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Abstract of the Dissertation

An Automated Perceptual Learning Algorithm for

Determining Structure-Based Visual Prototypes of Objects

from Internet-Scale Data

by

Lichao Chen

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2015

Professor Vwani P. Roychowdhury, Chair

Object discovery and representation lies at the heart of computer vision, and therefore it

has attracted widespread interest in the past several decades. Early efforts were largely

based on single template models, bag-of-visual-word models, and part-based models. To

represent the intra-class variety of the same type of object and address partial occlusion

problem in images, more complex object representations, like attribute-based and part-based

models, have been proposed. The advent of the Internet, however, enables one to obtain a

comprehensive set of images describing the same object as viewed from different angles and

perspectives, and its natural association with other objects. This opens up new opportunities

and challenges: Given that for the first time we have millions of exemplars of an object

embedded in its natural context, can one effectively mimic human-like cognition and build

up prototypes (comprising parts, their different views, and their spatial relationships) for

each object category? The well-known supervised approach relies heavily on well labeled

image datasets and it (i) is still prohibitively hard for image labeling to catch up with

the speed of image crawling, and (ii) does not lead to succinct prototype models for each

category, which can then be used to locate object instances in a query. In my dissertation,

we investigated the open problem of constructing part-based object representation models

from very large scale image databases in an unsupervised manner.
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To achieve this goal, we first define a network model from a full Bayesian setting. This

augmented network model has spatial information in it, and is scale invariant throughout

any image resolution variations in the learning set. This network model is able to find

visual templates of the same part with dramatically different visual appearances, which, in

existing models, have to be added manually or using text information from the Internet.

We show that the global spatial structure of the underlying and unknown objects can be

restored completely from the recorded pairwise relative position data. We also developed an

approach to learn the graphical model in a completely unsupervised manner from a large

set of unlabeled data, and the corresponding algorithm to do detection using the learned

model. We also apply our algorithm to various crawled and archived datasets, show that

our approach is computationally scalable and can construct part-based models much more

efficiently than those presented in the recent computer vision literature.
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CHAPTER 1

Introduction

1.1 Motivation from Cognitive and Neuroscience Findings

Visual object classification and recognition is of fundamental importance to almost all ani-

mals, and the evolutionary process has made the underlying systems highly sophisticated and

refined, enabling abstractions and specificity at multiple levels of the perception hierarchy.

Design of unsupervised, scalable, and accurate computer vision (CV) systems, inspired by

principles gleaned from biological visual processing systems, has been a cherished goal since

the inception of the field. Recent success of the Deep Neural Network (DNN) framework in

computer vision can largely be attributed to its layered locally-connected architecture com-

prising sigmoidal elements (an abstraction of neurons), which mimics the organization of vi-

sual cortex [Ben09,Hin07,LBD89,ARK10,BCV13,Sch14]. In the layered cortex each process-

ing stage copes with increasingly abstract representations [WAH92,WAH93,WAH97,RP99],

enabled by extraction of features over increasingly-larger receptive fields. There is some com-

putational evidence to suggest that DNNs exhibit similar automated extraction of features

at various scales and resolutions [Ben09, Hin07]. The deep learning framework is undoubt-

edly a significant achievement, and seems to outperform more conventional classifiers driven

by hand-crafted features (such as SIFT and HOG [Low99,BTV06,DT05,DTS06]) in several

object classification and recognition tasks [BCV13, Hin07, Den13, DLH13]. In fact, the fea-

tures it automatically discovers via its layered architecture are considered to be its primary

advantage, and DNNs are increasingly being regarded as a framework for generating rich

and relevant feature sets for objects.
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It is, however, widely acknowledged that DNNs performance is nowhere comparable to

that of biological systems and it seems to suffer from several limitations not observed in hu-

man visual systems, including (i) very high computing costs, often requiring a few thousand

processors running for several days to train [GCC11,Ham93,ARK10,BCV13,Sch14], (ii) the

need to avoid local minima during the training process, and (iii) the fact that for extracting

the best performance out of DNNs, one must train it in a supervised manner, supported by a

large training set with cropped and labeled datasets containing the object to be learned. The

biological vision systems, on the other hand, are autonomous and unsupervised, can create

models for objects based purely on familiarity and repeated visual exposures, can represent

such learned objects at various scales and resolutions, and the underlying learning process

is highly computationally efficient.

Clearly, several aspects of the potential synergy between biological and CV systems

remain unexplored, and identification of characteristics of the human visual system that go

beyond multi-layered perceptron architectures and that can be abstracted and computationally

integrated into a machine learning system remains a topic of considerable ongoing interest.

The primary goal of this thesis is to identify key organizational aspects of biological vision

systems, and then use them to design machine learning systems for object representation and

detection that display several desired properties such as, unsupervised learning capability,

computational scalability,and robustness to transformations and scenarios, such as scaling,

occlusion and different views of the same three-dimensional object. The immediate goal is

not to emulate the exact granular hardware and feature generating building blocks of the

visual system, such as neurons and their layered interconnections, but to incorporate more

abstract aspects into a computational framework, such as how visual memory is structured,

what role structure plays in detection and recognition, and the salient characteristics of the

underlying learning process itself. The emphasis is on ensuring that the resulting computer

vision system is computationally efficient, and exhibits robustness and performance metrics

that are not achieved by the existing systems.
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1.2 Key Inspirations from the Human and Other Mammalian Vi-

sual Systems

Increasing evidence from the fields of cognitive psychology, neuropsychology, and neuro-

physiology [LAM09, Kre07, LS96], indicates that the diversity of tasks that any biological

recognition system must solve dictates that object recognition is not a single, general pur-

pose process. Detailed data, based on both invasive and noninvasive probes, from a varied

set of subjects including, normal adults, infants, animals, and brain-damaged patients re-

veal a complex interacting system, where functionalities such as classification of objects at

a basic category level (commonly referred to as the object detection/classification problem

in the CV community) and the identification of individual objects from a homogeneous ob-

ject class (commonly referred to as the recognition problem in the CV community) utilize

distinct pathways built on a shared set of features and primitives. For example, in certain

patients with prosopagnosia, they retain the ability to identify classes of objects such as

cars, phones, wallets etc. but cannot recognize their own items from members of the same

class [BCP04, GGC08]. Among the many such properties, we next highlight the ones that

we aim to incorporate in our CV system.

• Many-to-Many relationships between stimuli and neuronal activities: No

“grandmother neurons” tuned to specific objects. It is being widely men-

tioned by DNN or DBN studies, that certain brain modules are devoted to recognizing

objects of a particular class, which is comparable with the “best neurons” reportedly

found at the output layer of the DNN [GCC11, BCV13]. In many early medical and

neuroscience papers [GM04,Gro02], such selectivity was reported to be observed, and

the existence of “grandmother” neurons was suggested based on such perceived obser-

vations. More recent work, however, for example by Liu et al. [LAM09], pointed out

that such observations most likely do not imply the existence of specialized brain areas

devoted to recognizing certain classes of objects. In particular, Liu et al. [LAM09] ar-

gues that (i) Most of the observed selectivity of neuronal response is for the particular

3



category of human faces, which is of obvious evolutionary importance to us, and hence,

it would not be surprising to have dedicated circuitry for such key objects. Very few

object categories other than faces have been explored in the literature, and (ii) Most

experiments in humans are limited in scope in the sense that access to only specific

regions of the brain is available and one cannot explore the entirety of the brain re-

gions responsible for vision and understanding. It is highly likely that many neurons

get activated for the same stimulus. In fact, recent analyses suggest that each neuron

is likely to respond to many different classes of objects and that each individual class

may be represented also by many neurons [WKQ06,QRK05,Kre07].

• Categories are represented by Prototypes obtained in an unsupervised man-

ner from a large enough set of exemplars. Several experiments, including one

reported by Marsolek [Mar95], suggest that there are two separate visual systems in

brain: one works at the category level, which is used to classify different instances

as belonging to the same abstract category, the other is for distinguishing instances

within the same category using visual details of the object. As a result, in the process

of learning visually novel categories that are different to any known objects or con-

cepts, studies in neuroscience suggests that, when the training set is small, humans

tend to memorize visual details of every single exemplars, while when the training set

is large enough, they will be able to detect stable correlational features, which occur

most often through members of the same class, while maximizing differences from in-

stances of other classes [HE73, PK68, LS96]. This kind of features are also referred

to as features of high cue validity. It is also shown that such sets of features, which

are shared by most of the category members, were found to be extracted and stored

during the learning stage, instead of the recognition stage. Such features characterize

most exemplars of an object class, and thereby form class representative prototypes for

corresponding categories, which will be used for visual recognition and classification in

the future.

• Objects are encoded as a combination of “parts” and their spatial and
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geometric relationships. Electrophysiological findings show that a particular por-

tion of the brain (Inferotemporal cortex, or IT) appears to meet all the machinery

requirement for the formation of part-based object representations. Neurons in the

IT responds selectively to stimulus from color, texture, simple structural primitives,

to complex views, or even completed objects like faces [DG79, MK80, LS96]. To en-

code the object representation of different classes, these prototypes are likely to be

decomposed into parts. These parts have stable spatial relationships to each other

that remain invariant through many different views and are indexed according to their

spatial relationships [AGH84]. In detection or classification tasks, parts and structural

relationships among them are detected, indexed, and compared with the prototype.

Exemplars are recognized as class members if and only if the structural information is

close enough to that of prototype [Bie87,BC92,BG93].

• Parts of objects are not necessarily “functional” parts but multiple different

views of the functional parts and combinations. As been claimed many times

in deep learning literature [Hin07,Den13,BCV13], it is tempting to assume the neurons

in the brain work in a hierarchical manner, from shape primitive, simple part, compli-

cated pattern to complete object, each processing stage forms increasingly complicated

representations. However, evidence from psychophysical and neurophysiological stud-

ies indicates that besides the system of recognizing objects by parts and their spatial

interrelationships, there should be another system which may represent objects by

combinations of multiple views, or aspects [Mar95]. For example, findings suggest

that, as in humans, rat invariant recognition can flexibly rely on either view-invariant

representations of distinctive object features or view-specific object representations,

acquired through learning [RAA15]

Moreover, the evidence from numerous studies shows that there are some categories of

objects which are represented by a small portion of neurons with a complex configura-

tional selectivity directly. These object cannot be reduced to selectivity of individual

features or even constellations of such features [LS96]. As a result, the recognition of
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these object involves the second system, in which the holistic configuration, instead

of individual features, is playing the dominant role. Wachsmuth’s finding shows that

about one fifth of the neurons studied in his experiment fired only to the whole body

instead of any of the body parts alone [WOP94]. Oram and Perrett found that while

many neurons respond to individual features of the head like eye, nose and lips, there

are another population of neurons which can only be fired by co-occurrences of multiple

parts [OP94]. Perrett also reported five types of such kinds of neurons, each of which

is responsive to one of these stimuli: frontal face, profile face, back head, head up, and

head down. In addition, there are also two subtypes that are responsive only to left

profile or only to right profile face [PSP85,LS96].

• Learning is perceptual: interaction with the same object in different con-

figurations. Imagine how infants learn novel concepts, for example, dogs. Are we

feeding them with a bunch of dog images or showing them different kinds of dog with a

label “positive” accompanied with other images and stuff with label “negative”? Ap-

parently not! They don’t even have the concepts “positive” or “negative”. Actually,

far before infants gain conceptual categorization abilities, they are already able to refer

to all dogs as “wow-wow” through perceptual learning [EQ94]. Palmer and Rosch sug-

gested that conceptual categories defined in human society actually have a perceptual

basis, which are determined by the high cue features described in preceding discus-

sion [PK68, PRC81]. Such studies in neuroscience show that the perceptual learning

plays a more important role than the conceptual, linguistic labels, and the abstrac-

tion power we have, which makes classification/detection task possible, is not rooted

on linguistic development but perceptual learning of correlated structure of the world.

Similar result was also obtained from incidental task sequence learning studies [CM07].

• Object detection and recognition process utilizes the same memory rep-

resentation framework as of visual objects, i.e., it tries to find the parts

and views (it has already learned) in the scene and then make a deci-

sion based on how well they fit together. The recognition process in human
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brain is dramatically different from those discriminative approaches developed in the

Computer Vision community. Instead, it has a close relation with memory representa-

tion [RP99]. Experiments in early studies have shown that once a category is learned,

humans can recognize the prototype in a fast and accurate way, though the proto-

type is different from all the members that were directly presented to them, which

makes the idea that the prototype forms the category’s memorial representation theo-

retically appealing [PK68,FB71]. Recently, Electrophysiological findings also suggests

that the medial temporal lobe (MTL), which is widely believed to be the area of vi-

sual perception, might also have a role in memory trace formation, consolidation and

information retrieval [Kre07], including longer latencies of human MTL neurons than

that of immediate visual object recognition [SKK07], extensive evidence from molec-

ular experiments [Eic04], memory disruption caused by electrical stimulation in the

MTL [HWS85].Moreover, Kreiman also shown that even the subject made an incor-

rect behavioral response, a statistical classifier can still tell whether a stimulus was

familiar or not from response of a population of neurons, which is likely to mean that

these neurons are not involved in the decision process but directly related to the actual

memory representation [Kre07].

1.3 An Overview of the Structural Unsupervised Viewlets (SUV)

Model

At the current stage of our scientific understanding, and especially given the capabilities and

limitations of extant digital computers and computing hardware, we cannot hope to incorpo-

rate every aspect of the highly complex human or mammalian visual system. In this study,

however, we retain the essence of most of the findings highlighted in the preceding section,

and design a CV framework for object recognition that is computationally tractable, has a

rigorous statistical and mathematical foundation, uses only simple computational steps and

yet can perform at par or better than most other highly-tuned and supervised CV algorithms,
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as verified via performance on different test datasets. As reviewed in detail in Chapter 3,

the CV community has a rich history of incorporating some of these features, but a unified

framework that has exploited all the following characteristics does not seem to have been ex-

plored. We introduce a CV system that we refer to as the Structural Unsupervised Viewlets

(SUV) Model, and different aspects of the model are outlined in the following.

1.3.1 Object Prototypes Based on Views and Spatial Relationships

The idea centers around the concept of a prototype of an object, as introduced in the pre-

ceding section. That is, for any object category with many examples, the biological memory

system seems to build a prototype, or an average model which captures different parts and

their combinations, along with their many configurations, and a flexible relative-location

model that describes how they are spatially configured. Inspired by this abstraction, we

build a Markovian Random Field (MRF) model for object representations (see Section 2.2),

where

1. Nodes represent different views of parts and their various configurations. In such

a prototype representation, each view might correspond to an actual functional part

of the object, such as the head, arms and its different configurations, legs etc. of a

human, or could be a combination of such parts configured in a particular manner, e.g.

a half-body view of a model with arms akimbo. We refer to each node as a viewlet,

and an object of interest could be represented by a collection of hundreds of such

viewlets. From a computational representation perspective, each node is a collection

of visual features, which characterize the viewlet represented by the node. The SUV

model is by design agnostic as to the choice of the exact features, as long as they

are discriminative enough and can be used as the basis of an accurate detector. For

example, it could be features extracted from a DNN framework or a HOG or SIFT

feature set. In order to show the power of our approach, we chose to represent each such

viewlet as a rectangular patch of fixed dimensions, and use a high-dimensional HOG

8



feature set, as explained in Section 4.3. We note that a more sophisticated feature set

could be, and perhaps should be, substituted for the HOG features, and we expect

the performance to improve significantly. Our goal, however, is to show the power of

the framework we have developed, and demonstrate that the system exhibits superior

performance even with a relatively coarse set of visual features.

2. Edges represent conditional dependence, i.e., the relative location of a particular

viewlet is determined (via a distribution) by the locations of the viewlets that it is

connected to, and is statistically independent of the locations of other viewlets that

it does not share any edge with. Thus, given the locations and scale information of

the viewlet nodes connected to a particular viewlet, there is a tight distribution asso-

ciated with the location and scale of the viewlet under consideration. If the distance

distribution is jointly Gaussian, then the network represents the connectivity pattern

of the inverse of the Covariance matrix, also referred to as the precision matrix, and

our model becomes a Gaussian Markov Random Field model. The SUV model expects

and exploits the fact that the MRF model is sparse and the number of edges in the

MRF network grows linearly in the number of viewlets.

3. An exclusivity relationship among the viewlets or the nodes of the network, that

allows the SUV model to succinctly represent deformable objects. In particular, such

exclusivity relationships capture the fact that certain parts of the object category under

consideration might be configured in multiple ways, and the visual appearances for

these different configurations might be radically different. The corresponding viewlets

then cannot occur together in the same image instance. For example, the arm could

be positioned straight down or bent at the elbow. The corresponding viewlets (at

multiple scale) will never occur simultaneously, but will share similar relative locations

(i.e., similar edges and distributions) with respect to viewlets corresponding to other

parts (e.g., viewlets that capture the head and legs). As explained in Section 4.4, this

network model allows one to capture the so-called mixture models for representing

object categories with deformable parts in one unified framework.
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1.3.2 An Unsupervised Framework That Only Learns from Positive Examples

Most CV algorithms rely on discriminative learning, where positive examples of the object

category to be learned are given along with a set of negative examples, comprising images

that do not have instances of the object category to be learned. Such a supervised learning

framework, while highly effective in most constrained use cases (e.g., where the negative

training set is comprehensive), suffers from a number of well-known drawbacks including, (i)

the need to already know the object before it has been discovered, the need for extensive

manual labeling, (ii) the risk of over-fitting to the training dataset and not being able to

generalize to new instances, and (iii) the difficulty in coming up with a bag of classifiers (for

example, a comprehensive set of associated training sets) when the object category comprises

exemplars or instances with very different visual appearances. While these are some many

practical concerns with supervised methods, we avoid the supervised learning approach in

this study primarily from an “aesthetic” perspective: The discriminative approach focuses

more on what an object category is not, rather than what it is; objects are represented only

in contrast to other objects rather than a model of its own. While it has proven successful,

it requires specialized scripting and adopts a perspective that is difficult to scale. One of

our goals is to show that it is possible to learn an object category in a totally unsupervised

(that is from contextual information only) and computationally tractable manner, which

necessarily implies that we do not rely on negative examples. As our results indicate, it is

possible to do so for certain objects, and as long as one has high-enough resolution in the

features space, it performs better than, or as well as, some of the best supervised systems

currently being used in the space.

