UC Irvine
ICS Technical Reports

Title
Towards improved review of software designs

Permalink
https://escholarship.org/uc/item/5pg5t631

Author
Freeman, Peter

Publication Date
1974

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/5pg5t63f
https://escholarship.org
http://www.cdlib.org/

TOWARDS IMPROVED REVIEW OF
SOFTWARE DESIGNS¥*

Peter Freeman
November 8, 1974

Revised January 13, 1975

Technical Report #56

ABSTRACT

) Review of designs is one aspect of the software creation process that
has been neglected. Evaluation of the quality of a design, in particular,
with respect to non-operational goals, is especially difficult. Design
rationalization, a methodology currently under development, is proposed as °
a means of improving the reviewability of software designs. Primarily, it
is a technique of explicitly recording design information that may be useful
for reviews. In contrast to current review standards, it stresses the im-
portance of documenting the reasoning used to arrive at a design. The
technique is explained and a scenario illustrating its use is given. The
paper concludes with a discussion of the strengths and weaknesses of design
rationalization and a set of suggestions for implementing it in practice.
The suggested approach is not guaranteed, but careful adaptation of it to
particular situations should provide noticeable benefits.

This is a preprint of a paper to appear in Proceedings 1975 NCC.

*This work was supported by National Science Foundation Grant GJ-36414.

INTRODUCTION

A good deal of effort has been invested in recent years to improve both
the form of programs and the Processes used to create them [2,9,10]. As the
payoffs from this work become apparent and more widespread [3], attention is

turning to the form of designs and the processes used to create them [1,5].

One aspect of software design, reviewability, has received scant attention.

In this paper, we want to stress the importance of making designs reviewable
and suggest an operational technique for aiding in their review. Underlying
our discussions is the principle (perhaps obvious) that designs which can be
easily reviewed have a better chance of meeting the expectations of their

purchasers and users.

A methodology being developed by the author, deéign raéionalization 5
provides a means for making software'designsAmore reviewable before they are
actually implemented. The body of this paper develops this idea.

Before we begin, thfee important points must be made. First, what we
are proposing here is an éppro#ch to the improvement of design practice. It
is not an algorithm. It cannot be applied to a situation without some thought
and study. It certainly cannot be guaranteed to work in all situations. If
you demand instant success, then look elsewhere! But, if you are concerned
with improving design practice in your organization, especially ﬁith'respect
to reviewability, then we believe the idea presented here merits your study
and experimentation.

Second, we must stress that there are already well-specified procedures
for reviewing designs, but that in spite of their good intentions, they fail
in some important respects. Much of the procurement of software by the govern-
ment is now controlled by standards (promulgated by the Defense Department and
other parts of the government) that spell out elaborate review procedures that

must be carried out during the design phase (for example, [11]). Additionally,

some organizations are experimenting with their own review standards aimed
at improving the reviewability of sdf;ware designs. (For example, good
success has been informally reported by TRW at recent technical meetings with
their usage of "unit development folders.") What these standards do not stress
and what we consider essential to good review, is the recording of the reasoning
behind design decisions, both local and global. It is this fact that our tech-
nique addresses most strongly and which we will stress in this paper.

The third point is that not all design situation; are equal. We diff-

erentiate between discovery design and routine design, In the former, a great

deal of creativity is required since the right structure (and even functions)
for the software must be discovered during the course of the design. In the
iatter, the system being designed is similar to others which are well under-
stood; thus routine design is more a process of choosing the right values for
a set of parameters. Design of a program to prepare the payroll for an organ-
ization is cleéarly routine design. Design of a complek system to provide
managers with real-time summary information automatically is discovery design,
given our current understanding of such systems. In this paper we restrict
ourselves to consideration of routine design situations.

We will describe and illustrate the &esign rationalization methodology
and then show how it can be used to improve the reviewability of software
designs. Because new methods are usually adopted slowly (and rightfully so),

we close with some suggestions for experimentation with this technique.

