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ABSTRACT OF THE DISSERTATION

Prediction and variable selection in political science

by

Adeline Yunchen Lo

Doctor of Philosophy in Political Science

University of California, San Diego, 2016

Professor James Fowler, Chair

This dissertation considers the topics of prediction and variable selection for the

applied political scientist, particularly in the context of high dimensional data.

In Chapter 1, we consider the puzzle of why highly significant variables aren’t

automatically good predictors. This problem occurs in both simple and complex data.

We offer explanations and statistical insights into the puzzle. We suggest shifting the

research agenda toward searching for a criterion to locate highly predictive variables

rather than highly significant variables. We offer an alternative approach, the Partition

Retention (PR) method, which was effective in reducing prediction error from 30% to

8% on a long studied breast cancer data set.

In Chapter 2, we propose approaching prediction from a framework grounded in

finding the correct prediction rates of variables. While intuitively obvious, not nearly

xiii



enough attention has been paid to creating a clear theoretical framework for prediction.

We present an objective function for prediction rates and consider but ultimately reject

an estimator based on the sample analog of the solution due to its inability to distinguish

predictive variables from noisy ones, which leads to an inability to estimate it. We offer

an alternative solution and demonstrate that the PR’s I-score asymptotically approaches

this alternative solution. The I-score for a variable set can be written as an asymptotic

lower bound for the correct prediction rate. We offer simulations and applications of the

I-score on real data.

In Chapter 3, I propose a new approach to predicting civil war onsets that em-

phasizes variable selection. A good variable selection approach should search for vari-

ables based on a criterion of predictivity and find variable interactions. I suggest the

PR method to conduct variable selection and illustrate with simulations and an applica-

tion to civil wars data, comparing results with alternative approaches. The PR identifies

variable sets, some as large as 5 or 6 variables, to predict war onsets. Using these vari-

able sets to predict boosts correct prediction rates on out of sample data from 78.98% to

98.05%. The application demonstrates gains in prediction rates for political phenomena

like civil wars when including a research step for variable selection.

xiv



Chapter 1

Why significant variables aren’t

automatically good predictors

1.1 Abstract

Thus far, genome wide association studies (GWAS) have been disappointing in

the inability of investigators to use the results of identified, statistically significant vari-

ants in complex diseases to make predictions useful for personalized medicine. Why

aren’t significant variables leading to good prediction of outcomes? We point out that

this problem is prevalent in simple as well as complex data, in the sciences as well as the

social sciences. We offer a brief explanation and some statistical insights on why higher

significance cannot automatically imply stronger predictivity and illustrate through sim-

ulations and a real breast cancer example. We also demonstrate that highly predictive

variables do not necessarily appear as highly significant, thus evading the researcher

using significance-based methods. We point out that what makes variables good for

prediction versus significance depends on different properties of the underlying distri-

butions. If prediction is the goal, we must lay aside significance as the only selection

standard. We suggest that progress in prediction requires efforts towards a new research

agenda of searching for a novel criterion to retrieve highly predictive variables rather

than highly significant variables. We offer an alternative approach that was not designed

for significance, the Partition Retention method, that was very effective predicting on a

1
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long studied breast dancer data set, by reducing the classification error rate from 30% to

8%.

1.2 Introduction

An early 2013 Nature Genetics article “Predicting the influence of common vari-

ants.” 2013, “Predicting the influence of common variants”, identified prediction as an

important goal for current genome wide association studies (GWAS). However, a puz-

zle that has recently arisen in the GWAS related literature is that an increase in newly

identified variants (variables) does not necessarily seem to lead to improvements in cur-

rent predictive models. While intuitively it would seem that the addition of informa-

tion (more statistically significant variants) should increase predictive powers, in recent

models of prediction the power is not increased when adding more significant variants

to classical significance test-based approaches (Clayton 2009; Campos, Gianola, and

Allison 2010; Jakobsdottir et al. 2009; Janssens and Duijn 2008).1

A typical GWAS study collects data on a sample of subjects, cases, who have

a disease, and controls, who are disease free. A very large list of single-nucleotide

polymorphisms (SNPs) is evaluated for each individual where each SNP corresponds

to a given locus on the genome, and can take on the value 0, 1, or 2 depending on

how many copies of the “minor" allele show up. The SNPs are distributed over the

whole genome. Typically the researcher wants to select a subgroup of the SNPs that is

associated with the disease, so that she can study how the disease works. She may also

be interested in predicting whether a new individual has the disease by analyzing the

individual’s selected SNPs.

Whether or not an individual has the disease is regarded as the dependent vari-

able.2 The SNP values are the explanatory variables. In a typical study there may be

several thousand subjects and hundreds of thousands of SNPs. From the scientist’s point

of view there are two basic problems, complicated by the large size of the data set. These

are variable selection and prediction. For variable selection, we wish to find a relatively

small set of SNPs associated with the disease. For prediction we wish to find how a

1We refer to “statistically significant” variables throughout this paper as simply “significant”.
2Here we focus on discrete outcomes, as is common in GWAS studies that are case-control.



3

small set of such variables can be used to predict whether the subject has the disease.

The size of the data set is such that the typical approach to variable selection has been to

see how well correlated each SNP value is with the disease, and to keep only those for

which the statistical significance was very high. Only recently has there been serious

consideration of the possible interactions among two or more SNPs by some investiga-

tors. The prediction problem has typically been approached by using some variation of

linear regression based on the limited number of SNPs from the variable selection stage.

If predictivity is measured by how well the method works on the (training) data

used to derive the predictions, we are almost bound to get overoptimistic results. Meth-

ods of cross validation will result in more accurate estimates. Alternatively one may use

a separate test sample, independent of the data used to produce the prediction model.

Much of our discussion is also relevant to large data sets in other fields of study. Indeed,

this problem is not unique to genetic data; we find cases of similar problems in the so-

cial sciences. For instance, significant explanatory variables for civil wars serve nearly

negligible input for predicting civil wars (Ward, Greenhill, and Bakke 2010). Likewise,

variables found to be significant for fluctuations in the stock market index carry no pre-

dictive power (Welch and Goyal 2008). This phenomenon is pervasive across different

types of data as well as different sample sizes. Thus the goal of this paper is to of-

fer theoretical insight and illuminating examples to demonstrate precisely how finding

highly significant variables is different from finding highly predictive ones — regardless

of data type. For illustrative purposes however, we use the lens of prediction for genetic

data throughout.

One might ask why one method of variable selection that works perfectly well

for a significance-based research question might not work so well for a classification-

based research question. Fundamentally, the main difference is that what constitutes

a good variable for classification and what constitutes a good variable for significance

depend on different properties of the underlying distributions. To test for significance

is a test of the null hypothesis that the distributions of X under the two states are the

same, whereas the classification error is a test of whether X belongs to one state or the

other. Different properties of the distributions are involved. The tests used also may or

may not be efficient. In fact significance was not originally designed for the purposes of
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prediction.

Some might also comment that perhaps it is clear and intuitive why it is that

some significant variables do not appear as highly predictive. After all, variables may

be significantly associated with the outcome simply for a small group of individuals in

the population, thereby leading to poor prediction on the population. This is true to an

extent. However, there is still a fair amount of research using significant variables to

predict, perhaps because of a lack of obvious alternative options for variable selection.

For instance, currently, prediction oriented GWAS research uses genetic variants for

constructing additive prediction models for estimating disease risk. A recent New Eng-

land Journal of Medicine article illustrates one example of such an approach, whereby

researchers constructed a model based on five genetic variants from GWAS results on

prostate cancer; they report that the variants do not increase predictive power (Zheng

et al. 2008). Likewise, Gransbo et al. show that chromosome 9p21, while significantly

associated with cardiovascular disease, does not improve risk prediction (Gransbo et al.

2013).

In addition, while the intuition behind significant variables not appearing predic-

tive might be reasonably obvious, the fact that highly predictive variables do not appear

necessarily as highly significant is perhaps less so. We discuss and then demonstrate

this phenomenon with both a theoretical explanation and a series of examples. Finally,

while superficially we might reason that indeed, significance cannot be the same as pre-

dictivity, why this is precisely so and what makes for their differences is also not quite

so obvious.

With this in mind, we provide a short theoretical explanation for the differences

between highly significant and highly predictive variables. We then demonstrate, with a

series of artificial examples of increasing relevance, how and why seeking significance

and prediction can lead to very different decisions in variable selection. These examples

are artificial, partly because they assume that the underlying probabilities are known,

whereas the scientist can only infer these from the data. In these examples we com-

pare significance and prediction, and show how the relatively simple I-score, defined

in the Methods section, which we have used in our Partition Retention (PR) approach

to variable selection (Chernoff, Lo, and Zheng 2009; Lo and Zheng 2004; Zheng et al.
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2010; Zheng, Wang, and Lo 2006), seems to correlate well with predictivity. We offer

the I-score as one possible useful tool in the study of increasing predictivity. We show

a highly successful real application of the PR approach for increasing predictivity in the

analysis of a longstanding data set on breast cancer, for which we show some results.

Finally some conclusions are offered to aid in the study of improving predictivity in

GWAS research.

There is a long established literature in Statistics on Classification with major

applications to Biology. In recent years the fields of pattern recognition, machine learn-

ing and computer science became heavily involved, often with different terminology

and new ideas adapted to the increasing size of the relevant data sets. In the last section

(Methods), we present a very brief description of some of the techniques, approaches

and terminology.

1.3 Highly significant vs highly predictive variables

Data has substantially grown in recent years with both exponential increases in

the number of variables and, in many cases, increases in sample sizes as well. This

has served as stimulation for a large number of applications via the novel retooling of

well-known concepts. Two popular concepts, statistical significance and prediction (in-

cluding classification), serve as the focus of this article. Historically, significance has

played a larger role in statistical inference while prediction has served more in identi-

fying future data behavior. The retooling of significance has found a role in data di-

mension reduction for prediction, that of guiding the feature selection/variable selection

step (Guyon et al. 2003). We evaluate this retooling and consider how significance and

predictivity are related in the goal of good prediction.

We have mentioned that a key difference between what makes a variable highly

significant versus highly predictive lies in different properties of their underlying distri-

butions. We elaborate on this point a bit more here.

