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ABSTRACT OF THE DISSERTATION

The Role of Data Quality and Heterogeneity on the Calibration of Neural Networks

by

Yuan Zhao

Master of Science, Graduate Program in Computer Science
University of California, Riverside, March 2020

Dr. Samet Oymak, Chairperson

Neural networks have been widely studied and used in recent years due to its high

classification accuracy and training efficiency. With the increase of network depth, however,

the models become worse calibrated, meaning they cannot reflect the true probabilities. On

the other hand, in many applications such as medical diagnosis, facial recognition and self-

driving cars, the calibrated output probabilities are of critical importance. Therefore, the

understanding of the cause of deep neural network uncalibration is of much concern.

The influence of model structures on the output calibration has been explored.

However, the impact of the training dataset quality and heterogeneity, such as dataset size

and label noise remains unclear. In this thesis, the impact of data quality and heterogeneity

on the output calibration is investigated theoretically and experimentally. Afterwards, the

defect of calibration methods using single global parameter are discussed. To overcome

the calibration issues resulting from the dataset heterogeneity, we propose an improved

calibration technique that can give better performance.

vi



Contents

List of Figures ix

List of Tables x

1 Background 3
1.1 Neural Netwoks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 ResNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 WideResNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 CIFAR-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 CIFAR-100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Calibration Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Reliability Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.2 Expected Calibration Error(ECE) . . . . . . . . . . . . . . . . . . . . . 9
1.4.3 Maximum ECE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Classic Calibration Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5.1 Temperature Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5.2 Vector Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 The Impact of Data Quality on Model Confidence 13
2.1 The Role of the Sample Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Small Size Training Dataset Leads to Over-confident Model . . . . . . 14
2.2 The Role of Label Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Label-noisy Training Dataset Leads to Under-confident Model . . . . 17
2.2.2 Model Confidence of a Fully Trained Neural Network . . . . . . . . . . 20

2.3 Verification Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Experiments Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Experiments Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

vii



3 The Model Calibration on Heterogeneous Dataset 24
3.1 The Impact of Heterogeneous Datasets on Model Calibration . . . . . . . . . 25

3.1.1 The Role of Noise-Imbalanced Dataset . . . . . . . . . . . . . . . . . . 25
3.1.2 The Role of Size-Imbalanced Dataset . . . . . . . . . . . . . . . . . . . 26

3.2 Class-wise Calibration Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Class-Wise Temperature Scaling Method (CTS) . . . . . . . . . . . . . . . . . 29
3.4 Experiments Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Noise-Imbalanced Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.1 Comparison between TS and CTS . . . . . . . . . . . . . . . . . . . . . 31
3.5.2 Comparison with VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Size-Imbalanced Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Summary 39

Bibliography 41

viii



List of Figures

1.1 Schematic of neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Structures of a ResNet block and a Wide-ResNet block . . . . . . . . . . . . . 6
1.3 Schematic of a reliability diagrams of a perfect and an over-confident model 9

2.1 Reliability diagram of ResNet-20 models and WideResNet-28-10 Models . . 22

3.1 Reliability diagrams for the noisy and clean subsets of the dataset . . . . . . 25
3.2 Reliability diagrams for the clean subsets and undersampled subsets . . . . . 26
3.3 Impact of training data noise on the TS and CTS algorithms . . . . . . . . . 31
3.4 ECE and accuracy for five random classes (from each of 0-49 and 50-99) are

visualized (CIFAR-100) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Per-class error in terms of ECE and classification accuracy (0-4 are noisy and

5-9 are clean) (CIFAR-10). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 ECE when the first half classes are downsampled. CTS generally has lower

ECE for both the small and large classes. . . . . . . . . . . . . . . . . . . . . . 36
3.7 Calibration error as a function of the training set sampling rate . . . . . . . . 37

ix



List of Tables

3.1 Comparison of class-wise (VS, CTS) and non-class-wise (uncalibration, TS)
calibration methods (CIFAR-100) . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Comparison of class-wise (VS, CTS) and non-class-wise (uncalibration, TS)
calibration methods (CIFAR-10). . . . . . . . . . . . . . . . . . . . . . . . . . 33

x



Nowadays, deep neural networks have been applied to diverse and growing number

of domains due to their stellar performance in terms of prediction accuracy. In many safety-

critical application, such as medical diagnosis[3, 10, 11], self-driving cars[4, 5, 9] and face

recognition[29, 18] etc., however, accuracy is not the only metric we are concerned about.

Instead, the models should also give a correct probability of a prediction. For example,

if a clinical CT (computer tomography) image diagnosis system gives 0.7 probability of

a patient having a tumor, there should indeed be a 70% chance of a tumor being there.

Therefore, the correctness of the output confidence is of significance. If the probability of

the prediction can reflect the ground truth correctness likelihood, the model is calibrated.

Researches about the impact of model structures (depth, width and batch normal-

ization) on the output calibration have shown that modern deep neural networks exhibit rel-

atively higher uncalibration compared with conventional shallow neural networks[12]. To ad-

dress this issue, different kinds of postprocessing calibration techniques have been proposed,

such as platt scaling[25], vector scaling, histogram method[30], isotonic regression[31], etc.

On the other hand, the study of the influence of the dataset quality is insufficient and needs

more attention. This is due to that, in practice, data may suffer from error annotation[27, 8]

and insufficient sampling[20]. Without having a deep understanding of the relation between

dataset quality and output calibration, the postprocessing calibration methods may give a

fake satisfying result. In fact, this can happen as is discussed in a later chapter that when the

dataset is heterogeneous (partially label-noisy or under-sampled), the calibration schemes

treating all classes uniformly may give a good overall calibration but is poorly calibrated

for an individual class.
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In this thesis, the impact of dataset quality and heterogeneity on the model cal-

ibration is explored. Specifically, this thesis first gives an observation and explanation of

output confidence of a model trained by data with varying levels of noise or sample sizes.

