these results, it is likely that the differences between the final SEY of the samples
in the horizontal station and the 45◦ station are due to contamination of the sample in the 45◦

station, not due to lack of processing of the 45◦ sample.

Aluminum Alloy Samples In August 2010, aluminum alloy samples (Al6061-T6) were installed
in the in situ systems. The results are summarized in Figure 5.49. The sample in the horizontal
station began with a peak SEY of 2.5 for the center grid point, and reached a minimum SEY
peak of about 1.6 after 3 ampere·hours of exposure. The sample in the 45◦ station began with
a peak SEY of 2.25 in the center and reached a peak SEY of 1.6 after the same exposure. At
this point, the horizontal SEY system was removed because of a malfunction and the spare SEY
system with a new Al6061-T6 sample was installed in the horizontal position. This new Al6061
sample had an initial SEY of about 2.9 and, after processing in CESR for about 6 weeks, the peak
SEY decreased to 1.9. The peak SEY of the 45◦ sample decreased from 1.6 to 1.5 during these
6 weeks of processing in CESR. A peak SEY value of 1.5 was achieved after 20 ampere·hours of
exposure. There was very little change in the SEY (a slight increase was observed) with additional
exposure up to 120 ampere·hours. Similarly, the second sample in the horizontal system had a
nearly constant peak SEY (with a slight increase) after 50 ampere·hours of exposure, up to about
100 ampere·hours.

The difference in the initial SEY between aluminum samples is presumably due to differences in
the initial surface condition. The Al6061-T6 samples were installed “as received” after cleaning in
an ultrasonic bath with alcohol to remove oil residues from machining. The results suggest that
the initial peak SEY of bare aluminum samples can vary a lot. This variation may be related to
the condition of the surface oxide layer.

Amorphous Carbon-Coated Samples In November 2010, the samples were replaced with
amorphous carbon-coated samples provided by S. Calatroni and C. Yin Vallgren (CERN). The
substrates were Al6061 (installed in the horizontal station), copper (installed in the 45◦ station)
and stainless steel (not installed in CESR, but measured in an off-line SEY system). The peak
SEY of the samples as a function of dose in CESR is shown in Figure 5.50. As can be seen, the
peak SEY of both samples is hardly affected by the exposure to the beam.

Initial Measurements on Diamond-Like-Carbon-Coated Samples We have done initial
SEY measurements on samples with diamond-like carbon (DLC) coatings on aluminum. The DLC
samples were provided by S. Kato (KEK). We have not yet installed any DLC samples in CESR;
we have only measured the SEY in the off-line system so far. The measured SEY as function of
beam energy for one of the DLC samples is shown in Figure 5.51 (blue circles). The SEY is strongly
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Figure 5.49: Dependence of SEY peak (left) and Emax (right) on dose for Al6061-T6 samples in
the horizontal and 45◦ stations.
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Figure 5.51: SEY as a function of incident electron energy for a diamond-like carbon-coated alu-
minum sample. The blue circles correspond to a “continuous” scan in energy (5 seconds for each
energy, with all 9 grid points measured; Point 5 is shown). The red squares correspond to a “dis-
crete” scan in energy (3 to 4 minutes waiting period with the electron beam deflected away from
the point of interest before each measurement; only Point 9 was measured).

distorted due to charging of the DLC-coated surface by the electron beam. To measure the true
SEY, we waited a long time (3 to 4 minutes) between each increment in the electron beam energy
to allow the surface to discharge and did the scan with a beam current of about 0.5 nA. The results
are shown in Figure 5.51 (red squares). As can be seen, the delay time produces a significant change
in the measured SEY.

5.1.5.4 Discussion

Our results shows that the initial 80% to 90% decrease in the peak SEY occurs within the first 2
weeks of processing, with a total photon dose of 1022 photons/m. This is true for both the horizontal
and the 45◦ systems. After the rapid SEY decrease in the first 2 weeks, the peak SEY decreases
about 1 to 2% per week with processing for both the TiN-Al samples and the bare Al6061 samples.
On average the peak SEY decreases with increasing beam dosage, D, proportional to D−0.030 for
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both the bare aluminum and the TiN-coated aluminum samples.

At this point we do not have enough data to draw any strong conclusions about the difference in
processing between samples placed in the horizontal system and the 45◦ system. For the TiN-Al,
the sample placed in the horizontal system reached a lower SEY value: a peak SEY of 1 compared
to 1.2 in the 45◦ system. However, we suspect that the higher SEY for the 45◦ sample is due to
contamination from a hot filament vacuum gauge. For the bare Al6061 samples, one set of samples
reached the same peak SEY of 1.6. A third sample in the horizontal system started at a higher
initial SEY value of 2.9 and reached a minimum peak SEY of 1.9 after an additional 6 weeks of
processing in the horizontal system. For comparison, in studies done at PEP-II, a bare Al6063
sample was processed in PEP-II beam line had an initial peak SEY of 3.5 and reached a peak SEY
of 2.4 after processing [119]. These measurements suggest that, for bare aluminum samples, the
initial value of the peak SEY varies from sample to sample and the final value of the peak SEY
after processing depends on the initial value.

The amorphous carbon-coated samples had initial peak SEY values of about 1. They showed almost
no change in the peak SEY with processing either in the horizontal or the 45◦ system.

We observed consistent differences in the peak SEY corresponding to the angle θ between the
incident electron gun beam and the normal to the sample surface. We have θ = 20◦ for Points 1, 2,
and 3; θ = 25◦ for Points 4, 5, and 6; and θ = 30◦ for Points 7, 8, and 9 (see Figure 5.46). Higher
SEYs were observed at points with larger θ. An example is shown in Figure 5.52 for a stainless
steel sample with an amorphous carbon coating. The measurements for θ = 0 were done at CERN
by S. Calatroni and C. Yin Vallgren on a different sample. The measurements show a small but
consistent increase in the peak SEY as θ increases. However, before quantitative conclusions are
drawn about the dependence of the SEY on angle, a better evaluation of the systematic errors in
our measurement is needed.

Our observation that the SEY depends on angle of incidence is qualitatively consistent with the
observations that, as the primary electron angle goes from normal incidence toward grazing inci-
dence, the SEY increases; this has been reported in recent secondary emission studies [79] as well
as early experiments [120].

5.1.5.5 SEY Studies Summary and Future Plans

For TiN-Al samples and bare Al6061 alloy samples, we observed that the main processing occurred
within the first 2 weeks, with a total photon dose of 1022 photons/m, while, after that, the SEY
decrease was about 1% per week. For Al6061, we observed that the SEYs after processing are lower
than the minimum SEY value of 2.4 for Al6063 reported by SLAC [119].

We are able to observe a small dependence of the SEY on the angle of the incident electron beam.
This indicates that the statistical errors are small enough for us to be able to resolve differences
of a few percent. However, the systematic errors are likely to be larger than the statistical errors,
which will require further investigation.

We are working on mitigating the effects of the current drift of the electron gun. The drift causes
a systematic error of around 2 to 4% in the calculated SEY. One method we are investigating is
to measure Ip for a given gun energy, and then change the bias voltage to measure It at the same
energy, before stepping to the next energy and repeating the process. However, we must account for
the effects of the stray capacitance of the SEY system, which can dramatically distort our current



5.1. Local EC Build-Up and Mitigation 229

0 500 1000 1500 2000
Energy (eV)

1.
2

0.
8

0.
4

0
SE

Y

θ
30°
25°
20°
0° (meas. at CERN)

3
1
8
0
3
1
1
−
0
0
1

3840511-168

Figure 5.52: Angular dependence of SEY as a function of incident electron energy for amorphous
carbon-coated samples.
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measurements. Because of the stray capacitance, when we switch the biasing voltage from 150 V
to −20 V (or vise-versa), it takes more than 1 minute for the current to reach its steady-state
value. In our present method, the biasing voltage is only switched twice, adding just a few minutes
to the measurement time. However, the method we are investigating switches the bias voltage at
every energy—with 150 gun energy changes per scan, the measurement time may be prohibitively
long. We are investigating modifications to minimize the stray capacitance and take fewer energy
points.

We plan to compare the Al6063 and Al6061 alloys to better understand the large difference in the
peak SEY achieved after processing. Other future work will include the study of other material
samples, including samples cut from an extruded, aged (30+ years) 6063 aluminum CESR chamber.
In addition, we plan to measure the SEYs of materials coated in non-evaporable getter (NEG) thin
film, and continue to study amorphous/diamond-like carbon samples.

We plan to check the reproducibility of the results on TiN-Al samples and do additional checks for
systematic effects. We are designing additional experiments to determine whether SR bombardment
or electron cloud bombardment is the main source of processing.

5.2 Other Methods to Characterize EC Build-Up

While the RFAs provide the largest number of detectors at CESRTA, other techniques for measuring
the electron cloud density are being used at a subset of locations. TE Wave and Shielded Pickup
detectors provide data that is complementary to that of RFAs. The Shielded Pickups have a
geometry that is similar to that of an RFA, but are designed to measure time resolved signals,
while the RFAs measure integrated current. The TE Wave technique — where the periodic electron
cloud modulates a carrier transmitted through the beam pipe — is sensitive to the cloud density in
the center of the pipe, while both the RFA and Shielded Pickups measure the cloud current that is
normal to the pipe surface. The comparison of data taken using these complementary techniques
should result in consistent measurements and modeling.

5.2.1 TE Wave Studies

Two versions of TE wave measurements were made at CESRTA. Initial measurements were based
on the transmission of microwaves between two points in the accelerator, using the beam pipe as
a waveguide. In the course of taking this data, it became clear that a different interpretation of
the signals was needed in most cases due to the presence of resonances in the frequency response
of the beam pipe. This resulted in the recent development of TE wave resonant measurements
where the beam pipe and its reflections are treated as a resonant cavity. Both techniques will be
discussed in the sections below. The transmission technique would be most relevant for regions of an
accelerator where there are few reflections; the resonant technique for regions where the reflections
are significant. These sections also show the historical development of TE wave studies.

5.2.1.1 TE Wave Transmission Measurements

Improvements to the theoretical model The theoretical model of the TE wave measurement
proposed by Caspers et al. in [121] only took into account the phase delay induced by the electron
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cloud on a propagating TE wave. Moreover, changes in the cloud density were supposed to have a
simple sinusoidal evolution. Under such a hypotheses the modulation sidebands amplitude, relative
to the carrier SBc, is simply given by

SBc =
∆Φ

2
(5.7)

if ∆Φ is the modulation index, with only one upper and one lower sideband present for low in-
dex modulation, which is always the case with cloud densities normally encountered in particle
accelerators. In the course of our experimental work, we encountered situations were amplitude
modulation, and in general simultaneous phase and amplitude modulation, were present. Addi-
tionally, the purely sinusoidal modulation model turned out to be an excessive abstraction in most
cases, so that an effort to generalize the theory proved to be necessary. We summarize the result
of our effort in the following subsections.

AM/PM modulation To increase the measurement sensitivity, it is good practice to choose
the TE wave frequency corresponding to a maximum in the beam pipe transmission function. In
most cases those peaks correspond to standing waves trapped by discontinuities in the vacuum
chamber [24], and may contain a simultaneous amplitude modulation component. The general
formulation for an AM/PM modulation is reported in Ref. [21]. If the standing wave has a narrow
resonance (high quality factor Q0), the modulation indexes are given by

∆M =
Q2

0
2

(
ωp
ωres

)4

∆Φ = Q0

(
ωp
ωres

)2 (5.8)

where ∆M = ∆Φ2/2 is the amplitude modulation index and ωres is the center frequency of the
resonance. In the hypothesis ωp � ωres the modulation sidebands amplitude can be written as

SBc ≈ ∆Φ

[
1 +

1

2

(
∆Φ

2

)2
]
|F (ω)| (5.9)

where |F (ω)| is the Fourier transform of the cloud normalized density. In the case of a sinusoidal
modulation we can compare Eqs. 5.7 and 5.9 and see that the corrective term in brackets accounts
for the AM/PM modulation.

Time evolution of the electron cloud density From Eq. 5.9 one can easily see that the
temporal evolution of the electron cloud density is described by the function F (ω) in the frequency
domain, which being the transform of a periodic function will be composed of discrete lines separated
by the ring revolution frequency ωrev. In practical cases one usually observes a number of sidebands,
even for small modulation depths, as shown in Fig. 5.53. A fairly good approximation can be
obtained assuming that rise and fall times of the EC density are much shorter than the bunch
train length, but still at least comparable with the bunch spacing. In such a case, a rectangular
modulating function with duty factor equal to the train length divided by the machine length, can
obviously be seen as a more accurate representation than a sinusoidal one.
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Figure 5.53: Cancellation of modulation sidebands due to different bunch train lengths. Suppressed
modulation sidebands due to the rectangular modulation function are indicated for various train
lengths.

This hypothesis can find a degree of experimental verification by looking at the sidebands with
different train lengths. Figure 5.53 shows a detail of measurements in a dipole region of CESRTA
with bunch trains of different lengths equal to one fourth, one fifth and one sixth of the ring
circumference. One can see that correspondingly every fourth, fifth and sixth beam harmonic
is suppressed. The general properties of the Fourier transform point out how this behavior is
evidence of a strong rectangular modulation component. In such a case we can modify Eq. (5.7),
by introducing a correction factor that takes into account the rectangular nature of the modulation
and we have

∆Φ =
1

2
× SBc

π

sin(tbωrev/2)
(5.10)

where tb is the bunch train length. Applying Carson’s Bandwidth Rule [122], an approximate
evaluation of the EC density rise and fall times (tr) is given by

tr ≈
2

3
× 2π

ωrev ×NSB
(5.11)

where NSB is the number of visible sidebands.

Beam pipe attenuation compensation Experimental data showed a substantial difference
in signal attenuation for different frequencies even on a relatively narrow frequency span such as
the 390 kHz between TE wave frequency and first modulation sidebands. These differences need
to be compensated in order to correctly evaluate the modulation depth. It is worth stressing
that we frequently measured differences of several dB, which would easily cause significant errors
if unaccounted for. Furthermore, the attenuation can change substantially with varying beam
conditions, due principally to thermal effects, so that a continuous monitoring is necessary.

The relative amplitude of upper and lower sidebands (USB and LSB, respectively) have to be
corrected for the difference in transmission function of the measuring system at the carrier and
USB and LSB frequencies. This can be done with separate measurements, but we have recently
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Figure 5.54: Example of sidebands measurement in the wiggler straight. 45-bunch positron train
of 60 mA total beam current with 14 ns bunch spacing, with reference modulation sidebands (1
mrad modulation depth at 410 kHz).

introduced a calibration phase modulation of known index at a frequency close to the e-cloud
modulation frequency, so that the transmission function is about equal to that for the nearby
modulation sidebands. In this case, the reference phase modulation index at 410 kHz was chosen
to be 1 mrad, which should generate sidebands at −66 dBc. We observe lower values from which
it is possible to infer the attenuation, with respect to the carrier frequency, at the USB and LSB
frequencies (390 kHz). We calculate a correction factor equal to −66.0 − (−64.9) = −1.1 dB for
the LSB and, analogously, +6.4 dB for the USB. The corrected value for the LSB is −49.2 dBc
and −48.3 dBc for the USB. It is worth noticing that, while before correction the two sidebands
were rather different (6.6 dB), after the correction is applied their values are almost identical, as
expected. An example of sideband measurement in the wiggler straight (L0) is shown in Fig. 5.54,
where we are measuring the sidebands generated by a 45-bunch positron train of 60 mA total
current in a TE wave traveling along the eastern half of the L0 wiggler straight.

As previously stated, being able to continuously monitor the transmission function at the frequen-
cies of interest is quite important during some experiments when beam and/or machine conditions
undergo large variations. In such cases the transmission changes due mostly to thermal effects
can disrupt the measurement as shown in Fig. 5.55: While ramping the wigglers magnetic field,
the emitted synchrotron radiation increase can change the beam pipe transmission function at
the sidebands frequency so that USB and LSB amplitudes actually appear to diverge during the
experiment until the correction is applied.

To estimate the EC density from the sidebands measured in Fig. 5.54, we can use the average of
the two sidebands −48.8 dBc.

5.2.1.2 TE Wave Resonance Measurements

TE wave resonance measurements treat the beam pipe and its reflections as a resonant cavity. Data
is generally taken by exciting and receiving at the same detector - so that the value of L used in
the transmission technique would be zero, making that interpretation invalid.

As originally proposed, the TE wave technique was based on transmission and reception of mi-
crowaves from one point in the accelerator to another using the beam pipe as a waveguide. Button
detectors, normally used as part of the beam position monitor (BPM) system are used to couple
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Figure 5.55: Sideband levels relative to the carrier during wiggler ramp in the L0 straight with
(solid lines) and without (dashed) correction applied.

microwaves in/out of the beam pipe. In the presence of a plasma (the electron cloud), transmitted
microwaves will be phase shifted and the EC density measured [19, 21, 22, 26].

However, in applying this technique to the data at CESRTA, it was noticed that transmission
through the beam pipe does not have a flat frequency response. In fact, the large variations in
response suggest the presence of resonant excitation of the beam pipe rather than single pass
transmission. This interpretation was confirmed by the response when exciting and receiving at
the same location, where very large resonances are often seen.

Reflections and Standing Waves The beam pipe at CESRTA was not designed to be a waveg-
uide. In devices such as vacuum pumps, longitudinal slots were used to provide a reasonable vacuum
connection, while minimizing the effect of beam-induced fields. However, these longitudinal slots
present an obstacle to the propagation of a TE waves. A simple example was found at 43E in
CESRTA where a BPM coupler/detector is located between two ion pumps (with slots). The re-
sponse shown in Fig. 5.56 is consistent with a waveguide of length L having a cutoff frequency fc
and n half wavelengths in the distance L between the pumps [24, 123].

The effect of dielectrics and plasmas on the resonant frequency of a cavity is well established [23].
The effect of small dielectrics on resonant frequency is very useful in mapping the fields of ac-
celerating cavities and plasma densities are routinely measured using resonant cavities [23, 124].
Perturbation techniques provide the following approximation for the shift in resonant frequency
due to a dielectric in a resonant cavity [125].

∆ω

ω
=

∫
V

(1− εr)E2
0 dV

2

∫
V
E2

0 dV

(5.12)

The effective dielectric constant of a plasma has real and imaginary parts. The imaginary part
gives a change in the Q of the resonance, the real part a change in its frequency. For low density
plasmas (ω2

p � ω2) with a small collision frequency (ν � ω) and no magnetic field, the real part
of the dielectric constant of a plasma can be written as [124]
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Figure 5.56: Sketch of 43E at CESRTA, where a BPM Detector is located between two ion
pumps with longitudinal slots. The measured resonances follow the expected f2 = f2

c +
(
nc
2L

)2
of a

rectangular cavity.

εr =

1−
ω2
p

ω2
(

1 + (ν/ω)2
)
 . (5.13)

The plasma frequency ωp is related to the electron cloud density ne by ne = ω2
pε0me/e

2, where me

is the electron mass [23]. Let the collision frequency be vanishingly small ν → 0. In this case, the
change in resonant frequency becomes

∆ω

ω
=

reλ
2

2π

∫
V
neE

2
0 dV∫

V
E2

0 dV

. (5.14)

where re = e2/(4πε0mec
2) is the classical electron radius and λ = 2πc/ω is the wavelength of the

TE wave.

The resonant frequency shift is proportional to the local electron cloud density weighted by E2
0 . If

there are high local densities where the cavity electric field is zero, they will not have an effect on
∆ω . If the density is uniform, ∆ω is independent of the details of the electric field, since the same
integral appears in the numerator and denominator [122]. An EC density of 1012 m−3 would give
a frequency shift of about 20 kHz.

With a train of bunches in the storage ring, the electron cloud will grow and decay each time the
bunch train passes a given point – at the revolution frequency frev (390 kHz at CESRTA). The
quantity ∆ω is the modulation in the resonant frequency of the waveguide cavity produced by the
electron cloud. We now need to determine the effect that this modulation has on the observed
signals.
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Effect on Signals For most of the TE Wave measurements made at CESRTA, the resonant beam
pipe is driven at a fixed frequency and its response measured with a spectrum analyzer. The
steady state solution for a driven oscillator is given in the following equations and illustrated in
Fig. 5.57.

x(t) = An sin(ωt+ φn) (5.15a)

An = Q
A

[(ω2
n − ω2)2 + ω4]1/2

(5.15b)

φn = tan−1

[
Q

(ω2
n − ω2)

ω2

]
(5.15c)
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Figure 5.57: Steady state amplitude and phase response as the cavity resonant frequency changes
from ω0 to ω1.

To obtain a rough estimate of the EC density, a number of approximations will be made: that
the steady state solution above applies, the drive frequency ω is close to resonance (this results
primarily in phase modulation), the phase modulation, from Eq. (5.15c) using the measured Q
of about 3000, is small and a cw modulation would give a ratio of the first sideband to carrier
amplitude (Sratio) of 1

2∆φ. The result of these approximations is given in Eq. (5.16).

ne ≈ Sratio ·
ω2

Q · 1.59× 103
= Sratio · 2.5× 1013 (5.16)

Also, the phase modulation is not sinusoidal but modulated by the EC density, so a further approx-
imation needs to be made. Let the duration of the EC density and its effect on the phase be of fixed
amplitude for the length of the bunch train and zero otherwise. Given these crude approximations,
Fig. 5.58 is a plot of the EC density measured in the wiggler region at 2 GeV during a wiggler
ramp. The stored beam was a positron 45 bunch train spaced at 14 ns with a total current of
35 mA.

One concern with this approximation is that the beam pipe cavity has damping time of about 500 ns.
So the duration of the cloud and the damping time of the cavity are of the same magnitude. We
are working on a more correct analysis that would include transient effects. For example, a step in
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Figure 5.58: Estimate of EC density during a ramp of wigglers

the resonant frequency of the cavity at t = 0 would be described by

x(t < 0) = A0 sin(ωt+ φ0) (5.17a)

x(t ≥ 0) = A1 sin(ωt+ φ1) + e−Γt[A0 sin(ω1t+ φ0)−A1 sin(ω1t+ φ1)]. (5.17b)

where Γ is the reciprocal of the cavity damping time. For t � 1/Γ, the exponential vanishes and
only the first term (steady state) remains. In the steady state solutions for t < 0 and t� 1/Γ there
is a difference both in the amplitude A0 → A1 and in phase φ0 → φ1. But, especially near the
resonant frequency, the amplitude change will be quite small and the phase difference will dominate
the signal.

The two terms in the brackets are at the new resonant frequency ω1. For small changes in amplitude
and phase this term will be close to zero and decays exponentially with time. To get a better sense
of its effect, suppose that the drive frequency ω is between the old and new resonant frequencies.
Then the amplitudes A0 and A1 will be nearly equal.

Using the A0 ≈ A1 and the trigonometric identity sin(a)− sin(b) = 2 cos(a+b
2 ) sin(a−b2 ),

x(t) = A1 sin(ωt+ φ1) + e−Γt[A0 sin(ω1t+ φ0)−A1 sin(ω1t+ φ1)]

≈ A1 sin(ωt+ φ1) +A1e
−Γt[sin(ω1t+ φ0)− sin(ω1t+ φ1)]

≈ A1 sin(ωt+ φ1) + 2A1e
−Γt

[
cos

(
ω1t+

φ0 + φ1

2

)
sin

(
φ0 − φ1

2

)]
= A1 sin(ωt+ φ1)− 2A1e

−Γt

[
cos

(
ω1t+

φ0 + φ1

2

)
sin

(
φ1 − φ0

2

)]
≈ A1

[
sin(ωt+ φ1)− [φ1 − φ0]e−Γt cos

(
ω1t+

φ0 + φ1

2

)]
. (5.18)

So the term that contains the new resonant frequency is multiplied by the phase difference be-
fore/after the change in resonant frequency, which is small. So the change in signal will be primarily
that of a phase (and amplitude) shift.

The expression of Eq. (5.18) is more or less of the form A sin(x)+B cos(x). For ω ≈ ω1 and ignoring
the fact that the phase terms are not quite equal,
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x(t) ≈ A1

[
sin(ωt+ φ1)− [φ1 − φ0]e−Γt cos

(
ω1t+

φ0 + φ1

2

)]
≈ A1 sin

[
ωt+ φ1 − (φ1 − φ0)e−Γt

]
≈ A1 sin

[
ωt+ φ1

(
1− e−Γt

)
+ φ0e

−Γt
]
. (5.19)

With all of these approximations, this looks like a rotation of the phase angle from φ0 to φ1 over
the damping time. This will have the effect of adding transitions to both the rising and trailing
edges of the phase modulation shown in Fig. 5.57, and have a corresponding effect on the Fourier
transform of the modulation.

5.2.1.3 TE Wave Alternative Techniques

Finally, we give some other examples of measurements connected to alternative techniques we are
developing.

The Cutoff Resonance Bench measurements were made using WR284 waveguide which has a
cutoff frequency very similar to the beam pipe of CESRTA near 2 GHz. A 4 meter long section was
driven near its longitudinal center using buttons similar in geometry to those in CESRTA. Using
metal blocks near the waveguide ends to generate reflections, cavity modes were excited. The
∆f ∝ E2 of these modes were plotted vs. longitudinal position using a dielectric bead, making use
of Eq. (5.12) and observing the shifts in resonant frequencies. For measurements with a uniform
waveguide, the resonances showed E2 varying as multiples of half wavelengths, including the lowest
n = 1 mode.

3840511-328

Figure 5.59: For bead pull measurements, a thin monofilament line varies the position of a dielectric
bead in WR284 waveguide. The center flange has BPM-like buttons that are used to couple
microwaves in/out of the waveguide.

However, a slight modification of the flange used at the drive point resulted in a significant change
in the bead pull measurement of the lowest resonance as shown in Fig. 5.63. The inside width of
the drive point flange was made 3 mm wider than the waveguide. This portion of the flange is
about 2cm long. The lowest ‘n = 1’ resonance was then shifted slightly below the cutoff frequency.
But rather than a half-sine wave, it has a response consistent with an exponential decrease in E,
as with an evanescent wave.
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Figure 5.60: Sketch of straight drive flange
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Figure 5.61: Multiple half-wavelength res-
onances are observed in a section of WR284
waveguide.

If excited in this mode, the response to EC density will occur over a distance of only about two
meters and provide a very localized measurement, following Eq. (5.14). This can be a great ad-
vantage, especially when trying to cross calibrate with other localized EC density measurement
techniques.

There are many details about this cutoff mode that we need to understand. Primarily, we need to
be able to tell - without performing a bead pull experiment in the storage ring - whether or not we
have excited this resonance vs. the usual half wave n = 1 cavity mode. One indication should be
the effect on the sequence of resonant frequencies and the extent to which they are different from
f2 ∝ n2. For example, the n = 1 resonance should be lower than normally expected.

At present, an extensive archive of resonant BPM measurements is available and efforts are under-
way [24, 122, 123] for a full theoretical model of the relationship between sidebands amplitude and
electron cloud density in these conditions.

TE Magnetic Resonance During measurements in the chicane in the L3 region we observed
a strong enhancement in the modulation sidebands corresponding to the upper plasma hybrid
resonance, generated by a TE wave polarized with its electric field normal to the chicane magnetic
field.

Figure 5.64 shows the change in modulation sideband amplitude when the chicane magnetic field
is changed so that the TE wave frequency corresponds to the upper hybrid frequency ωuh =
(ω2
p + ω2

cycl)
1/2 for the electron cloud plasma. Because in all practical situations, for a wave above

cutoff, ωp � ωcycl making the evaluating the plasma frequency from the upper hybrid frequency
measurement problematic, we are currently studying the phenomenon for waves below cutoff. Pre-
liminary results give us the hope of being able to effectively turn on and off transmission between
two BPMs by applying a relatively small dipole magnetic field to the portion of vacuum chamber
between them. This could be easily achievable by employing external air-coil magnets, for instance.
At that point, the evaluation of the electron cloud density in that region would essentially reduce
to the measurement of a resonance peak.
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Figure 5.62: Sketch of drive flange modifica-
tion.
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Figure 5.63: The cutoff resonance was observed
using a modified drive flange in a measurement
with WR284 waveguide.

5.2.1.4 TE Wave Modeling

Vorpal Simulations: The plasma simulation program VORPAL [126], is being used to simulate
transverse electric (TE) wave propagation experiments at CESRTA. The electromagnetic particle-
in-cell (PIC) routines in VORPAL uses the Yee algorithm [127] for solving Maxwell’s equations. In
addition to calculations of the evolution of the wave electric and magnetic fields with particles, the
program can also include external static fields that affect the particle motion. This helps simulate
experiments in the presence of dipole or solenoidal fields.

The regular CESRTA beam pipe geometry may be represented by two circular arcs of radius 0.075
m, connected with flat planes on the sides. The cross-section measures about 9 cm from side to side
and the height of the side walls is about 2 cm. In the simulations, the ends of the pipes were either
perfect conductors or perfectly-matched layers (PMLs) designed to fully absorb any transmissions.
Applying the conducting boundaries created a resonant cavity; using PMLs simulated a section of
a longer, continuous beam pipe. PML boundaries, first developed by J. Berenger [128], ascribe a
parabolically increasing electrical and (nonphysical) magnetic conductivity to the regions at the
ends of the beam pipes. These regions had significant thickness, sometimes as much as one-fourth
the length of the entire pipe.

The simulation begins with a specified initial distribution of electrons in the simulation grid and
tracks their subsequent motion due to field interactions. The simulation used macro-particles of
high mass and charge to represent groups of nearby electrons. Electrons were set to initially have
zero velocity (a cold plasma). They were also artificially constrained to cross no more than one
cell per time step, a restriction that in practice does not significantly limit the physicality of the
simulation. Waves were excited in the simulations by ascribing a transversely oscillating current
density to a section of the beam pipe. These sections covered the full cross-sectional area and were
two cells thick in the longitudinal dimension. In addition to recording all EM field data at user
specified intervals, VORPAL can record the time evolution of a number of different quantities over
the entire simulation. Known in the code as Histories, recordable quantities include the potential
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Figure 5.64: Modulation sideband amplitude near the upper hybrid resonance at two different
frequencies. Red and green traces correspond to opposite direction of propagation of the TE wave.

difference between two given points, energy flux through a specified cross section, and the number of
particles in a given region. The energy flux history is especially useful for testing the effectiveness
of the PML boundaries, since all flux is expected to point away from the source current in the
absence of reflections along the length of the pipe.

Simulation of phase shift: The calculation of phase shift is performed as follows. Simulations
of the wave transmission are performed separately through a vacuum beam pipe and through a
beam pipe with electrons respectively. The sinusoidal functions obtained from these simulations
are normalized so that their rms values are unity. The difference of the two wave functions then
gives a sinusoidal wave with an amplitude that is proportional to the phase shift between the first
two waves. This may be shown as follows. Suppose the frequency is ω and phase shift δ, then we
have

w1 = (1/
√

2) cos(ωt) w2 = (1/
√

2) cos(ωt+ δ),

(w2 − w1)/2 = (1/
√

2) sin(δ) cos(2ωt+ δ) (5.20)

The phase shift for nominal cloud densities is small enough that sin(δ) ≈ δ. Thus the amplitude of
the difference wave is proportional to the phase shift between the two waves.

The phase shift for a pipe without reflection depends upon three quantities, (1) the frequency of
the carrier wave ω, (2) the electron plasma frequency, ωp of the cloud and (3) the cutoff frequency
of the vacuum chamber ωco. In the absence of external magnetic fields, the dispersion relationship
for a plasma filled waveguide is,

k2 =
ω2

c2
− ω2

co

c2
−
ω2
p

c2
(5.21)
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Figure 5.65: Snapshot of a vorpal simulation
showing propagation of a TE wave through the
CESRTA beam pipe
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Figure 5.66: Variation of of phase shift with
cloud density for a regular CESRTA beam pipe
geometry

where k = 2π/λ, ωco is the cut-off frequency of the waveguide and ωp is the plasma frequency,
which is given by ω2

p = nee
2/ε0me, with ne the electron density, e the electron charge, ε0 the free

space permittivity and me the electron mass. In the limit of small values of plasma frequencies,
using the above dispersion relationship, it may be shown that the electron cloud induced phase
shift for a unit length of propagation is [129]:

∆Φ =
nee

2L

4πcε0me

√
f2 − f2

co

(5.22)

Figure 5.66 shows that simulations agree well with the analytically predicted values of phase shift
given by in Eq 5.22. Similar success with a VORPAL-simulated pipe with a square cross-section
has been reported before [129].

Simulations with external magnetic fields and the cyclotron resonance: In the presence of an external
magnetic field and electron clouds, the medium is no longer isotropic and the polarization of the
transmitted microwave plays an important role in the outcome of the measurement. When the
wave electric field is oriented perpendicular to the external magnetic field, the mode is referred to
as an “Extraordinary” or simply X-wave. In this situation, if the external dipole field corresponds
to an electron cyclotron frequency close to the carrier wave frequency, we see an enhanced phase
shift. The phenomenon is well understood in the case of open boundaries. It is usually referred
to as upper hybrid resonance. The dispersion relationship for the open boundary case is given as
follows (see for example ref [130]).

c2k2

ω2
= 1−

ω2
p(ω

2 − ω2
p)

ω2(ω2 − ω2
h)

(5.23)

The term ωh is the upper hybrid frequency which is given by ω2
h = ω2

p + ω2
c , ωc = eB/me being

the electron cyclotron frequency for the given magnetic field B. When ω → ωh, it is clear that
k →∞. Since the phase advance is the product of the wave vector k and the length of propagation,
we see that the electron cloud induced phase shift will theoretically go to infinity. In the case of
electron clouds in beam pipes, the plasma frequency is of the order of a few 10 MHz while the
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carrier frequency is around 2 GHz. Thus ωh ≈ ωc and one can state that, for all practical purposes,
resonance occurs when ω = ωc. The above relationship is not valid for waveguides, which have
finite boundaries.

Figure 5.67 shows the enhanced phase shift when the cyclotron frequency approaches the carrier
frequency. The beam pipe cross section was circular with a radius of 4.45 cm, which leads to a cutoff
at 1.97GHz at the fundamental TE11 mode. These parameters match with the beam pipe geometry
of the PEP II/CESRTA/ chicane section. The wave frequency was 2.17 GHz. The magnetic field
corresponding to this cyclotron frequency is 0.077576T. This magnetic field is tunable in the chicane
between 0 to about 0.14T. This effect was first observed when the chicane was located at PEP II
[131] and has been confirmed by several follow up measurements after it was transferred to CESRTA.
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Figure 5.67: Variation of phase shift with exter-
nal magnetic field (log scale) for different cloud
densities
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Figure 5.68: Relationship between phase shift
and electron density for different settings of ex-
ternal magnetic field

Figure 5.68 shows the variation of phase shift with electron cloud density at different settings of
external magnetic fields. These densities are typical of what is produced in CESRTA. The plots
show that the variation of phase shift with density remains linear even when one is reasonably close
to resonance. This is expected to be true as long as the plasma frequency is much smaller than
the wave frequency, regardless of how complex the dispersion relationship of the wave is. Thus,
one could easily use an external magnetic field to amplify the signal. Given that the amplification
factor of the signal is a constant, one could monitor relative changes in cloud density, if not the
absolute density. Thus, simulations have shown that the linear relationship between phase shift
and cloud density is retained in the presence of reflections and external magnetic fields.

Simulations with reflections and the resonant cavity method: It is not very likely that one can per-
form phase shift experiments that are totally free of internal reflections in an accelerator chamber.
The presence of internal reflections would affect the value of the phase shift. Thus it became im-
portant to study the effects of such internal reflections with the help of simulations. In order to do
this, the simulations were altered to include two protruding conductors, which would reflect some
of the transmitted wave. The protrusions were slabs in the transverse plane, extending from the
bottom to one centimeter above the apex of the lower arc (see Fig. 5.70). They were spaced 0.4
meters apart, and the frequencies 2.41 GHz and 3.87 GHz, the same as those shown in Fig 5.66,
correspond to the resonant harmonics (n = 4 and n = 9, respectively) of a 0.4 meter “resonant
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cavity”. This was done in order to maximize reflections. As evidence that reflections were in fact
occurring between the protrusions, the energy flux (not shown) fell periodically below zero (positive
flux points away from the source current) in this region, whereas the flux at the end opposite to
the source was always positive. Fig. 5.69 shows the results. The solid shapes represent the data
for no reflections and are the same data that appear in Fig. 5.66. The open shapes represent the
phase shifts in the presence of reflection. These results clearly indicate that internal reflections
modify the expected phase shift. The nature of the alteration of phase shift depends upon the
complexities of the transmission-reflection combination, but the linear relationship between phase
shift and electron density is always preserved.

3840511-516

Figure 5.69: Phase shift in the presence of protrusions causing a partial reflection of the wave

The shift in resonant frequency of the carrier wave in the presence of an electron cloud may be
calculated from the dispersion relationship given by Eq. (5.21) and the resonance condition for a
“cavity” of length L, which is nλ

2 = L. Combining the two in the limit of small values of plasma
frequencies, we get

∆f =
nee

2

8ε0meπ2f0
=
nerec

2

2πf0
(5.24)

in which re is the classical electron radius and f0 is the resonant frequency of the waveguide in
vacuum. This shows that the frequency shift is proportional to the electron cloud density. As
indicated earlier in this section, an effort is underway to take advantage of this to measure the
density of the electron cloud within the beam pipe section where the reflections are occurring.
Thus, it became necessary to test this phenomenon with simulations as well, which was carried
out as follows: The simulation with reflections was repeated for a number of frequencies and for
each of these runs, the energy flux was recorded at every time step at a location in the pipe that
was between the two protrusions. This energy flux, which is the Poynting vector integrated over
the cross-section area, was then averaged over the whole simulation period, for each frequency. We
know that the protrusions will reflect only part of the wave flux while the rest gets transmitted and
eventually absorbed into the PML boundary. It can be reasoned that at resonance, the extent of
reflection, or trapping of the wave energy is a maximum. This corresponds to a case when the length
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between the protrusions is an integer multiple of half a wavelength. Figure 5.71 shows the averaged
energy flux transmitted across a location between the protrusions for various frequencies for both
an empty beam pipe as well as for a case with electrons in the pipe. At a resonant frequency, when
there is an optimized back and forth transmission of the wave, the averaged flux would reach a local
minimum. In order to accurately determine this minimum point, we make a parabolic fit in the
vicinity of this point using the available points obtained from simulation. The parabolic shape is
associated with a Taylor expansion of the function around the minimum. The length of the section
between the partial reflectors was 0.898 m and the electron density used in this calculation was
1014 m−3, which is rather high, but helps determine the accuracy of the simulation process. For
these parameters, the the n = 2 resonance occurs at 2.0033 GHz and the expected frequency due
to electrons is 2 MHz. Simulations show a shift of 2.05 MHz. Thus we were able to establish that
accurate values of frequency shift for such an experiment may be determined from simulations.
These simulations may be modified in order to include more features such as a nonuniform cloud
density and also an external magnetic fields where analytic expressions for frequency shifts are not
readily available.
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Figure 5.70: A schematic of the simulations with protrusions serving as partial reflectors
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Figure 5.71: Simulation results of a time averaged Poynting vector flux across a plane between
the two protrusions. The minimum point indicates corresponds to a standing wave.

Simulations using WARP: Simulations of the EM waves and plasma in the beam pipe were per-
formed using WARP [132]. Parameters roughly corresponded to experiments performed on CESRTA [1,
133]. TE waves of 2.05 GHz are launched into the beam pipe, and propagated at low power through
2 m of electron cloud. The simulation duration is 20 ns, which is sufficient for the entire volume
to approach its equilibrium. Typical electron cloud densities are up to 1012 m−3, but to enhance
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the visibility of the effects the simulations use an average density of 1015 m−3. The corresponding
plasma frequency of 0.284 GHz is still well below the other relevant frequencies. The beam pipe
is chosen to be rectangular with horizontal and vertical dimensions of 0.09 m and 0.05 m, respec-
tively. The lowest mode has vertical polarization and its cutoff is 1.67 GHz. Without electron
cloud, kz ' 8π m−1, for a wavelength of 0.25 m. Thus, there are 8 periods in the simulated region.
A uniform plasma reduces kz so that there are roughly 7.75 periods. When the plasma is concen-
trated at smaller |y| there is no change, but when concentrated at smaller |x| the number of periods
is further reduced to 7.40. The vertical field on axis for these cases is shown in Figure 5.72.

no electrons uniform distrib

compressed x compressed y

3840511-521

Figure 5.72: A comparison of TE wave propagation for the cases of no electron cloud and distri-
butions that are uniform, compressed horizontally, or compressed vertically. The average electron
density is 1015 m−3 in all cases with electrons.

Large Dipole Field: Simulations were performed using WARP with similar parameters as before.
A uniform magnetic field of 1.1 T is included, either horizontal, vertical, or longitudinal. The
cyclotron frequency is 30.79 GHz. In addition to a rectangular waveguide, a square waveguide
with both diameters 0.09 m was used as a simplified model of a cylindrical waveguide. For a
cylindrical waveguide, the modes mix components and are more complicated. The cutoff frequency
for a circular pipe with diameter 0.09 m would be 1.95 GHz, which is even closer to the input
frequency.

