UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Learning Via Compact Data Representation

Permalink
https://escholarship.org/uc/item/5pk1q7r3

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 20(0)

Authors
Davis, Mark W.
Foltz, Peter W.

Publication Date
1998

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/5pk1q7r3
https://escholarship.org
http://www.cdlib.org/

Learning Via Compact Data Representation

Mark W. Davis (madavis@crl.nmsu.edu)
Computing Research Lab; New Mexico State University; Dept. 3CRL; Box 30001;
Las Cruces, NM 88003 USA

Peter W. Foltz (pfoltz@crl.nmsu.edu)
Department of Psychology, New Mexico State University; Dept. 3452; Box 30001;
Las Cruces, NM 88003 USA

Abstract

We present an unsupervised learning methodology derived
from compact data encoding and demonstrate how to construct
models of polysemy, priming, semantic disambiguation and
learning using this theoretical basis. The model is capable of
simulating human-like performance on artificial grammar
learning.

Introduction

William of Occam suggested a mechanism for deselect-
ing models given nothing but examples of a process.
Occam'’s suggestion, now known as Occam’s Razor, posits
that among the models that explain a phenomena, the sim-
plest or most parsimonious should be chosen. Karl Popper
rejected Occam’s Razor as a methodological advance to
inductive inference because he felt it was too subjective
(Popper, 1959). Solomonoff (1964), however, again investi-
gated inductive inference, or learning classificatory rules and
models from examples, as a formal topic in information the-
ory and statistics. The solution to Popper’s quandary pro-
posed by Solomonoff, and later developed by Rissanen
(1978), was to consider the concept of simplicity as derived
from informational code-length. Under this formulation, the
statistical properties of an example data stream are used to
estimate the properties of a communication model that can
be used to transmit the shortest possible message. In so
doing, the communicator must encode as much redundancy
in the data as possible in their message. The subjectivity of
Popper is replaced by an objective measure of information
content derived from the statistical properties of the data and
proposed model. The end result is that the minimum encod-
ing of the data stream results in maximum accuracy of the
predictions of the model.

In this paper, the consequences of the code-length for-
mulation of inductive learning are investigated. A model is
presented that effectively accounts for the acquisition of the
relationships between terms with multiple, distinct meanings
(polysemy) using this approach to compact data coding. Fur-
ther, the same technique is shown to model human perfor-
mance on artificial grammar learning and string recall
experiments, and to explain the way in which meanings are
observed to be activated during reading (lexical priming)
(e.g., McNamara, 1992).

285

Bayes’ Theorem and Compact Coding

We can formulate the problem of model selection for
data as an extension of Bayes’ Theorem. If we consider
Bayes’ Theorem operating on data D and statistical models
M

P(DIM)P(M)

P(M|D) = —=p75

(1)
we are then interested in comparing the posterior probability
of different models given the data. If we constrain our mod-
els to just a specific class of models, then we are interested
doing the same comparison over the model parameteriza-
tions within that class:

P(D|M)P(M)

arg;;mx P(M|D) = arg;;mx PD) (2)

where M is the model class. Applying -log to both sides, and
dropping the a priori distribution of the data (the prior data
distribution is constant over models) yields

argﬂ;nin [—logP(D|M)—logP(M)] (3)

which says that we can choose the best model for a given set
of data by choosing the most probable model P(M) that also
encodes the data in the most probable manner P(D|M) . Note
that this is simply the maximum a posteriori formula in the
space of models and data. By using the base-2 logarithm, this
same formula can also be interpreted as meaning that a data
model costs |M| bits to encode (where |M| is the bit length
of the model) plus additional bits to specify the data using
this encoding. The two interpretations are really only equiva-
lent if the a priori model distribution is the universal prior
on the model length,

P(M) =27, (4)

but the relationship is arguably justifiable (Li and Vitanyi,
1997, but also see Baxter and Oliver, 1995), or at least defen-
sible as a heuristic (de Marcken, 1996). The additional cost
to encode the data using that model is —log P(D|M) . We then
want to choose the model that minimizes the combined cod-
ing costs of data and model.

Rissanen (1978) characterized this approach as the Min-

mailto:niadavis@crl.nmsu.edu
mailto:pfoltz@crl.nmsu.edu

imum Description Length (MDL) principle. MDL has been
applied in pruning decision tree models (Quinlan and Rivest,
1989), grammar induction (de Marcken, 1996) and neural
network training (Hinton, er. al., 1995), while the subclass of
maximum entropy models has found wide application in
image reconstruction and data analysis (Smith and Grandy,
1982).