Suppose a statistician is given a variable set denoted by X . It is assumed that

among control observations X follows a distribution fH and among cases X follows

a distribution fD. The statistician wishes to test the null hypothesis H0 that fD = fH
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against the alternative hypothesis Ha that fD 6= fH , where fD is not specified, using

observed data and assess the statistical significance of the observed data with respect

to the null hypothesis. He also wishes to evaluate how strong a predictor based on this

variable set could be in predicting the case/control label of future data. Particularly, in a

case-control study, he is interested in whether case samples (from fD) are significantly

differently from control samples (from fH).

To carry out a test between H0 and Ha based on variable set x, the statistician

chooses a test statistic Tn and, based on the observed values x of X for the n cases and

n controls, calculates tn = Tn(x). Then one can claim that fH and fD are significantly

different if the probability P(Tn ≥ tn)|H0), which we call the p-value, is sufficiently

small.

To decide whether x, the observed value of X for a single individual, comes

from the distribution fD or from fH , when the costs of false positives and false nega-

tives are equal and both possibilities are equally likely, the appropriate Bayes decision

rule is to decide in favor of the larger of fD(x) and fH(x). Then the corresponding er-

ror rates are ∑x: fD(x)< fH(x) fD(x) and ∑x: fD(x)≥ fH(x) fH(x). The average of these two is

0.5∑x min( fD(x), fH(x)) which, together with 0.5∑x max( fD(x), fH(x)) add to 1.3 Thus

we may write:

prediction rate = 0.5∑
x

max( fD(x), fH(x)) (1.1)

Here x represents the possibly multivariate observation that can assume a finite

number of values; fD and fH are its probability distributions, under case and control

respectively. Equation (1) defined above requires the knowledge of the true probability

distributions, while, in practice, the statistician can only infer such knowledge from the

data.

The key difference between finding a subset of variables to be highly significant

versus finding it to be highly predictive is that the former uses assumptions on, but

no knowledge of, the exact distributions of the variables, while the latter, as shown in

Equation (1), requires knowledge of both fD and fH .

Should the statistician still wish to pursue the significance route to identify vari-

3We note that the prediction rate can be seen as equal to 1 minus the average error rate. For continuous
distributions, Equation 1 would be written with integrals rather than summations.
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ables that are highly predictive, he might wish to compare two subsets of explanatory

variables, x and x′, for their usefulness in the prediction problem. Here x′ has distribu-

tions f ′D and f ′H . It is a current practice to carry out the comparison by testing the null

hypotheses fH = fD and f ′H = f ′D and seeing which has a smaller p-value. Because of

his limited knowledge on the underlying distributions he is restricted to use tests that are

not necessarily powerful enough. Often he is reduced to using a chi-square technique,

recommended, for example, in the studies of complex diseases, which is not very pow-

erful for the multiple variable cases. The suboptimality of the test procedure makes the

significance level an unreliable basis for comparing subsets of variables and for the use-

fulness in prediction. It is no surprise that searching for variables based on significance

level and based on correct prediction rate can lead us in conflicting directions.

The statistician’s p-value for the test is a random variable and here we have as-

signed the significance value to be the median of the p-values, which we may calculate,

knowing the probability distributions. The statistician sees only the p-value. To make

his prediction using x, in the case of equal sample sizes and equal costs of error, he can

select for each observed value x, either D or H depending on whether there are more

cases or controls in his samples corresponding to x. A naive estimate of the correct pre-

diction rate, the training prediction rate, is obtained by simply using this method on the

observed samples. It tends to be overoptimistic. Many sampling properties, such as the

significance, the expected training prediction rate, and the median of the I-score, can

often be calculated conveniently by simulation.

Our next section uses artificial examples to illustrate how highly significant vari-

ables and highly predictive variables might differ.

1.4 Three examples

Although we are concerned with large data, our first few examples use only

a few observations to cleanly illustrate the issues. The three examples are followed by

comparisons, based on a set of 546 more relevant and related examples, each involving 6

SNP’s and many observations as summarized as Example 4. These examples will show

how and why significance and predictivity can differ and that the I-score can serve as a
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useful sign of predictivity. They also show that the problems we run into in prioritizing

significance instead of predictivity in our variable selection stage can grow with the

complexity of the data. The comparisons in the last example require many simulations

and are meant to demonstrate a complicated data scenario, more akin to a GWAS.

1.4.1 Example 1

For Example 1, there is a single observation X , the distribution of which is nor-

mal with mean 0 and standard deviation 1 under a hypothesis H, which can be thought of

as health. But there is an alternative hypothesis K, under which X has a normal distribu-

tion with mean 3 and standard deviation 3. We wish to use X to determine whether H or

K is the correct hypothesis. Our problem can be thought of as predicting or classifying

the state of an individual yielding the observation X . It is a standard problem of testing

the hypothesis H and we may regard large values of X as favoring K and suggesting

rejection of H.

Statistical theory tells us that the optimal test of H consists of rejecting H when

the likelihood-ratio is large. For any choice c of what constitutes large enough, we have

two error probabilities, e(c,H) and e(c,K) which are the probabilities of making the

wrong decision under H and K respectively. Notice that if c increases it becomes harder

to reject H and e(c,H) decreases while e(c,K) increases. It is possible to calculate the

value of c which minimizes the average of e(c,H) and e(c,K) and to call this minimal

value eX , the minimal average error probability associated with X .

For this problem a plausible, if slightly suboptimal, test is to reject H when X is

sufficiently large. For each possible value x of X , there is a probability a(x), under H,

that X will be as large as x or larger. Then a(X) is called the p-value when X is observed.

Before observing X , we know that X and the p-value are random variables. Under H,

a(X) is uniformly distributed between 0 and 1, but under K, a(X) will have a different

distribution. If X is very good at discriminating between H and K, a(X) should be very

small with large probability under K. We label the median value of a(X) under K as

the significance sX associated with X . In this case eX = 0.174 and sX = 0.0014. Note

that eX is an optimal error rate, but we calculated sX based on a suboptimal test, that a

researcher, not knowing the underlying probability distributions, could reasonably have
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decided to use. In that sense the significance was treated unfairly (see Figure 1.1). Note

also that predictivity, measured by 1− eX , is associated with a test of the hypothesis H

against the alternative K, and is related to the classification problem of deciding which of

several (in this case 2) situations applies. Thus prediction, classification, and hypothesis

testing are different names for the same problem.

Now suppose that there is another variable Y which is also normally distributed

with mean 0 and standard deviation 1 under H, but normally distributed with mean 0

and standard deviation 0.05 under K. Here we calculate eY = 0.06 and if we insist on

using the silly test of rejecting H when Y is large, we obtain sY = 0.5. (Surprisingly, in

this strange case a much better test would consist of rejecting H when the absolute value

of Y is too small). Forgetting for the moment how silly the test is, let us consider the

dilemma of the scientist who must decide, based on these numbers, whether to observe

X or Y . He prefers Y if he decides on the basis of error rate or predictivity and X if the

decision is based on significance. We refer to this situation where the preferred choice

between X and Y depends on the use of significance or predictivity as a reversal.

There are several explanations for the reversal. One is that there was some arbi-

trariness in our choices of measures of predictability and significance (measures eX and

sX ). Another is that even though the two choices are aimed at measuring the force of

inference, they depend on different properties of the probability distributions involved.

Another important point is that because we know the probability distributions in this ad-

mittedly artificial example, we used that knowledge to calculate the ideal average error

probabilities. On the other hand we did not use the optimal test procedure based on the

likelihood-ratio for calculating the significance. This may be important because for real

data sets we have to use the data to calculate significance levels and predictability. Our

estimates may depend as much on the limited capability of our methods of analysis as

on the unknown probabilities.

The following two examples, illustrated in Figure 1.2, are more relevant and

show the same sort of reversal under considerably more reasonable circumstances. They

are also more conventional examples of obtaining significance for the test of a null

hypothesis.
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1.4.2 Example 2

In Example 2 the outcome variable is case or control status. The explanatory

variable X is the reading on one SNP for each of 500 cases and 500 controls, for which

the probabilities under cases and controls are listed in the blue table. In this case the

minor allele frequency (MAF) is 0.5 and the odds-ratio is close to 1 for each of the three

possible observations 0, 1, and 2. For Y , based on the other SNP described in the red

table, the MAF is between 0.1 and 0.2 depending on what proportion of the population

is healthy. For Y , the odds ratio varies from 4 to 1. In this example we have eX = 0.476

(prediction rate = 0.524) and eY = 0.485 (prediction rate = 0.515). We calculate the

significance level using the standard chi-square test for the null hypothesis that the two

distributions for case and control are the same. This yields sX = 0.06 and sY = 0.0035.

Once more we have a reversal since the smaller average error rate is not accompanied

by the smaller median p-value. The Figure also lists the median I-score for both X and

Y , which favors X as does the prediction rate.

1.4.3 Example 3

Example 3 is also presented in Figure 1.2. Here the variable X in the blue table

consists of the outcome of two SNPs (two-way interaction effect). This outcome can fall

in one of the 9 = 32 cells (0,0),(0,1), ...(2,2). Again there is a reversal and the median

I-score favors X as opposed to Y (in the red table) as does the prediction rate. While

the prediction rates are comparable, the median p-values are wildly different. Note in

both plots of distributions of the predictive variable sets (predictive VS) and significant

variable sets (significant VS) in Examples 1 and 2, there is overlapping between variable

sets but large portions of predictive variable sets are not significant and vice versa. In

addition, in both examples the I-score follows the preferred prediction rate and not the

significance (median p-values).
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1.5 Comparing significance tests with the I-score

Before drawing conclusions from the 3 examples, we present a more complex

data simulation for Example 4, which consists of a comparison of 546 related more

relevant cases with large numbers of subjects.

In these cases we deal with 6 independent but similar SNPs (encapsulating

six-way interaction effects), and the observation for a given subject falls into one of

36 = 729 = cells. The 546 levels of disease are controlled by 26 minor allele frequen-

cies (MAF) and 21 odds ratios (OR). The results in Figure 3 present Truth, Training

Prediction Rate and Significance. Truth is the ideal prediction rate given the MAF and

OR. The training prediction rate is the overoptimistic rate based on deciding according

to the observed number of cases and controls in each of the 729 cells. The significance

level depends on the use of the chi-square test. The latter two are medians of measures

based on observed data and their calculation requires extensive simulations. The graphs

show how poorly these correlate with Truth until the number of subjects becomes very

large. While the I-score and its median are also based on the data, Figure 4 shows that

it is very well correlated with the Truth for modest sample sizes; at large sample sizes I

is still better correlated with Truth than are the Training Prediction Rate and Chi-square

test.