When the cyclotron frequency is much higher than the input EM wave frequency, the phase shift
from the plasma can be strongly suppressed. When the electric field is aligned with the external
magnetic field, there is no effect. When the external field is orthogonal to both the electric fields
and the waveguide axis, the phase shift should be reduced by ω2/Ω2

c compared to zero external
field. On the other hand, a second polarization component is generated that is out of phase and
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a factor of ω2
p/ωΩc smaller in amplitude. The fields are shown in Figure 5.73; note that the wave

has close to 8 periods in the simulation volume, very similar to the case with no electron cloud.
The horizontal fields might be easier to detect, but will not propagate outside the electron cloud
due to their higher-order structure. This effect is only moderately sensitive to the geometry of
the waveguide. For a longitudinal magnetic field, Faraday rotation will generate an increasing
component of the opposite polarization, so long as the other polarization is able to propagate. The
rotation rate is proportional to the electron density and magnetic field. An example for a square
waveguide is shown in Figure 5.74 . For a circular beam pipe, the variation of the electric field
vector with position further complicates the interaction. By comparing different orientations of
the TE wave, one could obtain more detailed information about the location of the electrons. Any
decrease in transmission is very weak

3840511-522 3840511-523

Figure 5.73: Transmission of a vertically-polarized TE wave in a square waveguide with a strong
horizontal magnetic field and electron density of 1015 m−3.

3840511-524 3840511-525

Figure 5.74: Transmission of a vertically-polarized TE wave in a square waveguide with a strong
axial magnetic field and electron density of 1015 m−3.

Cyclotron Resonance: Close to the cyclotron resonance, there is typically strong damping or re-
flection due to the mismatch between the normal waveguide modes and the waves allowed by the
dispersion equation. There can also be significant heating of the electrons. The frequency for
maximal electron heating rather than reflection is the “upper hybrid” frequency, ω2

uh = Ω2
c + ω2

p.
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For solenoid fields, where the left-hand circularly polarized mode is insensitive to the resonance,
half of the power will still be transmitted if this mode is allowed by the geometry of the waveguide.
An example is shown in Figure 5.75 for a magnetic field of 0.07 T, where the cyclotron frequency
is 1.96 GHz. The mode is left-hand circularly polarized, and has roughly half the power of the
original mode. There is a transition region in the first few wavelengths as the right-hand polarized
fields decay.

3840511-526 3840511-527

Figure 5.75: Transmission of a vertically-polarized TE wave in a square waveguide with vertical
polarization and an axial magnetic field near resonance. The electron density is 1015 m−3. A
left-hand circularly polarized wave is transmitted at roughly half the original power.

5.2.2 Shielded Pickup Studies

5.2.2.1 Measurements

Time-resolved shielded-pickup measurements provide time structure information on cloud develop-
ment, in contrast to the time-integrated RFA measurements [134]. However, they have relatively
primitive energy selection, since they have no retarding grid and position segmentation is more
coarse, the charge-collecting electrodes being of diameter 18 mm. Data has been recorded with
biases of 0 and ±50 V relative to the vacuum chamber. The studies described here address ex-
clusively the data a with bias +50 V in order to avoid contributions to the signal from secondary
electrons escaping the pickup. Such secondaries generally carry kinetic energy insufficient to escape
a 50 V bias. This choice of bias obviously provides sensitivity to cloud electrons which enter the
port holes with low kinetic energy. The front-end readout electronics comprise RF amplifiers with
50 Ω input impedance and a total voltage gain of 100. Digitized oscilloscope traces are recorded
with 0.1 ns step size.

Two Bunch Data The data shown in Fig. 5.76 was taken with two bunches of equal positron
currents, 36ns apart. With a ring revolution period of 2.5 µs, the cloud has presumably fully
decayed by the time of the arrival of the first bunch. This first bunch produces a fairly small signal
in the detector. The signal from the second bunch is much larger, not because it has produced
more photoelectrons, but because its electric field kicks electrons that were produced by the first
bunch into the detector.
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Figure 5.76: Shielded pickup signal from two
bunches of positrons spaced at 36 ns
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Figure 5.77: The signal from two bunches of
electrons spaced at 20 ns

Another feature of the plot in Fig. 5.76 is the presence of what is presumed to be a small direct
beam signal. The geometry of the detector holes give reasonably good (but not complete) isolation
from the electromagnetic field of the beam. This signal provides a convenient fiducial that can be
used to measure the time-of-flight of cloud electrons.

For example, notice that the peak of the signal from the first bunch occurs about 15 ns after its
direct beam signal. Given the detector geometry, most of these electrons must be coming from the
floor of the beam pipe, a distance of 5 cm, which would require an energy of roughly 30 eV.

After the passage of the second positron bunch in Fig. 5.76, the cloud electrons enter the detector
almost immediately. Since this is a positron beam, the electrons kicked into the detector must
come from below the beam height in the chamber, at least 2.5 cm from the detector. These initial
electrons must have energies of many hundreds of eV and originate close to the beam.

Fig. 5.77 is the signal produced by two electron bunches spaced at 20 ns. Notice that the signal
from the first bunch is not visible (except for the direct beam signal) and that the signal from the
second bunch has a faster rise time than that of a positron beam.

Two Bunches with Different Spacings The much larger signal after the passage of the second
bunch suggests that this signal is dominated by cloud electrons that are already in the pipe and
are being kicked into the detector. This kick has an effective duration that is set by the sum of
the length of the bunch and the size of the button, about 120 ps. So the second bunch signal is
effectively a sample of the electron cloud in the chamber at the time of the second bunch’s transit.
Following this idea, pairs of bunches with equal currents were injected with different spacings. The
result was a mapping of the electron cloud density produced by the first bunch as a function of
time as the second bunch samples the cloud. In Fig. 5.78, a number of these measurements are
plotted on the same time scale, showing the decay of the cloud.

Single Bunch with Solenoid When the solenoid surrounding the shielded pickup is energized,
there is a noticeable effect on the detector signal that generally depends on the sign of the magnetic
field. The four plots in Fig. 5.79 show the signal vs. solenoid field for chambers in 15E, 15W, and
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Figure 5.78: Overlay of two bunch data with spacings in multiples of 4 ns at 2.1 GeV with an
aluminum chamber
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Figure 5.79: Pickup signal vs. solenoid field with a single bunch

for positron and electron beams. In the top left plot of Fig. 5.79 there is a large signal when the sign
of the magnetic field positive. This positive magnetic field is such that primary electrons produced
at the outside wall would be directed upward into the detector. It is likely that this signal is due
to the synchrotron light stripe in the mid-plane of the beam pipe producing a concentration of
photoelectrons along that stripe. The magnetic field that gives the largest signal, −14 G, can be
used to estimate the electron energy at approximately 150 eV.

So when used with a solenoid, the 15E detector seems to function as a crude spectrometer with an
electron bunch. However, data from positrons at 15E or either beam at 15W is inconsistent with
this simple interpretation. So while there is hope that the use of a solenoid field can give useful
information about electron energies, there are inconsistencies in data interpretation that need to
be resolved through more careful modeling.

5.2.2.2 Shielded Pickup Modeling

Sensitivity to Photoelectron Energy Distribution The upper row of Fig. 5.80 shows ex-
amples of shielded pickup signals for two bunches of 5.3 GeV positrons (left) and electrons (right)
separated by 14 ns. The population of the first bunch is 1.3 × 1011 while that of the trailing
bunch varies up to a similar value. The trailing bunch accelerates cloud particles into the detector,
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Figure 5.80: Upper row: shielded pickup signals produced by two 5.3 GeV positron (left) and
electron (right) bunches separated by 14 ns. The leading bunch population is 1.3 × 1011, or 8.2
mA. The population of the second bunch varies up to a similar value. Lower row: initial ECLOUD
model results exhibiting discrepancies with the measured signals which are quite dramatic in the
case of the electron beam.

producing the second signal. The arrival time and structure of the signal from the leading bunch
corresponds to photoelectrons produced at the time of bunch passage on the bottom of the vacuum
chamber. The kick from the positron bunch accelerates such photoelectrons toward the detector,
whereas in the case of an electron beam the signal electrons must be produced with sufficient kinetic
energy to overcome the repulsion of the beam bunch.

The lower row of Fig. 5.80 shows an initial attempt to model the case of two 1.3 × 1011 bunches
using the electron cloud simulation code ECLOUD [112].

The calculation of cloud kinematics including space charge forces and beam kicks determines ar-
rival times, momentum vectors and charges of the macroparticles reaching the upper surface of the
chamber at the positions of the pickups. This early attempt at simulating the observed signals
included a rather crude model of the port hole acceptance, leading to poor approximation of the
magnitude of the signal, but it was sufficient to diagnose the obviously discrepancy with the ob-
served signals. The positron case shows moderate time structure differences, but the modeling of
the electron beam kick exhibited a dramatic discrepancy. The arrival times of the observed signals
indicate photoelectron production on the lower wall of the chamber, which is effected in the simula-
tion via a reflectivity parameter distributing 20% of the photoelectrons uniformly in azimuth. The
prompt signal from each electron bunch corresponds to photoelectrons produced on the upper wall
repelled into the detector during the bunch passage. The photoelectrons produced on the lower wall
in the ECLOUD simulation are similarly reabsorbed, and these are the ones needed to produce the
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Figure 5.81: Low- and high-energy regions of the photoelectron energy distributions used to model
the measured signals shown in Fig. 5.80. The original low-energy distribution shown in blue results
in dramatic discrepancy with the signals observed in the case of an electron beam. The modified
distribution shown in red provides good agreement with the observed signals.

observed signal! In other words, the measurement shows that photoelectrons of sufficient energy to
overcome the repulsion of the beam bunch must be present. The photoelectron energy distribution
in this original default model is common to many successful simulations of a wide variety of experi-
mental observations [112, 135, 136], namely a gaussian with average and rms values of 5 eV limited
by truncation to positive values. Figure 5.81 compares such a distribution (blue) to a power-law
modification adequately reproducing the observed signal shapes (red). Low-energy and high-energy
regions are shown normalized on logarithmic scales to illustrate the dramatically higher energies
needed.

This new high-energy distribution was determined by matching single-bunch models to the mea-
sured signals for various electron bunch currents as shown in Fig. 5.82. The measured signals
for a single bunch of 5.3 GeV electrons are shown in the left column. A bunch current of 1 mA
corresponds to a bunch population of 1.6× 1010.

The model successfully reproduces the increase of signal magnitude with bunch current. While some
time structure discrepancies remain, the improvement relative to the results shown in Fig. 5.80
is remarkable. The overall normalization of the modeled signals is proportional to the assumed
reflectivity value, which in this case was 20%. In addition, the model also exhibits a prompt signal
arising from photoelectrons produced nearby the detector repelled into it during the passage of the
bunch, increasing with bunch current similarly to the observed signals.

Detailed Photoelectron Energy Modeling using Bunch Current Scans A detailed model
of the photoelectron kinetic energy distribution for photoelectrons produced by reflected photons
can be obtained by exploiting SPU data recorded for different bunch current levels. The early
SPU signal from the leading bunch for a positron beam is largely due to photoelectrons produced
on the bottom of the vacuum chamber. This is the closest production point where the beam kick
attracts the photoelectrons toward the SPU. Thus the size and shape of the leading bunch signal is
determined by the reflected photon rate, azimuthal distribution, the QE for producing photoelec-
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Figure 5.82: Comparison of measured single bunch signals for various electron bunch currents (left
column) to the ECLOUD model (right column) after improving the modeled photoelectron energy
distributions.

trons, the kinetic energy distribution of the photoelectrons and the strength of the attractive beam
kick for a positron beam. In particular, the arrival time distribution determines the shape. By
modeling the shape for different strengths of beam kick, we can extract the photoelectron energy
distribution. An example of such an analysis is shown in Fig. 5.83. Note that the signal begins
just a few nanoseconds after bunch passage even for weak beam kicks, indicating that high-energy
photoelectrons were produced (hundreds of eV).

This level of modeling accuracy was achieved with a three-parameter photoelectron energy distri-
bution of the form

f(Epe) ∝
EP1

pe(
1 +

Epe

E0

)P2
(5.25)

where the parameter E0 is related to the value of the energy at the maximum of the distribution
Epeak by

E0 = Epeak
P2 − P1

P1
(5.26)

It was found empirically that two superposed power-law contributions suffice to describe the shape
of the signal from the leading bunch. The high-energy component (22%) has a peak energy of
80 eV and an asymptotic power of 4.4 (P1 = 4, P2 = 8.4). Its contribution to the signal is shown
as yellow circles in Fig. 5.84. The low-energy component (78%) has a peak energy of 4 eV and
an asymptotic power of 2 (P1 = 4, P2 = 6). Its contribution to the signal is shown as magenta
triangles. The model with the combined energy distribution is shown on three horizontal scales in
Fig. 5.85. Note that these comparisons are complicated by the fact that the cloud development
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Figure 5.83: Modeled and measured leading
SPU signals for bunch currents of 1, 2, 3 and
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Figure 5.84: Two power-law contributions
to the modeled photoelectron energy distri-
bution. The yellow circles show the contri-
bution to the signal from the high-energy
photoelectron component, and the magenta
triangles the low-energy contribution. The
combined result is shown in blue.

for a single photoelectron component is unrealistic. The approximate validity of the superposition
shows that space charge forces are weak, as is any contribution from photoelectrons produced at
the primary source point on the outside wall of the chamber.

This analysis presents an opportunity to relate the obtained photoelectron energy distribution to
the incident synchrotron energy spectrum and thus derive an estimate of the energy dependence
of the QE. For example, the power law contributions have been determined in this manner for
2.1 GeV positron beams, showing that the high-energy tails are greatly reduced [137]. These
studies also allow us to draw qualitative conclusions on the photoelectron energy distributions for
various coatings, as described below in the section on vacuum chamber comparisons under the same
beam conditions and radiation environment.

Since these studies pertain to photoelectrons produced by reflected synchrotron radiation photons,
the incident photon energy spectrum is a convolution of the critical energy at the source and the
energy dependence of the reflection process. Detailed work on modeling reflected photon trajectories
is underway [88, 138].

Constraints on the Production Energy Distribution for Secondary Electrons Long
after the photoelectrons from the bottom of the beam pipe have produced the peak of the leading
bunch signal, secondary electrons produced by photoelectrons from the primary source point in
the horizontal midplane on the outside wall of the chamber begin to enter the shielded pickup
detector. Their arrival times depend on many characteristics of the model, such as the photoelectron
energy distribution for direct (unreflected) photons, their production angular distribution, and, in
particular, the energy and production angle distribution of the secondaries. The ECLOUD code
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Figure 5.85: Modeled photoelectron energy spectrum resulting from the weighted contribution of
the two power laws

provides for a variety of secondary energy distribution parameterizations, many of which could be
excluded by studies such as the one shown in Fig. 5.86. For the best parameterization,

f(Esec) ∝ Esec exp(−Esec/ESEY) (5.27)

an upper bound was obtained on the parameter ESEY, which determines the falling exponential
slope. For values of ESEY greater than 0.8, the modeled signal exhibits a tail at later times
inconsistent with the measured signal.

The signal from a witness bunch following 14 ns after the leading bunch also has a contribution
from reflected photons similar to the one that dominates the leading bunch signal. However, it
includes additionally a much larger contribution from secondary cloud electrons accelerated into
the SPU detector by the beam kick. Those present near the vertical plane containing the beam
below the horizontal midplane at the time the witness bunch passes can arrive even earlier than
the photoelectrons from the bottom of the beam pipe, so the risetime of the witness bunch signal
is faster. Figure 5.87 shows that if the secondary energy distribution does not include sufficiently
high energies, the modeled 14 ns witness bunch signal shape is inconsistent with the data.

Remarkably, the two constraints on the secondary electron production kinetic energy distribution
described above restrict the ESEY parameter to a narrow range of values around 0.8 eV.

Cloud Lifetime Studies Using Witness Bunches While the awareness of the sensitivity of the
shielded pickup measurements to the parameters of photoelectron production was largely motivated
by inadequacies of the model discovered in its application to recent measurements, the original
intended use of these time-resolved cloud measurements was to provide a quantitative estimate
of the elastic yield parameter in the secondary electron yield model. A similar investigation was
performed at RHIC [139]. The basic concept is that the mature cloud long after passage of any
beam bunch is dominated by low-energy electrons which suffer predominantly elastic interactions
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Figure 5.86: Modeled (points with error bars) and measured (dots) leading SPU signals with
differing distributions for the parameter ESEY ranging from 0.4 to 1.0. For values of ESEY greater
than 0.8, the modeled signal exhibits a tail at later times inconsistent with the measured signal.
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Figure 5.87: Modeled and measured two-bunch signals with values for the parameter ESEY ranging
from 0.4 to 1.0. For values of ESEY less than 0.8, the model is inconsistent with the measured
witness-bunch signal.
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with the vacuum chamber wall. The elastic yield parameter describes the ratio of outgoing to
incoming macroparticle charge in probabilistic models [86], and carries a value typically 0.5-0.7,
determining the decay time of the cloud density, typically around 100 ns. High-energy electrons
of more than 100 eV, produced by synchrotron radiation, beam kicks, or the rediffused component
of the secondary yield process, undergo primarily the so-called “true” secondary yield process, in
which the produced secondary carries only a few electron volts of kinetic energy, resulting in the
dominance of low-energy electrons late in the cloud development.

Figure 5.88 shows an ECLOUD secondary yield population curve typical of the shielded pickup signal
simulations.The true secondary yield maximum at 400 eV ranges from a minimum of 0.9 to a
maximum of 1.5 owing to the dependence on incident angle. At low energy the yield value is
dominated by the elastic interactions with the chamber wall. This case exhibits an elastic yield
parameter of 0.55.

The witness bunch experimental method consists of generating a cloud with a leading bunch, then
accelerating cloud electrons into the shielded pickup detector with a trailing bunch at various delay
times. Table 5.7 shows the witness bunch data sets which were recorded from March, 2010 through
November, 2011. Additional data sets with delay times restricted to 14 ns and 84 ns at bunch
currents of 1, 2, 4, 6, and 8 mA were also taken for systematic checks of the modeling.

The magnitude and time structure of the signal from the leading bunch is determined by the
reflective properties of the vacuum chamber and by the energy-dependent QE, as described in the
preceding section. The signal induced by the witness bunch has a contribution similar to that of
the leading bunch added to the contribution from the existing cloud kicked into the detector. The
latter contribution is sensitive to the cloud density and the spatial and kinematic distributions of
the cloud electrons. Figure 5.89 shows the results of six sets of simulations with various values
for the elastic yield parameter δ0. In each of the six plots, eleven two-bunch (5.3 GeV, 4.8 × 1010

positrons each) pickup signals are superposed, whereby the delay of the witness bunch varies from
12 to 100 ns. The modeled signals are shown with the statistical error bars corresponding to the
number of macroparticles contributing to the signal. The magnitudes of the modeled signals at
large witness bunch delay clearly show the dependence on the elastic yield parameter δ0 as it is
varied from 0.05 to 0.95. The most consistent description of the measured signals is given by a value
of δ0 = 0.75. This value can be compared to the value of δ0 = 0.5 used in the modeling of CESRTA
coherent tune shift measurements as described in Refs. [135, 136], where the measurements had
much less discriminating sensitivity to the elastic yield.

Figure 5.90 shows a similar study, but for a titanium-nitride-coated aluminum chamber. For each
of the six values assumed for the elastic yield, thirteen two-bunch (5.3 GeV, 8.0 × 1010 positrons
each) pickup signals are superposed, whereby the delay of the witness bunch is varied from 14 to
84 ns. The optimal value for the elastic yield is clearly less than the value determined for the
uncoated aluminum chamber, with δ0 = 0.05 providing the best description of the measurements.

These comparisons show a number of intriguing discrepancies. The leading bunch signal shape
exhibits the need for further tuning of the photoelectron energy distribution. The signal widths
tend to be wider than observed. In addition, such a low value of 0.9 for the secondary yield of
an uncoated aluminum surface cannot be easily understood, since the tune shift measurements
require an average value around the CESR ring of about 1.8. A wide variety of systematic studies
have been undertaken since the ECLOUD’10 workshop, discovering sensitivity to many detailed
characteristics of the cloud. For example, the signal widths for early witness signals depend strongly
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3840511-216

Figure 5.88: Secondary yield population curve typical of the ECLOUD model for the shielded
pickup signals. The upper plot shows the yield value (ratio of secondary macroparticle charge to
that of the incident charge) as a function of the incident kinetic energy. At low energy the yield
value is dominated by the elastic interaction with the chamber wall. This case exhibits an elastic
yield parameter of 0.55. The lower plot shows the incident energy distribution. The elastic and
rediffused components are shown in green and blue, respectively. The sum of all three components,
true, elastic and rediffused, is shown in red. Since the three colors are plotted on top of each other,
the upper plot shows primarily blue at low energy, even though the elastic process dominates, as
is seen in the lower plot.
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Table 5.7: Shielded pickup witness bunch data sets recorded from March, 2010 through November,
2011. Note that the various cloud-mitigating coatings (TiN, a-carbon, and diamond-like carbon)
were swapped into the different radiation environments at 15E and 15W. Data sets with differing
total radiation dose were obtained as well. Two vacuum chambers with a-carbon coatings were
studied, providing information on production reproducibility.

Date Species Beam Energy Bunch Current 15E/W Mitigation Bunch Spacing
(GeV) (mA) Technique (ns)

03/27/2010 Positrons 5.3 5 W a-carbon (1) 14-84
E TiN

Electrons 5 W a-carbon (1) 14-70
E TiN

05/09/2010 Positrons 2.1 3 W Al 4-140
E a-carbon (2)

Electrons 3 W Al 4-20
E a-carbon (2)

05/17/2010 Positrons 5.3 3 W Al 4-100
E a-carbon (2)

Electrons 3 W Al 4-100
E a-carbon (2)

05/19/2010 Electrons 2.1 1 W Al 4-120
E a-carbon (2)

09/21/2010 Positrons 5.3 1,2,4,6,8,10 W TiN 14
E a-carbon (2)

09/24/2010 Positrons 2.1 2,4,6 W TiN 14
E a-carbon (2)

Electrons W TiN
E a-carbon (2)

12/10/2010 Electrons 2.1 1,2,3,4,5,6,8,10 W TiN 14-84
E a-carbon (2)

12/20/2010 Positrons 2.1 1,2,3,4,5,6,8,10 W TiN 56,84
E a-carbon (2)

12/24/2010 Positrons 5.3 3,5 W TiN 14-84
E a-carbon (2)

Electrons 3,5 W TiN 14-84
E a-carbon (2)

04/07/2011 Positrons 5.3 1,2,3,4,5,6,8,10 W TiN 14-84
E DL carbon

Electrons 1,2,3,4,5,6,8,10 W TiN 14-84
E DL carbon

04/16/2011 Positrons 2.1 1,2,3,4,5,6,8,10 W TiN 14-84
E DL carbon

04/17/2011 Electrons 1,2,3,4,5,6,8,10 W TiN 14-84
E DL carbon

06/11/2011 Positrons 2.1 1,2,3,4,5,6,8,10 W TiN 14-84
E DL carbon

06/12/2011 Electrons 1,2,3,4,5,6,8,10 W TiN 14-84
E DL carbon

06/18/2011 Positrons 5.3 1,2,3,4,5,6,8,10 W TiN 14-98
E DL carbon

Electrons 1,2,3,4,5,6,8,10 W TiN 14-84
E DL carbon

06/27/2011 Positrons 4.0 1,2,3,4,5,6,8,10 W TiN 14-98
E DL carbon

Electrons 2.1 1,2,3,4,5,6 W TiN 84
E DL carbon

09/27/2011 Positrons 5.3 1,2,3,4,5,6,8 W a-carbon (2) 14-84
E DL carbon

09/30/2011 Positrons 5.3 1,2,3,4,5,6,8 W a-carbon (2) 14-84
E DL carbon

10/04/2011 Positrons 5.3 1,2,3,4,5,6,8 W a-carbon (2) 14-84
E DL carbon

10/11/2011 Positrons 5.3 1,2,3,4,5,6,8 W a-carbon (2) 14-84
E DL carbon

10/25/2011 Positrons 5.3 1,2,3,4,5,6,8 W a-carbon (2) 14-84
E DL carbon

11/27/2011 Positrons 5.3 1,2,3,4,5,6,8,10 W a-carbon (2) 14-98
E DL carbon

Electrons 1,2,3,4,5,6,8,10 W a-carbon (2) 14-84
E DL carbon
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Figure 5.89: Witness bunch study with the uncoated aluminum chamber. Eleven two-bunch scope
traces are superposed in each of the six plots, whereby the delay of the witness bunch ranges from
12 to 100 ns. The modeled signals are shown with the statistical error bars corresponding to the
number of macroparticles contributing to the signal. The magnitudes of the modeled signals at
large witness bunch delay clearly show the dependence on the elastic yield parameter δ0 as it is
varied from 0.05 to 0.95. The most consistent description of the measured signals is given by a
value of δ0 = 0.75.



5.2. Other Methods to Characterize EC Build-Up 263

3840511-181

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Time (ns)

Bu
tto

n 
Si

gn
al

 (V
)

δ0 = 0.05

0             20             40            60             80           100           120

3840511-183

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Time (ns)

Bu
tto

n 
Si

gn
al

 (V
)

δ0 = 0.15

0             20             40            60            80           100          120

3840511-184

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Time (ns)

Bu
tto

n 
Si

gn
al

 (V
)

δ0 = 0.25
0             20             40            60            80           100          120

3840511-185

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Time (ns)

Bu
tto

n 
Si

gn
al

 (V
)

δ0 = 0.45
0             20             40            60            80           100          120

3840511-182

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Time (ns)

Bu
tto

n 
Si

gn
al

 (V
)

δ0 = 0.55

0             20             40            60            80           100          120

3840511-187

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Time (ns)

Bu
tto

n 
Si

gn
al

 (V
)

δ0 = 0.75
0             20             40            60            80           100          120

Figure 5.90: Witness bunch study with the titanium-nitride-coated aluminum chamber. The
smooth curves are the digitized shield pickup signals. Six two-bunch scope traces are superposed
in each of the six plots, whereby the delay of the witness bunch ranges from 14 to 84 ns. The
magnitudes of the modeled signals at large witness bunch delay clearly show the dependence on
the elastic yield parameter δ0 as it is varied from 0.05 to 0.75. The most consistent description of
the measured signals is given by a value of δ0 = 0.05.
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on the azimuthal production distribution of photoelectrons, as was observed by implementing in
ECLOUD the distributions calculated by the photon-tracing reflectivity model for the CESR ring
described in Ref. [88]. Nonetheless, the dramatic improvements in consistency obtained via such
systematic studies have not changed the quantitative conclusions concerning the sensitivity to the
value for the elastic yield. Generally one can say that the choice of peak true secondary yield value
relative to the effective reflectivity value determines the ratio of the early witness bunch signal
magnitudes to that from the leading bunch. However, for witness bunches late enough that the
signal magnitude becomes comparable to that of the leading bunch, there is little sensitivity to the
true secondary yield. Instead, those signal magnitudes are determined by the value assumed for
the elastic yield.

In situ comparisons of custom vacuum chambers One fruitful analysis strategy has proved
to be the comparison of SPU signals in chambers which have been swapped into the same location
in the CESR ring and studied under identical beam conditions [140]. The two regions in CESR
equipped with SPU detectors differ in radiation environment, since the dominant source points
are in dipole magnets of differing strengths. At 5.3 GeV, for example, the source dipole field
is 3 kG (2 kG) in the west (east) region for a positron beam, resulting in a critical energy of
5.6 keV (3.8 keV). In addition, the situation with regard to reflected radiation is different. By
comparing SPU signals recorded at the same place in the ring with the same beam energy, bunch
spacing and bunch population, many systematic contributions to the comparisons are avoided, and
relatively simple changes to the modeling suffice to quantify the different properties of the vacuum
chambers.

Figure 5.91 shows such a comparison for an a-carbon-coated chamber in May and December 2010
for two 5.3 GeV 28 ns-spaced bunches each carrying 4.8×1010 positrons, corresponding to a bunch
current of 3 mA.

During the intervening time interval, CESR had operated at high current as an X-ray research
facility, with the consequence that synchrotron radiation dose on the chamber had increased by
a factor of about 20, from 8.1×1023 to 1.8×1025 photons/m. Also shown is the ECLOUD model
optimized to reproduce the May measurement. Since the signal from the leading bunch arises from
photoelectrons produced on the bottom of the vacuum chamber [140–142], careful tuning of the
energy distribution and the QE for photoelectrons produced by reflected photons is required to
reproduce the size and shape of the signal. The signal from the witness bunch includes additionally
the contribution from secondary EC electrons accelerated into the SPU detector by the witness-
bunch kick. The modeled witness signal is therefore crucially dependent on the SEY and production
kinematics. Since conditioning affects both signals similarly, we can conclude that the change is in
the QE rather than in the SEY. The December measurement is reproduced by a 50% decrease in
the modeled QE for photoelectron production. A reduction in the SEY of 25% is inconsistent with
the observed effect, since the modeled leading bunch signal remains unchanged.

Guided by the above comparisons, we can assess conditioning effects in the TiN- and DL-carbon-
coated chambers in similar fashion. Figure 5.92 compares the SPU signals for two 8 × 1010 e+

bunches in the TiN-coated chamber in April and June, 2011, with accumulated synchrotron radia-
tion doses of 5.9×1024 and 1.1×1025 photons/m, corresponding to integrated beam currents up to
more than 730 Amp-hrs. Changes in the QE and SEY are less than a few percent.

Figure 5.93 shows the conditioning effect observed for the DL carbon coating between integrated
photon doses of 6.67×1024 to 2.03×1025 γ/m over the seven-month period between April and
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Figure 5.91: Shielded pickup signals measured in an a-C-coated chamber in May (blue dotted
line) and December (red dotted line) of 2010 for two 5.3 GeV, 28-ns-spaced bunches each carrying
4.8 × 1010 positrons. The ECLOUD model optimized for the May data is shown as blue circles, the
error bars showing the signal macroparticle statistical uncertainties.
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Figure 5.92: SPU signals showing condi-
tioning effects in the TiN-coated aluminum
vacuum chamber.
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Figure 5.93: SPU signals showing condition-
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November, 2011. The SPU signals from two bunches of 8× 1010 5.3 GeV positrons spaced by 14 ns
are shown. The decrease in the signal from the leading bunch indicates a conditioning effect in the
quantum efficiency for the DL carbon coating similar to that observed for the a-carbon coating[143].

The method of in situ comparison of custom vacuum chambers can also be used to compare the
characteristics of different mitigation techniques. Figure 5.94 compares signals from a TiN-coated
aluminum chamber and an uncoated chamber with a factor of ten lower synchrotron radiation dose.
The shape and size of the leading bunch signal show that the QE for producing photoelectrons from
reflected photons is much lower for the TiN coating. The secondary yield is also significantly smaller.
A comparison between TiN and amorphous carbon coatings is shown in Fig. 5.95. The later, smaller
signal from the leading bunch from the a-carbon chamber shows that the QE is lower, particularly
for high-energy photoelectrons. However, the similar magnitudes of the signals from the witness
bunch indicate that the secondary yield for TiN is somewhat smaller than that for a-carbon. Further
modeling promises to provide quantitative results for these qualitative observations.

Use of a Weak Solenoidal Magnetic Field Another type of measurement which has been
explored with the shielded-pickup detectors is illustrated schematically in Fig. 5.96. The vacuum
chambers have been outfitted with windings to approximate a solenoidal field in the region of the
cloud with magnitude up to 40 G. Since signal contributions require nearly vertical arrival angles,
the centers of the corresponding circular trajectories for any given magnetic field value lie in the
horizontal plane of the ports. The three trajectories originating at the primary impact point of
the synchrotron radiation and leading to the center of each electrode thus select different regions
of photoelectron energy and production angle, as shown.

Experiments to date have shown that the 40 G field magnitude range suffices to cover the full
energy range of the photoelectrons produced by a 2.1 GeV beam (Ecritical ≈ 300 eV) (i.e. no
pickup signal is observed for field values of 0 and 40 G), in contrast to the case of a 5.3 GeV
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Figure 5.96: Vacuum chamber wall cross section with circular trajectories of photoelectrons
contributing to the pickup signals.
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beam (Ecritical ≈ 5 keV), where photoelectron energies suffice to produce an observable signal even
at 40 G. Furthermore, reversal of the solenoidal field provides information on the production of
photoelectrons at a point on the vacuum chamber opposite the primary source point and thus
relevant to the reflective characteristics of the vacuum chamber wall.

Summary The shielded pickup detectors installed in the CESR ring in 2010 have begun providing
a wide variety of time-resolved measurements of electron-cloud-induced signals. Measurements with
custom vacuum chambers incorporating cloud mitigation techniques such as carbon and titanium-
nitride coatings have been obtained and compared to the case of an uncoated aluminum chamber.
Weak solenoidal magnetic fields have been employed to study photoelectron production kinematics.
A model for the shielded pickup acceptance has been developed in the context of the electron cloud
simulation code ECLOUD. The shielded pickup data have proved remarkably sensitive to model
parameters poorly constrained by any other experimental means, such as the azimuthal production
distribution for photoelectrons and their energy distributions. The measurements with 5.3 GeV
electron and positron beams indicate the need for a high-energy component previously absent
in the photoelectron generation model. In addition, the design purpose of the shielded pickup
detectors has been experimentally confirmed, as the cloud lifetime has been accurately measured
using witness bunches at various delays. Sensitivity to the elastic yield parameter in the secondary
yield model has been shown to be less than 0.05 and remarkably robust against variation of other
model parameters. Data taken with an uncoated aluminum chamber provide a best estimate for
the elastic yield of about 0.75. The cloud lifetime studies in a titanium-nitride-coated aluminum
chamber exclude such a high value, yielding an optimal value of 0.05.

5.3 Comparisons Between Methods

5.3.1 Wiggler Ramp Studies

The L0 wiggler straight is instrumented with both RFAs and TE-Wave hardware, which provides
an opportunity to compare the two methods. Fig. 5.97 shows a wiggler ramp measurement (see
Section 5.1.4.1, under “Wiggler Data”), during which both RFA and TE-Wave data were taken.
RFA data is plotted as solid lines, TE-Wave “transmission” measurements with a dashed lines, and
TE-Wave “resonant” measurements with dotted lines. Both detectors show the “turn on” behavior
described above, and the turn-on points for the two methods are roughly consistent.

5.3.2 Comparison of RFA and Shielded Button Responses

RFA and shielded pickup detectors have been deployed in adjacent locations in the 15E and 15W
arc sections of CESR (Section 2.2.3.1). Fig. 5.98 compares the time-averaged signal of the 15W
SPU with the central collectors of the 15W RFA. The approximately linear relationship between
the signal in the two detectors across a variety of beam conditions implies that their measurements
can be directly compared.

RFA and SPU simulations (Sections 5.1.4.2 and 5.2.2.2 respectively) have led to many of the same
qualitative conclusions. The most significant of these are a very low secondary emission yield for
TiN and amorphous carbon coated chambers, and the necessity of high energy photoelectrons for
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Figure 5.97: RFA/TE-Wave comparison during a wiggler ramp measurement. The right plot is
zoomed in, to more clearly show the turn-on behavior. Beam conditions are 45 bunches of positrons
at .75mA/bunch, 2.1GeV, 14ns spacing. Each of the signals is normalized to 1 at peak wiggler field
(1.9T), because it is difficult to quantitatively compare RFA and TE-Wave data.

reproducing electron beam data. A more detailed comparison of RFA and SPU data and simulations
is an important area of future work.

5.3.3 Comparison of TE Wave and SPU Data

Fig. 5.99 shows a particular location at CESRTA where both TE Wave and SPU measurements have
been made. While most of the beampipe at CESRTA is bare aluminum, the SPU is installed in a
short test section coated with diamond-like carbon. The sensitivity of the TE Wave measurement
extends over the region between the pumps, so it samples both the coated and the bare aluminum
sections. This complicates the comparison of the two methods since the aluminum section will have
a much higher EC density than the coated section.

Fig. 5.101 is an example of the response of these two devices as a function of beam current, using
a 20 bunch train of positrons at 5.3 GeV with a bunch spacing of 14 ns (train length 266 ns) and
a revolution time of 2563 ns. For TE Wave data, the duration of the cloud was taken to be the
roughly the length of the bunch train. The first Fourier component gave a correction of 4.7 to the
density calculated by Eq. (5.16), giving the peak EC densities shown. For the SPU data, the voltage
gain of 100 was removed and the charge deposited on the electrode for each turn is plotted.

In taking the TE Wave data, the beam-pipe was excited at each of the five resonant frequencies
shown in Fig. 5.100. In Fig. 5.101, the measured EC densities for the first three resonances are
close to each other, but resonances 4 and 5 give a lower density. According to Eq. 5.14, if the EC
density ne were uniform the frequency shift - and therefore the signal - would be independent of
the details of the electric field distribution and all of the TE Wave curves should be the same. The
fact that the curves differ suggests that the EC density is non-uniform.

SPU signal is very non-linear at low bunch currents as might be expected. At low bunch currents,
the SPU signal can be increased both by a larger EC density and increasing bunch charge. With
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Figure 5.98: Comparison of RFA and SPU measurements, 15W TiN coated chamber. Each point
represents a measurement with different beam current.
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Figure 5.99: The SPU is located in a short test section of chamber where the vacuum surface has
been coated with diamond-like carbon (the darker section in the sketch). The TE Wave region
spans both the coated and uncoated sections of beampipe.

increased bunch charge, the electron cloud is more effectively kicked into the detector by the beam.
So in this low bunch charge region, the SPU signal for a train of bunches should be roughly quadratic
with current.

Simulation indicates an approximately linear increase in EC density with beam current as suggested
by the TE Wave plots. The full simulation of EC density plus SPU sensitivity is in reasonable
agreement with the SPU signal at the location of that detector. A comparison with the EC density
given by the TE Wave measurement is complicated by the fact that the resonances span both the
aluminum and carbon coated sections of beampipe and the flux of synchrotron radiation photons
hitting the wall varies by a factor of three over this region. At 100 mA, the simulation predicts
average EC densities of 1.0× 1013 m−3 for the aluminum and 0.58× 1012 m−3 for the diamond-like
carbon section. This corresponds to an average value of 5.3×1012 m−3, in reasonable agreement with
the measurements. Further work is required in order to complete the comparison of TE Wave and
SPU data. The results can be used to provide experimental verification of the simulations.
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3840511-519

Figure 5.100: Above is the TE Wave response at 15E when resonantly excited. The sideband
amplitudes of first five major peaks were used to generate Fig. 5.101 .
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Figure 5.101: Comparison of SPU and TE Wave measurements for a 20 bunch train of positrons.
The thick curve is the total charge deposited in the SPU in a single turn; the thinner, numbered
curves are based on the TE Wave sidebands of five different resonances shown in Fig. 5.100.

5.4 Summary and Further Investigations

5.4.1 Simulation Program

The simulation program has compared direct measurements of the electron cloud made at CESRTA
with the results of simulation codes. Photon production, transport, scattering and absorption has
been modeled using the newly developed code Synrad3D (described in Section 4.1.4.1). EC-buildup
has been modeled using the existing codes ECLOUD [89, 90], CLOUDLAND [91, 92], and POSINST [71, 86].
In order to obtain good agreement with RFA and shielded pickup data, the simple model for the
photoelectron energy spectrum contained in these codes (a truncated Gaussian, with a centroid and
width in the eV range) has been expanded to allow a significant high-energy tail (up to hundreds
of eV) .

5.4.1.1 Drift and Quadrupole RFAs

After post-processing, the output from the build-up codes has been compared with the measure-
ments from RFAs in drift regions. The post-processing scripts incorporate the measured efficiency
of the RFA. Generally, qualitative agreement between data and (post-processed) simulation can
be obtained with the proper choice of build-up model parameters, such as quantum efficiency and
secondary emission yield, without fine tuning of these parameters.



272 Chapter 5. Electron Cloud Growth and Mitigation

Using this method, comparisons between measurements and simulations for an RFA in a quadrupole
have also been made. The simulations show long-term buildup of the cloud in the quadrupoles,
which is supported by the data. Simulations limited to a single turn underestimate the measure-
ments by more than an order of magnitude, while agreement between measurements and simulation
is good (for electrons with energies > 75 eV) when the simulations are extended to 19 turns.

5.4.1.2 Dipole and Wiggler RFAs

A similar approach, using a post-processing script, is also partially successful when applied to RFA
measurements in dipole regions. However, in this case, the simulation significantly overestimates
the signal observed by the RFA at low energies. This is due to the interaction between the RFA
and the cloud, which is not modeled by the post-processing script, and which is most significant
for low energy electrons and for high magnetic fields.

This effect is most pronounced in the RFA measurements made in the high-field wigglers. In this
case, it manifests itself as a low-energy peak in the voltage scan of the wiggler’s RFA current vs.
retarding voltage. The peak appears when a certain resonance condition between the bunch spacing
and retarding voltage is satisfied. To properly model this interaction, we have incorporated into
POSINST a model of the wiggler vacuum chamber, including the geometry and fields of the RFA. The
dynamics of the electrons within the RFA, including the electrostatic force from the grid, are fully
modeled. This simulation reproduces the resonant enhancement seen in the data, at approximately
the observed voltage.

Because of the importance of the cloud-RFA interaction in the wigglers (and to a lesser extent in
the dipoles), future work to fully understand the RFA measurements in dipoles and wigglers, and
to relate these measurements to detailed surface properties, will need to use buildup codes which
include the RFA as an integral part of the simulation.

5.4.2 EC Mitigation Observations in RFAs and Comparisons with Simulations

We have used RFAs to probe the local behavior of the cloud in different magnetic field environments,
and in the presence of different mitigation schemes.

5.4.2.1 Drift RFAs

In drift region RFAs, all coated chambers show a sizeable (∼ ×5 or more) reduction in signal when
compared to uncoated aluminum. After extensive processing, both TiN and amorphous carbon
coated chambers show similar mitigation performance. The RFA signal in TiN-coated copper is
about half that of bare copper. Diamond-like carbon may perform better than other coatings at
very high beam current.

5.4.2.2 Dipole RFAs

We found the difference between uncoated and coated chambers to be even stronger than in a drift
region. At high beam current, the TiN coated chamber shows a signal smaller by two orders of
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magnitude than the bare Al chamber, while the coated and grooved chamber performs better still,
by another factor ∼ ×5.