DESIGN REVIEWS

Routine software designs are typically reviewed several times in different
ways. Before we propose a way of improving design reviews, we want to consider

some of their characteristics.

First, iook at the range of review formats. An important part of the
design process is a cénstant, but infofmal, review and iteration of the
design by the designers themselves.' When the preparation of a design is a
large undertaking and/or is supported by a highly structured organization
(such as the Federal government), formal design reviews are often specified
(as in [1lj)at which people other than the designers determine if the pro-
posed design is acceptable (by whatever standards have been set up).
Finally, the ultimate user of the software will review the design iﬁformally
through usage and sometimes formally in preparation for requesting changes
or a new design..

Our concern in this paper is the reviewability of a design -- that is,

the ease with which it can be compared to objectives. Designs cannot - be
executed directly as can programs, but it is still essential to compare them
to desired criteria as early as possible in the development process.

While review of a design must necessarily mean different things to
different people (depending on the methodology used, what is expected of the
reviews, the stage of the process at which it is performed, and so on), let
us be more ekplicit.

We see four possible components of any design review:

- checking for functional completeness;

- comparison of the design to operational goals and constraints;

comparison of the design to non-operational goals and constraints;

performance prediction.

"Operational" goals clearly and unambiguously spell out what is desifed,
while "non-operatioﬁal" goals do noﬁ. For example,

Operational: "The system should provide a distinct error code for each

error discovered."

Non-operational: "The system should handle errors cleanly."

* It may be possible to.characterize design reviews differently, but these
four aspects capture most of what we see happening in the review of a soft-
ware design.

The most prevalent question asked in a review is, “Will the system do
what it is supposed to do?" The normal techniques of reading a design, perhaps
aided by a structured walkthrough [8], will generally suffice for answering
this question. Because a design is typically stated in functional terms,
most of it speaks directly to the question of what the system will do. While
existing techniques do permit review for the completeness of major functioms,
it is still difficult to ascertain from a design whether small or unwanted
functions are present.

Likewise, for explicitly stated structural goals or constraints, existing
design formatspermit at least a passable review. For.eiample, if certain
data structures or interfaces are part of the‘design requirements, then it is
usuallj possible to determine if these requirements have been met by inspecting
the design.

It is when we come to the last two components of a design review -- com-
parison to non-operational requirements and performance prediction —— that
the need for improvement becomes most apparent. Even though it may be possible
to make some design goals more operational (that is, detailed and open to
objective evaluation), reviewers will still be asked to evaluate designs with
respect to non-operational goals. For instance, consider the following design
goals:

"The system should be tolerant of user mistakes."

"Only state-of-the-art techniques should be used."

"Output formats should be neat and readable."

"The system should be maintainable.”

e e

Determining Whefher these goals have been met or not requires the reviewer
to interpret or infer information from‘the design and to provide a good dedl
of external information. Typically, the information provided in a'design
document is not the right tyée and/or is in the wrong form to permit such
goals to be evaluatgd directly (if at all). The reviewer usually must pro-
ceed unaided.

Finally, designs provide almost no‘help at all for performance pre-
diction. Ad hoc comparisons of parts of the design to previous designs
(for which performance is known) may provide some meaningful predictions
of resource usage. - But even if the parts can be identified from the design,
determining which are critical to performance and what the interactions between
‘parts will be is very difficult. The information needed is simply not present
in most designs.

Cutting across all aspects of design reviewing is the need for knowing
the reasoning behind decisions. Rarely, if ever, in ;urrent practice does
design documentation record the alternatives that were considered and the
reasons for rejecting some of them.. Yet, this information can greatly aid
the reviewer in understanding the design and in evaluating it against stated
objectives. |

This brief look at the nature of design reviews certainly does not exhaust
what can be said about them, but it should set the stage for considering

how to improve them.

DESIGN RATIONALIZATION

There is no argument that softwére designs should be more reviewable and
that if they were the resulting implementations could be improved. This is
especially true in the case of routine designs where the form of the result

is pretty well known in advance.