1.6 Applying the I-score to real breast cancer data

To reinforce the previous section we turn to a brief examination of real disease

data. As noted before, our research team has made heavy use of the I measure in a

variable selection method called Partition Retention. This method, applied to real dis-

ease data, has not only been quite successful in finding possibly interacting influential

variable sets but has also resulted in variable sets that are very predictive and do not

necessarily show up as significant through traditional significance testing (Chernoff, Lo,

and Zheng 2009; Wang et al. 2012; Lo et al. 2008). Here “predictive” refers to both

high in I-score as well as having high correct prediction rates as determined by k-fold

cross-validation. We present examples of some discovered variable sets found to be

highly predictive for a real data set on breast cancer (Veer et al. 2002) that are not highly
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significant. When utilizing these newly found variable sets, the team was able to reduce

the error rate on prediction from the literature standard of 30% to 8%. These results are

found from the analysis and data used in (Wang et al. 2012).

In Table 1.9 we investigate the top 5-variable module (subset of interacting vari-

ables) in the breast cancer data found to be predictive through both top I-score and per-

formance in prediction in cross-validation and an independent testing set in (Wang et al.

2012). To find how significant these variables are, we calculate the individual, marginal

association of each variable in the marginal p-value. When testing 1,000 variables hav-

ing no effect, it is likely that some will have p-values of around 0.001. Here, we have

4,918 variables and therefore desire a p-value of 7 ∗ 10−5, the family-wise threshold,

to announce significance. None of these variables show up as statistically significant.

Measuring the joint influence of all 5 variables does not have a p-value that is significant

either.

1.7 Comments and Conclusion

In our exposition of the differences between highly predictive versus highly sig-

nificant variable sets, we use artificial examples. We need to know the true relevant

underlying probability distributions in order to treat the problem as one of testing a

simple hypothesis against a known alternative for which statistical theory can calculate

optimal tests and predictive rates. Our four simulated examples can demonstrate with

clarity the reversals we see in choosing significant versus predictive variable sets. Real

examples are more difficult because the researcher must rely on a limited number of in-

dividuals to infer the relevant distributions and the number of possible variables is huge.

However, in order to demonstrate the potential usefulness of our proposed measure, we

additionally provided the highly promising results of applying the I-score to the real and

well-known van’t Veer breast cancer data set.

One may wonder whether the shortcoming of using significance is due to the

custom of using marginal significance and not taking into account the possible inter-

action effects of groups of variables. In our examples the problem of reversals seems

to increase when using significance-based measures on routine tests when dealing with
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groups of interacting variables. In Example 4, six-way interactions are considered and

traditional significance approaches do not capture predictive variable sets. However, us-

ing the PR approach based on the measure I for the variable selection stage does well

for prediction. Finally, even when we can capture joint effects that are highly predictive,

as in the case of the captured variable sets in the van’t Veer example, these groups of

variables were not significant. Seeking highly predictive groups of variables through

significance alone would not have retrieved these variable sets.

If that is the case how did we manage to get good results in the breast cancer

problem? We used the PR approach, relying heavily on the I-score for the variable

selection aspect. For reasons we only partly understand the I-score seems to correlate

well with predictivity. Having selected the relatively small number of candidate “influ-

ential" variables, an intensive use of a variety of known techniques in classification were

applied. These were more sophisticated than simple linear regressions.

The issue of obtaining high predictivity from large data demands study. We

encourage exploration away from significance-based methodologies and towards pre-

diction oriented ones. We propose the I-score and the PR method of variable selection

as candidate tools for the latter.
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1.9 Tables and Figures
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Figure 1.1: Simple Example of Reversals. The variable on the left (X) would be
favored under a significance criterion but the variable on the right (Y ) is favored under a
predictivity criterion.
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Figure 1.2: Reversals of Predictive and Significant variable sets in SNP examples.
Example 2 has one explanatory variable (1 SNP) for which the probabilities under cases
and controls are listed in the tables. Example 3 has two explanatory variables (2 SNPs)
for which the probabilities under cases and controls are listed in the tables. Left hand
side tables (in blue) are for more predictive variable sets, while right hand side tables
(in red) are for more significant variable sets. The prediction rate (proportion of correct
predictions) of each variable set (of size 1 or 2) can be directly computed using the
genotype frequencies specified. Using sample sizes of 500 cases and 500 controls, we
simulate B = 1000 random case-control data sets by simulating genotype counts among
cases and controls using the genotype frequencies specified. I score and the Chi-square
test statistic were computed for each simulated data set. Simulation details can be found
in the Supplementary materials.
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ing to a genotype combination on the six SNPs represented by this variable set. Three
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simulations under each variable sets — given a sample size specification — were used
to evaluate the average training prediction error, p-value from the chi-square test, and
the I score prediction rate. Simulation details can be found in the Supplement.
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Table 1.1: Real breast cancer example: top returned predictive variable set from
van’t Veer data.

Systematic name Gene name Marginal p-value
1 Contig45347_RC KIAA1683 0.008
2 NM_005145 GNG7 0.54
3 Z34893 ICAP-1A 0.15
4 NM_006121 KRT1 0.9
5 NM_004701 CCNB2 0.003

Joint I-score: 2.89;
Joint p-value: 0.005;

Family-wise threshold: 6.98x10−5



Chapter 2

Making good prediction: a theoretical

framework

2.1 Abstract

We propose approaching prediction from a framework grounded in the theoreti-

cal correct prediction rate of a variable set and define a novel measure of predictivity. It

enables us to find variable sets that are highly predictive. While intuitively obvious, not

nearly enough attention has been paid to the creation of such a framework. Motivated

by the needs of current genome-wide association studies (GWAS), we provide such a

discussion. We first describe the correct prediction rate for a variable set. We then con-

sider and ultimately reject an estimator that approximates the correct prediction rate of

a variable set using sample data due to the estimator’s inability to distinguish between

noisy and predictive variables which directly leads to an inability to estimate without in-

flated bias. In response, we offer an alternative parameter that describes the predictivity

of a variable set — a lower bound to the correct prediction rate. We demonstrate that

the Partition Retention method’s I-score can be used to compute a measure that asymp-

totically approaches this lower bound. The I-score can effectively differentiate between

noisy and predictive variables as well, making it helpful in variable selection. We offer

simulations and an application of the I-score on real data to demonstrate the statistic’s

predictive performance on sample data. These show that the I-score can capture highly

19
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predictive variable sets, estimates a lower bound for the theoretical correct prediction

rate and correlates well with the out of sample correct rate. We conjecture that using the

Partition Retention and I-score can aid in finding variable sets with promising prediction

rates, however, further research in the avenue of sample-based measures of predictivity

is much desired.

2.2 Introduction

Prediction is a highly important goal for many scientists and has become increas-

ingly difficult as the quantity and complexity of available data has grown. Complex and

high dimensional data particularly demand attention. However, prediction does not have

a clear theoretical framework that allows for characterizing a variable’s predictivity di-

rectly. Rather, variable selection (or VS as it is referred to throughout this paper) for

variable sets cthat have high predictivity is currently conducted in two common ways.

The first is VS through identification of variables correlated with the outcome, mea-

sured through tests of statistical significance — such as the chi-square test. The second

is through VS of variables that appear to do well in an independent set of test data, as

measured through testing sample error rates. The first approach is still very much in use

for predicting health outcomes (see Gransbo et al. 2013 among others) but its predic-

tion performance has been disappointing. A recent New England Journal of Medicine

article illustrates one example of such an approach, whereby researchers constructed

a model based on five statistically significant genetic variants from genome-wide as-

sociation studies (GWAS) results on prostate cancer; they report that the variants do

not increase predictive power Zheng et al. (2008). Likewise, Gränsbo et al. show that

chromosome 9p21, while significantly associated with cardiovascular disease, does not

improve risk prediction Gransbo et al. (2013). Using variants discovered to have statis-

tically significant associations with the disease outcome to build predictive models does

not seem to imply an automatic increase in the ability to predict.

We point out in Lo et al. (2015) that this first approach suffers from the prob-

lem that significant variables are not necessarily predictive and vice versa, so targeting

significant variables might miss the goal of VS for higher predictivity. Indeed, this prob-
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lem is prevalent in simple as well as complex data. The second way for VS sets aside

testing (or validation) data to determine how well selected predictors might do on "new

data". However, as is in the case of GWAS data, researchers often lack large enough

sample sizes for this approach to be efficient. Reuse of training data in the form of

cross-validation is often adopted in practice.

An alternative, and perhaps logical, approach to VS should start with under-

standing the theory behind prediction, such as defining theoretical prediction rates of

variables as a parameter of interest. It would be productive then to create measures

designed to directly measure such a parameter, rather than relying on the estimated

prediction rate by cross-validation. We hope that such a logically driven approach —

designing measures that directly estimate a variable set’s true ability to predict — may

prove to be both fruitful and efficient in the use of sample data for guiding VS.

In this paper, we propose such a prediction-based framework. Grounded in sta-

tistical theory, we highlight a new avenue of research towards creating sensible measures

that target highly predictive variable sets.1 We emphasize genetic data, though we will

show that the methods proposed can be easily tailored to other high-dimensional data in

the natural and social sciences. Our paper proceeds as follows. The first section con-

siders the related literature of variable (or feature) selection in machine learning. While

the literature is rich in techniques designed to evaluate prediction, most techniques are

through independent test data or cross-validation. These require setting aside some part

of valuable sample data (either from the training data or testing data) for the purpose

of validation. We emphasize the need for a theoretically motivated measure of predic-

tivity. The second section introduces the set-up for considering maximally predictive

variable sets in a non-sample constrained, theoretical world. We first introduce variable

set’s correct prediction rate, θc, and consider a measure that would attempt to directly

estimate this parameter using sample data. This measure is rejected for its lack of prac-

tical use. We propose an alternative measure, the I-score, and demonstrate that the I of

a given variable set asymptotically approaches a parameter, θI , which is closely related

to the correct prediction rate of the same variable set. The third section demonstrates

the effectiveness of the I-score as a measure of predictivity in simulations and real data

1We refer mostly to variable sets here, which include, of course, individual variables as variable sets
of size one.
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applications. Finally, we offer some concluding remarks.