As has been observed in previous studies, for a fixed value of the dipole field, the RFA shows a
bifurcation of the cloud density into two peaks with a transverse separation which increases with
beam current.

For fixed beam current, the average RFA collector current exhibits regularly occurring spikes or
dips. These correspond to “cyclotron resonances”, which occur whenever the cyclotron period of
cloud electrons is an integral multiple of the bunch spacing [116]. These resonances appear as
peaks in the RFA signal in the aluminum chamber, but as dips in the coated chambers. The peaks
measured in the aluminum chamber have been reproduced in ECLOUD simulations using the cloud
model parameters expected for an aluminum surface. For the coated chambers, the dips can also
be reproduced in simulation, by using a value of 1.0 for the elastic secondary yield, and 0.5 for the
peak yield at high energies. However, direct measurements of the secondary yield of TiN indicate
peak yields near 1.0, not 0.5, and shielded pickup data exclude elastic yields much in excess of 0.1
for TiN.

Measurements of the central RFA collector signal as a function of bunch spacing, for fixed beam
current, show peaks which can associated with resonances between the bunch spacing and the transit
time of the cloud electrons across the vacuum chamber (often called a “multipacting resonance”).
Peaks are seen for both positrons and electrons, both for CESR dipoles and the SLAC chicane
dipoles. The positions of the peaks are roughly consistent with a simple model for the multipacting
resonance.

5.4.2.3 Quadrupole RFA

Measurements with an RFA in a CESR quadrupole suggest that the majority of the cloud in the
quadrupole is streaming along the magnetic field lines between two pole tips. The RFA signal seen
in the quadrupole with a TiN surface is reduced by well over an order of magnitude compared to
an aluminum surface.

5.4.2.4 Wiggler RFAs

Using RFAs located at the peak field points in high-field wigglers, comparisons have been made of
the relative electron cloud signal sizes from surfaces of bare copper, TiN coated copper, grooved
and coated copper, and a surface with a clearing electrode. The largest signal is seen for the TiN
coated copper surface. As fractions of this signal, the other surfaces give EC signals in the ratios
(bare copper, bare copper with grooves, TiN coated copper with grooves, clearing electrode) =
(81%, 47%, 28%, < 1%).

RFA observations made in the three wigglers in L0 have been used to measure the growth of the
electron cloud signal in the wigglers as a function of the wiggler field. For fixed beam current, we
observe a “turn on” of the signal in each detector at a specific wiggler field value. The RFAs that
are further downstream turn on first. This measurement is sensitive to the change in the radiation
environment, and the associated photoelectron seeds of the cloud, as the wiggler field increases.
It should provide a good test of the photon production, transport and absorption simulations. In
particular, there may be some sensitivity to the production of fluorescent X-rays in the copper
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chambers. Comparison of this data with the simulations will be done as part of the next phase of
the program.

5.4.2.5 Comparisons with simulations

A wide variety of drift RFA data have been systematically compared with POSINST EC build-up
simulations, with post-processing appropriate for the drift RFAs, to extract best-fit cloud model
parameters. An iterative chi-squared analysis method has been employed. The photon flux and
photoelectron angular distributions are determined from Synrad3D simulations. Known sources of
error have been included.

For a good description of the high-current electron beam RFA data, a high-energy tail must be
present in the photoelectron energy spectrum.

We have found that, in general, one can obtain a reasonable fit to the data by varying only three
(well chosen) cloud model parameters. For example, one good set consists of the true secondary
yield, elastic yield, and quantum efficiency. Using more parameters does allow for a slightly better
fit, at the cost of uniqueness and clarity.

The best-fit model parameters found for an uncoated aluminum chamber are in reasonable agree-
ment with the best-fit parameters determined from the coherent tune-shift data, as presented
below in Section 6.3.1. As expected from the mitigation studies, the two coated chambers studied
(a-Carbon and TiN), both the true secondary yields and the elastic yields are much lower than
for aluminum. There are some unexplained discrepancies in the determination of the quantum
efficiencies for certain data sets, which may point to defects in the photon modeling.

5.4.3 In-situ SEY Studies

The in-situ SEY station described in Section 2.3.4 was used to make direct measurements of the
secondary emission yield of TiN coated aluminum, several 6061 aluminum, amorphous carbon, and
diamond-like carbon surfaces. These measurements were made for different photon doses, to study
surface conditioning.

For TiN-Al samples and bare Al6061 alloy samples, we observed that the main processing occurred
within the first 2 weeks, with a total photon dose of 1022 photons/m, while, after that, the SEY
decrease was about 1% per week.

For Al6061, we observed that the SEYs after processing are lower than the minimum SEY value of
2.4 for Al6063 reported by SLAC [119]. Generally, for bare aluminum samples, the initial value of
the peak SEY varies from sample to sample.

The amorphous carbon sample had an initial peak SEY of 1 and showed no change with condition-
ing.

Measurements at varying angles of incidence showed an increase in the surface SEY as the angle
goes from normal incidence towards grazing incidence.

Future work will include improvements in the current drift of the electron gun, more study of Al
alloys, and measurements of the SEY of NEG films. We also plan to check the reproducibility of
the results on TiN-Al samples and do additional checks for systematic effects. We are designing
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additional experiments to determine whether SR bombardment or electron cloud bombardment is
the main source of processing.

5.4.4 TE Wave Studies

Two versions of TE wave measurements were made at CESRTA. Initial measurements were based
on the transmission of microwaves between two points in the accelerator, using the beam pipe as a
waveguide. In the course of taking this data, it became clear that a different interpretation of the
signals was needed in most cases - due to the presence of resonances in the frequency response of
the beam pipe. This resulted in the recent development of TE wave resonant measurements where
the beam pipe and its reflections are treated as a resonant cavity.

5.4.4.1 TE Wave Transmission Measurements

Methods have been developed to include both phase and amplitude modulation in the analysis of
the response of TE wave transmissions to the time-varying electron cloud in beam pipes. Techniques
to continuously monitor the transmission function, and to compensate for beam pipe attenuation,
have been worked out.

5.4.4.2 TE Wave Resonance Measurements

The effects of reflections and the generation of standing waves in TE excitation of beam pipes was
studied. Methods to extract the EC density signal from beam pipe resonant cavity phase shifts
were developed.

5.4.4.3 Other techniques

Other techniques for probing the electron cloud, such as the use of cutoff resonances and TE wave
magnetic resonances, are described in this section.

5.4.4.4 TE Wave Modeling

The plasma simulation code VORPAL [126] has been used to study TE wave transmission and reso-
nance experiments at CESRTA. The simulated phase shift in a simple transmission experiment (no
reflections) in a drift region has been shown to agree well with analytical estimates. Simulations
have been done to study TE wave transmission in an external magnetic field, which show an en-
hanced phase shift for a carrier frequency close to the cyclotron resonance. The enhanced phase
shift remains a linear function of the electron density. Simulations were also done of TE wave
experiments in the presence of obstacles which cause partial reflection, as will be the case in a real
beam pipe. While the phase shifts are modified in this case, the relation between density and phase
shift remains linear.

For the case of a large dipole field, as in a wiggler, simulations of TE wave experiments were
done using WARP[132]. In this case, when the cyclotron frequency is much higher than the carrier
frequency, the EC-induced phase shift can be strongly suppressed. However, the longitudinal
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magnetic field in the wigglers will rotate the polarization at a rate determined by the product
of the field and the electron density, so some information on the density in this region could be
obtained by comparing different orientations of the TE wave.

5.4.5 Shielded Pickup Studies

The shielded pickup detectors installed in the CESR ring in 2010 have begun providing a wide va-
riety of time-resolved measurements of electron-cloud-induced signals. Measurements with custom
vacuum chambers incorporating cloud mitigation techniques such as carbon and titanium-nitride
coatings have been obtained and compared to the case of an uncoated aluminum chamber. Weak
solenoidal magnetic fields have been employed to study photoelectron production kinematics. A
model for the shielded pickup acceptance has been developed in the context of the electron cloud
simulation code ECLOUD. The shielded pickup data have proved remarkably sensitive to model pa-
rameters poorly constrained by any other experimental means, such as the azimuthal production
distribution for photoelectrons and their energy distributions. The measurements with 5.3 GeV
electron and positron beams indicate the need for a high-energy component previously absent in
the photoelectron generation model. In addition, the design purpose of the shielded pickup detec-
tors has been experimentally confirmed, as the cloud lifetime has been accurately measured using
witness bunches at various delays. Sensitivity to the elastic yield parameter in the secondary yield
model has been shown to be less than 0.05 and remarkably robust against variation of other model
parameters. Data taken with an uncoated aluminum chamber provide a best estimate for the elas-
tic yield of about 0.75. The cloud lifetime studies in a titanium-nitride-coated aluminum chamber
exclude such a high value, yielding an optimal value of 0.05.

5.4.6 Comparisons Between Methods

Comparisons have been made of local measurements of electron cloud density using TE waves and
RFA’s in the L0 wiggler straight. Both types of TE wave measurements (transmission and resonant)
have been compared to each other and to RFA measurements made as a function of wiggler current,
for fixed beam conditions. All three measurement methods show a similar “turn-on” behavior with
wiggler field, and the turn-on locations as a function of longitudinal position of the detectors in the
L0 straight are roughly consistent.

TE wave and shielded pickup (SPU) measurements made at the same location in the ring have
been compared. This particular comparison is complicated by the fact that the SPU chamber had
a diamond-like carbon surface, while the TE wave measurements spanned a longitudinal region
which included an uncoated aluminum section of the chamber, as well as the SPU chamber. The
SPU signal exhibits a non-linear response to the bunch current for low currents, while the electron
cloud density extracted from the TE wave measurements shows a linear response, as expected.
Simulations of the expected cloud density at this location, and of the SPU signal size, are in rough
agreement with the density extracted from the TE wave measurements and the SPU data.
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Electron Cloud Induced Beam
Dynamics

One of the key goals of the CESRTA research program is to improve our understanding of the
interaction of the electron cloud with the high energy particle beam. This improved understanding
is required to be able to extrapolate with confidence from the experimental conditions of CESRTA
to the conditions expected for the ILC damping rings.

The interaction of the particle beam with the cloud can be studied by measuring the properties of
the beam in the presence of the cloud. The key beam properties which are influenced by the cloud
are the beam’s closed orbit distortion (quite small, and not extensively studied with CESRTA), the
frequency spectrum of the beam centroid’s coherent dipole motion relative to this orbit, and the
beam’s transverse position distribution.

In CESRTA, the beam is formatted longitudinally into a train of short (∼ 10 mm) bunches separated
by an adjustable spacing (variable from a minimum of 4 ns, up to a maximum equal to the revolution
period, about 2.5 µs). As described in Chapter 5, for sufficiently closely-spaced bunches, the electron
cloud grows along the train, and so the cloud environment is different for each bunch. For this
reason, it is critical that the beam dynamics measurement made to probe the cloud be done on a
bunch-by-bunch basis.

The frequency spectrum of the coherent dipole motion of each bunch contains a wealth of informa-
tion. In particular, this information includes

• the amplitude, frequency, and line shape of the betatron lines, which are sensitive to the
electron cloud’s electric field, to the mode of oscillation of the bunches in the train, and to
the presence of multibunch instabilities;

• the amplitude, frequency, and line shape of “head-tail” lines, which are generally separated
from the betatron lines by approximately the synchrotron frequency, and are sensitive to
internal motion within the bunch driven by electron-cloud-induced single-bunch head-tail
instabilities.

In addition, the time dependence of the amplitude of the betatron and “head-tail” lines, after
bunch motion has been excited by an external source, provides information on the damping of
these lines, which is related to aspects of the effective electron-cloud impedance not probed by tune
measurements.
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The transverse position distribution of each bunch is sensitive to

• emittance growth driven by single-bunch instabilities. Generally, this growth would be ex-
pected to be correlated with the observation of “head-tail” lines described in the previous
paragraphs;

• incoherent emittance growth, driven by non-linear components of the electron cloud’s electric
field, which may take place before the onset of emittance growth driven by single-bunch
coherent instabilities.

Incoherent emittance growth, if present, is critical to understand fully, since it could impact achiev-
ing the design emittance goals of the ILC damping rings.

For a full understanding of the observational data discussed above, comparison with simulations
of the electron cloud is essential. The electron cloud build-up simulation programs discussed in
Chapter 5 can be used to compute the expected betatron tune shifts, and comparison with the
simulations allows the parameters of the effective ring-averaged electron cloud density sensed by
the beam to be determined. Specialized simulation programs([94], [144]) have been written to model
the interaction of the cloud and beam responsible for incoherent emittance growth and single-bunch
instabilities.

In the sections below, the experimental hardware and techniques used to obtain the measurements
are described (Section 6.1); the simulation tools and their applications to the measurements are
discussed (Section 6.2); and the most important beam dynamics observations and comparisons with
simulations are presented (Section 6.3). The final section presents a summary and discussion of
future work.

6.1 Experimental Hardware and Techniques

CESRTA has been studying the effects of electron clouds on stored beams in order to understand
their impact on future linear-collider damping ring designs. One of the important issues is the way
that the electron cloud alters the dynamics of bunches within the train. Techniques have been
developed for observing the dynamical effects of beams interacting with the electron clouds.

There are several beam parameters particularly relevant for the study of electron cloud effects.
Since the electron cloud can produce focusing of the stored beam, measuring the betatron tunes
of bunches along the train gives information about the density of the cloud along the length of
the train. The electron cloud can also produce unstable motion in bunches later in the train. To
observe the unstable motion, it is necessary to detect the amplitude of the betatron frequency and
any other frequencies representing different modes of oscillation (e.g. head-tail modes) of bunches
within the train. The unstable motion may also result in enlargement of the vertical beam size,
thus the measurement of the vertical beam size for each bunch in the train is important. Before
beam conditions approach the regime for the onset of unstable motion, it is possible to measure
the damping of coherent motion of the bunches using drive-damp techniques. This method excites
coherent dipole betatron modes or head-tail modes for each bunch within the train and then observes
the damping of the motion. Thus it is possible to observe how the coherent motion becomes less
stable before the onset of instability. The methodology and examples of typical measurements for
these techniques are presented below.
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6.1.1 Bunch-by-Bunch Tune Measurements

In the course of the CESRTA project, several different techniques have been utilized for making
tune shift measurements for individual bunches within trains of bunches. These techniques, their
benefits, and their limitations, will be described in this section.

6.1.1.1 Multi-bunch Large Amplitude Excitation

This method for observing the tunes of different bunches within the train consist of pulsing a pinger
magnet with a single-turn excitation to deflect all of the bunches within the train, thereby starting
an oscillation of their centroids. The CBPM system (see Sec. 2.4.1) is then is timed to read out
a number of BPMs over several thousand turns for all bunches in the train (see block diagram
in Fig. 2.106); the data acquisition is synchronized with the triggering of the pinger magnet’s
deflection. After recording the turn-by-turn bunch positions, the data is analyzed offline with
a Fast Fourier transform (FFT), from which the betatron tunes are determined. During these
measurements the peak horizontal and vertical beam displacements, for example, were typically
5 mm and 2 mm at 2.1 GeV and 5.3 GeV, respectively.

Since data from all bunches is recorded at the same time, it is relatively rapid to take data in one
set of conditions and, since the data from all bunches is taken on the same turn, this method is
relatively insensitive to any drifts in the storage ring tunes. However, the fact that all bunches are
excited at the same instant implies that the lowest coupled-bunch mode is necessarily excited for
the train of bunches. As discussed in Section 6.2.1.3, when the train is oscillating in this mode,
the bunch-by-bunch horizontal tune shifts induced by the electron cloud in the dipoles are strongly
suppressed, and difficult to measure. It is also the case that the pinger excitations are relatively
large with respect to the stored beam’s size: e.g., typically the vertical oscillation amplitude may
exceed several ten’s of vertical sigma. So the beam’s oscillation is exploring a fairly large volume
of the electron cloud charge distribution.

6.1.1.2 Single Bunch Small Amplitude Excitation

Another approach has been developed for bunch-by-bunch tune measurements. This approach
excites only a single bunch in the train, thereby reducing the coupling from earlier bunches to
the bunch that one is trying to measure. This is accomplished by driving both the horizontal and
vertical stripline kickers (shown schematically for one stripline kicker in Fig. 6.1), using the external
modulation input for the beam stabilization feedback system, which allows gating of the input signal
into the appropriate timing window in order to excite only the bunch being measured. The source
for the signal for the external modulation port comes from a frequency synthesizer, whose output
frequency is swept across the range of betatron oscillation frequencies, covering the tunes for the
entire ensemble of bunches. The frequency is swept with a saw-tooth at 500 Hz, driving the bunch
in its dipole oscillation mode when the excitation frequency crosses the betatron resonance. The
turn-by-turn position data is recorded for a number of BPMs using the CBPM system readout
(as shown in the block diagram in Fig. 2.106) with the total number of turns sufficiently large
to capture at least one excitation and damping cycle. The measurement process is repeated as
the excitation’s delay is stepped from one bunch to the next, resulting in a set of positions for all
bunches at each delay. The data is analyzed offline with an FFT to give the oscillation frequency of
the excited bunch and coupling of its motion to subsequent bunches via the electron cloud.
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Figure 6.1: Single bunch excitation method using the stripline kicker, driven by a swept frequency
source via the feedback systems external modulation port.

Some results are presented here to illustrate this technique; the data were taken with a 10 bunch
train with a 14 ns spacing at 2.1 GeV beam energy conditions. Fig. 6.2 shows the horizontal
position data for the fourth, fifth and sixth bunch, when only bunch number 5 was being excited.
During the 2048-turns of the data-samples taken on simultaneous turns for the three bunches, it is
clear that bunch 5 was excited with two complete cycles of the swept signal source. This is even
clearer in Fig. 6.3 which shows the horizontal spectra of all 10 bunches when bunch numbers 1, 5
and 10 were being driven individually. The fact that the stripline kicker is driving only one bunch
is quite evident in both Figures 6.2 and 6.3.

For comparison with the horizontal data, the matching set of vertical data is presented here for the
same storage ring and electron cloud conditions as above. The vertical position data for bunches 4,
5 and 6 is shown in Fig. 6.4, when only bunch 5 is driven. Also the vertical spectra for all bunches
are shown in Fig. 6.5, when bunches 1, 5 and 10 are individually excited. An interesting feature,
visible in the vertical data, is that even though only one bunch is being driven, its motion couples
to subsequent bunches in the train. Fig. 6.5 presents evidence that this coupling increases along
the train, suggesting that the electron cloud may be playing a role in this bunch-to-bunch vertical
dipole coupling.

This technique has the advantage of avoiding coupling from preceding bunches to the bunch being
studied, while also providing information about the coupling of the motion of one bunch to later
bunches via the electron cloud. The excitation level can, in principle, be tailored for the bunch
that is being driven; the ability to keep a relatively fixed oscillation amplitude of the driven bunch
could be important for conditions when the first bunches in the train are more stable but the latter
bunches are not. This method has the drawback that it is slower than the preceding method, as it
requires collecting turn-by-turn position data for every bunch times the number of bunches within
the train. It is, therefore, sensitive to drifts in the tunes of the storage ring.

The sensitivity to drift of the tune during the measurement sequence is being addressed in the
future by providing the capability of exciting the first bunch in the train, in addition to the bunch
that is being studied. In this way, the tunes of the later bunches are measured with respect to the
tune of the first bunch. Another feature which is being added is the ability to turn off feedback
for the bunches which are being excited. This permits the train of bunches to be stabilized with
feedback, while allowing the bunches which are being measured to have the longest damping time,
permitting a more accurate tune measurement.
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Figure 6.2: Horizontal position of bunches 4, 5 and 6 (respectively for the top, middle and bottom
plots) for a 10-bunch train when only bunch number 5 was excited.
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Figure 6.3: Horizontal position spectra of all bunches in a 10-bunch train when bunches number
1, 5 and 10 (respectively for the top, middle and bottom plots) were driven individually.
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Figure 6.4: Vertical position of bunches 4, 5 and 6 (respectively for the top, middle and bottom
plots) for a 10-bunch train when only bunch number 5 was excited.
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Figure 6.5: Vertical position spectra of all bunches in a 10-bunch train when bunches number 1,
5 and 10 (respectively for the top, middle and bottom plots) were driven individually.
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6.1.1.3 Feedback System Response

Another approach for tune measurements became apparent after the installation of the Dimtel1

feedback electronics, capable of damping bunches with spacings down to 4 ns. While looking at the
FFT of the position for a single bunch as part of the feedback system diagnostics, it was observed
that the signal amplitude varied as a function of the feedback gain. At low gains the betatron peak
is visible, but as the gain is increased the amplitude of the peak decreases until it become a notch
in the spectrum at high gain. The notch is created by the feedback system, whose phase is adjusted
to suppress the broadband excitation of the beam preferentially at the betatron frequency. When
the feedback settings have been fully optimized, the notch in the spectrum for each bunch marks
the location of its betatron oscillation frequency.

The position data generally represents the effect of probing the electron cloud in a regime when the
bunches are moving at small amplitudes. An example of data taken using this method is seen in
Fig. 6.6. There is a very clear trend for the vertical focusing effect from the accumulating electron
cloud, which is visible the plot. Although this method is quite appealing, only a few tune shift
measurements have been performed via this method. This technique works well for 4 ns-spaced
bunches, but it requires fairly exact adjustments of the feedback system parameters to be able to
clearly identify the notches in the bunch spectra. To obtain the most accurate spectra, the data
for each bunch is averaged typically for 30 seconds, allowing some variation in the tunes due to
longer-term drifts in the storage ring focusing.

3840511-097

Figure 6.6: Vertical tune vs. RF bucket number for a train of 45 bunches with 4 ns bunch spacing
determined from notches in the spectra from the feedback error signal.

6.1.1.4 Self-Excitation

The last method utilized for bunch-by-bunch tune shift measurements is a by-product of the obser-
vation of beam instabilities, described in the next section. In this set of measurements the position
spectrum of each bunch is measured with a gated spectrum analyzer. Two of the peaks that are
visible in these self-excited spectra are the horizontal and vertical dipole modes. The shift of the

1Dimtel Inc., www.dimtel.com.
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tunes as the gate is moved from bunch to bunch are easily detected via this method. Since most of
these measurements are taken in conditions when the beam is above or near an instability threshold
for at least some of the bunches within the train, the self-excited amplitudes of the dipole motion
will vary along the train. This method is quite sensitive to low signal levels, with the noise floor
for small amplitude oscillations at the level of 0.4 µm-rms horizontally and 0.2 µm-rms vertically.
Due to averaging in the spectrum analyzer, the data acquisition requires about 1 minute for each
bunch, which is long enough to make this method sensitive to drifts in the storage ring tunes.

6.1.2 Instability Measurements

An important set of CESRTA measurements focuses on beam instabilities due to the electron cloud.
These studies measure the growth of self-excited oscillation amplitudes of the bunch centroids
and the growth of vertical beam size along the train under various accelerator and electron cloud
conditions. The first piece of hardware utilized for these measurements is a monitor for the bunch-
by-bunch beam position. The other detection system required is the xBSM monitor for determining
the vertical beam size of each bunch.

6.1.2.1 Bunch-by-Bunch Position Spectra

For instability studies, the bunch-by-bunch position measurements are accomplished by a BPM
detector connected to one of CESR’s original relay-based BPM system processors, which in turn
passes its video output signal to a spectrum analyzer in the control room. (See Section 2.4.3.2 and
Fig. 2.107 for a further description of the hardware.) BPM33W, which is located at a high vertical
beta point, has generally been used as the detector for these observations. The signal is taken
from one button, making it sensitive to both the horizontal and vertical motion. The data-taking
software sets the trigger delay for the sampling gate to select a particular bunch within the train.
For almost all of the data, an RG-174 coaxial cable is placed within the signal path to limit the
bandwidth of the button signal (giving an effective 20 dB of signal attenuation) and to this an
additional 12 dB of amplification is added. The signal is then sent to the biased peak rectifier
circuit, which has an effective bandwidth of 700 MHz, and a decay time constant of approximately
5 µs. The resulting video signal is buffered and sent on a wide-band coaxial cable to a spectrum
analyzer in the control room.

The spectrum analyzer is a Hewlett Packard model 3588A, operating in the baseband (in these
studies the center frequency ranges from 190 kHz to 310 kHz) in “Narrowband Zoom” mode with
a 40 kHz span. This mode of operation performs a ±20 kHz FFT on time slices of the signal and
these spectra are averaged for 100 time slices, taking about 10 seconds for each 40 kHz step of
the center frequency. At 2.1 GeV the position sensitivity of the signal from the BPM at 33W was
measured to be

xrms = x0/Ib(mA)× 10Ax(dBm)/20

yrms = y0/Ib(mA)× 10Ay(dBm)/20

(6.1)

where x0 = 81.3 mm and y0 = 45.3 mm, when the RMS bunch length was approximately 10 mm.
Ax and Ay are the amplitudes measured on the spectrum analyzer in dBm. With this gain config-
uration and over the frequency range of study, the noise baseline falls from −95 dBm to −105 dBm
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(corresponding in the vertical direction, respectively, to displacements of 1.1 µm-rms to 0.33 µm-rms
for a 1 mA bunch.)

Representative self-excited spectra of the first and last bunch in a 30-bunch positron train at
2.1 GeV are shown in Figs. 6.7 and 6.8. For this train the horizontal tunes are in the range from
212 kHz to 218 kHz, and the vertical tunes are in the range from 224 kHz to 227 kHz. Since this
spectrum overlaps the 1/2 integer resonance at 195 kHz, this frequency is a reflection point for
the spectra. For bunch 30, additional lines are visible in the ranges 198-201 kHz and 250-252 kHz;
these correspond to vertical head-tail modes as their frequencies are plus and minus the synchrotron
oscillation frequency added to the vertical tune. The baseline is seen to be falling as roughly a
1/f noise spectrum. There are also a number of unrelated noise lines, scattered throughout the
spectra assumed to be due to“cultural noise sources.” A“mountain-range” plot of the spectra of
all 30 bunches within a 30 bunch-long train is shown in Fig. 6.9. A cut of the spectrum has been
made at the half integer resonance (195 kHz) to suppress the “reflected” spectral lines. In this plot
the self-excited vertical tune amplitude begins to grow at approximately bunch 10 and continues to
grow in amplitude until near bunch 20. In this region the two vertical head-tail lines appear above
the noise background. Also around bunch 15 the spectral peak of the horizontal tune appears to
bifurcate, something which is also seen in Fig. 6.8, and on close examination these data also show
bifurcation of the vertical tune and the vertical head-tail lines for the last bunches in the train.
Fig. 6.9 also shows a number of “fences”, i.e. peaks in the spectrum at fixed frequencies due to
external “cultural noise sources.”

3840511-120
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Figure 6.7: Self-excited beam power spectrum for bunch 1 in a 30 bunch-long positron train at
2.1 GeV beam energy. Since this spectrum overlaps the 1/2 integer resonance at 195 KHz, this
frequency is a reflection point for the spectra. Thus the peak at 178 KHz is a reflection of the peak
at 212 KHz.

Many tests have examined the self-consistency and interpretation of the data. The identification
of the vertical and horizontal tunes was checked by changing the controls for each separately and
verifying which spectral peak moved. They were also checked using BPMs at other locations,
which had buttons summed to produce dominantly horizontally- or vertically-sensitive detectors.
The interpretation that the vertical head-tail lines were not inter-modulation distortion components
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Figure 6.8: Self-excited beam power spectrum for bunch 30 in a 30 bunch-long positron train at
2.1 GeV beam energy.

3840511-102

Figure 6.9: Self-excited beam power spectra for bunches 1 through 30 in a 30 bunch-long positron
train at 2.1 GeV beam energy. The horizontal axis is the frequency, the vertical axis is the spectral
power in dB and the axis into the page is the bunch number with bunch 30 being in the foreground.
Red vertical lines in the foreground denote in ascending order the location of the m = −1 vertical
head-tail line, the horizontal tune, the vertical tune and the m = +1 vertical head tail line.
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coming from the processing electronics was tested by switching a 6 dB attenuator into the signal
path upstream of the peak detector and observing the change in both horizontal and vertical spectral
peaks. If the head-tail lines were actually inter-modulation cross-products from the non-linearity
of the electronic processing, then they would have decreased by 12 dB, and they only decreased by
6± 2 dB.

Although this method for detecting the frequency spectra of the bunches is fairly sensitive, the
measurements must be made separately for each individual bunch. The measurement time is about
1 minute per bunch for the selected frequency range. This means that the data represents a time-
average of any unstable motion over this period. In addition, due to the finite beam lifetime,
the beam must be refilled a number of times during data-taking for one set of conditions. In our
case, we choose typically to refill after measuring spectra for five bunches. When these spectra are
plotted, the beam intensity decay over five bunches gives the amplitude for the peaks within the
spectrum a slightly scalloped shape. This refilling cycle coordinates fairly well with the cycle to
measure and readout the bunch-by-bunch and turn-by-turn xBSM data.

We have tried to read out the turn-by-turn and bunch-by-bunch positions from a number of BPMs
via the CBPM system (which has a much faster data acquisition time). Unfortunately the head-tail
lines are not visible above the noise floor in the CBPM data. Our explanation is that the relay
BPM system peak rectifies the position signal and, if there is a temporal variation due to head-tail
motion, the arrival time of the signal varies correspondingly. This gives a frequency modulation to
the position signal when viewed by the spectrum analyzer. The CBPM processing is different: the
signal is sampled at a fixed time corresponding to the positive peak of the button BPM pulse. Any
variation in the arrival time produces only a second order variation in amplitude and, even if one
moved the sampling time significantly off of the peak, it does not produce any observable signal at
the head-tail line frequencies.

6.1.2.2 Bunch-by-Bunch Beam Size

At CESRTA, bunch-by-bunch beam sizes are measured using an x-ray monitor (xBSM: see Sec. 2.4.2)
built on the D Line of the CHESS light source for viewing positrons, as shown in Figure 6.10. (A
similar line for viewing electrons is installed at the C Line.) The detector can read out bunch-by-
bunch, turn-by-turn signals at 14 ns or 4 ns spacing. Three sets of x-ray optics can be selected in
the optics box: Coded Aperture (CA), Fresnel Zone Plate (FZP) and an adjustable slit. The coded
aperture mask permits single-shot, photon-statistic-limited resolutions of ∼ 2−3 µm at beam sizes
of 10-20 µm[145].

During a given set of instability measurements, typically xBSM data were taken using all three
sets of optics. This allows the greatest range of sensitivity for measurements of the vertical size
and centroid motion of the beam. During the measurement cycle, the beam size data are taken
bunch-by-bunch and turn-by-turn generally immediately after the train has been topped off, which
usually occurs after taking the frequency spectrum for every fifth bunch.

6.1.3 Mode Growth Rates

A complement to the instability measurements, described in the preceding section, are the damping
rate measurements for the coherent transverse modes. The instability measurements easily record
the large amplitude coherent signals as the bunches become unstable and ultimately limit due
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Figure 6.10: Layout of x-ray beam line for viewing positron beams at CESRTA.

to non-linearities in the bunch dynamics. However, the damping measurements give information
about the stability of the bunch at small amplitudes before the bunch goes unstable, the regime
in which storage rings and damping rings will actually operate. These studies give some insight
about how the beam instability begins developing as one looks from earlier to later bunches along
the train.

6.1.3.1 Drive-Damp Excitation: Method

The basic idea for these observations is to employ the same relay BPM configuration as is used
for the instability measurements. However, the spectrum analyzer’s center frequency is adjusted to
be at either the vertical betatron dipole-mode frequency or one of the head-tail mode frequencies
while the spectrum analyzer is set to be in “Zero Span” mode. In this mode the analyzer functions
as a tuned receiver with its display producing signal amplitude vs. time. The spectrum analyzer’s
tracking generator output is sent to the vertical feedback system’s external modulation input. Aside
from the spectrum analyzer’s control settings, this is quite similar to the hardware configuration
shown in Fig. 6.1. By adjusting the digital timing controls for the feedback modulator’s external
input, it possible to drive only one bunch, as long as the bunch spacing is greater than 6 ns (if
the bunch spacing is 4 ns, then the duration of the pulse on the beam stabilizing feedback system
stripline kicker is long enough to deflect the bunch under study and also slightly deflect the following
bunch). To permit the drive-damp modulation of the beam, there is one additional element added
to the block diagram of Fig. 6.1. This element is a modulating gate for the spectrum analyzer’s
tracking generator signal. The modulator gate is timed with the spectrum analyzer’s timing sweep
to pass the tracking generator output for 3 ms at the beginning of the sweep and then to gate off
its output until the start of the next sweep.

An illustration of the timing and the expected signal response are shown in Fig. 6.11. The red curve
shows that the amplitude of the transverse excitation of the bunch vs. time is an impulse. The
expected beam response initially grows during the driving impulse, usually reaching a saturated



6.1. Experimental Hardware and Techniques 291

level, and then decays exponentially after the drive is switched off (shown in the logarithmic plot as
a linear decrease vs. time). If the frequency of the spectrum analyzer tracking generator is tuned
away from the bunch resonant frequency, the decaying response can have more than one frequency
component, resulting in periodic oscillatory beats. So during the measurement it is necessary to
make small tuning adjustments to the excitation frequency to produce the most exponential decay
possible.

Time

Log of 
Amplitude

Response

Excitation

Drive–
Damp 
Measurement

3840511-100

Figure 6.11: Illustration of the drive-damp measurement: The red trace is the amplitude of the
excitation driving the bunch. The blue trace is the bunch response.

The excitation of the bunch is accomplished in a somewhat different manner for the betatron dipole
mode and the head-tail modes. In both cases the frequency of the spectrum analyzer is set to drive
the coherent mode frequency being measured. However, for the head-tail modes it is necessary
to also continuously drive the external modulation input for RF cavity phase at the synchrotron
oscillation frequency. This imposes a longitudinal energy oscillation on all of the bunches within the
train, causing them to uniformly shift their arrival times and displace the train centroid horizontally
proportional to the local dispersion. The typical amplitude of this oscillation is relatively large,
with the peak fractional energy varying as much as ±7.6 × 10−3 for all of the bunches within the
train. Due to the RF systems non-linearities, there may be some increase in the energy spread
(and bunch length) of the bunches. In the presence of the large energy variation, the transverse
field from the stripline kicker deflects the lower energy particles in the bunch (displaced toward
the head of the bunch) more than the higher energy particles (displaced toward the tail of the
bunch.) Although this is a fairly small differential effect, the bunch is being driven on the head-tail
resonance, allowing the oscillation amplitude to build up.

6.1.3.2 Drive-Damp Excitation: Examples

Two examples of actual drive-damp measurements are found in Figs. 6.12 and 6.13. In Fig. 6.12
the betatron dipole mode amplitude ramps up for the first 3 ms and then decays exponentially
thereafter. Fig. 6.13 shows one of the head-tail modes being excited. The initial 7 dB drop
in the amplitude of the signal represents the off-resonance excitation of the dipole mode, which
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immediately switches to oscillating at its resonant frequency (outside of the bandwidth of the
receiver) when the drive turns off; the roughly exponential shape thereafter is the head-tail mode
decay. As a test, the longitudinal drive to the phase of the RF cavity was turned off, and the
head-tail mode exponentially damped signal was observed to vanish.

3840511-099

Figure 6.12: Drive-damp measurement: The trace is the response for the bunch being driven at
the vertical betatron frequency. The vertical and horizontal scales are 5 dB and 10 ms per division,
respectively.

3840511-098

Figure 6.13: Drive-damp measurement: The trace is the response when one of the head-tail modes
is excited. The vertical and horizontal scales are 6 dB and 10 ms per division, respectively.

This type of measurement may be very useful for understanding the behavior of bunches within the
train before their motion becomes unstable. However, even though much of the data acquisition
is automated, there are a few steps which must be completed manually. In particular the fine
adjustment of the spectrum analyzer frequency (centering it on the coherent mode frequency) is
necessary to optimize the exponential damping curve. The manual adjustment of the frequency
makes this type of measurement fairly time-consuming. Routinely, after data is taken for several
bunches, the beam is topped off. Beam size measurements are typically taken immediately after
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topping off.

6.2 Simulation Tools

6.2.1 Bunch-by-Bunch Tunes

6.2.1.1 General Methodology for Computing Tune Shifts due to the Electron Cloud

In this section, we discuss in a simplified form the methodology used to compute the tune shifts due
to the electron cloud. We discuss only vertical motion, in a constant-β lattice. The extension to a
real lattice is treated below. The generalization to the horizontal plane is straightforward.

For a constant-β lattice, and in the absence of any perturbing effects, the equation of vertical
coherent motion of the beam centroid yb, relative to the closed orbit, is

d2yb
dt2

+ ω2
βyb = 0. (6.2)

The betatron frequency is
ωβ = (N + δβ)ω0, (6.3)

in which N is the integral part of the tune and ω0 is the revolution frequency.

In the presence of an electron cloud whose centroid position is yc, which generates an electric field
Ey(y, yc), the equation of motion is modified to

d2yb
dt2

+ ω2
βyb =

e〈Ey(yb, yc)〉
m0γ

. (6.4)

The brackets indicate an average over the beam transverse distribution, which is required to de-
scribe the coherent tune shift of the whole beam. In principle, this equation also applies for each
longitudinal slice of the beam; for simplicity, we suppress that dependence here, but will include it
in the final result.

For small oscillations of the beam, the presence of the cloud introduces a betatron frequency shift,
which is proportional to the coefficient of yb in a Taylor expansion of the right-hand side of this
equation about yb = 0.

6.2.1.2 Static Cloud Model

If the position of the cloud centroid yc is fixed, independent of yb, then a Taylor expansion of the
field about yb = 0 is

〈Ey(yb, yc)〉 = 〈Ey(0, yc)〉+ yb
∂〈Ey(0, yc)〉

∂y
. (6.5)

In this case, the tune shift is proportional to the average field gradient

∂〈Ey(0, yc)〉
∂y

evaluated at the beam centroid.

In general, however, this “static cloud model” is a poor one. The electron cloud is a dynamic
system, which is both generated by the beam, and also driven and focused by the beam.
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6.2.1.3 Dynamic Cloud Model

To lowest order, the dynamic motion of the cloud can be treated in this simple model by recognizing
that the position of the cloud, yc, is in fact not independent of the position of the beam. The field
depends on the beam position yb not only directly, but also because the location and shape of the
cloud depends on the beam position. This latter dependence comes about because of correlations
between the given bunch and the position of previous bunches which generated the cloud, and also
because the cloud can be driven and focused as the beam passes through it. The linear part of this
additional dependence of the electric field on yb will be a term in the equations of motion of the
bunch which will contribute to the tune shift.

Thus, in this case the Taylor expansion should be written

〈Ey(yb, yc(yb))〉 = 〈Ey(0, yc(0))〉+ yb
d〈Ey(y, yc(y))〉

dy

∣∣∣∣
y=0

(6.6)

= 〈Ey(0, yc)〉+ yb

(
∂〈Ey(0, yc(0))〉

∂y
+
∂〈Ey(0, yc(0))〉

∂yc

dyc
dyb

∣∣∣∣
yb=0

)
. (6.7)

The tune shift is proportional to to the term(
∂〈Ey(0, yc(0))〉

∂y
+
∂〈Ey(0, yc(0))〉

∂yc

dyc
dyb

∣∣∣∣
yb=0

)
.

Under some general conditions, the second term in parentheses can have a significant effect. It can
even cancel most of the first term, leading to a very small tune shift. For example, suppose the
beam-averaged electric field 〈Ey(y, yc)〉 depends primarily on the difference y − yc rather than on
y and yc separately,

〈Ey(y, yc)〉 ≈ f(y − yc). (6.8)

Further suppose that, as is typically true in the horizontal plane in dipoles, the centroid of the
cloud is closely aligned with the centroid of the beam. Finally, suppose that a train of bunches is
oscillating in the lowest frequency coherent mode, for which the centroids of all the bunches have
the same displacement. Then the cloud generated by this train will have yc = yb, and the expression
given above shows that the tune shift due to the electron cloud in the dipoles could be very small
in this case. This is precisely what is observed for many of the horizontal tune measurements at
CESRTA, when the train is “pinged” (i.e, excited in the lowest frequency coherent mode.)

If each bunch in excited individually, then there is no correlation between the center of the cloud

generated by previous bunches, and the bunch position. In this case, dyc
dyb

∣∣∣
yb=0

= 0. The total

derivative is then determined (if we neglect the“pinch”) just from the partial derivative of the field
with respect to y, as in the static cloud model.

6.2.1.4 Tune Shift from Electron Cloud Buildup Simulations

Electron cloud buildup simulation programs such as ECLOUD [89, 90] and POSINST [71, 86] can be
used to compute the tune shifts approximately, using the static cloud model described above, or
more accurately, using the dynamic cloud model.
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Modified Static Cloud Model In the static cloud model, the coherent tune shifts are propor-
tional to the field gradient generated by the electron cloud space charge field, averaged over the
beam transverse profile. For a finite length bunch, this quantity must also be averaged over the
bunch normalized longitudinal distribution ρ(z):

∆Qy ∝
∫

dzρ(z)
∂〈Ey(0, yc(z), z)〉

∂y
, (6.9)

in which we have explicitly indicated the longitudinal (z) dependence of the field gradient. This
field gradient can be computed from the electron cloud simulation results.

As noted above, the static cloud model is a very poor approximation. It neglects both dynamical
motion of the cloud on the time scales of the bunch spacing, and also on the time scale of the bunch
duration. A significant improvement to the model can be made by incorporating a dynamical
correction D(z) on the bunch time scale in the integral above; this correction is discussed in detail
in Ref. [146]. In essence, this correction accounts for dipole motion of the cloud during the bunch
traversal; that is, it includes the effect of a simple approximation for the dipole short-range wake
field of the cloud on the tune shift.