& -

We will outline below how design rationalization can be used to improve the
reviewability of designs, especially in the area of recording the rationale
for decisionms.

The basis for design rationalization is the belief that designs can be
improved by making them more rational. That is, design decisions should be
based on logical reasoning, be supported by facts, and be recorded. The
cornerstone of this technique is the explicit recording of design information
in the form of design problems, alternative solutinns, and the evaluations
or arguments leading té the choice of a particular alternative.

The basic operation is the identification and recording of the information
essential to a rational design.. While variation in format is appropriate,
the information shown in Figure 1 is fundamentally what goes into a rationalized
design. The example shown there involves a single, rather low-level decision.

In an actual rationalization we would record information pertaining to the entire
design, both locally and globally. E

If the information is collected and recorded as the design decisions

are being made, we are doing a synthesis rationalization. If the information

is primarily recorded after the design decisions are made, then we are doing

an analysis rationalization. In either case, there are several important

parameters: what features or decisions of the design shall be rationalized,
how do we generate alternatives, what criteria shall be used for evaluating
them, and on what basis should a decision be made.

Note that this methodology does not specify in what order decisions
should be made. Neither does it spell out criteria for making decisions,
except to specify that they should be made by considering alternatives and
presenting evidence for and against each alterhative. In this sense, design
rationalization is more of a framework or forcing function within which

particular decision strategies such as top-down or bottom—up can be used.

fDESIGN PROBLEM 3: How should an error detected in a command string be
handled? . i ! (.

ALTERNATIVE 3-1: Abort the program when an error is found.

EVALUATION 3-1: Easy to implement.
Provides the user very little information.
Wastes resources if the error occurs after much processing.

ALTERNATIVE 3-2: Ask the user to re—enter the command string.
EVALUATION 3-2: Must reset the state of the program.
Makes the system "softer" on the user.
Takes more processing time, even if no error encountered.
May prevent waste of resources if trivial error.

ALTERNATIVE 3-3: Try to correct the user's mistake.

EVALUATION 3-3: Maximally useful to user.
Substantial resources needed to try correction.
Interaction with user more complex (must specify
correction and allow override).
DECISION 3: Alternative 3-2, because it provides a
balance between our goal to make the system easy
on the user and the constraint that it be fast.

Figure 1: Infbrmation Contained in a Typical
Rationalization

o B

We must stress that the important aspect of design rationalization is its
. insistence on the explicit capture and recording of design information including
the reasoning used. ﬁithout this, we ﬁave nothing but motherhoods about the
importance of making rational decisions —— which everyone already believes.
With the explicit recording.of information underlying decisions, however, we
have a technique fof increasing the rationality of designs.

With this brief introduction, let ué look at how design rationalization

can be used to improve the reviewability of designs.

A SCENARIO
The characteristics of a design review discussed above can be observed
whenever a design is evaluated. For definiteness, though, let us focus here
on the use of rationalization to improve formal reviews of routine designs.
Consider the following scenario:
1. Initial specifications are prepared. Assuming the specs are at a
functional level, they are rationalized by providing explicit
alternatives for critical specifications. Reasoning, based on

facts is then spelled out for choosing a particular set of spec-
ifications. '

2. Specifications review. The rationalizations permit the potential
designers to understand more readily some of the specificatinns.
They also permit those with funding responsibility to consider
alternative forms of the system and to evaluate whether the system
being specified is what is needed.

3. Initial Design. Once the specifications are finalized, an initial
design is prepared, using the synthesis rationalization technique.
Design decisions to be rationalized will include the overall organi-
zation of the system (control and data), choice of implementation
language, choice of hardware, and other high-level decisions made
at this stage. In addition, more detailed considerations of inter-
nal structure of the system may be documented. by explicit lists of
alternatives and evaluations.