2.3 Variable selection literature

Variable Selection (VS) or Feature Selection refers to the practice of selecting a

subset of an original group of variables that is later used to construct a model. Often VS

is used on data of large dimensionality with modest sample sizes Saeys et al. (2007).

In the context of high dimensional data, such as GWAS, with potentially a large num-

ber of redundant or irrelevant variables, this dimensionality reduction can be a crucial

step. Unlike projection or compression based approaches (such as principal compo-

nent analysis or usage of information theory), VS methods do not change the variables

themselves.

The types of approaches and tools developed for feature selection are both di-

verse and varying in degrees of complexity. However, there is general agreement that

three broad categories of feature selection methods exist: filter, wrapper and embedded

methods. Filter approaches tend to select variables through ranking them by various

measures (correlation coefficients, entropy, information gains, chi-square, etc.). Wrap-

per methods use “black box” learning machines to ascertain the predictivity of groups of

variables; since wrapper methods often involve retraining prediction models for different

variable sets considered, they can be computationally intensive. Embedded techniques

search for optimal sets of variables via a built-in classifier construction. A popular ex-

ample of an embedded approach is the least absolute shrinkage and selection operator

(LASSO) method for constructing a linear model, which penalizes the regression coeffi-

cients, shrinking many to zero. Often cross-validation is used to evaluate the prediction

rates.

We are unaware of a measure that directly attempts to evaluate a variable set’s

theoretical level of predictivity, however. For a more comprehensive survey of the fea-

ture selection literature see, among others Guyon et al. (2003), Saeys et al. (2007), Hua

et al. (2009), and Bolon-Canedo et al. (2013).

Although a spectrum of variable selection approaches exists, many scientists

have taken the approach of tackling prediction through the usage of important and hard-
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to-discover influential variables found to be statistically significant in previous studies.

When these efforts are in the context of high dimensional data and alongside work inves-

tigating variables known to be influential, it might seem reasonable to hope that variables

found to be significant can prove useful for predictive purposes as well. This approach

is in some ways most similar to a univariate filter method, as it is independent of the

classifier and has no cross-validation or prediction step for VS. We show in our related

work Lo et al. (2015) how and why the popular filter approach of variable selection

through statistical significance does not serve the purpose of prediction well. For an

intuitive illustration of the relationship between predictive and significant sets of vari-

ables, see Figure 2.1. Under the context of a significance-test based search for variable

sets, the set of variables found to be significant expands as the sample-size grows (see

widening orange dotted ovals). However, the set of predictive variables (blue circle) are

not susceptible to sample-size changes in the same way — as predictivity is a popula-

tion parameter — and overlaps with, but not is not perfectly aligned with, significant

sets. It is easy to see that in this scenario, targeting significant sets may miss the goal

of prediction entirely. Instead, we suggest that emphasis must be placed on designing

measures that directly evaluate variable sets’ predictivity.

Many methods also use out of sample testing error rates or cross-validation (CV)

to ascertain whether prediction is done well. This approach was not designed to specifi-

cally find a theoretic correct prediction rate for a given variable set; rather, this is simply

a performance evaluation of future predictions from a pattern recognition technique on

selected variable sets (trained on training data).Sometimes the variable sets in the train-

ing data are selected through statistics such as the adjusted R squared, Akaike informa-

tion criterion (AIC) or Bayesian information criterion (BIC). When p� n (or even in

instances where p > n), a standard in big data, however, these statistics can fail to be

useful.2 Using out of sampling testing and/or cross-validation techniques additionally

requires setting aside valuable sample data to make sure the variable sets selected under

the training set are indeed highly predictive and are not just overfitting the data. It be-

2“Unfortunately, the Cp, AIC, and BIC approaches are not appropriate in the high-dimensional setting,
because estimating σ̂2 [variance] is problematic. (...) Similarly, problems arise in the application of the
adjusted R2 in the high-dimensional setting, since one can easily obtain a model with an adjusted R2 value
of 1.” James et al. 2013.
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comes important then that we have a good screening mechanism when conducting VS

for removing noisy variables (and thus finding influential ones), even with constrained

amounts of sample data. We show in our simulations how poorly we can do in VS

for prediction through training set compared to out of sample testing prediction rates

(with “infinite” future testing data – a mostly unattainable, but ideal, scenario). An ideal

measure for predictivity would guide our VS stage through screening out noisy vari-

ables and should correlate well with the out of sample correct prediction rate. We will

demonstrate a potential candidate measure, the I-score, for evaluating the predictivity of

a given variable set.

2.4 Toy example

To highlight some of our key issues, we consider a small artificial example.

Suppose that an observed variable Y is defined as:

Y =

{
X1 +X2 (modulo 2) with probability 1/2,

X2 +X3 +X4 (modulo 2) with probability 1/2,
(2.1)

where X1,X2,X3 and X4 are four of 50 observed and potentially influential variables

{Xi;1≤ i≤ 50}. Each Xi can take on the values 0 and 1. A collection of several discrete

variables S may be regarded as a discrete variable that takes on a finite number of values.

Each value defined by S constitutes a cell. The collection of all cells forms a partition,

ΠS, based on the discrete variables in S. We also assume that the Xi were selected

independently to be 1 with probability 0.5, again the simplest case without affecting the

general results. Clearly, none of the individual Xi have a marginal effect on Y .

Scenario I: A statistician knows the model and wishes to compute which vari-

ables or variable sets are predictive of Y , and how predictive, when X = (X1,X2, ...,X50)

is a given. Because Y depends only on the first four X variables, it is obvious there are

two clusters of variable sets S1 = {X1,X2} and S2 = {X2,X3,X4} that are potentially use-

ful in his prediction. In this paper, we treat the highest correct prediction rate possible

for a given variable set as an important parameter and call this predictivity (θc). Using

the knowledge of the model, we can compute the predictivity for S1 as θc(S1) = 0.75.
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The predictivity for S2 is also θc(S1) = 0.75. Incidentally, the predictivity of the union

of S1 and S2, θc(S1∪S2), is also 0.75.

The statistician realizes that using variable sets S1 and S2, he can predict Y cor-

rectly 75% of the time. This is indeed the case because, for instance, upon observing

X = (X1, ...,X50) the statistician predicts:

Ŷ = X1 +X2 (modulo 2).

It is easy to verify that the strategy of predicting with S1 returns a 75% prediction ac-

curacy in expectation. This is also the highest percent accuracy S1 can theoretically

achieve. We discuss this in depth shortly. This result extends to S2 as well.

Scenario II: In practice, the statistician rarely has knowledge of the model and

instead observes only the data. In this paper, we suggest that the statistician use the

Partition Retention (PR) approach and its corresponding I-score to identify the influen-

tial variable sets. Suppose he observes 400 observations and wishes to identify variable

sets with high predictivity and to infer their abilities to predict after being identified.

Using the PR approach he can use the I-score to screen for variable sets with high po-

tential predictivity. In this example, S1 and S2 are consistently returned with the highest

I-scores of 23.71 and 12.79 in simulations. Using the inequality in Equation (2.10),

which we derive in the following section, the lower bounds for the predictivity of θc(S1)

and θc(S2) are calculated to be 67% and 62% respectively. Equation (2.10) does not

require knowledge of the true model as defined in Equation (2.1).

2.5 Theoretical prediction rates

If the goal is to find highly predictive variable sets for a given outcome, a nat-

ural approach is to find methods that can evaluate the predictivity of different variable

sets and compare them against one another in order to find variable sets with higher

predictivity. We show in this paper that the Partition Retention (PR) method’s I-score

searches for variable sets that are highly predictive in high dimensional and sample-size

constrained data like GWAS. It is thus a prime candidate for a method that tackles the

big data prediction goal. This paper contributes to the prediction literature by introduc-
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ing the theoretical prediction rate as a parameter to be directly estimated. We show that

the I-score is a sample-based statistic that can be used to construct an asymptotically

consistent lower bound for the theoretical prediction rate.

The set-up

To target variable sets with high predictivity, we must design measures that ac-

curately reflect prediction rates for different variable sets. Consider GWAS data of the

usual type, with cases and controls.3 Assume that there are nd cases and nu controls.4

Using the traditional Bayesian binary classification setting, we ideally have a

prior probability, π(w = d) , that the state of the next individual, w, is a disease case, d,

and π(w = u) = 1−π(w = d) that the next individual is a control, u. In the following

we shall assume that both d and u are equally likely and that the cost of an incorrect

classification is the same for both possibilities.5

If we are lucky, when assessing the predictivity of a variable set, we know the

joint distribution of the disease status and the feature value X = x, denoted as P(x,w),

either through knowledge or through estimation via a reliable source. The joint distri-

bution can be expressed as: P(w,x) = π(w|x) ·P(x) = P(x|w) ·P(w), where π(w|x) is

the posterior distribution and π(w) is the prior. It is easy to see that the best classifica-

tion rule can be derived by Bayes’ decision rule for minimizing the posterior probability

of error: d if π(d|x) > π(u|x), otherwise u. Here the variable set X = (X1,X2, ...,Xm),

with each Xi taking one of the values in {0,1,2}, corresponding to the 3 possible geno-

types for each single-nucleotide polymorphism (SNP). In this way, X forms a parti-

tion, denoted by ΠX , with 3m = m1 elements: ΠX = {X = x j, j = 1, . . . ,m1 : x j =

(x j1,x j2, . . . ,x jm), x jk ∈ {0,1,2}, 1≤ k ≤ m}.
A problem that emerges when dealing with case-control data like GWAS is that

prior information on observing the next person as a disease case is unavailable or un-

known and cannot be easily estimated from empirical data. Priors are defined by cir-

3The pooled sample of cases and controls serves as the training set.
4We consider prediction of a binary variable (or classification) here. Our framework can be extended

for prediction of a continuous variable. In this case, the I-score still plays a role in measuring predictivity
though we leave this for beyond the scope of this paper.