1.3.3 Perceptual Learning

As already noted, several experiments seem to confirm that infants are able to come up with

the concept of categories of objects and categorical representations solely from the scenes

they witness. In biological systems certain discrimination processes are involved in refining
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concepts by means of the repeated presentation of exemplars. Learning of the SUV models

are inspired by this paradigm. Instead of learning the SUV model parameters from a labeled

set of exemplars (as in say, providing a bounding box around human figures in the learning

image set), we consider the following scenario: Given a large and completely unlabeled image

corpus featuring multiple instances of an unknown but a specific set of structured objects

(i.e., each object has several parts that have consistent and stable spatial relationships),

how can one automatically discover and build composite abstract representations of the

underlying unknown objects, their different parts ( i.e., the groups of viewlets ), and the

relative spatial positions of the parts (i.e., how the “pieces” fit) within an object. Thus,

the learning paradigm does not assume the knowledge of any known categories, and instead

aims to discover object categories in an unsupervised manner. The models are to be learned

not only in a non-discriminative manner, but also perceptually, i.e. by finding structures,

both visual and spatial, that go together. The only requirement for such an approach to

succeed is that the given image corpus should have enough number of instances of the object

category to be learned that cover the different configurations.

1.3.4 From Models To Detection

In accordance with our neuroscience inspirations, the task of object detection in our SUV

framework closely follows the model representation process itself. The detection algorithms

first look for the viewlets that it can detect in the image under consideration, and then

determine if the detected viewlets together comprise a reliable set of exemplars. That is,

we look for the best groupings of the likely viewlets, where the quality of a grouping is

determined by the likelihoods of how they are placed and their relative scales, as encoded

in the SUV model. This heuristic search algorithm is agglomerative in nature rather than

exhaustive, making it highly scalable. Moreover, this natural detection framework allows

one to find multiple occurrences of objects in the same image efficiently.
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Figure 1.1: The different steps in the SUV framework. See the description of Figure 4.2 for

more details.

1.4 Outline of the Dissertation

This thesis targets the learning of structure-based visual prototypes from Internet-scale data.

Our focus is on developing a neuroscience-inspired network-based framework that is able to

learn object perceptually, i.e. in an unsupervised manner, and without using any kind of

labeled negative/background data.

In Chapter 2, we present a network model along with learning and detection method-

ologies. Firstly, we construct a full Bayesian model, which is then simplified into a network

that encodes each visual template as a node and their spatial dependencies as edges. The
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network also has a scale attribute for each node to capture the real world scale of the cor-

responding visual template. Based on this scale parameter on vertices, a relative spatial

relation is derived on the edges, which is scale invariant and allows one to uniformly process

images of different resolutions. Consequently, our model is scale and translation invariant.

For global shape information modeling, instead of picking one part as a reference point to

represent the absolute position of the rest, only the pairwise relative spatial information is

required.

In Chapter 3, we briefly cover the related literature in learning and detection in com-

puter vision, and then expand on work related to the part-based approaches, which we later

use in Chapters 4 and 5 for comparison and benchmarking purposes. Considering the key us-

age in our framework of results from the complex network and community finding literature

(mostly for unsupervised clustering), we also introduce the related concepts.

In Chapter 4, we address the human prototype learning problem, which is considered to

be one of the most challenging problems in the CV community. The human body has several

deformable parts and depending on the point and angle of view, the 2D images can have a

wide variability in visual features. Moreover, with the advent of the social media giants such

as Facebook and Twitter, there is an added interest in being able to create accurate and

predictive CV models of the human body. Firstly, we create a high quality celebrity image

set in which the frontal faces are not always present. We then implement our graphical model

in a fully unsupervised way on this celebrity image set, and the corresponding algorithms

to do detection using the learned model as described in Chapter 2. With this network,

we can find structurally similar nodes [KFH08,BGH04], and because of our augmented edge

with relative spatial information, the spatial similarity was also verified. This enables us

to find k-partite like sub-graphs in our network, which establish the connection between

visual templates of the same part (like arm, torso, head, etc.) with dramatically different

appearances or visual features. Traditionally, such hidden connections between common

parts and their different configurations, have either been added manually, or inferred using

text information from the Internet [KHE12]. We also show that the global spatial information
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Table 1.1: Torso detection performance

Approaches

DPM ( [FMR08]) Poselet ( [BMB09]) Ours

True Positive 1239 3115 2810

False Positive 5263 1678 108

Coverage 38.3% 96.3% 86.9%

Precision 19.1% 65.0% 96.3%

can be restored completely from the recorded pairwise data. In the experiment section,

instead of the network-based grouping strategy described in Section 2.3, we developed a

simplified anchor-based grouping strategy, and use the network-deduced transform rules to

infer the position of head/torso from detected parts. First we show that for the task of

face detection our model, while learned without using any annotated data, significantly out-

performs the Viola-Jones face detector, which is commonly used in the CV community and is

the result of supervised and highly-tuned training efforts. Second, we consider the much more

challenging task of torso detection, and show that we perform much better than a state-of-

the-art part-based approach called the Deformable Part Model (DPM) and have comparable

result with the so-called poselet approach (which was trained in a heavily supervised way

and uses a bag of templates), as shown in Table 1.1.

In Chapter 5, we further study the model by learning multiple objects simultaneously

from a data set referred to as the Caltech-101 dataset [FFP06]. In this implementation, we

implement the network-based grouping described in Section 2.3 for detection. The network-

based grouping eliminates the need of picking anchor nodes and extracting transform rules,
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which makes the model a fully automated approach. What’s more, it addresses the multi-

object-in-one-image problem natively, and also offers a reliable confidence measure of the

predication (number of semantic parts covered by the group). To learn models from the 4

categories (airplane, car, face, motorbike), depending on whether a shared dictionary is used

or separate ones are used, we design 2 different cases: In the shared dictionary experiment,

we use patches from all categories to construct an 800-word visual dictionary, based on which

the network for each category is learned as described in Chapter 2. Then, SVM classifiers

are trained using the confidence scores from learned model as inputs. The resulting classifier

outperforms a part-based approach introduced by Fergus et al. [FPZ07] and described in

some detail in Chapter 3. Even though the approach in [FPZ07] incorporates elements of

discriminative training (e.g. while learning the model for category A, they use images from

other categories F,M, and C as negative samples), the inherent flexibility of our model in

capturing structure more than compensates for the lack of discriminative information. In

the separate dictionary experiment, we demonstrate that even when the images shown to our

algorithm are beyond experience (i.e. it is fed with regions in the feature space not covered

by its visual words), the structure information alone can still be extracted and abstracted

to form discriminative prototype representations. The resulting detectors outperform the

counterpart work [FPZ03] significantly, as show in Table 1.2.

Finally, Chapter 6 outlines some potential extensions of the work presented in the thesis.

The approach introduced in this thesis, and particularly Chapter 2, can be generalized in

several directions allowing one to build effective models for highly-deformable objects and

also improve both accuracy and coverage of detection.
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Table 1.2: Confusion table for separated dictionary model on the Caltech-101 dataset

Our Model Fergus et al. [FPZ03]

Query Image F M A C F M A C

Face 0.98 0.069 0.215 0.252 0.964 0.33 0.32 -

Motorbike 0 0.95 0.370 0.237 0.50 0.925 0.51 -

Airplane 0 0.007 0.665 0.025 0.63 0.64 0.902 -

Car 0 0 0.002 0.600 - - - -
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CHAPTER 2

Methodology

Any visual system for recognizing object categories has three interacting parts to it, namely,

a flexible model for representation, efficient algorithms to learn the model parameters, and

detection algorithms that analyze a given image to locate objects. We already provided a

descriptive overview of all the three parts for our system in the introductory chapter and

here we provide a rigorous exposition.

2.1 The Structural Unsupervised Viewlets (SUV) Model

The first challenge is coming up with models that are flexible and yet precise enough to

capture the “essence” of a category, i.e. what is common to the objects that belong to

it, and can accommodate object variability, e.g. presence/absence of distinctive parts such

as mustache and glasses, variability in overall shape, changing appearance due to lighting

conditions, viewpoint etc.

2.1.1 Markov Random Fields and a Scale and Translation Invariant Network

Model

The model comprises viewlets (as introduced in Chapter 1) which are visually distinct views

of different parts and their configurations that are representative of exemplars from the

object category. Each viewlet is thus represented by a unimodal distribution in an associated

appearance feature space. Thus, a viewlet node Vi is associated with an appearance feature

vector random variable Ai which is drawn from a distribution N (µf ,Σf ) in R|f |, where |f | is
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the dimension of the feature space. The specific feature sets used in the thesis are described

in Sections 4.6, 5.2.2 and 5.2.3

To model the spatial relationships among the viewlets in a distributed and translation

invariant manner, we look at the relative difference in locations of viewlets in a pairwise

manner, i.e., we model Xi − Xj for pairs of viewlets Vi and Vj. Here Xi and Xj represent

the location parameters of the respective viewlets. For example, in this thesis each viewlet

Vi is represented by a rectangular patch of fixed width w, and fixed height h along with

a relative scale parameter of Si (again a random variable). In this context, Xi represents

the coordinates, (xi, yi), of the top-left corner of the rectangular patch. The best way to

visualize the relative scale parameter, Si, is to imagine an overall scale parameter s for an

exemplar in a given image; s determines the overall size of the object, as measured in pixels,

and as rendered in the particular image under consideration. In such a scenario, the viewlet

Vi is expected to have a width of s
(x)
i = w ∗ Si ∗ s pixels and a height of s

(y)
i = h ∗ Si ∗ s

pixels; correspondingly the viewlet Vj is expected to have a width of s
(x)
j = w ∗ Sj ∗ s pixels

and a height of s
(y)
j = h ∗ Sj ∗ s pixels. This pairwise relative distance and scale model has

multiple advantages, and in particular avoids the use of a single landmark viewlet V1 and

then calculating all the relative positions and scales with respect to X1 and s1. Clearly,

having such a “star” dependence on a single node makes the modeling as well as detection

and learning processes less robust.

Next, to make a part-based approach truly scale-invariant, we must handle not only the

scaling of each individual part, but also how the relative scales influence relative positions

of pairs of parts or viewlets. During detection, there is a deviation of the detected position

from the true position of the viewlet. This deviation or noise is usually caused by the local

variance tolerance of different features which are usually computed from a fixed-size patch

that is obtained by sub-sampling a larger region in the original image. Thus, the noise

in detection and estimation of the pixel position of a viewlet gets multiplied by its scale.

Considering a simple example, given the ground-truth of viewlets (x1, y1, S1), (x2, y2, S2),

(x3, y3, S3), the detected X-axis values can be represented as xdi = xi + Ni (i = 1, 2, 3),
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where Ni is a random noise term with its norm or standard deviation being proportional to

the actual width in pixels, s
(x)
i . So when we are using the same instrument to measure the

relative distance, xi−xj, the standard deviation of the absolute error |Ni−Nj| is proportional

to the sum s
(x)
i + s

(x)
j . Next, since each relevant pair contributes to the overall likelihood or

probability function of the entire object instance, it is desirable to normalize the measured

distances (in pixel values) by their overall variances so that the contributions are independent

of scale and hence, comparable. This point is further demonstrated in Figure 2.1. As a result,

for each interaction, we are using the scale of both viewlets to do the normalization, i.e.,

using

(
xi − xj
s
(x)
i + s

(x)
j

,
yi − yj
s
(y)
i + s

(y)
j

)
as the metric for a scale and translation invariant distance

measure.

We are now ready to define the distributions that characterize the variations allowed for

in the exemplars belonging to the object category. In order to do so, we adapt the well-

known spring model for our purposes, where each pair of viewlets Vi and Vj is connected via a

spring of stiffness parameter cij ≥ 0. Thus, if the zero-stress normalized separation between

the viewlets is µij, then by Hooke’s law, the potential energy of the spring corresponding

to locations xi and xj is given as

cij
∣∣∣∣∣ xi − xj
s
(x)
i + s

(x)
j

− µij

∣∣∣∣∣
2
. Further, assuming an isotropic

spring model, where the displacements along the X-axis and Y-axis are treated separately

and independently, the total potential function of the given configuration is given by P =

P (X) + P (Y), where

P (X) =
1

Z(x)
e−fx(x) (2.1)

fx(x) =
∑
i 6=j

cxij(
xi − xj
s
(x)
i + s

(x)
j

− µxij)2 (2.2)

P (Y) =
1

Z(y)
e−fy(y) (2.3)

fy(y) =
∑
i 6=j

c
(y)
ij (

yi − yj
s
(y)
i + s

(y)
j

− µ(y)
ij )2 (2.4)
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Figure 2.1: Relative distance normalization between 2 different pairs: Head↔ Eye, Head↔

Torso.

and Zx and Zy are the corresponding normalization terms and are also often referred to as

the partition functions. For scale s, we note that it is a multiplicative factor, and we take

its logarithm and define an analogous potential function,

P (S) =
1

Z(s)
e−fs(s) (2.5)

fs(s) =
∑
i 6=j

c
(s)
ij (log

si
sj
− µ(s)

ij )2 (2.6)

Note that if we consider fx(x), fy(y), fs(s) as the quadratic-form potential functions (as

in the above equations), then we can regard our model as a fully connected Gaussian Markov

random field, where each node has a corresponding part in the real system (the mapping

can be many-to-one, since a part can have multiple appearances in our model), and instead

of specifying the Covariance matrix, Σ, the network model specifies the Precision matrix

Λ = Σ−1 via the edges of the network. We start with the X-axis displacement potential

function, and will later generalize the result to Y and S. The precision matrix Λ = Σ−1

can be easily calculated from the cij values, associated with edge, simply by matching the
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coefficients of the respective product terms xi ∗ xj. We note that the precision matrix Λ as

defined in our model is singular, which is easy to see because of the translation invariance

nature of the potential function. For easy deduction, we must fix one value to reduce the

degree of freedom to M − 1, and without loss of generality, assuming XM = 0, we have,

Λii =
∑M−1

j=1,j 6=i
cij

(s
(x)
i +s

(x)
j )2

+ ciM

(s
(x)
i +s

(x)
M )2

(2.7)

Λij = − cij

(s
(x)
i +s

(x)
j )2

i 6= j (2.8)

It is worthwhile to point out certain properties of the model we have introduced so far: (i)

The precision matrix we have defined is an M -matrix, that is all the off-diagonal entries

are non-positive and it is diagonally dominant, that is the row sum is positive, and (ii) If

cij = 0 then we know from the properties of the multi-variate Gaussian distribution that the

corresponding location variables are conditionally independent. That is, given all the xk’s

such that cik > 0, xi is statistically independent of xj. Hence, by using a spring model we

are specifying the Precision matrix directly, and constraining the covariance matrix to be a

non-negative matrix (inverse of an M-matrix is a positive matrix).

The number of parameters we need to specify to define the SUV model is the number of

non-zero elements in C(x), C(y), C(s), where the C’s represent the sets of corresponding cijs.

A full multivariate Gaussian model having Θ(n2) parameters is still technically difficult to

learn [FPZ05]. However, it is easy to see that parts in a real object can not be statistically

fully connected with each other. Instead, the true direct interactions tend to be sparse, while

indirect ones are conditionally independent given the nodes between them. We expect that

the average number of direct connections for a viewlet does not grow with the total number of

viewlets. Such direct interactions, combined with node set V , form a network G(V,E), and

hence we expect the total number of edges to be Θ(n) instead of Θ(n2). Thus in the learning

stage, to determine the edge set E, we must find a sparse maximum likelihood solution, that

is, the best C(x), C(y), C(s) which optimize the likelihood Equation 2.1, Equation 2.3 and

Equation 2.5.
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2.1.2 A Probabilistic Interpretation

Our model shares similar basic elements as that of the widely used spring model [FH05], and

the probabilistic model introduced in [BWP98,FPZ03,FPZ04,FPZ07,FFP03,FFP06], that

is, the model of a object consists of two kinds of information, the appearances of parts, and

the structure how parts are organized. However, we make some essential changes to extend

them.

In order to learn in a full unsupervised way, we are not keep the model only to object

or POI( Point of Interests ) and describing background separately. Instead, we break entire

images into patches and quantize a vocabulary V of K visual words from all of them. Ap-

parently not all of these visual words are related to the object we interested in. Suppose

there is a set Vf ⊂ V , which includes nf visual templates, which are all about a certain

category of object, while the rest nb(= K − nf ) templates Vb = V c
f , are mainly describing

background. Given an image of N patches, each visual template has a chance to be detected

in it. In previous part-based approaches, each part is usually modeled using a unimodal

representation, and one entry in the presence indicator vector h. To model the general na-

ture of the appearance variety, we allow multiple appearances, so the each part can have

more than one visual word. As a result, h becomes a visual word indicator. For a word vi,

hi ∈ {0, 1, ..., N} is a variable such that hi = 0 while the visual template is missing from

image, and hi ∈ {1, ..., N} while the template is found on a particular location. For proba-

bility calculation convenience, as done in [FPZ07], we also define a pure presence indicator

d = sign(h), such that, di = 1 if and only if vi is present. For all patches in the image, we

also define the position X, Y , and the scale S( patch width or height, since they have a fixed

ratio ), such that, for a visual template vi, if detected, hi will be non-zero, and the position

and scale will be X(hi), Y (hi), and S(hi). Suppose our model have parameter set θ, give
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the latent variable h we just defined, we have,

P (A,X, Y, S|θ)

=
∑

h∈{0,1,..,N}nf
P (A,X, Y, S|h, θ)P (h|θ)

=
∑

h∈{0,1,..,N}nf
P (h|θ)

× P (A(h), X(h), Y (h), S(h)|h, θ) (2.9)

Here, we only care object related patches, while background terms A(hc), X(hc), Y (hc),

S(hc) are dropped. We are doing this for 3 reasons:

• We think the penalty of lacking essential part has already modeled by p(h|θ), so it is

redundant to have it in the spatial related term again.