4. TInternal Review. When a design phase is completed, an internal
review (such as the design walk throughs practiced by some organ-
izations) and an analysis rationalization is performed by the de-
signers and others in their immediate organization. This review
may prompt changes to the design. ' :

The system's features are more thoroughly explained, additional
alternatives are provided, and the evaluations of alternatives are
strengthened. Some evaluations can only be made on the basis of
‘global considerations after the entire design has taken shape.

For example, choice of a data structure may depend on its usage
by several different modules. This internal review has the effect
-06f catching some design errors in-house while at the same time
improving the explicitness of the rationalization.

5. External review. The initial design, augmented by the rationalization,
is thoroughly reviewed by whatever outside agency has been designated
to monitor progress. Rejected choices are explicitly spelled out
in the rationalization along with the reasoning used to reject them.
This permits reviewers to assess better the quality of the design
and its fit to the specifications. Rejected alternatives may be
recognized by the reviewers as important to some of the goals even
though the designers felt they were not.

6. Iteration and design refinement. After any design review, changes
to the design may be needed. After these have been made the design
process continues by refining the design (or extending it, depending
on the approach being used). Using the techniques outlined in 3,
4, and 5, the design and review iterative cycle will continue until
a complete design ready for implementation is obtained.

7. Implementation. It is rare that the implementors of a system can
proceed without making any changes or additions to a design.
Typically, many decisions (hopefully, low-level) concerning the’
structure of the programs being built must still be made. The
rationalizations now play a role in a different form of design review.
As the implementors seek to carry out the design, they must review
it from the standpoint of understanding the intent of the designers
when that is not clear and of making sure that decisions being made
during implementation are not changing critical features of the
design. The rationalization contains much of the reasoning infor-
mation needed for this type of review.

8. Redesign. After a system is in use, more information is available
on how well it fulfills its intended purpose. If the need for
an improved system becomes clear then ‘a major modification of the
existing system or specification of a new system may become
necessary. In this case, review of the design of the existing
system to determine how it can be improved will be an important
part of the design of the new system. This redesign process can
profit from the rationalization by recovering rejected alternatives
from the initial design.

This scenario illustrates the more important forms of formal design
reviews often called for in the context of routine software design projects
in large-organizations. The use of design rationalization in these different

review situations has been informally indicated, but the crux of the method --

S

fhe explicit capture of désign information otherwise lost and its preséntation
in a form coﬁvenient for review and comparison to goals -- should be clear.

As a limited exaﬁple of the usage.of design rationalization, we performed
a rather thorough analysis rafionalization on a small system which had been
designed and implemented as an improvement on an earlier system. The new
system had several stated gbals, including making it maintainable. _The
language used in the new system and some of the obvious features of the new
design indicated that indeed this goal might have been achieved. The rat-
idnalization we produced, however; indicated that most of the effort in the
redesign had been spent on local reorganizations of fhersystem, with little
thought given to overall control and code organization of the system. The
careful analysis of the systeh that the ratiohalization.supported convinced
us that maintainability had been improved only marginally because of the lack
of attention to overall structure, We were thus able to assess more accurately
both the system and the techniques used to design it. This is illustrative

of one type of benefit we would expect to reap from using design rationalization.

- T

_ DISCUSSION

Our interest is in seeing design rationalization used to improve the
the practice of software design. To facilitate this, we will discuss some

of its advantages and disadvantages in this section.

Advantages

One advantage comes from helping a reviewer identify alternatives.

If one is knowledgeable in the area of the design, then alternatives may
spring to mind easily. However, manv reviewers will not be experts and will
have difficulty knowing what alternatives (if any) might have been chosen
for the design. Even for the expert, generating alternatives is often not
easy.

The value of a rationalization in this respect is twofold. First,
actual alternatives that have been rejected will be readily available for the
reviewer to consider. Information that has been generated during the course
‘of the design will not have been lost, but will be available for the
reviewer. Perhaps even more importantly, ,the rationalization can serve
as a pump-primer to get the reviewer started to thinking about feasible
alternatives for the question at hand.