The results show that label noise in training data leads to under-confident models and

small-size training data lead to over-confident models. Based on this, an intuitive and

general approach to individually calibrate each class is proposed. Different calibration met-

rics, the expected calibration error (ECE) and the worst-case (maximum) calibration error

(max-ECE), are selected to evaluate the performance of the proposed class-wise calibration

method (CTS).

In the following chapter 2, the background of neural network calibration is in-

troduced. Including the brief introduction of neural networks (ResNet and Wide ResNet)

used in this work, CIFAR-10 and CIFAR-100 datasets, metrics of calibration (ECE and

max-ECE) and two classic calibration techniques (temperature scaling and vector scaling).

In chapter 3, we will give two important observations and theoretical explanations on how

data quality (label corruption and under sampling) effects the model confidence. Based on

the results of chapter 3, in chapter 4, a new class-wise algorithm is discussed. Then its

calibration performance on classifiers trained by heterogeneous dataset is compared with

two classic methods by the metrics mentioned in chapter 2.
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Chapter 1

Background

This thesis mainly focuses on the model calibration issues rising from data quality

and heterogeneity in data classification. In this chapter, the background of neural nework

is introduced. Then two neural networks classifiers and two datasets used in the following

expriments are described. Afterwards, the concept of model calibration and three calibration

metrics are listed. At last, the classic calibration methods (temperature scaling and vector

scaling) are discussed.

1.1 Neural Netwoks

In supervised learning, the machine learning algorithm gets a labeled training

dataset. Each sample is a pair of input data and an output label. The goal of supervised

learning is to find a general function or rule that maps the input to the output label.

Furthermore, the mapping should be general so that unseen data is also correctly mapped.

One of the commonly used models in supervised learning is the neural network.
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Figure 1.1: Schematic of neural network

Neural networks are a set of algorithms designed to recognize patterns. They are composed

of interconnected, simple processing elements called artificial neurons. Neural networks can

have one or more layers of neurons. Typically, a neural network consists of an input layer,

one or more hidden layers and an output layer, as is shown in Fig. 1.1.

For classification purposes, the output of a neural network is the predicted class.

The ability of the model to correctly predict the class of input data can be measured by

accuracy. To meet different application requirements with high performance, various neural

networks have been proposed and studied [2, 13, 32]. The following subsection introduces

Residual Network (ResNet) and Wide Residual Network (WideResNet) that are used in

this study.

1.1.1 ResNet

Before 2015, the depth of the neural network is just dozens of convolutional layers.

This is because with the increase of layers in a deep neural network, the accuracy becomes
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saturate at a point and eventually get worse than a shallow network which is known as

degradation problem. For example, a 20-layer CNN has higher accuracy than a 56-layer

CNN both in training and testing phases [13]. This obstacle impedes the application of

deeper networks and limited the classifier achieving higher classification accuracy.

The residual network (ResNet) [13] was proposed to solve this problem. Instead

of simply stacking convolutional layers, ResNet added a shortcut connection between the

input and the output of a residual block. A typical residual block is shown in 1.2. This

structure actually fits a residual function F (x) = H(x) − x, where x is input to the layer

and H(x) is the output of residual block. The bypass x, also called as identity mapping, is

later added to F (x). Due to the bypass connection, when F (x) = 0, the block is a simple

identity mapping of the input, which enables the ResNet to reserve more input information

than the stacking CNN. This solves the aforementioned degradation problem. By using a

deep ResNet, better accuracy can be achieved which makes ResNet a popular solution to

data classifications.

In this work, the residual architecture is used for CIFAR-10 classification. It is

constructed of 20 layers, first starting with the 3x3 input convolutional layer. Next, there is

a stack of 2n layers (or n residual blocks) for each feature map size 32x16x8 with the filters

16x32x64. After each convolutional layer, batch normalization is also used. At the end of

the model, there is used global average pooling and dense layer with softmax which gives

confidence values.
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(a) A ResNet block (b) A Wide-ResNet block

Figure 1.2: Structures of a ResNet block and a Wide-ResNet block

1.1.2 WideResNet

Due to the success of ResNet, different ResNet variants are developed. Among

them, the wide residual network (WideResNet) [32] gains much attention because of its

faster convergence and higher accuracy. Instead of using deeper residual blocks, the author

demonstrated that by increasing the width (number of channels of the weighted layer)

and decreases the depth (fewer residual blocks) of a ResNet, the model can achieve higher

accuracy in a shorter convergence time. A typical WideResNet block is shown in Fig. 1.2. A

WideResNet is often named as WideResNet-k-N, where k representing the widened factor

by enlarging the number of channels in each block, and parameter N indicates how many

blocks are in one group. In the following study, a WideResNet-10-28 is used to classify the

CIFAR-100 dataset.
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1.2 Dataset

In the following experiments, CIFAR-10 and CIFAR-100 are adopted as standard

evaluation datasets.

1.2.1 CIFAR-10

CIFAR10 dataset consists of 60 000 32x32 color images in 10 classes. Typically, it

is split into 50 000 training and 10 000 test sets. The classes are airplane, automobile, bird,

cat, deer, dog, frog, horse, ship and truck.

1.2.2 CIFAR-100

The CIFAR-100 dataset is similar to the CIFAR-10. There are 100 classes in

CIFAR-100 with 600 images in each class. Typically, each class is split into 500 training

and 100 testing samples.

1.3 Calibration

In most tasks, the accuracy of a trained neural network is the most concerned.

However, in many safety-critical applications, such as self-driving cars and medical di-

agnosis, not only the accurate prediction is needed, but also the exact likelihood of the

prediction is desired[21, 22, 14, 25]. For instance, a true probability of a patient having

a tumor produced by a CT image classification model can help doctors make a suitable

follow-up treatment plan.

