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p.yule@psyc.bbk.ac.uk

Abstract

Much argument has been generated conceming the problem
whether human deductive performance can best be viewed
as rule-based (e.g. Rips) or model-based (e.g. Johnson-
Laird). This paper argues that the distinction is ill-founded,
and demonstrates that an ostensibly model-based syllogistic
reasoning method can easily be implemented in a natural de-
duction calculus, which moreover makes fully explicit refer-
ence to the different possible interpretations of the premisses.
More generally, it is unclear that other model-based methods
cannot be given similar natural-deduction treatments, raising
doubts about the distinguishability in principle of rule-based
and model-based methods.

Introduction

The “rules versus models™ debate in the psychology of rea-
soning has generated a considerable amount of argument over
the best way to model human competence in deductive rea-
soning tasks such as syllogistic and propositional reason-
ing. The question bears a superficial resemblance to the
distinction in logic between proof theory and model the-
ory: proof-theoretic issues are usually addressed with ref-
erence to axiomatic or natural deduction systems, whereas
model theory is concerned with individuals and sets of in-
dividuals. Thus the “rule theorists™ such as Rips (1983)
hold that human deductive competence is implemented in a
theorem-proving system which uses computational analogues
of natural-deduction rules (and a control module) to derive
proofs. By contrast, Mental Models theory (see e.g. Johnson-
Laird, 1983; Johnson-Laird & Byme, 1991) uses more con-
crete tableaux which represent individuals in a spatial array,
and specifies procedures to transform these tableaux in ways
which exhaust the (relevant) logical possibilities, without the
explicit use of inference rules.

Superficially at least, then, Mental Models appear to be se-
mantic whereas rule-based methods are syntactic. However,
insofar as Mental Models theory specifies an effective pro-
cedure for its logical domain, it is also necessarily a proof
system, and subject to the usual limits of computability and
incompleteness on proof systems (see e.g. Boolos & Jeffrey,
1980). As a consequence, it must be possible to recast the
Mental Models system in rule-based, proof-theoretic terms.

Of course, the rules versus models debate is primarily con-
cerned, not with distinguishing rule-based and model-based
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systems in general, but with the empirical evaluation of par-
ticular systems of each type, with respect to human reasoning
data. To the extent that the different systems make differ-
ent empirical predictions, they can be compared for empirical
adequacy. While this goal is reasonable in principle, it has
proved difficult to achieve in practice: both theories can ac-
count for much of the data, and as Evans & Over (1997) and
Roberts (1983) observe, both camps allow themselves suffi-
cient free parameters that the question which is the best may
be hard if not impossible 1o resolve using conventional psy-
chological methodology.

Despite these worries, Evans & Over (1997) conclude that
model-based methods are more plausible, since (they claim)
they are better suited to modelling hypothetical reasoning,
or the consideration of possible alternative situations. They
make it clear that their idea of mental models is not neces-
sarily equivalent to any of the versions proposed by Johnson-
Laird and his co-workers, but rather they have a much more
minimal account in mind: rationality in a deductive task con-
sists in the consideration of multiple alternative situations
which are consistent with the premisses. They hold that the
question could be settled by analysing reasoners’ proof pro-
tocols, and argue that if reasoners mentioned alternative in-
terpretations of the premisses, this would be sufficient to es-
tablish that they were using a model-based method.

The aim of this paper is to show that this is no solution,
since an ostensibly model-based method can be implemented
as a rule-based, natural deduction method, albeit a slightly
unconventional one. This method makes explicit the same
information as do model-based methods, and handles the al-
ternative interpretations of the premisses explicitly, in a man-
ner closely analogous to the model-based method. Thus the
rule-based method could underlie the protocols if the model-
based method could. More generally, this paper suggests that
similar treatments could be given for many of the domains
used in the psychology of deductive reasoning, and seeks to
emphasise the indistinguishability of rule-based and model-
based methods in these domains.