• By dropping A(hc), X(hc), Y (hc), S(hc) at the first place, we avoid creating a back-

ground model to be used as the denominator to cancel it, like in [FPZ07], which requires

a separate background set and it not quite unsupervised.

• As indicated in [FE73], modeling background and noise is difficult to be precise and

comprehensive, and without it the detection problem can be regarded as finding the

best linear embedding, which can be easily expressed as an optimization problem with

clearly defined cost function.

As a result, we are only focusing on Term 2.9 in the following discussion. For convenience,

we drop the subset indices (h) notation in A(h), X(h), Y (h), S(h) and representing them

simply by A, X, Y , S in the remaining of this section for conciseness.

Because X and Y depend on S, we have,

P (h,X, Y, S) = P (X, Y, S|h)P (h)

= P (X, Y |S, h)P (S|h)P (h) (2.10)
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Obviously, X, Y are independent, we get,

P (X, Y |S, h) = P (X|S, h)P (Y |S, h) (2.11)

Now, let us turn to P (h), while calculating probability of h without considering X, Y and S,

we don’t care about the detail patch assignment until looking into the geometric information,

leaving only the absence/presence information. Thus, d is a sufficient statistics for h here,

as seen in the following equation,

P (h|θ) = P (d|θ) (2.12)

Here, we have some difficulties to advance more. Firstly, because of the translation

invariant nature of object on a image, given a (∆X ,∆Y ), we have,

P (X, Y, S) = P (X + ∆X , Y + ∆Y , S) (2.13)

Similarly, for the scale parameter, given a scaling factor α, we have

P (X, Y, S) = P (X, Y, αS) (2.14)

From Equation 2.13 and Equation 2.14, we can see that P (θ) is multi-modal, and is

technically difficult to learn from various images in which objects are at different locations

and of various scales. To address this problem, Fergus [FPZ07] demonstrated an approach

that using one landmark part as a reference parts, the scales of all remaining parts can be

replaced with the ratios with scale of reference node, and the locations can be represented as

the relative locations to the reference node normalized by its scale. For instance, the relative

X values are defined by,

X ′T =
(
X2−X1

S1

X3−X1

S1
· · · XM−X1

S1

)
(2.15)

and now the shape is modeled as a joint Gaussian distribution

X ′ ∼ N (µ′,Σ′) (2.16)
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µ′i = E[Xi]− E[X1] i > 1 (2.17)

Cov[X ′i, X
′
j] = E[(X ′i − E[X ′i])(X

′
j − E[X ′j])] (2.18)

Although it made the model theoretically scale-invariant and translation-invariant. There

are still a few questions remaining unanswered. Firstly, the performance are highly coupled

with the detection of the reference node (or landmark node); moreover, having K parts

results in O(K2) parameters to learn, which prevents the use of numerous object visual

templates.

Instead of centralized shape and scale representation regarding to a single landmark part,

we developed a distributed approaches. To begin with, let us write the PDF in another form,

P (X) =
1

Z
e−

1
2
(x−µ)′Σ−1(x−µ) (2.19)

Define f(x) such that,

f(x) =
1

2
(x− µ)′Σ−1(x− µ) (2.20)

In [FPZ03], given the scales of all parts, s, f(x) is represented by the best approximation in

function family g(x),

g(x) =
∑
i,j 6=1

cij(
xi − x1
s1

− µ′i)(
xj − x1
s1

− µ′j) (2.21)

From which it is clear to see the value is highly volatile to the landmark node (x1, y1, s1)

errors.

2.2 Learning the SUV Model

For learning, we consider the following scenario: Given a large and completely unlabeled

image corpus featuring multiple instances of an unknown but a specific set of structured ob-

jects (i.e., each object has several parts that have consistent and stable spatial relationships),

how can one automatically discover and build SUV models for the underlying but unknown
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object classes. Thus, in our setup the learning paradigm should not assume the knowledge

of any known categories, and instead it aims to discover object categories in an unsupervised

manner. That is, the models are to be learned not only in a non-discriminative manner, but

also perceptually, by finding structures, both visual and spatial, that go together and define

object categories. The only requirement for such an approach to succeed is that the given

image corpus should have enough number of exemplars of the unknown object category to

be learned and that such exemplars should cover the range of different configurations that

are required to learn the variations within the object category.

2.2.1 Learning Vocabulary and Appearance Features of Viewlets

In the first step we randomly sample all images (utilizing a scale pyramid) in the learning set

using a fixed-size rectangular patch, then convert all patches into image feature vectors, and

then extract a visual vocabulary out of them using a clustering algorithm. While the specific

implementation details can be found in Sections 4.2 and 5.2, it suffices to mention here that

each visual word is a distribution in the feature space and represents a potential viewlet in

the object models to be extracted from the learning set. For example, in Chapter 4 we use

a dictionary of 1086 visual words, but not all of them correspond to viewlets that are part

of the object class “Human”; only about one hundred of the potential viewlets are part of

the actual object model.

2.2.2 Learning SRN (Spatial Relation Network)

In Section 2.1, we have simplified our model into the form of a sparse network, which can

be determined by an edge set E, and the related parameters {C(x), C(y), C(s), µ(s), µ(x), µ(y)}.

As a result, the learning process becomes much easier to handle.
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2.2.2.1 A Maximum Likelihood (ML) framework

In this section we illustrate the ML formalism in the context of the X-axis potential function.

First note that the partition function Z(x) in Equation 2.1 equals the normalization term

used in Gaussian distributions and is proportional to |Λ|−1/2, where |Λ| is the determinant of

the Precision Matrix Λ. By defining a random variable Zij =
xi−xj

s
(x)
i +s

(x)
j

, we write Equation 2.1

in log-likelihood form.

logP (X) = const + log |Λ| −
∑
i 6=j

cij Var(Zij), (2.22)

where Var(Zij) is the empirically observed variance of the random variable Zij. To maxi-

mize logP (X) while setting as many cij’s to zero as possible, we reverse the sign to get a

minimization problem and add an L− 1 regularization term to obtain:

G(X) = − log |Λ|+
∑
i 6=j

cij(Var(Zij) + λ), (2.23)

where λ > 0 is the regularization parameter. The ML estimates of cij’s can be obtained by

minimizing G(X), subject to the constraint cij ≥ 0. Note that this a convex optimization

problem [BV04], and while the optimum values can be solved for numerically for any given

data set, our objective here is to explore the properties that the optimal cij’s must satisfy

so that we can find approximate solutions that are intuitive and easy to compute.

In particular, the optimal c∗ij’s must satisfy the KKT conditions which for the constrained

optimization problem (i.e. cij ≥ 0) [BV04] are the following:

∂G(X)

∂cij
= 0 if c∗ij > 0 (2.24)

∂G(X)

∂cij
> 0 if c∗ij = 0 (2.25)

Hence, for all c∗ij > 0 they must satisfy the following set of equations:

∂G(X)

∂cij
= −∂ log |Λ|

∂cij
+ (Var(Zij) + λ) = 0 . (2.26)

Or equivalently,
∂ log |Λ|
∂cij

= Var(Zij) + λ . (2.27)
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Next we use the following property of the derivative of a determinant:

∂|A|
∂α

= |A|Tr

(
A−1

∂A

∂α

)
. (2.28)

Note that the inverse of the Precision Matrix is the Covariance matrix, i.e. Λ−1 = Σ, and
∂Λ

∂cij
=

1

(s
(x)
i + s

(x)
j )2

(ei − ej)(ei − ej)
T , where ei is the indicator column vector, where all

entries equal 0 except the ith entry, which equals 1. Substituting these identities we can

further simplify the left-hand side of Equation 2.27 as follows:

∂ log |Λ|
∂cij

=
1

|Λ|
∂|Λ|
∂cij

(2.29)

=
1

|Λ|
× |Λ|Tr

(
Σ
∂Λ

∂cij

)
(2.30)

=
Σii + Σjj − 2Σij

(s
(x)
i + s

(x)
j )2

. (2.31)

Substituting this in Equation 2.27, we get the conditions for optimality:

Σii + Σjj − 2Σij

(s
(x)
i + s

(x)
j )2

= Var(Zij) + λ . (2.32)

We next use the above optimality equation to derive a bound on the optimal c∗ij’s, and for

that purpose we use the determinant version of the Schur Complement: Let c be a column

vector and r a row vector of appropriate dimensions, then

|(X + cr)| = |X|(1 + rX−1c) . (2.33)

Next we observe the following, (i) Λ−c∗ij = Λ − c∗ij
(ei−ej)(ei−ej)T

(s
(x)
i +s

(x)
j )2

is another M -matrix where

c∗ij has been set to 0; (ii) Thus |Λ−c∗ij | ≥ 0, and we already know that |Λ| > 0. Hence,

substituting X = Λ, c = −c∗ij
(ei−ej)

(s
(x)
i +s

(x)
j )

, and r =
(ei−ej)T

(s
(x)
i +s

(x)
j )

in Equation 2.33, we get

0 ≤ |Λ−c∗ij | = |Λ− c
∗
ij(ei − ej)(ei − ej)T

1

(s
(x)
i + s

(x)
j )2
| (2.34)

= |Λ|

(
1− c∗ij

(ei − ej)T

(s
(x)
i + s

(x)
j )

Σ
(ei − ej)

(s
(x)
i + s

(x)
j )

)
(2.35)

= |Λ|

(
1− c∗ij

Σii + Σjj − 2Σij

(s
(x)
i + s

(x)
j )2

)
. (2.36)
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Now using the fact that |Λ| > 0 and using the optimality condition in Equation 2.32, we get

(1− c∗ij(Var(Zij) + λ)) ≥ 0 or equivalently:

c∗ij ≤
1

Var(Zij) + λ
. (2.37)

Thus, the above bound on the optimal stiffness parameter connecting the locations of two

viewlets, c∗ij, decreases monotonically with increases in both the observed variance, Var(Zij),

and the sparsity parameter, λ. This makes intuitive sense, as two different viewlets that

correspond to parts that are not directly linked by a stiff joint or some such structure in the

physical object (hence, there are intermediate parts connecting them, and the location of

one could be predicted accurately, given the locations of these intermediate parts), will tend

to have a higher variance in their relative locations. Thus, a higher normalized variance in

the relative locations of pairs of viewlets is a good measure of their statistical conditional

independence or correspondingly, a lower stiffness in the spring connecting the underlying

parts.

The above observation inspires us to use the bound in Equation 2.37 to determine sparsity

in our GMRF model. By definition, we have c∗ij > 0 and Var(Zij) > 0, and we get

1

c∗ij
− λ > Var(Zij) . (2.38)

Thus, if we say that all those edges for which the optimal cij is guaranteed to be less than

say a value c, will be removed from the network, then it implies from the above equation that

all edges with empirical Var(Zij) <
1
c
− λ should be disconnected. Thus, we have derived a

simple threshold rule on the pairwise variances, and by lowering the threshold (that is, by

increasing the sparsity parameter λ) we get increasingly sparse GMRF models. Similarly,

we can get upper bound for c
(y)
ij , and c

(s)
ij .

2.2.2.2 Implementation of the ML framework

The above ML framework can be implemented as follows: we first go back to the original

image corpus (e.g., in the celebrity case, the approximately 9000 strong image learning set
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used in Section 4.6) and detect in each image the visual words that appear in it. That

is, given an image, we first perform a dense scan (using the scaling pyramid so that we

capture viewlets that have inherently larger scale), with a fixed-size sliding window, and

assign a visual word to each resulting patch using a k-Nearest-Neighbor (kNN) algorithm

(See Section 5.2 for a particular implementation). Note that the kNN algorithm is non-

discriminative in the sense that no negative image patches have been used to train it, and it

uses only the exemplar patches that were cropped from the learning set to determine the set

of visual words. Then, for each pair of patches (pi, pj), in the image I, and the corresponding

pair of assigned visual words (vi, vj), we count it as a co-occurrence of the visual word pair

vi and vj on image I. As noted below the location and scale parameters of the viewlets are

also noted.

This step is repeated for every image in the learning set, resulting in a co-occurrence

count Oij for every pair of visual words (vi, vj). We account for potential detection errors

and rare statistically insignificant co-occurrences by setting a threshold t, and only pairs

with Oij > t are considered for the next step, where we utilize stable spatial properties.

If the pair of visual words describes patterns on the same real world object, the spa-

tial relation between them should be more stable (by stability we mean low variance after

normalization of their relative locations) and consistent through all co-occurrences (e.g., a

“head” and an “arm” visual word pair) than between pairs that are related at an indirect

level or not related at all. Consequently, when a sparsity directed threshold is applied on

the variance, the surviving pairs are always better than those that got rejected. We next

describe a method to compute spatial relationships between visual words.

Co-occurrences can be represented by pairs of image crops, each of which has its own

determined position and size in the original image. Since all image patches in our dataset

are cropped from an original image, given a bitmap image, B, and a patch of it, P , P is a

sub-matrix of B, and can be determined by 4 parameters: the origin ( we use top left corner)
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(x, y) of the crop, the width s(x), and the height s(y), all in pixels.

Z
(s)
ij =

Sj
Si

=
s
(x)
j

s
(x)
i

=
s
(y)
j

s
(y)
i

(2.39)

Z
(x)
ij =

(xj − xi)
(s

(x)
i + s

(x)
j )

(2.40)

Z
(y)
ij =

(yj − yi)
(s

(y)
i + s

(y)
j )

(2.41)

Now, we are ready to estimate the statistical stability of any pair of visual word by

computing variances of Z
(x)
ij , Z

(y)
ij , Z

(s)
ij through all co-occurrences. In accord with Equa-

tion 2.5, log s is used to be compute variance. Here is the definition of the sum of variances

V (volatility),

V = Var(Zx
ij) + Var(Z

(y)
ij ) + Var(logZ

(s)
ij ) (2.42)

To retain conditional dependence edges in the underlying GMRF model we are estimating,

we check the sum of variances of the preceding three variables for all pairs of visual words,

and only those with a sum less than our threshold are kept as edges.

Now, we can set up a threshold of V to keep pairs which have stable spatial relations.

What’s more, thresholds could be adjusted according to the required sparsity in graph.

Section 5.2 details the choices of thresholds for different datasets. We refer to the network,

comprising nodes that are not isolated and stable edges that survive the threshold criteria,

as the Spatial Relationship Network or the SRN.

Note that we started off with all the visual words in the dictionary as the candidate nodes

for the SRN, and then we let the ML estimation process to determine a sparse network that

corresponds to the GMRF that best models the structure and appearance of the underlying

object(s) that are in the learning image set. This is done in a completely unsupervised

manner. From the perspective of noise reduction and model compression, the construction

of the SRN enables us to achieve the following objectives:

• Distilling Only the Objects From the Background Scenes: By processing the learning

image set, the final SRN will retain only those viewlets that correspond to an under-

31



lying object model. This is where the advantages of observing a large set of images,

where the same object is captured under various different conditions and configurations,

become most apparent: The visual words corresponding to the non-object categories

will not have the consistent spatial structure as the visual words for the object that

is consistently present in the majority of the images in the image corpus. Thus, our

unsupervised methodology is able to create a network, in which only visual words or

viewlets belonging to the same kind of objects will be connected. And each relatively

densely connected community in the SRN will be about a certain kind of object. In

Section 5.2 we usually feed images containing a single target object in majority of them

while training a model, which results in one single giant connected component in the

final network that models the unknown object in the corpus.

• Eliminating Structurally Noisy and Non-Discriminative Visual Words : In our unsu-

pervised methodology, we do a K-means partitioning of the feature space to determine

the visual words. However, due to both the limitations of the feature set we use and

the inherent characteristics of the K-means or any other clustering algorithm, many

of the visual words will not be visually uniform. Thus, during the kNN classification

process, these visual words will be found in many locations in the images, and will

not retain a consistent spatial relationship with other visual words, as required by our

model. Similarly, some of the visual words might be visually uniform, but may not

have enough discriminative features so that during kNN classification a diverse set of

visual patches will be mapped to these visual words. Again this will imply that during

the SRN construction, such nodes will lose most its edges. These are some of the robust

features of our overall methodology.

For example, for the human body modeling application as described in Chapter 4 by

applying community finding algorithms on the network learned from celebrity images, we

get graph communities which consist of all human body part nodes. When we check visual

words in one such community, we find that while the constituent visual words are far apart in

the feature space, all of the visual words in the community relate to different representations
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of the multiple human body parts, i.e. these visual words truly constitute viewlets as defined

in our model. The construction of SRN thus enabled us to break the links between celebrity

body part nodes from all other scene related visual word nodes(like carpet, advertisement,

etc.).

However, although we separated foreground/object nodes from that of the background ones,

they are still mixed together as a large community, with head nodes scattered throughout.

For example, two head nodes (i.e., two viewlets representing the same part, the head) don’t

necessarily have a better chance to be connected. In fact, sometimes it might be even

impossible, if these two head nodes are about different kinds of heads, such as long hair

versus short hair, because let alone the existence of stable spatial relationships, they even

won’t have a sufficient number of co-occurrences to qualify for a potential edge to connect

them.