In modern neural networks, the output probability is realized by adopting a soft-
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max function as is shown in 1.1. The softmax function is a normalization function, which

turns the output logits into the [0,1] interval and guarantees their sum to be one. There-

fore, the values after softmax can be interpreted as probabilities. The predicted result is the

class with the highest softmax value. However, this value may not reflect the true model

confidence, which means when the output probability is 0.8, there may not an 80% correct

prediction. Guo [12] showed that in modern neural networks with deep and wide layers, the

model becomes much more uncalibrated, specifically over-confident (the model confidence

is higher than prediction accuracy), which means the model tends to give a high confident

prediction but cannot reach the same prediction correctness. Hence, calibration techniques

are proposed to address this mismatch [12, 17, 19, 7, 28, 15, 23, 16].

1.4 Calibration Metrics

The following subsections introduce three evaluation metrics for calibration which

are adopted in chapter 3 and chapter 4.

1.4.1 Reliability Diagram

The reliability diagram is an intuitive way to visualize the calibration error. In

a reliability diagram figure, the horizontal axis is the output sample confidence from 0 to

1 which is chunking into M bins, with an interval size of 1/M . The vertical axis is the

fraction of average accuracy and average confidence for each bin. A schematic reliability

diagram is shown in Fig. 1.3

For a perfect calibration, the average accuracy and average confidence of each
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(a) Reliability diagram of an perfect-

calibrated model

(b) Reliability diagram of an over-

confident model

Figure 1.3: Schematic of a reliability diagrams of a perfect and an over-confident model

bin completely overlap, meaning the accuracy and the confidence align exactly along the

diagonal. However, in practical cases, it is almost impossible to achieve perfect calibration.

If the average accuracy is lower than average confidence, the classifier is over-confident. On

the other hand, If the average accuracy is higher than average confidence, the classifier is

under-confident.

1.4.2 Expected Calibration Error(ECE)

Although the reliability diagram is an intuitive metric, quantified metrics are

needed to make a more precise comparison between different calibration techniques. One

commonly used numerical value metric is the expected calibration error (ECE).

First, we consider the description of a supervised classification problem with mul-

tiple classes. Denote the joint distribution D of input/output pairs (X,Y ) via
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P (Y,X) = P (Y ∣X)P (X).

Input X ∈ X and output Y ∈ {1,2, . . . ,K} are random variables where Y is the

true class assignment and X is the input space. Ŷ is the predicted class.

For an inputX, f outputs a class decision Ŷ = arg max1≤k≤K f(X)k with confidence

P̂ = f(X)Ŷ , where f(X)k denotes the kth entry of the output vector. Ŷ , P̂ are functions of

f and X. P̂f(X), Ŷf(X) will explicitly highlight this dependence.

ECE measures and combines the distance between model accuracy and confidence

at fixed confidence levels on the predicted label. Its continuous version with respect to `1

metric is given by

ECE(f) = ECE(f,D) = EP̂ [∣P (Y = Ŷ ∣P̂ = p) − p∣].

This continuous version operates in infinitesimal confidence intervals. Discrete

version of ECE circumvents this by using binned confidences as defined below.

Split the interval [0,1] into M disjoint intervals (Bi)
M
i=1. Discrete ECE is given by

ECE(f) =
M

∑
i=1

E[∣P (Y = Ŷ ∣P̂ ∈ Bi) − p∣]P(P̂ ∈ Bi).

In the following experiments, ECE bins are chosen to be equally spaced which is

the common approach in the related literature. Given a dataset S = (xi,yi)
n
i=1, we denote

the finite-sample versions of ECE by ECE(f,S) obtained by averaging over the dataset.

1.4.3 Maximum ECE

ECE is an effective evaluation indicator, however, it ignores the difference between

different classes. This is of great importance if the input data is heterogeneous. To evaluate

10



the worst-case calibration within different classes, we defined a new metric Maximum ECE

(max-ECE).It is quantified via the maximum error over the the class-conditional distribu-

tions Dk = P (X,Y ∣Ŷf(X) = k) defined as

Max-ECE(f) = max
1≤k≤K

ECE(f,Dk) (1.1)

1.5 Classic Calibration Methods

1.5.1 Temperature Scaling

Temperature scaling (TS) is a common and successful calibration technique which

is a special case of Platt scaling. Assume that classifier f can be decomposed as a softmax

function applied to logits flgt i.e. f(X) = sftmx(flgt(X)). This is a natural assumption for

modern classifiers such as deep networks. TS searches for the calibrated function within

the function space parameterized by a scalar α given by

F = {fα where α ∈ [α−, α+]}

where fα(X) = sftmx(αflgt(X)). Given a validation set S = (Yi,Xi)
n
i=1 and calibration loss

`calib, we obtain optimal α via

α⋆ = arg min
α∈[α−,α+]

calib loss(fα,S) where (1.2)

calib loss(fα,S) =
1

n

n

∑
i=1
`calib(Yi, fα(Xi)). (1.3)

1.5.2 Vector Scaling

Vector scaling (VS) is a generalization of temperature scaling and allows for more

flexible fit by using 2K parameters for calibration (compared to the single parameter of

11



TS). However, this may lead to overfitting in the calibration process [12]. Specifically,

vector scaling calibrates over a larger class of functions given by

fa,b = sftmx(a⊙ flgt(X) + b). (1.4)

Here ⊙ is the entrywise product and fa,b is parameterized by the K dimensional scaling

vector a and bias vector b.

12



Chapter 2

The Impact of Data Quality on

Model Confidence

This chapter first studies the influence of dataset quality (label noise and small

size) on the model confidence. To simplify the analysis, the discussion in this chapter

focuses on binary classification with linear classifiers and minimizes binary negative logistic

loss (NLL) for training. Specifically, our classifier f will be parameterized by a vector a and

intercept b via

fa,b(X) = sftmx(aTX + b) =
ea

TX+b

1 + eaTX+b
.