Explicit and Implicit Models

One one interprelation, to say that reasoners consider all pos-
sible models of premisses is to say no more than that they
have a grasp of logic — all sound deductive mechanisms,
whether overtly proof-theoretic (e.g. axiomatic or natural de-
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1 (1) (3z)(Az & Bz) A

2 (2 (Vz)(Br—Cz) A

3 (3) Aa& Ba A

3 @) Aa 3&E

3 (5 Ba 3&E

2 (6) Ba— Ca 2VYE

32 (7) Ca 5.6 MPP
32 (8) Aa&Ca 47 &1
12 9 (Bz)(Az&Czr) 1383E

Figure 1: A simple natural deduction proof of the syllogism
Some A are B, all B are C, so some A are C.

duction systems) or model-based (e.g. Euler Circles or Men-
tal Models), either implicitly or explicitly ensure that their
conclusions hold in all logical models of their premisses —
this is just what soundness means.

Of course, the proponents of model-based theories intend
that explicit representations of models are used, but it is worth
observing that most ostensibly model-based methods do not
represent all logical models explicitly. In the domain of syl-
logistic reasoning, although Erickson's (1974) method us-
ing Euler Circles interprets each separate diagram as corre-
sponding to an individual logical model, making this method
maximally explicit, this approach leads to a combinatorial
explosion, so more recent methods do not represent mod-
els this way. Mental Models theory (e.g. Johnson-Laird,
1983; Johnson-Laird & Byrne, 1991) adopts the expedient
of condensing several logical models into one representation
(a “Mental Model”) by explicitly marking the distinction be-
tween necessary and merely possible individuals. Conse-
quently the number of distinct representations to be consid-
ered is drastically reduced, to between one and three.

The same device can be used to make Euler Circles
tractable (Stenning & Oberlander, 1995; Stenning & Yule,
1997 forthcoming) — if we mark regions of the diagram that
correspond 1o necessary individuals, then the number of di-
agrams required for each premiss is reduced to one. More-
over, provided the diagrams are interpreted correctly, only
one compound diagram for the premiss pair need be con-
structed. The Euler Circle method is summarised below, but
it should already be clear that on a scale from minimum to
maximum explicitness, neither Mental Models nor the Euler
Circles method represent logical models maximally explic-
itly.

Nevertheless there seems to be a strong contrast between
these and the minimally explicit natural deduction proof in
Figure 1, which I assume is a typical example of a rule-based
proof. The crucial step to notice in this proof is the appli-
cation of Modus FPonens in line (7). Consideration of the
truth table for — reveals that P — () can be rewritten
as (P& Q)V (-P & Q) V (=P & -Q) — this is known
as Canonical Disjunctive Normal Form (see Lemmon, 1965)
— and making this change is sufficient to form the basis of
a natural deduction method which closely parallels the Euler

All A are B @B
Some A are B A@B
No A are B A@ ®B

Some A are not B

Figure 2: Euler diagrams for each premiss type. Regions rep-
resenting necessary individuals are marked with a x.

Circle method, and which will be demonstrated later.

The Method of Euler Circles

Since the Method has been described elsewhere (Stenning &
Oberlander, 1995; Stenning & Yule, 1997 forthcoming), only
a brief summary will be given here.

The method uses diagrams composed of circles to repre-
sent the premisses of the syllogism (see Figure 2). Each cir-
cle represents the set denoted by a term (A or B), and each
region in a diagram represents an individual whose existence
is consistent with the truth of the premiss. Regions which rep-
resent individuals whose existence is entailed by the premiss
are marked with an x.

Any well-formed syllogism has one term that appears in
both the premisses, the middle term, and two others which
each appear in only one of the premisses, the end rerms. To
solve a syllogism, a compound diagram is constructed from
the two premiss diagrams by identifying the circles corre-
sponding to the middle term, while preserving the topolog-
ical relationships of the premiss diagrams. For some prob-
lems, this may be achieved in different ways (these corre-
spond rather closely to the multiple-model problems in Men-
tal Models theory), but in these cases the diagram with the
maximum possible number of subregions should be con-
structed — it is sufficient to overlap the end-term circles if
possible. Finally, if any x-marked region has been bisected
by the arc of another circle during this process, its mark is
removed; otherwise, its mark remains in the compound dia-
gram.

The semantics of the resulting diagram are the same as
those of the premiss diagrams': any marked regions in the
compound diagram correspond to individuals whose exis-
tence is entailed by, and the rest represent individuals which
are consistent with, the premisses taken together. Only if
there is a necessary individual, is there a conventional quan-
tified conclusion, although there are necessary individuals
which do not form the basis of quantified conclusions because
they are inexpressible as syllogistic sentences (Stenning &
Oberlander, 1995).

