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We present a next-to-next-to-leading order (NNLO) calculation of the quasiparton distribution functions
(quasi-PDFs) in the large momentum effective theory (LaMET). We focus on the flavor nondiagonal quark-
quark channel and demonstrate the LaMET factorization at the NNLO accuracy in the modified minimal
subtraction scheme. The matching coefficient between the quasi-PDF and the light-cone PDF is derived.
This provides a first step towards a complete NNLO analysis of quasi-PDFs and to better understand the

nucleon structures from the first principle of QCD.

DOI: 10.1103/PhysRevD.102.011503

I. INTRODUCTION

Understanding the underlying structure of nucleons from
degrees of quarks and gluons has been a long-standing goal
in hadron physics. Since deep-inelastic scattering experi-
ments at Stanford Linear Accelerator Center in the late
1960s, the proton structure has been explored in various
hard scattering processes [1]. The key results involve the
parton distribution functions (PDFs), defined as momentum
distributions of quarks and gluons in an infinite-momentum
hadron. These distribution functions are normally referred
as the light-cone PDFs or the collinear PDFs. In high energy
experiments at the lepton-hadron and hadron-hadron col-
liders, the PDFs are also the important ingredients to
characterize the structure of hadrons and make predictions
for various processes to test the standard model and probe
the new physics beyond. Though the scale evolution of PDFs
beyond leading order (LO) into next-to-next-to-next-to
leading order (NNNLO) have been performed in literature
[2-6], calculating the PDFs and more generally light-cone
observables from first principle of quantum chromodynam-
ics (QCD), has been extremely difficult. In the formulation
of nonperturbative QCD on a Euclidean lattice, one cannot
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directly explore time-dependent correlations. Instead, only
moments of parton distribution functions, matrix elements of
local operators, can be calculated. However, the difficulty in
lattice QCD study grows significantly for higher moments
due to technical reasons and thus only limited moments can
be extracted to date [7-10].

An effective theory, called large momentum effective
theory (LaMET) [11,12], has been developed to compute
various parton distribution functions on lattice. In this
framework, an appropriate static-operator matrix element
(quasiobservable) that approaches the parton observable in
the infinite momentum limit of the external hadron is
constructed. The quasiobservable constructed in this way
is usually hadron-momentum dependent but time indepen-
dent, and thus can be readily computed on the lattice. After
the renormalization, the quasiobservable can be used to
extract the parton observable through a factorization formula
accurate up to power corrections that are suppressed by the
hadron momentum. The relevant parton distribution func-
tions calculated in the LaMET are referred as quasi-PDFs.
Great progress has been made in the past few years on both
the theoretical understanding of the formalism and the lattice
simulations for parton distributions of baryons and mesons,
see, for example, some recent reviews in Refs. [13,14].

The factorization arguments of LaMET allow us to carry
out order by order perturbative calculations on the match-
ing between the quasi-PDFs and the light-cone PDFs. This
matching is one of the crucial elements in applying LaMET
to parton physics. It provides a solid foundation to compute
the light-cone PDFs in a systematically controlled way. In
some sense, the improvement on the precision of the PDF
calculations can only be achieved by combining the

Published by the American Physical Society


https://orcid.org/0000-0001-6733-859X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.011503&domain=pdf&date_stamp=2020-07-27
https://doi.org/10.1103/PhysRevD.102.011503
https://doi.org/10.1103/PhysRevD.102.011503
https://doi.org/10.1103/PhysRevD.102.011503
https://doi.org/10.1103/PhysRevD.102.011503
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

LONG-BIN CHEN, WEI WANG, and RUILIN ZHU

PHYS. REV. D 102, 011503 (2020)