The tune shift including this correction can be written

∆Q∗y ∝
∫

dzρ(z)D(z)
∂〈Ey(0, yc(z), z)〉

∂y
. (6.10)

In Ref. [146], a simple model for the electron cloud wake is used to show that, for short bunches,
the effect of the correction factor D(z) is that the tune shift is approximately given by

∆Q∗y ∝
∂〈Ey(0, yc(−∞)),−∞)〉

∂y
(6.11)

in which evaluation at z = −∞ corresponds to the field gradient evaluated just before the bunch
enters the cloud.

We have verified2 the approximate accuracy of Eq. (6.11) by evaluating the correction numeri-
cally using POSINST simulations, and comparing with results computed using the “Dynamic cloud
model”.

We refer to the use of Eq. (6.11) for the tune shift calculations as the “modified static cloud model”.
It approximately corrects for dynamic cloud motion on the time scale of the bunch duration, but
not on the time scale of the bunch train.

Dynamic Cloud Model An accurate estimate of the tune shift, in which all dynamic cloud
effects are included, can be obtained from the electron cloud buildup simulation programs POSINST
or ECLOUD, by using the option which allows the bunches to be offset in the simulations. For
example, suppose that one wishes to compute the tune shift of bunch n, which interacts with a
cloud generated by the preceding n − 1 bunches in a train. The method is to perform a buildup
simulation for all n bunches, in which bunch n is displaced by a small offset δ. If the train is excited
in a coherent mode for which there is a correlation between the offset of the nth bunch and previous
bunches, this correlation must be included when the buildup simulation is done.

2CESRTA Electron Cloud meeting notes, G. Dugan, 1/7/2009
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For example, if the lowest coherent mode of the train is excited, then all bunches should be given
the same offset δ. If only bunch n is excited, then the offset of previous bunches is zero. Then,
from the simulation, the beam-averaged electric field at longitudinal position z along the length
of bunch n is computed numerically: using the terminology of the preceding section (but with z
dependence), this is

〈Ey(δ, yc(δ, z), z)〉
Another simulation is done, with the sign of δ changed. Then, the total derivative which enters
into the tune shift calculation is

gy(δ, z) =
d〈Ey(y, yc(y, z), z)〉

dy

∣∣∣∣
y=0

≈ 〈Ey(δ, yc(δ, z), z)〉 − 〈Ey(−δ, yc(−δ, z), z)〉
2δ

. (6.12)

The coherent tune shift is proportional to the average of this quantity over the bunch normalized
longitudinal distribution ρ(z):

∆Qy ∝ Gy(δ) =

∫
dzρ(z)gy(δ, z). (6.13)

The integral is to be taken over the length of the bunch. Since the full dynamical evolution of the
electron cloud in response to the beam is included in the buildup simulations, including any cloud
motion which occurs during the bunch, this method also accounts properly for the “pinching” that
occurs during the passage of the bunch.

Ideally, the value chosen for δ is close to the actual displacement given to the beam during the tune
measurement. For self-excited tune measurements, Gy(δ) should be extrapolated close to the limit
δ → 0.

We refer to the use of Eq. (6.13) for the tune shift calculation as the “dynamic cloud model”.

Calculation of the Electric Field

POSINST The cloud buildup code POSINST generates a two-dimensional distribution of macro-
electrons within the vacuum chamber, which represent the electron cloud in a given magnetic
environment (e.g., drift or dipole) any point in time. For each macro-electron, the beam-averaged
electric field components 〈Ex〉 and 〈Ey〉 generated by the macro-electron in a vacuum chamber (i.e,
including the image charges) are computed analytically, assuming a Gaussian transverse beam dis-
tribution. Then, the total electric field of the cloud is obtained by simply summing the contributions
from the individual macro-electrons.

ECLOUD The ECLOUD code computes the electric field sourced by the cloud macro-electrons by first
clustering them on a 81×81 Cartesian grid over a 9×5 cm region, then summing the contribution of
each grid node, accounting for the boundary conditions of an elliptical vacuum chamber with semi-
axes 4.5×2.5 cm by means of 50 image charges. The time-sliced cloud dynamics model includes the
2D electrostatic force from the Gaussian beam (Basseti-Erskine) and the force from any ambient
magnetic field. The magnetic field kick is calculated in three dimensions, thus adding longitudinal
momentum to any longitudinal components generated when the macro-electrons are produced. For
the purpose of the tune shift calculations with displaced beams, the beam-averaged electric field
value is calculated via a Gaussian-weighted sum of field values over a 7× 7 grid spanning a 3σ× 3σ
region centered on the beam position.
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6.2.1.5 Ring Averaging

To compute the total tune shift for a particular ring and lattice, we use

∆Qy =
e

4πE

∮
ds βy(s)Gy(s). (6.14)

in which Gy represents the field difference, computed from a cloud simulation program, as described
in the previous section. s is the longitudinal coordinate around the ring. At any point s in the
ring, the quantity G depends, in general, on the type of beamline magnetic environment at that
location (i.e., drift, dipole, wiggler, quadrupole., etc.), the transverse beam size at that location,
and the azimuthal distribution of radiation intensity per unit length (photons per beam particle
per meter) at the point s.3

Since the transverse size of the cloud is typically much larger than the transverse size of the beam,
the dependence of G on the transverse beam size is weak. For simplicity, we neglect part of this
dependence, and use the ringwide averaged transverse beam size for each magnetic environment in
the cloud simulation used to compute G for that magnetic environment.

Let p be the normalized polar angle which measures a point on the vacuum chamber wall. If we
let N(s, p) be the number of photons per beam particle absorbed on the vacuum chamber at the
coordinates s and p, then the distribution function of the radiation intensity is

D(s, p) =
∂2N(s, p)

∂s ∂p
. (6.15)

Let us designate the type of element by the integer k, which runs from 1 to m, the total number of
magnetic environment types. Then, indicating all the dependencies explicitly, we write

Gy(k, s) = Gy(k,D1(s), D2(s), . . . , DP (s)), (6.16)

where Di(s) = D(s, pi). The quantities D(s, p1), D(s, p2), . . . , D(s, pP ) characterize the photon
radiation angular distribution. They may correspond to

• the radiation angular distribution, evaluated at P angular points, or

• the P parameters of a fit to the angular distribution.

We define a reference value Dy,i(k) as being equal to the βy-weighted average of Di(s) for elements
of type k:

Dy,i(k) =

∫
k ds βy(s)Di(s)

wy(k)
, (6.17)

in which the weight wy(k) is

wy(k) =

∫
k
ds βy(s). (6.18)

The integral in Eq. (6.18) is taken only over elements of type k. The integral around the ring can
be written as ∮

ds βy(s)Gy(s) =
m∑
k=1

∫
k
ds βy(s)Gy(k,D1(s), D2(s), . . . , DP (s)), (6.19)

3G also depends, of course, on the photoelectron and secondary electron production physics. In principle, this will
vary with s: for example, if the vacuum chamber surface properties vary around the ring. But in this analysis, we
neglect this s variation, effectively using a ringwide average photoelectron and secondary electron model.
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in which we separated the ring integral into sums over integrals of the different magnetic element
types.

The general dependence of G on Di(s) can be approximated as a power series. Expanding in a
Taylor series about the reference values Dy,i(k), we have, to second order,

Gy(k,D1(s), D2(s), . . . , DP (s))) ≈ Gy(k,Dy,1(k), Dy,2(k), . . . , Dy,P (k))

+
P∑
i=1

∂Gy
∂Di

∣∣∣∣
Di=Dy,i(k)

(Di(s)−Dy,i(k))

+
1

2

P∑
i=1

P∑
j=1

∂2Gy
∂Di ∂Dj

∣∣∣∣
Di=Dy,i(k),Dj=Dy,j(k)

(Di(s)−Dy,i(k))(Dj(s)−Dy,j(k)) (6.20)

Integrating around the ring, and ignoring the second oder terms, we find,∮
ds βyGy =

m∑
k=1

Ty(k) (6.21)

where

Ty(k) = Gy(k,Dy,1(k), Dy,2(k), . . . , Dy,P (k))

∫
k
ds βy(s)

+

P∑
i=1

∂Gy
∂Di

∫
k
ds βy(s)(Di(s)−Dy,i(k) (6.22)

= Gy(k,Dy,1(k), Dy,2(k), . . . , Dy,P (k))wy(k) (6.23)

The second term has vanished because of the way that the reference value Dy,i(k) is defined.

The tune shift, in this approximation, is then

∆Qy =
e

4πE

m∑
k=1

Ty(k). (6.24)

Since we have ignored the second order terms
∂2Gy

∂Di ∂Dj
in the Taylor expansion, this result assumes

that the field differences are strictly linear in the radiation intensities. In general, at high cloud
densities for which space charge effects are important, nonlinear terms may be present. It is possible
to check the accuracy of the linearity assumption, and, if necessary, include also the second order
terms. We have not yet done this, but it is planned for future work.

6.2.2 Analytical Formulae for Coherent Instability Thresholds (Adapted from
[147])

When the positron beam passes through the electron cloud, the electrons near the beam oscillate
in the electric potential of the positron bunch. In the analytic treatment, we describe the system as
a dynamic interaction between the beam and the electron cloud, each with a transverse Gaussian
distribution, and consider only the linear term of the interaction.
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The motions of the beam and the electron cloud centroids are characterized by yb(s, z) and ye(s, t)
at location s, longitudinal coordinate z, and time t, respectively. Note that z < 0 for the backward
direction. The equations of motion for the beam and cloud are expressed as [148]

d2yb(s, z)

ds2
+
ω2
β,y

c2
yb(s, z) = −

ω2
b,y

c2

(
yb(s, z)− ye(s,

s− z
c

)

)
, (6.25)

d2ye(s, t)

dt2
= −ω2

e,y (ye(s, t)− yb(s, s− ct)) , (6.26)

where ωβ,y denotes the angular betatron frequency without the electron cloud interaction. The two
coefficients ωb,y and ωe,y characterize the linearized force between beam and cloud, and are given
by

ωb,y =

√
λerec2

γσy(σx + σy)
, ωe,y =

√
λbrec2

σy(σx + σy)
, (6.27)

where λe and λb are the line densities of the cloud and the beam, re is the classical electron radius,
c is the speed of light, γ is the beam Lorentz factor, and σx and σy are the horizontal and vertical
beam sizes.

From Eq. (6.25) and Eq. (6.26), the equation of beam motion is obtained as

d2yb(s, z)

ds2
+
ω̃2
β

c2
yb(s, z) =

ω2
b,yωe,y

c3

∫ ∞
z

dz′yb(s, z
′) sin

ωe,y
c

(z − z′), (6.28)

where ω̃2
β = ω2

β,y + ω2
b,y is the angular betatron frequency including the frequency shift due to the

electron cloud. The right-hand side of Eq. (6.28) can be represented by a wake function, which
depends only on the longitudinal distance. Integrated over the ring circumference L, the wake field
W1(z) can be written as

W1(z) = c
RS
Q

sin(
ωe,y
c
z), (6.29)

where

c
RS
Q

=
λe
λb

L

σy(σx + σy)

ωe,y
c
. (6.30)

This wake field does not damp in z in this model. Actually the electron frequency ωe,y has a finite
spread, since the frequency of each electron depends on its oscillation amplitude and the horizontal
position of the electron. This nonlinear effect causes the oscillation of the electrons to damp. If
we add a damping term 2αye in the left-hand side of Eq. (6.26), the wake field W1(z) is expressed
by

W1(z) = c
RS
Q

ωe,y
ω̃

exp(
α

c
z) sin(

ω̃

c
z), (6.31)

where the damping factor α = ωe,y/2Q is related to the frequency spread of ωe,y and ω̃ =√
ω2
e,y − α2. In a nonlinear resonator model, the wake field due to the electrons has a finite qual-

ity factor Q = Qnl. From comparisons with numerical simulations [148], the nonlinear resonator
quality factor is estimated to be Qnl ∼ 7.

The single-bunch instability is caused by the wake effect of electron motion with the frequency
ωe,y. The phase angle of the electron oscillation during the passage of the bunch is characterized
by

χ =
ωe,yσz
c

, (6.32)
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where σz is the bunch length. The nature of the instability depends on the phase factor, χ.

The corresponding effective transverse impedance is given by a Fourier transformation of the wake
function,

Z⊥(ω) = i

∫ ∞
−∞

dz

c
exp(− iωz

c
)W1(z). (6.33)

From Eq. (6.31) and Eq. (6.33), the resonator impedance is expressed by

Z⊥(ω) =
c

ω

RS
1 + iQ(

ωe,y
ω −

ω
ωe,y

)

=
λe
λb

L

σy(σx + σy)

ωe,y
ω

Z0

4π

Q

1 + iQ(
ωe,y
ω −

ω
ωe,y

)
, (6.34)

where Z0 ' 377 Ω is the vacuum impedance .

We can estimate the stability requirement for a positron beam which experiences this effective
impedance. For χ > 1, the coasting beam model is available to study the fast head-tail instability.
For zero chromaticity, the stability criterion is given by the dispersion relation as [149]

U =

√
3λbreβy

γνsωe,yσz/c

|Z⊥(ωe,y)|
Z0

=

√
3λbreβy
γνsχ

Q

4π

λe
λb

L

σy(σx + σy)
= 1, (6.35)

where νs is the synchrotron tune, and βy is average vertical beta function. For U > 1, the beam
becomes unstable.

The number of electrons in the beam cross-section area, λe, is 2πρeσxσyK [150], where ρe is the
density of the electron cloud. The electrons are gathered around the positron beam path by the
electric force produced by the circulating positrons. Due to the pinch effect, the number of electrons,
which contributes to the instability, is enhanced by a factor K, where K should depend on χ. This
stability condition gives the threshold of the electron density for the instability as

ρe,th =
2γνsχ√

3KQreβyL
. (6.36)

For a finite bunch length, the quality factor should not be larger than χ. Thus Q = Min(Qnl, χ)
is used. And K = χ is chosen as a simple model. With these assumptions, the threshold of the
electron density for the instability is

ρe,th =
2γνs√

3Min(Qnl, χ)reβyL
. (6.37)

The synchrotron tune can be related [149] to the momentum-compaction factor α by

νsωe,yσz
c

=
ασδωe,y
ω0

, (6.38)

in which σδ is the rms relative momentum spread, and ω0 is the revolution frequency. From
Eq. (6.36) and Eq. (6.38), we can get the relationship between the threshold density and momentum-
compaction factor as

ρe,th =
2γασδωe,y√

3KQreβyω0L
. (6.39)
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A high momentum-compaction factor suppresses the fast head-tail instability.

The sum of the tune shifts induced by the electric focusing force for a certain electron cloud density
is given approximately by [146]

∆νx+y = ∆νx + ∆νy =
re
γ
ρeβL, (6.40)

where νx and νy are the horizontal and vertical betatron tunes and ρe is the electron cloud density.4

The averaged beta function in the horizontal and vertical is assumed the same and denoted as β
in the above equation.

This simplified analytical model of the electron cloud impedance neglects many of the important
dynamical features of the electron cloud-beam interaction. Macroparticle simulations, which in-
corporate a fuller model of the physics, provide a better tool for comparison with measurements.
These are described in Sec. 6.3.5.2 and Sec. 6.2.3.

6.2.3 Simulation of Beam Response to the Electron Cloud using CMAD

CMAD is a many-particle systems program to simulate the transport of charge particle beams in
an accelerator lattice in the presence of electron cloud interaction [144]. The program tracks the
beam across the full lattice of the accelerator, while computing the beam-electron cloud interactions
within every element of the lattice. The lattice representation may be imported from any standard
accelerator program such as MAD [151] in the form of transfer maps. The interaction between
the beam and electron cloud is modeled using the particle-in-cell (PIC) algorithm. CMAD runs on
multiple processors and is optimized for speed in computation. CMAD has been validated against two
other programs that perform similar calculations [152], namely HEADTAIL [90] and WARP [132].

6.2.3.1 Representation of the Lattice for the Purpose of Tracking

While computing the beam electron cloud interactions, it is important to correctly model the effect
of the variation of the Twiss function around the ring. The beta function as well as the dispersion
influences the distribution of the particles comprising the beam. This determines how the electron
cloud distribution evolves during a bunch passage, described by the so called pinching process. This
pinching process in turn influences the beam response to the cloud. Thus, it is important to take into
account these details rather than use a constant focusing model, although the latter would greatly
simplify the simulation process. Before starting the computation, the beam distribution needs to
be matched to the twiss functions at the point where the tracking begins. The macro-particles
comprising the beam are then propagated across each element based on transfer functions obtained
from the lattice description. Coupled with the tracking through the lattice elements the beam
particles would undergo an “electron cloud kick”, which is described later in this subsection.

The longitudinal phase space coordinates are defined by δ, the relative energy offset and z, the
position along the bunch. To match the distribution in this degree of freedom, the coordinates are
assigned to each particle as follows.∣∣∣∣ zδ

∣∣∣∣ =

∣∣∣∣∣ c|η|σδ
ωs

0

0 σδ

∣∣∣∣∣
∣∣∣∣ zGδG

∣∣∣∣ (6.41)

4This is the same as Eq. (6.59).
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where c is the speed of light, ωs is the angular synchrotron frequency and η is the slippage, σδ
is the equilibrium relative energy spread. The quantities zG and δG are assigned to each particle
using a Gaussian distribution random generator with a standard deviation of unity over all the
particles. We have assumed that the relativistic parameter β0 = v0/c ≈ 1. The transverse phase
space coordinates are defined by x the horizontal position, x′ the horizontal angle, y the vertical
position and y′, the vertical angle. For a matched distribution the particles are chosen in order to
satisfy the following relationship,∣∣∣∣ xx′

∣∣∣∣ =

√
εx
βx

∣∣∣∣ βx 0
−αx 1

∣∣∣∣ ∣∣∣∣ xGx′G
∣∣∣∣+ δ

∣∣∣∣ Dx

Dx′

∣∣∣∣ (6.42)

∣∣∣∣ yy′
∣∣∣∣ =

√
εy
βy

∣∣∣∣ βy 0
−αy 1

∣∣∣∣ ∣∣∣∣ yGy′G
∣∣∣∣+ δ

∣∣∣∣ Dy

Dy′

∣∣∣∣ (6.43)

where βx/y, αx/y, Dx/y, Dx′/y′ are the horizontal/vertical values of the beta function, the alpha
function, the dispersion and dispersion gradient respectively at the given position in the lattice the
distribution is matched to. Also, εx/y is the horizontal/vertical beam emittance. The quantities
xG/yG and x′G/y

′
G are assigned to each particle using a Gaussian distribution random generator

with a standard deviation of unity over all the particles. The particle distribution is truncated
along each axis at a pre-specified value given by an integer multiple of the root mean square (rms)
extent of the full distribution.

The tracking across the lattice elements is done with the help of transfer functions as specified in
Ref [153]. These include first order transfer matrices and higher order phase space tensors. The
transfer across each element may be expressed as

v
(2)
i =

6∑
j=1

Rijv
(1)
j +

6∑
j=1

6∑
k=1

Tijkv
(1)
j v

(1)
k (6.44)

where vi is the set of components of the phase space vectors in six dimensions, Rij are the compo-
nents of the matrix elements representing linear transport and Tijk are the components of the third
order tensor representing nonlinear transport. The set of components in Rij for the all the lattice
elements provide all the effects of the linear beam optics, which include the influence of Twiss
functions on the size of the distribution, the betatron tune and the slippage undergone by the off
energy particle. Based on a pre-specified synchrotron tune, the particles undergo a kick in energy at
every turn, which is analogous to an RF cavity. This provides for longitudinal confinement and the
synchrotron oscillations executed by the particles. The formulation of this kick is given by

δ(2) =
(2πQs)

2

ηC
z + δ(1) (6.45)

where Qs is the synchrotron tune, and C the circumference of the ring.

The combined effect of the Tijk tensors from all the elements provide for higher order effects
in the beam optics. These include the natural chromaticity and correction of the same due to
sextupoles. Other less important features provided by the terms Tijk include higher order dispersion
and momentum compaction. Yet another effect would be the quadrupole component arising from
a sextupole for an off centered orbit. It may be noted that the Tijk tensors break symplecticity in
the beam transport. Loss in symplecticity would lead to violation of conservation of phase space
area, leading to artificial damping and particle excursion especially when tracking the beam over
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several thousands of turns. However, chromaticity is a key higher order effect that needs to be
retained in any computation of electron cloud effects on the dynamics of beams in storage rings.
Chromaticity is defined by gradient of betatron tune with respect to energy offset, which is given
by Q′ = dQ/(dp/p), where Q′ is the chromaticity, Q the betatron tune and p the momentum of the
synchronous particle. These higher order effects vanish in the absence of the Tijk tensors acting on
the particles. In order to circumvent this problem, one can retain only the first order terms in the
tracking scheme, that is the Rij , thus retaining the symplectic structure of the beam transport, and
yet model the chromaticity with the help of a single transfer matrix applied once per turn. If we
define the transverse space variables (x, x′, y, y′) as ti and the corresponding momentum dispersion
component as Di, then we may express the chromaticity transformation as

t
(2)
i =

4∑
j=1

Cijt
(1)
j −

4∑
j=1

(Cij + Iij)Djδ (6.46)

where Iij is the respective component of the identity matrix I and Cij that of a matrix given
by

C =

∣∣∣∣ Cx I
I Cy

∣∣∣∣ (6.47)

with

Cx =

∣∣∣∣∣ cos(Q′xδ) + αx sin(Q′xδ) βx sin(Q′xδ)
1+α2

x
βx

sin(Q′xδ) cos(Q′xδ)− αx sin(Q′xδ)

∣∣∣∣∣ (6.48)

and

Cy =

∣∣∣∣∣ cos(Q′yδ) + αy sin(Q′yδ) βx sin(Q′yδ)
1+α2

y

βy
sin(Q′yδ) cos(Q′yδ)− αy sin(Q′yδ)

∣∣∣∣∣ (6.49)

Simulations performed so far with CMAD have used first order tracking along with chromaticity
modeled according the transformation described above.

6.2.3.2 Modeling the Beam - Electron Cloud Interaction

The general method of modeling the beam transport through the ring with electron cloud effects
involves tracking a certain number of beam particles around the ring with the help of transfer maps
as already described above, coupled with several discrete “beam-electron cloud interacting points”
(IPs) in the ring. CMAD allows one to have an IP within each element with a pre-specified electron
density. These IPs provide the kick, or deviation in momentum of the beam due to the electron
cloud.

The beam is divided into a certain number of slices along the length of the bunch. The charge
from each particle is deposited on to adjacent slices, represented by two-dimensional grids extending
transversely. The electron cloud at the IP is represented by a single slice, which translates to charge
deposited onto a single two dimensional grid. Since each IP represents a certain length along the
transport channel, this would be equivalent to a situation where all the electrons along this length
are collapsed on to a single two dimensional grid. After such a decomposition, one is left with
computing the interaction between a set of two dimensional charge distributions (the sliced beam)
and a single two dimensional charge distribution, (the electron cloud). This is done with the help of
a field solver and particle pusher method prescribed by the two dimensional particle-in-cell (PIC)
algorithm described later in this subsection. All the forces and motion of particles are now purely
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transverse to the beam propagation. It is easy to justify such an approximation because the beam
is ultra-relativistic. As a result the electrons would experience, for all practical purposes, only a
transverse field component. On the other hand, the electrons, which extend over a finite length will
not have a significant longitudinal field component to perturb the motion of an ultra relativistic
beam. Thus, longitudinal field components may be disregarded altogether. The self field forces
of each species acting upon themselves are also disregarded. Given the beam is ultra-relativistic,
we know that the beam space charge force acting upon the beam particles is insignificant. One
can determine this by transforming the fields to the rest frame of the beam, or by calculating the
combined effect of the electric and magnetic fields in the rest frame of the laboratory, where the
forces due to the electric and magnetic fields almost cancel each other. The space charge forces
due to the electrons acting upon the electrons may also be disregarded. This is because electron
densities are of the order of 1011−1012 m−3, while the beam consists of about 1010 particles confined
within micron sized dimensions transversely and about a centimeter longitudinally. Thus, within
the vicinity of the beam, the forces exerted by the beam space charge on the electrons is many
orders of magnitude higher than the forces of the electrons acting upon each other.

In this scheme, the transverse fields produced in each of the beam slices are computed first. These
slices are made to pass through the two dimensional electron distribution in succession, and the
electrons are made to move accordingly with every slice passage. With a positively charged beam,
the electrons would converge toward the center as the beam slices pass through and in some cases
even overshoot and cross the center. This process is often referred to as “pinching”. Figure 6.14
shows the electron cloud pinch caused by the different beam slices and Fig 6.15 shows the presence of
a slice of electron cloud within each element, with the beam being transported across the elements.
The field produced by the electrons is computed and recorded after every interaction with a beam
slice or, in other words after every pinch introduced by the respective slice. Finally, these computed
fields due to the electrons are acted upon the beam particles of the corresponding slice. This
provides focusing to the beam particles in addition to focusing arising from the quadrupoles. The
focusing caused by the electrons is not uniform, leading to an amplitude dependent tune shift, in
addition to a coherent tune shift. Since the beam is not rigid in this model, i.e., it consists of
discrete particles, one can study effects such as emittance growth caused by the electron cloud,
distortions in beam shape and orientation due to head-tail interaction, the spread in tune amongst
the particles, and other such effects that cannot be seen by a rigid beam model.

6.2.3.3 Particle-in-Cell (PIC) Algorithm

The (PIC) method has been widely used in simulating many particle systems. The general method
involves solving for the force fields over a mesh, and moving particles in the system based on the
field calculation, a process repeated at every time step. In our case the force fields are computed by
solving a two dimensional Poisson’s equation over a mesh using Fourier transforms. As explained
earlier, the fields need be solved over a two dimensional grid. Poisson’s equation in two dimensions
is

∂2φ

∂x2
+
∂2φ

∂y2
= − ρ

ε0
. (6.50)

In general, the above equation may be solved in Fourier space, where it reduces to a simple equation
rather than a differential one, and then taking the inverse Fourier transforms to determine φ. In the
present case, since all values are given over a mesh, we use the discrete Fourier transform (DFT).
The DFTs and their inverses are computed using the package FFTW [154]. The area used in the field



6.2. Simulation Tools 305

3840511-324

Figure 6.14: Figure describing the pinching of the cloud as the slices of the beam pass through
the two dimensional cloud

3840511-323

Figure 6.15: Figure describing the distribution of the two dimensional cloud slices across each
element, which represents an IP

computation spans about 10-20 times the beam size, which is much smaller than the vacuum cham-
ber cross section. In order for the field computation to be unaffected by these artificial boundaries,
the boundary conditions are set so that it creates the effect of “open boundaries”. This is done by
first computing the field on the boundary nodes using Green’s function for open boundaries due
to the charge present in the computational domain. Using these values as boundary conditions,
Poisson’s equation is solved for all grid points within these boundaries using fast Fourier transforms
(FFT). The charge distribution is represented by a set of macro-particles, which are computational
particles carrying the weight of a finite number of physical particles. At a given time a macro-
particle can be located anywhere within the computational domain. In order to solve Poisson’s
equation using DFTs, one needs to assign the charge of these macro-particles onto the grid nodes.
Additionally, once the fields are computed, their values need to be interpolated onto the position
of the particles. The schemes used for evaluating the fields from the potential by discretizing the
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gradient operator (the Laplacian operator) to express Poisson’s equation, interpolation of charge
onto the nodes, and interpolation of the field from the node to the particle position, are all similar
to that described in Ref [155]. They are briefly summarized here.

xmacroparticle

yδ
δ

0

+

+ 0

3840511-322

Figure 6.16: Figure illustrating the 9 point charge interpolation scheme

The assignment of the charge onto the grid nodes is done over a set of nine nearest neighboring points
representing the nodes as shown in Fig 6.16. We use 0 to denote the first, + as the second, and − as
the third nearest lines. Following the notation of Ref. [155], we defineHx as the horizontal dimension
of the grid and Hy as the vertical dimension. Also δx and δy are defined as the perpendicular
distance from the nearest horizontal and vertical grid line respectively. The weights assigned to
these nine nodes are quadratic polynomials of the ratios rx = δx/Hx and ry = δy/Hy. The
coefficients of the weights along the x axis are given by

w0
x =

3

4
− r2

x

w+
x =

1

2
(
1

4
+ rx + r2

x)

w−x =
1

2
(
1

4
− rx + r2

x) (6.51)

It may be noted that w0
x +w+

x +w−x = 1, which is required for satisfying charge conservation. The
formulae for weighing the charges along the y axis is identical, and are denoted as w0

y, w
+
y and

w−y respectively. Finally, the weight to be assigned at a node will be a product of the two one-
dimensional weights based on the position of the node along the two axis. For example w00 = w0

xw
0
y

and w+− = w+
x w
−
y , etc.

The two dimensional Laplacian operator is approximated by a five point difference scheme, and
Poisson’s equation is discretized as follows,

φi−1,j + φi+1,j − 2φi,j
H2
x

+
φi,j−1 + φi,j+1 − 2φi, j

H2
y

= −ρi,j
ε0

(6.52)

where i and j are the horizontal and vertical indices that label the nodes over the mesh. The field
is computed from the potential using the gradient operator which is approximated by a six point
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difference scheme. This is given by

Exi,j = − 1

12Hx
[(φi+1,j+1 − φi−1,j+1 + 4(φi+1,j − φi−1,j) + (φi+1,j−1 − φi−1,j−1)]

Eyi,j = − 1

12Hy
[(φi+1,j+1 − φi+1,j−1 + 4(φi,j+1 − φi,j−1) + (φi−1,j+1 − φi−1,j−1)]. (6.53)

Once the force on each of the particles is computed, their positions and velocities are advanced in
time according to the values of the time step and the force exerted. In order to do this, we use the
leap frog scheme when the effect of an external magnetic field is not included and the Boris [156]
integrator when the particles are influenced by an external magnetic field. The particle’s equations
of motion to be integrated are

m
dv

dt
= q(E + v ×B)

dr

dt
= v. (6.54)

The only situation in which the magnetic field B is taken into account is when cloud electrons move
in the presence of an external magnetic field. For B = 0, the discretized integration is given as
follows,

vt+∆t/2 = vt−∆t/2 +
q

m
Et∆t

rt+∆t = rt + vt+∆t/2∆t (6.55)

Thus, we see that in this scheme, the position and velocity coordinates are always half a time step
apart. In the presence of an external magnetic field, we need to solve

vt+∆t/2 − vt−∆t/2

∆t
=

q

m

[
Et +

vt+∆t/2 + vt−∆t/2

2
×B

]
(6.56)

To do this, we follow the method of Boris [156] which involves the following expressions,

vt−∆t/2 = v− − qEt

m

∆t

2

vt+∆t/2 = v+ +
qEt

m

∆t

2
(6.57)

If we substitute the above expressions into Eq. (6.56), we get

v+ − v−

∆t
=

q

2m
(v+ + v−)×B (6.58)

Thus, in order to advance the velocity in time, we need to carry out the following procedure; first
compute v− according to Eq ((6.57)) using the value of Et, then solve for v+ using Eq ((6.58)),
and then solve for vt+∆t/2 once again using Et and Eq ((6.57)). The position vector r is advanced
in the same manner as in the zero magnetic field case.

6.2.3.4 Parallel Implementation

As mentioned previously, CMAD has been optimized for high speed computation and runs on multiple
processors. In this algorithm, one or more beam slices are assigned to a processor. Figure 6.17 shows
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a schematic describing this algorithm with each processor containing three slices. Each processor
moves or pinches its cloud electrons according to the fields produced by the beam particles of the
slice. When the processor is done with all its slices, it passes the resulting electron distribution
to the processor containing the adjacent slices for further processing. After passing the electron
distribution on, the processor continues to calculate the field resulting from the electron distribution
and uses it to calculate the “electron cloud kick” to the beam particles. Then each beam particle is
propogated to the next element by applying the transfer map described earlier in this subsection. It
may be noted that the process of providing the “electron cloud kick” and transportation to the next
element in the lattice can be done by each processor independently, which results in considerable
saving in overall computation time when several processors are used. It is clear that optimal speed
in computation is achieved when the number of processors used equals the number of slices the
beam is divided into. Calculations for CESRTA are regularly carried out with 100 slices using 100
processors at the National Energy Research Scientific Computation Center (NERSC).

3840511-440

Figure 6.17: Figure illustrating the flow of information for parallel computation implemented in
CMAD
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6.3 Experimental Observations and Comparison With Simulation

6.3.1 Bunch-by-Bunch Tunes

The CESRTA program has included extensive measurements of bunch-by-bunch coherent betatron
tune shifts for a variety of electron and positron beam energies, emittances, bunch population levels,
and bunch train configurations [135, 136, 157]. The tune shift measurement methods are described
in Section 6.1.1.

Comparisons to two advanced electron cloud simulation codes (ECLOUD [89, 90] and POSINST [71,
86]), using the methods described in Section 6.2.1, have shown that the bunch-by-bunch tune shifts
result primarily from the interaction of the beam with the space-charge field of the photoelectron-
seeded electron cloud in the vacuum chamber. These comparisons have allowed the accuracy of
the codes to be checked, and constraints to be placed (for the conditions of the CESRTA vacuum
chamber) on the codes’ physical model parameters. Together with local direct measurements of
the electron cloud using retarding field analyzers, shielded buttons and TE-waves, described in
Chapter 5, the tune shift measurements will help to develop a robust electron cloud model, well
tested experimentally, which can be used to predict with confidence the features of the electron
cloud effect in future linear collider damping rings.

6.3.1.1 General Remarks on Bunch-by-Bunch Tune Shifts

The basic tools required for simulations of the bunch-by-bunch coherent tune shifts are

1. knowledge of the beam parameters, element layout and lattice, vacuum chamber characteris-
tics, and radiation distribution (including scattered radiation) around the ring.

We have detailed optics models for each CESRTA lattice configuration. For our tune shift sim-
ulations in 2008 through 2011, the radiation intensity for a given beam current was provided
by a program called Synrad, which computes the radiation intensity striking the vacuum
chamber wall (approximately a 4.5 cm × 2.5 cm elliptical Al beampipe) in the bend plane
from the magnetic lattice and the beam parameters. An empirically determined “photon
reflectivity” parameter is used in the electron cloud codes to describe the scattered radiation
(assumed to be uniformly distributed) striking the vacuum chamber out of the bend plane.

As discussed in Section 4.1.4.1, we have developed a three-dimensional radiation propagation
code called Synrad3D which computes the radiation intensity per unit beam current in a
given lattice, including specular and diffuse photon scattering in a realistic 3D model of
the CESRTA vacuum chamber. This code gives the complete photon radiation distribution
around the perimeter of the vacuum chamber cross section, at any longitudinal position. We
will use the results of this code to improve the tune shift simulations in future studies. Some
preliminary tune shift simulations based on Synrad3D are presented below in Section 6.3.1.7.

2. a program which uses primary photoelectron and secondary electron models to simulate the
buildup of the cloud.

We have used the 2D codes POSINST and ECLOUD to model the cloud buildup along a bunch
train, and decay after the end of the train. A description of recent benchmarking comparisons
between ECLOUD and POSINST can be found in Ref. [158]. For the tune shift calculations, the
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electron cloud has been modeled in drifts and dipoles only, since electron cloud effects in these
elements dominate the bunch-by-bunch tune shifts in the CESRTA ring.

The 3D codes WARP/POSINST [84, 93] and CLOUDLAND [91, 92, 111] have been employed to
study tune shifts in quadrupoles and wigglers. The contributions to the bunch-by-bunch tune
shift differences along the train from these elements is generally quite small; however, because
of the presence of trapped cloud in these devices, there may be observable effects on the tune
shifts of the leading bunch in a train, and on other features of the beam dynamics (see below,
Section 6.3.2.14). This is an area to be studied in the future.

Further details concerning the modeling of photoelectron production are discussed in Sec-
tion 5.1.3.3, and also below in Section 6.3.1.7. Additional information, as well as the detailed
assumptions in the secondary electron yield model, can be found in Refs. [135, 159].

The cloud buildup depends on the secondary electron emission characteristics of the vacuum
chamber surface, which in principle will change with time as the surface is conditioned by
photon and electron bombardment. However, the tune shifts are sensitive to the ringwide av-
erage surface condition, and CESR has been operating in a high current environment for many
years. The ringwide average vacuum chamber surface is thus essentially fully conditioned,
and no significant time dependence in its secondary emission characteristics is expected.

3. a method of calculating the coherent tune shifts from the (dynamic) electron cloud charge
densities provided by the simulation codes. This is described above in Section 6.2.1.

6.3.1.2 Initial Tune Shift Studies to Determine the Reference Simulation Parameter
Values

To determine the approximate values of the electron cloud simulation parameters which reproduced
measured tune shift data, a data set from 2007 was studied intensively. The radiation intensities
in drifts and dipoles were fixed as computed from the lattice and the beam current. Starting with
a parameter set suggested by recent direct measurements of the SEY properties of technical Al
surfaces at SLAC, the internal simulation parameters in the POSINST code were varied. A reference
parameter set, which did the best job of reproducing the 2007 data set, was determined by trial-
and-error comparisons. The numerical parameters of the POSINST simulation (such as time step
size, space charge grid size, and number of beam slices) were chosen such that variations in these
numerical parameters did not change the results of the simulation significantly.

The reference values for six key parameters for the simulations are shown in Table 6.1. Fig. 6.18
shows a comparison between the 2007 data set and a POSINST simulation with the reference values,
and two simulations with the total secondary yield parameter varied by ±10% away from the
reference.

6.3.1.3 Tune Shift Data Summary, and Comparison with POSINST Simulations

A large variety of coherent tune shift data have been taken, covering a wide range of machine
conditions such as beam energy, beam size, lattice configuration, particle species, bunch current,
bunch train configuration, and mode of oscillation of the bunches.
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Table 6.1: POSINST initial reference parameter values (aluminum chamber). The same values are
used for drifts and dipoles.

POSINST Parameter Description Unit Value

queffp Quantum efficiency % 12
refleff Photon reflectivity % 15
ek0phel Peak photoelectron energy eV 5
eksigphel RMS photoelectron energy eV 5
E0tspk Energy of peak true secondary yield eV 310
dtotpk Peak total secondary yield 2.0
P1epk Elastic yield at zero energy 0.5
P1rinf Rediffused yield at high energy 0.19
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Figure 6.18: Coherent tune shifts, 2007 data and POSINST simulations compared. Left: positron
beam. Right: electron beam. The data and simulations are for a 10 bunch train with a bunch
current of 0.75 mA, followed by witness bunches, all with 14 ns spacing, and 1.9 GeV beam energy.
Squares: Vertical tune shift. Disks: Horizontal tune shift. Black: data. Red: POSINST simulation
using parameters given in Table 6.1. Blue: POSINST simulation with Table 6.1, except peak total
secondary yield = 2.2. Green: POSINST simulation with Table 6.1, except peak total secondary
yield = 1.8.

The tune shift data can be grouped into four types based on the measurement technique em-
ployed:

a. “Pinged” beam measurements, for which all the bunches in the train are oscillating in phase.
This measurement type is described in Section 6.1.1.1. For this mode of excitation, the
horizontal tune shifts are suppressed, as discussed above in Section 6.2.1.3.

b. Measurements in which a single bunch in the train is excited with a fast kicker. This mea-
surement type is described in Section 6.1.1.2.

c. Measurements in which the Dimtel feedback system response is used to measure the tune. In
this case, the mode of oscillation of the train is unknown. This measurement type is described
in Section 6.1.1.3.

d. Measurements in which the bunches in the train are self-excited; in this case also, the mode
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of oscillation of the train is unknown. This measurement type is described in Section 6.1.1.4.

For each of these measurement types, there are also two possible kinds of bunch patterns:

• Measurements involving witness bunches, which are single bunches placed at a variable dis-
tance after the end of a train, to probe the time evolution of the cloud. For these studies, the
train lengths were typically short (no more than 20 bunches).

• Measurements with long trains of bunches (up to 45 bunches), with no witnesses.

As discussed above in Section 6.2.1.3, the tune shifts depend in general on the mode of oscillation of
the train, and this dependence can be taken into account by using the “Dynamic cloud model.” For
type a data, all the bunches in the train are oscillating in phase, and the cloud buildup simulations
done for comparisons with type a data were done by offsetting all the bunches in the train by the
same amount. The offset used in the simulations was 2 mm.

For data type b, only a single bunch in the train is oscillating. The corresponding simulation
should be done using the “Dynamic cloud model” with a single bunch offset. Simulation studies
have shown, however, that when only a single bunch in the train is offset by a small displacement
(. 0.5 mm), tune shifts computed using the “Modified static cloud model” (Section 6.2.1.4) are
close to those computed using the “Dynamic cloud model”. For the simulations reported here for
this data type, we have used the “Modified static cloud model” (Eq. (6.11)). In the future, we will
use the “Dynamic cloud model” (with a single bunch offset equal to the displacement used for the
measurement) for data type b as well as data type a.

For data types c and d, the excitation of the beam is spontaneous, and the mode of oscillation is
not directly measured. However, we believe that the dependence of the tune shift on the mode of
oscillation of the train is relatively weak5, except for the special case of the horizontal tune shift
in dipoles being very small for the lowest frequency multibunch mode. This belief is supported
by horizontal tune spectra measurements for type d data, such as shown in Fig. 6.38 below. The
spectrum exhibits two peaks: one smaller peak at very small tune shifts, associated with the lowest
frequency multibunch mode, and another larger peak with a large tune shift, associated with all
the other modes. Thus, by focusing on the frequency of the largest amplitude spectral peak, we
are measuring the tune shift associated with the higher frequency multibunch modes. To compute
the tune shift for the these modes, we use the “Modified static cloud model”.