Particular conclusions can be read off necessary individu-
als directly, by dropping the middle term and picking a pos-
itive end term as the subject of the conclusion, but for uni-

'Mental Models do not have this property
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Existential Implications

AllAB (3z)(Az& Bx)
Some A B (3r)(Az&Bx)
No A B

Some Anot B (3z)(Az&—Br)

CDNF Inferential Constraints
& (Vy)((Ay&eBy) V (~Ay&By) V (- Ay&~By))
& (Vy)((Ay&By) v (~Ay&By) V (Ay&~By) V (~Ay&~By))
((3z)(~Ax& Br)&(3y)(Ay&—-By)) & (Vz)((~Az&Bz) V (Az&-Bz) V (nAz&~Bz))
& (Vy)((Ay&By) V (~Ay&By) V (Ay&-By) V (~Ay&-By))

Figure 3: Representing premisses in Monadic Predicate Calculus. Each premiss is represented as the conjunction of its existen-
tial implications and its Canonical Disjunctive Normal Form (CDNF) inferential constraints.

versal conclusions, a further condition applies: the marked
region should be an unbroken circle corresponding to an end
term, and this end term is the subject of the conclusion.

Implementation in Monadic Predicate Calculus

It will now be shown how the Euler Circle method can be im-
plemented in Monadic Predicate Calculus (MPC) using nat-
ural deduction. Since space is short, only the derivation of
necessary individuals is covered here; see Stenning & Yule
(1997 forthcoming) for more on drawing quantified conclu-
sions in a variety of implementations.

In order to understand how the implementation works,
it should be recalled that in the proof shown in Figure I,
the premisses had different roles: one of them (the par-
ticular premiss) was treated as an existential conjunction,
(3z)(Az & Bz), while the other was treated as a universally
quantified conditional, (Yz)(Bz — Czx). Modus Ponens
was then used, with the former premiss? providing the an-
tecedent and the latter providing the conditional. Thus the
role of the first premiss was to establish the existence of some
individual, and the role of the second was to provide infor-
mation which was used to make an inference about that in-
dividual. Similarly, in the Euler Circle implementation, we
distinguish between the existential implications of a premiss,
and the set of consistent individuals. The set of consistent
individuals can be viewed as a set of inferential constraints;
the universal premisses, having only three regions (including
the background), place constraints on the total set of possible
individuals, whereas the particular premisses, having four re-
gions, impose no such constraints (see Figure 2). Also, we
have seen that a conditional can be translated into a sentence
with three disjuncts, its Canonical Disjunctive Normal Form
representation, which as we will see, corresponds directly to
the set of consistent individuals. The strategy in implement-
ing the MPC version of the Euler Circle method is to explic-
itly represent both components of each premiss type — its
existential implications and its inferential constraints.

In MPC, each premiss can be represented as the conjunc-
tion of two sentences (see Figure 3). The first sentence. a con-
junction of existentially quantified conjunctions, expresses
the existential implications of the premiss under its standard
syllogistic interpretation, and corresponds to the set of x-
marked regions in the Euler Circle system. We can call it

%Strictly, an instantiation of the former premiss was used to pro-
vide the antecedent.

the Existential Implications. The second sentence is a uni-
versally quantified disjunction of conjunctions, and expresses
the list of individuals which are consistent with the premisses,
in Canonical Disjunctive Normal Form, which explicitly con-
strains the set of consistent individuals. We can refer to it as
the CDNF Inferential Constraints.

In the proofs that follow, the natural deduction system is a
variant on Lemmon's (1965) system, but for convenience and
to shorten the proofs, some modifications have been made to
the system. &-elimination and V-elimination have been gen-
eralised to handle multiple conjuncts and disjuncts respec-
tively. Also the Reductio Ad Absurdum rule has been re-
placed with Ex Falso Quodliber (EFQ), which has the form
P&—P F @ — this sequent is provable in propositional cal-
culus, so the soundness of the system is unaffected.

Ex. 1: A Valid Conclusion

Figure 4 shows a proof in Monadic Predicate Calculus for
the example Sone A are B, All B are C. This problem has
the valid conclusion Some A are C, and we will prove the
existence of the necessary individual from which this conse-
quence follows, by analogy with the Euler Circle system. The
strategy is to take the sentence which expresses the existential
implications of one of the premisses. and instantiate it, and
then the main body of the proof uses a large V-elimination on
the inferential constraints of the other premiss, to show that
the fully specified three-term individual exists.