5We generalize to different cost functions and priors for d and u in the SI.
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cumstances and contexts within which the case-control data are sampled — each dataset

requires its own unique and unknown prior at that point in time.

To surmount this, we focus first on the classification problem based on the class-

conditional probability: P(x|w = d) versus P(x|w = u). This is equivalent, implicitly, to

the full Bayes’ decision rule when an equal prior is adopted, π(d) = π(u) = 1/2. General

cases for arbitrary priors and unbalanced loss functions are discussed later.

Let x be a discrete random vector defined on the space ΠX, with density de-

noted by pX(x). Suppose nd cases and nu controls are independently selected from two

discrete probabilities: pXd(x) and pXu(x), equivalent to P(x|w = d) and P(x|w = u)

respectively. Note that {Xd,Xu} always arrive as a pair when the m SNPs are fixed

(fixing Πx); that is, Xd and Xu are defined on the common partition space, ΠX. If the

newly arrived subject has a 50% chance to be either case or control, the expected error

of adopting the above Bayes’ decision rule (under a 0/1 loss) is:

θe[pXd , pXu ] =
1
2 ∑

x∈Πx

min{pXd(x), pXu(x)}.

The correct prediction rate θc on X becomes:

θc(X) = θc[pXd , pXu] = 1−θe[pXd , pXu] =
1
2 ∑

x∈Πx

max{pXd(x), pXu(x)}

where θe is the error rate. For simplicity of presentation, we can represent the above as:

θc =
1
2 ∑

j∈Πx

max{P( j|d), P( j|u)} (2.2)

where j is short for x j, a cell in the partition ΠX formed by the variables X.

Finding variable sets with better predictivity

It is clear that one can achieve a better prediction rate by seeking the probability

pair {pXd , pXu} that minimizes the expected predictive error θe[pXd , pXu], or equiva-

lently, maximizes the predictive rate θc[pXd , pXu]. Equivalently:
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1
2
{θc[pXd , pXu]−θe[pXd , pXu]}= θc[pXd , pXu]−

1
2
=

1
4 ∑

j∈ΠX

|P( j|d)−P( j|u)|. (2.3)

Therefore,

θc[pXd , pXu ] =
1
2
+

1
4 ∑

j∈ΠX

|P( j|d)−P( j|u)|. (2.4)

This suggests that we can achieve better prediction rates by choosing variable

sets corresponding to the probability pairs that lead to very large values of ∑ j∈ΠX|P( j|d)
−P( j|u)|. We can consider the goal of prediction as simply trying to find variable sets

X that make θc as large as possible. In this theoretical setting, it is easy to show that θc

increases or stays the same when another variable is added to the current variable set.

This means adding many noisy variables leads to maintaining the same θc. Therefore,

when sample size is no constraint, we are never hurt in our search for highly predictive

variables by simply adding explanatory variables to our current set. However, in the

realistic world of sample size constraints, a direct search for a variable set with a larger

sample estimate of θc will fail; we give a heuristic explanation as to why in the following

section. We refer to this direct search of θc with sample data as the sample analog

throughout.

Problems with the sample analog

First, as noted earlier, θc is always nondecreasing when more variables are added

to the current variable set. Therefore, in principle, a group of predictive variables is

difficult to identify as we would not be able to differentiate between adjoining a noisy

or a predictive variable to a given variable set. Second, in reality, the actual θc are

unknown and must be estimated. We may naturally turn to the sample estimate of its true

theoretical values. Again, due to the similar problem with θc, the estimated values of θc

(where the cell probabilities are replaced by the observed proportions) is nondecreasing

with the addition of more variables to a given variable set under evaluation. To make

this point clearly, we assume all variables X j can take only two values, 0 or 1.
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Suppose Xm = {X1, ..., Xm} and Xm+1 = {X1, ..., Xm, Xm+1}. The partition from

Xm is ΠXm = {A1, ...,Am1}, while the partition formed by Xm+1 is ΠXm+1 = {A1 ∩
B, ..., Am1 ∩B, A1∩Bc, ..., Am1 ∩Bc} = {ΠXm ∩B,ΠXm ∩Bc} where B = {Xm+1 = 1}.
Let Π1

Xm
= ΠXm ∩{Xm+1 = 1} and Π0

Xm
= ΠXm ∩{Xm+1 = 0}, where Π1

Xm
and Π0

Xm

form two subpartitions of ΠXm+1 , i.e. , ΠXm+1 = Π0
Xm
∪Π1

Xm
. Then

|p̂ΠXm
(d)− p̂ΠXm

(u)| ≤ |p̂
Π0

Xm
(d)− p̂

Π0
Xm
(u)|+ |p̂

Π1
Xm
(d)− p̂

Π1
Xm
(u)|,

where p̂(·) is the sample estimator. It is thus easy to see that the sample analog inher-

ently favors an increase in number of partition cells (or in other words, favoring more

variables).

As the partition becomes increasingly finer, there reaches a point where there is

at maximum a single observation within each partition cell and 100% correct sample

prediction rate is attained. This is true regardless of the true prediction rate. As a

result, the final estimated prediction rate is equivalent to 100%, rendering it useless

as a method for searching for highly predictive variable sets and screening out noisy

variable sets. This is a direct result of a sparsity problem that does not occur in our

theoretical world but certainly plagues the sample-size constrained real world. In the

latter setting, the sample analog of θc favors ever-increasing the variable set with both

truly influential as well as noisy and un-influential variables. We continue accepting

both types of variables until our partition experiences complete sparsity. What is needed

is a sample-based measure that can discern adding noisy versus influential variables and

identify the variable set(s) with large prediction rates under a given sample size.

Alternative measure: I-score

We consider this obstacle and suggest the I-score of the PR method (first pre-

sented in Chernoff, Lo, and Zheng 2009) as a possible statistic in lieu of the sample

analog of the correct prediction rate. We suggest an alternative measure, a lower bound

to θc, for which we can use the I statistic to estimate in sample data. We can show that
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the I-score converges asymptotically to a constant multiple of:

θI(ΠX) = ∑
j∈ΠX

(P( j|d)−P( j|u))2.

To understand how the above constant relates the I-score to θc defined in Equation (2.4),

we first examine the following Lemma 1, which is derived in the SI with the other proofs.

Lemma 1. For K real values {z j;1≤ i≤ K}, ∑
K
j=1 z j = a and ∑

K
j=1|z j|= b, we have

K

∑
j=1

z2
j ≤

a2 +b2

2
. (2.5)

In the case of z j = (P( j|d)−P( j|u) for j ∈ ΠX, we have a = 0. It then follows

that √√√√2
k

∑
i=1

(P( j|d)−P( j|u))2 ≤
k

∑
i=1
|P( j|d)−P( j|u)|.

This suggests a strategy that seeks variable sets with a larger value of θI can have the

parallel effect of encouraging selection of variable sets with larger values of θc, yielding

better predictors. In addition, the I-score, the measure for which we suggest for this

alternative setup, can also discern noisy variables from influential ones (for theoretical

work supporting this important characteristic of the I-score, see Chernoff, Lo, and Zheng

2009).

2.6 The I-score

We can show that, as sample sizes increase, identifying a cluster of variables

with a larger influential score, or I-score, can simultaneously yield a cluster with high

predictivity.

The Influential score (I-score) is a statistic derived from the Partition Retention

(PR) method. Several forms and variations were associated with the PR method before

it was finally coined with this name in 2009 by Chernoff et al. We introduce the PR

method and the I-score briefly here.6

6We use GWAS data to motivate our presentation of the I-score and PR method, but the approach
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Consider a set of n observations of a disease phenotype Y (dichotomous or con-

tinuous) and a large number S of SNPs, X1,X2, ...,XS. Randomly select a small group,

m, of the SNPs. Following the same notation as in previous sections, we call this small

group X = {Xk,k = 1, ...,m}. Recall that Xk takes values 0, 1, and 2 (corresponding to 3

genotypes for a SNP locus: AA, A/B and B/B). There are then m1 = 3m possible values

for X’s. The n observations are partitioned into m1 cells according to the values of the m

SNPs (Xk’s in X), with n j observations in the jth cell. We refer to this partition as ΠX.

The proposed I-score (denoted by IΠX) is designed to place greater weight on cells that

hold more observations:

IΠX =
m1

∑
j=1

n j

n
·
(Ȳj− Ȳ )2

s2
n/n j

=
∑

m1
j=1 n2

j(Ȳj− Ȳ )2

∑
n
i=1(Yi− Ȳ )2 (2.6)

where s2
n =

1
n ∑

n
i=1(Yi− Ȳ )2.

We present Theorem 1 and Corollary 1:

Theorem 1. Under the assumptions that nd
n → λ , a value strictly between 0 and 1, and

an equal prior π(d) = π(u) = 1/2, then:

lim
n→∞

s2
nIΠX

n
P
= λ

2(1−λ )2
∑

j∈ΠX

[P( j|d)−P( j|u)]2 (2.7)

where P
= indicates that the left hand side converges in probability to the right hand side.

We show in the following θI = θI(ΠX) = ∑ j∈ΠX(P( j|d)−P( j|u))2 is a param-

eter relevant to θc(X). Together with Lemma 1, we can use the I-score to derive a

useful asymptotic lower bound to the correct prediction rate of a variable set X, θc(X),

as presented in the following Corollary 1.

Corollary 1. Under the assumptions in Theorem 1, the following is an asymptotic lower

bound for the correct predictive rate:

θc(X)
P
≥ 1

2
+

1
4

√
2 lim

n→∞

IΠX

nλ (1−λ )
. (2.8)

applies to any discrete data.
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Proof. From Equation (2.4),

θc(X) =
1
2
+

1
4 ∑

j∈ΠX

|P( j|d)−P( j|u)|

(Lemma 1) ≥ 1
2
+

1
4

√
2 ∑

j∈ΠX

(P( j|d)−P( j|u))2

=
1
2
+

1
4

√
2θI(ΠX)

(Theorem 1) P
=

1
2
+

1
4

√
2 lim

n→∞

s2
nIΠX

nλ 2(1−λ )2

P
=

1
2
+

1
4

√
2 lim

n→∞

IΠX

nλ (1−λ )
. (2.9)

Using sample data, the estimated lower bound for θc is then:

1
2
+

1
4

√
2IΠX

nλ (1−λ )
. (2.10)

The lower bounds presented in the toy example were obtained using the above Equation

(2.10). We also extend to an arbitrary prior in Corollary 2.