2.2.3 Extracting the Parts Using SEN (Spatial Exclusion Network)

Recall that our object model is an augmented MRF model, where in addition to the condi-

tional dependence modeling, we also have the aspect of mutual exclusivity: Viewlets Vi and

Vj could represent the same physical part of an object but in different configurations, result-

ing in very different visual appearance. In such a situation, Vi and Vj will never co-occur in

an image and therefore will never have an edge in the MRF. Such exclusivity relationships

are explicitly added to our generative model so that when sampling an image we do not pick

viewlets that are mutually exclusive. Now we address estimation of the underlying parts

(hence, the mutual exclusivity relationships) from the learning set and provide a complete

learning of the entire model that we introduced in . In particular, we want to construct

a Spatial Exclusion Network (SEN) from the SRN, where viewlet nodes corresponding to

the same part are clustered into the same network community. Each such community thus

represents a part of the object that can take on different configurations (for example, a bent

vs a straight arm) or may have very different views (for example the hood of a car can have

very different appearances based on the viewpoint of the observer and the make of the car).
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In order to do derive the SEN, we must first define what a “configurable part” is. A

dual way of looking at what constitutes a configurable part would be as follows: Two or

more viewlets that are replaceable in making up the whole object, or equivalently, two or

more viewlets that are mutually exclusive, and have identical geometrical relationships with

other pieces (representing other parts). Thus, if two head nodes are visually different (See

Figure 2.2) then the chances that they co-occur sufficiently many times and they have a

stable spatial relationship are very small, and there is no edge between these two nodes in

the SRN. However, these head nodes will have almost identical geometrical relationships with

other viewlets such as those corresponding to arms or legs. Thus, as shown in Figure 2.2,

we would observe a wedge with respect to a third node (C), when two head nodes are

of different types (like A and D in figure). Because of how we automatically extract the

viewlets, there is, however, another scenario to consider so that we can group all viewlets

that correspond to the same part. This scenario arises when the viewlet nodes are only

slightly shifted versions of each other. In such a situation, because of the features we are

using, they constitute different visual words, but they share a very stable edge (that is have a

low variance in their relative locations) in the SRN between them; for example, nodes A and

B in the figure. These viewlets again will have almost the same geometrical relationships

with viewlets corresponding to other parts of the object, and hence would form a triangle

with a third node (C).

Using the above principles, we now compute the Spatial Exclusive Network (SEN) from

the SRN as follows: For every pair of nodes A, B, we first determine if they share at least

two other nodes C and E, such that the spatial relationships A ↔ C, B ↔ C are almost

identical (i.e., the difference is within a small threshold) and the spatial relationships A↔ E,

B ↔ E are also almost identical. We add a third node to suppress noise. If a pair of nodes

A, B satisfies the above condition, we add an edge between the two to construct the SEN.

For example, for the human body modeling application as described in Chapter 4, after

applying community finding algorithms on the SEN (as shown in Figure 4.2(c)), we observed

that the network is further dissembled into small components, and each of them has a well-
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B

A

CD

Figure 2.2: Wedge(B,D,C) and triangle(A,B,C) structures in the SRN.

defined semantic meaning. Each community corresponds to a distinct human body part as

also labeled in Figure 4.2(c).

Figure 2.4 further validates our part-finding results. As explained in Section 2.2.4 we

can use the SRN to compute global positions of every visual word and as one can see, the

viewlets or visual words corresponding to each part (as determined from the SEN) occupy

distinct regions in the virtual 2-D space, almost defining a human body contour.

2.2.4 Global Information Reconstruction

In preceding sections, we have demonstrated that we can model in an unsupervised manner

how the entire object system is assembled out of many pieces and parts. In the SRN, edges

represent stable spatial relations with relative size and position information of endpoint visual

words. Though all spatial information is stored locally in a distributed manner, we develop

an algorithm to assemble these pieces and parts to restore the desired global properties of
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(a) Head Node 1 (b) Head Node 2 (c) Head Node 3

(d) Arm Node 1 (e) Arm Node 2 (f) Arm Node 3

(g) Torso Node 1 (h) Torso Node 2 (i) Torso Node 3

(j) Leg Node 1 (k) Leg Node 2 (l) Leg Node 3

Figure 2.3: Different views of three body parts discovered by the Spatial Exclusion Network

computed in Chapter 4.
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(a) Caltech-101 Rear Car (b) Caltech-101 Airplane (c) Celebrity

Figure 2.4: Examples in global structure reconstruction.

the underlying object system.

For a densely connected component in this network, to reconstruct the structure of the

entire system, we decide to take advantage of the pairwise local information to calculate a set

of global locations for all the viewlets in the SRN network. This task is in some ways similar

to that of some previous works, like Multi-Dimensional Scaling (MDS) [Kru64]. We derive

an iterative approach to calculate the position and size of each viewlet using the relative

positions and size of its neighbors by solving optimizing problems as shown in Equation 2.43

and Equation 2.44. The approach is summarized in Section 4.5, Algorithm 1.

min
∑

(i,j)∈E

c
(x)
ij (

xi − xj
s
(x)
i + s

(x)
j

− δ(x)i,j )2 + c
(y)
ij (

yi − yj
s
(y)
i + s

(y)
j

− δ(y)i,j )2 (2.43)

min
∑

(i,j)∈E

c
(s)
ij (log si − log sj − δ(s)i,j )2 (2.44)

From Algorithm 1, we get global position assignments for all nodes in the largest com-

ponent of the Spatial Relation Network. We plot all nodes using the global coordinates we

got for 3 different objects, as shown in Figure 2.4.

From Figure 2.4, we notice that the community partition of the Spatial Exclusive Net-

work (SEN) is highly correlated with the global spatial value we derived from the SRN.
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Figure 2.5: Global scale values for some body viewlet.

Furthermore, the global positions of the nodes in these communities of the SEN mirrored

the object in real world. Our ability to reverse engineer human body structure demonstrates

that we are successfully identifying the semantic meaning of images by leveraging network

communities instead of purely hard knowledge encoding (manual tagging, specific features,

etc.)

Using the same algorithm, we can extract a global scale value for each of the meaningful

visual words. Some examples of these values are listed in Figure 2.5 with corresponding

images. We can see that while the nodes from some communities of the SEN are all sharing

similar scale values, which are in good accordance with our understanding of the related

parts.
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2.3 Detection

Once we learned model θ as we described in Section 2.2, we can use the model for object

detection. In a traditional detection approach, for a given image, the saliency discovery algo-

rithm will first be applied, and a list of Points of Interest are detected. Parts must be placed

on these candidate positions to form different configurations. Among these configurations,

the best fitting is picked alongside the corresponding h. That is, given appearance vector

set A, and the corresponding spatial information X, Y , S, which consists of feature of all

sampled patches in image, we are looking for a h, which picks subset of A, A(h), as the best

location and configuration of the desired object.

hopt = arg max
h

P (h|A,X, Y, S, θ) (2.45)

Applying Bayesian rule and the conditional relation defined in Equation 2.10 and Equa-

tion 2.12, we get,

P (h|A,X, Y, S, θ) ∝ P (A,X, Y, S|θ, h)P (h|θ)

= P (A|h, θ)

× P (X, Y |S, h, θ)P (S|h, θ)

× P (d|θ) (2.46)

To find hopt, a straightforward approach is to search exhaustively in h space. However, for

each vi, the corresponding hi ∈ {0, ..., N} can have N + 1 possible values, combined with nf

foreground visual words, the search space is O(Nnf ), which is a hopeless task. Several prun-

ing approaches have been proposed, like using A* search( [FPZ07]), simplify the structure

(chain like dependency, tree-like dependency [FH05,FGM10], k-fan structure [CFH05]) and

use dynamic programming, the later ones results in a time complexity O(N2nf ). However,

it’s still not good enough for large N and nf , which lets these approaches to use a restricted

set of Point of Interest’s (Though in unsupervised learning, dense sampling is generally be-

lieved to have better performance than discovered interesting points [TLB10]), and using

only a few unimodal parts (less than 20 parts were used in [FPZ07]).
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We develop an agglomerate approach, which shares the characteristics of A* like pruning

and optimal substructure in dynamic programming. To begin with, given d = sign(h) as

defined in Section 2.1, we have P (h|θ) = P (d|θ). Let’s divide Equation 2.46 into three parts,

the part absence/presence setting P (d|θ), the global structure P (X, Y |S, h, θ)P (S|h, θ), and

the local appearance P (A|h, θ).

Firstly, while a full set of part patches are required to calculate the global term, the local

term can be factored as,

logP (A|h, θ) =

nf∑
i=1

logPi(A(hi)|θ) (2.47)

Then, for patch Pj,j∈{1,...,N}, when hk = j, Pk(A(j)|θ) is the probability to be assigned

as part k, and can be evaluated before full search space enumeration and stored in a table.

After obtaining this table, we can prune heavily by dropping sub-spaces which have one or

more extremely unlikely matches in them. For instance, In our celebrity model, ihead is a

head template, and as defined, hihead is the index of the corresponding patch. Now, if we

also have Pjleg , which is a patch of leg template. As a result, with any meaningful feature

and distance metric {A,Pk}, Pihead(A(jleg)|θ) will be so small that all (N + 1)nf−1 h’s have

hihead = jleg in it can be dropped without further inspection. Moreover, if feature vectors of

patches have been discretized using a K word vocabulary, letting Vk ⊂ {1, 2, ..., N} denotes

the index set of all patches in current image which are classified as visual word vk, we can

further enforce that any hi can only be picked from patches detected as one single word

vfi . Now we have reduced the search space from (N + 1)nf to
∏nf

i=1 |Vfi |. Considering that∑K
i=1 |Vi| = N , the pruned space is much more compacted.

Secondly, to further boost the performance, we need to look into the global term. Taking
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natural logarithm on both sides, we have,

logP (X, Y |S, h, θ) + logP (S|h, θ)

=
∑
ei,j∈E

(
c
(x)
ij (

xi − xj
s
(x)
i + s

(x)
j

− µ(x)
ij )2

+ c
(y)
ij (

yi − yj
s
(y)
i + s

(y)
j

− µ(y)
ij )2

+c
(s)
ij (log

si
sj
− µ(s)

ij )2
)

(2.48)

From Equation 2.48, we can see that though individual nodes are not independent, edges

are highly separated and optimal substructure can be reused without repeatedly evaluating.

However, in our probabilistic setting, we don’t have a clearly defined score to evaluate a

portion of the solution. To address this problem, we must regard the detection process as

finding the best embedding of desired object in the image, and both Equation 2.48 and

Equation 2.47 are terms of the cost function. Therefore, using similar technique as that of

Kruskal’s Algorithm, each foreground patch can be regarded as the simplest (maybe also

most unlikely) solutions which only have one node in the group. We check all node pairs

and add edges between those the spatial relations of which are close enough to the modes of

the model (µ
(x),(y),(s)
ij ) according to the model threshold. By doing so, we are merging small

graphs into big ones, and eventually there will be one component left, which is the solution

(when multiple objects are presented in the image, there can be more than one components

left).

Thirdly, we need also to define P (d|θ), which is not accounted for in our learning stage.

A straightforward solution will be using a Beta-Binomial setting, so the probability only

depends on number of detected foreground words. However, this approach ignores the diver-

gence in the patch group. For instance, in human detection, a group with one head patch and

one torso patch should be regarded as a better one than another group with 2 head patches.

As a result, defining part as the communities discovered in SEN (see Section 2.2.3), we reduce

viewlet presence/absence indicator d into a part one dp. Assuming all parts are equal, we

have sufficient statistics, the L1-norm of dp, ||dp||1, Therefore, P (dp|θ) = P (||dp||1|θ). When

41



(a) Search on a carpet patch, failed

(b) Substructure reused without re-evaluation, search on a head

patch, succeeded

(c) group merged

Figure 2.6: Optimal-substructure in patch grouping.
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a part is present, we are seeking for at least 2 patches of related viewlets, more would be

better, but will not help as much as the first 2, to model this behavior, a sigmoid function

is used. In summary, we have,

||dp||1 ∼
np∑
i=1

1

1+e−(npi−1) (2.49)

P (d|θ) = P (d|dp)P (dp|θ)

= P (d|dp)P (||dp||1|θ)

∼ P (d|dp) 1
1+e−(||dp||1−1) (2.50)

Furthermore, we can bring in some approximation here by just counting the number of

part with more than 2 patches detected, which binarized npi values. Therefore, P (d|dp) ∼

uniform, and we have,

P ′(d|θ) ∼ 1

1 + e−(||dp||1−1)
(2.51)

2.4 Summary

In this chapter we have presented some fundamentals of the SUV model and then outlined

the analytical approaches that can be used to solve the corresponding learning and detection

algorithms. In Chapters 4 and 5 we provide further details and variations of the learning

and detection algorithms that we have developed herein.
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CHAPTER 3

Related Work

3.1 Introduction

Object discovery and localization lies at the heart of computer vision, and has attracted

a large amount of research interest. However, it remains a difficult task due to several

challenges. The first is the limitation of computer image representation, which is inconsistent

to spatial bias and color, illumination condition, white balance fluctuations; the second is

the variable object appearances of objects from the same category, and the “deformable”

nature of many objects.

To address the first problem, several attempts have been made to deliver representative

and robust visual representations, or, “features”, which represent image regions as feature

vectors. Feature vectors usually preserve contour, texture and patterns, color and intensity

information. Detection algorithms rely on feature vectors and spatial relations between

them to make decisions. As a result, these features are of crucial importance and must

be representative and separable in the feature space. We will discuss a variety of different

feature descriptors in Section 3.2.

With extracted features, numerous strategies can be applied to detect objects:

• Simple features directly encode the entire object as a rigid template of feature vec-

tors. General machine learning techniques like Principal Component Analysis [SL90],

template matching, k-Nearest-Neighbors, or discriminative approaches like Support

Vector Machines (SVM), Logistic Regression, etc., and even generative approaches like

Bayesian approaches with the Expectation-Maximization can be then used as holistic
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classifiers to detect object as a whole, like pedestrian detection [DT05,DTS06].

• However, in more complex cases, objects cannot be simply represented by a gen-

eral template. To account for such objects, attributed-based and part-based ap-

proaches have been densely studied. In such approaches, an object class is usually

represented in a factored way. With factored representations, the detection can be done

by recognizing similar image patterns/features that commonly appear in instances of

this class and the spatial relationship between them.

– Early work of factored models were based on a bag-of-visual-word model, upon

which various existing approaches from text-based data mining were applied, from

simple K-Means clustering, spectral approaches like kernel PCA and Laplacian

Eigenmap, to more complex ones.

– Among these methods, probabilistic models have been intensively studied. Sivic

proposed a method based on Probabilistic Latent Semantic Analysis. Later, La-

tent Dirichlet Allocation (LDA) [RES06, BNJ12], which had been widely used

in the text topic modeling field, was also adapted. A further extension, Spa-

tial Latent Dirichlet Allocation, was proposed by X. Wang to account for spatial

information [WG07].

– Supervised approaches rely heavily on well labeled image datasets. However, there

are usually far more categories to be labeled than that of text. Moreover, because

of the intrinsic nature of bitmap image representations, the intra-cluster variances

are considerably large. As a result, it is difficult to annotate and maintain a

comprehensive dataset. Therefore, current applications of supervised approaches

on Internet-scale datasets are far from ideal. As a result, numerous studies have

been done on demonstrating unsupervised approaches on object discovery [FPZ04,

GD06, KHK11]. Tuytelaars and Lampert et al. have a comprehensive survey on

these approaches [TLB10].

– To discover relations between parts, different approaches have been developed,
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Marius Leordeanu and Martial Hebert proposed a spectral approach for finding

persistent feature pairs [LH05]. A structural similarity discovery approach was

proposed by Blondel [BGH04]. To represent the structure of the entire system and

settings of each part, there are considerably more parameters, which makes the

learning process even more challenging. In order to address this problem, some ap-

proaches with simplified structure were proposed. Tree models, which simplify the

fully joint relation between parts into a tree [FH05], or tree-like Bayesian networks

[CFH05], were densely studied. Felzenszwalb and McAllester also proposed a

weakly-discriminative deformable part model approach [FMR08,FGM10,GFM11].

Lubomir and Jitendra proposed a 2-layer supervised approach to detect and local-

ize people using “Poselet” [BMB09]. What’s more, in order to have the shape and

structure of the parts-based system properly described throughout the variance of

training image resolutions, a scale-invariant unsupervised approach was proposed

by Fergus et al. [FPZ03,FPZ07] and Fei-fei et al. [FFP03,FP05,FFP06], in which

one particular part is used as a reference point to have the locations and scales of

other parts normalized and represented.

Among these studies, there are three most prominent ones:

The weakly unsupervised Bayesian generative approach by Fergus and Fei-fei et al.

and its variants [FPZ03,FFP03,FPZ04,FZP04,FPZ05,FP05,FFP06,FFP10], which has

a predetermined number of parts and use a Bayesian graphical model to represent the

spatial relationship between parts, and use the Expectation-Maximization algorithm

to learn the probability distribution function parameters;

The Deformable Part Model by Felzenszwalb et al. and its variants [FH05, CFH05,

FGM10,FGM09,GFM11,CML14], use Histogram of Oriented Gradient(HOG) feature

as the descriptor, and a constellation-structured cost function to control spatial rela-

tionship;

poselet proposed by Bourdev et al. [BMB09, BMB10], and its variants [GHG14, ZFD12,
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ZDG14,ZPT15], which provides a sophisticated way to find discriminative image crops

which are also representative. These approaches will be discussed in greater detail in

Section 3.3.

Although these methods can represent deformable parts along with pairwise spatial infor-

mation, the spatial information representation and system structure modeling are far from

optimal. Constellation-based approaches or star-models are highly dependent on a root

or landmark feature, which makes the model’s performance prone to landmark/root node

detection error. Meanwhile, they fail to capture the real world relations among parts. More-

over, the EM and variational approaches used in these models are known to be slow when

the number of parameters to be learned is high, which makes it even more computation-

ally impractical to work with complex high-dimensional visual descriptors or Internet-scale

datasets.

Network models are highly flexible and representative, which makes it an ideal tool for

exploring real world systems and their mechanisms. Moreover, it is probably the most

well studied model and there are numerous delicate algorithms to reveal structure from the

topology of networks [TWH03,NG04,New06,BGH04,For10]. Community finding algorithms

are widely used in our framework as an unsupervised clustering approach. Therefore, we

also introduce Complex Network and community finding studies in Section 3.4.