13



2.1 The Role of the Sample Size

2.1.1 Small Size Training Dataset Leads to Over-confident Model

We discuss model confidence influenced by a small training dataset. This scenario

frequently appears in anomaly detection and rare-event classification. Deep networks are

often trained until they achieve 100% training accuracy ([33]) and sufficiently large deep

networks can provably achieve 100% accuracy if data is not degenerate. Once a network

f = sftmx(flgt) achieves 100% accuracy, it will still attempt to push NLL to zero. Loss

can be pushed to 0 by scaling up the logits i.e. letting α → ∞ in the class of functions

sftmx(αflgt). This eventually leads to classifiers with 100% confidence in training data

as well as in the test data. The reason is as soon as one entry of flgt is favorable over

the others (which is guaranteed to happen except for degenerate distributions/classifiers),

letting α → ∞ will lead to 100% confidence in the predicted class. The following result

formalizes this intuition and states that a small sample size can provably lead to further

over-confidence.

Theorem 1 There exists a distribution D (with unit `2 norm input set X ) as follows.

Generate datasets S1 = (Xi, Yi)
n
i=1

i.i.d.
∼ D and S2 = (Xi, Yi)

50n
i=1

i.i.d.
∼ D and fix R > 0. Minimize

the empirical NLL loss on these datasets to find linear classifiers f1, f2 as follows.

fi = arg min
f∈{fa,b ∣ ∥a∥`2≤R}

NLL(f,Si).

Given precision ε > 0, choose R ≥ 6 log(50n + ε−1). With probability at least 9/10 (over the

proper set S1 or S2), we have the following accuracy and confidence behavior.

● For all inputs X ∈ X and i ∈ {1,2}: P̂fi(X) ≥ 1 − ε.

14



● PD(Ŷf1(X) = Y ) ≤ 1 − 1
20n and PD(Ŷf2(X) = Y ) = 1.

In the setup above, both large dataset (S2) and small dataset (S1) problems lead to arbitrar-

ily high confidence classifiers (over all viable inputs in D); however, the model trained on the

small dataset is provably less accurate, which indicates that the smaller dataset makes the

model over-confident. The proof idea is constructing a distribution where certain features

have low probability, thus requiring more data to learn them.

Proof. The NLL (cross-entropy) loss on a dataset S is given by

NLL(fa,b,S) = −
1

n

n

∑
i=1

log(
eyi(a

TXi+b)

1 + eyi(aTXi+b)
) =

1

n

n

∑
i=1

log(1 + e−yi(a
TXi+b))

Fix orthogonal unit `2 norm vectors u,v ∈ Rp. Set v′ = (u + v)/
√

2. Define the binary

distribution D as follows.

P(Y = 1∣X = v) = P(Y = 0∣X = v′) = P(Y = 0∣X = −v) = 1 (2.1)

P(X = v) = 1/2, P(X = v′) = 1/N, P(X = −v) = 1/2 − 1/N. (2.2)

Let Ei be the event that v′ appears as an input in dataset Si. Observe that

e−n/N ≥ 1 − P(E1) = (1 − 1/N)
n
≥ 1 − n/N.

Thus, setting N = 20n, we find P(E1) ≤ 0.05 and P(E2) ≥ 1 − e−50n/20n = 1 − e−2.5 ≥ 0.91.

Also let B be the event that at least 1/3 of the training inputs are equal to v and at least

1/3 are equal to −v. Applying a standard Chernoff bound yields that P(B) ≥ 1 − 2e−
n

100 .

Before proceeding further, we also note that for all x ≥ 0, we have

e−x/2 ≤ log(1 + e−x) ≤ e−x

15



Analyzing S1 on the event E1 ∩B: Suppose E1 holds. Note that the training dataset

only contains inputs v and −v. Thus, it can be concluded that the optimal classifier has

the form Rv + b for some scalar b i.e. a = R′v for ∣R′∣ ≤ R. Let 0 ≤ γ ≤ 1 denote the fraction

of +v inputs within the training data. The empirical (training) NLL is given by

NLL(fa,b,S1) = γ log(1 +
1

eR′+b
) + (1 − γ) log(1 +

1

eR′−b
)

Minimizing NLL over R′ reveals R′ = R and the loss is given by

NLL(fa,b,S1) = γ log(1 +
1

eR+b
) + (1 − γ) log(1 +

1

eR−b
)

We next bound the optimal b choice. Under event B, γ,1 − γ ≥ 1/3. Using a = Rv, b = 0 as

an upper bound, we have that

e−R ≥ γ log(1 +
1

eR+b
) + (1 − γ) log(1 +

1

eR−b
) (2.3)

≥
1

3
log(1 +

1

eR−∣b∣
) ≥ min(

1

6

1

eR−∣b∣
,
log(2)

3
) (2.4)

which implies ∣b∣ ≤ log 6. Now observe that optimal classifier (on training), which obeys

a = Rv, ∣b∣ ≤ log 6, outputs the wrong decision on v′ since

Ŷf1(v
′
) = sign(aTv′ + b) = sign(

R
√

2
+ ∣b∣) = 1

as R ≥
√

2 log 6. This implies P(Ŷf1(X) = Y ) ≤ 1 − 1/20n. However, confidence on v′ (as

well as on ±v) is lower bounded as follows

P̂f1(X) ≥
1

1 + e−(R/
√
2−log 6)

≥ 1 − e−(R/
√
2−log 6)

≥ 1 − ε

whenever R ≥
√

2(log 6 + log(1/ε)) which is implied by R ≥ 3 log max(6,1/ε).
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Analyzing S2 on the event E2: We claim that the classifier achieves small loss on

all examples v,−v,v′ which will help show the result. First we pick a baseline classifier

a = Rv−2
√
2u

3 and b = 0. This guarantees that for all (Y,X) ∼ D

Y XTa ≥ R/3.

Thus empirical NLL over S2 is at most − log( eR/3
1+eR/3 ) = log(1 + 1

eR/3 ) ≤ e−R/3. The overall

loss will bound the individual losses i.e. at the optimal classifier (a, b) (on training data)

for any training example (X,Y ) ∈ S2 we have

e−R/3
≥ NLL(fa,b,S2) ≥

−1

50n
(Y log f(X) + (1 − Y ) log(1 − f(X)))

Since R ≥ 6 log(50n), we find 50ne−R/3 ≤ e−R/6. Without losing generality, let us assume

Y = 1. This implies

e−R/6
≥ − log f(X) Ô⇒ f(X) ≥ e−e

−R/6
Ô⇒ f(X) ≥ 1 − e−R/6.