Parsimony Networks and Word Meaning

A Parsimony Network (PN) is an application of compact
coding that can be used to model the causative and correla-
tive relationships among data. A PN is represented as a hier-
archical network with the hierarchy grown using a
concatenative model. The specific application that we will
put PNs to in this section is the problem of learning polyse-
mous term relationships from a collection of documents. The
PN is self-organizing, starting with only the most basic syn-
tactic elements and growing hierarchical structure to account
for co-occurrence patterns in the data.

As a primary example, let us imagine that we have a col-
lection of 36 documents that contain varied distributions of
the terms money (M), bank (B), river (R) and finance (F) as
given by the following table of term co-occurrences (entry
m,, is the number of documents in which terms w, and w;,
both occur).

Table 1: Document co-occurrence counts for terms

B F

R
1

Note that although F and B do not explicitly co-occur,
we would hope that the PN procedure would find a connec-
tion between them because of the chain of connections from
M/F and M/B. Further, the procedure should automatically
determine that the M/R and R/F co-occurrences are spurious.

We can build a parsimony network by considering the
coding problem as follows, Suppose we want to communi-
cate the documents to someone. The simplest encoding
would be to transmit a document start symbol followed by
codewords for each word in the document, then the next doc-
ument start symbol, and so forth. If we assume we do not
care about word order, however, pairs and groups of terms
co-occur significantly enough that we may want to group
them together in our codebook and assign them a unique
codeword. That way the entire group of terms could be com-
municated by a single codeword. We only want to do this
grouping, however, when the length of the new entry in our
codebook is more than offset by the savings we achieve in
transmitting the data using this modified codebook.

To build the PN, we must use a heuristic to search the
space of concatenative models that operate on the co-occur-
rence matrix. We can guess that a relatively high frequency
of co-occurrence should lead to an improved encoding,
although we must use a generate-and-test style heuristic to
examine the space of potential codeword merges to deter-

mine a (locally) optimal model. First consider the incremen-
tal progression from a codebook containing only codewords
for documents, followed by the progressive addition of term
merges,

U
U+BM
U+BM+BR
U+BM+BR+FM
U+BM+BR+FM+ (BM) (FM)

where U is the lexicon populated only by the single elements
B, M, R and F The costs for performing these merges are
given in the following table, where the bit cost of lexical
entries and data are inversely proportional to the (negative)
log probability of a symbol in the complete message:

Table 2: Description lengths of lexicon, data, and
combined lexicon and data for merge operations.

Lexicon Data Total

(bits) (bits) (bits)
U 8.76 175.39 184.14

U+BM 13.16 163.56 176.72
U+BM+BR 21.38 146.10 167.48
U+BM+BR+FM 3474 130.43 165.16

U+BM+BR+FM+

(BM)(EM) 45.67 125.17 170.84

The final entry includes a merge between two merged enti-
ties, and is not successful because the merge of the BM and
FM entities does not result in a decrease in the overall
description length of the data.

Given the set of merges in Table 2, the PN can be con-
structed by choosing the minimum total description length
model seen thus far (U+BM+BR+FM) and constructing nodes
for each entity in the lexicon, with connections between each
node that is subsumed by that entity. The document code-
words, although considered constants for the previous argu-
ment, may also be considered as part of the lexicon. The
graph is constructed in a bottom-up fashion, with all of the
document words serving as leaf nodes at the bottom. The
first-level merges are then added, with connections to the
words that they encode. This continues until the parse tree of
the lexicon is fully represented. A document layer can then
be added with connections to all of the lexical entities
needed to encode the data. The complete PN for this data is
shown in Figure 1.