3.2 Features

There are mainly two general classes of features: sparse features and dense features.

• Sparse Features In sparse approaches, instead of converting the entire image in to a

set of feature vectors, another stage of saliency region discovery (usually blob detectors

[AKB08], like the Laplacian of Gaussians (LoG),the Difference of Gaussians (DoG))

is placed in front of feature extraction. With this extra stage, only these regions,

or so-called points of interest defined by the saliency information filter, are encoded
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into descriptors (e.g. Scale-Invariant Feature Transform (SIFT) [Low99], Speeded Up

Robust Features (SURF) [BTV06], shape context [BMP01,BMP02,BM00]). The main

advantages of these approaches include: (i) the resulting data is much smaller size

because except the highly discriminative regions, majority portion of the image is

dropped, and (ii) the descriptors are usually resistant to location shift, noise, and

other kinds of variation.

• Dense Features In dense approaches, images are swept with a fixed step and all re-

gions are converted into feature vectors. Such approaches usually require more storage

space. However, they are not necessarily slower than their sparse counterparts, since

even in the sparse approaches, it is still necessary to scan entire image for saliency

discovery. Although preserve an excessive amount of information is usually regarded

as a drawback, it is of critical importance in unsupervised learning [TLB10]. Among

features that are usually used in dense sampling scenarios, the most significant is prob-

ably Histogram of Oriented Gradients (HOG) [DT05]. This is based on occurrences of

quantized gradient orientation in patches of an image and uses local contrast normal-

ization for consistent representation.

3.3 Part-Based Approaches

3.3.1 An Unsupervised Approach: Fergus’ Scale-Invariant Bayesian Generative

Model

The Bayesian generative approach and graphical models are generally accepted as a powerful

machine learning technique in representing complex systems, and are widely adapted in text

data mining, like Probabilistic Latent Semantic Analysis (PLSA) [Hof99], Latent Dirichlet

Analysis (LDA) [BNJ12], etc. With proper feature representation, the same approaches can

be applied to image data mining. The first part-based Bayesian model was proposed by Burl

and Weber. In their approach, the EM algorithm was used to learn the graphical model
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for image classification and category discovery [BWP98,WWP00]. Fergus et al. proposed a

vastly improved model, which explicitly accounts for shape, scale and appearance [FPZ03,

FPZ07].

In Fergus’s approach, an object has a fixed and predetermined number of parts. The

appearances of parts are modeled as Gaussian distributions in the feature vector the space

with to-be-learned means and variance values. Among these parts, one of them is marked as

the root part. Upon determining root part, shape is represented by all other parts relative

to the root part. Similarly, the scale of each part is also normalized by comparing it to

the absolute scale of the root part. Therefore, the entire generative pipeline is formed by

chaining these random variables by conditional probability. As a result, for an image with

an appearance matrix A, define a latent variable position vector X, a scale vector S and

a part presence indicator h, given the object(foreground) parameters, the likelihood can be

written as Equation 3.1.

P (A,X, S|θfg)

=
∑
h∈H

P (A,X, S, h|θfg)

=
∑
h∈H

P (A|X,S, h, θ)

× P (X|S, h, θfg)P (S|h, θfg)P (h|θfg) (3.1)

Similarly, if there is no object in the image, given the background parameter set θbg, the

likelihood can be written as Equation 3.2.

P (A,X, S|θbg)

=
∑
h0∈H

P (A,X, S, h0|θbg)

=
∑
h0∈H

P (A|X,S, h0, θ)

× P (X|S, h0, θbg)P (S|h0, θbg)P (h0|θbg) (3.2)

By calculating the posterior ratio R, as shown in Equation 3.3 and comparing it to a threshold
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T , detection decisions can be made.

R =
P (Object|A,X, S)

P (No object|A,X, S)

=
P (A,X, S|Object)P (Object)

P (A,X, S|No object)P (No object)

≈ P (A,X, S|θfg)P (Object)

P (A,X, S|θbg)P (No object)

(3.3)

As seen in Equation 3.1, to make the model scale and translation invariant, the scale

latent variable S is the parent node of the position latent variable X. Each of these likelihood

functions has a fixed form which mostly consists of Gaussian, Poisson and geometric PDF’s.

Object model is learned using the Expectation-Maximization (EM) algorithm, detecting

parts and their configurations, and estimating the parameters of the above densities from

detected configurations alternatively until convergence.

Fergus’s approach addresses many problems of object recognition, including learning

without supervision, modeling appearance explicitly, scale-invariance, etc. However, it is

still unsatisfactory due to the following unsolved problems: one is that the part number is

predetermined and fixed, which is restricted when the part number is unknown; Moreover,

for n parts, there are O(n2) parameters to learn, in order to control the running time and

keep the algorithm computationally feasible, the part number must remain small; Another

problem is that the EM algorithm is inherently slow and inefficient, especially when there are

multiple large covariance matrices to learn; Last, a constellation model is highly dependent

on the accurate detection of the root/reference part, and is prune to root part detection

error or bias.

3.3.2 A Weakly Supervised Approach: the Deformable Part Model

Unlike the Unsupervised Bayesian Model introduced in the preceding section, the Deformable

Part Model (DPM) is a discriminative model introduced in 2007 by Felzenszwalb et al.

which sought to address the performance gap between part-based models and rigid templates
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[FMR08,FGM10]. The model is trained in a supervised way. However, the authors refer to it

as “semi-supervised” because although a bounding box is required for every positive object,

parts will be inferred by the model later in the learning process and are not required to be

labeled before training. The system outperforms the by-then best results in the PASCAL

VOC 2007 challenge in ten out of twenty object categories. A new approach for training was

also proposed, in which a generalized SVM with latent variables representing part positions

was used to learn parts from weakly-labeled data.

The Deformable Part Model shares essentially the same idea as the pictorial structure

model in earlier studies [FH05,BWP98]. It includes a global object template and a few part

templates organized as a star-structured model, which captures spatial relationships between

parts and the root. The appearance is represented by Histogram of Oriented Gradient (HOG)

features from [DT05,DTS06] with some parameter change to reduce the descriptor complex-

ity. Principal Component Analysis (PCA) was then applied to further reduce dimension.

By applying PCA at cell-level instead of patch-level. The image cell structure is preserved,

which eliminates the necessity to re-evaluate the descriptors for each small shift.

In the detection stage, a dense set of possible positions and scales will be searched.

Matching here is more difficult because multiple parts must be placed while the global

criteria is evaluated. The tree/star model allows a dynamic programming search strategy

which is more efficient. In each candidate configuration, a score will be calculated based on

the appearance similarity estimated by a filter of each template, as shown in Equation 3.4,∑
x′,y′

F [x′, y′] ·G[x+ x′, y + y′] (3.4)

and the geometric relation deformation represented by cost function, as in Equation 3.5,

f(p0, · · · , pn) =
n∑
i=0

F ′i · φ(H, pi)−
n∑
i=1

di · φd(dxi, dyi) + b (3.5)

where,

(dxi, dyi) = (xi, yi)− (2(x0, y0) + vi) (3.6)

φd(dx, dy) = (dx, dy, dx2, dy2) (3.7)
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To simplify the model, the interactions between overlapping parts are not modeled. The

authors claimed that, despite potential benefits, it is unlikely to be a problem in a discrimi-

native approach.

In the learning stage, DPM proposed a latent SVM to train a part-based discriminative

model: While the bounding boxes of objects are given, the bounding box of each part is

not. Instead, the position of part and model parameters were estimated together with the

Expectation-Maximization (EM) algorithm to minimize the error rate on the training images.

The Deformable Part Model, while reducing the performance gap with rigid template

models, is still far from perfect. Unlike Fergus’s approaches [FPZ03, FPZ07], DPM needs

supervised training, which require each object in the training images to be labeled with a

bounding box. However, it might not always be feasible in Internet-scale learning, consid-

ering how easy it is today to download millions of images in one day. Moreover, similar

to the preceding section, the EM algorithm becomes slow when parameter number is large.

Especially in latent SVM training, each possible configuration must be evaluated, which fur-

ther impacts the performance. Last, the model inherently lacks flexibility and representative

power. Lack of interactions between parts makes the root-leave connections the only geo-

metrical constraints. The predetermined number of parts and even the area of them, makes

the use case even more limited.

3.3.3 A Strongly Supervised Approach: Poselet

“Poselet”, a term which suggests that it describes a part of one’s pose under a given view-

point, was proposed as a new notion of part by Bourdev et al. [BMB09]. Each poselet has

a corresponding rectangular patch of a given person on a given image, and also corresponds

to a point in the “configuration space” of human pose. A good poselet is claimed to have

two most desired properties:

• It is separable in the feature space, which means the members of the same part are

tightly clustered in the feature space and relatively distant from members of other
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classes, which leads to easy detection and classification for traditional computer vision

algorithms.

• It has clear semantic meaning, which, in the authors’ words, “should be easy to localize

the 3D configuration of the person conditioned on the detection of a poselet.”

With such kind of “poselet”, a two-layer classification/regression model for detecting and

localizing object at part level, was proposed [BMB09,BMB10]. Poselet model has a similar

structure to deformable part model [FM06, FMR08]. The first layer consists of individual

poselet classifiers which detect part patterns in the image. The second layer applies a max-

margin optimization approach, and makes decisions based on the detection output of the

first layer and the spatial interactions between them. One main difference from [FM06] is

that, in Felzenszwalb’s approach, parts were discovered automatically as in the preceding

section, while in poselet they are trained in an outright supervised manner. To facilitate

the extra annotation work, a new keypoint-based annotating approach was proposed to find

good poselets efficiently. The overall procedure is described as follows.

Poselet Generating Firstly, the configuration space is defined as a 2D space with a set of

keypoints (like left eye, right shoulder, nose, left elbow, etc.). With this model, each

concrete example in images can have its keypoints translated into the configuration

space. The distance of 2 examples s, r can be defined as,∑
i

ws(i)||xs(i)− xr(i)||2(1 + hs,r(i)) (3.8)

where xs(i) = [x, y, z] are the normalized coordinates, ws(i) are Gaussian function

centered at the patch center, and The hs,r(i) is visibility mismatch penalty.

To generate a large population of poselet candidates, a rectangle window is used to

sweep over a training image with human annotations. At each position, least-square is

used to find close matches from every other annotated human images in the training set

regarding to a threshold λ. This process generated 120 000 poselets. After removing

low occurrence ones and similar ones, there were 2000 left.
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Poselet Selection For each of these 2000 poselets, patches were converted into Histogram

of Oriented Gradient (HOG) features proposed by Dalal and Triggs [DT05] and linear

SVMs were trained with non-people negative images. The training process has multiple

iterations with extra hard false positive added continuously. After the training process,

the performances of all SVMs were evaluated, and only the top 300 were kept while

others were abandoned.

Detection Firstly, Generalized Hough Transform framework was used to fit transformations

from the poselet to the object. Then, for a query image, each poselet detector was used

to sweep over the query image. All hits were collected and grouped into clusters. A

vote based on the learned transformation with corresponding weight was casted from

each cluster, in which weights were learned via Max Margin Hough Transform [MM09].

The optimization function is as follows,

min
w,b,ξ

1

2
wtw + C

T∑
i=1

ξi (3.9)

s.t.yi(w
tAi + b) ≥ 1− ξi (3.10)

w ≥ 0 (3.11)

ξi ≥ 0 (3.12)

∀i = 1, 2, . . . , N (3.13)

With the weights, the probability of detecting the object O, at position x is,

P (O|x) ∝
∑
i

wiai(x) (3.14)

Poselet is generally regarded as a state-of-the-art approach, and have been widely adapted

[ZFD12,GHG14,ZDG14,ZPT15,GGM14]. However, there remains a need to design a set of

keypoints, and annotate all images, which makes it an impractical option for Internet-scale

dataset. Moreover, though it was claimed that the model was designed to capture a part of

a pose, however, the fact might be different from the poselet list of the most widely used

poselet model (demonstrated on https://www.eecs.berkeley.edu/Research/Projects/
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Figure 3.1: Some poselet used by the human body model in [BMB09].

CS/vision/shape/poselets/poselets_person.html ), as shown in Figure 3.1 We can see

that very few templates are really about a part, while most of them are just outlines of

pedestrian.

3.4 Network Models and Community Finding

3.4.1 Emergence of Complex Network

Since Euler’s work on the Seven Bridges of K’́onigsberg in 1736, for around 300 years re-

searchers have extensively studied graphical models, or “networks”, and the important role

they play as the representation of complicated systems in virtually all fields ( including

social science, engineering, biology, etc.) over the world. The social relationship between

people can be regarded as a network, cities with the roads and freeways between them can

be regarded as a network, electrical power grids can also be regarded as a network, etc.

While more real systems have been studied using graphical models and more mathematical
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properties of networks have been discovered, traditionally graph theory became an extremely

useful tools to study network until recent times.

The development of computer and the Internet provides gigantic amount of comput-

ing resources and data processing power, enables researchers to address some even more

complicated systems, like proteins and the interaction between them, computer clients and

the Internet among them, the World Wide Web, which consists of billions of websites,

network of acquaintances of a considerable population of people and the communication

between them( i.e. Facebook ), etc. This kind of system, while sharing the same basic

structure with their smaller brothers studied before, is significantly larger, and can have

much more dramatical dynamics. These changes imposed huge challenges and were be-

yond the capability of existing classic graph theory approaches. To address this issue and

characterize the topology and dynamics of real networks, a new field, Complex Network,

emerges [AB02,BA99,DM00,New03,BLM06].

3.4.2 Properties of Complex Network

It’s widely accepted that while at a significantly larger scale (number of nodes and edges),

some properties which generated considerable interest on these old, classic networks are

not meaningful anymore. In contrast, statistical properties become the new research focus.

Numerous studies have suggested that there are at least three striking statistical features of

complex networks. They are scale-free, small-world, and communities.

3.4.2.1 Scale-Free: Preferential Attachment and Power-Law Degree Distribu-

tion

A famous early attempt to model real systems is random graph by Erdós and Rényi [ER59].

In a random graph, edges are distributed in a highly homogeneous way, and the vertex

degree distribution P (k), should be a Poisson distribution. However, careful measures on

numerous real systems suggested that the real distribution is significantly biased from a
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Poisson one, in contrast, it’s more like a power-law one with an exponent β between 2 and

3 [BA99,BAJ99,AHL00,SR04]. Therefore, a long tail exists in the distribution diagram, and

large degree nodes have an important presence in the graph.

The mechanism behind this phenomenon has been intensively studied and many models

have been proposed. Among them, a dynamic model, Preferential Attachment, proposed by

Barabasi (BA) is the most significant one [WS98, BA99, ASB00, JNB01, SR04, SR05, KR08,

KSR08]. In this model, there is a mechanism called preferential attachment: When the

network grows and a new node is added, it is more preferentially attached to high-degree

nodes. The “preference” can be modeled with different functions. Specifically, when the

connecting probability is proportional to the node degree, it is called linear PA, and results

in a power-law degree distribution. BA model provides a general way to represent a wide

variety of real systems and their growing characteristics, and is widely adapted.

3.4.2.2 Small-World Effect

The first famous demonstration of small-world effect is probably the so-called “six degrees of

separation” by Stanley Milgram. To probe the average path lengths in network of acquain-

tance, letters were passed from person to person with a designated destination. A large

amount of trials showed that mails, if reached the target, usually took only a few of steps.

To be more specific, there are usually around 6 people on the path. This experiment showed

the fact that in a large scale network, pairs of vertices are connected by short paths through

the network.

Recent literatures have defined the small-world effect in a more precise way [WS98].

Denote l as the average degree of a network in Equation 3.15.

l =
1

1
2
n(n+ 1)

∑
i>j

dij (3.15)

Given mean degree, networks has the small-world effect if l ∼ O(log(n)). The small-world

effect has been widely observed in a variety of real systems [WS98], and is believed to have

a crucial role in many features and processes that take place in networks, including synchro-
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nization, rumor and epidemic spreading, etc. Studies also suggested that the mechanism is

likely to be associated with the high values of the clustering coefficient and the communities

structures in the network [New00,New01].

3.4.2.3 Community Structure

The massive analysis of networks suggests that large systems usually share some dramatic

structural features and a high level of organization [GN02, NG04, BLM06]. Most of them

can be partitioned into clusters, or communities. Members of each community are densely

connected, but the links between different communities are much sparser.

Community structure is an important property of many complex networks [PDF05,

TWH03, CKL09, TLM10, For10, YSN11]. From some more concrete systems, like families

in an acquaintance network, geographically close cities in a highway system, to more ab-

stract and virtual ones, like customers sharing similar interest of products, articles describ-

ing related topics, proteins sharing identical functions. In these networks, some nodes solely

belong to one densely connected communities, whereas some others may have a higher level

of participation and act as bridges between communities. The differences in the roles in the

community structure are of such a great importance that sometimes they become the most

important identities of nodes (like political bias in a congressmen network, movie genre in a

movie network, and the native language in a friendship network).

Studies of many network systems in the real world showed that community structure

usually also have organized in a hierarchical manner [RB03]. Communities in a network

include smaller communities, which in turn are composed by even smaller communities, etc.

3.4.3 Community Finding

Since the community structure is such an important feature of network systems, discovering

the communities of a network is an effective way for understanding the architecture and

dynamics of the network. Community detection algorithms are proposed to identify the
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modules and to find community organization of a graph/network only using the topology

of the graph without any extra information, and to measure how good such community

assignments are. Furthermore, in our case, when the network was created using a set of data

entries and a given similarity/distance measure, discovering communities also allows us to

do clustering of these nodes, according to their membership assignment in the discovered

modules.