The major tune measurement data sets, grouped by measurement type, are the following:

type a: 1a. A large series of data sets taken in 2007 and 2008, with witness bunches and short trains.
These are listed in Table 6.2. Examples of data-simulation comparisons from this set
are shown in Fig. 6.18, Fig. 6.19, and Fig. 6.20.

2a. A series of data sets taken in 2009 with 45 bunch trains, with a range of bunch currents.
Examples are shown in Fig. 6.21, Fig. 6.29 and Fig. 6.30.

3a. A series of data sets taken in 2010 to explore special lattice or beam conditions. Ex-
amples are shown Fig. 6.22. Studies of special lattice conditions are discussed below in
Section 6.3.1.6.

Inspection of the data and simulation comparisons for the type a groups shows that the
reference parameter set given in Table 6.1 does a fairly good job of representing the data,
with the following exceptions:

5This supposition should be confirmed by simulations.
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Table 6.2: Short train and witness data sets from 2007-2008 (Group 1a). The train and witness
bunches are spaced at 14 ns. The data sets were taken with different values of the bunch current,
train length, and witness configuration. The ranges for these values are given in the table.

Energy Species Bunch current Train length No. of witness bunches Number
(GeV) (mA) (no. of bunches) following the train of data sets

1.9, 2.1 Positrons 0.25, 0.5, 0.75, 3, 10, 11, 5-15 23
1.0, 1.25, 3.0 19, 20, 21

1.9, 2.1 Electrons 0.25 ,0.5, 0.75, 10, 11, 19, 5-15 10
1.0, 1.25, 3.0 20, 21

5.3 Positrons 0.75, 1.5, 5.0 3, 10 5-10 3
5.3 Electrons 1.5 10 10 1

0.8

0.6

0.4

0.2

0.0

0 10 20 4030
Bunch number

∆
Q

 (k
H

z)

Coherent tune shift vs. bunch number
3840511-151

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0 5 10 2015
Bunch number

∆
Q

 (k
H

z)

Coherent tune shift vs. bunch number 3840511-150

Figure 6.19: Coherent tune shifts, 2008 data and POSINST simulations compared. Left: 21 bunch
train followed by witnesses, 0.5 mA bunch current. Right: 20 bunch train, 1 mA bunch current.
Beam for all cases: positron, 2.1 GeV energy, 14 ns bunch spacing. Squares: Vertical tune shift.
Disks: Horizontal tune shift. Black: data. Red: POSINST simulation using parameters given in
Table 6.1. Blue: POSINST simulation with Table 6.1, except peak total secondary yield = 2.2.
Green: POSINST simulation with Table 6.1, except peak total secondary yield = 1.8.

– Generally, the horizontal simulated tune shifts, while small, are still larger than the data.

– The vertical tune shifts at 5.3 GeV are overestimated.

– The high bunch current (2 mA) witness bunch vertical tune shifts at 4 GeV may be
underestimated.

The first two exceptions are discussed further in Section 6.3.1.7 below.

type b: Tune measurements with a single bunch drive excitation with 1-2 mm amplitude. An example
is shown in Fig. 6.23. Since there is no coherent oscillation of the entire train, the horizontal
tune shifts are not suppressed. It is evident that the simulations overestimate the data, for
the bunches near the end of the train. This disagreement may be related to the fact that
the simulations were done using the “Modified static cloud model”, which may not be a good
approximation for this data type. More measurements of this type, in which both the mode
of oscillation of the bunches and the oscillation amplitude are well-specified, are planned in
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Figure 6.20: Coherent tune shifts, 2008 data and POSINST simulations compared. Left: 10 bunch
positron train followed by witnesses, 0.75 mA bunch current. Right: 10 bunch electron train,
1.5 mA bunch current, followed by witnesses, 0.5 mA bunch current; only the witness bunches are
shown. For all cases: 14 ns bunch spacing, 5.3 GeV beam energy. Squares: Vertical tune shift.
Disks: Horizontal tune shift. Black: data. Red: POSINST simulation using parameters given in
Table 6.1. Blue: POSINST simulation with Table 6.1, except peak total secondary yield = 2.2.
Green: POSINST simulation with Table 6.1, except peak total secondary yield = 1.8.
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Figure 6.21: Coherent tune shifts, 2009 data and POSINST simulations compared. Left: 45 bunch
train, 0.6 mA bunch current. Right: 45 bunch train, 1 mA bunch current. All for positrons with
14 ns spacing, and 2.1 GeV beam energy. Squares: Vertical tune shift. Disks: Horizontal tune
shift. Black: data. Red: POSINST simulation using parameters given in Table 6.1. Blue: POSINST

simulation with Table 6.1, except peak total secondary yield = 2.2. Green: POSINST simulation
with Table 6.1, except peak total secondary yield = 1.8.

the future.

type c: Tune measurements taken using the Dimtel feedback system. An example is shown in Fig. 6.24
and described in Ref. [159]. This is one of the few data sets taken to date with a bunch spacing
of 4 ns. This data set, for which the horizontal tune shifts are quite large, clearly favors a
higher value of the total peak secondary yield parameter than the reference parameter set.
More data sets with this spacing are planned for future experiments.
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Figure 6.22: Vertical coherent tune shifts, 2010 data and POSINST simulations compared, using
the parameters in Table 6.1.
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Figure 6.23: Horizontal coherent tune shifts, single-bunch-excitation data (black) and POSINST

simulations (red) (“Modified static cloud model”) compared. 10 bunch train, 4 mA bunch current
2.1 GeV beam energy. POSINST simulation using parameters given in Table 6.1.

type d : Tune measurements without a drive excitation, obtained from the analysis of BPM frequency
spectra taken in conjunction with instability measurements, as discussed in Section 6.1.2.
Examples are shown in Fig. 6.41 in the next section.
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Figure 6.24: Horizontal coherent tune shifts, Dimel data (black) and POSINST simulations (red,
blue) (“Modified static cloud model”) compared. 32 bunch train, 0.8 mA bunch current, 2.1 GeV
beam energy, 4 ns bunch spacing. Red: POSINST simulation using parameters given in Table 6.1.
Blue: same simulation parameters except total peak secondary yield = 2.3

6.3.1.4 Systematic Study of Electron Cloud Model Parameters from POSINST Simula-
tions

To gain confidence in the ability of the POSINST simulation to predict the performance of future
storage rings and to tune the POSINST parameters, a systematic effort was made to compare the
simulations with measurements under a wide variety of conditions. Comparisons of measurements
with simulations were made for 54 data runs with electron and positron beams at 1.9, 2.1, 4.0, and
5.3 GeV energy, in trains of 3 to 45 bunches, with bunch charges of 0.5 to 4.2 nC (0.2 to 1.6 mA
bunch current, respectively) representing the data in groups 1a (2007-2008) and 2a (2009).

For each data set, all six of the critical parameters shown in Table 6.1 were varied≈ ±10% relative to
the reference parameter set. This was done independently for the horizontal and vertical tune shifts,
and for the train and witness bunches, in order to monitor the consistency of the values obtained.
A χ2 was computed from the differences between the data and simulations, and a parabola was fit
to the three χ2 values to determine a best parameter value for each of the data sets.

Fig. 6.25 (left) shows the resulting values for the determination of the total secondary emission
yield (SEY), for each data type, for the group 1a and group 2a data sets. Within the errors, the
best-fit values for the total SEY parameter determined from the various data sets and data types
are approximately the same.

It became quite clear during the evaluation process that the six POSINST parameters are correlated.
To try to assess the correlations, we examined the secondary emission yield paired with each of
the other five parameters. The fit χ2 was evaluated at nine points for each pair, ±10% and zero
offset from the reference value, and a two-dimensional parabolic fit was attempted at each data set.
Often there was either no minimum, or a false minimum at a physically absurd value was found.
In general, fits for the horizontal tunes failed, possibly because the POSINST model is inadequate,
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Figure 6.25: The best fit peak secondary emission yield parameter, as determined from a single-
parameter fit, vs. data type (left); The best fit peak secondary emission yield parameter, as
determined from a two-parameter fit, vs. the other parameter in the fit (right).

as noted above.

The results of this procedure are shown in Fig. 6.25 (right). Here we display the best-fit total
SEY parameter obtained from a two-parameter fit, as a function of the other parameter, for the
vertical tune data types. Although the results are consistent, the error bars are larger than for the
single-parameter fits, reflecting the additional uncertainty caused by correlations between the total
SEY parameter and the other parameters.

In Fig. 6.26, Fig. 6.27, and Fig. 6.28, we show the results of varying the other five critical parameters
about the reference values given in Table 6.1. The plots show the best fit values obtained from
single-parameter fits using the group 1a and group 2a data sets separately, and the best-fit values
obtained from the two-parameter fits, in which the other parameter was the peak SEY. Table 6.3
summarizes numerically the values that could be extracted from the fits that succeeded, and gives
the correlations extracted from the two-parameter fits.
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Figure 6.26: The best fit QE parameter Y (left) and photon reflectivity (right), as determined from
single-parameter fits and two-parameter fits with the total SEY, vs. data type. While some of the
single-parameter fit results appear inconsistent, the error bars obtained from the two-parameter
fits are the best estimate of the true uncertainties.

It is clear that the effort of fitting has not yielded a dramatic improvement in the determination
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Figure 6.27: The best fit elastic SEY parameter (left) and rediffused SEY parameter (right), as
determined from single-parameter fits and two-parameter fits with the total SEY, vs. data type.
While some of the single-parameter fit results appear inconsistent, the error bars obtained from the
two-parameter fits are the best estimate of the true uncertainties.
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Figure 6.28: The best fit SEY peak energy parameter as determined from single-parameter fits and
two-parameter fits with the total SEY, vs. data type.

of the POSINST parameters. In an effort to improve this technique we are using more sophisticated
statistical techniques to help weed out poor measurements, which lead to misleading values of χ2.
Additional data have been taken at different bunch spacings in the hopes of better distinguishing
primary from secondary electron emission.

Finally, it is possible that the simulation improvements noted in Section 6.3.1.7 may resolve some
of the issues.

6.3.1.5 Comparisons Between Data and ECLOUD Simulations

Comparisons between CESRTA tune shift data and ECLOUD simulations have been previously re-
ported in Refs. [135] and [136]. An example is shown in Figure 6.29, which corresponds to mea-
surements from group 2a for 45 positron bunches at a beam energy of 2.1 GeV with 14 ns-spacing
and a bunch current of 0.4 mA. The magnitude and time dependence of the vertical tune shifts are
well described by the ECLOUD and POSINST simulations.

The relative contributions of the field-free and dipole regions of the ring to the vertical tune shift
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Table 6.3: Evaluating POSINST parameters. The reference SEY peak value is 2.0. Reference values
for the other parameters are in the first column, and their best-fit values using train and witness
tune shifts are in the next two columns.

Ref QyTrain QyWitness

SEY peak = 2.05± 0.11 SEY peak = 2.04± 0.13
0.15 Reflectivity = 0.162± 0.017 Reflectivity = 0.147± 0.033

Correlation = −0.83± 0.12 Correlation = −0.89± 0.08

SEY peak = 2.02± 0.09 SEY peak = 1.94± 0.07
0.12 Quantum Efficiency = 0.134± 0.008 Quantum Efficiency = 0.141± 0.011

Correlation = −0.83± 0.08 Correlation = −0.74± 0.21

SEY peak = 2.07± 0.16 SEY peak = 1.90± 0.14
0.19 Rediffused at infinity = 0.27± 0.11 rediffused at infinity = 0.30± 0.10

Correlation = −0.84± 0.12 Correlation = −0.89± 0.04

SEY peak = 2.02± 0.09 SEY peak = 1.94± 0.07
0.50 Elastic SEY peak = 0.53± 0.12 Elastic SEY peak = 0.52± 0.10

Correlation = −0.72± 0.21 Correlation = −0.89± 0.10

SEY peak = 2.02± 0.09 SEY peak = 1.94± 0.07
310 eV True Secondary Epeak = 329± 45 eV True Secondary Epeak = 312± 44 eV

Correlation = 0.5± 0.4 Correlation = 0.48± 0.23
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Figure 6.29: Comparison of the measured and simulated horizontal and vertical tune shifts along
a 45-bunch train of 2.1 GeV positrons spaced by 14 ns. The bunch current is 0.4 mA. POSINST
simulations using parameters given in Table 6.1. The ECLOUD and POSINST simulations show that,
for this bunch current, the contribution to the vertical tune shift from the the dipole regions is
only about 40% of the total tune shift, even though the ratio of dipole region length to drift region
length is about 3:1.
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Figure 6.30: Measured and simulated tune shifts under the same conditions as for Fig. 6.29, but
with double the bunch population. Under these conditions, the beam kicks are strong enough that
the cloud buildup is dominated by the secondary yield on the top and bottom of the dipole vacuum
chambers in the vertical plane containing the beam.

depend strongly on the bunch population, as can be seen by comparing Fig. 6.29 with Fig. 6.30,
where the measurements were taken under identical conditions, but for a bunch population of
0.8 mA. Here the dipole contribution dominates after about 15 bunches in the train, resulting in
the characteristic linear rise of the vertical tune shift. The beam kicks on the cloud electrons are
strong enough for this bunch population that the secondary yield on the top and bottom of the
vacuum chamber in the vertical plane containing the beam now dominate the vertical space-charge
field gradients.

These measurement conditions are very similar to those described in Ref. [135]. However, the
discrepancy (see Fig. 3 in [135]) between the data and the ECLOUD simulations reported in [135]
has been resolved. Numerical approximations in the ECLOUD calculation have been improved, and,
more importantly, the re-diffused component in the secondary yield model has been introduced.
The re-diffused secondaries carry a substantial fraction of the kinetic energy of the incident cloud
electrons [86]. If this contribution from re-diffused cloud electrons is omitted, the simulated dipole
contribution to the vertical tune shift reaches a level about half of the measured tune shift of
the 45th bunch. Figure 6.31 illustrates the effect of the re-diffused component, distinguishing the
contributions to the vertical tune shift from the drift and dipole regions. The dipole contribution
at the higher bunch current is responsible for the continuing increase of the vertical tune shift
along the bunch train, and the slope of the increase is largely due to the re-diffused secondary yield
component. We also verified that the POSINST model shows a discrepancy with the measurement
similar to that of ECLOUD when its re-diffused secondary yield component is removed.
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Figure 6.31: Measured and ECLOUD-simulated vertical tune shifts under the same conditions as
for Figs. 6.29 and 6.30, showing the effect of the re-diffused SEY component on the contributions
from the drift and dipole regions. The green points show the dipole contribution, the blue points
show the drift contribution, and the red points show their sum. The measurements are shown as
black points. The upper (lower) row shows the results for a bunch current of 0.4 mA (0.8 mA).
The re-diffused secondary yield was set to 0.19 (0.00) while maintaining the peak secondary yield
at 2.0 to obtain the results in the left (right) row.
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6.3.1.6 Study of the Effects of Solenoids in the CESRTA Drifts

The tune shifts observed in CESRTA are due to electron cloud present in both the drift regions of
the ring (about 179 m) and the dipole regions (about 475 m). Attempts have been made to separate
the tune effects in the dipoles as opposed to the drift regions by introducing a 40 G solenoidal field
in the most of the drift regions. By keeping photoelectrons accelerated by the beam from hitting
the walls, the effects of secondary emission should be reduced in the regions with solenoids. Data
sets (group 3a) comparing solenoids on and off are shown in Fig. 6.32. Data are shown for 2.1 GeV
positrons (top left) and electrons (bottom left) and 5.3 GeV positrons (top right) and electrons
(bottom right). The solid curve is the POSINST simulation including both dipoles and drifts, and
the dotted curve includes only dipoles. The reference values for the parameters, shown in Table 6.1,
were used for the simulations.

It is clear from Fig. 6.32 that the POSINST simulations underestimate the solenoid-on tune shifts,
particularly for the case of 2.1 GeV positrons. Additional simulation work is needed here to
understand this.

6.3.1.7 Improvements to Electron Cloud Modeling for Tune Shifts at CESRTA

Use of the Photon Transport Code Synrad3D The simulations described above use the
photon intensities corresponding to the synchrotron-radiated photons striking the vacuum chamber
in the bend plane, together with a single empirically determined “photon reflectivity” parameter
to describe the reflected photons. However, since the source of the synchrotron radiation is well
known, and the reflection of the radiation from the walls can be modeled, it is possible to make
reliable estimates of both the in-bend-plane and scattered radiation. These estimates allow a
full characterization of the radiation absorbed on the walls to be made, without the need for an
empirically determined reflectivity parameter. Since the radiation characterization can be made for
any beam energy, ring lattice, and vacuum chamber profile, this greatly facilitates the extrapolation
of electron cloud buildup calculations to future positron rings.

As described in Section 4.1.4.1, we have developed a three-dimensional photon production, transport
and scattering simulation code, Synrad3D, which can predict the distribution of photon absorption
sites on the vacuum chamber wall at any longitudinal position. The predictions from Synrad3D

are supplied as inputs to POSINST or ECLOUD to provide a fully characterized description of the
incident radiation. The description is limited by the accuracy of the vacuum chamber model,
and by the approximations used in the scattering model. Initially, the radiation calculations were
done with a simple, longitudinally uniform, vacuum chamber model, and with a scattering model
based on purely specular reflection from an aluminum surface. More recently, as discussed above
in Sec. 5.1.3.2, we have used the code to model the actual complex vacuum chamber shape of the
CESRTA chamber, and to include diffuse scattering.

In Fig. 6.33 and Fig. 6.34, we compare (in red) the tune shifts calculated using the Synrad photon
intensities for the bend plane radiation, together with an empirical reflectivity parameter describing
a uniform distribution over the rest of the chamber, with (in blue) a calculation based on the
Synrad3D photon distributions, computed using the actual CESRTA vacuum chamber, and including
diffuse scattering, as described in Sec. 5.1.3.2, Example 4. Both calculations use the reference
simulation parameters presented in Table 6.1 for the SEY model parameters. For the results derived
from the Synrad3D photon distributions, we have used lower values for the empirical quantum
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Figure 6.32: Dependence of vertical tune shifts on solenoids in drift regions. Positron (top) and
electron (bottom) tune shifts vs. bunch number, for 2.1 (left) and 5.3 GeV (right) beams. The
green circles and blue dots represent data taken with solenoids off and on, respectively. The solid
curve is the POSINST simulation including both dipoles and drifts, and the dotted curve includes
only dipoles, using the parameters in Table 6.1.
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efficiency (10.8% for dipoles, 9.7% for drifts) to optimize agreement with the vertical tune shifts for
the 2.1 GeV data, and, in addition, a more realistic Lorentzian photoelectron energy distribution
(see next subsection).

Examination of Fig. 6.33 and Fig. 6.34 shows a modest improvement in the agreement between the
horizontal tune shift data and the simulations (especially for 5.3 GeV), when using the Synrad3D

photon distributions. Most of this improvement results from the use of a highly nonuniform photon
distribution on the vacuum chamber out of the bend plane (see, for example, Fig. 5.8), as pre-
dicted by Synrad3D, in contrast to the simpler uniform distribution used in simulations based on
Synrad.

The decay of the horizontal tune shift after the passage of the 10 bunch train depicted in the left plot
of Fig. 6.34 is not well modeled. It should be noted that the horizontal tune shifts are very small
in this type of pinged beam measurement, and the simulation depends on the delicate cancellation
described in Sec. 6.2.1.3, so a substantial disagreement need not be a cause for concern.

Fig. 6.34 also shows an improvement in the agreement between the vertical tune shift data and
the simulations. Although a discrepancy remains, we note that the quantum efficiency should be
different (and lower) at 5.3 GeV than at 2.1 GeV, since the photon spectrum at 5.3 GeV is harder,
and the quantum efficiency decreases at higher photon energies. Using the methodology outlined
in Section 5.1.3.3 above, and the photon energy spectra from Synrad3D simulations, the relative
reduction in quantum efficiency from 2.1 GeV to 5.3 GeV should be about 20%.
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Figure 6.33: Tune shifts vs. bunch number, for 2.1 GeV data set corresponding to Fig. 6.19,
left, computed (using POSINST) from Synrad (red points) and Synrad3D (blue) photon simulations,
compared with data (black).

Photoelectron Modeling (see also Section 5.1.3.3) In connection with studies of electron
cloud effects for the LHC, direct measurements [102] have been made of the photoelectron energy
spectrum produced by soft VUV photons. The measurements indicate that the photoelectron
energy spectrum can be well represented by a Lorentzian with a peak and width of a few eV. Studies
of the shielded button data (see Section 5.2.2) demonstrate that, although a simple Lorentzian
distribution is adequate for the photons generated by a 2 GeV CESRTA beam, for the harder
photon spectrum generated by a 5 GeV beam, a high energy tail, with a power law falloff slower
than that of a Lorentzian, is required. Consequently, a new parameterization, using a Lorentzian
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Figure 6.34: Tune shifts vs. bunch number, for 5.3 GeV data set corresponding to Fig. 6.20,
left, computed (using POSINST) from Synrad (red points) and Synrad3D (blue) photon simulations,
compared with data (black).

spliced to a power law distribution with an adjustable exponent at high photoelectron energies, has
been installed in POSINST. Preliminary re-evaluation of the tune shift simulations for both positron
and electron beams at 5 GeV indicate that the presence of a high energy tail in the photoelectron
energy spectrum makes only a small difference in the simulated tune shifts.

6.3.1.8 Future Work

Measurements at bunch spacings of 4 ns and 8 ns, similar to the proposed ILC damping ring bunch
spacing of 6 ns are planned. Also, considerably more data will be taken for data type b (single-bunch
excitation), for which the oscillation mode is well controlled and the comparison with simulation is
cleaner.

6.3.2 Instability Thresholds: Experimental Measurements

As described in Sec. 6.1.2, we have developed the capability to make automated measurements of
frequency spectra of individual bunches, to look for signals of single-bunch instabilities. During
such measurements, for each bunch in a train, several frequency spectra are acquired, covering
a range which spans the lowest betatron sidebands. Machine conditions, such as bunch current,
magnet settings, feedback system parameters, etc. are automatically recorded and stored before
and after each single-bunch spectrum is taken.

Using this system, during the July-August, 2010, and September runs, a number of observations
were made which illuminate the dynamics of the electron-cloud/beam interaction at CESRTA. Some
of the results from these experiments are described below.

General Remarks Unless otherwise noted, all experiments discussed in this section were done
at 2.085 GeV in a low emittance lattice. The machine parameters for these experiments are shown
in Table 6.4.
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Table 6.4: Nominal machine parameters at 2 GeV. The emittances and tunes are those of a single
bunch in the machine.

Parameter Unit Value

Energy GeV 2.085
Lattice 2085mev 20090516
Horizontal emittance nm 2.6
Vertical emittance pm ∼ 20
Bunch length mm 10.8
Horizontal tune 14.55
Vertical tune 9.58
Synchrotron tune 0.065
Momentum compaction 6.8× 10−3

Revolution frequency kHz 390.13

Trains having bunches numbering from 30− 45, with a bunch spacing of 14 ns, and bunch currents
in the range of 0.5 − 1.25 mA (0.8 − 2.0 × 1010 particles) per bunch were studied. In all cases,
except where specifically noted, the beam particles were positrons.

Several systematic checks were undertaken:

• Checks were made to rule out intermodulation distortion in the BPM electronics and in the
BPM itself.

• The betatron and synchro-betatron (head-tail) lines moved as expected when the vertical,
horizontal, and synchrotron tunes were varied.

The longitudinal feedback was off for these measurements. The vertical and horizontal feedback
were turned down to 20% of full power. Some experiments explored the effect of turning the vertical
feedback fully off.

More details on the experimental technique can be found in Section 6.1.2.

General Observations The basic observation is that, under a variety of conditions, the fre-
quency spectra exhibit the vertical m = ±1 synchro-betatron (head-tail) lines, separated from the
vertical betatron line by the synchrotron frequency, for many of the bunches along the train. The
amplitude of these lines typically (but not always) grows along the train.

Typically, for the bunch at which the vertical synchro-betatron lines first appear above the noise
floor (which is about 40 dB below the vertical betatron line), we observe (on a bunch-by-bunch
x-ray beam size monitor) growth in the beam size, which continues to increase along the train (see
Section 6.3.4).

Under some conditions, the first bunch in the train also exhibits a synchrobetatron line (m = −1
only). The presence of a “precursor” bunch, placed about 180 ns before the train, eliminates the
m = −1 signal in the first bunch.

Subsequent sections will present the details of these observations, together with their dependence on
machine and beam parameters such as bunch current, number of bunches, chromaticity, synchrotron
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tune, beam emittance, vertical feedback, beam energy, and particle species. In Sec. 6.3.3, some
preliminary observations on measurements of bunch-by-bunch damping rates are presented.
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Figure 6.35: Data set 166: Bunch-by-bunch currents
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Figure 6.36: Data set 166: Bunch-by-bunch power spectrum

6.3.2.1 Bunch-by-Bunch Power Spectrum

To measure a bunch-by-bunch power spectrum, the machine is loaded with a bunch train with a
uniform current per bunch, and software is run to automatically collect frequency spectra from a
button BPM gated on the first bunch. The data acquisition takes a few minutes, and the gate is
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Figure 6.37: Data set 166: Power spectrum for bunch 30. The lines labelled, for example,“V+1”
and “V-1” are shown at frequencies of ± fs from the vertical betatron line (“V”), in which fs is
the synchrotron frequency. The locations of several machine resonances are also indicated.

then moved to the second bunch, and so on through the train. For bunch spacings greater than
about 6 ns, the gate width is smaller than the bunch spacing, so only the motion of the gated
bunch is observed. The frequency spectra are 10 s averages, acquired in 4 measurements, each with
a 40 kHz span, covering the range from 170 to 330 kHz.

Since the beam has a relatively short lifetime, it is necessary to periodically pause the measurements
and “top off” the bunch train. Typically, this is done after data acquisition is completed for a group
of 5 bunches. Fig. 6.35 shows the beam current as a function of bunch number for a 30 bunch train
(data set 166). In this figure, the current per bunch plotted for bunch n corresponds to the average
value of the bunch current for all bunches earlier than bunch n; the error bar represents the rms
variation in this number, principally due to irregularities in the fill. The dips at bunches 5, 10, . . .,
and peaks at 6, 11, . . ., correspond to when the train is “topped off.”

The bunch-by-bunch power spectrum observed in data set 166 is shown in Fig. 6.36. The figure
plots the power spectrum for each bunch, as measured at the button BPM, vs. frequency. The
four prominent peaks seen correspond, from lower to higher frequency, to the m = −1 vertical
synchrobetatron line, the horizontal betatron line, the vertical betatron line, and the m = +1
vertical synchrobetatron line. Fig. 6.37 shows the spectrum of the last bunch, bunch 30, in greater
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detail. For this data set, the vertical chromaticity (defined as dQ/dδ, where δ is the relative
momentum and Q is the tune) was 1.16, and the horizontal chromaticity was 1.33.

The principal features exhibited in Fig. 6.36 and Fig. 6.37 are discussed in more detail in the next
subsections.

6.3.2.2 Power Spectrum Features near the Betatron Lines

3840511-105

Figure 6.38: Data set 166: Bunch-by-bunch power spectrum: detail at horizontal betatron line.
Chromaticity: (H,V) = (1.33, 1.16). Bunch current = 0.74 mA.

Horizontal Betatron Lineshape Fig. 6.38 shows the bunch-by-bunch power spectrum near
the horizontal betatron line. There is a major peak which shifts up in frequency by about 4 kHz
during the bunch train. This shift is attributable to the electron cloud. A quantitative comparison
with simulations is presented below. In addition, there is a lower amplitude “shoulder”, which
appears to be roughly constant in frequency during the bunch train (i.e., there is no tune shift). A
plausible explanation for this shoulder is the following: tune shift measurements and simulations
(see Section 6.2.1.3) have shown that, when the all the bunches in the train are oscillating in-phase,
the horizontal tune shift due to the electron cloud in a dipole-dominated ring such as CESRTA is
very small. However, for the data set shown in Fig. 6.38, the bunches in the train are spontaneously
excited, so a mixture of multibunch modes will be present. This mixture of multibunch modes will
exhibit a spectrum of electron-cloud-induced tune shifts, ranging from nearly zero tune shift for the



330 Chapter 6. Electron Cloud Induced Beam Dynamics

3840511-133

Figure 6.39: Data set 166: Bunch-by-bunch power spectrum: detail at vertical betatron line.
Chromaticity: (H,V) = (1.33, 1.16). Bunch current = 0.74 mA.

mode in which the bunches are oscillating in phase, to large tune shifts for modes in which bunches
are oscillating with different phases. Qualitatively, this should produce a spectrum similar to that
shown in Fig. 6.38.

Vertical Betatron Lineshape Fig. 6.39 shows the bunch-by-bunch power spectrum near the
vertical betatron line. In this case, there is a shift up in frequency of the major peak by about
2 kHz during the bunch train, which is again attributable to the electron cloud. In addition, there
is a smaller peak at a higher frequency, present even on the first bunch, which appears to grow
in amplitude and merge with the main peak near the end of the bunch train. Since this peak is
present even for the first bunch, it is unlikely that it is due to a multibunch mode dependence of
the vertical electron cloud tune shifts. Also, measurements and simulations (see Section 6.2.1) have
shown that the dependence of the vertical tune shifts on the multibunch mode is much smaller
than for the horizontal tune shifts. This suggests that the structure in the vertical plane may be a
single-bunch effect, but we have no good explanation for it.

Horizontal and Vertical Betatron Lines: Peak Power and Frequency On the right side of
Fig. 6.40, the peak power point6 for each of the horizontal and vertical betatron lines is shown, as a

6For all the relative power plots shown in this paper, the plotted points were obtained as follows: A frequency
region is selected, 10 kHz wide, centered approximately on the frequency of interest. The average background power
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Figure 6.40: Data set 166: Left, Horizontal and vertical peak power vs. bunch number; right,
Horizontal and vertical tune shifts vs. bunch number. Chromaticity: (H,V) = (1.33, 1.16). Bunch
current = 0.74 mA.

function of bunch number. The strong excitation of vertical dipole motion is evident in the increase
in vertical betatron line power along the train. There is minimal if any additional excitation in the
horizontal plane.

In Fig. 6.40, the frequency of the peak power point is given, relative to the frequency of the first
bunch. Thus, Fig. 6.40 illustrates the tune shift along the train, which is primarily due to the
electron cloud effect.

Comparison with Electron Cloud Buildup Simulations The cloud buildup program POSINST

can be used to compute the cloud density corresponding to a set of beam and vacuum chamber
properties at CESRTA, and from this density the tune shifts can be computed (in this case, we have
used the “Modified static cloud model”: see Section 6.2.1.4). These calculations can be compared
with the measured tune shifts shown in Fig. 6.40. Comparisons between simulations and measure-
ments are shown in Fig. 6.41. The key parameters used in the POSINST simulation are given7 in
Table 6.1 (in Section 6.3.1).

The error bars on the simulated points are due to macro-particle statistics; for the vertical tune
shifts, the comparison would benefit from an increased number of macro-particles, which was not
feasible due to computer run time limitations. Nevertheless, inspection of Fig. 6.41 indicates that
the simulation compares well with the data.

6.3.2.3 Estimates of the Electron Cloud Density at the Instability Threshold

level in this region is determined. Then, the maximum value of the power in this region is found, and subtracted
from the background power level, to obtain the relative power.

Because of this background subtraction, if the relative power is close to zero (as in the plots of head-tail line power
later in the paper), this signifies the absence of any significant peak.

The frequency plots show the frequency at which the power spectrum peaks.
The errors shown in the frequency plots correspond to the bin widths of the frequency spectra (100 Hz). The errors

shown in the relative power plots are estimated from the variation in the power over a spectral bin width.
7Except for the total secondary yield, which was 2.05.
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Figure 6.41: Data set 166 tune shifts: comparison between data (black) and simulation (red) from
POSINST with parameters given in Table 6.1. Left: Horizontal tune shift vs. bunch number; right:
Vertical tune shift vs. bunch number.
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Figure 6.42: Data set 166: Average initial (i.e., before the “pinch”) electron cloud density vs.
bunch number, comparison between estimate from measured tune shifts (red), and simulation
(black) from POSINST with parameters given in Table 6.1.

Cloud Density from Measured Betatron Tune Shifts In this section, the measured tune
shifts are used to estimate the average electron cloud density. For a lattice in which the beta
functions are equal in both planes, the electron-cloud-induced tune shifts δQx and δQy may be
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directly related to the average electron cloud density 〈ρc〉 via the relation

〈ρc〉 = γ
δQx + δQy
re 〈β〉C

, (6.59)

in which 〈β〉 is the average beta function, C is the ring circumference, γ is the beam Lorentz factor,
and re is the classical electron radius. This relation may be used to obtain an estimate of the cloud
density along the train. For CESRTA we use C = 649 m (sum of all drift and dipole lengths) and
〈β〉 = 16 m. The cloud densities for each bunch resulting from this calculation are shown as the
red points in Fig. 6.42.

Comparison with Electron Cloud Buildup Simulations We can compare the cloud density,
obtained from the measured tune shifts, with the density obtained from the POSINST simulations
discussed in the previous section. This comparison is shown in Fig. 6.42. For the simulation result,
shown as black dots in the figure, the cloud density is evaluated at the time corresponding to the
leading edge of the bunch (i.e., before the “pinch”), and is averaged over the transverse profile of
the beam. The density shown is the weighted average over drifts (total length 175 m) and dipoles
(total length 474 m). It is clear from Fig. 6.42 that the cloud density computed directly from the
tune shifts is quite close to the simulation result.

6.3.2.4 Vertical Head-tail Lines
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Figure 6.43: Data set 166: Vertical head tail lines: left, peak power vs. bunch number; right,
frequency difference from vertical betatron line vs. bunch number, with the synchrotron frequency
removed from the offset. Chromaticity: (H,V) = (1.33, 1.16). Bunch current = 0.74 mA.

Head-tail Line Power and Frequency Characteristics As shown in Fig. 6.36 and Fig. 6.37,
there are two lines which appear in the bunch-by-bunch power spectrum, starting part way along
the train, which have frequencies which are close to the betatron frequency plus and minus the
synchrotron frequency. In Fig. 6.43, we plot the power (relative to the vertical betatron line) and
the frequency (± the synchrotron frequency) of these lines. We associate the lower frequency line
with the m = −1 head-tail line, which arises as a result of head-tail bunch motion driven by the
broadband impedance of the electron cloud. Similarly, we associate the higher frequency line with
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the m = +1 head-tail line. From Fig. 6.43, we see that these lines appear above the noise level
around bunch 15 or 16. The m = −1 line is somewhat more strongly excited than the m = +1
line.

Observations of beam size growth under similar beam conditions (see Section 6.3.4) show rapid
emittance growth starting at about the same point in the train.

Fig. 6.43 shows that, for bunch numbers greater than about 15, where the head-tail lines appear
above the background, the frequency difference between these head-tail lines and the vertical be-
tatron line is equal to the synchrotron frequency (within the errors).

Head-tail Lines: Correlation with Cloud Density Comparing Fig. 6.42 and Fig. 6.43, the
average electron cloud density at which the head-tail lines are first observed can be established.
For the conditions of data set 166, the head-tail lines emerge at an initial (i.e., before the “pinch”)
beam-averaged cloud density around 8× 1011 m−3.

6.3.2.5 Reproducibility
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Figure 6.44: Data sets 147, 157 and 166: vertical head-tail lines compared. All sets have the same
nominal bunch current and chromaticity.

The reproducibility of the observations of the head-tail lines is illustrated in Fig. 6.44. This plot
shows the power in the vertical head-tail lines for three data sets taken on different dates (data set
147 on September 25, 2010, data set 157 on September 26, 2010, and data set 166 on September 28,
2010) but under the same nominal machine and beam conditions. Fig. 6.44 shows that the head-
tail line observations are reasonably reproducible when the machine is set to the same nominal
conditions.

6.3.2.6 Chromaticity Dependence

The chromaticity dependence of the head-tail lines is illustrated in Fig. 6.45. For all data sets, the
nominal bunch current was abut 0.74 mA. We see that for data set 142, with a higher value of the
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Figure 6.45: Data sets 142, 129 and 147: vertical head-tail lines compared. All sets have the
same nominal bunch current (about 0.75 mA) but different chromaticities, as follows: 142: (H,V)
= (1.34, 1.99); 129: (H,V) = (1.07, 1.78); 147: (H,V) = (1.33, 1.16)

vertical chromaticity than data set 147, there are no head-tail lines observed. For data set 129,
with lower values of both chromaticities than data set 142, head-tail lines are observed, but their
excitation levels are lower than in data set 147, which has the lowest vertical chromaticity.

6.3.2.7 Current Dependence
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Figure 6.46: Data sets 142 and 150: vertical head-tail lines compared. Both sets have the same
chromaticity [ (H,V) = (1.34, 1.99) ] but different bunch currents as follows: 142: 0.74 mA; 150:
0.95 mA

The current dependence of the head-tail lines is illustrated in Fig. 6.46 and Fig. 6.47. In Fig. 6.46,
both data sets have the same chromaticity, but the data set with the lower bunch current (data set
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Figure 6.47: Data sets 147 and 178: vertical head-tail lines compared. Both sets have the same
chromaticity [ (H,V) = (1.33, 1.16) ] but different bunch currents as follows: 147: 0.74 mA; 178:
0.5 mA

142) shows no head-tail lines, while the higher current data set (data set 150) shows head-tail lines
starting to emerge around bunch 12. Similarly, in Fig. 6.47, both data sets have the same (lower)
chromaticity, but the data set with the lower bunch current (data set 178) shows no head-tail lines,
while the higher current data set (data set 147) shows head-tail lines staring to emerge around
bunch 13.

6.3.2.8 Bunch Number Dependence
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Figure 6.48: Data sets 142 and 156: vertical head-tail lines compared. Both sets have the same
chromaticity [ (H,V) = (1.34, 1.99) ] and bunch current (0.74 mA), but different numbers of bunches,
as shown in the figure. The increased amplitude in data set 156 at bunches 21 and 26 is an artifact
due to refilling of the train at these bunch numbers.

The bunch number dependence of the head-tail lines is illustrated in Fig. 6.48. Both data sets have
the same chromaticity and bunch current, but data set 156 contains 45 bunches in the train. The
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vertical tunes of the first bunch were slightly different for the two runs: for run 142, it was about
227 kHz, while for run 156 the tune was about 221 kHz. No head-tail lines are observed in data
set 142 out to the end of the train, bunch 30. But with 45 bunches, head-tail lines are observed
starting around bunch 18, then growing to a peak around bunch 25, and falling off at the end of
the train. The fact that the head-tail lines are seen with a 45 bunch train with the same bunch
current as a 30 bunch train for which no lines are seen, is suggestive that there is a residual cloud
density which lasts more than one turn, and which depends on the total current.
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Figure 6.49: Data set 156: Average initial electron cloud density vs. bunch number, estimate from
measured tune shifts

45 Bunch Train: Correlation with Cloud Density In Fig. 6.49, we show the cloud density
as a function of bunch number, computed from the measured tune shifts, as discussed above.
Comparison with Fig. 6.48 shows that the head-tail lines emerge from the background at a cloud
density of about 8× 1011 m−3, which is the same as the threshold density found for data set 166,
even though the vertical chromaticity was higher for data set 156. The fall-off of the head-tail
lines after bunch 25 suggests that the instability is saturating. Yet the cloud density continues to
increase after bunch 25 (at least until around bunch 35) as Fig. 6.49 shows. The head-tail instability
threshold is expected to be sensitive to the vertical beam size, so what may be happening is that
the instability is driving vertical beam size growth along the train, and the increase in the threshold
as the beam size increases provides a mechanism for the instability to saturate.
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Figure 6.50: Data sets 147 and 151: vertical head-tail lines compared. Both sets have the same
chromaticity [ (H,V) = (1.33, 1.16) ] and bunch current (0.74 mA), but different values of the
bunch length and synchrotron frequency, as follows: 147, fs = 25.4 kHz and σz = 10.8 mm; 151,
fs = 20.7 kHz and σz = 12.8 mm.

6.3.2.9 Synchrotron Tune Dependence

The synchrotron tune dependence of the head-tail lines is illustrated in Fig. 6.50. Both data
sets have the same chromaticity and bunch current, but data set 151 has a reduced synchrotron
frequency of 20.7 kHz, and an increased bunch length of 12.8 mm. The nominal frequency and
bunch length, for data set 147, are 25.4 kHz and 10.8 mm.

For both data sets, the separation between the vertical betatron lines and the head-tail lines equals
the synchrotron frequency. Fig. 6.50 shows that the head-tail line threshold is about the same in
both cases, but the power in the lines grows more slowly with bunch number for the data set with
a reduced synchrotron frequency, and longer bunch length.

6.3.2.10 Single-bunch Vertical Emittance Dependence

The vertical emittance dependence of the head-tail lines is illustrated in Fig. 6.51. Both data sets
have the same chromaticity and bunch current, but data set 158 has an increased single-bunch
vertical emittance of ∼ 300 pm.8 The nominal single-bunch vertical emittance, for data set 147, is
∼ 20 pm.

Fig. 6.51 shows that the head-tail line growth is very similar for the two different vertical emittances.
The power in the lines seems to plateau at a lower level for the data set with smaller vertical
emittance. However, there is not a great deal of difference. Another observation which explores
the vertical emittance dependence of the head-tail lines is shown in Fig. 6.52. Both data sets have
45 bunches and have the same chromaticity and bunch current, but data set 159 has an increased
single-bunch vertical emittance of ∼ 300 pm. The single-bunch vertical emittance, for data set 156
is ∼ 20 pm.