Corollary 2. Under the assumptions of an arbitrary prior π(d) and nd
n → λ as n→ ∞,

the correct prediction rate is:

θ
∗
c [pXd , pXu] =

1
2
+

1
2 ∑

j∈ΠX

∣∣P( j|d)π(d)−P( j|u)π(u)
∣∣ (2.11)

The last generalization of the proposed framework involves the possibility of

incurring different costs (or losses) when making incorrect predictions. We leave this to

the SI for the interested reader.

Note that searching for X with larger I-scores is asymptotically equivalent to

searching for larger values of the lower bound in Equation (2.8) which is closely related

to the correct predictivity of a given variable set X, θc(X). For example, if a variable set

X has a large value of I-score (substantially larger then 1, see Chernoff, Lo, and Zheng
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2009), it is a strong indication that X itself could be a variable set with high predictivity.

This stands in contrast to many current approaches to prediction (e.g. Random Forest,

LASSO) that are evaluated for predictivity via cross-validation.

Desirable properties of the I-score

We note that the I-score is one possible approach to approximating the prediction

rate in the sample analog form, and that the search for other potential scores is desirable

and needed. Nevertheless, several properties of I are particularly appealing.

First, I requires no specification of a model for the joint effect of {X1,X2, ..., Xm}
on Y . It is designed to capture the discrepancy between the conditional means of Y

on {X1,X2, ..., Xm} and the mean of Y . Second, when a variable independent of the

dependent variable is added to a group of variables which may have an influence (adding

a noisy variable to an influential variable set), the I-score tends to decrease. In other

words, I can screen out noisy variables. The Pearson chi-square statistic does not have

this property; rather, it tends to increase, leading to a tendency to adjoin useless variables

to those considered. As demonstrated earlier, the sample analog of θc also suffers from

this problem.

Third, as mentioned earlier, the I-score does not monotonically increase with the

addition of any and all variables as would the sample analog form of θc. Rather, given

a variable set of size m with m− 1 truly influential variables, the I-score is typically

higher under the influential m−1 variables than under all m variables. If m−1 variables

are influential in the sense that any smaller subset of variables is less influential, then

removal of a variable to size m−2 will decrease the I-score in expectation. This natural

tendency of the I-score to “peak” at variable set(s) that lead to high predictivity in the

face of noisy variables under the current sample size is crucial.

Most importantly, we showed that the I-score can help find variables with high

θc by identifying variables that have high values of θI (recall θI = ∑ j∈ΠX(P( j|d)−
P( j|u))2), which is related to the lower bound of θc. An important step to finding these

highly predictive variable sets and discarding noisy ones through finding high I-scores

is using the Backwards Dropping Algorithm (BDA) developed in Chernoff et al. (2009).

The algorithm requires drawing many starting sets of variables and recursively dropping
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random variables and calculating I-scores. For more information, see Chernoff et al.

(2009) or the SI.

2.7 Using the I-score in sample-constrained settings

We have shown that the I-score asymptotically approaches a constant multiple

of θI (which is related to a lower bound of θc) and has several desirable properties.

We take this opportunity to explore and illustrate to the reader an application of the I-

score measuring predictivity with sample data. To provide additional evidence of the

I-score’s ability to measure true predictivity, we consider a set of simulations for which

we know the “true” levels of predictivity for all variable sets. We also provide a real

data application on breast cancer for which the I-score approach has done very well in

predicting.

We take a moment to comment that evaluating a variable (or variable set) for

predictivity, which is the variable selection (VS) stage, is different from evaluating a

given classifier, which is the prediction stage. The latter considers evaluating the predic-

tivity of f (x), a function f (·) applied to a particular set of explanatory variables x, for a

given outcome variable y, while the former considers the potential predictivity of the set

of explanatory variables x for that outcome y. Often we see the two stages conducted

simultaneously, as is common in approaches such as LASSO or other regression-based

approaches. Our work here focuses simply on the VS stage. Variables selected as highly

predictive in our framework can then be flexibly used in various models for prediction

purposes as pleases the researcher.

We are now in an odd situation where we have identified variable sets that could

not have been found using conventional approaches and yet we would like to evaluate

the predictivity of our identified variable sets against these conventional approaches.

Nevertheless, we endeavor to do so. A couple options arise for approaches to compare

against: training prediction rate and out of sample testing prediction rate.We compare

our approach against these two rates. We will show that the I-score based measure

provides a useful estimated lower bound to the correct prediction rate and correlates

well with the out of sample test rate, while the training rate statistic, the sample analog
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of θc, does not. As such, our approach has an important benefit to prediction research:

compared with methods such as cross-validation of error rates, the I-score is efficient in

the usage of sample data, in the sense that it uses all observations instead of separating

data into testing and training.

Simulations

We offer simulations to illustrate how (1) the I-score can serve as a lower bound

to the true predictivity of a given variable set even as noisy variables are adjoined (2)

thereby serving as a screening mechanism, and (3) finding the maximum I-score when

conducting BDA leads to finding the variable set with the highest corresponding level

of predictivity.

The simulation is based on a 3-SNP disease model, depicted in Figure 2.3. We

also present a 6 SNP model in the SI. In this model, a disease SNP group composed

of three SNPs X1,X2, and X3 can jointly affect whether an individual has a disease.

The remaining variables, (X4, ..., X12), are all noisy and unrelated to the disease. The

frequency for the minor allele (coded as 0) of each SNP are all 0.5. The population

baseline odds is set at 1/20 (the ratio of the probability of an event occurring over the

probability of that event not occurring). The high and low risk genotype combinations

can be found in Figure 2.2.

In this set up, if an individual carries no risk genotype, his/her odds of having

the disease are reduced by three fold; with a risk genotype, his/her odds are twice that of

the baseline. It is clear of course that we still do have random chance; we cannot predict

perfectly as the population baseline is 10% for having the disease.

We simulate data at three sample size levels: 250 cases and 250 controls, 500

cases and 500 controls, and 1000 cases and 1000 controls. For each possible variable

set, we create a partition Π and calculate the p̂id and p̂iu (the estimated probability that

an individual in cell j is a case or a control), respectively: nid
nd

and niu
nu

where i = 1...m

and m = |Π| where |Π| is the size of the partition Π. We conducted 300 simulations and

evaluated a set of statistics on each of the variable sets for each simulation. These were:

training prediction rate, Bayes’ prediction rate, out of sample prediction rate, and the I-

score derived lower bound estimate of the predictivity rate; see Figure 2.3. Throughout,
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we assume an equal prior. The statistics are detailed below:

1. Training prediction rate is defined as the following:

1
2

m1

∑
j=1

max(p̂ jd, p̂ ju)

2. Bayes’ rate: recall this rate is constant across all variable sets that are inclusive of

the truly influential variables, regardless of how many noisy variables are also in-

cluded. This is the best predictivity one can achieve if knowledge of the influential

variables is available. It is defined as:

1
2

m1

∑
j=1

max(p jd, p ju)

3. Out of sample prediction rate: this is conducted on the “infinite” future data to find

p jd and p ju for the rate. The “infinite” future data is often unrealistic with real

data but we present it for the purposes of this simulation and to clearly provide a

golden standard against which to compare. It is defined as:

m

∑
j=1

p jd · Ŷj + p ju · (1− Ŷ j)

4. I-score lower bound predictivity rate as defined from Equation (2.10).

We have demonstrated that the I
nλ (1−λ ) estimates7 θI , which is related to an asymptotic

lower bound (Equation (2.8)) for θc, as n→∞. It would be helpful to see how I performs

at fixed, reasonable sample sizes. We compare the I-score derived prediction rate and

compare it against the Bayes’ theoretical prediction rate in our simulations to illustrate

this. The out of sample correct prediction rate is presented in the simulations here as a

further benchmark against which the I-score can be compared when data is limited, as is

the case in real world applications. The out of sample correct prediction rate is derived

from the most optimistic context we can achieve in the real world, whereby future testing

data is infinite. In all the simulations, the I-score of a set of influential variables drops

7This assumes that s2
n→ λ (1−λ ) as n→ ∞.
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when a noisy variable is added. This drop is subsequently seen in the I-score derived

bound for the correct prediction rate. The I-score has the benefit of screening out noisy

variables, which makes it useful in practical data applications.

To illustrate how these statistics fare in accurately capturing the level of predic-

tivity of each variable set under consideration, we considered their performance given

already having found X2 and X3 as important. We then add X1 (also an important vari-

able), which should ideally correspond with an increase in the statistic. We continue

to add the remaining noisy variables one at a time to this “good” set of variables and

observe how the statistics evaluate the new, larger set of variables for predictivity.8

Next, we consider the output of the simulations. The first row of plots in Fig-

ure 2.3 correspond to comparing the (red) I-score lower bound correct prediction rate

against the (light blue) out of sample test (correct) prediction rate. Recall the out of

sample test prediction rate is not attainable in the real world as it requires an infinite

supply of future samples of data to calculate. We use it here as a standard with which

to compare against. The lower row of plots correspond to comparing each of the (dark

blue) training prediction rate against the (light blue) out of sample test prediction rate.

The graphs show an increase in sample size from left to right. The thick black line is

the true Bayes’ rate. The Bayes’ rate rises when adding X1 to the variable set X2 and

X3 and then continues to remain flat with the addition of noisy variables so long as the

informative variables (X1, X2, and X3) are included. This is because the Bayes’ rate

is defined purely by the partition formed from the informative variables, and does not

change when adjoining noisy variables (X7,..., X12) and creating finer partitions.

The x-axes depict the variable sets under consideration. Variables in red are in-

fluential for the disease (X1,X2,X3). Variables in black are noisy (X7, ...,X12).The y-axes

depict the correct prediction rate, θc. The graphs use violin plots to show the distribu-

tion of the statistic under each setting across the simulations. Violin plots are similar to

box-plots but display more distributional information (such as standard errors), as the

plots are created using a density curve of the correct prediction rate bound from random

samples.