Lines (1) and (2) are the assumptions, representations in
our chosen form for the two premisses. In line (3) the sen-
tence which expresses the existential implications of the first
premiss is derived; since this is existentially quantified, (4)
assumes the corresponding arbitrarily instantiated sentence.
(5) and (6) derive the sentence expressing the inferential con-
straints of the second premiss, and instantiate it with the cho-
sen arbitrary name,

We are now ready to perform the main inferential step, cor-
responding to the Modus Ponens step in the proof in Figure 1.
In this case, however, it is necessary to use V-elimination to
perform this function, so each of the disjuncts in (6) must be
assumed in turn, as in lines (7). (11) and (15). The strategy
is to find one of these disjuncts which has the same formula
containing the B predicate as in (4) (the instantiated existen-
tial implications of first premiss), then to unify it with the for-
mula in (4), to give a formula denoting the necessary individ-
ual (9). When the disjunct contains a contradictory formula
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1 (1) (3z)(Az& Bz) & (Vy)((Ay&By) V (~Ay&By) V (Ay&—By) V (~Ay&-By)) A

2 @ (3)(Bz&Cz) & (Vy)(By&Cy) V (~By&Cy) V (~By&~Cy)) A

1 (3)  (3z)(Az&Bz) 1 &E

4 (4)  (Aa&Ba) A

2 (9 (Yy)((By&kCy)V (~By&Cy) v (~By&k Cy)) 2&E

2 (6) (Ba&Ca)V (nBa&Ca)V (~Ba&~Ca) 5VE

7 ()  (Ba&cCa) A

7 ®) Ca 7 &E

47 (9 (Aa&Ba&Ca) 48 &I

4 (10) Ba 4 &E

11 (11) (-Ba&Ca) A

11  (12) -Ba 11 &E
411 (13) (Ba&-Ba) 10,12 &I
411 (14) (Aa&Ba&Ca) 13 EFQ
15 (15) (-~Ba&-Cha) A

15 (16) =Ba 15 &E
4,15 (17) (Ba&-Ba) 9,16 &I
415 (18) (Aa&Ba&Ca) 17 EFQ
42 (19) (Aa&Ba&Ca) 6,7.9,11,14,15,18 VE
1,2 (20) (3z)(Az&Bz&Cz) 34,19 3E

Figure 4: Drawing a valid individual conclusion from the premisses Some A are B, All B are C.

for the B term, then we derive a contradiction (as in (13) and
(17)), and using Ex Falso Quodliber we are then permitted to
derive anything (P&—P I Q), so we derive the same formula
as we did by unification, as in (14) and (18). Since each of
the disjuncts in (5) entails the same conclusion, V-elimination
is permitted, discharging the auxiliary assumptions (7), (11)
and (15) so that the conclusion now follows from (2) and (4).

All that remains to be done is to show that the conclusion
in fact follows from the original premisses. Since the name
in (4) does not occur in (2), 3-elimination is permitted, so in
(20) the existentially quantified conclusion now follows from
(1) and (2), completing the proof.

Ex. 2: Failure to Draw a Valid Conclusion

We have seen how to draw a valid conclusion; next we exam-
ine a case where a valid conclusion cannot be drawn.

Figure 5 shows the proof for the problem All A are B, Some
C are not B, which has a valid conclusion Some C are not A,
but is a multiple-model problem in terms of Mental Models
theory. In this example we use the existential implications
portion of the MPC representation for A/l A are B, and the in-
ferential constraints portion of the representation for Some C
are not B, and we cannot derive a necessary individual, since
the existential implications sentence is unifiable with more
than one disjunct of the inferential constraints sentence. The
best we can do is to derive a disjunctive conclusion, which
holds for each disjunct of the inferential constraints.

Lines (1)—(6) proceed analogously with Example 1, se-
lecting one existential implications sentence and one inferen-
tial constraints sentence, and instantiating them with an arbi-
trary name. But in the main V-elimination, we cannot derive
the same formula for each disjunct — note that in lines (9)

and (14) we have different formulas, so that by line (19) we
have reached an impasse. However, lines (21)—(23) show
that for each disjunct we can derive the same disjunctive for-
mula, and thus complete the V-elimination in line (24), but
the final conclusion (25) does not specify a single necessary
individual.