3.4.3.1 Traditional Approaches

Traditionally, there are two board classes of techniques to find communities: agglomerative

methods and divisive methods. These two kinds of approaches try to address the same com-

munity finding problem from opposite directions. In agglomerative methods, which is also

called hierarchical clustering, nodes are grouped according to their similarity hierarchically

until there is only one cluster left. In contrast, the divisive approaches, which are also re-

ferred as partitional clustering, try to solve the community finding problem by addressing

the classical graph theory problem, min-cut : To partition a graph into 2 sub-graphs of com-

parable sizes, with the aim of minimizing “bridges” between them. Though the studies of

community finding algorithms has a long history dating back to around 80 years ago in social

science [Ric27], and related problems were discussed in graph theory even earlier, most of

them were originated from small graphs and are incapable to handle large-scale networks.

Specifically, the graph partition problem is NP-complete, so efficient heuristic is required to

keep this task manageable.

In the last few years, a series of novel approaches have been proposed [LLM10, For10].

A breakthrough was the betweenness-based approach by Girvan and Newman [GN02]. In

Girvan and Newman’s new divisive algorithm, centrality measures like edge betweenness

(How many times an edge takes place in the shortest paths of other vertices pairs.) are

used to identify these bridge edges, which lie between communities. After a series of bridge

removal, the network will be divided apart and communities will reveal. After this milestone

paper, community finding has attracted huge amount of focus and numerous new methods
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have been proposed. Moreover, because of the increasing need of finding communities in

large scale networks, besides the detection quality, the time complexity becomes the most

important factor.

3.4.3.2 Modularity Optimizing Approaches

Modularity, Q, as defined in Equation 3.16, was introduced by Newman [New04, New06].

It changes the community finding problem into a cost function optimization one, and has 2

major contributions: One is that it provides a by then best measure of community assignment

quality, the other is the inherent flexibility of modularity. The modularity measure triggered

the emergence of a variety of new algorithms, some of fast variants can handle Internet-scale

datasets and make them computationally feasible with state-of-the-art quality.

Q =
1

2m

∑
ij

(Aij −
kikj
2m

)δ(ci, cj) (3.16)

In the initiated study, Newman proposed a greedy agglomerative approach [New04] to

optimize the modularity Q. To begin with, each node is a community. Each step a new

edge is added and communities are joined to form larger communities. Correspondingly,

connecting node i and j will also increase modularity by

∆Q = Aij + Aji − 2kikj = 2(Aij − kikj)

In each step, the edge (i, j) which will result in maximal modularity increase ∆Q is chosen.

This algorithm allows clustering to be done at a much higher speed than the fastest algorithm,

and first brings the analysis of much larger networks into reality.

This work was later improved by Clauset [CNM04] using more sophisticated data struc-

tures: Max-heaps were used to maintain the modularity variations for fast maximum value

retrieval; and arrays are maintained to keep the sum of rows of the edge matrix eij. These

data structures vastly boosted the performance while keeping exactly the same numerical

results. This variant is able to handle networks with more than one million nodes, and is

widely adapted in the analysis of Internet-scale systems.
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However, Newman’s approach tends to form badly unbalanced dendrograms. Conse-

quently, the running time is usually close to the worse case and the community assign-

ment is not the most favorable. To address this problem, multiple algorithms were pro-

posed [DDA06, WT07, SC08], Blondel et al. proposed another approach which yields much

better partitions [BGL08]. The beginning configuration is the same as that of Newman’s:

every single node belongs to its own community. However, the agglomerating process is quite

different. Instead of looking for the global maximum ∆Q, all vertices are swept in one pass

while each gets merged with the neighbor on the other end of the local maxima edge. This

technique provides almost linear time complexity. Therefore, it is considerably faster than

other approaches and able to handle networks with billions of nodes.
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CHAPTER 4

Human Prototype Representation

4.1 Introduction

4.1.1 Motivation and Problem Statement

Creating statistical models and the task of unsupervised learning of visual concepts from

Internet-scale data can be aptly described as a problem that an alien might face on a re-

connaissance trip to the earth. An advanced alien probe that can tap into the radio-signal

backbone of the Internet, will have access to a huge time-stamped database of human-created

images and videos at the pixel level. They can only rely on fundamental and universal knowl-

edge about statistical and mathematical patterns, and about space and geometry to try to

retrieve objects and structures that have correlations, and have statistical measures that

separate them from randomness. The alien can use various contextual groupings of the data

it collects, for example grouping images based on time intervals, to make sure that the same

objects will repeat in the image corpus and thereby increase the chances of making statistics

count in its favor.

To make matters more concrete, let us consider the following problem: An alien visitor,

who hacks the Internet to obtain a large set of images featuring humans (still unknown to the

alien) in various positions and scenes, wants to automatically construct a statistical model

of the object (i.e., human) and the various parts that it has. We find it useful to phrase the

alien’s task as a jigsaw puzzle design problem: Determining a set of representative “pieces”

(i.e., distributions of visually similar image patches) for each body part (i.e., what we humans

will call head/face, shoulders, arms, legs etc.), such that (i) each piece represents a specific
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visual configuration of the underlying part (e.g., a specific pose for the ”arm” part), and

(ii) spatial relationships among the parts are specified, dictating how they all fit to make a

human body.

In general, to summarize all the objects that we use, the alien will have to solve the fol-

lowing largely-open problem: Given a large and completely unlabeled image corpus featuring

multiple instances of an unknown but a specific set of structured objects (i.e., each object

has several parts that have consistent and stable spatial relationships), how can one auto-

matically discover and build composite abstract representations of the underlying unknown

objects, their different parts (i.e., the groups of jigsaw “pieces”), and the relative spatial

positions of the parts (i.e., how the “pieces” fit) within an object.

4.1.2 Our Approach and an Outline of the Chapter

We address the human prototype learning problem using the technique described in Chap-

ter 2. Firstly, we create a high quality celebrity image set. We develop an approach to

learn the graphical model in a fully unsupervised way from the celebrity image set, and the

corresponding algorithm to do detection using the learned model as described in Chap-

ter 2. The approach is summarized in Figure 4.2. The first step (described in Section 4.2)

is to randomly crop the images into a large set of patches at multiple scales, and represent

each cropped image patch using a general feature descriptor (e.g., what an alien would be

expected to have), such as local Histogram of Gradients (HOG) [DT05] (instead of sophisti-

cated object-dependent feature descriptors that are used in the Computer Vision community,

where labeled objects need to be learned). Then we use K-Means clustering to separate these

patches into visually similar groups. Each such group is really a candidate “piece” in our

SUV model. Since the associated image patches, in terms of the underlying objects (See

Figure 4.2), represents parts in specific views, we refer to each cluster also as a “viewlet”.

With this network, we can find structurally similar nodes [KFH08,BGH04], and because of

our augmented edge with relative spatial information, the spatial similarity was also veri-

fied. This enables us to find a k-partite like sub-graph in our network, which establishes
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the connection between visual templates of the same part (like arm, torso, head, etc.) with

dramatically appearance difference, which, in some early studies, was added manually or

using text information from the Internet [KHE12]. We also show that the global spatial

information can be restored completely from the recorded pairwise data.

From an object perspective, many of the “pieces”/viewlets are noisy, irrelevant, or cover

multiple parts (Section 4.2.2). The next step (Section 4.3) is to construct the Spatial Relation

Network, where each node is a piece/viewlet, and edges are based on co-occurrence and stable

geometric relations. The SRN structure has multiple uses in the SUV framework, including

(i) It automatically filters out irrelevant and noisy pieces. (ii) It allows computations of a

global position and scale for each piece/viewlet. The SRN still does not group the pieces

into parts. The wedges and triangles in it are further processed to construct the Spatial

Exclusive Network (SEN) (Section 4.4).

We next show how (Section 4.6) SUV can successfully extract all the human body parts by

applying it to a corpus of more than 9000 mostly celebrity images. As a further evaluation

of our SUV model, we construct a “head/face” part detector. Instead of the network-

based grouping strategy described in Section 2.3, we use a simplified anchor-based grouping

strategy, and use network deduced transform rules to predicate the position of head/torso

from detected parts. We show that when evaluated on a test set of almost 3000 images of

humans (with mostly full body), our automated detector’s performance (98% precision at

87.8% recall) compares very favorably with the performance of a popular OpenCV Viola-

Jones face detector (76% precision at 92.9% recall), which has been carefully manually trained

using large-scale labeled data. The intuitive reason that our automated detector performs

so well is because it is using other body parts to help in the detection of the location of

the face. We also train a torso classifier, and show that the resulting classifier outperforms

the Deformable Part Model (DPM) in experiments, and have comparable results with the

poselet approach (which was trained in a heavily supervised way).

Section 4.7 presents a minimally trained face detector created using our framework that

performs better than well-trained state-of-the-art techniques.
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(a) Part 1 (b) Part 2 (c) Part 3

(d) Part 4 (e) Part 5 (f) Part 6

(g) Part 7 (h) Part 8 (i) Part 9

Figure 4.1: For each viewlet related to the yet-to-be-determined object, we automatically compute

a global position as explained in Sec. 4.5. Note that each “piece” is a compact region of the feature

descriptor vector space, as illustrated in Figure 4.2(a). Then in each sub-figure we highlight (in

red) the groups of pieces that we compute as belonging to a distinct part. Note that, (i) The pieces

from the same part occupy a distinct region, verifying the efficacy of SUV, and (ii) The different

parts (head, shoulder, legs etc. see also Figure 4.2) almost outline a human body figure; a human

contour figure is overlaid in the first figure as a reference and no knowledge of it was used during

the computations.
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Figure 4.2: The different steps in the SUV framework. It starts with breaking up the given corpus

into a large number of patches or crops, and quantizing the feature space into candidate viewlets,

also referred to as viewlets. We have shown example viewlets in terms of the human body parts,

just to illustrate visually what they stand for; of course, at this stage the algorithm does not

“know” what they are, until the parts are computed at the end of the procedure. From an object

perspective, many of the “pieces” are noisy, irrelevant, or cover multiple parts. The next step is to

construct the SRN based on co-occurrence and stable geometric relations. The SRN has multiple

uses in the SUV framework, including (i) automatically filters out irrelevant and noisy pieces, and

(ii) allows computations of a global position and scale of each piece/viewlet. Finally, by processing

wedges and triangles in the SRN, we compute the SEN, where pieces representing the same parts

form distinct connected components. Figure 4.10 provides a visual verification that the parts were

computed accurately.
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4.2 Step I: Clustering in the Feature Descriptor Space and Viewlets

4.2.1 Learning the vocabulary

As in Section 2.2.1, we start our SUV model by first randomly cropping images into patches

of fixed size but at multiple scales. Then we use a general feature descriptor, such as the

local Histogram of Gradients (HOG) [DT05] to represent each patch as a vector. These

vectors are then clustered using the K-Means algorithm to obtain K clusters1

Each cluster comprises patches that are visually similar to each other, within the quanti-

zation and expressiveness properties of the feature descriptor chosen to represent the patches.

In terms of the underlying objects (See Figure 4.2), each such cluster represents parts in

specific configurations. For the human example, a cluster could represent heads, arms in dif-

ferent poses, half heads, half bodies etc. Thus, the clustering process breaks up the feature

descriptor space into Voronoi-type separable regions, and we define each such region as a

distinct Viewlet. Each viewlet is now a potential “piece” in our SUV model.

Moreover, we notice that the frequency of most viewlets is inversely proportional to its

rank, which follows the general trends of the Zipf law, as seen in Figure 4.3. It might imply

the intrinsic similarity between our viewlets and words in natural language corpora.

4.2.2 Challenges in Going from Viewlets to Actual Objects

Identifying objects from images is challenging because the same real world element can look

dramatically different in different images, and even visually similar images, once converted

into feature descriptors, can be distant from each other in feature space. These differences

are caused by:

1. Different 2D projections of the same object — When a 3D object is projected

to a 2D space, there are many different projections due to the reduction of degrees of

1See Section 4.6 for a detailed discussion of cropping procedure, the specific HOG image feature descriptor
choice, and the choice of K for our dataset.
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Figure 4.3: Viewlet frequency vs. rank table.

freedom. In addition, objects may have many internal degrees of freedom (e.g., flexible

joints in humans).

2. Differences in scale and translation — While it may be easy for humans to identify

the object in different image patches with slightly shifted positions and scaled sizes,

sophisticated features are required to do this in computer vision.

As a result, viewlets computed in Step I using a typical feature descriptor have the following

limitations from the perspective of object and part modeling:

1. One-to-Many: The same part (e.g., “head”) could be represented by several viewlets

that are far apart in the feature descriptor space. Thus, standard measures such as

Euclidean norms cannot be used to find their semantic similarity.

2. Transitional: Due to our blind and random cropping, some viewlets are, what may

be called as transitional, and may overlap different parts (for example, a half-body
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viewlet).

3. Non-Object or Background: Viewlets will also capture perfectly valid visual patterns

that appear as background in the image corpus, but are not related to any of the

objects of interest.

4. Many-to-One: Because of the feature descriptor’s resolution limitations, several viewlets

will comprise multiple objects/parts in them.

We next outline steps how to use co-occurrence and geometric relationships amongst

viewlets to eliminate Non-Object and Many-to-one viewlets and identify and organize the

One-to-Many and Transitional viewlets into parts and objects.

4.3 Step II: Constructing and Analyzing the Spatial Relation Net-

work (SRN)

In Chapter 2, we defined a Spatial Relation Network (SRN) as G(V,E), where V is the

set of nodes, and each node corresponds to one unique viewlet; thus |V | = K. Next two

viewlet nodes Si and Sj are connected by an edge eij based on the following construction,

which has two parts to it. In the first step we go back to the original image corpus (e.g.,

the 9000-image learning set used in Section 4.6) and we detect in each image the viewlets

that appear in it. That is, given an image, we first perform a dense scan at each pyramid

level, with a fixed-size sliding window, and assign a viewlet to each resulting patch using a

k-Nearest-Neighbor algorithm (See Section 4.6 for a particular implementation). Then, for

each pair of patches (PA, PB), in the image I, and the corresponding pair of assigned viewlets

(SA, SB), we count this as a co-occurrence of the viewlets SA and SB on image I.

This step is repeated for every image in the learning set, resulting in a co-occurrence

count Oij for every pair of viewlets (Si, Sj). We account for potential detection errors and

rare statistically insignificant co-occurrences by setting a threshold t, and only pairs with

Oij > t are considered for the next step, where we utilize stable geometric properties.
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4.3.1 Determining Geometrically Stable Edges

If the pair of viewlets are describing the same real world object, the geometric relation of

them should be stable and consistent through all co-occurrences (e.g., a “head” and an “arm”

viewlet pair). The same is not true for those pairs that are related at a scenario level. We

next describe a method to compute geometric relationships between viewlets. (Discussed in

greater detail in Section 2.2)

Co-occurrences can be represented by pairs of image crops, each of which has its own

determined position and size in the original image. Let B denote a bitmap and P denote

an image patch of B. Since all image patches in our dataset are cropped from an original

image, P is a sub-matrix of B, and can be determined by 4 parameters: the origin (x, y) of

the crop, the width w, and the height h.

P = Bx···(x+w−1),y···(y+h−1) (4.1)

If we use a fixed aspect ratio, α = arctan h
w

., then only three parameters are required to

define the relation of a pair of patches from the same image. Those 3 parameters correspond

to the x, y, s we discussed deeply in Chapter 2, as shown in the following equations.

Z
(s)
ij =

sj
si

=
wj
wi

=
hj
hi

(4.2)

Z
(x)
ij =

(xj − xi)
(si + sj)

(4.3)

Z
(y)
ij =

(yj − yi)
(si + sj)

(4.4)

To construct edges for the SRN, we are going to a volatility score to check the aggregated

variances of the preceding three variables for all pairs of visual words, and only those with

a sum less than our threshold are kept as edges.

We normalized the weights of x, y in v as in Equation 4.5 and Equation 4.6, according

to the ratio α such that the same intrinsic variances alongside x-axis and y-axis will result
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in the same value change in v. have,

Ẑ
(x)
ij =

Z
(x)
ij

cosα
=

(xj − xi)
(wi + wj)

(4.5)

Ẑ
(y)
ij =

Z
(y)
ij

sinα
=

(yj − yi)
(hi + hj)

(4.6)

Now, we are ready to estimate the statistical stability of any pair of visual word by computing

variances of Ẑ
x)
ij , Ẑ

(y)
ij , Z

(s)
ij through all co-occurrences. In accord with Equation 2.5, log s is

used to be compute variance. Here is the final definition of the sum of variances V (olatility),

V = Var(Ẑx
ij) + Var(Ẑ

(y)
ij ) + Var(logZ

(s)
ij ) (4.7)

Now, we are ready to estimate the statistical stability of any pair of viewlet by computing

volatility score v from all co-occurrences.

4.3.2 Properties and Limitations of SRN

The construction of the SRN enabled us to:

• Filter all Many-to-One noisy viewlets (since they will not have stable edges with other

viewlets and thus will appear as isolated nodes in the SRN) and only keep those which

are all describing the same object.

• Create a network in which only viewlets of the same kind of objects will be connected.

And each densely connected community will be about a certain kind object.

Figure 4.4 illustrates one community in the SRN for our dataset. For example, by ap-

plying community finding algorithm on this network, we got communities which consist of

all human body part nodes. When we check viewlets in one such community, we find that

while the constituent viewlet nodes are far apart in the HOG feature space, all of viewlets

in this community relate to different representation of the multiple human body parts, as

shown in Figure 4.5. The construction of SRN thus enabled us to break the links between

celebrity body part state from all scene related states (like carpet, advertisement, etc.).
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Figure 4.4: One community in the Spatial Relation Network (SRN) and the corresponding

reconstructed global position plot.
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Figure 4.5: Communities in the Spatial Relation Network (SRN) and their semantic mean-

ings.
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Figure 4.6: Head nodes (red) scattered in one SRN community.

However, although we separated body part nodes from background state nodes, the body

nodes are still mixed together as a large community, with head nodes scattered everywhere.