advanced lattice simulations for the quasi-PDFs (toward
small lattice spacing, large volume and physical pion mass)
and higher order perturbative matching calculations.
Higher order perturbative calculations are also important
to demonstrate the factorization in the LaMET explicitly. In
particular, some specific features of the factorization can
only be manifest in the nontrivial two-loop calculations.
Quasi-PDFs at one-loop order and the associated matching
coefficients has been a subjective of active research since
LaMET was proposed in 2013. This includes quark dis-
tribution [15-18], gluon distribution [19-21] and many
others (see the review [14]). The goal of this paper is to go
beyond the one-loop order and perform, for the first time, a
two-loop computation of the quasi-PDF in the LaMET,
taking the nondiagonal quark-quark channel as an example.
This channel starts at two-loop order, which allows us to
demonstrate the factorization in an intuitive method. We
also notice that recently, the renormalization of quasi-PDF
operators have been studied at two-loop order [22,23].
Together with this result, our paper will provide an
important step toward a complete two-loop calculation
of quasi-PDF and the associated matching coefficients.
The rest of this paper is organized as follows. We first
present our main result of nondiagonal quark-quark split-
ting in LaMET at two-loop order. We will provide detailed
calculations and demonstrate the factorization in detail.
Based on these results, we show the matching coefficients
at this order. Since the nondiagonal quark-quark splitting
only starts at two-loop order, this presents the leading
contribution for this channel. Some numeric results will
also be presented to illustrate the behavior of the matching
coefficients. We will summarize our work in the end.

II. FACTORIZATION AT TWO-LOOP ORDER

We start with the definitions of the light-cone PDF and
quasi-PDF. For the unpolarized quark light-cone PDF, we
have

Aé™ e -
Faloen) = [ o' (pla )y

N _
<enp(—ig [* arater) )aOlp). ()
where x = k*/p* is the quark longitudinal momentum
fraction and p* = (p°,0,0, p?) is the hadron momentum.

Similarly, the quasi-PDF for the unpolarized quark is
defined as

= dz .o/
Faloop?) =N [ e platar

X exp (—ig /0 Zdz’AZ(z’)>q(0)|P>7 (2)

where z is a spatial direction and we will adopt I' = y with
the normalization factor N = p?/p’ and use the p projector.

According to the factorization in the LaMET, we can
write down the quasi-PDFs f,/y(y, p*) in terms of the
light-cone PDFs f,/y(x, u):

Funtoor) = [ Cur (255 ) guten | @)

1H X H

with ¢', ¢ being the partons in the hadron. The f au(Y: P*)
is an equal-time correlation while f,//y (x, ) is light-cone
PDF. Though fq/H(y,pZ) and f/p(x, ) share the same
infrared structure, their ultraviolet behaviors are different,
and embedded in the short-distance coefficient C,,.

Since the short-distance coefficient is insensitive to the
incoming hadrons, in the calculation of C,, one can
replace the hadron by the partonic state. In this work we
will consider the flavor nondiagonal quark contributions
and the hadron state |H) is replaced by a quark state |¢”)
and we have the condition ¢” # gq. We plot the Feynman
diagrams for flavor nondiagonal quark distributions in
Fig. 1. In our computations below, we will apply the modi-
fied minimum subtraction scheme (MS) and dimensional
regulation with D =4 —2¢. Under this scheme, we
can write the formula for the flavor nondiagonal quark
distribution as

- & 1 dx y |x|p?
fq/q” <y’;v€IR) :/—1m {qu’ (}T fq’/q/’(x’elR)

y |x|p?
:qu'<;’ u >®fq’/Q"(x’€lR)’ (4)

where both sides are computed with dimensional regula-
tions and (1/er)" represent the infrared divergences. At
NNLO, the matching scheme is given as

S ks ks
J

btk | R

Ptk

(b) (©

4
S

(d) (e) (H

7

FIG. 1. Feynman diagrams for f, /" At NNLO, where ¢ and ¢”
are quarks with different flavours. The double lines correspond to
Wilson line.
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-0 p* 2 (v |x[p*
fé/qw ()&7,6112) = Cé,;/ (;, P ®fq /q,,(x, €IR)
|x|p*
+qu/<x u ®fq/q,,(x,€1R)

o (v |xlpf
+qur (;,T ®fq/q”(x’€IR)'
(5)

Here, we have applied the perturbative expansions 7; =
0 (&) T\ with T; being each of fygrs Cogs fy /g