This outcome is the direct analogue of the removal of an
x-mark in a bisected region of an Euler Diagram. The valid
conclusion could be derived by using the existential implica-
tions portion of the Some. .. not premiss with the inferential
constraints portion of the All premiss. This is not illustrated
here owing to space limitations, and can be left as an exercise
for the interested reader.

The fact that a valid conclusion can be missed in this way
demonstrates the importance of selecting the right premiss to
supply the existential implications sentence; in general it is
necessary to try both possible assignments in order to derive
all necessary individuals. However, when only one premiss is
particular, the existential implications of that premiss should
be used with the inferential constraints of the universal sen-
tence, since particular sentences never license conditional in-
ferences.

Discussion

It should be clear that there is a high degree of correspon-
dence between the graphical Euler Circle method and the
natural deduction formulation; however there are some po-
tentially important differences. In the Euler Circle method,
owing to the specificity of graphical representations (Sten-
ning & Oberlander, 1995), the attempt to find all the neces-
sary individuals cannot avoid producing the side-effect that
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| (1) (32)(As&Bz) & (Vy)((Ay&By) V (~Ay&By) V (~Ay&-By)) A
2 (2)  (3z2)(Ca&~-Br) &

(Vy)((Cy&By) v (~Cy&By) V (Cy&~By) V (~Cy&—By)) A
1 (3)  (3r)(Az&Bzx) 1 &E
4 4 Aa&Ba A
2 () (V)((Cy&By) v (~Cy&By) V (Cy&~By) V (~Cy&~By)) 2&E
2 (6 (Ca&Ba)V(~Ca&Ba)V (Cak—Ba)V (~Ca&~Ba) 5VE
4 (7)  Ba 4 LE
8 (8) Ca&Ba A
8 9) Ca 8 &E
48 (10) Aa&Ba&Ca 49 &1
11 (11) —Ca&Ba A
11 (12) =Ca 11 &E
411 (13) Aa&Ba&-Ca 412 &1
14 (14) Ca&-Ba A
14 (15) =Ba 14 &E
414 (16) Ba&-Ba 7,15 &I
17 (17) =Ca&-Ba A
17 (18) =Ba 17 &E
4,17 (19) Ba&-Ba 7,18 &1
48 (20) (Aa&Bae&Ca)V (Aa&Ba&k—Ca) 10 VI
4,11 (21) (Aa&Ba&Ca)V (Aa&Ba&-Ca) 13 vI
414 (22) (Aa&Ba&Ca)V (Aa&Ba&—Ca) 16 EFQ
4,17 (23) (Aa&Ba&Ca)V (Aa&Ba&~Ca) 19 EFQ
42 (24) (Aa&Ba&Ca)V (Aa&Ba&~Ca) 6.8.20,11,21.14,22,17,23 VE
12 (25) (32)((Ar&Br&Cz) V (Az&Br&-Cxz)) 3424 3E

Figure 5: Failure to draw a valid conclusion from the premisses All A are B, Some C are not B

the complete set of consistent individuals (the unmarked re-
gions) is also represented. By contrast, in the natural deduc-
tion method, these individuals are not represented, since the
method is “focussed” on only the candidate necessary indi-
viduals. This makes no difference to its effectiveness, since
the possible existence of these “irrelevant™ individuals has no
bearing on the validity of any conclusions. Mental Models
theory exhibits a similar neglect of irrelevant individuals; in
early versions (e.g. Johnson-Laird, 1983) several possible in-
dividuals may be summarised by a single row of the tableau,
and in more recent versions (Johnson-Laird & Byme, 1991)
the model is never “fleshed out” to the extent that they be-
come explicit. In this respect Mental Models theory is in-
termediate between the Euler Circles and natural deduction
methods.

However, one apparent difference is the distinction in Men-
tal Models theory between single-model and multiple-model
problems. In Mental Models theory, when two Mental Mod-
els are treated as alternatives, it is as an argument against
some specific conclusion, and in fact this is the basis for the
individuation of Mental Models. Only the differences which
are relevant to the truth or falsity of some given conclusion
are made fully explicit. But it is exactly this type of alterna-
tion that is summarised when a conclusion is refuted in the
present natural deduction system, and only a disjunction fol-
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lows: the disjunction summarises the only salient difference
between the two sets of logical models. It should be clear on
this basis, contra Evans & Over (1997), that protocol analyses
would be unlikely to be sufficient to distinguish the model-
based method from this natural deduction method, if we as-
sume that participants are most likely to mention the most
salient differences between the cases under consideration.