8This number was estimated from a lattice model, not directly measured.
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Figure 6.51: Data sets 147 and 158: vertical head-tail lines compared. Both sets have the same
chromaticity [ (H,V) = (1.33, 1.16) ] and bunch current (0.74AmA), but different values of the
single-bunch vertical emittance, as follows: 147, Vertical emittance∼ 20 pm; 158, Vertical emittance
∼ 300 pm
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Figure 6.52: Data sets 156 and 159: vertical head-tail lines compared. Both sets have 45 bunches,
the same chromaticity [ (H,V) = (1.34, 1.99) ] and bunch current (0.74 mA), but different values
of the single-bunch vertical emittance, as follows: 156, Vertical emittance ∼ 20 pm; 159, Vertical
emittance ∼ 300 pm

Inspecting Fig. 6.52, we see that, in this case, the power in the lines peaks at a lower level, and at a
later bunch, for the data set with larger vertical emittance. This would suggest that the instability
is slightly stronger for the case of smaller vertical emittance.

6.3.2.11 Vertical Feedback Dependence

The vertical feedback dependence of the head-tail lines is illustrated in Fig. 6.53. Both data sets
have the same chromaticity and bunch current, but data set 126 has the vertical (dipole) feedback
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Figure 6.53: Data sets 126 and 129: vertical head-tail lines compared. Both sets have the same
chromaticity and bunch current, but different values of the vertical feedback, as follows: 126,
Vertical feedback off; 129, Vertical feedback at 20% of full gain.

off. For data set 129, as for all the other data sets discussed here (except 126), the vertical feedback
is set to 20% of full gain.

Fig. 6.53 shows that the head-tail line threshold is about in the same place for these two data sets.
But for data set 126 (feedback off), the power peaks a few dB higher than for data set 126, and
then falls off.

6.3.2.12 Beam Energy Dependence

In data set 265, the structure of the frequency spectrum was studied for a beam energy of 4 GeV.
Fig. 6.54 shows the beam current as a function of bunch number for this data set. The bunch
current was about 1.1 mA/bunch. The machine parameters for this measurement are presented in
Table 6.5

Power Spectrum Fig. 6.55 shows the power spectrum as a function of bunch number. Clearly
visible are the horizontal and vertical betatron lines, the head-tail line above the vertical, and
another line around 285 kHz. The line at 285 kHz corresponds to excitation of the Qx + 2Qy = 2
resonance.

Betatron Lineshapes Fig. 6.56 shows the bunch-by-bunch power spectrum near the horizontal
betatron line. As at 2 GeV, there is a major peak which shifts up in frequency by about 4 kHz
during the bunch train. This shift is attributable to the electron cloud. Fig. 6.57 shows the bunch-
by-bunch power spectrum near the vertical betatron line. There is considerably more structure in
this line than at 2 GeV, including a splitting of the main peak which persists throughout the train,
and some smaller satellite peaks which seem to develop after bunch 20.
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Figure 6.54: Data set 265: Bunch-by-bunch currents, 4 GeV beam energy
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Figure 6.55: Data set 265: Bunch-by-bunch power spectrum, 4 GeV. Chromaticity: (H,V) = (1.3,
1.4). Bunch current = 1.1 mA.

Vertical Head-tail Lines In Fig. 6.58, we plot the power (relative to the vertical betatron line)
and the frequency (± the synchrotron frequency) of the head-tail lines. We see that these lines
appear above the noise level around bunch 18. The lower frequency line (m = −1 head-tail line)
is close to the horizontal line, and is weakly excited, so its power is not well determined, and it is
omitted from the frequency plot. The frequency plot shows that, for the (m = +1 head-tail line),
the head-tail line frequency minus the vertical betatron line frequency differs from the synchrotron
frequency by about 1 kHz. This is in contrast to the observations made at 2 GeV, for which this
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Table 6.5: Nominal machine parameters at 4 GeV. The emittances and tunes are those of a single
bunch in the machine.

Parameter Unit Value

Energy GeV 4.00
Lattice 4000 mev 23 nm 20090816
Horizontal emittance nm 23
Vertical emittance pm ∼ 180
Bunch length mm 17.2
Horizontal tune 14.55
Vertical tune 9.58
Synchrotron tune 0.041
Momentum compaction 6.3× 10−3

Revolution frequency kHz 390.13

3840511-389

Figure 6.56: Data set 265: Bunch-by-bunch power spectrum: detail at horizontal betatron line, 4
GeV. Chromaticity: (H,V) = (1.3, 1.4). Bunch current = 1.1 mA.

difference is essentially zero.

Instability Threshold Estimate In Fig. 6.59, we show the cloud density as a function of
bunch number, computed from the measured tune shifts, as discussed above. Comparison with
Fig. 6.58 shows that the head-tail lines emerge from the background at a cloud density of about
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Figure 6.57: Data set 265: Bunch-by-bunch power spectrum: detail at vertical betatron line, 4
GeV. Chromaticity: (H,V) = (1.3, 1.4). Bunch current = 1.1 mA.
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Figure 6.58: Data set 265: Vertical head tail lines: left, peak power vs. bunch number; right,
frequency difference from vertical betatron line vs. bunch number, with the synchrotron frequency
removed from the offset. Beam energy 4 GeV. Chromaticity: (H,V) = (1.3, 1.4). Bunch current =
1.1 mA.

2× 1012 m−3.
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Figure 6.59: Data set 265: Average initial electron cloud density vs. bunch number, estimate from
measured tune shifts. 4 GeV beam energy.

6.3.2.13 Beam Particle Species Dependence

The beam species (e+ or e−) dependence of the bunch-by-bunch power spectrum is illustrated by
comparing data set 166 (Fig. 6.36) and data set 154 (Fig. 6.60). Both data sets have the same
chromaticity and bunch current, but data set 154 is for an electron beam. In this latter case we
see less vertical excitation along the train, and smaller head-tail line excitation, than for a positron
beam. The large tune shifts observed with the positron beam are also absent. The details of the
different structures of the head-tail lines for electrons and positrons can be seen in Fig. 6.61. For
electrons, the head-tail lines start later in the train, grow more slowly, and at their maxima are
20 dB lower than the positron head-tail lines.

The positron-beam head-tail excitation is presumably due to electron cloud effects. The physical
mechanism responsible for the head-tail excitation in the electron case is not likely to be either
electron cloud or positive ions.

6.3.2.14 Precursor Bunch Dependence

In Fig. 6.62, the power spectrum of bunch 1 for data set 151 is shown (red trace). Note the presence
of a prominent m = −1 head-tail line. This line disappears for the second bunch, and does not
re-appear until much later in the train, as shown in Fig. 6.63. Moreover, beam size measurements
(see Section 6.3.4) indicate that the first bunch in the train is frequently larger in size than the
next few bunches.
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3840511-125

Figure 6.60: Data set 154: Bunch-by-bunch power spectrum. This data set is for an electron
beam, but has the same chromaticity and bunch current parameters as data set 166 (Fig. 6.36).
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Figure 6.61: Data sets 166 and 154: vertical head-tail lines compared. Both sets have the same
chromaticity and bunch current, but data set 166 was taken with a positron beam while data set
154 was taken with an electron beam.

This suggests that the trapped cloud density near the beam, which persists after the train ends,
may be sufficiently high, even for the first bunch in the train, that spontaneous head-tail motion
occurs. However, the interaction of the first bunch with this trapped cloud evidently destabilizes
it, causing it to disperse, so that bunch 2 does not suffer from spontaneous head-tail motion.
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Figure 6.62: Data set 151 and 153 : Power spectrum, bunch 1, compared. Both sets have the
same chromaticity and bunch current, but there is a precursor bunch present for data set 153, as
described in the text. The lines labelled, for example,“V+1” and “V-1” are shown at frequencies
of ±fs from the vertical betatron line (“V”), in which fs is the synchrotron frequency. For these
data sets, fs = 20.7 kHz. The location of a machine resonance is also indicated.

Simulations and witness bunch measurements indicate that the electron cloud lifetime in dipoles
and drifts is much shorter than one turn in CESRTA. Cloud density which persists for many turns
may be due to trapped cloud in quadrupoles and wigglers. Simulations and RFA measurements in
quadrupoles have both indicated that trapped cloud may be present.

To test this hypothesis, in data set 153, a 0.75 mA “precursor” bunch was placed 182 ns before
bunch 1. Otherwise, conditions were the same as for data set 151. The spectrum of the first
bunch for data set 153 is shown (blue trace) in Fig. 6.62. Note that the lower head-tail line is now
absent. In addition, the structure seen on the upper edge of the vertical betatron line in Fig. 6.62
is disappears. Finally, there is a small line at 235.7 kHz (13.6 kHz above the vertical betatron line)
which also disappears when the precursor bunch is introduced.

It is quite interesting to note that the frequency difference between the head-tail line of the first
bunch for data set 151 (shown in Fig. 6.62) and the vertical betatron line is 20.2 ±0.1 kHz, which is
significantly different from the synchrotron frequency, 20.7 kHz. The head-tail lines which develop
later in the train, both above and below the vertical betatron line, always have a separation equal
to the synchrotron frequency, within the measurement errors (see Fig. 6.40).

We have observed a prominent m = −1 head-tail line for the first bunch in the train in two other
data sets: data set 150 (see Fig. 6.46) and data set 157 (see Fig. 6.44). In both of these cases,
the m = −1 line is separated from the vertical betatron line by significantly less (typically 0.6 to
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0.7 kHz) than the synchrotron frequency, and there is a doublet structure to the vertical betatron
line, as shown in Fig. 6.62 for data set 151. In Fig. 6.63, the power in the vertical head-tail lines is
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Figure 6.63: Data sets 151 and 153: vertical head-tail lines compared. Both sets have the same
chromaticity and bunch current, but there is a precursor bunch present for data set 153, as described
in the text.

shown as a function of bunch number, for data sets 151 and 153. The figure shows little difference
between the head-tail line growth for the two data sets. The data set without the precursor bunch
has a slightly higher line power near the end of the train.

6.3.2.15 Single Bunch Current Variation Experiment

To explore further the dynamics of the interaction of the last bunch in the train with the cloud,
a series of power spectral measurements were made, in which the current in the first 29 bunches
in a 30 bunch train was fixed, but the current in the last bunch was varied. The power spectrum
with the last bunch at 0.25 mA (data set 167) is compared with the power spectrum with the last
bunch at 1.25 mA (data set 171) in Fig. 6.64.

The vertical excitation of the bunch, both at the vertical betatron line and at the head-tail lines,
is much larger for the higher current bunch. The m = +1 head-tail line appears to acquire a
low-frequency shoulder at the higher current.

In addition, the frequency of the vertical betatron line is almost independent of the current in the
bunch. The shift from 0.25 mA to 1.25 mA is less than 0.2 kHz. Note that this behavior is very
different from what would be expected for a conventional machine impedance, for which one would
expect a strong current dependence for the tune.

6.3.2.16 Summary

The basic observation is that, under a variety of conditions, single-bunch frequency spectra in
multi-bunch positron trains exhibit the m = ±1 head-tail (HT) lines, separated from the vertical
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Figure 6.64: Data set 167 and data set 171: Power spectrum, bunch 30 compared. The lines
labelled, for example,“V+1” and “V-1” are shown at frequencies of ±fs from the vertical betatron
line (“V”), in which fs is the synchrotron frequency. The locations of several machine resonances
are also indicated.The first 29 bunches had a nominal current of 0.75 mA/bunch. Chromaticity:
(H,V) = (1.33, 1.16). For data set 167, bunch 30 had a current of 0.25 mA. For data set 171,
bunch 30 had a current of 1.25 mA.

line by the synchrotron frequency, for some of the bunches during the train. A summary of more
detailed observations is presented in the following list.

• For a 30 bunch train with 0.75 mA/bunch at 2.1 GeV beam energy, the onset of the HT lines
occurs at a ringwide initial (i.e., before the “pinch”) beam-averaged cloud density of around
8× 1011 m−3 (assuming no cloud density at the start of the train).

• For a 30 bunch train with 1.1 mA/bunch at 4 GeV beam energy, the onset of the HT lines
occurs at a ringwide initial (i.e., before the “pinch”) beam-averaged cloud density of around
2× 1012 m−3 (assuming no cloud density at the start of the train).

• The betatron lines exhibit structure which varies along the train. The vertical line power
grows along the train and has a fine structure that is not understood.

• The amplitude of the HT lines depends strongly on the vertical chromaticity, the beam current
and the number of bunches.

• For a 45 bunch train, the HT lines have a maximum power around bunch 30; the line power
is reduced for later bunches.

• There is a weak dependence of the onset of the HT lines on the synchrotron tune, the single-
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bunch vertical emittance, and the vertical feedback.

• Under identical conditions, HT lines also appear in electron-beam trains, but the onset is
later in the train, develops more slowly, and is much weaker, than for positron beam trains.

• Under some conditions, the first bunch in the train also exhibits a head-tail line (m = −1
only). The presence of a “precursor” bunch can eliminate the m = −1 signal in the first
bunch. The implication is that there may be a significant “trapped” cloud density near the
beam which lasts long after the bunch train has ended, and which is dispersed by the precursor
bunch. Indications from RFA measurements and simulations indicate this “trapped” cloud
may be in the quadrupoles and wigglers.

• There is a strong dependence of the HT line structure observed on last bunch in a 30 bunch
train, as a function of the current in that bunch. But the frequency of the vertical betatron
line of this bunch is only very weakly dependent on the current in the bunch.

• Future work will include more checks for systematics (looking at different BPM’s, for exam-
ple), as well as measurements at different bunch spacings and beam energies.

6.3.3 Mode Growth Rates

In addition to the power spectrum measurements described in the previous section, in which spon-
taneous excitations of single bunches are passively monitored, we have also made measurements in
which we actively excite a single bunch in a train, and measure the rate at which the bunch damps
after the excitation is turned off. These bunch-by-bunch damping rate measurements come in two
varieties:

• m = 0 (dipole mode). In this case, we drive a single bunch by delivering a narrow pulse to
the transverse feedback system’s kicker. We observe the m = 0 motion (betatron line) on a
button BPM, gated on the same bunch. Using a spectrum analyzer in zero span mode, tuned
to the betatron line, we measure the damping rate of the m = 0 line’s power after the drive
is turned off.

• m = ±1 (head tail modes). In this case, we apply a CW drive to the RF cavity phase, to
provide a large amplitude longitudinal excitation. We then perform a transverse drive-damp
measurement, as in the previous case, but with the spectrum analyzer tuned to the head-tail
line’s frequency.

A number of measurements were made to investigate the systematics of this technique. More details
can be found in Section 6.1.3.

6.3.3.1 Quantitative Analysis of Drive-Damp Measurements

The analysis of the data for these drive-damp measurements utilized two different fitting methods.
The first and most obvious is to fit the amplitude of the mode spectrum to an exponential decay (or
more properly, since the mode amplitude is measured in the dBm, a linear fit to the amplitude in
dBm vs. time.) The second fitting method, which has been employed for all of the measurements
presented here, was inspired by the observation that a number of the damping waveforms exhibit
a more complicated decay than a simple exponential. Examples of the most common of these
non-exponential decays are shown in Fig. 6.65.
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Figure 6.65: Plot of the amplitude vs. time for a drive-damp measurements. Left: m = 0 mode.
Right: m = −1 mode.

The characteristic feature in these two plots is an exponential decay of what appear to be two
modes of slightly different frequency, generating a damped interfering decay of their combined
amplitudes. There is an explanation for this effect in some cases. In the case when there is a
simple exponential damped oscillation and the center frequency of spectrum analyzer is mistuned
away from the actual frequency of the mode, an exponential decay with a beat frequency becomes
visible with the amplitude of the beats increasing as the center frequency detuning is increased.
As a result during the drive-damp measurements care is taken to manually adjust the spectrum
analyzer center frequency to minimize the observed oscillation amplitude.

However, even if this is done, in a number of cases there is still a significant damped oscillatory
signal present in the damping plot and this may be due to a damped oscillation of two independent
coupled modes. Taking a broader view of drive-damp measurements, since the real interest is
in determining the longest characteristic decay time for the mode of oscillation, one is actually
interested in the amplitude envelope that fully contains the beam displacement vs. time. As a
result, our analysis of the damped decay of the beam’s vertical oscillation utilizes a fit to two
modes of nearly the same frequency, each having their own damping rate. We then write the time
evolution of the vertical position of a bunch as

y(t) = Re {Y (t)} = Re {a1 exp(jω1t− α1t) + a2 exp(jω2t− α2t)} (6.60)

where a1 and a2 are the mode position amplitudes, α1 and α2 the mode damping rates, and ω1

and ω2 the mode angular frequencies. Since the spectrum analyzer displays the amplitude as the
power in the spectral line at the center frequency vs. time, we must write the power as

Power in y(t) ∝ |Y (t)|2 = a2
1 exp(−2α1t) + a2

2 exp(−2α2t) + 2a1a2 exp {−(α1 + α2)t} cos(∆ω t)
(6.61)

where ∆ω = ω1 − ω2. Since we are interested particularly in the longest-lived oscillation, we
generally focus on the mode that has the longer damping time, i.e. the lower damping rate. Thus
we fit the drive-damp data to this two-damped-oscillator model, and by convention assign α1 < α2

(unless the oscillation amplitude of the longer-lived mode is a very small contribution to the bunch
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vertical displacement). Plots of the damping rate display results from the second fitting method,
i.e. the value determined to be α1.

6.3.3.2 Observations

We have made drive-damp measurements of positron beams under different conditions. They will
be described here in two parts:

• Single Bunch Damping Rates: Measurements of single bunches for the study of CESR’s
“baseline” stability; and

• Damping Rates for Trains of Bunches: Measurements of trains of bunches to characterize
the electron cloud effects.

Single Bunch Damping Rates To characterize the overall stability of CESRTA we have mea-
sured the single bunch positron damping rates for a variety of different settings of the vertical
feedback gain and the vertical chromaticity. These were studied in same optics at 2.08 GeV as were
used for the 30 bunch train drive-damp measurements described below. Only a single operating
parameter is varied as a part of each set of observations. All of the single bunch measurements
were made at 0.75 mA.

Single bunch damping rates were measured for the vertical dipole mode and both vertical head-
tail modes. Figure 6.66 displays these damping rates as a function of the vertical chromaticity
(Q′ = dQ/dδ, where δ is the fractional energy deviation). The vertical feedback was turned off for
these measurements. The figures also have a plot of the best linear fit to the measured data points.
The results of the linear fits may generally be written as

αv =
∂αv
∂I
×
(

Ib
1 mA

)
×Q′v + αv0 (6.62)

where the chromaticity contribution is expected to scale with current and the constant term is
expected to be the radiation damping contribution. The linear fits for the three plots are

αv
[
sec−1

]
=


(−3± 20)×

(
Ib

1 mA

)
×Q′v + 110± 60 for the m = 0 mode

(21± 18)×
(

Ib
1 mA

)
×Q′v + 4± 46 for the m = 1 mode

(17± 6.6)×
(

Ib
1 mA

)
×Q′v + 33± 14 for the m = −1 mode

(6.63)

where there are uncertainties included for the fits with over-constrained data, and where Ib is the
current in the bunch. Within uncertainties, the head-tail modes display a fairly similar dependence
on the vertical chromaticity. Although it is not determined accurately, the zero chromaticity damp-
ing rate is consistent with the vertical radiation damping rate of 18 s−1. In this first measurement
for the dipole (m = 0) mode, the result is much less damping than is expected. This dependence
will need to be re-measured at the next convenient time.

Measurements of the damping rates were made as a function of the 14 ns vertical dipole feedback
system setting. Figure 6.67 plots the vertical damping rates for the vertical dipole mode and both
vertical head-tail modes. These measurements were undertaken with the vertical and horizontal
chromaticities set to 2.13 and 0.58, respectively. The damping rates of the head-tail modes are a
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Figure 6.66: Single bunch damping rate vs. vertical chromaticity. Top: vertical dipole mode.
Center: vertical m = +1 head-tail mode. Bottom: vertical m = −1 head-tail mode.
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Figure 6.67: Single bunch damping rate vs. vertical dipole feedback. Top: vertical m = 0 mode.
Center: vertical m = +1 head-tail mode. Bottom: vertical m = −1 head-tail mode.



354 Chapter 6. Electron Cloud Induced Beam Dynamics

surprisingly stronger function of the vertical feedback than would be anticipated, while, as expected,
the vertical dipole mode is a function of the feedback and all will be proportional to the current
per bunch. The figures also contain the best linear fit to the observed data. The best linear fits for
the three plots may be written as

αv
[
sec−1

]
=


(−620± 80)×

(
Ib

1 mA

)
×Q′v ×

(
Fdbk Cmd

1000

)
+ 130± 42 for the m = 0 mode

−590×
(

Ib
1 mA

)
×Q′v ×

(
Fdbk Cmd

1000

)
+ 39 for the m = 1 mode

(−300± 130)×
(

Ib
1 mA

)
×Q′v ×

(
Fdbk Cmd

1000

)
+ 80± 57 for the m = −1 mode

(6.64)
where uncertainties for the fit values are given when the fits are over-constrained. The feedback off
values for the damping rates are remarkably consistent with those calculated from the preceding
fits for chromatic and radiation damping, with the values for the m = 0, +1, and −1 modes being
105, 38 and 60 s−1, respectively. The damping rates due to feedback for the two head-tail modes
are also reasonably consistent with being the same. These sets of results for the chromatic and
feedback damping are necessary calibrations for the damping rates for trains of bunches presented
next.

Damping Rates for Trains of Bunches A series of drive-damp measurements were taken with
30 bunch trains in September and December of 2010 and June of 2011. We present here the data
analyzed from the September 2010 and June 2011 runs. (The December 2010 run has an orphaned
set of data, which is still being analyzed.) All of the data sets were taken at 2.08 GeV with 30 bunch
trains of positrons. The earlier data sets (177 and 182) were taken with approximately 0.75 mA,
while the later data sets (697, 699 and 700) had approximately 0.35 mA stored bunches. The
lower current runs were undertaken to allow the electron cloud to build up more slowly through the
train. The damped amplitudes for each bunch in these data sets have been fit to the two damped
oscillator model.

In some cases the fitting algorithm had difficulty converging on reasonable values. This can oc-
cur when 1) the bunch’s oscillation signal level is too low, 2) the bunch’s motion exhibits large
oscillations after the initial motion has damped out, confusing the fitter, 3) the bunch’s motion is
unstable and the algorithm is attempting to fit undamped motion or 4) the fitter algorithm is not
able to converge on a reasonable solution. The damping rates for these bunches are not plotted in
the figures below, which display the damping rate vs. bunch number within the train.

For the first two of the data sets, we show the line power as a function of time, and bunch number.
For data set 182 (Fig. 6.68), the m = 0 mode was excited and monitored. For data set 177
(Fig. 6.69), the m = −1 mode was excited and monitored. The damped amplitudes for each
bunch in these data sets are displayed in Fig. 6.70 for m = 0 mode (top) and the m = −1 mode
(bottom).

In data set 182 (Fig. 6.68), we can see that the first bunch is more easily excited than the next
few bunches, but the damping rates are similar. But further along the train, the excitation level
increases and the damping time gets very long near the end of the train. In the damping rate plot
(and Fig. 6.70, top) we observe that the beam stability is relatively constant through the train
(with some reduction in stability in the neighborhood of bunches 8 through 12) and then generally
decreases (damping rate decreases) as we proceed from bunch 21 onward. The fastest rates observed
for the first bunches are consistent with what is expected from the feedback system, chromatic
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3840511-129

Figure 6.68: Data set 182: Grow-damp measurements for m = 0 mode. Chromaticity: (H,V)
=(1.28, 2.39). Bunch current = 0.72 mA

3840511-128

Figure 6.69: Data set 177: Grow-damp measurements for m = −1 mode. Chromaticity: (H,V)
=(1.28, 2.39). Bunch current = 0.75 mA
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Figure 6.70: Vertical damping rate vs. the bunch number of a 30-bunch-long train of positrons.
Chromaticity: (H, V) =(0.58, 2.13) and the vertical feedback setting is 20% of full scale. Top: Data
set 182. m = 0 mode. Bunch current = 0.72 mA; estimated single bunch damping rate of 200 s−1.
Bottom: Data set 177. m = −1 head-tail mode. Bunch current = 0.75 mA; estimated single bunch
damping rate of 110 s−1.

and radiation damping (approximately 200 s−1). Bunches after number 26 have amplitudes and
damping rates consistent with unstable motion.

In data set 177, we see a similar trend, except that the first 20 bunches all appear to have similar
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damping times and excitation levels (with the notable exception of bunch 13, which does appear
to have a much higher damping rate.) Again, further along the train, the excitation level increases
and after bunch number 20 the damping time gets very long as we approach the end of the train.
The fastest damping rates observed for the first 20 bunches are consistent with being somewhat less
than what is expected from the feedback system, chromatic and radiation damping (approximately
110 s−1).

The next three data sets were also taken at 2.08 GeV with single 30-bunch trains of positrons, but
in these cases the current per bunch was lowered to 0.35 mA to allow the instability to develop over
a larger number of bunches in the train. The m = 0 (dipole) mode was excited for data set 700,
while the m = −1 and +1 (head-tail) modes were driven for data sets 697 and 699, respectively.
For the data set 697, the vertical and horizontal chromaticities were -0.20 and 0.73, respectively,
while for data sets 699 and 700 the vertical and horizontal chromaticities were changed to -2.07
and 0.79, respectively. The vertical chromaticity in particular needed to be at these low values in
order to produce unstable head-tail motion within the train. For these sets we operated with the
Dimtel feedback system, and the data-taking software gated off the vertical feedback for the bunch
being measured.

The damping rate vs. bunch number plot (Fig. 6.71, top) for data set 700 indicates a slight
increase in the damping rate for the first bunch; after the first bunch the next 17 or so bunches
have damping rates that are similar. There are a few exceptional bunches (e.g. bunches 11 and
19) that appear to be less stable and even a bunch (number 8) that seems to have a much great
damping rate than its neighbors. (There is some suspicion that the data acquisition software’s
communications pathway, needed to gate off the feedback for bunch 8, may have failed during this
bunch’s measurement.) The damping rate seems to fluctuate toward less stability as we approach
the end of the train beginning at bunch 19. The damping rates observed for the first 18 bunches
(approximately 20 s−1) are much less than what is expected from the feedback system, chromatic
and radiation damping (approximately 110 s−1.)

As is typical for the observations of head-tail damping for the m = +1 mode (Fig. 6.71, center) and
the m = −1 mode (Fig. 6.71, bottom) there tend to be larger fluctuations in the measured damping
rates. The estimate of the combination of the chromatic and radiation damping rate for the m = +1
mode is approximately 20 s−1. A similar estimate for the m = −1 mode is approximately 3 s−1

(consistent with zero.) In both cases we see a decrease of stability occurring in the range of bunches
16 to 25 within the accuracy of the present measurements. This is also the range of bunches, for
which the dipole (m = 0) mode indicates larger fluctuations in stability from bunch to bunch. For
the m = +1 mode the damping rate for the first third of the train is consistent with or slightly
less than chromatic and radiation damping, while for the m = −1 mode the damping rate for the
first third is also in neighborhood of the magnitude of chromatic and radiation damping, although
the measured damping rates appear to be consistently slightly higher. The large fluctuations in
damping, beginning around bunch 20 of the train, represent the fact that the fitting routine is
becoming somewhat confused by the growth of a single unstable oscillation. This instability begins
about 20 ms after the drive signal is turned off and the head-tail motion has damped, grows to
a peak amplitude about 30 ms later and then damps in another 20 ms. For the last bunches in
the train the peak amplitude in this unstable “pulse” can exceed the initial head-tail motion by a
factor of three.
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Figure 6.71: Veritcal damping rates vs. bunch number of a 30-bunch-long train of positrons.
Bunch current = 0.35 mA. The vertical Dimtel feedback is in operation, but is gated OFF for the
bunch being measured. Top: Data set 700. m = 0 mode. Chromaticity: (H, V) =(-2.07, 0.79).
Estimated single bunch damping rate of 110 s−1. Center: Data set 699. m = +1 head-tail mode.
Chromaticity: (H, V) =(-2.07, 0.79). Estimated single bunch damping rate of 20 s−1. Bottom:
Data set 697. m = −1 head-tail mode. Chromaticity: (H, V) =(-0.20, 0.73). Estimated single
bunch damping rate of 3 s−1.
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Conclusions from Drive-damp Measurements This technique is useful for studying stability
of bunches within trains before the motion becomes unstable. In the conditions that we have
studied, the damping rate for motion of bunches in the train lessens as the electron cloud builds
up. The vertical dipole and head-tail modes become unstable at approximately the same bunch
within the train, although the data is suggestive of the head-tail modes becoming unstable at a
slightly earlier bunch than when the dipole mode destabilizes. The quality of the present data
is not sufficient to specify whether the head-tail and dipole motion initially becomes unstable for
the same bunch or not. However, what is clear is that motion of the bunches remain stable with
essentially the same damping rates until it becomes unstable with a transition over relatively few
bunches later in the train.

What can be said is that the effects of the electron cloud on the bunches within a train have both
similarities to and differences from the dynamics typically observed for conventional accelerator
impedances. For a transverse cavity mode excited resonantly by a train of bunches, if the Q of
this mode is low enough that the cavity field decays before the train returns, one would expect the
energy contained in the interaction between the cavity mode and the beam is only carried forward
from one turn to the next by the beam itself.

The part of the coherent interaction between the bunch and the electron cloud which is similar
to that of an RF cavity mode is as follows. If all of the bunches within the train have transverse
feedback applied except for the one which is being observed, then the motion of this particular
bunch will become unstable when the deflection from that the cavity mode grows (more rapidly
than the mechanisms that damp the beam) as the amplitude of the bunch’s displacement increases.
This is true both for dipole and head-tail modes. Now for a conventional low-Q RF cavity transverse
mode, the peak deflection is 90◦ out of RF phase with the energy loss from the bunch that excites
the mode. Thus for this transverse mode to deflect the bunch either 1) it must have a very large
transverse impedance or 2) the time for its field to vary must be comparable to the temporal length
of the bunch. A similar conclusion can be drawn for the effect of the electron cloud that has
accumulated partway through the train. At this location there must be a rapid temporal variation
in the cloud’s field in order to drive a bunch to become unstable, i.e. this must be a fairly high
frequency phenomena.

However, the electron cloud has a characteristic which is unlike a cavity deflecting mode’s interaction
with the beam. If all bunches within the train are stabilized except one, then this bunch can feel a
constant deflection from the accumulated RF fields from earlier bunches. This will cause a constant
perturbation of the orbit, but will not inherently drive this bunch unstable. This implies that the
strength of the instability will grow proportional to the current in this bunch, but will not matter
where the bunch is within the train; all positions will be nearly equivalent. Since the electron
cloud builds up along the train, the strength of the electron cloud-beam interaction grows along
the train. This will cause unstable motion, which is not present for earlier bunches, to develop
in later bunches in the train. These drive-damp measurements presented here support this view.
Also, since the bunch, at which head-tail motion becomes unstable, is essentially the same bunch,
at which dipole motion becomes unstable, this implies that the electron cloud’s interaction occurs
over longitudinal distances less than the bunch length. This would allow the center and tail of the
bunch to feel the transverse kick.
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6.3.3.3 Future Work

Future measurements are planned to repeat the single bunch damping rates vs. changes in the
chromatic damping.

6.3.4 Vertical Emittance Growth Along Bunch Trains: Experimental Stud-
ies

This section will discuss measurements made using the x-ray beam size monitor (xBSM) described
in Sec. 6.1.2.2. All measurements were made in the 2 GeV low-emittance lattice, unless other-
wise noted. Comparisons are made with similar observations at KEKB[160, 161] when appropri-
ate.

6.3.4.1 Bunch Current Dependence

Initial data were taken with the bunches at 14 ns spacing, using 45-bunch trains. For each bunch,
the turn-by-turn vertical sizes and positions were fitted, and then the sizes were averaged over
all turns. For each bunch, the rms of the positions were calculated to represent the motion of the
bunch. Fig. 6.72 shows the bunch-by-bunch sizes and rms motions along the train at bunch currents
of 0.5 mA (top), 1.0 mA (center) and 1.3 mA (bottom). For the 1.0 and 1.3 mA/bunch cases, a
slow growth can be seen starting at the beginning of the train, with the bunch size growing more
rapidly after around bunch 25 for 1.0 mA, and around bunch 20 for 1.3 mA. This is consistent with
the cloud density increasing more rapidly along the train as bunch currents increase. As discussed
above in Sec. 6.3.2.4, a synchrotron-betatron sideband signal is present from all bunches from the
fast blow-up threshold to the end of the train. The beam size growth seen in Fig. 6.72 (top), and in
Fig. 6.72 (center, bottom) before the fast blow-up threshold (around bunches 10-15), may be due
to incoherent emittance growth. The growth seen after the fast blow-up threshold may be due to
both incoherent effects and the coherent instability.

The head of the train was also seen to be somewhat enlarged. The cause of this is under inves-
tigation, but is believed to be possibly due to long-lived trapped electrons in the CESRTA ring
which is dipole-dominated (unlike KEKB, where no such effect was evident), and/or possibly due
to feedback tuning issues. The tail of the train is also seen to fall off gradually in size, an effect
which was not observed at KEKB, where the beam size simply saturated going to the back of the
train. The reason for this difference is not yet understood. It is worth mentioning that the bunch
lifetimes followed roughly the measured beam sizes, with longer lifetimes for bunches with larger
measured sizes, as might be expected from Touschek effect, which provides backing evidence that
the sizes really do vary in the manner reported by the x-ray monitor.

Finally, Figure 6.73 shows the bunch-by-bunch position spectrum as measured by the x-ray mon-
itor. The vertical tune line can be seen at the upper part of the plot, shifting downward in
frequency (upward in tune units), due presumably to the electron cloud density increasing along
the train.
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Figure 6.72: Bunch-by-bunch beam size and rms motion at 14 ns spacing. Top: bunch current 0.5
mA/bunch (128 turns). Center: bunch current 1 mA/bunch (4096 turns). Bottom: Bunch current
1.3 mA/bunch (4096 turns). The beam profile data are taken using the coded aperture (CA) X-ray
optics. The beam size growth seen in the top plot, and in the center and bottom plots before the
fast blow-up threshold (around bunches 10-15), may be due to incoherent emittance growth. The
growth seen after the fast blow-up threshold may be due to both incoherent effects and the coherent
instability.
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Figure 6.73: Fourier power spectrum of beam position measured by x-ray monitor at 14 ns spacing
with 1.3 mA/bunch (4096 turns).

6.3.4.2 Chromaticity and Bunch Spacing Dependence

At KEKB, the coherent instability threshold was found to change with the chromaticity, with
higher chromaticities pushing the onset of the instability back along the train. At CESRTA, two
sets of measurements were taken varying the chromaticity, one at 14 ns spacing and one at 4 ns
spacing. Figure 6.74 shows the bunch-by-bunch size and rms motion for a vertical chromaticity of
1.2 (left), and 2.2 (right). Here the transverse feedback gains were set very low (20% in vertical and
horizontal directions, with longitudinal off). Greater dipole oscillations can be seen in the blue rms
motion plot at chromaticity 1.2 towards the end of the train, while the rms motions in Fig. 6.72 of
the previous section (where all feedbacks were at full normal gain settings) show no such increase
in motion. The right side of Fig. 6.74 shows that raising the chromaticity to 2.2 suppresses the
dipole oscillations to some extent, but the beam sizes do not change and the blow-up threshold
does not change appreciably.

Figure 6.75 shows the results at 4 ns spacing, for vertical chromaticities of ∼ −0.8 and ∼ −0.4,
respectively. Again, the blow-up threshold is not seen to change noticeably, although the beam size
blowup is larger when the chromaticity is smaller. (The reason for the sudden drop off in bunch
size at the end of the train is not clear, but may relate to the dipole oscillation becoming so large
that much of the beam image is no longer contained on the detector, resulting in bad fits.)

It is also seen that the blow-up threshold does not change appreciably when changing from 14 ns
spacing to 4 ns spacing. This may be due to the cloud lifetime being very long compared to be
bunch spacing in the dipole-dominated CESRTA, and so the cloud does not decay appreciably over
the space of 14 ns, making the cloud density a function of the number of preceding bunches. This
is different from KEKB, where the instability threshold depends on the bunch spacing as well as
the bunch currents.

The reason for the insensitivity to chromaticity change, in contrast to the case at KEKB, is not
known, though it may be noted that the total chromaticity changes tried so far at CESRTA are
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Figure 6.74: Bunch-by-bunch beam size and rms motion at 14 ns spacing, 0.75 mA/bunch. Left:
vertical chromaticity ∼ 1.2. Right: vertical chromaticity ∼ 2.2.
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Figure 6.75: Bunch-by-bunch beam size and rms motion at 4 ns spacing, 0.75 mA/bunch. Left:
vertical chromaticity ∼ −0.8. Right: vertical chromaticity ∼ −0.4.
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smaller than those tried at KEKB (several units). It should be mentioned that the sideband
amplitude was observed to change with chromaticity, as shown above in Sec. 6.3.2.6.

6.3.4.3 Emittance Dependence

At KEKB, it was found that changing the initial beam size did not change the blow-up instability
threshold. The initial beam size at CESRTA was also varied, using dispersion bumps through two
wiggler sections in the L1 and L5 regions of the ring. The data for the enlarged-emittance beam,
with an estimated smearing function of ∼ 30 µm (to be taken in quadrature with the natural beam
size) are shown in Figure 6.76 (right). This should be compared with the un-enlarged beam data
(Figure 6.76 (left)). It can be seen that the initial beam size is enlarged, and there is still emittance
growth along the train to about the same level as for the small emittance data, indicating that the
threshold is similar. These data shown were taken at 4 ns spacing; similar results were found at 14
ns spacing.
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Figure 6.76: Bunch-by-bunch beam size and rms motion at 4 ns spacing with 0.75 mA/bunch. Left:
nominal emittance. Right: increased initial emittance.

The reason for the lack of dependence of the threshold on the beam size can be seen from Eq. (6.37).
The phase factor χ is 9.5 for CESRTA at 2.1 GeV (see Tab. 6.6), which is larger than the numerically
estimated natural Qnl ∼ 7 for a coasting beam [148]. In this case, the threshold is independent of
vertical beam size (for small changes in the beam size).

Eq. (6.40) only applies at zero chromaticity. At non-zero chromaticity, there is an additional
dependence of the threshold on the beam size. Typically for these measurements, CESRTA was
operated with a relatively small vertical chromaticity. However, it is possible that measurements
at much larger vertical chromaticities would show a dependence of the blow-up threshold on initial
beam size.

6.3.4.4 Feedback Gain Dependence

Finally, it was observed that the transverse bunch-by-bunch feedback had no effect on the coherent
instability signal at KEKB [160]. Figure 6.77 shows two different settings of the transverse feedback
gain at CESRTA : 20% and 40% gain settings, for both vertical and horizontal feedback. While the
dipole motion behavior changes somewhat with the change in gains, the blow-up behavior is not
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changed at all, consistent with results seen at KEKB. This is also what would be expected if the
beam size blowup was due to a single-bunch instability.
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Figure 6.77: Bunch-by-bunch beam size and rms motion at 14 ns spacing with 0.75 mA/bunch.
Left: LOW feedback gain. Right: HIGH feedback gain.

6.3.4.5 Comparison with Bunch-by-Bunch Frequency Spectra

In Fig. 6.78, the bunch-by-bunch beam size and rms motion are shown for a measurement with a
14 ns train, at 4 GeV, with 1.1 mA/bunch. The conditions for this measurement are exactly the
same as those for the bunch-by-bunch frequency measurement described in Sec. 6.3.2.12. For that
measurement, the growth of the vertical head-tail lines are shown in Fig. 6.58. The m = 1 vertical
head-tail line starts growing at bunch 18 and peaks around bunch 22. Comparing with Fig. 6.78,
the vertical emittance growth starts at bunch 17 and reaches a plateau around bunch 22. Thus the
onset and development along the train of the vertical head-tail lines is very similar to the onset
and development along the train of vertical emittance growth.

6.3.5 Instability Threshold and Vertical Emittance Growth: Comparison with
Simulations

6.3.5.1 Analytical Estimates

Using the formulae presented in Sec. 6.2.2, Table 6.6 gives the key instability parameters for CESRTA
at 2.1 and 4 GeV, based on the parameters given in Tables 6.4 and 6.4. At 2.1 GeV, the analytical
estimate of the threshold density of 1.3×1012 m−3 is about 60% higher than the measured threshold
of 8×1011 m−3 presented in Sec. 6.3.2.4. At 4 GeV, the analytical estimate of the threshold density
is 2.65 × 1012 m−3, about 30% higher than the measured threshold of 2 × 1012 m−3 presented in
Sec. 6.3.2.12.
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Figure 6.78: Bunch-by-bunch beam size and rms motion at 14 ns, 4 GeV, with 1.1 mA/bunch.

Table 6.6: Analytical estimates of CESRTA EC instability thresholds
CESRTA: 2.1 GeV CESRTA: 4 GeV

Circumference L (m) 768 768
Energy E (GeV) 2.1 4.0
Bunch population N+ (×1010) 2 2
Horizontal emittance εx (nm) 2.6 23
Vertical emittance εy (pm) 20 177
Momentum compaction α (×10−4) 68.0 63.0
Rms bunch length σz (mm) 10.5 17.2
Rms energy spread σE/E (×10−3) 0.81 0.93
Horizontal betatron tune νx 14.57 14.57
Vertical betatron tune νy 9.62 9.62
Synchrotron tune νs 0.065 0.041
Damping time τx,y (ms) 56.4 19.5
Average vertical beta function βy (m) 16 16
Electron frequency ωe/2π (GHz) 43 11.3
Phase angle χ 9.5 4.1
Threshold density ρe,th (×1012 m−3) 1.3 2.65
Tune shift at threshold ∆νx+y (×10−3) 10.7 11.6

6.3.5.2 PEHTS Simulations (Adapted from [147])

Particle-in-cell simulations for the beam-electron-cloud interaction, using the PEHTS code [94], were
executed to evaluate the threshold of the single-bunch instability. The machine parameters were
taken to be those in Table 6.7.