Further, we can associate a weight with each connection
in the network by estimating the conditional probabilities
that connected nodes occur in the same document. For exam-
ple, for the edge connecting BANK to RIVER-BANK, we
would calculate a weight that is equal to

Nus

P(RB|B) = (5)

&

where N, is the number of documents that contain RIVER

and BANK (10), and N, is the number of documents that
contain BANK alone (35). We treat the network as a Markov
Network, similar to a Bayesian Network but without the
restriction that the representation be a DAG (directed acyclic
graph). Instead, we will be satisfied if we can capture corre-
lational relationships as opposed to those that are definitively
causal. Using the Markov Network, we can calculate the
marginal probabilities of documents, merge-nodes and leaf
terms given evidence of one or more leaf terms. For exam-
ple, the activation of BANK with P(B) will cause updates
throughout the network, starting with the RB node:

P(RB) = P(RB|B)P(B) + P(RB|R)P(R) (6)
and the MB node:
P(MB) = P(MB|B)P(B) + P(MB|M)P(M) (7)

which, in turn activate documents with P(D,|RB) and
P(D,|MB) , respectively. Further, we can propagate the effect
of a BANK activation through RB and back to RIVER using:

P(R) = P(R|RB)P(RB|B)P(B) (8)

So, for our example, an activation of BANK with P(B) = 1
would lead to P(RB) = 10/35 = 0.2857 and RIVER would,
in turn, be activated at that same strength since
P(R|RB) = 1.

Now, if we activated MONEY, P(M) = 1/2, and
BANK, P(B) = 1/2, at the same time, the spread of activa-
tions to the MB node would be given by

P(MB) = P(MB|B)P(B)+ P(MB|M)P(M)

Nus ﬂfz)_é 36 _ (9)
N3+NM = + = 0.7044

=1
£ = 2(70 72

We can also see that the RB and FM nodes will be activated
to a lesser degree than the MB node:

P(RB) = (10/35)(1/2) = 0.1428 (10)

D, D, Dy Dsg

BANK MONEY

RIVER

FINANCE

Figure 1: Parsimony Network (PN) constructed
from the minimum description length merge data.

P(FM) = (10/35)(1/2) = 0.1428 (11)

The PN algorithm thus shows the primary properties that we
set out demonstrate; it provides an algorithm for self-organi-
zation of correlational data with a built-in criterion for deter-
mining how the self-organization should proceed. The
algorithm provides an automatic method for, in effect,
assigning a hierarchy of categories to co-occurring events
based only on intrinsic structure of the data. Further, the cor-
relational data, as expressed in the parsimony network,
expresses latent relationships among variables that share sig-
nificant correlations with a given event, but which do not,
themselves, co-occur.

This last point emphasizes the similarity of the proce-
dure to Latent Semantic Analysis, which has been used to
model synonymy and human performance on learning tasks
(e.g., Landauer and Dumais, 1997; Landauer, Laham and
Foltz, 1997). In Latent Semantic Analysis, a factor-analytic
approach to data analysis, a singular value deconstruction
(SVD) is performed on a matrix of feature co-occurrence
patterns—often term-document counts or a related statistic.
A direct comparison can be made between the reconstructed
version of the SVD of the preceeding term by term matrix,
and the matrix built by the PN algorithm:

{ Mus Nur NusNua
NN NM’ NMNQ
0 l N}'MNMS N_.RB
M = NuNs Ns (12)
NRBNFMNM.I
0 0 1 NoN.N,
00 0 1]

This matrix is highly correlated with the matrix pro-
duced by Latent Semantic Analysis (first singular value) for
the same data, r = 0.897. This close relationship to factor
analysis has been examined before. Wallace and Freeman
(1992), for example, propose a proof that MML (their for-
mulation of the MDL principle) can be used for single factor
analysis.

Parsimony and Priming

While the analytic and empirical features of the PN pro-
cedure appear useful, we can also see in the networks an iso-
morphism to connectionist architectures. If we assume that
the speed of propagation through the PN is isomorphic to the
speed of cognitive access to a stored lexicon, activation of a
term like BANK will, in one step, spread to both connected
senses of the term, RIVER-BANK and MONEY-BANK,
with activation levels conditioned on the base rates of their
co-occurrences in the document space. If MONEY then
occurs, the MONEY-BANK node will receive additional
activation, while the RIVER-BANK node will receive
extremely weak activation through a three step activation
sequence later on (M->MB->B->RB). By choosing the node
that has the highest probability at each stage the PN network
disambiguates terminology in a manner that fits with the lex-

287

ical priming results. Specifically, the network behavior is
consistent with the findings that all senses of a term appear
to be activated within an initial 300-500 ms window after
exposure to a prime, but that activation quickly settles on the
correct sense of a term after the initial 300-500 ms window
(e.g., McNamara, 1992; Kintsch, 1988). Further, frequency
effects that have been observed in priming experiments are
explicitly handled due to the differential weighting of the PN
edges by their marginal frequencies.