For example, 2 head nodes do not necessarily have a better chance to be connected. In fact,

sometimes it might be even impossible, if these 2 head nodes are about different kinds of

heads, such as long hair versus short hair, because let alone the existence of stable geometric

relationships, they even won’t have sufficient co-occurrences.

As a result, in order to concentrate head nodes further and recognize them as the same

“part”, the SRN is still less than ideal, and we need a network which can represent semantic

meaning of its nodes better.
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4.3.3 Applications of SRN

In SRN we have not only kept information about which pairs have stable geometric relations,

but also the concrete values, and this enables us to perform the following operation that is

critical to the design of “part” detectors discussed in Section 4.7: Given an image patch of

a specific viewlet, estimate the most likely location and scale of a representative image patch

corresponding to any other viewlet. Colloquially, if one sees the left shoulder of a person,

where would the head of the person be (see for example, Figure 4.11)?

Thus, for each edge in the SRN, we define a pair of functions, fSA,SB and fSB ,SA from the

statistically learned ∆∗x, ∆∗y,r, to transform (i.e., translate and scale) patches of one state

to that of the other. Given any patch PSA (i.e., a patch detected to be in viewlet SA along

with its coordinates and scale) we obtain the corresponding patch for viewlet SB:

PSB = fSA,SB(PSA) (4.8)

For patches of states which are not neighbors, but connected via a path, SA1 , SA2 , · · · , SAn ,

we have, by the transitivity of the translation-and-scaling transform,

PSAn = fSAn−1
,SAn

(fSAn−2
,SAn−1

(· · · fSA1
,SA2

(PSA1
))) (4.9)

As a result, we can transform any states to a desired state, as long as they are connected via

a path. In our study we verified the consistency and stability of the transitivity relationships

empirically: Multiple paths connecting two viewlets yield very close transforms.

Other important applications of the SRN are discussed in Section 4.5, where using itera-

tive message passing algorithms on the SRN, we compute self-consistent values for the global

positions of the “pieces” or viewlets and their scale values. These computations allow us to

establish the stability and consistency of the SUV framework.
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4.4 Step III: Determining Parts via the Spatial Exclusive Network

(SEN)

4.4.1 Functional Characterization of Parts

Going back to our SUV framework, a functional definition of “parts” follows intuitively:

Two distinct pieces correspond to the same part if they fit in the same relative location with

respect to other pieces. For example, two different viewlets representing say the head, can fit

in very similar relative positions with respect to other pieces that represent arms or legs. In

terms of the SRN, given a pair of nodes, A and B (say two different head nodes), and a third

node, C (say a torso node), if edges A↔ C, B ↔ C both exist, and the geometric relations

on these two edges are similar to each other, we claim that A and B are functionally similar

to each other, and thus they are alternatives of the head part.

This definition has several advantages,

• First of all, it is consistent with our understanding of real world objects, which can

be regarded as the combination of 2 portions: the atomic modules, and the way how

these modules are organized.

• It is easy to represent this definition in our network, and it is much more feasible

to use our geometric relation network to find nodes, which are the projections of

different alternatives of the same part. We cannot use our SRN effectively if we used

other definitions of parts such as using for example sophisticated CV segmentation

algorithms,

Using this definition, we can extract patches, which represent the same real world parts.

4.4.2 Wedges and Triangles in the SRN

As we discussed in Section 2.2.3, a dual way of looking at the part definition would be

as follows: Two pieces that are replaceable, or have a mutually exclusive, but identical
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Figure 4.7: Wedge(B,D,C) and triangle(A,B,C) structures in the SRN.

geometrical relationship with other pieces (representing other parts). Thus, if two head

nodes are visually different (See Figure 4.7) then the chances that they co-occur sufficiently

many times and have a stable geometric relationship are very small, and there is no edge

between these two nodes in the SRN. Thus, as shown in Figure 4.7, we would observe a

wedge with respect to a third node (C), when two head nodes are of different types (like

A and D in figure). However, if the nodes are only slightly shifted versions of each other

(hence, a stable edge in SRN between them), like A and B in the figure, they also could

form a triangle with a third node (C).

Using principles in Chapter 2, we now compute the Spatial Exclusive Network (SEN) from

the SRN as follows: For every pair of nodes A, B, we first determine if they share at least

two other nodes C and E, such that the geometric relationships A↔ C, B ↔ C are almost

identical (i.e., the difference is within a small threshold) and the geometric relationships

A↔ E, B ↔ E are also almost identical. We add a third node to suppress noise. If a pair
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of nodes A, B satisfies the above condition, we add an edge between the two to construct

the SEN.

4.4.3 Properties

After applying community finding algorithms on the SEN, as shown in Figure 4.2(c), we

observed that the network is further dissembled into small components, and each of them

has a well-defined semantic meaning. Each community corresponds to a distinct human

body part as also labeled in Figure 4.2(c).

In terms of HOG features, many viewlets in the leg community are closer to viewlets

corresponding to the advertising wall than to each other, since the image patch is primarily

that of an advertising wall. Our ability to group these leg viewlets together, demonstrates

that we are successfully identifying the semantic meaning of images by leveraging network

communities instead of purely computer vision features.

Figure 4.1 further validates our part-finding results. As explained in Section 4.5 we can

use the SRN to compute global positions of every viewlet and as one can see, the viewlets

corresponding to each part occupy distinct regions in 2-D almost defining a human body

contour.

4.5 Community Properties

4.5.1 Global Scale and Positions

In Section 2.2.4, we presented that by solving optimization problems (Equation 2.43 and

Equation 2.44), the global structure of the target object can be reconstructed.

In the SRN, edges are representing stable spatial relations of endpoint viewlets. For

a densely connected component in this network, to reconstruct the structures of the entire

system, we decide to take advantage of that relative information to calculate a set of absolute

locations for all meaningful viewlets while minimizing the distortions. This task is in some
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Figure 4.8: Communities in the Spatial Exclusive Network.
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ways similar to that of some previous works, like Multi-Dimensional Scaling (MDS [Kru64]).

We derive an iterative approach to calculate the position and size of each node using the

relative positions and size of its neighbors. The approach are summarized in Algorithm 1.

Algorithm 1 Global structure inference

Require: G(V,E) Edge set E nonempty; Vertex set V nonempty.

ihub ⇐ get maxdegree(G)

xihub ⇐ 0; yihub ⇐ 0; sihub ⇐ 1

visited⇐ visited ∪ {ihub}

repeat

shift⇐ 0

for all i ∈ visited do

N ⇐ get neighbors(i)

for all j ∈ N do

xδ ⇐ get inferred x(xj, j, i)− xi;

yδ ⇐ get inferred y(yj, j, i)− yi;

sδ ⇐ log(get inferred s(sj, j, i))− log si

shift⇐ shift+ xδ + yδ + sδ;

xi ⇐ xi + get weight(j, i)× xδ;

yi ⇐ yi + get weight(j, i)× yδ;

si ⇐ si × eget weight(j,i)×sδ ;

visited⇐ visited ∪ {j}

end for

end for

until shift ≤ ε

From Algorithm 1, we get global position assignments for all nodes in the largest compo-

nent of the Spatial Relation Network. As we discussed in Section 4.3, there is a community

of human body parts. We plot all nodes using the global coordinates we got, and have nodes

from body part community highlighted, as shown in Figure 4.9 and Figure 4.1.
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Figure 4.9: Global structure reconstruction.
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From Figure 4.9, we notice that the community partition of the Spatial Exclusive Net-

work (SEN) is highly correlated with the global geometric value we derive from the SRN.

Furthermore, the global positions of the nodes in these communities of the SEN mirrored the

human body in real world. Our ability to reverse engineer human body structure demon-

strates that we can are successfully identifying the semantic meaning of images by leveraging

network communities instead of purely hard knowledge encoding (manual tagging, specific

features, etc.)

Using the same algorithm with some slight modification, as discussed in Section 2.2, we

can extract a global scale value for each meaningful viewlet. Some examples of these values

are listed in Figure 4.10 with corresponding images. We can see that while the nodes from

some communities of the SEN are all sharing similar scale values, and the values themselves,

are in good accord with our understanding of the corresponding parts.

4.6 Dataset and Feature Descriptor

4.6.1 Data Description

To test images with flexible objects with more diverse backgrounds and resolutions, we also

collect a dataset, which consists of 12 047 high quality celebrity images crawled from web,

of various resolutions and aspects, with an average size of 472× 665. We believe that using

celebrity image set can maximize the variety of dresses and body gestures, which occupy

most of the area of an image, and can easily fool many densely sampling object detectors.

For the celebrity dataset collected, we used 9638 images as the learning set, and the rest as

the test set. To check the localization result bias with high precision, we use the head part

as the anchor, and manually annotate the test set.
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Figure 4.10: Global scale values for some body viewlets.
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4.6.2 Feature Descriptor

For each image in the learning set, a multi-scale pyramid representation is created with a step

ratio 1.2. At every level, fixed-size samples are collected randomly. In this process, increasing

sampling densities is used to obtain datasets of larger size, until there is no significant change

in variance of the resulting vector set (i.e., estimated via the number of required dimensions to

retain 95% variance in PCA stage). When images are being converted into descriptor vectors,

Histogram of Oriented Gradient (HOG) [DT05] is used with the following parameters.

• Cell and Block size — We use 128× 96 image patch, each of which can be regarded as

16 × 12 cells, with each cell 8 × 8 pixels. For each pixel, we calculate gradient for all

the 3 channels and collect the maximum value. Histogram of Gradients are calculated

for each cell. Each histogram has 27 values. 18 of them are gradient bins from 20-

degree-segments of the 360-degree direction space, and the rest 9 are for energy bins,

which are the sums of pairs of absolute values of opposite-orientation bins out of the

preceding 18 bins.

• L2-hys normalization — L2-hys normalization is used on each block to make the feature

descriptors robust to the illumination conditions.

After feature extraction, PCA is applied for more compacted representation and dataset

variance evaluation to find the best sampling density.

4.7 Experiments

In Section 4.5, we re-constructed the real world structure from our network model, and

derived many related properties for the part we discovered, the close consistency between

the derived value and ground-truth further endorses the correctness of our model.

Because of our speedy algorithms, we can search the entire image densely for the best

position of each part, instead of just checking much sparser points of interest (which are
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generally the results of corner seeking, and entropy maximizing). As a result, we can also

perform object localization with high precision, and localize multiple objects in the same

image.

4.7.1 Learning

After densely sampling our learning set, we obtain a patch set consisting of 239 856 image

patches. These patches are converted into image features as described in Section 4.6. We do

multiple passes of K-Means clustering with k ∈ {250, 500, 1000, 2000} to search for the best

k, and obtain a vocabulary with 1006 visual words (k = 1000 is picked as the best, after

that we test the K-Means convergence with many runs indicated by the last digit of k, the

version with k = 1006 is picked and used in the later stage.).

The SEN/SRN construction process is similar to what we described in Section 2.2. After

this, we pick the head related community in SEN. Viewlets in this community are all head

templates. From these viewlets we further pick 3 most densely connected ones, which usually

represents head part best, as core nodes (i.e. the canonical representation of the head).

Because of the spatial information augmented on all these edges, we can calculate a geometric

transform from any other object node to these core head nodes. In addition to this, we also

pick the best mapping (with the lowest variance) from each of the SRN nodes to one of the

core ones. As show in Figure 4.11, these mapping will help us to tweak detected ones to the

best position.

4.7.2 Detection

4.7.2.1 Reference-Point-Based Grouping

After the preceding stage, we get 46 active viewlets/nodes out of 1006 we have. Now, using

the dense sampling method as described in the HOG paper, we create a pyramid for each

input image as we did for the training ones. However, instead of doing a random sampling,

we shifted the detection window in an exhaustive manner for the sake of completeness. As
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∆x : +0.3

∆y : +0.1

r : 0.25

Figure 4.11: Mapping detected head to the best position using spatial relations: In this

example, according to the information on edge, to transfer a detected patch (left ones) to

the head representation, we must shift towards left 0.3×width, shift downwards 0.1×height,

and shrink to 0.25 of the original size.

described in preceding section, a HOG calculation and PCA matrix multiplication are applied

to each patches, which is then classified into one of 1006 viewlets using k-Nearest-Neighbor

approach. If there exist one or more patches, which are classified into an active viewlets,

transform rules are applied to get the precise head position. One face can be detected from

multiple detections of the 46 states/nodes, which are grouped by their final position after

applying geometric transform. A confidence score would also be given according to the

number of corresponding detected nodes, and how good they are. In our experiment, we are

rejecting all groups with only one detection, which considerably boosted the precision of our

detector.

4.7.2.2 Network-based Grouping

Instead of grouping patches by the inferred position of head, a pure network-based approach

as described in Section 2.3 can also be applied. For each image in the test set, we apply

the same technique we used in Section 2.2: densely sampling, patch-to-visual word mapping,
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candidate patches discovering and grouping as we described in Section 2.3. After all of these,

we can get one giant connected component for images with only one celebrity in it, and we

are also getting 2 or more large groups in images with more than one celebrity, as seen in

Figure 4.12. The faces’ positions are then determined by all the patches in the same group

and the corresponding spatial transforms. In addition, a confidence score would also be

given according to the number of corresponding detected parts, and how good they are as

described in the preceding section.

4.7.3 Results and Comparison

For comparison, we choose OpenCV’s Haar-cascade implementation [Man01] of Viola-Jones

algorithm [VJ01, LM02], with its exhaustively trained model, which is widely accepted in

industry. The OpenCV face detector is based on Haar-like features. It has a decision-tree

structure, where several classifiers are applied subsequently to a region of interest until at

some stage the candidate is rejected or all the stages are passed. The classifiers at every

stage of the cascade were created by boosting of basic classifiers using one of four different

techniques: Discrete Adaboost, Real Adaboost, Gentle Adaboost, and Logitboost.

We must point out that, the Viola-Jones detector in OpenCV needs a large dataset of

positive samples for training. This requires manual labeling of thousands of images to cover

all the race and age groups, emotions, and facial hair styles. Furthermore, each of these

samples is deformed in order to create additional training data (e.g., rotated, placed on an

arbitrary background, and have levels changed), to increase the chance of hit during the

detection stage. In contrast, our algorithm requires minimal supervision. We only need

to specify a core community representing the head from SRN, and all related body part

communities of different semantic meanings will be activated automatically. Those body

part communities already have the geometric relations to the head nodes learned during the

Spatial Relation Network construction stage. Moreover, each of the communities consists of

all different nodes of various appearances sharing the same meaning, since the representation

completeness has already been handled by our network.
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(a) Different Scales

(b) Different Viewpoints
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(c) Closely Standing By

(d) Multiple Celebrities

Figure 4.12: Images with more than one celebrity. Each celebrity has her own corresponding

group.
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Table 4.1: Experiments on celebrity dataset.

Haar-like Ours

True Positive 3072 2899

False Positive 972 58

Precision 76.0% 98.0%

Recall 92.9% 87.8%

Our test set, as described in Section 4.6, consists of 2409 images, most of which are about

celebrities and with various scenes and resolutions. The faces in this test set were carefully

labeled by multiple subjects, to establish the ground truth, so that performance results can

be computed for the different detectors. The results are presented in Table 4.1. These

results demonstrate that our approach achieves a much higher precision while maintaining

a reasonable coverage. By dropping nodes from our detector set, we also obtained the

corresponding ROC curve, as in Figure 4.13.

We can see that our approach achieves high precision very quickly. It should be ascribed

to that for each face, decision was made from various sources, including shoulder, upper body

outline, hair, and even arms, etc., which rigorously provide high robustness throughout hard

false patches.

This also demonstrates the representative power of our network. The network organizes

many viewlets together to represent one object, even if these visual templates are far apart

in feature space. In contrast, if we want to identify all of these representations in a SVM

or a boosted approach, all of them should be manually encoded, or discovered using other

sources, like the Internet [KHE12], before they can be included in some positive areas in the

feature space separated one or a few hyper-planes (half space in the case of SVM).

Figure 4.14 demonstrates how the network-based matching and spatial transform rule

works. Through using head as an anchor to show with our model the localization bias can
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Figure 4.13: Face/head detection performance on celebrity dataset.

(a) Detected Part (b) Inferred Head

Figure 4.14: Examples in face/head detection.
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be measured more precisely. There are questions remaining unanswered: Since head part is

relatively feature rich, the main localization power may solely come from itself, while other

parts aren’t as precise.

To study the contribution made by the other part, firstly, we enriched the test dataset

with many difficult ones. In the current version, there are images like Figure 4.14. While

it is possible that the middle one can be handled by a good face detector, by no means

the left one or the right one can be detected solely relying on face. As a result, the other

parts are playing a big role here, in Figure 4.14(a) we can see the activated patches, and in

Figure 4.14(b) we can get a rough idea that how the spatial transform rule works.

Moreover, We try some more abstract images, like Figure 4.15. They are both interesting

examples not only because of an outright absence of face feature, but they are dramatically

different from any of images in our training set. However, we observe that our detector is

able to take advantage of the very high level structure information encoded in the network

(half body) to capture the outline in certain viewlets, and using the rules on the path to the

ground-truth head viewlets, the detector was able to deduce the head’s position.

4.7.4 Torso Localization

Comparing to head, torsos are much harder to localize, for the following reasons,

Lack of Category Characteristics or “Cues” Unlike face, which can be easily identi-

fied with features like eyes, nose, month and their relative geometric relations, torsos

do not have that kind of characteristic “cues” which can have us to differentiate a torso

patch from a non-torso patch.

Huge Within Category Variety The visual of torsos is vastly determined by the dress/clothes

patterns. With a huge variety of dress patterns we have today, the corresponding de-

scriptors will not be clustered in the feature space.
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(a) Detected body (b) Inferred Head

(c) Detected body (d) Inferred Head

Figure 4.15: Detection of the face/head part using our model even when the facial features

are absent.
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Table 4.2: Torso detection performance.