We are all familiar with the effect of being presented with a problem
situation and of seeing at first only one solution. Unless one is familiar
with the content area and has thought about the problem previously, it takes
some effort to seek out alternatives. However, if someone suggests an
alternative, even if it is not a good one, then we often can come up with
additional suggestions much more easily. This is similar to one of the
techniques suggested by be Bono [4] for facilitating lateral thinking --

that is, of finding new ways of ldoking at an old situation.

i S

Fundamentally, a reviewer is asked to certify that the decisions
made by the designer are good decisions with respect to the goals and constraints
of the design task. If the reviewer knows only the results of the designer's
reasoning and not the steps‘by which the decisions were made, then the
biases and knowledge limitations of the reviewer may seriously effect his
or her judgments as to the quality of the design decisions. If the éesign
is supported by explicit information in the form of a rationalization, however,
then the reviewer can assess more easily the factual evidence and logical
reasoning used by the designer.
This situation has an analcgy in mathematics. If one is presented with
a theorem, the truth or falsity of it may not be immediately evident and we
may or may not be prepared to accept it as true. Given a step-by-step proof
of the theorem, however, we can convince ourselves not only of its truth but
also of why it is true (in terms of axioms and reasoning).
While the evaluatioﬁs in a design rationalization are nowhere near
as orderly as a mathematical proof, they do present the reasoning that has
been used so that others can decide for themselves whether that reasoning
is complete and valid. In addition, where the reasoning used to make a decision
involves assumptions, exposing this reasoning will permit the reviewers to
discover and assess the validity of the assumptions (sihce many'of them may
be related to the user environment which the reviewer knows more about anyway).
The advantages discussed here have touched on what we believe to be the
basic advantage of design rationalization for improving reviewability: It forces
the explicit recording of decision reasoning information which is otherwise

lost.

T

Disadvantages -

It should be clear that producing a rationalized design will, in general,
take more effort than producing. an unrationalized design. At a minimum, the
effort needed to record alternatives and evaluations, even if otherwise
generated, is added effort. iHowever, we have typically found that generating
the explicit lists of alternatives and evaluations also requires a géod
deal of effort. Finding meaningful evaluations, that realte the decision under
consideration to the goals and constraints of the problem, is often difficult
in the absence of an underlying theoretical basis or quantitative evaluation
technique. The advantages of design rationalization (both for reviewability
and quality of a design) must be weighed against this added cost.

At present we cannot offer explicit suggestions for choosing the design
problems/features to rationalize nor sure- fire methods of generating alternatives
and evaluations. It is clear that one cannot rationalize every single decision
in a program of ény significant size. Further, important decisions in one
design may have no major role in another. Choosing the important ones (those
for which the choice of a solution has some definite effect on the resulting
design or its use) is difficult.

A more subtle problem that may not be immediately evident concerns the
level at which decisions are made. The thrust of design rationalization as
we have presented it above is to make decisions at a local level. Basically,
the questioﬁ asked is, "What is the best alternative, and why, for thié
particular decision?" This leads to local optimization, which in many cases
will not be optimal. That is, sometimes we must make decisions taking into
account the alternatives for other decisions which have not yet been resolved.
It is to help alleviate this concentration on the local context that we have

suggested in the scenario above that some rationalization be done after the

initial design is completed.

Research

We are continuing our_investigations of design rationalization both
to provide additional evidence of its advantages and to find ways of
reducing its disadvaﬂtages. Included in this work are some informal investi—
gations of design situations in which some designers use rationalization
and others do not, development of techniques to make easier the choice of
problems and generation of alternatives and evaluations, and the construction
of tools fo help in recording the information. These étudies are described

in [6] and [7] and other working papers available from the author.

SOME SUGGESTIONS FOR USING DESIGN RATIONALIZATION

Any methodology not based on formal techniques is open to interpretation
by those using if. Such interpretations are, in fact,‘required in most cases
to make methodology useful in the context of a particular organization or a
particular type of task. - |

Thus, we understand that design rationalization must be adapted to your
particular organizational task context. While it is difficult to predict the
difficulties you will encounter, our limited experience with helping others
use it does suggest some guidelines.