To achieve 1 − ε probability, we need e−R/6 ≤ ε which holds whenever R ≥ 6 log(1/ε). For

ε < 1/2, this also implies the classification is correct i.e. Y = Ŷ since f(X) > 1/2. The

identical argument holds when Y = 0.

2.2 The Role of Label Noise

2.2.1 Label-noisy Training Dataset Leads to Under-confident Model

For label noise, we work with a noisy dataset model with a discrete distribution

over X = {v,−v}.
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Definition 2 (Dnoisy(p+, p−)) Fix a vector v ∈ Rd with unit `2 norm and let X = {v,−v}.

Fix the noise levels 0 ≤ p−, p+ ≤ 1/2. Suppose that P(X = v) = 1/2 and the conditional class

distributions obey

P(Y = 1∣X = v) = 1 − p+ and P(Y = 0∣X = −v) = 1 − p−.

The next lemma is a straightforward result that captures the properties of the linear classifier

on this noisy data model.

Lemma 3 Fix 1/2 > p+, p−, ptest ≥ 0. Suppose the data is distributed with D = Dnoisy(ptest, ptest),

but the training set is corrupted by label noise in an unbalanced way with distribution

Dnoisy(p+, p−). A linear classifier f minimizing population (infinite sample) training NLL

loss obeys

Test confidence over +: P̂ (v) = f(v) = 1 − p+

Test confidence over −: P̂ (−v) = 1 − f(−v) = 1 − p−

Test accuracy over either: P(Ŷ = Y ∣X) = 1 − ptest.

This lemma highlights that if the training data is noisier than the test (e.g. p+, p− > ptest),

the classifier will be under-confident at test time, explaining the behavior in Fig. 2.1e. It

also shows that individual classes or inputs can have different confidence levels as a function

of noise.

Proof. Classifier outputs the probability f(X) = ea
TX+b

1+eaTX+b . Note that X = xv for x ∈ {−1,1}

hence without losing generality, we can assume a = av since any direction orthogonal to

v has zero inner product with input. Then, classifier simplifies to a single dimension as
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follows

f(X) =
eax+b

1 + eax+b

We need to find a∗, b∗ that maximizes the negative NLL loss

−L(a, b) = E[Y log(f(X)) + (1 − Y ) log(1 − f(X))]

This expectation leads to the scalar optimization

−2L(a, b) =(1 − p+) log(
ea+b

1 + ea+b
) + p+ log(

1

1 + ea+b
) + (1 − p−) log(

ea−b

1 + ea−b
) + p− log(

1

1 + ea−b
).

Note that we can re-parameterize the loss by considering it as a function of α = a + b and

β = a − b. Together it gives

−2L(α,β) =(1 − p+) log(
eα

1 + eα
) + p+ log(

1

1 + eα
) + (1 − p−) log(

eβ

1 + eβ
) + p− log(

1

1 + eβ
).

Right hand side is maximized when partial derivatives with respect to α and β are zero i.e.

−2∂L(α,β)

∂α
=[(1 − p+)

1

1 + eα
− p+

1

1 + e−α
)]

−2∂L(α,β)

∂β
=[(1 − p−)

1

1 + eβ
− p−

1

1 + e−β
].

Note that partial derivative w.r.t. α depends only on p+ and partial derivative w.r.t. β

depends only on p− which greatly simplifies our life. Proceeding, we find that α∗ = a∗ + b∗

satisfies the likelihood ratio

1 − p+
1 + eα∗

−
p+

1 + e−α∗
= 0 Ô⇒

1 + eα∗

1 + e−α∗
=

1 − p+
p+

(2.5)

Note that this implies that the classifier output is

f(v) =
ea∗+b∗

1 + ea∗+b∗
=

eα∗

1 + eα∗
= 1 − p+.
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Similarly, following β∗ = a∗ − b∗, we find 1+eβ∗
1+e−β∗ =

1−p−
p− and f(−v) = p−. On the other hand,

this classifier always predicts 1 for X = v and 0 for X = −v (as 1 − p+ > 1/2 and p− < 1/2).

As a result, since the test data is distributed with Dnoisy(ptest, ptest), the test accuracy will

be 1 − ptest for both classes.

2.2.2 Model Confidence of a Fully Trained Neural Network

Recall that once a network achieves 100% training accuracy further training will

eventually lead to 100% confidence. Thus large capacity and sufficiently trained networks

should not be under-confident. On the other hand, for noisy datasets (e.g. Fig. 2.1e), the

training stops before the model achieves 100% training accuracy which is the key source of

under-confidence.

2.3 Verification Experiments

To verify the previous analysis of the impact of data quality, two sets of experiments

are designed with different neural networks and datasets. The first set of experiments uses

a ResNet-20 model to classify the CIFAR-10 dataset, and the second experiment is based

on the WideResNet-28-10 model and CIFAR-100 dataset.

2.3.1 Experiments Setup

ResNet-20 model and CIFAR-10 preprocessing

For CIFAR-10, 60 000 samples are split into a training set with 50 000 samples and

a 10 000 samples test set. The samples are preprocessed by subtracting the per-channel
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mean of the training images and dividing by the standard deviation. Further, they are

augmented by flipped horizontally in 50 percent of cases. Additionally, the training images

are also padded by 4 pixels from every side and then randomly cropped, so the final image

size is 32x32. The padded pixels are either reflections of the image or constant value 0.

To train the ResNet-20, 200 training epochs of the ResNet-20 with Adam optimizer

are used to fit the data, with cross-entropy as the loss function using Keras and TensorFlow

[1, 6]. The initial learning rate is initially set to 10−3 and decreases to 10−4 after 80 epochs.