8We simulated 9 variables — 3 influential and 6 noisy — making a total of 512 subsets in total. For
ease of presentation we do not consider all subsets here, only what occurs when adding noisy variables to
see how the statistics differ in their screening capabilities.
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Several patterns emerge in these simulations. First, and most importantly, the I-

score-derived prediction rate appears to be a reasonable lower bound to the Bayes’ rate.

This holds even in moderate sample sizes. The peak value of the I-score lower bound is

associated with the variable set that is inclusive of all influential variables (X1, X2, and

X3) and no additional noisy variables.

The second pattern observed is that the estimated I score lower bound peaks at

the variable set that includes only X1,X2,X3 (the influential variables). This is a charac-

teristic of the out of sample correct prediction rate as well. For instance, if we consider

the top row of Figure 2.3 and start from the right of the x-axes in each of the three

plots with the largest set of variables inclusive of both influential and noisy variables

(X1,X2,X3,X7, ...,X12), continual removal of the noisy variables (sliding to the left of the

x-axis) until we reach the variable set (X1,X2, X3) results in higher predictivity as mea-

sured by the I-score lower bound. We can note that the I-score lower bounds drop upon

further removing the influential X1 variable from the set (X1,X2,X3). Thus the variable

set that appears with the maximum I-score derived lower bound here both identifies the

largest possible variable set of influential variables with no noisy variables and is also

reflective of a conservative lower bound of the correct prediction rate for that variable

set. We note here that once we have found the variable sets with the highest I-scores and

calculated the corresponding lower bound of the correct prediction rate, we can adjust

this lower bound rate for its bias to derive an improved estimate of the correct prediction

rate.

A third pattern that emerges is that the training rate will suffer from overfitting

with the adjoining of noisy variables even when the variable set includes a true influ-

ential subset of variables. If the variable set is irreducible however, the training rate

estimator reflects the Bayes’ correct prediction rate well; thus the training rate estimator

can perform reasonably well conditional on already identifying (X1,X2,X3). The training

rate estimator cannot be used to screen to that variable set first, however.

Finally, and as we might expect, the training set rate explodes due to overfitting

in high dimensions as more noisy variables are adjoined to the partition formed by the

informative variables (X1, X2, X3). Thus while the training set prediction rate seems to

improve as the sample size increases, it cannot be used to screen out noisy variables,
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and is therefore difficult to use as a statistic to select highly predictive variable sets. The

predictivity rates found through this statistic also dramatically departs from the out of

sample testing rate. It tends to ever-optimistically evaluate the variable sets for their

future predict even as only noisy variables are added. This stands in stark contrast to the

out of sample prediction rate as it lowers in prediction rate with the addition of useless

variables. We notice that there is a trend that the I-score prediction rate does not remain

flat. The score increases when removing a noisy variable and reducing to a variable

set of only influential variables, indicating the additional advantage of the I-score as a

lower bound; the I-score prefers a simpler model even when the Bayes’ rate remains the

same, thus selecting for more parsimonious partitions that attain the Bayes’ rate, which

simultaneously is a closer reflection of the out of sample prediction rate.

Recall the correct prediction rate is based on an absolute difference of probabil-

ities summed over all Xs, an L1 norm. Suppose we start with influential variables only,

with θ ∗c correct prediction rate, the highest we can attain out of all possible variable sets.

Adding noisy variables to this set, variables that add no signal but simply create a finer

partition, still returns θ ∗c . When estimating the correct prediction rate using sample data,

though, the estimated θc value generally keeps increasing if noisy variables are added;

the researcher does not know when to stop the search for influential variables, making

VS impossible. Ideally, we would like to “punish” adding such noisy variables to our

variable set, so having a measure that balances between favoring coarser partitions but

still recognizing actual new variables with strong enough signals (non noisy variables)

is important. The I-score seems to support such an effect — preferring coarser partitions

unless an additional variable (and therefore finer partition) provides enough signal in the

data to justify keeping it.

Noisy variables in sample data may be indicative of actually noisy variables or

influential variables with weak signals due to the sample size. Thus, we note there are

cases where the I-score might not recognize these variables when their signals would

require unrealistic sample sizes to be found through the measure. An example of this

would be if a good predictor is highly complex (perhaps a combination of very many

variables) and the observations are sparse in the partition. Since the I-score places

greater weight on where the data tends to appear (note the n2
i term in the score), when
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most of the partition cells contain no observations or at most 1 observation, this can

often look like noise.

The main draw, however, of the I-score is its ability to screen for influential

variable sets. The variable sets inclusive of all three actually influential variables (X1,

X2, and X3) alone display the highest I-scores. Searching for variable sets with the

highest I-scores thus tends to return highly influential variables only. Using the training

prediction rate as a guiding measure for screening, however, would continually seek for

ever larger variable sets, regardless of whether they include noisy variables or not.

Real data applications

Application to the vant Veer breast cancer data

To reinforce the previous sections, we turn to a brief analysis of real disease data.

As noted before, part of this research team has discovered that applying the PR approach

to real disease data has not only been quite successful in finding variable sets (thus

encompassing higher order interactions, traditionally rather tricky in big data), but has

also resulted in finding variable sets that are very predictive9 that do not necessarily show

up as significant through traditional significance testing. We present one discovered

variable set (a total of 18 variable sets were found in Wang et al. (2012)) found to be

highly predictive for a real data set on breast cancer that is not highly significant using

a chi-square test.10 In Table 2.1 we investigate the top, 5-variable set (or in this case,

group of five genes) found to be predictive through both top I-score and performance in

prediction in cross-validation and an independent testing set in Wang et al. (2012). To

find how significant these variables are, we calculate the individual, marginal association

of each variable in the marginal p-value. Given the family-wise p-value threshold of

6.98x10−5, none of these variables show up as statistically significant. Measuring the
9Here “predictive” refers to both high in I-score as well as having high correct prediction rates in

k-fold cross-validation testing rates.
10We note an inherent difficulty the presentation of the reverse situation, that of finding the most sig-

nificant variable sets in the breast cancer data and determining their predictivity rates. This is precisely
because the PR approach allows for higher order interaction searches which is more difficult using current
common approaches. While it is possible to use common approaches to discover marginally significant
variables, or possibly two-way interactions, and then determine their predictivity rates, capturing up to
5-way (as shown in our presentation here using the PR approach) interactions is not yet feasible as of the
date of this writing.
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joint influence of all five variables does not have a p-value that is significant either.

Using the variable sets (all 18 in Wang et al. 2012) that appeared to have the highest I-

scores to predict on this dataset resulted in an out-of-sample testing error rate of 8%, in

direct comparison with the literature’s best error rates of 30%. Using only the variable

set displayed in Table 2.1 and the lower bound in Equation (2.6) we can calculate the

asymptotic lower bound of the correct prediction rate for this variable set as 59%. Thus,

only using this variable set alone, we can achieve a 59% correct classification rate at

minimum. For details on the final predictors, see Wang et al. (2012).

2.8 Concluding remarks

Prediction has become more important in recent decades and, with it, the need

for tools appropriate for good prediction. A first step in prediction can be to find variable

sets that are highly predictive, which we have called the VS stage in this paper. We

show in other work that approaching VS through selection of variables from a statistical

significance criterion (for instance, using the chi-square test statistic) is not ideal Lo

et al. 2015. A currently popular alternative solution is to conduct VS via sample-based,

out-of-sample testing error rates. This approach is ad hoc in nature, sample-based, and

is not measuring some theoretical underlying level of predictivity for a given variable

set. Often validation of selected candidate variable sets requires setting aside valuable

sample data in out of sample testing or cross-validation. Sometimes the sample size

may not suffice for validating variable set sizes larger than one or two variables, as

is often the case in big data like GWAS. As such, prediction research would benefit

from a theoretical framework towards finding highly predictive variables. We believe

our work here is a preliminary and important effort in that direction, by considering

what theoretically maximally predictive variable sets are, and how we might try to find

them. In fact, using measures like the I-score could be an important new direction in the

prediction literature as it neither uses the training sample prediction rate at all nor does

it require an artificial or an ad hoc regularization choice.

We identify the equation for the theoretical correct predictivity of variable sets

(θc) in Equation (2.4) and then demonstrate that unfortunately, the sample analog for
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it is quite useless. As such, we offer an alternative measure. We show that the I-score

asymptotically approaches a lower bound to Equation (2.4), θI , and is thus correlated

with the correct predictivity rate of a given variable set. Importantly, we show that

the I-score has a natural tendency to discard noisy variables, keep influential ones, and

asymptotically approach this lower bound to θc. The I-score does well in identifying

predictive variable sets in both our complex simulations as well as real data application.

We note that other measures with such desirable properties may also exist, and

we encourage rigorous research in this direction. As a new field of inquiry, the search for

measures that maximize predictivity may do much in the way of living up to the hopes

of advancing predicting outcomes of interest, such as disease status. In some ways, this

work is motivated by a practical consideration of finite samples. As noted in the set-up

of our framework, in a theoretical world of limitless data, we can in fact find the variable

sets with highest values of θc. However, our real world of finite sample sizes requires

other sample-appropriate measures that may approximate but not achieve the θc. This

occurs during the variable selection stage. In other words, based on available sample

size, the I-score, and any other such measure, detects not necessarily the maximum

θc but some θ H
c,n, the largest θc correct prediction rate for which the corresponding X

variables can be selected given n. Consider a situation where the true set of variables

X∗ that provide the theoretical maximum θ ∗c is very large. Suppose we have a sample of

data that is quite modest. Selecting all variables X∗ is not possible given the n size (the

partition of the data is too fine) and so a measure like the I-score retrieves a set X′ that

provides potentially the largest θc achievable given the sample constraint. This in some

ways mirrors the common issue of not detecting true effects when the sample size is too

small in statistical significance testing.