Because of the particular feature of nondiagonal quark-
quark splitting, each term at the right-hand side of the

above equation represents only one contribution. In the first
term, ¢’ has to be ¢”, so that it only has C;z/)q,,. For the

second term, ¢’ has to be a gluon, and the combination is

(1)

quark-to-gluon splitting f and gluon-to-quark Cgyy

9/4
matching. Finally, ¢’ in the third term has to be g¢,

representing nondiagonal quark- quark collinear splitting
f(q /) ». We also know that both f g and ngq
functions. Therefore, the above equation can be simpli-

fied as

]?() P\ _ d4 ZEk d4 25k
alq" = p (20)"% (22)*2¢

< (<1)Tr [ /o Cioln,)

are Delta

iu(p)(—igT m)

i
k1+k

In the axial gauge A® =0, one can also easily write
down the contribution by replacing the gluon propagators
into (—i)/k3[g"s = (n"ky + nik5)/ (n - ko) + n*ky'ky '/
(n - ky)?]. Only Figs. 1(c) and 1(e) contribute in the axial
gauge, where the contribution of Fig. 1(e) can be obtained
from Eq. (7) by the replacement of p — —p and the
replacement of gluon propagators in axial gauge.

To use the integration-by-parts technique [25] and reduce
all the involved tensor integrals into a set of integrals called
master integrals, we use the identity

k5 : 1 1
-8 Blempmsaoie) ©
P 2ri \ki —yp*—i0 ki —yp*+i0

The method of differential equations [26-28] is applied to
calculate those master integrals. All the analytic expres-
sions of master integrals are given in Ref. [29] by the
current authors. As a specific example, all the Feynman

A2 P’ n(y Ixlp?
f((]/>q// <y’7 ) €IR> = CE]; <;’ 1 ® fg/q” (x’ eIR)

@ (. P b))
+quu (y,;) +fq/q”(y7€lR>‘ (6)

Here, C,(,g), f ( /)q// and f q/q Are known in the literature

[6,21], which are listed in the Supplemental Material [24]

for reference. The objective of our calculations is to

2

compute f ((]2/)‘// and extract C P b the perturbative calcu-

lations at this order, fff/)q,, contains only IR divergences,

which can be expressed as 1/e¢ in the dimensional
regulation. According to the factorization theorem, the

IR divergences in ];((Iz/)q” will be canceled by that from the

right-hand side of Eq. (6). In particular, the 1/e%, term will
be canceled by the last term and the 1/¢r by the first and
last term. After these cancellations, we are left with a finite
term, which will be the matching coefficient at this order.

To obtain the two-loop contributions in Fig. 1, some
calculation techniques are employed and we will take the
subdiagram (c) as an example. In the covariant R; gauge,
Fig. 1(c) contributes

k”‘ k52
k ( 19 }/m ( e — k%2>
KoK 00y = 3)
g yyl :| (9”3144 - é) 2k2 ) 4Ncp . (7)

integrals from Eq. (7) can be expressed by the first family of
integrals listed in Ref. [29]. We have checked that the final
results in covariant and axial gauges are consistent with
each other.

As mentioned above, there is no UV divergence in flavor
nondiagonal quark quasidistributions and thus it is not
necessary to perform the renormalization in the modified
minimal subtraction scheme. All soft divergences are also
canceled. The collinear divergences in the 0 <y <1
region contain 1/e% and 1/ep:

~(2) pz 1 1
S ~<y,—> =5 Dy)+—Iiy
9/ K J ldivo<y<1 GIZR ) €IR 10)
w2
—TI I — |, 9
s Znoeg(%).

where I'| and I, are defined as
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(4y* +3y* =3y —6(y + 1)ylog(y) —4)

log(2) + (y = 1)Lip(=y) + (y + 1)Liy(y)

(3y + 7)log?(y)

['(y) = 2T(Cp 3y
L D@y Fy—16)log(y)  yBz(y-1)~yBy +57) +9) 10 1
12y 18y 4
LO=DOMy+7) +4)leg(l—y) v+ 1Ay =7 +4)logly + 1)
6y oy ,

_TpCrp(4y* +3y* =3y —6(y + 1)ylog(y) —4)
6y '

Ih(y) =
(11)

These divergences will be canceled by two parts in
Eq. (6): one from the divergences in the convolution of

CEI? ® f;;),, and the other from the divergences in f(qzq),,.