Learning Through Parsimonious Integration

PNs provide a mechanism for the acquisition of struc-
ture from a complete database, but there is no reason to sus-
pect that the same mechanism translates directly into an on-
line procedure for learning from partial data in a way that
corresponds to observations of human learning. In this sec-
tion, an alternative version of the PN algorithm is developed
that can be used for on-line learning. The algorithm has a ret-
rospective component that may reorganize the PN as new
evidence presents itself so the algorithm can be considered
integrative. The procedure, which we call Parsimonious Inte-
gration (PI), is as follows:

1. Maintain a lexicon that contains a PN-like hierarchy of

merged, observed events.

2. Observe—and re-examine if possible—all available
events, merging together any events and encoded event
groups that appear with frequency >1.

3. Use local calculations to heuristically reorganize the

lexicon. Attempt to reorganize lexicon subtrees if an
observed pattern in the lexicon spans multiple elements.
Do the reorganization based on the comparative encod-
ing costs of the two alternative subtrees.

The procedure can be seen as similar to Nevill-Man-
ning’s SEQUITUR algorithm (Nevill-Manning, 1996), but
with a global re-evaluation component that undoes grammat-
ical changes based on global observations, yet which is sim-
pler than the complex global observations in the PN
construction procedure of the previous sections. The Parsi-
monious Integration procedure makes partial use of down-
stream calculations to attempt to reorganize the constructed
grammar as new information becomes available. The follow-
ing example in artificial grammar induction illustrates the
PN procedure.

Artificial Grammar Learning

As an example of how PNs can be learned, we will
examine data from an artificial grammar. The data strings
will be generated from a stochastic finite-state machine that
corresponds to a grammar used by Vokey and Brooks (1992)
in artificial grammar implicit learning studies. The state
machine, as well as some strings consistent with the gram-
mar, are shown in Figure 2.

For this experiment, random sequences of consistent
strings were produced by an algorithm that initially began at
node 1, then transited to state 2 or 3 based on a random coin

288

Figure 2: Finite-state machine (from Vokey and Brooks
1992).

flip, and so forth, stochastically working through the states
until exiting from states 8, 9 or 10. The first 10 such strings
are shown below:

MXRVVM
VXTX
VXT
VXVTX
VXVTRX
VXTR
MVRM
MVRM
MVXT
VMTX

If we incrementally apply the Parsimonious Integration
algorithm above to these strings, we first recognize the VV
in the first string, so our lexicon contains VV and we can
represent the encoding of the string with MXR(VV)M. With
the second and third strings, we discover the commonality
VXT and add it to our lexicon. But then by committing to the
VXT encoding, when we encounter the fourth string
VXVTX, we must encode it as (VY(X)(V)IT)(X) and can't
take advantage of the shared VX pattern with the previous
strings. We apply a heuristic-version of the PN procedure at
this point, counting the number of lexicon and data elements
produced by two alternate formulations. These calculations
are conducted locally with respect to the strings VXTX,
VXT, VXVTX (i.e. we do not modify the probabilities of
other strings in the complete lexicon based on these
changes). So, the encoding (VXT)(X), (VXT),
(VIX)(V)T)X) with the lexicon (VXT) requires a lexicon
of size 1 to create data of size 8. A reformulation would be to
add VX and VXT to the lexicon and code the data
(VX)T)X), (VX)T) and (VX)(VIT)X), resulting in a lex-
icon of size 2, data of size 7. At this point the value of creat-
ing the additional VX lexical element appears to be

equivalent to the value of coding things separately because
we don’t have additional examples of the VX? pattern,
where the ? represents any character except T. If we did have
another example, it would tilt the evidence in favor of the
recoding of the lexicon to include the VX element.

For the purposes of the Parsimonious Integration algo-
rithm, the criterion under which we decide whether to evalu-
ate a recoding is based on observing a new pattern that
contains a substring found in an existing lexical element, or
that spans two lexical elements, but which is not already in
the lexicon. Note that the PI algorithm bears a similarity to
the Competitive Chunking (CC) model suggested by Servan-
Schreiber and Anderson (1990), but with the use of the MDL
heuristic mechanism for incorporating the observed chunks
into a hierarchical model. The CC model uses a concept of
support that is closely related, but not identical to, the MDL
heuristic incorporated into the PI algorithm.