The epoch with maximum testing accuracy is recorded.

WideResNet-28-10 model and CIFAR-100 preprocessing

Similar to CIFAR-10, for CIFAR-100, 60 000 samples are split into 50 000 training

samples and 10 000 test samples. 200 training epochs of the WideResNet-28-10 with SGD

optimizer were used to fit the data, with cross-entropy as the loss function using PyTorch[24].

The initial learning rate is initially set to 0.1 and decreases to 0.02, 0.004, 0.0008 after 60,

120, 160 epochs respectively. The epoch with maximum testing accuracy is recorded.

2.3.2 Experiments Results

In the following experiments, clean and standard-split test datasets are always

used (10 000 samples for both CIFAR-10 and CIFAR-100). No postprocessing calibration

algorithm is applied. The reliability diagrams are obtained on the test set with uncalibrated

models. The number of confidence bins is 10. Average confidence is represented by red

bars, average accuracy is represented by yellow bars, and their overlap is represented by

orange bars. Note that the confidence always (approximately) follows the diagonal line by
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Figure 2.1: Reliability diagram of ResNet-20 models and WideResNet-28-10 Models
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construction.

Fig. 2.1 shows empirically that data quality can greatly affect the model confidence.

Specifically, in Fig. 2.1b, a CIFAR-10 model with noisy data (i.e., 30% chance of label

corruption) is trained. Compared to the standard CIFAR-10 model with perfect labels

(Fig. 2.1a), the model with noisy data suffers from under-confidence on the test set. On the

other hand, a CIFAR-10 model trained with small sizes (only 100 labels per class rather than

the standard 5000 labels) results in over-confident models (Fig. 2.1c), especially compared

to the default CIFAR-10 model (Fig. 2.1a).

The same conclusion can be drawn by the WideResNet-28-10 model with CIFAR-

100 dataset. As is shown in Fig. 2.1 (d-f), WideResNet-28-10 exhibits under-confident when

the training dataset is label-noisy (Fig. 2.1e) and over-confident when training dataset is

much smaller than standard one.

In summary, the results of the experiment are in agreement with the aforemen-

tioned theoretical analysis that label corruption leads to a under-confident model and small

size leads to a more over-confident model.
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Chapter 3

The Model Calibration on

Heterogeneous Dataset

In the practical application of a neural network, the training dataset may be

heterogeneous, meaning some of the classes in the training dataset may contain noisy labels

while other classes remain clean, or some of the classes contain a smaller number of samples

than others. For example, when gathering the monitoring data of mixed industrial organic

gases emitting from a factory, one of the specific gas-sensitive sensors gathered insufficient

data due to out of power, and the overall dataset of collected gases forms a heterogeneous

dataset.

In this chapter, the impact of heterogeneous datasets on model calibration is first

investigated. Then a class-wise algorithm is proposed. After that, a class-wise temperature

scaling algorithm (CTS) is discussed followed by the comparisons of CTS, TS and VS.
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3.1 The Impact of Heterogeneous Datasets on Model Cali-

bration

3.1.1 The Role of Noise-Imbalanced Dataset

To investigate the influence of the noise-imbalanced dataset, we add 30% label

noise on the training data (50 000 samples) of the CIFAR-100 classes 0-49 and keep the

classes 50-99 clean. Then the constructed heterogeneous training set is used to train a

WideResNet-28-10 model with the setup same as that in chapter 3. Fig 3.1 provides separate

reliability diagrams for the noisy and clean subsets of the overall CIFAR-100 dataset at the

end of training and before any calibration. The contrasting subsets are determined by

the actual test labels. In consistency with theoretical intuition, this figure demonstrates

that noisy classes tend to be underconfident and clean classes tend to be over-confident.

The average accuracy over noisy classes 0-49 is 0.689 and average confidence is 0.627. In

contrast, average accuracy over clean classes 50-99 is 0.768 and average confidence is 0.781.
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(b) Clean classes (50-99)

Figure 3.1: Reliability diagrams for the noisy and clean subsets of the dataset
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3.1.2 The Role of Size-Imbalanced Dataset

Our next experiment explores the heterogeneity of the sample sizes within the

classes. We use the same model and training setup in section 3.1.1. For the training set, we

under-sample classes 0-49 at 10% (i.e. 50 per class rather than 500) and classes 50-99 remain

untouched. Fig 3.2 provides reliability diagrams for undersampled vs fully-sampled classes.

The contrasting subsets are determined by the actual test labels. This figure demonstrates

that under-sampled classes tend to be more over-confident than fully-sampled classes. The

average accuracy over under-sampled classes 0-49 is 0.396 and average confidence is 0.728. In

contrast, average accuracy over fully sampled classes 50-99 is 0.841 and average confidence

is 0.909.
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Figure 3.2: Reliability diagrams for the clean subsets and undersampled subsets
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3.2 Class-wise Calibration Algorithm

From section 3.1 we can refer that, when dealing with the calibration of a model

trained on a heterogeneous dataset, without discriminating the difference between classes

may result in a fake well-calibrated model. For example, at one extreme, when the model

is trained on a partially label-noisy dataset, the under-confident output of noisy classes

and over-confident output of clean classes cancel out, making the model perfect calibrated.

Furthermore, popular calibration schemes such as temperature scaling [12] typically try

to find optimal global parameters that are used to calibrate all samples uniformly (e.g.

using a single calibration parameter). Thus this kind of one size fits all approach may

be ineffective. Global calibration may fail to treat such heterogeneities, leading to worse

calibration performance.