In these simulations, a bunch and the electron cloud are represented by 400,000 and 100,000 macro-
particles, respectively. The bunch is sliced into 40 pieces along the rms bunch length σz, each slice
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Table 6.7: Parameters of CESRTA used for PEHTS simulations

CESRTA/2 CESRTA/5

Circumference L (m) 768 768
Energy E (GeV) 2.1 5.0
Bunch population N+ (×1010) 2 2
Horizontal emittance εx (nm) 2.6 40
Vertical emittance εy (pm) 20 308
Momentum compaction α (×10−4) 67.6 62.0
Rms bunch length σz (mm) 12.2 15.7
Rms energy spread σE/E (×10−3) 0.80 0.94
Horizontal betatron tune νx 14.57 14.57
Vertical betatron tune νy 9.62 9.62
Synchrotron tune νs 0.055 0.0454
Damping time τx,y (ms) 56.4 19.5
Average vertical beta function βy (m) 20 20
Electron frequency ωe/2π (GHz) 35 11
Phase angle χ 8.9 3.7
Threshold density ρe,th (×1012 m−3) 0.8 3.2

containing approximately 10,000 macro-particles. The bunch interacts with the cloud electrons
slice by slice on the two-dimensional x− y plane.

One interaction between the bunch and electron cloud is treated as 40 interactions between slices
and the electron cloud. The choice of the number of bunch slices can be important for a low
emittance beam. The number of slices should be larger than ωe,yσz/c to faithfully represent the
oscillation of electrons in the simulation of single-bunch instability. The chosen number of slices,
40, is enough by this criterion, but we checked by using 100 slices and the same number of macro-
particles in each slice. The results did not change significantly.

The simulation divides the circumference of the ring into nstep sections, each of which contains
a 2-dimensional cloud. This cloud, consisting of 100,000 macro-particles, is initialized at every
interaction with the bunch just before the first slice passes. We can characterize the transverse
extent of the simulation in units of the beam sizes (σx, σy). Usually, we choose (10,20), but have
compared results with larger cloud sizes and find the results to be consistent.

The fast head-tail instability should be independent of the integration step size if the number of
steps in a synchrotron period is sufficient. A rule of thumb is to choose the number of integration
steps to be 8 per revolution; that is, 160 steps for one synchrotron period in CESRTA, for which
νs = 0.05. When the tune shift and tune spread of the beam are large in a single interaction, an
artificial incoherent emittance growth may arise. To avoid this emittance growth, the number of
steps needs to be properly chosen. A incorrect choice of step number may also induce structure
resonance peaks in the frequency spectrum. Therefore, simulations with different numbers of steps
should be done. We also tried an integration step number of 10, as a comparison.

The simulation calculates the transverse distribution of every bunch slice and electron interacting
with them. Figure 6.79 shows a typical result of vertical position and the size of every bunch slice
and the vertical position of electrons interacting with the slices above the threshold. Figures 6.79 (a)
and 6.79 (b) are given for 2 and 5 GeV beam energies for CESRTA. Coherent motions of the beam
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and cloud are seen. The beam size increases due to the smear of the coherent motion. The
longitudinal structure of the bunch for CESRTA/2 is more complex than that of CESRTA/5 due to
the high phase factor χ.

3840511-348

σy,beam

σy,0

–σy,0

ycloud

ybeam

(a)100

50

0

-50

y 
(µ

m
)

z/σz

-2           -1           0            1            2

3840511-349

σy,beam

σy,0

ycloud

ybeam

(b)160

120

80

40

0

y 
(µ

m
)

z/σz

-2           -1           0            1            2

Figure 6.79: The vertical position and size of the bunch slices and the vertical position of the
electron cloud interacting with the slices above the threshold are depicted for (a) 2 and (b) 5 GeV
beam energies. The dotted lines indicate the initial vertical beam sizes. The head of the bunch is
at z > 0.

The simulation is done for several cloud densities to estimate the threshold of instability. Fig. 6.80
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shows the evolution with turn number of the beam size as given by the projected particle distribution
of all slices in a bunch. The instability threshold is declared to be crossed when a rapid increase of
beam size, as shown in Fig. 6.80, is accompanied by coherent motion as shown in Fig. 6.79.

The instability threshold cloud densities are about 0.6× 1012 and 4.0× 1012 m−3 for beam energies
of 2 and 5 GeV, respectively. Compared with the analytical estimates shown in Table 6.7, the
numerical simulations indicate thresholds which are 25% lower at 2 GeV and 25% higher at 5
GeV.

Above the threshold densities, the coherent motion shown in Fig. 6.79 is seen clearly. Simulations
using the smaller cloud size of (10,10) predict very different thresholds of 1.2 × 1012 and 3.0 ×
1012 m−3. But the thresholds are consistent with the value of (10,20) for larger cloud sizes (20,40)
and (40,80).

A slow growth of the beam size is seen below the threshold for both beam energies. During the
slow growth, any coherent motions as shown in Fig. 6.79 are not seen. The slow growth is caused
by an artificial incoherent effect, which is due to the integration with 8 steps for one revolution.
Unphysical structure resonances related to aνx + bνy = 8n are induced. Precise estimation of the
incoherent emittance growth is discussed later.

Above a threshold cloud density, the coherent head-tail motion causes emittance growth. Direct
evidence for the instability has been given by the observation of the synchrobetatron mode of a
bunch, both in simulations and in measurements (using a bunch-by-bunch position monitor) at
KEKB [162].

The synchrobetatron signal is obtained from the simulation by taking the Fourier transformation
of the dipole position turn-by-turn. Figure 6.81 shows the Fourier spectra for the dipole moment
of the beam above and below the threshold. The spectra for 2 and 5 GeV beam energies are
very different. Clear dipole mode and lower synchrotron sideband are seen at 2 GeV. The lower
synchrotron sideband also appears in the experimental observations discussed in Sec. 6.3.2. Both
mode signals are enhanced above the threshold at 2 GeV. At 5 GeV, several additional modes
appear, and the dipole mode splits into two modes above the threshold. And a sideband appears
at around νβ + 0.07 (above the dipole mode) above the threshold. The appearance of this higher
frequency sideband above threshold is similar to the synchrobetatron sideband observed at the
KEKB LER [160, 163].

Mode coupling may be considered as a mechanism for generating the instability and the resulting
emittance growth. Figure 6.82 shows the visible modes as a function of the cloud density for different
cloud sizes (10,10) and (10,20) in 2 and 5 GeV beam energies. The mode spectra for a different
integration step number, 10, are depicted to distinguish the unphysical structure resonances. The
mode frequencies are almost the same for both integration steps. At 2 GeV, a sideband at lower
frequency is seen for both cloud sizes. The tune shift evaluated by Eq. (6.40) is not seen when the
electron-cloud density increases at 2 GeV, but the vertical betatron tune shift is coincident with
the tune shift evaluated by Eq. (6.40) for 5 GeV. But, at 2 GeV, the tune shift is more complex
because of the high phase factor, χ.

At 5 GeV, the vertical betatron peak splits into two frequencies above the threshold, and the
sideband at a higher frequency is induced for both (10,10) and (10,20). A similar spectrum appears
at a larger cloud size (20,40). For cloud sizes larger than (10,20), the threshold density of the
electron cloud saturates, but the mode frequencies do not differ greatly from the cloud sizes (10,10)
and (10,20) at 2 and 5 GeV. It is difficult to conclude which modes are merged at the threshold
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Figure 6.80: Evolution of vertical beam size growth for various cloud densities in CESRTA (a) 2
and (b) 5 GeV beam energies. The electron cloud density ρe is in units of m−3.
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Figure 6.81: Frequency spectra for the dipole moments of (a) 2 and (b) 5 GeV beam energies.
Vertical axis indicates the amplitude of frequency spectra and the index corresponds to the power
of 10. The electron cloud density ρe is in units of m−3.
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density from the figures.
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Figure 6.82: Mode frequencies for various cloud densities at different cloud sizes (10,10) and (10,20):
(a) cloud size (10,10) for 2 GeV, (b) (10,20) for 2 GeV, (c) (10,10) for 5 GeV, and (d) (10,20) for
5 GeV beam energies, respectively. The dotted line indicates the tune shift evaluated by Eq. (6.40).

Feedback Effect For a single-bunch instability, dipole motion is usually dominant above the
threshold density. Therefore, we investigate the effect of a dipole feedback system on the electron-
cloud instability. Figure 6.83 shows the amplitude of vertical dipole motion with and without the
feedback, and the growth of beam size with the feedback on, at 2 GeV. The feedback-damping time
is 50 turns. Dipole motion is dominant as shown in Fig. 6.83(a). The bunch-by-bunch feedback
system kicks the beam based on an observation of the amplitude of dipole motion. The transverse
kick received by the feedback can be expressed by

yn,+ = yn,− − kM 〈yn−1,+〉 , (6.65)

where y is the vector consisting of the vertical coordinate of each macro-particle in the bunch and
its derivative in time, (y, y′), n means the n-th turn, + (−) means the time after (before) the
feedback kick, k is the feedback-damping factor, M is the revolution matrix, and 〈yn−1,+〉 is the
averaged value of yn−1,+ measured by using two position monitors. The system feeds back the
vertical oscillation with a one turn delay. Fig. 6.83(b) shows that the amplitude of dipole motion
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decreases significantly with the feedback system. The threshold density increases to 0.8×1012 m−3

as shown in Fig. 6.83(c). The feedback reduces the amplitude of dipole motion, and the threshold
density increases to some extent. However the threshold is not improved with a stronger feedback-
damping factor. Therefore the feedback system does not entirely suppress emittance growth at
2 GeV.

Figure 6.84 shows the Fourier spectrum with the feedback on at 2 GeV. The feedback system is not
effective in reducing the lower sideband peak. Several small sideband peaks appear at frequencies
above that of the dipole mode. The spectrum is similar to that at 5 GeV, as shown in Fig.
6.81(b).

Figure 6.85(a) shows the evolution of the beam size with the feedback at 5 GeV. The feedback
damping time is 50 turns. The amplitude of the beam size and the threshold density do not change
significantly with the feedback system on. Figure 6.85(b) shows the dipole motion without and with
the feedback system at the threshold density, 4.0× 1012 m−3. The lower order head-tail instability
which does not couple to the dipole mode is dominant because of lower ωe,yσz/c, but the dipole
instability is not serious at the threshold density for 5 GeV beam energy. The amplitude of dipole
motion does not change significantly with the feedback system. For a stronger feedback-damping
factor, the threshold density does not change as at 2 GeV. Therefore, the feedback system does not
suppress emittance growth at 5 GeV.

Dispersion Effect Dispersion affects the electron-cloud instability because the electrons in the
horizontal plane oscillate with different frequencies depending on their horizontal coordinate[164].
Figure 6.86 shows the beam size evolution in the presence of dispersion. The dispersion is assumed
to be 0.8 and 0.7 m, which are averaged values for the realistic lattices of CESRTA at 2 and 5 GeV.
The threshold is clearly degraded at 2 GeV: ρe,th = 0.2 × 1012 m−3 from 0.6 × 1012 m−3. The
degradation is also visible at 5 GeV, though it is smaller than at 2 GeV: the threshold decreases
from 4.0 × 1012 to 3.0 × 1012 m−3. The difference between the 2 and 5 GeV beam energies seems
to be due to the difference in the phase factor.

Realistic Lattices Realistic lattices were used to investigate the effects of lattice variations on
the electron cloud in CESRTA. The Twiss parameters of the realistic lattices are obtained from the
MAD program [151]. The lattice functions used are shown in Fig. 6.87.

There are 83 bending magnets, and we consider those as the interaction points between the bunch
and the cloud. The magnetic field of the bending magnets is set to be 0.076 T and 0.19 T, for 2
and 5 GeV lattices, respectively. Figure 6.88 shows the evolution of vertical beam size for various
cloud densities in the 2 and 5 GeV beam energies, respectively. The thresholds of cloud densities
are about 1.2 × 1012 and 5.0 × 1012 m−3, for the 2 and 5 GeV beam energies, respectively. These
values are about 50% higher than the analytical estimates.

Summary of Threshold Density Simulations and Comparison with Experiment. The
threshold densities obtained with various simulation assumptions, for the parameters given in Ta-
ble 6.7, are presented in Table 6.8. Also shown are the experimental measurements for the threshold
densities at 2 and 4 GeV, presented in Sec. 6.3.2.4 and Sec. 6.3.2.12.
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Figure 6.83: Evolution of the dipole motion (a) without and (b) with feedback at 2 GeV. (c) Vertical
beam size growth with feedback at 2 GeV. The electron cloud density ρe is in units of m−3.
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Figure 6.84: Frequency spectrum with feedback at 2 GeV. The electron cloud density ρe is in units
of m−3.

Table 6.8: Instability threshold estimates for the ecloud density (in units of 1012 m−3) for CESRTA.
The simple model consists of the eight integration steps and uniform beta function at each interac-
tion point. The lattice parameters for the realistic model are obtained from the MAD program. The
experimental results correspond to the beam parameters in Table 6.6, which are slightly different
than the ones used for the simulations (Table 6.7).

Condition 2 GeV 4 GeV 5 GeV

Analytical estimate, using equations given in Sec. 6.2.2 0.82 3.2
Simple model (zero ηx, without feedback) 0.6 4.0
Simple model (zero ηx, with feedback) 0.8 4.0
Simple model (non-zero ηx, without feedback) 0.2 3.0
Realistic model 1.2 5.0

Experimental results 0.8 2.0
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feedback at 5 GeV. The electron cloud density ρe is in units of m−3.
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Incoherent Emittance Growth Below the Instability Threshold Electrons in the cloud
are pinched by the beam force when the beam passes through the electron cloud. This pinching of
the electrons produces a nonlinear force distribution which results in an enhancement of the beam
tune spread and the enlargement of the vertical emittance. This type of emittance growth is caused
by a diffusion due to the nonlinear force [165].

We used the realistic lattices to investigate the incoherent effects of the electron cloud in CESRTA.
Figure 6.89 shows the evolution of vertical beam size for various cloud densities below the threshold.
The coherent motion of cloud and bunch shown in Fig. 6.79 does not appear. The growth rate
increases for larger cloud densities.

For 2 GeV beam energy, at the electron-cloud density 0.8×1012 m−3, from Figure 6.89, the growth
rate is about 1.9 × 10−4 µm/turn. This is smaller than the radiation damping rate of CESRTA
at 2 GeV, 4.6 × 10−5σy/turn. (Typically σy ∼ 20 µm). Assuming the electron cloud growth
rate is independent of beam size, the equilibrium vertical emittance will increase by a factor of
∼ 1.25 due to sub-threshold incoherent emittance growth. Beam size increases of this magnitude
are significant, and should be observable at CESRTA. For example, the slow growth along the train
seen in Fig. 6.72 (top), at a bunch current below the coherent instability threshold, may be due to
incoherent emittance growth.

Similarly, at 5 GeV for an electron-cloud density 4.0 × 1012 m−3, the growth rate is about 2.25 ×
10−3 µm/turn. This is smaller than the radiation damping rate of CESRTA at 5 GeV, 1.4 ×
10−4σy/turn. Assuming the electron cloud growth rate is independent of beam size, the equilibrium
vertical emittance will increase by a factor of ∼ 1.32 due to sub-threshold incoherent emittance
growth.

6.3.5.3 CMAD Simulations

This subsection provides a comprehensive set of results obtained using the simulation program
CMAD. Details of the computation methods employed by CMAD have been discussed in Section 6.2.3.
In particular, we take a closer look at electron cloud induced effects on positron beams, including
head-tail motion, emittance growth and motion of single particles for parameters specific to ongoing
experimental studies at CESRTA. The correspondence between simulation and experimental results
will also be discussed.

The parameters used here represent conditions of CESRTA during experiments being carried out
to study the influence of electron clouds on the dynamics of positron beams. Several features
such as head tail motion and beam emittance calculations show similar features as to what has
already been observed [166, 167]. In these experiments, we have typically used trains varying
from 30 to 45 bunches in length. Depending upon properties such as the bunch current, bunch
spacing, surface properties of the vacuum chamber, etc, each bunch creates a certain amount of
cloud and, as a result trailing bunches experience a higher cloud density than leading bunches.
CESRTA instrumentation has the ability to observe the turn-by-turn position and the beam size of
each of the bunches. CMAD tracks a single bunch and so in order to simulate the effect of different
bunches along the train, we perform a set of independent calculations with varying pre-specified
cloud densities. The cloud densities seen by the different bunches can be estimated from cloud
build up simulations or from experimentally observed tune shifts. The tune shifts calculated from
build up simulations have agreed well with observed tune shifts [157, 168]. CMAD presently assumes
a uniform distribution of electrons. Work is underway to have the program be able to use any
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distribution as an initial condition. In the results presented here, we used a 2.08 GeV beam, which
is the energy at which most of the experiments have been performed. In these simulations, particles
are tracked through the full lattice, where each element of non-zero length in the lattice consists
of a cloud-beam “interaction point”. Thus, the simulation takes into account the variation of the
beam size based upon the beta function and dispersion all around the ring. The calculations model
the bunch in 96 slices, and the charge from each slice is distributed over a 128 × 128 grid, with
300,000 macro particles (positrons) and 100,000 macro electrons. The beam parameters used for
the simulations are given in Table 6.9.

Table 6.9: Beam parameters used in CMAD simulations
Parameter Unit Value

Energy GeV 2.08
Bunch Current mA 1
Bunch Length mm 12.2
Vertical emittance pm 20
Horizontal emittance nm 2.6
Energy spread 8.12× 10−4

Horizontal tune 14.57
Vertical tune 9.62
Synchrotron tune 0.055
Horizontal chromaticity dQ/(dp/p) 0.6
Vertical chromaticity dQ/(dp/p) 2.3

Motion of Bunch Centroid In this section, we discuss the behavior of the centroid motion for
varying cloud densities. The bunch initially has no offset. Nevertheless, a small inaccuracy in the
centroid position introduced by the finite number of macro particles is sufficient to trigger a self
excitation of the centroid motion that increases with cloud density. A very similar trend in the self
excitation has been seen in actual CESRTA measurements. Of course, in real life, the initial beam
perturbation is not numerical; it is due to nonlinear coupling between the two transverse degrees
of freedom. In addition, the effect of longitudinal motion will also play a role due to the presence
of dispersive coupling between the longitudinal and horizontal motion.

Figure 6.90 shows the vertical bunch displacement versus turn, normalized to the initial beam size,
for varying cloud densities. The extent of self excitation clearly grows with cloud density. In some
cases, we also see stages of damping induced by the electron clouds. The oscillation clearly becomes
more chaotic as the cloud density increases. The horizontal motion, not shown here, is far more
stable than the vertical simply because the horizontal size of the beam is larger by about a factor
of 100.

Figure 6.91a shows the spectrum of centroid motion of all the bunches simulated, with the electron
density progressively increasing as it would along a train. The primary peak corresponds to the
vertical betatron tune and the secondary peaks on either side of the betatron peak are first and
second order syncho-betatron sidebands. We see the tunes, along with the sidebands, gradually
shifting as we go further along the “train”. The second order sidebands become clearly visible,
somewhere midway in the “train”. The first order sidebands have been observed in experiments
conducted at CESRTA [166, 167] under similar conditions. Certain details such as the nature of the
splitting of the betatron tune peak look different in simulations than in experimental observations.
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Figure 6.90: Motion of vertical bunch centroid for varying cloud densities, in units of m−3.

Figure 6.91b shows a summary of the heights of the left and right first order sidebands along with
vertical betatron peaks for the same set of cloud densities as shown in Figure 6.91a. We see that
a transition in the relative height of at least one of the sideband peaks occurs at cloud densities
of 3.5 × 1011 m−3 and 4 × 1011 m−3. For cloud densities beyond these values, we see that both
the sideband heights remain relatively close in height to the betatron peaks. Figure 6.91c shows
the position of the betatron and both the sideband peaks in tune space. We see a gradual shift in
the betatron tune which the sideband peaks follow, keeping consistently spaced from the betatron
peak by the value of the synchrotron frequency. There is no evidence of the first and second order
sidebands approaching each other as has been seen at KEK [160]. This phenomenon occurs due
to coupling between the different order modes. On the other hand, our simulation results are
consistent with what has been observed at CESRTA under the same conditions. It is possible that
such a mode coupling would become observable at higher bunch currents and cloud densities. The
conditions at CESRTA necessary to observe such a mode coupling have yet to be established.

Calculation of Emittance Growth Rate Figure 6.92 shows the vertical emittance growth
versus turn. The vertical emittance undergoes a higher growth rate due to its smaller initial
value compared to the horizontal emittance, not shown here. In PIC simulations, one needs to
worry about numerical noise contributing to emittance growth. Numerical noise can contribute to
particles artificially straying away from a stable region to an unstable one. This can be minimized
by optimally choosing certain computational parameters such as grid spacing, macro particles and
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Figure 6.91: Plots showing the combined spectra of all bunches simulated and the relative heights
and positions of betatron and sideband peaks.

extent of the cloud. A study was conducted over a range of these parameters before deciding upon
the current set used in these simulations.

Despite the uncertainty in estimating the emittance growth rate, we see a definite increase in this
quantity in correspondence with the height of the sidebands which is consistent with observations
from the X-ray beam size monitor (xBSM) at CESRTA. However, it must be noted that the xBSM
measures the beam size after the beam has reached a quasi-equilibrium state, while in simulations
we are, in the first 500 turns, still looking at a transient state, with the emittance still growing
linearly. We also see a transition from a linear to an exponential emittance growth when the cloud
density increases from 1.4× 1012 to 1.6× 1012 m−3. In order to make a closer comparison between
experiments and simulations, one needs to calculate the quasi equilibrium emittance. This would
require including the effect of radiation damping and quantum excitations and tracking the beam
for several damping times. The beam size damping time of the CESRTA 2 GeV configuration is
about 21,000 turns, which is computationally unfeasible.
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Figure 6.92: Vertical emittance growth rate for varying cloud densities, in units of m−3.

Motion of Individual Particles We have followed the motion of individual simulated test
particles in order to study their confinement properties for varying cloud densities and also how
their oscillation frequency varies with change in oscillation amplitude. Although it would be difficult
to determine these quantities experimentally, probing into such details with the help of simulations
can provide significant insight into the underlying physical processes and the mechanisms that drive
the beams unstable in the presence of electron clouds.

In Figure 6.93, we show the vertical phase space trajectories of particles initially at x = 0.1 × σx,
y = 0.1 × σy and z = 0.1 × σz. Initially offsetting all three degrees of freedom ensures that any
coupling among them will be reflected in the dynamics of the particle motion. We clearly see that
the particles stray away from the ellipse as the electron density increases. The variation of the tune
with oscillation amplitude for various cloud densities can in principle be estimated with the help
of such single particle trajectories. We plan to extend the analysis of single particle trajectories
beyond just phase space traces to computing tune footprints for different cloud densities.

In conclusion, we note that CMAD has been able to reproduce several features of the dynamics of
positron beams observed in experiments. This study was performed for a parameter set corre-
sponding to one set of observations at CESRTA. We intend to extend this study to other conditions
at which observations have been made and will be made in future. At the same time, there is an
ongoing effort to include more features into CMAD to enable more detailed quantitative comparisons
with measurements.
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Figure 6.93: Vertical phase space for varying cloud densities, in units of m−3.

6.3.5.4 Comparisons Between PEHTS and CMAD Simulations

It is interesting to compare the PEHTS simulation results with those of the CMAD simulation for the
2.1 GeV CESRTA parameters.

Growth Above the Coherent Instability Threshold The PEHTS results for a realistic lattice,
shown in Fig. 6.88(a), may be compared with the CMAD results shown in Fig. 6.92. For example, for
a cloud density of 1.4× 1012, PEHTS shows a growth in beam size from about 16 µm to 42 µm over
the first 500 turns, corresponding to a fractional emittance growth of ∆ε/ε = 2(∆σ/σ) = 2× 1.6 =
3.2. CMAD simulations show a fractional emittance growth of 6 over 500 turns for the same cloud
density.

Growth Below the Coherent Instability Threshold In this case, we refer to the PEHTS

results shown in Fig. 6.89(a), and again compared with the CMAD results shown in Fig. 6.92. For
example, for a cloud density of 0.8 × 1012 m−3, PEHTS shows a growth in beam size from about
16.1 µm to 16.5 µm over the first 500 turns, corresponding to a fractional emittance growth of
∆ε/ε = 2(∆σ/σ) = 2×0.025 = 0.05. CMAD simulations show a fractional emittance growth of 3 over
500 turns for the same cloud density. The much larger growth shown by CMAD may be a numerical
problem, related to issues with the Poisson solver in CMAD for beams with very small vertical size.
This problem will be resolved in future versions of CMAD.

6.4 Summary and Further Investigations

In this Chapter, we have described the experimental measurements performed at CESRTA, and
the supporting simulations, which probe the interaction of the electron cloud with the stored
beam. These experiments have been done over a wide range of beam energies, emittances, bunch
currents, and fill patterns, to gather sufficient information to be able to fully characterize the beam-
electron-cloud interaction and validate the simulation programs. The beam conditions are chosen
to be as close as possible to the those of the ILC damping rings, with enough variation in the
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conditions that the extrapolation to the ILC damping ring can be trusted. This will validate the
simulation programs so they can be used to predict with confidence the cloud-related behavior of
these rings.

6.4.1 Experimental Hardware and Techniques

6.4.1.1 Summary

The principal experimental methods used to study the dynamics of the beam in the presence of
the electron cloud are:

• bunch-by-bunch tune measurements using one or more gated BPM’s, in which a whole train
of bunches is coherently excited, or in which individual bunches are excited;

• bunch-by-bunch frequency spectral measurements of self-excited bunch trains, using a high-
sensitivity, filtered and gated BPM, and a spectrum analyzer;

• bunch-by-bunch, turn-by-turn beam size measurements of self-excited bunch trains, using an
x-ray beam size monitor; and

• bunch-by-bunch frequency damping time measurements of drive-damp excited bunch trains
in dipole and head-tail modes, using a high-sensitivity, filtered and gated BPM, a spectrum
analyzer, a transverse kicker and an RF-cavity phase modulator.

6.4.2 Simulation Tools

6.4.2.1 Summary

This section discusses:

• the methods used to compute the bunch-by-bunch tune shifts for specific beamline elements,
from the electric fields of the charge distributions generated by the electron cloud buildup
simulation codes;

• the methods used to average over all beamline elements to produce a ringwide tune shift;

• the analytic theory used to estimate the head-tail instability threshold in the coasting beam
approximation; and

• the methodology used in the CMAD simulation program, which directly simulates the beam-
cloud interaction using a realistic storage ring model in a multi-particle simulation.

6.4.3 Coherent Tune Measurements

6.4.3.1 Summary

A large variety of coherent tune shift data have been taken, covering a wide range of machine
conditions such as beam energy, beam size, lattice configuration, particle species, bunch current,
bunch train configuration, and mode of oscillation of the bunches.
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Generally, quite good agreement has been found between the measurements and the tune shifts
computed from cloud buildup simulations, using either of the buildup codes POSINST (See, for
example, Fig. 6.18, Fig. 6.21, Fig. 6.22, Fig. 6.23, Fig. 6.24, Fig. 6.41, and Fig. 6.32) or ECLOUD (see
Figure 6.29, Fig. 6.30).

This agreement, which is found for the same set of simulation parameters applied across a wide
variety of machine conditions, both constrains many of the model parameters (see Table 6.3) and
gives confidence that the models do in fact predict accurately the density of the electron cloud
generated in CESRTA.

To better define the photoelectron distributions which seed the cloud in CESRTA, and to allow
accurate extrapolation to other radiation environments, a new simulation program, Synrad3D,
has been developed, which predicts the distribution and energy of absorbed synchrotron radiation
photons around the ring. The output from this program is used by the cloud buildup codes,
thereby eliminating the need for any ad-hoc assumptions in the buildup codes about the photon
distributions. Tune shifts computed from buildup simulations with input from Synrad3D agree well
with measurements (see Fig. 6.33 and Fig. 6.34).

6.4.3.2 Further investigations

Simulations based on Synrad3D will be compared systematically with data, to attempt to improve
the constraints on the cloud buildup code models. The photoelectron model in the buildup codes
will also be improved, based on observations made with RFA’s and shielded pickups. An improved
method has been developed for computing the tune shifts when only a single bunch in the train is
excited. Tune shifts computed with this method will be compared with existing data.

Additional data will be taken with bunch spacings of 4 ns and 8 ns, to expand the breadth of the
data sets in the bunch spacing regime closer to that planned for the ILC damping ring (6 ns).

6.4.4 Instability Threshold Measurements

6.4.4.1 Summary

Under conditions in which the beam is self-excited via the electron cloud, bunch-by-bunch frequency
spectra exhibit the vertical m = ±1 head-tail (HT) lines, separated from the vertical betatron line
by the synchrotron frequency, for many of the bunches along the train. The amplitude of these lines
typically (but not always) grows along the train. Some detailed conclusions from these observations
are:

• For a 30 bunch train with 0.75 mA/bunch at 2.1 GeV beam energy, the onset of the HT
lines occurs at a ringwide initial (i.e., before the “pinch”) beam-averaged cloud density of
around 8× 1011 m−3 (assuming no cloud density at the start of the train) (see Fig. 6.42 and
Fig. 6.43).

• For a 30 bunch train with 1.1 mA/bunch at 4 GeV beam energy, the onset of the HT lines
occurs at a ringwide initial (i.e., before the “pinch”) beam-averaged cloud density of around
2×1012 m−3 (assuming no cloud density at the start of the train) (see Fig. 6.59 and Fig. 6.58).
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• The betatron lines exhibit structure which varies along the train. The vertical line power
grows along the train and has a fine structure that is not understood. (See Fig. 6.38, Fig. 6.39,
Fig. 6.56, and Fig. 6.57)

• The amplitude of the HT lines depends strongly on the vertical chromaticity, the beam current
and the number of bunches (See Fig. 6.45, Fig. 6.46, Fig. 6.47, and Fig. 6.48).

• For a 45 bunch train, the HT lines have a maximum power around bunch 30; the line power
is reduced for later bunches (see Fig. 6.48).

• There is a weak dependence of the onset of the HT lines on the synchrotron tune, the single-
bunch vertical emittance, and the vertical feedback (see Fig. 6.50, Fig. 6.51, and Fig. 6.53).

• Under identical conditions, HT lines also appear in electron trains, but the onset is later in
the train, develops more slowly, and is much weaker, than for positrons (see Fig. 6.61).

• Under some conditions, the first bunch in the train also exhibits a head-tail line (m = −1
only). The presence of a “precursor” bunch can eliminate the m = −1 signal in the first
bunch (see Fig. 6.62). The implication is that there may be a significant “trapped” cloud
density near the beam which lasts long after the bunch train has ended, and which is dispersed
by the precursor bunch. Indications from RFA measurements and simulations indicate this
“trapped” cloud may be in the quadrupoles and wigglers.

• There is a strong dependence of the HT line structure observed on last bunch in a 30 bunch
train, as a function of the current in that bunch. But the frequency of the vertical betatron
line of this bunch is only very weakly dependent on the current in the bunch (see Fig. 6.64).

6.4.4.2 Further investigations

Future work will include:

• Studies with 4, 8, 10 and 12 ns spacing.

• More studies with very high currents, long trains, high chromaticity and strong feedback (at
2 GeV, 14 ns, at 4 ns, and at 4 GeV).

• Studies exploring the dependence of the “precursor bunch” effect on timing, and attempts to
observe the effect at 4 ns and at 4 GeV.

6.4.5 Mode Growth Rate Measurements

6.4.5.1 Summary

To measure the damping or anti-damping effects attributable to the electron cloud, we have made
measurements in which we actively excite a single bunch in a train, and measure the rate at
which the bunch damps after the excitation is turned off. These bunch-by-bunch damping rate
measurements can be made for the m = 0 (dipole mode) of motion, and for the m = ±1 (head tail
modes).

To interpret the measurements of bunch-by-bunch damping rates along a train of bunches properly,
it is necessary to first understand single-bunch damping rates. Consequently, measurements of
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single-bunch damping rates, as a function of chromaticity, were made for the m = 0 and m = ±1
modes (see Figure 6.66 and Figure 6.67)

Measurements of bunch-by-bunch damping rates have only been made to date for a two sets of
conditions. In the conditions that we have studied, the damping rate for motion of bunches in the
train decreases as the electron cloud builds up. The vertical dipole and head-tail modes become
unstable at approximately the same bunch within the train. The data are suggestive of the head-
tail modes becoming unstable at a slightly earlier bunch than when the dipole modes destabilizes
(see Fig. 6.70 and Fig. 6.71), but the quality of the present data is insufficient to establish this with
certainty. However, what is clear is that motion of the bunches remain stable with essentially the
same damping rates until it becomes unstable with a transition over relatively few bunches later in
the train.

6.4.5.2 Further investigations

Damping rate measurements will be made over a wider range of conditions, to study the dependence
of the rates on machine and beam parameters such as bunch current, chromaticity, synchrotron
tune, and beam emittance.

6.4.6 Measurements of Vertical Emittance Growth Along Bunch Trains

6.4.6.1 Summary

Using an x-ray monitor, bunch-by-bunch beam position and size measurements have been made
on a turn-by-turn basis. From the beam size measurements, the evolution of the beam emittance
along trains of bunches has been measured.

Beam centroid motion and the vertical emittance is observed to grow along the train. The growth
pattern is a strong function of the bunch current (see Fig. 6.72). Often, the first bunch in the train
has an anomalously large size, which correlates with of the observation of a vertical head-tail line
in the spectrum of this bunch, as discussed in Sec. 6.3.2.14.

Beam size growth along the train is not very sensitive to the chromaticity or the bunch spacing
(see Fig. 6.74 and Fig. 6.75).

Beam size growth along the train is also not very sensitive to the initial beam size or the feedback
gain (see Figure 6.76 and Figure 6.77).

The onset and development along the train of the vertical head-tail lines is very similar to the onset
and development along the train of vertical emittance growth (compare Fig. 6.58 and Fig. 6.78).

6.4.6.2 Further investigations

Additional studies with the x-ray beam size monitor are planned to measure emittance growth
along bunch trains with electrons, and to further study the dependence of the beam size growth on
beam and machine parameters.
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6.4.7 Instability Threshold and Vertical Emittance Growth: Comparisons with
Simulations

6.4.7.1 Summary

The analytic theory presented in Sec. 6.2.2 was used to estimate the head-tail instability threshold
in the coasting beam approximation. At 2.1 GeV, the analytical estimate of the threshold density
of 1.3 × 1012 m−3 is about 60% higher than the measured threshold of 8 × 1011 m−3 presented in
Sec. 6.3.2.4. At 4 GeV, the analytical estimate of the threshold density is 2.65× 1012 m−3, about
30% higher than the measured threshold of 2× 1012 m−3 presented in Sec. 6.3.2.12.

Numerical simulations using PEHTS have been done to refine the estimates of the threshold density
at both 2 and 5 GeV. These simulations show both vertical emittance growth, and the presence of
head-tail lines in the beam’s dipole motion spectrum, above the threshold density. The simulations
show that dipole feedback is not able to suppress the emittance growth. The effects of dispersion,
and a realistic lattice with 83 beam-cloud interaction points, were also studied. The threshold
densities found for the realistic lattice were about 50% higher than the analytical estimates.

Using the realistic lattice, PEHTS was also used to estimate incoherent emittance growth below the
head-tail threshold. At the electron-cloud density, 0.8 × 1012 m−3 in the 2 GeV case, the growth
rate is about 7.4× 10−6 σy/turn.

Numerical simulations using CMAD were also done for 2 GeV beam energy. These simulations use a
realistic lattice, with beam-cloud interaction points at every lattice element. As with PEHTS, they
show both vertical emittance growth, and the presence of head-tail lines in the beam’s dipole motion
spectrum. For the same cloud density above the head-tail threshold, CMAD and PEHTS predict the
same level of vertical emittance growth after 500 turns, within a factor of 2. But for a cloud density
below the head-tail threshold, CMAD predicts a much larger sub-threshold emittance growth than
does PEHTS.

6.4.7.2 Further investigations

It is planned to explore the dependence of the CMAD simulation results on beam parameters such as
energy, emittance, and chromaticity. The origin of the “precursor” effect will also be studied. In
addition, the capability of using a non-uniform initial cloud distribution will be provided.
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Chapter 7

Status of Our Understanding of a
General Electron Cloud Model

7.1 Preface

In the interest of conciseness, and to afford a broad perspective of the ecloud effect particularly
within the CESRTA R&D program, this chapter is written in a more or less self-contained, if
superficial, fashion. References to previous chapters for detailed information are given as appropri-
ate.

7.2 Recap of the model, and assumptions made

The research reported in this document focuses on the physical model that underlies the electron-
cloud formation and dissipation. The “electron-cloud model” was defined in Sec. 4.1.2. We now
provide a brief recap followed by more details on the various components of the model, in order to
better explain our understanding.

As in all high-energy positron storage rings, the electron cloud in CESRTA forms when the beam is
injected into an empty vacuum chamber. Copious synchrotron radiation is emitted when the beam
traverses magnetic elements of the ring, primarily dipole bending magnets. Photoelectrons are
emitted when the synchrotron radiation photons strike the vacuum chamber walls. These electrons
are “rattled around” by successive bunch passages, striking the walls and emitting secondary elec-
trons, which are added to the electron cloud. Depending upon a combination of beam and chamber
surface parameters, the number of electrons can grow quickly to significant levels. For typical op-
erating parameters in CESRTA and for most other existing or planned high-energy storage rings,
including the ILC Damping Rings, the average electron density typically reaches a level in the range
1010 − 1012 m−3, in tens of nanoseconds following injection. While this electron density is many
orders of magnitude below typical plasma physics applications, it is high enough to lead to a variety
of serious detrimental effects in high-energy storage rings. Furthermore, owing to the lightness of
the electron, and to the intensity of the beam bunches, the electron cloud density has strong spatial
(on the scale of centimeters or smaller) and temporal (on the scale of nanoseconds or smaller) de-
pendencies. The simulation programs used to describe the electron-cloud build-up and decay aim
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to quantify as completely as possible these details of the electron density distribution.

In addition to photoemission it should be pointed out that, in general, there are other “primary”
mechanisms that seed the electron-cloud formation. In typical hadron storage rings, where syn-
chrotron radiation and hence photoemission are historically negligible, ionization of residual gas
yields the electrons that seed the electron cloud growth. Another mechanism that may contribute
to electron generation is lost beam particles striking the walls of the chamber. Among all hadron
machines, the LHC is a notable exception, being the first hadron storage ring ever built in which
synchrotron radiation is significant, hence its electron cloud seeding mechanism is analogous to that
in typical positron storage rings. In general, all of the three above-mentioned seed mechanisms co-
exist; in the case of CESRTA, and in essentially all other positron storage rings, photoemission
dominates by far. In this report, therefore, we only consider photoemission as the seed mechanism.
In any case, it is usually the compounding effect of secondary electron emission that dominates
the formation of the electron cloud; this secondary mechanism is similar in lepton and hadron
machines.

Beam parameters are typically well known or well determined in any given experiment. Beam
energy, of course, is rather precisely controlled. Parameters that may vary from bunch to bunch,
(and that therefore may vary on the ns-to-µs scale) such as emittances, intensity, bunch length,
closed orbit, bunch spacings and fill pattern are also reliably determined. Essentially all such beam
parameters are therefore used as fixed inputs to our simulations. The vacuum chamber geometry
at the centimeter level is precisely known and is therefore a given fixed input to the simulations.
But its geometry at the micron level (surface roughness) is typically not well-known and effectively
becomes an indirect component of the model because it affects the photon reflectivity, hence the
geometrical distribution of photons striking the chamber surface. Electronic properties of the
chamber surface (see below) are also a priori not well known, hence become important components
of the model.

Certain components used to describe the dynamics of the electron cloud (Sec. 4.1.3) are fairly well
established. Such components are: (1) the electron motion in an EM field, which is based on ma-
ture tracking methods such as the Runge-Kutta integrator, the Boris pusher [85, 169], or analytic
formulas whenever applicable; (2) computation of space-charge forces, based on PIC methods; and
(3) computational parameters such as integration time step, space-charge grid size, and number of
macroparticles. Rules of thumb exist for these computational parameter values that yield sensible
trade-offs between accuracy and CPU time. These parameters may require a bit of adjusting in
the beginning stages of most simulation studies in order to establish adequate numerical conver-
gence.

We have extensively benchmarked the build-up codes POSINST and ECLOUD against each other. We
are satisfied that they yield similar results when the simulation conditions are similar.1 Conse-
quently, this report focuses on the details of the physical model rather than on the codes them-
selves.

7.2.1 Code components

Setting aside the well known components described above, the fundamental ingredients of the
physical model upon which we focus our attention in this report are:

1We recall that the codes are not identical, especially the implementation of the physical model, hence the results
cannot be identical even for nominally identical simulation conditions.
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1. photon emission by beam particles

2. photon reflectivity off the chamber walls

3. quantum efficiency (photoelectric emission yield) and emission spectrum

4. secondary emission yield and emission spectrum

These components are implemented via simulation programs that track individual particles. These
programs include analytic expressions for the emission spectra; a sufficiently large number of indi-
vidual simulated photons or electrons are generated via the Monte-Carlo process from these spectra,
in order to resolve the features of the cloud distribution to the desired level of precision.