Both of them are listed in the Supplemental Material [24]

with known results of C(qlg) and f %,, at one-loop order, and

f((fq),, at two loop. For the collinear divergences in the —1 <

y < 0 region, one can obtain from Eq. (9) and do the
replacement y — —y and add a prefactor —1. Note that one
should do the log(p(y)) — log(p(y)?)/2 replacement at
first to avoid producing the imaginary part. The IR
cancellation is similar in y > 1 and y < —1 regions:

o) p* 1,
f ”(y’_’e ) =—7I Yy)
4/4 H ® divy>1  €IR 1( )
~ p* 1
f(2>//(y,_,€ ) :__FI -y) 12
dr ()| =i (2)
where
T.C . 1
Ti(y) = -—4-" {6<y—1)yL12 (—;) +22y

. (1 2
—6(y + 1)yLi, (;) + (3 —4y*)ylog <y2y_ 1)

+(4-3y?)log (%)] (13)

These divergences are canceled by the convolution of

C(qlg> ® f;l/)q,, as indicated in Eq. (6). Again, we list the
|

(10)

result in the Supplemental Material [24]. One can also see
the two regions of y > 1 and y < —1 are related by the
symmetry of y — —y and an opposite sign.

The nontrivial cancellation of the IR divergences dis-
cussed above is an important demonstration of the LaMET
factorization. This also provides a cross-check of our final
result on the matching coefficient, which will be presented
in the next section.

We would like to emphasize a number of points before
we close this section. First, the complete cancellation of the
collinear divergence depends on the factorization formula
for this channel, see, Eq. (6), including the different terms
contributing from the right-hand side. Second, it also
depends on the exact results of lower order perturbative
contributions. For examp))le, the scale dependent term in the
one-loop matching CE,:I (see the Supplemental Material
[24]) plays a crucial role to demonstrate the complete
cancellation in the above equations. This emphasizes the
importance of a consistent subtraction scheme in the
perturbative calculations of quasi-PDFs and the matching
coefficients. Finally, our example of the nondiagonal
quark-quark channel shall provide important guideline
for future developments on computing the quasi-PDFs at
two-loop order.

III. MATCHING COEFFICIENT AT
TWO-LOOP ORDER

The matching coefficient C 512;,, is obtained by expanding

both sides of Eq. (6) to O(e°) order. Because of all the
divergences between them have been canceled explicitly as
shown in the previous section, it is straightforward to carry
out the calculations for the finite parts.

First, let us show the result of NNLO matching coef-
ficient Cflzq),, in the region of x > 1:

p* ? 8y? 4
e (32| =rvonoe(t) + Tic| (2= o) — 5 (105 + 9) et
H y>1 p
4 4log? 106
~H10g(2) (4 ~ 3 tog(y) — 11) + FEW_L0 ] (14)

where I'} (y) has been defined in Eq. (13) and g¢;(y) is defined as
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(y + DLy (5) (y(8y = 5) + 6y log (4(y —

1)?) +8)

a1(y) =4(y + 1)Lis (1 1y> +2(y 4+ 1)Li3 G) _

N (8(y = 1)(y(5y = 16) +5) = 9y(y + 1) log*(y

3y

36y
L &O+D log(y?) + (y —

Dheeo=1) (42,

DOy +7)+4))log? (v - 1))

12y

~ 25O Dlog’ (v

Similarly, we can obtain the matching coefficient in the 0 < y < 1 region:

Z
¢ <y,P >
O<y<l1
y)log? <

q/q
2

+ <y +7y+3 15>log (y) + log?(2 )(—8l—2y+%+4()’+1)10g(y)+2)

3
N 7 (y(4y* — 3y 4+ 6(1 — y) log(2)

3) + 0= A o tog (1) + i [P T LR
8

—3) + 6ylog(y) —2)

(v 4 13)log*(y)

250>
27

3y 6

419y 56

9y

+4(y+1)¢(3) —WJF%

| log(2)(=4y(2y(Sy = 21) +9) + 61log(y)(3y(y + 3) + 3y(y + 3) log(y) + 8) + 40) L1

9y

n (=y(4y(14y +9) +15) + 6(y = 2)(y + 1)*log(y + 1) + 40) log(y)

6

9y

with P(ql/)q,, (v) being the two-loop splitting function

P (y) = —E

a/q"

and g,(y) is defined as

10y? 4
3

+ 92()’)}’ (16)

2

2
Dorre- (1 5y +%) log(y) — (1 +y>log2<y>]e<y>e<1 Sy

0(3) = Lir(y) (—— —y=S-d(+ 1log2 - 20) + 1) 4y + DLis(1 = y) = 2(y + DLia(y)