Most experiments to test implicit learning of artificial
grammars involve subjects who have studied productions
from the grammar, then must decide whether new strings are
from that grammar or not. The test set must be carefully con-
structed so that the strings are balanced in terms of the fre-
quencies of repeated bigrams and trigrams within the strings
of the test versus training sets, otherwise the subjects may
simply be deciding on grammaticality based on short,
repeated sequences (Higham, 1997). As a model, the PNs
constructed by the Parsimonious Integration procedure can
be used to decide on grammaticality by parsing observed
sequences with the constructed PN lexicons, then choosing
grammaticality based on the coverage of the string afforded
by the PN lexicon. For example, given the lexicon built from
the first four strings in the last example, if we observed the
string VXVR, we could parse it as (VX)(V)(R), resulting in
a 50% chance of choosing this as a legal production from the
grammar given only the information of the first four strings.
Following Servan-Schreiber and Anderson’s (1990) sugges-
tion, the scoring of a string parse should be inversely propor-
tional to the number of chunks needed to represent the string.
The suggestion is that the subject’s degree of confidence in a
given string being grammatical increases up to the point at
which it can be encoded as one chunk. One way to do this is
to assign the probabilities according to a decreasing function
of the number of chunks needed to code the string:

N
P(X) =1 IS (13)
where N is the number of chunks needed to parse the string.
Note that we need to consider the unigrams in this formula-
tion, so (VX)(V)(R) is parsed into 3 chunks, giving a 25%
chance of grammaticality, (VXV)R) has a 50% chance and
(VXX)(V)(R) has a 0% chance.

Artificial grammar induction experiments typically
involve subjects who first examine sets of strings created by
the production system. In Higham (1997), for example, 16
training strings were first presented to test subjects in ran-
dom order for 3s each. Subjects were also asked to reproduce
the training strings on a piece of paper. After observing all
the training strings, the participants were told that the strings
had been generated according to a rule system, although they

289

were not told the nature of the rule structure. They were then
tested on other strings that did not occur in the training set
and asked to decide whether the strings were grammatical
according to the rules system used in creating the training
strings. Seven sample training strings, as well as a subset of
the test strings, used in Higham (1997) are reprinted in
Table 3.

Table 3: Training and test strings from Higham (1997)

Training “Test strings
strings Grammatical Nongrammatical
MXRVXT MXRMXT MTR
MXTRRR VXTRRR VXVRTXT
VXVRMXT VXVRVV VMRVVVR
VXVRVM MXRTMXR VMRTXTR
MXRTMVR VMTRRRX VMRMTRY
VMRMXTR MXRVM MMRMVRM
MXR VMRVVVM MXRTRXT

The PI algorithm can be applied directly to the training
strings shown in Table 3. The Pl-constructed lexicon is
shown in Table 4, below.

Table 4: Pl-constructed lexicon for artificial grammar

training.
MX XT RR
(MX)R M(XT) (V)T
MV (M(XT))R VR
(MV)R TR (VX)(VR)
VM (TR)(RR) (VR)(VM)
(VM)R VX hd'4

Using this grammar, we can perform left-to-right greedy
parses of the test strings and calculate the coding probability
using (13). The first two parses and their corresponding
probabilities are shown in Table 5, below.

Table 5: Parses and recognition probabilities for
grammatical and nongrammatical test strings

~ Grammatical
Parse P(S)
(MX)R)(M(XT)) 0.67
(VX)T)(RR)R 0.50
Nongrammatical
Parse P(S)
MTR 0.0
(VX)(VR)T(XT) 0.57

Overall the mean performance figures were 0.58
(o = 0064) for the grammatical strings and 0.39
(o = 0.222) for the nongrammatical. A t-test shows that the
differences are significant at p = 0.05. Human subjects also
show significant differences for this data set, with human

subjects also able to detect grammaticality even given care-
fully balanced data sets (Higham, 1997).

Conclusions

The philosophical position of William of Occam sug-
gests that simple models lead to better models. Yet the appar-
ent subjectivity of the notion of simplicity has until fairly
recently left Occam’s Razor without more than a dull, retro-
spective edge. With careful formulation of heuristics based
on information-theoretic grounds, however, we have demon-
strated how Occam’s suggestion can become the method-
ological backbone of a theory of inductive inference with
practical—and testable—consequences for understanding
and modeling human intelligence.