Remembering that we are concerned here with formal reviews of routine
designs, we suggest the following:

1. Choose a small, but realistic design problem on which to try out

the technique. Make sure the design is of a system of which the designer

has some knowledge.

2. Use a design project that is "real" (not done just for experimentation).

3. Make sure sufficient time and resources are allocated to the project
so that the designers are not under pressure.

X - 15 -
4. Use at least two designers (but probably not more than three) so
that they can work as a8 group when generating alternatives and evaluations.

5. Use your normal design techniques augmented by the use of rational-
izations as suggested in the Scenario above.

6. Carefully choose some criteria by which You can judge whether the
rationalization assists in design review. Some Suggestions are: number
of design flaws discovered relative to similar pProjects, level of

detail of design flaws discovered, perceived ease of review by .reviewers,
time taken to review design documents.

7. Maintain careful observations of the use of rationalization to permit
later analysis of the trial.

8. Assess the trial when completed. If rationalization seems to help
in your situation, even a little, try to find ways to improve the
technique for your situation.

9. Try it:again.

These suggestions can be boiled down to a simple statement: Approach

the use of design rationalization from the standpoint of an experimental

fitting of an idea to your situation and expect to make changes.

CONCLUSION

Development of techniques for the review of software designs has been
largely neglected. We have described a methodology, design rationalization,
which has characteristics that will help improve the reviewability of designs.
We have given a scenario for its usage and discussed some of its advantages
and disadvantages. Suggested guidelines for trying it out were given.

We have stressed that the strength of design rationalization lies in
its forcing explicit recording of design information, especially that which
explains the. reasons behind features of the design. The existence of this
information in a form that permits independent review of design choices and

the reasoning leading up to them should assist in most situations.

G =

We have not spelled out an explicit technique for one to follow.
Rather, we have described an idea, assessed its use for improving the
current practice of design review, and suggested ways in which it can be
adapted to varied organizational settings. As with much of software
engineering today, the apﬁlication of this idea in large-scale situations
must‘ultimately be carried out by those with software creation problems to
solve.

While our research continues into the ramifications of this idea and
the techniques for using it, others can profit from trying it in their
contexts. We recognize the difficulty of changing one's patterns of doing
- something and the difficulties in forcing oneself into the discipline of
design rationalization. Yet, only through trial and error usage of this and
other proposed methodologies can we gradually develop the tools necessary

for the routine design of large and important classes of software.

REFERENCES

1. Brown, R.R. "1974 Lake Arrowhead Workshop on Structured Programming",
Computer, October, 1974, pp. 61-63.

2. Dahl, 0.J., Dijkstra, E.W., and Hoare, C.A.R. Structured Programming,
Academic Press, 1973.

3. Datamation. Special issue on structured programming, December 1973.
4. De Bono, Edward. New Think, Basic Books, 1972.
5. Freeman, Peter. "Automating Software Design', Computer, April 1974.

6. Freeman, Peter. '"Reliable Software Through Rational Design', ICS
Technical Report #55, University of California, Irvine, October 1974.

7. Freeman, Peter. 'Design Rationalization', ICS Technical Report #57,
University of California, Irvine, November 1974.

8. IBM. "Structured Walkthroughs', training brochure.

9. Mills, H.D. "Top Down Programming in Large Systems", in Debugging
Techniques in Large Systems, R. Rustin (ed.), Prentice-Hall, 1971.

10.

11.

= 317 =

Parnas, D.L. "On the Criteria to the Used in Decomposing Systems into
Modules'", Comm. ACM, December 1972.

U.S. Air Force MIL-STD 1521, "Technical Reviews and Audits for Systems
Engineering and Computer Programming', available from National
Technical Information_Service, Springfield, VA., September 1972.