At the present stage of development, photon tracking, electron tracking, and the response of the
beam to the electron cloud, are done separately, using different codes. Presumably, given enough
time and investing enough effort, these three aspects of the electron-cloud will be integrated into a
single comprehensive computer tool. At present, photon tracking is done with the code Synrad3D;
its main output, namely the distribution of absorbed photons around the chamber, is fed as input
to the electron cloud build-up codes POSINST, ECLOUD or CLOUDLAND. These codes are used to
track the electrons under the action of a prescribed (non-dynamical) beam. The main output from
such codes, namely the electron cloud intensity and distribution, is then fed as input to the beam
dynamics codes such as CMAD, HEADTAIL or PEHTS, and the effects on the beam are computed.2

The energy-angle emission spectrum of the synchrotron-emitted photons is well known [170]; in
our photon tracking simulations with the code Synrad3D, we take this spectrum as given. Prior
to the availability of Synrad3D, the electron-cloud simulation codes involved a rather simplified
description of the photon impact distribution along the chamber. In addition to the ability to
calculate the point of first impact of any given photon on the chamber surface for realistic chamber
geometries, the code Synrad3D is able to take into account multiple specular photon reflections
around the chamber, as well as diffuse photon scattering owing to surface roughness. The photon
reflectivity for a given surface roughness is obtained from a published database [95]. The spectrum
of diffused-scattered photons is computed using existing formalisms [96, 97].

7.2.2 What is not well-known, and why

The last three items in the list in Sec. 7.2.1 are, in practice, not well known. While there exists a
substantial body of published data for photon reflectivity, quantum efficiency and secondary electron
yield, most of this data pertains to surfaces that are pure and/or monocrystalline, and is typically
inapplicable to “technical” surfaces of which the vacuum chamber is fabricated. The technical
materials with which we are concerned are amorphous, have rough and/or striated surfaces, and
contain impurities near the surface that significantly affect their electronic properties.

Data for technical materials does exist from bench and in situ measurements at several accelerator
laboratories around the world. We have taken such data as starting points in our simulations.
However, even if such data is reliably measured at a given storage ring, it should be kept in mind
that some of the relevant quantities, particularly the SEY, gradually decrease in time owing to
electron bombardment from the very EC effect to which the SEY contributes. Such “conditioning
effect” has been consistently observed in all operating accelerators in which it has been measured;

2Actually, there already is a fair amount of integration of electron cloud build-up codes and beam dynamics codes.
Examples of such codes we have employed are WARP-POSINST and CLOUDLAND.
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it is attributed to the migration of impurities from the surface into the bulk of the metal as a
result of the electron bombardment. The ECE, therefore, is a self-conditioning effect. However, as
it should be clear from this explanation, self-conditioning decreases exponentially in time because
the more the SEY decreases, the weaker the electron bombardment, which in turn means slower
conditioning. In effect, therefore, there is a practical limit to the benefit from beam conditioning.
Recent experience at the LHC [64] shows that conditioning occurs comfortably rapidly (typically
with a time scale of several hours or a few days of beam running), but it does not go far enough
to sufficiently lower the SEY for the cases of high beam intensity. The search for new low-emission
coatings, therefore, is an active area of R&D at CERN and other labs.

Photon Reflectivity When a photon strikes the wall of the chamber, it may be absorbed,
possibly leading to photoemission, or it can scatter and strike the wall downstream. Depending on
the photon wavelength and the details of the surface roughness, the scattering may be approximately
specular or diffuse. The code Synrad3D [88] incorporates a well-developed formalism to determine
the magnitude and emission distribution of the scattered photons. Owing to the lack of detailed
knowledge of the surface geometry at the sub-micron scale in CESRTA we have assumed typical
parameter values that are found in other measurements pertinent to accelerator vacuum chambers.
Specifically, we have assumed a roughness RMS height σ = 0.1 µm, and exponential roughness
autocorrelation along the surface with an autocorrelation coefficient T = 5 µm. We believe these
assumptions to be reasonable, but validation awaits detailed measurements. More details are
provided in Sec. 4.1.4.1.

Quantum efficiency and emission spectrum Concerning the QE parameter Y , we looked
at one set of direct measurements made at the LHC (see Section 4.1.4.2). The measurements for
aluminum, shown in Fig. 4.12, were made with a VUV photon energy spectrum, and were found to
be quite sensitive to the surface material and conditioning. Consequently, in comparing simulation
and data, we have treated Y as an unknown parameter to be fit, under the simplifying assumption
that it does not depend on the incident photon energy or incident angle. As such, the fitted value
the QE parameter Y is an effective quantum efficiency, i.e., it represents an average over the incident
photon spectrum.

For the photoelectron emission energy spectrum, we have generally assumed a simple shifted Gaus-
sian formula, with peak and width of 5 eV photoelectron kinetic energy. While this assumption
can give good agreement between simulation and data for a number of electron-cloud-related ob-
servables, we have found that, for 5 GeV high-current electron beams, the RFA measurements (see
Section 5.1.4.2) and the shielded pickup measurements (see Section 5.2.2.2) require the introduction
of a substantial high-energy tail into the photoelectron energy distribution.

Secondary electron yield and emission spectrum The SEY is, typically, the single most
important ingredient that contributes to the intensity of the ECE. Many measurements have been
carried out at accelerator labs in the US, Europe and Japan for technical materials such as copper,
stainless steel and aluminum. Measurements also exist when some of these materials are coated with
low-emission substances such as TiN, TiZrV, amorphous carbon and crystalline carbon. Besides the
modification of the electronic properties of the chamber surface achieved with low-SEY coatings,
the geometrical properties can also be modified to reduce the SEY. One such possibility, that has
been tested at CESRTA (see Section 5.1.4.1), consists in etching narrow longitudinal grooves along
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the chamber, of mm-scale size. Such grooves trap the emitted electrons, thus effectively reducing
the SEY. In addition, the grooved surface may be coated with a low-SEY material.

The SEY is characterized by the function δ(E0), where E0 is the incident electron kinetic energy.
In our simulations and fits to the data we have paid special attention to the peak value δmax, and to
the energy E0 = Emax at which δ(E0) = δmax. These two quantities, particularly δmax, determine
the exponential growth rate of the EC density when the conditions imply such a behavior. Another
quantity that we have closely examined in our simulations is the value of δ(E0) for very low values
of E0, below ∼ 20 eV, characterized by the limiting value δ(0). Such a parameter determines the
dissipation rate of the EC: the higher δ(0), the longer the electrons survive between successive
bunch passages, or from one turn of the beam to the next. Consequently, δ(0) directly influences
the longer-term accumulation or dissipation of electrons.

The function δ also depends on the incident electron angle θ0. For technical surfaces, δ(θ0) grows
monotonically with θ0 at fixed E0 such that δ(θ0 = π/2) (grazing incidence) is roughly 70% larger
that δ(θ0 = 0).3 More refined fits to the θ0-dependence to prior data are found in Ref. [87],
which we have adopted for our simulations without further examination. In any case, simulations
typically show that the values of θ0 relevant to CESRTA and to the ILCDR is close to 0 (normal
incidence): a reasonable rule of thumb is that 〈cos θ0〉 ∼> 0.8 for essentially any region of the ring
we have simulated. Therefore, the details of the θ0 dependence far from normal incidence are not
very relevant to our studies.

The SEY is made up of three primary components: true secondaries (δts(E0)), rediffused (δr(E0))
and elastically backscattered electrons (δe(E0)). Each of these corresponds to three distinct mech-
anisms by which electrons are emitted from the material, and have distinct emission spectra [87].
In particular, the rediffused electrons are emitted with a broad energy spectrum, spanning roughly
the entire allowed energy range, namely (0, E0), where E0 is the incident electron energy. The
rediffused component δr(E0) contributes significantly to the persistence of the EC in the vacuum
chamber, a somewhat subtle phenomenon involving the interplay of E0 and the above-mentioned
broad emission spectrum [106].

It should be pointed out, however, that, in practice, the distinction between the three above-
mentioned SEY components, particularly between δe(E0) and δr(E0), becomes unclear as E0 drops
below ∼ 50 eV or so. While δts(E0) → 0 as E0 → 0, this is not the case for δe(E0) or δr(E0),
both of which reach a nonzero value at E0 = 0. Electron-cloud energies ∼< 50 eV are typical after
several 10’s of nanoseconds of beam absence, and hence the EC dissipation mechanism after such
a relatively long time cannot be clearly attributed to either δe(E0) or δr(E0).

Given the incident electron energy E0, each of the above-mentioned three components of the yield
has a characteristic dependence of the emitted differential electron energy yield spectrum dδ/dE,
where E is here the emitted electron energy. Our POSINST model represents these components
rather faithfully, with parameters obtained from fits to previously published data [87]. Since our
simulations are particle-by-particle, knowing dδ/dE, however, is not enough: the simulations require
knowledge of the emitted electron momentum spectrum dN/d3p, where p is the emitted electron
momentum. We have not found data for dN/d3p, but we have implemented in POSINST what we
sensibly believe are the simplest formulas that (1) respect energy conservation, and (2) reproduce
dδ/dE separately for each of the three components upon integration over p at fixed E0 and E.

3We adopt the standard convention that θ0 = 0 represents normal electron incidence. The θ0 dependence of δ is
qualitatively different, and irrelevant for our purposes, for very smooth or monocrystalline surfaces.
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7.3 Which model parameters are sensitive to which measurements

As explained in Chapter 4, photoemission and secondary electron emission depend differently on
the beam properties: photoelectron emission behaves linearly in beam intensity, is very sensitive to
beam energy, and is independent of the sign of the beam particle charge, while secondary emission
behaves nonlinearly in beam intensity, is not very sensitive to beam energy, and is sensitive to the
sign of the beam particle charge. These features, in combination with the diverse instrumentation
and the operational flexibility of CESRTA allow an unprecedented ability to disentangle the two
phenomena and determine several of the corresponding parameters. Table 7.1 summarizes the most
important dependencies.

Table 7.1: Dependencies of measurement techniques on model quantities
(∆ν = coherent tune shift, I = beam current, Ib = bunch current, δ(0) = SEY at 0 incident electron energy, dδ/dE =
energy spectrum of the SEY, δr = rediffused secondary electron yield, δe = backscattered secondary electron yield,
δts = true secondary electron yield, Emax = incident electron energy at peak SEY, powts= shape parameter of the
true SEY in the POSINST SEY model).

∆ν at low ∆ν at high witness ∆ν RFA, time SPU, time SPU, time
I train I train averaged resolved, train resolved, witness

δ(0) weak at low tb, weak strong strong for high weak linear
strong at high tb Ib and/or high tb

dδ/dE weak U∗ U weak; may be strong (see strong (see
sensitive to tb Fig. 5.86) Fig. 5.87)

δts weak strong U strong for high I strong; correlated strong; correlated
and/or low tb with δr with δr

δr weak strong; U strong for high I; strong; correlated strong; correlated
can easily correlated with δts and δ(0) with δts and δ(0)
distinguish with δts
between δr

and δts
Emax U U U weak weak some

sensitivity
powts U U U strong for high I; weak weak

correlated with δts
Y linear linear U strong for low I linear linear

and/or high tb
dY/dE linear linear U strongly strong; strong;

nonlinear more sensitive more sensitive
for e− beam than RFA than RFA

∗The entry “U” indicates that the sensitivity is unclear or unknown at this point.

7.4 How confident are we of the model

As a starting point in our simulations for CESRTA we adopted model parameters for the electronic
properties of the chamber surface that had been previously obtained in other contexts, which we
were confident would amount to a good first approximation. Early indications of good agreement
between simulations and observations were obtained in the measurements of the bunch-by-bunch
coherent tune shifts, and the tune shift of a witness bunch placed at various distances following
the end of the bunch train (see Sec. 6.3.1). In particular, the decrease of the tune shift after the
passage of the bunch train can be readily described by the simulations as due to the “release” of
the electron cloud as the train comes to an end.

While the CESRTA R&D effort is quite comprehensive, the complexity of the model is such that
the measurements do not provide a unique determination of all of the parameters. However,



7.4. How confident are we of the model 399

some parameters are more relevant than others for any given measurement technique and beam
configuration, as discussed in Sec. 7.3. In practice, therefore, we are not optimizing the model
one parameter at a time, but rather a few parameters at a time in a simultaneous χ2-matrix
minimization to specific measurements. By carrying out such a process we have improved the
overall agreement between simulations and measurements. Diverse fits yield consistent parameter
values, which give us confidence in the correctness of the model. In addition, for a set of “good”
parameter values for the vacuum chamber surface, the behavior of the ecloud intensity as a function
of beam intensity and energy remains in good agreement with measurements. This agreement,
which is found for the same set of simulation parameters applied across a wide variety of beam
conditions, both constrains many of the model parameters and gives confidence in the correctness
of the model.

7.4.1 Caveats and Future Work

While the CESRTA electron-cloud R&D program is arguably the most comprehensive program
carried out to date dedicated to the understanding of the ECE, and our confidence in the model
is strong, the state of the art in this field still lags, in some ways, the field of instability dynamics
produced by conventional impedances. Rules of thumb are emerging that allow one to reasonably
forecast the conditions under which the electron cloud will be a serious issue; what is needed
however, is one or more rules of thumb that allow one to predict, without major simulations,
conditions under which the electron cloud in a given storage ring will be sufficiently weak for
safe beam operation. The electron cloud dynamics is more complicated than that in conventional
instabilities, on account of the large span of time scales involved and the possibility of space charge
domination. The jury is still out on whether a simple set of rules of thumb for safe beam operation
vis-à-vis the electron cloud will eventually emerge.

At present, and probably for the foreseeable future, progress in understanding and characterizing
the ECE, relies on detailed simulations coupled with detailed measurements. In the effort described
in this report, we have constrained the model and determined the main parameters for the CESRTA
conditions. We recall, that we have not fitted all parameters; some of them, which we believe to
be less important, were fixed a priori based on prior experience. A consequence of the local, rather
than global, optimization procedure is that some of the fitted parameters remain correlated with
others that are outside the local fit; therefore, it is possible that a better global solution might
be found with additional work. Nevertheless, the parameter values we have obtained are quite
consistent with those published in the standard literature, hence we are reasonably confident that a
more extensive global minimization process will not change our present results significantly.

One of the simplest rules of thumb in the ECE is that if the peak SEY is too large (typically
δmax∼>1.4 or so), the EC density is high enough to lead to undesirable effects on the beam. For this
reason, new low-emission coatings and other mechanisms (grooved surfaces, clearing electrodes and
weak solenoidal fields) to reduce secondary emission are being actively studied at many laboratories,
with the goal of achieving δmax < 1. In the CESRTA R&D program described in this report we
have tested and analyzed a few such coatings and other low-SEY techniques, and demonstrated
their efficacy. It seems clear to us that all future high-intensity storage rings will be equipped with
such coatings or devices. Once the “battle of the SEY” is won in this way, photoemission becomes
competitive with secondary emission and hence becomes relatively more important. Such a situation
is expected to arise in the ILC DRs, and especially in the proposed SUPER-B and SUPER-KEK
factories, which will have very intense synchrotron radiation from the beam. The focus of ECE
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R&D effort will then surely shift to better describe the photon intensity and distribution in 3D at
all locations around the ring. The development and implementation of the code Synrad3D within
the CESRTA R&D program described here constitutes a major step in this direction. Indeed,
we have verified the importance of using a realistic photon distribution around the chamber in
order to improve the quantitative agreement of the simulations with the coherent tune shift data.
Ingredients that still remain to be improved are measurements (or reliable calculations) of the
photon reflectivity, the diffusive component of photon-surface scattering, and details of the QE and
photoemission spectrum. We are certain that such areas will increase in importance and receive
greater attention in future EC research. The goal will be to improve the photon tracking and
photoemission components of the model embodied in the simulation codes to a level at least as
detailed and reliable as the present model for secondary emission. With such tools, the antechamber
aperture and its detailed geometry will be determined with greater confidence than is now possible
for radiation-dominated storage rings.

7.5 Conclusion

Given the good overall agreement between build-up simulations and measurements, the CESRTA
R&D program has demonstrated that an ecloud model does exist. Thus, for a given machine, it
is possible (though laborious) to constrain or fix the model parameters, and hence to predict the
ecloud distribution and density as a function of time and space at any location around the ring for
a given beam configuration. With this information, the EC effects on the beam (e.g., instability
thresholds) can be computed via beam dynamic codes, and hence help define a reliable machine
operation régime.

This Phase I of the CESRTA R&D program has without a doubt pushed the state of the art in the
physics of the electron cloud. The program has informed a validation of the model embodied in the
simulation codes. The results confirm and quantify the benefit of low secondary emission surfaces,
of methodical simulations carried out in tandem with equally methodical measurements, and shifts
the attention to the area of photon distribution and photoemission. We expect that this latter area
of physics will be a major focus of Phase II.

While much detailed work remains to be carried out to fully describe and quantify the physics of
the EC, the results contained here will improve the design of future machines and their operational
reliability, both for lepton and hadron storage rings.



Chapter 8

Recommendations for the ILC
Positron Damping Ring

8.1 Introduction

The development of the electron cloud in the ILC positron damping ring represents one of the most
significant risks to the overall physics performance of the collider. In the original design studies for
the damping rings, it was estimated that the peak SEY values for the vacuum chamber surfaces in
the positron ring would need to be maintained at values < 1.2 in order to safely remain below the
EC-induced instability threshold with the specified baseline operating parameters [171–173].

As described in Chapter 1, the principal deliverables of the CESRTA Phase I R&D program
were:

1. To provide technical demonstrations of EC mitigation techniques that can reduce the EC
densities in the positron damping ring to sufficiently low levels that stable operation at the
ultra low emittance target is possible;

2. To evaluate our understanding of the EC-induced instability thresholds and the potential for
sub-threshold emittance growth in an emittance regime approaching that of the ILC damping
rings.

Chapters 5 and 6 have described the range of experiments carried out to evaluate each of these
issues. The following sections describe the implications of these measurements for the ILC positron
DR.

8.2 Inputs to the EC Mitigation Evaluation

Table 8.1 summarizes the range of vacuum chambers that have been tested as part of the CESRTA
program to understand the efficacy of various EC mitigations. Each of the listed chambers incorpo-
rates one or more RFAs with which to study the beam-induced EC build-up in the chamber. These
studies have spanned each of the key magnetic environments where mitigations will be required in
the positron DR. In many cases, reference chambers without mitigations were employed to improve
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our understanding of the relative performance of the various techniques as well as to provide data
to help characterize the models of the EC development.

Table 8.1: Vacuum chambers fabricated for testing during the CESRTA R&D program. Mitigation
studies have been conducted in drift, dipole, quadrupole, and wiggler magnetic field regions.

Contributing
Mitigation Drift Quad Dipole Wiggler Institutions

Al X X X CU, SLAC
Cu X X CU, KEK, LBNL, SLAC

TiN on Al X X X CU, SLAC
TiN on Cu X X CU, KEK, LBNL, SLAC

Amorphous C on Al X CERN, CU
Diamond-like C on Al X CU, KEK

NEG on SS X CU
Solenoid Windings X CU
Fins w/TiN on Al X CU, SLAC

Triangular Grooves:
On Cu X CU, KEK, LBNL, SLAC

With TiN on Al X CU, SLAC
With TiN on Cu X CU, KEK, LBNL, SLAC

Clearing Electrode X CU, KEK, LBNL, SLAC

Detailed studies of the performance of the vacuum chambers in Table 8.1 have guided the selection
of the preferred mitigation methods for the baseline design of the ILC Positron DR. Through the
course of the CESRTA studies, several conclusions about the efficacy and viability of the various
mitigations have been drawn. Key conclusions in each of the magnetic field environments are
described in the following sections.

An important result of the CESRTA experiments has been the clear demonstration of the need to
include detailed information about the distribution of photons in the vacuum system, as well as
the SEY properties, in order to adequately model the experimental results. Thus the development
of the Synrad3D program, as described in Section 4.1.4.1, to model photon production, transport,
scattering and absorption within the damping ring is a critical addition to the arsenal of tools for
designing the damping ring vacuum system and evaluating its performance.

8.2.1 Drift Region

Three coatings were tested in the Q15E and Q15W EC experimental regions through the course
of the program. These were TiN, amorphous carbon (a-C) and diamond-like carbon (DLC). Per-
formance was compared with that of an uncoated Al vacuum chamber. A fourth coating, the
non-evaporable getter (NEG) TiZrV, was tested in the L3 EC experimental region.

The CESRTA evaluations indicated good performance of each of these coatings. As was described
in Section 2.2.3.1, the vacuum performance, as characterized by the dP/dI of the TiN and a-C were
somewhat worse than the Al surface, while the DLC coating showed an extended period of higher
dP/dI which was predominantly due to hydrogen evolution. The observed vacuum performance
of the NEG coating was quite good, as anticipated. With respect to the SEY performance, good
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performance, consistent with peak SEY values near unity, was observed for all of the coatings.
Direct comparisons of the SEY performance for the TiN, a-C and DLC coatings can bee seen in
Figures 5.22 through 5.24. On this basis, coating-based mitigations for the drift regions of the ILC
damping ring should provide the necessary SEY performance. In the electron cloud working group
evaluation, the final choice of coating was determined largely by the vacuum performance and
known durability of the coating. On this basis, TiN coating was chosen for the primary mitigation.
Continued observation of the durability of the other coatings is planned for Phase II of the CESRTA
research program.

Time-resolved measurements at the Q15E/W experimental locations have begun to yield even more
detailed information about the performance of the various coatings. The comparisons between TiN
and a-C coatings discussed in Section 5.2.2 provide direct sensitivity to the photoelectron yield
parameters of various surfaces (eg, see Figures 5.94 and 5.95). In a damping ring with vacuum
surfaces designed to minimize the SEY and with sections of the ring exposed to dipole or wiggler
radiation, photoelectron production can become the performance limiting effect. For the ILC
DR, drift sections in these regions will incorporate antechambers to help control photoelectron
production in the central part of the vacuum chamber. If alternate coatings, such as a-C, are found
to be sufficiently durable for use in an operating ring, then the further suppression of photoelectron
production may be of interest in future designs.

8.2.2 Quadrupole Region

A major conclusion of the CESRTA measurements in quadrupoles was that growth of the EC could
not be accounted for using single-pass beam simulations. Cloud is trapped in the quadrupoles and
builds up over tens of turns as discussed in Section 5.1.3.4. Furthermore, this effect is a likely
candidate for beam blow-up of the first bunch in a train where there is time for the cloud to
“relax” into the vicinity of the beam axis during a long gap (see Section 6.3.4.1). The CESRTA
measurements have shown that the use of a TiN coating strongly suppresses the cloud build-up and
this is the baseline EC mitigation which has been specified for the ILC DR. It remains of interest,
however, to design quadrupole chambers that incorporate grooves or clearing electrodes which can
be tested as part of the ongoing R&D program.

8.2.3 Dipole Region

In dipoles, the implementation of vacuum chambers with TiN coating and triangular grooves on the
top and bottom surfaces has proven very effective in suppressing EC build-up in these chambers.
Figure 5.27 shows the performance comparisons of an untreated surface, a TiN-coated smooth
surface, and a TiN-coated grooved surface obtained in the CESRTA measurements. These results
strongly support the choice of the grooved and coated chamber as the baseline mitigation choice for
the ILC DR. Antechambers (both radially inside and outside) are required to keep the production
of photoelectrons under control. For the ILC DR vacuum chamber design, Synrad3D provides
the necessary capability to evaluate the performance of the antechambers and optimize the final
vacuum chamber design. Testing of a prototype grooved chamber designed for use in SuperKEKB
is planned as part of the Phase II R&D program at CESRTA .

Given the efficacy of clearing electrodes as observed in the wiggler chambers (see Figure 5.42), this
is a solution that warrants further exploration for dipole chambers as well, if the ongoing R&D
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program permits. Any improvements in EC performance must be carefully balanced against the
increase in vacuum feedthroughs and active elements required.

8.2.4 Wiggler Region

In the wiggler regions, which are of particular concern for the DR design, the most efficacious
solution for mitigating EC growth has proven to be clearing electrodes (see Figure 5.42). The use
of a thin clearing electrode structure applied with thermal spray techniques along with low profile
feedthrough connections was extensively tested under a wide range of beam conditions in CESR
(see Section 2.2.3.3). Operations with this design were found to be stable and reliable.

Antechambers should be employed on both sides of the vacuum chamber in the DR wiggler straight
in order to provide a path to discrete photon stops and to prevent excessive photoelectron produc-
tion in the central chamber. As in the case of the arc regions, Synrad3D provides the ability to
evaluate and optimize the performance of the antechamber and photon stop designs.

8.3 Studies of Beam Instabilities and Emittance Growth

Using the formulae presented in Sec. 6.2.2, Table 8.2 gives the key parameters and instability
thresholds for CESRTA and the ILC damping ring, based on the parameters given in Table 8.3. As
described in Chapter 6, the observed instability thresholds for the CESRTA experimental conditions
are in good agreement with these calculations when one estimates the EC density near the beam
by way of tune-shift measurements along the train. This applies both to the appearance of syn-
chrobetatron side-bands in our tune measurements as well as rapid beam size growth as observed
with the xBSM. The good agreement between data and experiment in CESRTA gives us confidence
in the tools that are being employed to make instability threshold estimates for the ILC DR.

There is some evidence in the beam size data (eg, see Figure 6.72) that there may be emittance
growth before the full onset of the head-tail instability. In the CESRTA data, such effects occur
at EC densities which are a few times smaller than the calculated instability thresholds. This
suggests that some additional margin may be required in our estimates of the safe EC densities for
stable operation of a damping ring. In order to explore such effects in detail, more sophisticated
simulations of the beam dynamics will be necessary. In particular, the ability to run beam dynamics
simulations, which incorporate radiation damping, over a number of turns exceeding a damping time
would be very valuable in evaluating these emittance effects in the CESRTA data. For instance,
the necessary code extensions and studies are being considered for CMAD. For the time being,
however, allowing some additional margin, beyond that calculated for the head-tail instability, in
the allowable EC densities in the ILC DR is indicated.

8.4 The ILC Mitigation Recommendations

The ILC Damping Ring EC mitigation recommendations are summarized in Table 8.4 [174]. The
recommendations were prepared by a working group with representatives from ANL, CERN, Cor-
nell, INFN-LNF, KEK, LBNL and SLAC. The recommendations drew heavily on the results of the
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Table 8.2: Analytic estimate of the fast head-tail instability threshold for CESRTA and the ILC
damping ring.

CESRTA (2 GeV ) CESRTA (5 GeV ) ILC DR

Bunch Population N+ (×1010) 2 2 2
Bunch Spacing `sp (ns) 4 4 6
Average Vertical Beta Function βy (m) 16 16 24
Electron Frequency ωe/2π (GHz) 35 11 111
Phase Angle χ 8.9 3.7 14.0
Threshold Density ρe,th (×1012 m−3) 0.82 3.22 0.23
Tune Shift at Threshold ∆νx+y (×10−3) 9 14 5

Table 8.3: Parameters of CESRTA and the ILC damping ring used for instability threshold estimates.
CESRTA (2 GeV ) CESRTA (5 GeV ) ILC DR

Circumference L (m) 768 768 3245
Energy E (GeV) 2.1 5.0 5.0
Bunch Population N+ (×1010) 2 2 2
Emittance εx (nm) 2.6 40 0.45
Momentum Compaction α (×10−4) 67.6 62.0 3.3
RMS Bunch Length σz (mm) 12.2 15.7 6
RMS Energy Spread σE/E (×10−3) 0.80 0.94 1.09
Horizontal Betatron Tune νx 14.57 14.57 47.37
Vertical Betatron Tune νy 9.62 9.62 28.18
Synchrotron Tune νs 0.055 0.0454 0.031
Damping Time τx,y (ms) 56.4 19.5 24

CESRTA program and also incorporated input from research carried out at the other participating
laboratories. The evaluations used to arrive at these recommendations included:

• The efficacy of the mitigation method;

• The expected cost of the mitigation method;

• The risks associated with the mitigation (including: manufacturing challenges, technical un-
certainty, incomplete information about the mitigation method, as well as the reliability and
durability of the technique);

• The impact on other aspects of machine performance (eg, vacuum, impedance, optics design,
operational issues)

Overall, a strong emphasis was placed on specifying the most effective and reliable mitigation
scheme for each region, as long as the assessed risks and secondary impacts on machine operation
were not felt to be significant.

In Table 8.2, the ILC DR instability thresholds are calculated for the baseline low power operating
mode. The luminosity upgrade path for the ILC envisions roughly doubling the number of bunches
in the main linac bunch train. Although the baseline plan is to add a second positron DR to support
this upgrade, it is hoped that the upgrade can be achieved by doubling the number of bunches in
a single positron DR. This makes it imperative to deploy the most effective EC mitigation scheme
possible. Thus, in most regions, primary and secondary mitigation methods have been specified as
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part of an aggressive plan to defeat the build-up of the EC.

Finally, it should be noted that the choices of mitigation methods in Table 8.4 are nearly identical
to the choices that have been made for the construction of the SuperKEKB [175] vacuum system.
Thus operation of the SuperKEKB positron ring will serve as a crucial performance test that will
further improve our understanding of the anticipated performance of the ILC DR.

Table 8.4: Summary of the Electron Cloud Mitigation Recommendations for the ILC positron
damping ring. These recommendations were agreed upon at a satellite meeting of the
ECLOUD 2010 workshop, held at Cornell University on October 13, 2010. The meeting in-
cluded members of the working group as well as a number of experts who were in attendance at
the workshop.

Field Baseline Mitigation Recommendation Alternatives for
Region Primary Secondary Further Investigation

Drift* TiN Coating Solenoid Windings NEG Coating

Dipole Triangular Grooves
with TiN Coating

Antechambers for syn-
chrotron radiation power
loads and photoelectron
control

R&D into the use of clear-
ing electrodes

Quadrupole* TiN Coating R&D into the use of clear-
ing electrodes or grooves
with TiN coating

Wiggler Clearing Electrodes Antechambers for syn-
chrotron radiation power
loads and photoelectron
control

Grooves with TiN coating

* Where drift and quadrupole chambers are in arc or wiggler straight regions of the machine,
the chambers will incorporate features of those sections, ie, antechambers for power loads and
photoelectron control.
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Conclusions and Future Plans

The CESRTA Phase I research program represents an integrated effort to understand the critical
physics issues of ultra low emittance damping rings. Thus the experimental program has encom-
passed:

• Reconfiguration of CESR into a damping ring;

• Development of a range of diagnostics to characterize the growth of the electron cloud in
vacuum chambers;

• Implementation of the most promising electron cloud mitigation methods in a variety of
vacuum chambers and magnetic field environments;

• Development of optics correction techniques to prepare low emittance beams;

• Development of beam diagnostics for characterizing low emittance beams;

• Implementation of instrumentation capable of characterizing beam dynamics effects in bunch
trains, which are induced by the electron cloud (and other sources).

By utilizing the inherent flexibility of ring operations with CESRTA, the research program was able
to launch a systematic exploration of the fundamental physics of damping rings with a primary
focus on electron cloud effects. This research effort supported a rich range of developments in
beam instrumentation, beam tuning and low emittance correction, electron cloud measurement
techniques, electron cloud analysis and modeling, electron cloud mitigation techniques, and engi-
neering for damping ring design. The sensitivity achieved with key studies has demonstrated the
potential to obtain detailed surface physics information in a working accelerator environment. The
level of detail of the studies has enabled application of the results to other machines. The ability to
conduct detailed systematic studies has provided confidence in the extrapolation and application of
the results to other machines. Thus the program has provided both the required technical inputs as
well as the confidence required to develop the ILC damping ring design. More broadly, results have
been obtained which are applicable to damping rings, electron-positron colliders, proton machines
sensitive to the electron cloud, and light sources.

A Phase II research program has now begun which will expand on the research thrusts of the Phase
I effort. Furthermore, the accelerator capabilities implemented for Phase I now provide a robust
foundation for extending research into new areas such as intra-beam scattering and fast ion effects
during Phase II.
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9.1 CESRTA Instrumentation and Infrastructure

The goals of the initial phase of the CESRTA R&D program required new instrumentation for tuning
and measuring emittance, measuring density, growth and decay of the electron cloud and the effec-
tiveness of various mitigation techniques, determining secondary emission yields of various vacuum
chamber surfaces and coatings, and characterizing beam dynamics effects due to the cloud.

The new BPM electronics and the x-ray beam size monitor enabled emittance tuning and measure-
ment of the size of the low emittance beams. Retarding field analyzers in drift, dipole, quadrupole
and wiggler fields provided measurements of the time averaged dependence of the electron cloud
density and energy spectrum on beam structure and magnetic field. Time resolved measurements
of the electron cloud with shielded button electrode pickups were used to extract information about
growth and decay of the cloud. The high bandwidth of the BPM system, and a feedback system
with 4 ns bunch-to-bunch capability were exploited to measure electron cloud induced tune shifts
and instabilities. The bunch-by-bunch bandwidth of the beam size monitor was essential to quan-
tifying the sub-threshold emittance growth due to the cloud and quantify the onset of full-blown
beam instabilities.

9.2 Findings

The principal findings of the CESRTA research program are the electron cloud related design criteria
of a low emittance, high intensity positron damping ring. RFAs have been used to characterize
the effectiveness of more than a dozen mitigation techniques. Effects of beam processing for var-
ious chamber types have been quantified with in-situ measurement of secondary emission yield.
Measurements of cloud induced tune shift are in good agreement with the elaborate model that
includes everything from the distribution, scatter, and absorbtion of primary synchrotron radiated
photons on the walls of a realistic vacuum chamber to the dynamics the cloud electrons kicked by
the circulating bunches within the static B-field of the storage ring guide field magnets, producing
secondaries on collision with that same vacuum chamber. Local measurements of the electron cloud
growth and decay with RFAs and SPUs have been used to further constrain the model parameters.
Additional information about local cloud build-up has been obtained with a variety of techniques
utilizing microwave transmission through short sections of the CESR vacuum system. With the
beam instrumentation We have measured threshold densities for electron cloud induced instabilities
and emittance growth.

The findings with respect to mitigations and emittance diluting cloud density thresholds are the
basis of the recommendations for the ILC damping ring design.

We have developed techniques and instrumentation for emittance tuning and consistently achieve
less than 10 pm-rad vertical emittance in a variety of lattice configurations. The measurements
of residual coupling and vertical dispersion are based on resonant excitation of normal modes.
We have succeeded in reducing the typical time for a single iteration of measurements and their
corrections to a few minutes. The beam based measurements depend on the precision of the turn-
by-turn beam position monitors. We have implemented procedures for their routine calibration
to minimize systematic measurement errors. The x-ray beam size monitor provides continuous
monitoring of vertical emittance.
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9.3 Future Plans

During the next phase of the program we will add tools for measuring horizontal beam size (a visible
light interferometer), beam energy spread (horizontal size versus variable dispersion), and bunch
length (streak camera). The simultaneous measurement of vertical, horizontal and longitudinal
phase space will be essential to the study of intra-beam scattering emittance dilution. As a comple-
ment to the x-ray beam size camera, we will explore an alternative technique for measuring vertical
beam size that depends on the angular distribution and polarization of visible synchrotron radia-
tion. We will be developing an x-ray beam size monitor with response times that allow resolution
of variation of the size along the length of the bunch.

We will also be installing more sophisticated detectors for making time resolved measurements of
the growth and decay of the electron cloud in dipole and quadrupole, as well as drift fields.

9.3.1 Emittance Tuning

The low emittance tuning procedure is at present limited by systematics associated with mea-
surements of vertical dispersion. We plan to better understand those limitations with the help of
modeling and simulation. We are developing a beam based technique for measuring the physical tilt
of the beam position monitors. We are also building machinery for analysis of the AC-dispersion
data using singular value decomposition rather than simple Fourier techniques. As the required
coupling measurements depend on the beam position monitors, we will continue to investigate ef-
fects of timing jitter and drifts. Our goal is to improve the resolution of the dispersion measurement
from 15 mm to as few as 3 mm.

9.3.2 Intra-Beam Scattering

Measurement and analysis of intra-beam scattering is an important component of the next phase
of the CESRTA program. The instrumentation described above will provide a complete set of
measurements of the equilibrium charge density. As that equilibrium has a strong beam energy
dependence, measurements over a range of energies will help us to distinguish IBS from other
emittance diluting effects. Measurements with electron as well as positron beams will disentangle
the contributions from ions and electron cloud.

9.3.3 Ion Effects

CESRTA is an excellent laboratory for investigating ion effects in electron beams, and in particular
the fast ion instability in bunch trains in the ultra-low vertical emittance regime. The turn-by-turn
spectra gathered with the high bandwidth beam position and vertical beam size monitors for each
bunch in a train can provide signatures of ion-beam coupling and emittance dilution. Measurement
of instability thresholds as a function of vacuum pressure, and for positrons as well as electrons
will be used to isolate ion effects from other collective phenomena. Simulations will be developed
to support the study.
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9.3.4 Electron Cloud

Electron cloud R&D conducted at CESRTA has made important contributions to our understanding
of electron cloud growth and its mitigation, and to electron cloud induced beam dynamics.

We have developed models for calculating the buildup of the cloud, including the dependence on
beam parameters and vacuum chamber surface characteristics, and made extensive comparison
with measurements. The calculations are in reasonable agreement with both global (tune shift)
and local (RFA, SPU and TE wave) measurements in CESRTA. With the help of coatings and
geometries that mitigate the production of secondary electrons, the contribution from primaries
becomes increasingly important. Our research will extend to the physics of quantum efficiency and
modeling of primary electron distributions, in addition to further refining our understanding of
secondary processes.

There will be ongoing monitoring of RFA and SPU data to characterize the durability of mitigations
and the effects of beam processing. We are extending the capability of the device for in-situ
measurement of SEY to cover an expanded angular and energy range.

RFA detectors that share both time averaging and time resolving capability have been installed
along with various mitigations in the dipole chicane. The same chambers are within a region
accessible to TE wave measurements. Comparison of the complementary measurements will help
us to better understand model parameters.

While both global measurements of cloud lifetime with tune shift data, and local measurements
with SPUs suggest that the lifetime of the cloud is of order hundreds of nanoseconds, there is some
evidence of a long lived cloud with lifetime of many CESR revolutions τrev = 2.56 µs. Such a
long-lived cloud could have important implications for the performance of damping rings and other
low emittance machines.

There remain a number of outstanding questions regarding electron cloud beam dynamics phenom-
ena in the positron storage ring environment. We have observed electron-cloud-induced emittance
growth and head tail instability, the former by direct measurement of beam size and the latter
from the turn-by-turn bunch position spectra. But we have yet to determine to what extent the
emittance growth and instability are related. Is the emittance growth simply a manifestation of the
head-tail motion, or is there a sub-threshold incoherent growth in beam size? While the signature
of the instability appears in the BPM data, we have yet to reproducibly identify that signature in
the turn-by-turn bunch size data.

We are developing both analytic and computational tools for analysis of instabilities and emittance
dilution. CMAD, the code that is used to model interaction of the bunch with the cloud and
that predicts the onset of instabilities, is being extended with new algorithms for greater efficiency
and realism. Analysis of BPM response to head tail motion will help us to make the connection
between the amplitude of lines in the position spectrum and bunch size. We are also developing
new instrumentation for characterizing intra-bunch motion, including an extension of the xBSM to
measure longitudinal dependence of bunch vertical cross section and offset.
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Glossary of Acronyms Used in the
Report

BnnE Bending magnet number nn in the East half of CESR.

BnnW Bending magnet number nn in the West half of CESR.

BPM Beam position monitor.

CBPM CESR beam position monitor data acquisition system.

CCG Cold cathode gauge.

CESR Cornell Electron/Positron Storage Ring.

CESR-c CESR collider, configured as a charm factory.

CESRTA CESR Test Accelerator.

CHESS Cornell High Energy Synchrotron Source, synchrotron light source.

CLOUDLAND A storage ring beam dynamics simulation code.

CMAD A storage ring beam dynamics simulation code.

CMM Coordinate measuring machine.

DIP Distributed sputter-ion pump in the CESR bending magnets.

DSP Digital signal processor.

EB-weld Electron beam weld.

EC Electron cloud.

ECE Electron cloud effect.

ECLOUD An electron-cloud build-up simulation code.

EMI Electro-magnetic interference.

EPICS Experimental Physics and Industrial Control System controls architecture.

FFT Fast Fourier transform.
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FPGA Field programmable gate array, electronic digital processing.

HEP High energy physics.

HOML Higher order mode loss: energy loss by scattering of the beams electro-magnetic field from
discontinuities of the vacuum chamber walls.

IHT Head-tail, refers to front-to-back beam shape oscillation of the bunch.

IOC EPICS Input-Output Controller.

IR Interaction region, which held the CLEO-c detector for HEP research.

L0 Southern long straight section in CESR.

L3 Northern long straight section in CESR.

LET Low emittance tuning.

NEG Non-evaporable getter vacuum pump.

PEHTS A storage ring beam dynamics simulation code.

PEP-II Positron-Electron Project B-factory.

PEP-II LER PEP-II low energy ring.

POSINST A positron/electron electron-cloud build-up simulation code.

QA/QC Quality assurance / quality control.

QCM Quartz Crystal Micro-balance.

QE Quantum efficiency (same as photoemission yield).

QnnE Quadrupole magnet number nn in the East half of CESR.

QnnE Quadrupole magnet number nn in the West half of CESR.

RFA Retarding field analyzer.

RGA Residual gas analyzer.

SCW Superconducting wiggler.

SEY Secondary emission yield.

SIP Sputter ion pump.

SPU Shielded pickup, instrument for measuring the time development of the electron cloud.

SR Synchrotron radiation.

Synrad A two-dimensional simulation code for synchrotron radiation.

Synrad3D A three-dimensional simulation code for synchrotron radiation.

TE-Wave Transverse electric waveguide mode, used as a diagnostic to determine the average
electron cloud density.

TiSP Titanium sublimation (vacuum) pump.

TDR Time domain reflectometer for measuring transmission line matching.
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UHV Ultra-high vacuum.

xBSM X-ray beam size monitor.
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