The model is unique among related psychological theo-
ries in that it presents a fully-automated induction method
(with minimal arbitrary parameters) for learning predictive
models from data in a completely unsupervised fashion. In
our current work, we are interested both in practical applica-
tions, like using the heuristic version of the Parsimonious
Integration model for information retrieval, and in further
understanding the model’s capacity for simulating psycho-
logical processes. For example, although a promising model
for artificial grammar learning, more work is needed to
understand how implicit versus explicit knowledge can be
represented in hierarchical compact representations. We are
currently modeling human memory data originally obtained
by Miller (1958) in which subjects are asked to recall ran-
dom and redundant strings. We have discovered that the
probability of recalling random strings is significantly lower
than recalling redundant ones using the PN algorithm. Over-
all, the wide range of problems that appear admissible to
compact data encoding suggests this method has significant
implications for understanding cognition.

Acknowledgments

The authors are indebted to Ted Dunning, Bill Ogden
and Wirt Atmar for constructive comments, input and sup-
port during the development and organic revision of this

paper.

References

Baxter, R. A., & Oliver, J. J. (1995). MDL and MML.: Simi-
larities and Differences. (Tech Report 207). Melbourne,
Australia: Monash University, Department of Computer
Science.

Higham, P. A. (1997). Dissociations of grammaticality and
specific similarity effects in artificial grammar learning.
Journal of Experimental Psychology: Learning, Memory
and Cognition, 23, 1-17.

Hinton, G. E., Dayan, P, Frey, B. J., & Neal, R. M. (1995)
The wake-sleep algorithm for unsupervised neural net-
works. Science, 268, 1158-1161.

Kintsch, W. (1988). The role of knowledge in discourse
comprehension: a construction-integration model. Psycho-
logical Review, 95, 163-182.

290

Landauver, TK., & Dumais, S. T. (1997). A solution to
Plato’s problem: The Latent Semantic Analysis theory of
acquisition, induction and representation of knowledge.
Psychological Review, 104, 211-240

Landauer, T. K., Laham, D., & Foltz, PW. (1997). Learning
human-like knowledge with singular value decomposition:
a progress report. Proceedings of Neural Information Pro-
cessing Systems, NIPS-97.

Li, M., & Vitanyi, P. (1997). An Introduction to Kolmogorov
Complexity and Its Applications. Springer-Verlag, NY.

de Marcken, C. (1996). Unsupervised Language Acquisition.
Doctoral Dissertation, Department of Electrical Engineer-
ing and Computer Science, Massachusetts Institute of
Technology, Cambridge, MA.

McNamara, T. P. (1992). Theories of priming: 1. Associative
distance and lag. Journal of Experimental Psychology:
Learning, Memory and Cognition, 18, 1173-1190.

Miller, G. A. (1958). Free recall of redundant strings of let-
ters. Journal of Experimental Psychology, 56, 485-491.

Nevill-Manning, C. G. (1996). Inferring Sequential Struc-
ture. Doctoral Dissertation, Department of Computer Sci-
ence, University of Waikato, New Zealand.

Popper, K. R. (1959). The Logic of Scientific Discovery. Tor-
onto: University of Toronto Press.

Quinlan, J. R, & Rivest, R.L. (1989). Inferring decision
trees using the minimum decision length principle. Infor-
mation and Computation, 80, 227-248.

Rissanen, J. (1978). Modeling by shortest data description
length. Automatica, 14, 465-471.

Servan-Schreiber, E., & Anderson, J. R. (1990). Learning
grammars with competitive chunking. Journal of Experi-
mental Psychology: Learning, Memory and Cognition, 16,
592-608.

Smith, C. R., & Grandy, W. T. (1982). Maximum-entropy
and Bayesian methods in inverse problems. D. Reidel Pub.
Co., Boston.

Solomonoff, R. J. (1964). A formal theory of inductive infer-
ence. (part 1 and part 2). Information and Control, 7, 1-22,
224-254,

Vokey, J. R., & Brooks, L. R. (1992). Fragmentary knowl-
edge and processing-specific control of structural sensitiv-
ity. Journal of Experimental Psychology: Learning,
Memory and Cognition, 20, 1504-1510.

Wallace, C. S., & Freeman, J. R. (1992). Single factor analy-
sis by minimum message length. J. Royal Stat. Society. B.,
54, 195-209.

file:///tngih

	cogsci_1998_285-290