_(=DEO* +y=2)log(y*) +4(y(Sy - 16)

+5))log(1 —y)

2
+ =2 (y +

9y

; (1 L Yo 1>log<y>) log2(1 — ) — 20

3 3y

In the end, the NNLO matching coefficient CZ]),, iny <0
can be obtained by replacing y - —y and adding an overall
minus sign. It is interesting to investigate the asymptotic
behavior of the matching coefficients at infinity points. Up
to O(¢), we have, for example,

Z 2 2 Z
Cly <y,p—) =3—TF{1—2log( P H
Iu y—>+oo y ﬂ

SO s (SE)
Cyf | y,— =——Tr|1-2l0 el. (19
qg( YA 3y F g u (19)

3 1)log(1 -y)

- D@y +7) +4)log(2)log(1 — y)
3y

—[y—= -y

(18)

These will lead to a logarithmic divergence when performing

the integration of Cg,g) . mp ) f g/q,,(x, er) at infinity

points. However, they do cancel between the integration at
positive and negative infinity points and thus we do notneed to
add prescriptions to the divergence at the integration of infinity
points. For the NNLO matching coefficients, we have

z
e (»2)
H y—>+00

4 2
=5 2TFCF{ 610g<p ) + 121log(2y) — 7] (20)
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FIG. 2. Distributions of matching coefficients of C((jj,, and CE,lg)

as a function of momentum fraction y, where we adopt the
scale u = p*°.

(2) PZ>
C " y, -
qq ( H

4 2
= TFCF{ 6log< >+1210g( v)—=17].

y—=>—00

- 27y?
(1)

Convolution
o2

N
a1

! ®6x(1-x)

N
o

...... c“' | 0)®6x(1-x)

- —(cé;’ |e)®6x(1-x)

=
a1

p?/x)®6X(1-X)

10
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o
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___(c

| )®6x(1-x)

pZIx)®6X(1-X)
o
S

C(y/x,u

FIG. 3. Distributions of the convolution of C;; (n )(; ‘; ) ®
6x(1 —x) as a function of momentum fraction y, where we
assume there is a toy model of f(x) = 6x(1 —x) with 0 <x < 1
and adopt the scale 4 = p?/x. Therein the top one is for 0.1 <
y < 1 and the bottom one is for 1 <y < 3.

)

From these, one can see C 4 (v, p—z) have better asymptotic

behaviors at infinity points than CSM) (y, 27} and there will be
no divergences at :l:oo if one carries out e.g., the integral of

c® @, Ix\p Ky & f p /q,, (x, u) at NNNLO matching.

aq
We plot the distributions of matching coefficients of C ;2(1),,

and CE,?(,’ as a function of momentum fraction y in Fig. 2.
Therein the renormalization scale is adopted as ¢ = p*® and
the lattice realization of p® is in several GeV currently. From
it, C((fq),, has a different shape compared with others. Assuming
the parametrization form of light-cone PDFs as the simplest
one ax’(1—x)¢, we can test the convolution between
matching coefﬁcients and light-cone PDFs. So we also plot

(y’ Ixlp? “2) ® 6x(1 — x) inFig. 3 asatoy
”)| o and

the convolution of C
model. Note that CE,} is d1v1ded into ng)(

ng (x, ”7)16, where ng) (y,%)|eo does not depend on the

renormalization scale in the nonphysical region, but
ng> (y,2 )|€ depends on the renormalization scale in all the

region. CEI q),, has double logarithms as I, log? (1’7‘—22) in the

physical region, while single logarithms as I log(l’:—fz) in
the nonphysical region.

IV. CONCLUSION

In summary, we have presented a next-to-next-to-leading
order calculation of the quasiparton distribution functions for
the flavor nondiagonal quark contributions f;z/)q,, (y,%) in
—o0 <y < 0. We have demonstrated the LaMET factori-
zation at this order. The matching coefficient is derived under
the modified minimal subtraction scheme. These results shall
be directly employed to investigate the sea quark contribu-
tions in both nonsinglet and singlet quark distributions at
NNLO. This will stimulate further developments toward a
complete calculation of quasi-PDFs at two-loop order and the
associated matching coefficients.
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