Altough the natural deduction method in its present form
is primarily intended as a sceplical argument, it is easy lo
skeich how it could be developed into a serious psychologi-
cal model. Perhaps the most important developments would
concern the production of appropriate error patterns, since
it is sometimes argued that model-based methods provide a
natural account of errors, especially invalid conclusions, in
a way that rule-based methods cannot (Christoph Schlieder,
personal communication). In the present method it is actually
trivially easy to generate invalid conclusions — just assume
that a reasoner might omit to consider all the disjuncts in the
V-elimination. Failure to draw a valid conclusion is easily im-
plemented in conventional rule-based implementations, such
as Rips' (1983) system, and potentially in the present one,
by making rule application probabilistic. but also. as we have
seen in Example 2, in the present method failure to consider
the existential implications of both premisses can lead to such
errors of omission.



There is no need to assume that the rules in use would
be implemented exactly as in the “paper’ version. For ex-
ample, much of the proof structure (i.e. the V-elimination)
could if necessary be parallelised, and treatment of contridic-
tory cases could be changed in numerous ways. Hyperprool
(Barwise & Etchemendy, 1994) provides a good example of
the way a multiple-cases proof structure can be implemented
without the need for much of the fine detail used in the present
implementation: Hyperproof's V-elimination permits cases
to be eliminated immediately when a contradiction is found,
without the need for the Ex Falso Quodlibet rule used here,
and disjunctions can be read off the remaining cases with-
out the need for an explicit rule of V-introduction. Changing
such details certainly would not make the method any less
rule-based.

Although this paper has focussed on only the case of syl-
logistic reasoning, it is straightforward to extend the same
approach to other logical fragments commonly studied in the
reasoning literature. Propositional reasoning is certainly sus-
ceptible to such treatment, since any propositional formula
can be rewritten in Canonical Disjunctive Normal Form (see
Lemmon, 1965), so any model-based propositional reasoning
method could be implemented using natural deduction with
maximally explicit representation of models.

Conclusions

In view of the ease with which model-based methods can be
implemented as rule-based methods. it is difficult to see what
substance there is in the rules versus models debate. Evans
& Over's (1997) approach to the issue, avoiding commit-
ment to particular versions of Mental Models theory, owing to
the difficulty of resolving the debate by conventional empiri-
cal means, inadvertently leads them to endorse model-based
methods in general, leaving them open to the criticism that
there is no distinction between rule-based and model-based
methods in general.

If the debate can be resolved, it will be by virtue of one or
other well-specified theory's empirical superiority. But ulti-
mately any model can be implemented in numerous different
ways, and it is features expressed at a relatively abstract level
that serve to distinguish the class of empirically adequate
models from the rest. Stenning & Yule (1986) have shown
that a variety of diverse implementations of the Euler Circles
method have similar empirical consequences, since more ab-
stract logical features of the class of algorithms account for
the empirical data. Thus imaginably, many implementation-
ally distinct but logically similar methods could exist in the
population, and the main psychological trends (such as the
“multiple models” effect and the effect of Figure on term or-
der in conclusions) would still emerge from the statistical ag-
gregate, since they reflect important logical constraints on any
good solution strategy. We can understand these higher-level
constraints only by examination of a diverse range of alterna-
tives; the danger is to take a single method too seriously, and
thus to fail to understand why it works the way it does.

The problem of finding an appropriate level of abstraction

at which to express theoretical constraints is not unique (o
the study of reasoning: in cognitive modelling gencrally, it is
hard to separate "'mere’ implementational detail from the the-
oretical commitments of a model (Cooper, Fox, Farringdon
& Shallice, 1996). It is casy to be misled by the technicali-
tics of implementing a model as a computer program, or even
on paper, such that properties of these implementations come
to dominate the psychological debate. Ironically perhaps, a
better understanding of the reasons for behaviour may come
from a more thorough examination of alternative models than
has usually been conducted.
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