To address this issue, we proposed a class-wise calibration algorithm. Our ap-

proach is summarized in Alg. 1 and applies post-processing on a given classifier f . It can

use an arbitrary calibration function C (chosen from a set Fcal) which takes a classifier f

and outputs a calibrated classifier C(f) (e.g. C applies Platt scaling on f) . The core idea

is splitting a heterogeneous dataset S into homogenous subsets so that C can calibrate each

subset individually. The appropriate splitting is a function of the dataset (i.e. its size and

type of heterogeneity), and prior information can guide the subset selection. A good exam-

ple is related to fair machine learning where a dataset may be heterogeneous with respect

to a sensitive input feature (e.g. race, sex) [26]. We can create the sub-datasets, (e.g. cor-

responding to different demographic groups) based on the distinct values of the sensitive

feature. While our approach can apply to any general splitting policy, in this work, we
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Algorithm 1 Class-wise Calibration

Inputs: Classifier f , validation dataset S, regularization Γ

Calibration loss function calib loss(⋅) (e.g. NLL, ECE)

Set of calibrators Fcal (e.g. Platt scalings)

Outputs: Calibrated classifier fcal

Sk = {(X,Y ) ∈ S ∣ k = Ŷ }, ∀ 1 ≤ k ≤K.

Solve the calibration optimization

C
⋆
k = min

Ck

K

∑
i=1

calib loss(Ck(f),Sk) s.t. (CC)

∥Ck − C0∥ ≤ Γ, Ck ∈ Fcal ∀ 0 ≤ k ≤K.

For any fresh input sample X, fcal returns

fcal(X) = C⋆
Ŷ
(f(X))

restrict our attention to the heterogeneity across different classes and focus on class-wise

splitting to address unbalanced class distributions.

Specifically, S is split into K subsets (Sk)
K
k=1 where Sk is the set of samples whose

predicted labels Ŷ are class k. Note that, we use predicted labels for calibration rather than

the actual labels, because at the time of inference, we won’t have access to the labels and

have to infer them.

Our algorithm takes a calibration loss (e.g. NLL, ECE) and solves the Class-wise

Calibration problem (CC). The key idea is individually calibrating each class to obtain

C⋆k(f) from the base function f . (CC) admits a regularization parameter Γ which quantifies

the level of multi-task learning. Γ = 0 reduces to standard (non-class-wise) calibration

whereas Γ = ∞ means each class is calibrated by themselves which may be more prone to
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over-fitting. Finally, for inference in test time, the final calibrated classifier fcal calls the

sub-classifier C⋆k(f) whenever the predicted tag is class k.

3.3 Class-Wise Temperature Scaling Method (CTS)

When Algorithm 1 is specialized to TS, we get the Class-wise Temperature Scaling

(CTS) algorithm. When Γ = ∞, CTS picks K distinct scalars (αk)
K
k=1 by training on the

sets Sk with predicted label Ŷ = k. For a fresh sample X, CTS outputs class probabilities

fcal(X) = sftmx(αŶ flgt(X)).

In the following sections, to simplify the CTS, we keep Γ = ∞ and demonstrate

the effectiveness of CTS and its advantages over classic TS and VS methods.

3.4 Experiments Setup

Datasets: CIFAR-10 and CIFAR-100 datasets are used to demonstrate the pro-

posed class-wise temperature scaling algorithm. In the experiments, whenever CIFAR-10

and CIFAR-100 validation is needed, the original training set is split into 45k training

samples and 5k validation samples. We only modify the training data. The validation set

is always clean (i.e., not noisy). All experiments use the standard data augmentation by

shifting the width and height of the image as well as flipping the image horizontally. Ex-

periments are repeated five times with different random seeds. To evaluate the impact of

heterogeneous data, two variants of CIFAR-10 and CIFAR-100 are constructed:

● Noise-imbalanced dataset construction (§3.5): In the training dataset, we add label

noise to classes 0 to 4 for CIFAR-10 and 0 to 49 for CIFAR-100 with noise rate ρ
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varying from 0 to 1. The remaining Classes are unchanged. This results in a noise-

imbalance training set.

● Size-imbalanced dataset construction (§3.6):

We under-sample the classes 0 to 4 in the CIFAR-10 training set and 0 to 49 in the

CIFAR-100 training set, with the sampling rate ρ ∈ [0.01, 1] and [0.05, 1] respectively.

Instead of the usual n training samples, under-sampled classes have only nρ training

samples. For instance, with ρ = 0.01, the smaller classes of CIFAR-10 contain only 45

samples resulting in a highly unbalanced dataset. The overall training set is obtained

by combining the downsampled classes and the other classes.

Comparison algorithms: We compare the performance of two class-wise ap-

proaches (class-wise temperature scaling and vector-scaling) versus two standard approaches

that globally apply to all samples (temperature scaling and no calibration). The reported

ECE and max-ECE metrics of each algorithm are generated from the test dataset.

Metrics: We evaluate the performance of the above algorithms through the ECE

and max-ECE: We optimize the NLL loss for calibration optimization (e.g., fitting TS, CTS,

VS) as a proxy for ECE and max-ECE in all experiments.

Neural network model: To perform image classification, we utilize the ResNet-

20 for CIFAR-10 and WideResNet-28-10 for CIFAR-100 network models. The training

processes are the same with those in Chapter 2.
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3.5 Noise-Imbalanced Training Data

3.5.1 Comparison between TS and CTS
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Figure 3.3: Impact of training data noise on the TS and CTS algorithms

In this experiment, we evaluate the impact of noise-imbalanced training data on

the calibration error.

In Fig. 3.3, we plot the ECE and max-ECE as we sweep across different noise
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rates. In both experiments of CIFAR-10 and CIFAR-100, the CTS method shows significant

improvement over simple TS, especially when there is more noise in the dataset. These

results suggest that not only can CTS achieve better calibration on individual classes (as

shown by the max-ECE plot), but can also result in a better calibrated model from global

perspective (as shown from the global ECE plot).

3.5.2 Comparison with VS

VS is another class-wise calibration method that may give better performance

than non-class-wise methods, due to better fitting capability (as long as overfitting does

not occur). In this set of simulations, we compare the class-wise CTS and VS methods with

non-class-wise TS and uncalibrated methods.

We construct a training dataset with a 30% label corruption rate for half of the

classes. We compare the calibration error of VS, TS and CTS is according to accuracy,

ECE, and max-ECE.