Approaches

DPM ( [FMR08]) Poselet ( [BMB09]) Ours

True Positive 1239 3115 2810

False Positive 5263 1678 108

Coverage 38.3% 96.3% 86.9%

Precision 19.1% 65.0% 96.3%

These points make a rigid-template-based torso detector impractical. However, part-based

models, with their factored object representation and geometric relation modeling, are usu-

ally capable of “detecting” torsos by inferring from the real detected parts. Thus, torso

detection becomes a great benchmark for deformable part-based approaches. We also com-

pare our model with 2 other important part-based approaches we introduced in Chapter 3.

The learning process is similar to what we described in preceding Section 4.7.3. The

difference is that, this time, we are picking torso nodes as the core nodes, and learning

transform rules accordingly. Some results are demonstrated as in Table 4.2.

For the Deformable Part Model(DPM) [FMR08] approach, we used the person model

[TP13] trained from PASCAL VOC 2007 dataset with the default threshold used in the

code. For Poselet [BMB09] approach, we used the April 2013 release posted by the au-

thors (which can be found on https://www.eecs.berkeley.edu/Research/Projects/CS/

vision/shape/poselets/) with threshold 3.6, the value used by the author in PASCAL

VOC 2007 competition.
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4.8 Summary

In this chapter, we implemented the novel data driven framework described in Chapter 2 for

unsupervised learning of unknown objects represented in the image corpus. The approach

introduces the construction of a novel statistical SUV model, where first the corpus is broken

down randomly into image patches. These patches are then clustered into groups to create

viewlets to be designed. Once the viewlets are defined, then the entire task of finding parts

is reduced to a large-scale data mining problem, via a network representation (SRN) that

captures the geometric relationships among the viewlets. This representation exploits the

fact that object-related pieces will have stable geometric relationships among them. Next, an

intuitive and computational definition of parts, allows us to exploit the structure of the SRN

to define the part-based network SEN as in Section 2.2.3. We applied the SUV framework

to an image corpus crawled from the Internet and successfully extracted the different human

body parts. As a further evaluation, we built in a completely automated fashion, a k-Nearest-

Neighbor detector for the head/face part and showed that the resulting precision is very high

and compares very favorably with existing approaches that are based on supervised learning

from large-scale tagged data.

We also note that the SUV methodology is particularly suited for processing Internet-

scale image corpora that have an unknown but specific bias with regards to the underlying

objects. Blind creation of such corpus is not difficult and various approaches can be used; e.g.,

(i) grouping streamed images by breaking them up into temporal intervals will ensure that

the context does not change abruptly, or (ii) all images labeled with the same keywords (e.g.

Academy Awards: Oscars 2015) will have a bias towards the same object set (e.g., celebrity

images). All the computation steps are highly scalable and can be easily parallelized and

adapted to the Map-Reduce framework for cloud computing purposes so that very large-scale

corpus can be processed.
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CHAPTER 5

Multiple Prototype Learning

5.1 Introduction

In this chapter, we further study the model by learning multiple objects simultaneously from

the Caltech-101 dataset [FFP06].

Same as preceding chapter, we first build the network-based framework as described in

Chapter 2 and Chapter 4. As in preceding chapters, using the scale attribute on vertices and

relative spatial ratios on edges, the network is scale-invariant and translation-invariant to the

resolution variety of images. With the algorithm described in Section 2.2, we can find viewlets

of the same semantic part (like head, arm, etc.) using the structural similarity of nodes in

the network and spatial information on the augmented edges. As in Chapter 4, we also show

that global spatial information can be reconstructed completely from pairwise information.

Studies about reconstructing global structure from pairwise information can be tracked from

Multi-Dimensional Scaling (MDS) in 70’s [Kru64]. Recent researches ( [YAK13, CJA14])

also show that with a large amount of data it is possible to extract the structure without all

n(n− 1)/2 pair values.

Furthermore, we also implement the network-based grouping described in Section 2.3 for

detection. The network-based grouping eliminates the need of picking anchor nodes and

extracting transform rules, which makes the entire pipeline fully automated. In view of the

patch-level grouping and suboptimal structure described in Section 2.3, the multi-object-in-

one-image problem is handled natively. What’s more, the resulting groups also come with a

reliable confidence measure of the predication, which is the number of semantic parts covered
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by the group.

In the experiment, to learn models from images of 4 different categories (airplane, car,

face, motorbike), 2 different cases are designed by whether a shared dictionary or separated

ones are used:

In the shared dictionary experiment, we use patches from all categories to construct an

800-viewlet visual dictionary, based on which the network for each category is learned

as described in Chapter 2. Then, SVM classifiers are trained using the confidence

score from learned model as inputs. The resulting classifier outperforms the approach

by Fergus et al. [FPZ07], though theirs were taking more advantage from using patches

of other categories as negative samples for discriminative training.

In the separate dictionary experiment, we demonstrate that when the images presented

to our learning algorithm are beyond experience (regions in the feature space not cov-

ered by the dictionary (knowledge)), structure information can still be extracted and

abstracted to form prototype representation. The resulting detectors outperform Fer-

gus’ counterpart work [FPZ03] vastly.

5.2 Experiments and Results

In Section 2.2.3 we re-constructed the real world structure from our network model, and

derive related properties for the discovered parts. The close accordance between the derived

values and ground-truth further supports the representative power of our model. Based on

the learned model, we design a series of experiments including both object detection and

localization.

We evaluate our approach with the widely-used Caltech-101 dataset [FFP06]. The input

of our experiment is a set of unlabeled images describing the same object without any extra

information, the output is a visual vocabulary and a learned model, which includes a set of

foreground related visual words from the vocabulary, an SRN (Spatial Relation Network)
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Table 5.1: the Caltech-101 image count per category.

Category Total Training Test

Face 435 218 217

Motorbike 800 400 400

Airplane 800 400 400

Car 800 400 400

with its parameters, and an SEN (Spatial Exclusive Network) with its part-based viewlet

communities.

5.2.1 Data and Feature Descriptor

Similar to Section 4.6.2 , we are using Histogram of Oriented Gradient (HOG) [DT05] features

in our experiments with the same setting. For the Caltech-101 data, in order to compare

with previous work, we pick the same 4 categories: rear view of car, airplane, motorbike and

human face. In addition, the same half-half partition of training and test data is used as

in [FPZ07].

5.2.2 Shared Vocabulary

After densely sampled training images from all 4 categories, we obtain 105 164 patches, each

of which is converted into a 427-dimension feature vector. For feature space discretization,

we firstly search a good K through {100, 200, 400, 800, 1600} by checking the average entropy

between the assignments of current iteration and previous one. K = 800 is chosen as the

vocabulary size, upon which we did K-Means clustering on the feature vectors of all patches.

To create a Spatial Relation Network for each category, we sweep over all training images

again. During the scanning, all co-occurrences are recorded and the statistics of spatial
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Table 5.2: Shared vocabulary model statistics for the Caltech-101 dataset.

SRN

Category Nodes Edges Avg deg. SEN Parts

Face 226 1097 9.71 16

Motorbike 199 1411 14.2 20

Airplane 245 730 5.96 9

Car 251 185 14 24

relations are aggregated for all pairs of nodes as described in Section 2.2. Directed by the

desired sparsity of networks (i.e. the average degree in the largest connected component),

we search proper threshold for each category. Consequently, 4 networks, one per category,

are obtained, as seen in Table 5.2.

After that, to group nodes by semantic part, we create our Spatial Exclusive Network

(SEN) using a threshold for the tolerance. The SEN computes whether the two relevant spa-

tial relations in a wedge/triangle are identical or not, which results in many small clique-like

components. Using the SEN, we grouped most of SRN viewlets into different communities

by their structural and spatial similarity. After that, we get several parts (sets of semantic

equivalent viewlets) out of each SRN, as shown in Table 5.2.

For detection, given a query image from the test set or any other sources, we are going

to construct a patch network as described in Section 2.3. Firstly, we create a pyramid as

we did for the training ones. However, instead of doing a random sampling, we sweep the

detection window in an exhaustive manner for the sake of completeness. As described in

preceding section, a HOG calculation and PCA matrix multiplication are applied to each

patches, which is then classified into one of K states using k-nearest-neighbor approach. As
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in Section 2.3, edges are constructed between pairs of patches which have a similar spatial

relation as the corresponding node in SRN. For all m patches in an image pyramid, after

checking all the m(m+1)
2

pairs, we would get one or more connected components (the graph

definition here is slightly different from that of the model, since nodes of the graph represent

patches, instead of viewlets as defined in Section 2.2, see Section 2.3 for more details).

After obtaining patch groups defined by the connected components in preceding para-

graph, we looked into each group and evaluate the quality as an object embedding. Every

patch in the group is checked so that if there exist two or more patches classified into the

same nearest part, which is defined by communities in SEN. The corresponding part is con-

sidered present, and the part count increments by one. Once the part count is large enough

(threshold can be adjusted according to coverage/precision requirement as described in Sec-

tion 2.3), a object predication would be made. Before the part counting stage, the number

of patches in group can also be regarded as a preliminary confidence score measure. In our

experiment, we are rejecting all groups with only less than 5 patches, which considerably

reduces the number of candidate groups.

The process described in preceding paragraph will be carried out 4 passes with different

models, and from each one we can get one giant connected patch graph and the associated

score (semantic part count). SVMs are trained using these 4 scores as input, which is used

to predict the most probable category for query images. Some of our results are presented

in Table 5.3.

5.2.3 Separated Vocabulary

In the preceding experiment, a shared vocabulary was used, which implies that when an

image from other than current category is presented to a model, at least each patch, is

within the agent’s knowledge and can be correctly assigned to a viewlet. So questions might

arise that if the discriminative power is truly from the spatial and structural information from

the model, or is just from the visual words (like bag of visual features, or other structure-less
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Table 5.3: Confusion matrix for shared vocabulary model on the Caltech-101 dataset.

Recognized category Fergus et al. [FPZ07]

Query Image F M A C F M A C

Face 0.982 0.000 0.018 0.000 0.862 0.073 0.028 0.014

Motorbike 0.000 0.990 0.010 0.000 0.000 0.977 0.013 0.000

Airplane 0.005 0.013 0.967 0.015 0.003 0.042 0.888 0.060

Car 0.000 0.000 0.020 0.980 0.008 0.092 0.197 0.670

models.).

To answer this question, we carry out another experiment on the same dataset. This

time, instead of a shared vocabulary constructed from patches of all categories, we create

one separate dictionary for each category. Because the diversity is considerably less in

the patch set from a single category than that of mixed ones, smaller candidate K’s are

proposed during searching process. However, to control variables to compare with previous

experiments, we enforce K = 800 in three categories: airplane, motorbike and face, while

using K = 400 in the car dataset, since most of the images looks highly similar.

Because the dictionary of each experiment is solely extracted from the training images

of one category, we expect that it is not complete enough to cover feature vectors from

images of other categories. To measure feature space completeness of these dictionaries to

images of different category, a good approach will be to check the distribution of distances

from each queried vector to the nearest neighbor vector of the assigned viewlets. Ideally, if

the coverage is good, we expect the neighbor to be contained in a sphere of similar radius,

and the distance distribution will be close to a Gaussian one. From Figure 5.1 we can see

that, comparing with the shared dictionary model, being tested with images from other than

native category, models trained from single category dictionary show distortion to different
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Table 5.4: Separated vocabularies model statistics for the Caltech-101 dataset

SRN

Category Nodes Edges Avg deg. SEN Parts

Face 147 1842 25.1 22

Motorbike 297 1311 8.83 27

Airplane 226 983 8.70 10

Car 197 850 8.63 17

extents. The face and motorbike dictionaries, which have more diversity in images, are doing

relatively well, while the car model has the worst distortion. This result is further confirmed

by the ROC plot in Figure 5.2.

After that, we apply the same process described in preceding session, and get models

with statistics shown in Table 5.4. Now, given an image from face category, the patches are

beyond the coverage of the motorbike model’s vocabulary. Without these face-related nodes

acting as “sinks” to have patches absorbed, the viewlet assignments are vastly distorted, and

foreground nodes and background ones have similar chances to be assigned to. As a result,

if the model are still able to discriminate faces from motorbike, the power can only be from

the structural and spatial information. The results are shown in Table 5.5, alongside those

from the similar experiment in [FPZ03]. We can see that our SUV model outperforms that

of Fergus’s [FPZ03] with a large margin.
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Figure 5.1: Distribution of distance to the nearest neighbor ( measures the completeness

of dictionary of each model, from which we can see the dictionary obtained from face and

motorbike training set have the least distortion, whereas the dictionary from car images is

the worst, all features from other categories have a further distance than these from car

category.)
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(a) Shared Dictionary

(b) Separated Dictionary

Figure 5.2: The Receiver operating characteristic curve for individual model performance using

both shared dictionary and separated dictionaries, we can see that from using a feature space

complete dictionary to a limited one, the performance car model got the worse impact, which is

in accord with what we observed in Figure 5.1 (The airplane detectors have generally the worse

performance because of different airplane orientations in images, which was corrected by manual

image flipping in [FPZ03]).
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Table 5.5: Confusion table for separated dictionary model on the Caltech-101 dataset

Our Model Fergus et al. [FPZ03]

Query Image F M A C F M A C

Face 0.98 0.069 0.215 0.252 0.964 0.33 0.32 -

Motorbike 0 0.95 0.370 0.237 0.50 0.925 0.51 -

Airplane 0 0.007 0.665 0.025 0.63 0.64 0.902 -

Car 0 0 0.002 0.600 - - - -

5.3 Summary

In this chapter we have presented the experiment of our SUV model on multiple category

images, with a more complete implementation. We further automated the approach by

improve the detection process with network-based grouping. The experiments with shared

viewlet vocabulary show that our model, though trained in an unsupervised, “perceptual”

way, provides similar performance to that of state-of-the-art approaches in classification.

The experiments with separated dictionary show that even when the feature vocabulary

(knowledge) module in our agent is limited, the algorithm is still able to extract and ab-

stract structural information from positive images and form a prototype of the corresponding

object, which, in our opinion, is similar to how an infant learns novel object without any

linguistic conceptual ability [LS96].
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CHAPTER 6

Concluding Remarks and Future Work

This thesis proposed the Structural Unsupervised Viewlets (SUV) Model, that makes

four main contributions, as follows,

A Full Bayesian Model In a Network Form: We provided an elegant representation of

general deformable part-based objects, which originated from a Markov Random Field

setting. With the sparsity assumption that the number of direct interactions grows

linearly in the number of viewlets (i.e. visually similar parts and their various configu-

rations), a bridge between the full multi-variate Gaussian model and a sparse network

model was established, complete with concise mathematical formalism and fast learning

algorithms. Moreover, no particular structure of the dependency network is enforced

a priori, making our model more flexible and representative than the existing unsu-

pervised and weakly-supervised approaches, where constraints such as a star or a tree

model is imposed.

Robust, Scale and Translation Invariant, Unsupervised Approach: For global shape

information modeling, instead of picking one part as a reference point to represent the

absolute positions of the other parts, which is inherently prone to the landmark node

detection error, our network is built in a distributed way where all spatial information

is encoded as pairwise relative values. This encoding also includes the necessary in-

formation to make the approach scale and translation invariant. With evidence from

earlier research and later demonstrated via experiment, it is shown that the global

structure can be robustly re-constructed from our distributed pairwise encoding.
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Mining Views of the Same Part: This study suggests an innovative way to mine struc-

turally similar viewlets with geometric consistency, solely, from the topology of the

learned network without using any extra information. This allows the discovery of

viewlets of the same semantic part, but with dramatic visual differences. Such infor-

mation is traditionally encoded via manual and supervised training methods.

Efficient Algorithms for Learning and Detection: Efficient algorithms and their im-

plementations were proposed to learn viewlets and the interactions between them from

unannotated images of various sizes and resolutions, and to detect the best embedding

of objects in query images that also handles multi-object case natively.

In our future work, we would like to evolve the SUV model to incorporate more flexibility

and we describe some future directions as follows:

Different Feature Sets to Represent Viewlets: As we discussed in Chapter 1, our ap-

proach so far has been aimed at showcasing the higher-level capabilities of a part-

aware object representation platform, and we have not yet explored the improvements

that can be had by trying different features that are used to represent the underlying

viewlets. We chose to use HOG throughout the project mostly due to the various ad-

vantages it provides, including the availability of fast algorithms to calculate the feature

vectors, and the robustness of the features to small spatial shifts and color/intensity

variances. However, with a better feature descriptor, e.g. those afforded by a Deep

Neural Network pipeline as opposed to the HOG←K-Means pipeline used in our work,

we believe that the end-to-end performance can be vastly improved.

Bimodal Spatial Relation Edges: It is generally true that for most kinds of objects

which aren’t too complicated, the spatial interactions between any pair of viewlets

can be adequately modeled by a unimodal distribution. Incorporating the flexibility of

bimodal interactions will further extend the representation power of the SUV model.

For example, in a large corpus, one might have both standing and sitting humans, and

the viewlets corresponding to the head areas and those to the leg areas, will clearly
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Figure 6.1: A finer viewlet for two-eyes part obtained by applying the SUV framework only

to the viewlets that correspond to the head part.

Figure 6.2: A finer viewlet for the mouth part, automatically derived by applying the SUV

framework on the viewlets belonging to the head cluster.

appear in both scenarios and hence their spatial relationships will be bi-modal in dis-

tribution. While the over-fitting issue must be carefully handled when we make this

extension, bimodal distributions can be handled efficiently in our framework.

Hierarchical Network Model: We would like to further improve the SUV framework, and

incorporate a hierarchical structure in the network model. For example, one approach

would be to recursively apply the SUV framework to the sets of semantically equivalent

viewlets. We have done some preliminary tests on the head part nodes, and got finer

details. As illustrated in Figure 6.1 and Figure 6.2, we have already observed that our

framework is able to automatically determine the different parts of the face.
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