Alg. Acc. (%) ECE (%) max-ECE (%)

Uncal. 71.53 ± 0.13 3.78 ± 0.30 36.83 ± 4.30
VS 72.82 ± 0.22 3.26 ± 0.21 18.30 ± 1.31
TS 71.53 ± 0.13 3.64 ± 0.22 32.74 ± 2.17
CTS 71.53 ± 0.13 3.21 ± 0.26 23.70 ± 3.34

Table 3.1: Comparison of class-wise (VS, CTS) and non-class-wise (uncalibration, TS)

calibration methods (CIFAR-100)

Table 3.1 and 3.2 show the results. In terms of max-ECE, VS is the most preferable,

while CTS also has good performance. In terms of ECE, CTS outperforms other methods
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Alg. Acc. (%) ECE (%) max-ECE (%)

Uncal. 86.98 ± 0.45 6.50 ± 0.46 21.09 ± 0.49
VS 87.27 ± 0.39 1.31 ± 0.11 4.37 ± 0.56
TS 86.98 ± 0.45 3.69 ± 0.33 13.85 ± 0.64
CTS 86.98 ± 0.45 1.19 ± 0.25 5.46 ± 0.98

Table 3.2: Comparison of class-wise (VS, CTS) and non-class-wise (uncalibration, TS)

calibration methods (CIFAR-10).

due to the benefits from the class-wise calculation procedure. Both class-wise methods, VS

and CTS, have improvement over the non-class-wise TS method.

Aside from the similar calibration performance of VS and CTS, VS slightly im-

proves the prediction accuracy , which is a surprising observation.

For instance, as shown in Fig. 3.4b and 3.5b, VS uniformly degrades the prediction

accuracy over noisy classes (classes 0-49) and uniformly improves the average accuracy

over clean classes (classes 50-99). Note that noisy classes are already suffering from lower

accuracy due to the noise, and VS ends up amplifying this while improving the overall

accuracy. In contrast, by construction the CTS prediction is guaranteed to be consistent

with the original classifier as discussed. Fig. 3.4a and 3.5a breaks down the results from

Table 3.1 and 3.2 respectively, and shows that ECE is lower for VS and CTS in every class

when compared to TS and no calibration.
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Figure 3.4: ECE and accuracy for five random classes (from each of 0-49 and 50-99) are

visualized (CIFAR-100)
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Figure 3.5: Per-class error in terms of ECE and classification accuracy (0-4 are noisy and

5-9 are clean) (CIFAR-10).
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3.6 Size-Imbalanced Training Data

We next investigate the effectiveness of CTS on size-imbalanced training set. We

construct the unbalanced training dataset as described in §3.4.
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Figure 3.6: ECE when the first half classes are downsampled. CTS generally has lower

ECE for both the small and large classes.

Fig. 3.6 shows the ECE errors associated with individual classes as labeled by the
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classifier, i.e., ECEk = ECE(f,Dk) where Dk is the conditional distribution P (Y,X ∣Ŷ = k).

Here smaller classes are 5% (CIFAR-100) and 6% (CIFAR-10) as large as the non-down-

sampled classes. The results show that CTS provides uniform improvement over original

uncalibrated classifier for all classes. In contrast, TS actually inflates the calibration errors of

the under-represented smaller classes, while improving the performance over larger classes.

This suggests that class-wise calibration provides a more fair treatment of the classes.
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Figure 3.7: Calibration error as a function of the training set sampling rate

To further understand the impact of sample size on calibration error, we plot the
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ECE as a function of sampling rate in Fig. 3.7.

Fig. 3.7a and 3.7c shows that CTS uniformly outperforms TS in terms of max-ECE

metric for all sampling rates, highlighting the fairness benefit of CTS. However, perhaps

surprisingly, we find that in terms of overall ECE (where all samples are aggregated), TS

outperforms CTS (Fig. 3.7b and 3.7d). Upon digging deeper into this, we found that this is

due to the way that individual class confidences output by TS combine in a favorable fashion

when they are merged in a given confidence bin, as is done in the overall ECE metric. For

example, suppose there are only two classes with equal sizes, and fix a confidence bucket,

e.g., [0.4,0.6].

● Suppose Class 1 has average accuracy of 0.52, TS confidence of 0.6, and CTS confi-

dence of 0.54.

● Suppose Class 2 has average accuracy of 0.48, TS confidence of 0.4, and CTS confi-

dence of 0.5.

In this case, TS will achieve ECE1 = ECE2 = 0.08 whereas CTS will achieve ECE1 = ECE2 =

0.02, so CTS is better. However, CTS is overconfident in both classes whereas TS is perfectly

calibrated when both classes are combined, resulting in ECETS = 0 and ECECTS = 0.02.
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Chapter 4

Summary

In this thesis, we investigated the influence of the training data quality on the

model calibration. Specifically, we make the following contributions.

We find that label noise in the training data leads to under-confident classifiers,

and we provide a theoretical justification explaining this observation. This is surprisingly

in contrast to over-confidence of deep networks trained with noiseless data.

Training sample size similarly has a major effect on classifier confidence. Specif-

ically, in CIFAR-10 and CIFAR-100 experiments, smaller sample size leads to more over-

confident classifiers due to lower accuracy.

Both of these observations are surprisingly transferable to classifiers trained on

heterogeneous data. For instance, if label noise levels of classes are unbalanced (e.g., some

classes have more noise than the others), we find that classifier tends to be under-confident

over noisy classes and over-confident over noiseless.

These observations motivate us to investigate class-wise calibration algorithms.
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We propose an intuitive and general approach that allows for individually calibrating each

class. Specifically, we slice the validation set by predicted class assignments and calibrate

each slice separately. Our approach, coupled with temperature scaling method (TS), leads

to class-wise temperature scaling (CTS) as a special case. We demonstrate the benefit of this

approach when the classes exhibit noise and sample size imbalances. We also demonstrate

the benefit of vector scaling as an alternative approach and contrast with CTS.
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