We leave the important discussion of how to combine identified predictive vari-

able sets in different final prediction models outside the scope of this paper.
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2.10 Tables and Figures
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above)certain)threshold)

Significant)set)by)a)test)
using)a)huge)sample)

Figure 2.1: Illustration of the relationship between predictive and significant sets
of variable sets. Rectangular space denotes all candidate variable sets. Significant sets
are identified through traditional significance-tests.
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Figure 2.2: 3 SNP disease model. High risk genotypes are shaded in red, while low
risk genotypes are shaded in blue.
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Figure 2.3: Variable set size 3: Comparison of the training rate and I-score against
the out of sample prediction rate Here we compare two statistics, I score lower bound
and the training set prediction rate against the out of sample prediction rate. Lower
bound from the I score is provided in red, training set prediction rate in blue, and the
out of sample prediction rate is in light blue. The thick black line in all six graphs is the
true Bayes rate. All x-axes correspond to variable sets (described in red for important
variables and black for noisy ones) while all y-axes correspond to (correct) prediction
rate. There are three important variables in this example, x1, x2, and x3. The top row
of graphs compares the (red) I score statistics against the (light blue) out of sample
prediction rate. The lower row of graphs compares the (dark blue) training set prediction
rate against the (light blue) out of sample prediction rate. From left to right the graphs
increase in sample size from 500 cases and 500 controls, to 1000 cases and 1000 controls
in the middle, to 2000 cases and 200 controls on the right.
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Table 2.1: Real data example: van’t Veer breast cancer data. A variable set of five
interacting genes is presented.

Systematic name Gene name Marginal p-value
1 Contig45347_RC KIAA1683 0.008
2 NM_005145 GNG7 0.54
3 Z34893 ICAP-1A 0.15
4 NM_006121 KRT1 0.9
5 NM_004701 CCNB2 0.003

Joint I-score: 2.89 Joint p-value: 0.005 Family-wise threshold: 6.98x10−5



Chapter 3

Variable selection with Partition

Retention to predict civil war onset

3.1 Abstract

I propose a new approach to predicting civil war onset that emphasizes variable

selection. I argue that variables and their interactions should be selected based on their

predictive power. Selecting variables based on theoretical importance and statistical

significance does not guarantee good prediction. Additionally, using only information

from non-interacted variables may result in discarding important information embedded

in high order interactions (interactions between several variables). I show that important

higher order interactions can be selected by the Partition Retention (PR) method. I illus-

trate the approach with simulations and an application to civil wars data, comparing the

results with alternative approaches such as random forests, neural networks and lasso.

The PR approach performs favorably in simulations, and in the real data application,

conducting variable selection with PR boosts correct prediction rates on out of sam-

ple testing sets from 78.98% to 98.05%. The application demonstrates possible gains

in correct prediction rates for civil wars when including a research step for identifying

predictive variable sets.

48
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3.2 Introduction

Civil wars are highly consequential and complex processes. There are over two

million scholarly articles on this topic as of the writing of this paper.1 In particular, the

forecasting of conflicts, such as civil wars, has grown in prominence in the conflict lit-

erature (see Beck, King, and Zeng 2000; Ward, Greenhill, and Bakke 2010; Hegre et al.

2013; Goldstone et al. 2010; Gleditsch and Ward 2013; Muchlinski, Siroky, and Kocher

2015, among many others). Predicting conflict is important due to the widespread hu-

manitarian consequences (Burke et al. 2009) and because conflicts are becoming more

prevalent and lethal (Ward, Greenhill, and Bakke 2010). Accurate prediction is integral

in the preparation against and amelioration of conflict. A recent Center for Strategic

and International Studies special project briefing noted that “early warning models” that

can predict conflict are critical for policymakers to anticipate, analyze and plan for a

conflict. When policymakers are unprepared, they respond hastily or even exacerbate

the conflict by delaying responses (Barton et al. 2008).

Prediction is a useful exercise that should be part of the analyst’s research pro-

cess. Researchers can move beyond generating models that are reflective of their theo-

ries to testing whether these models are reflective of data that is not yet at hand. This is

likely to be especially important given that many studies are based on observational data

and are thus susceptible to bias based on data availability. We can also improve our sub-

stantive understanding of social science phenomena by understanding where prediction

is especially poor when applying our models to new contexts.

The prediction of conflicts like civil war is characterized by two approaches. The

first is primarily guided by a rich literature on the origins and causes of civil wars (see

Sambanis 2002; Blattman and Miguel 2010 for reviews). Variables known to capture

these origins and causes are considered important for the prediction of civil wars and are

selected for use in statistical models. A more recent approach has pursued explorations

of different models on conflict data; after selecting the input variables either through

guidance from the theoretical work surrounding civil wars or through data mining, the

researcher picks amongst models that might have different abilities to predict the data.

This work contributes to the latter approach, emphasizing in particular the importance

1Date of search: July 30, 2015.
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of variable selection.

This paper provides several contributions. The first is to demonstrate that how-

ever rich the theoretical literature on civil wars may be, if the goal is predicting wars

then conducting variable selection based on statistical significance is not as effective as

conducting variable selection based on a criterion of good prediction. I refer a variable

set’s ability to predict as predictivity. The second approach in the literature on conflict

prediction, selecting models based on different abilities to predict the data, can be im-

proved by including a variable selection stage that accounts for interacting variables and

selects based on predictivity.

The paper’s second contribution, is justification for variable selection as a pre-

modeling stage, especially for large or big datasets, where the number of variables and

variable interactions exceeds the sample size. The last few decades have seen an enor-

mous growth political science dataset size, in both the “length” (number of observations)

and “width” (number of variables) of the dataframes (Grimmer 2015; Nagler and Tucker

2015). Including interactions between variables will exponentially expand the width of

the dataframe. Methods that are able to account for the larger dimensions of the avail-

able data are highly desired for prediction. More attention should be devoted towards

identifying variable selection methods for prediction. These variable selection methods

should be able to accurately screen amongst variables that identify the highly predic-

tive single and grouped variables. It might be particularly difficult to identify variable

sets with high predictivity when the variables in the sets interact to predict well but the

individual components to the set do not appear predictive for the outcome of interest.

The third contribution is the proposal of a new candidate approach, the Partition

Retention (PR), for predicting civil wars. The PR approach relies heavily on a mea-

sure called the I-score in variable selection. It can both handle interactions through the

screening algorithm as well as assess the predictivity of variable sets. I argue for a fun-

damental shift in our approach towards prediction by rethinking how we identify the

influential variables we use in our models for prediction. This includes consideration

of higher order interactions (here defined as any two-way or higher interaction between

variables) between explanatory variables when defining our influential variable sets. I

propose the PR method as one such potential methodological candidate; upon recover-
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ing influential variable sets, the researcher can incorporate the predictive variable sets

in a model of her choice. The PR approach can thus be considered a pre-modeling

analytical tool for excavating highly influential variables.

I demonstrate the usefulness of PR for variable selection using simulations and

a real data application to a civil wars dataset. The method allows for identifying previ-

ously undertheorized influential variables, which may aid civil war onset theory-building

when there is contention over the composition of the set of influential variables amongst

a larger set of political variables. While the aim of this paper is not to build a theory

behind civil war onset, one positive externality of excavating higher-order interactions

may be in contributing new variable interaction possibilities in the pre-theory building

process of the causes of civil war. I consider this in brief in the civil war data application

of this paper.

The paper proceeds as follows. The first section provides a literature review on

variable selection specific to the conflict literature. The second section reviews a few

common variable selection methods from the machine learning literature that have been

applied to conflict data. The third section presents the Partition Retention approach. The

fourth section offers simulations to illustrate some of the variable selection attributes of

PR when compared with methods such as the lasso and random forests. The fifth section

is an application of the Partition Retention approach to a real civil wars dataset. The

sixth section concludes.

3.3 Variable selection in the conflict literature

When predicting conflict, we need to know what variables to use in the predic-

tion model. This process of identifying good variables for prediction is called variable

selection (referred to throughout as VS).2 A common VS approach to predict conflict is

to select variables previously identified to be theoretically relevant for use in prediction

models. These explanatory variables are often tested in conflict data for statistically sig-

nificant associations with the conflict outcome, which is taken as supportive evidence of

their theoretical value. The reasoning is simple: if certain variables have been identified

2Sometimes referred to as feature selection in the machine learning literature.
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to be significantly associated with civil wars, then it seems reasonable to conclude that

conducting VS by using statistically significant variables should help us predict civil

wars. This approach is not to be confused with the practice of using statistical signif-

icance as a way of evaluating the statistical model for prediction. It is well accepted

that the gold standard for evaluating the latter is out-of-sample testing (Goldsmith et al.

2013).

Theory-guided prediction, particularly through usage of variables that appear

significantly related to conflict, can be misdirected, however. This point is made ex-

plicit in Ward, Greenhill & Bakke (2010), where the authors caution against the usage

of variables that have low p-values for predicting civil conflicts, demonstrating the poor

performance of such an approach with both Fearon and Laitin’s (2003) data and Collier

and Hoeffler’s (2004) data.3 That statistical significance is a poor criterion for good

prediction is neither new nor specific to political data; Welch and Goyal (2008) note the

robust inability for variables well-known in the literature to be statistically significant

and related to the equity premium to predict well in a variety of models. In the sci-

ences, genes that are statistically and biologically significant for certain diseases do not

immediately transfer to good prediction of those diseases (Clayton and Gleditsch 2014;

Gransbo et al. 2013). In related work, Lo et al. (2015) explores the disconnect between

statistical significance and predictiveness and finds that this is both prevalent in many

types of data and worsens as the data become more complex.

The conflict forecasting literature still relies on this approach, even in recent

work, despite heavy caution against this method. The most common approach is to

collect variables previously theorized to be relevant in conflict and use these in various

prediction models (see inter alia, Hegre et al. 2013; O’Brien 2010; Goldsmith et al.

2013). A related approach is to suggest a new set of variables that could be good pre-

dictors for conflict, justified by their theorized linkages to conflict. For instance, Rustad

et al. (2011) note that local variables such as natural disasters or local elections could

trigger different baseline risks for civil conflict and proceed to use subnational variables

to predict the level of civil conflict risk. This usage of micro-level variables is echoed in

Balcells and Justino (2014) and their call for linking macro conflict studies with micro

3The authors do not explain precisely how and why significance and predictivity differ, however. For
an explanation, see Lo et al. (2015).
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level variables in understanding civil conflict. While the goal remains good prediction

of conflict, the selection and addition of new important variables is guided through a the-

oretically motivated approach. Bell et al. (2013) join in this vein of work by conducting

VS guided by concepts they believe influence the probability and degree of political

violence in a state, such as coercion, coordination and capacity. Weidmann and Ward

(2010) emphasize the importance of incorporating geographic variables to the prediction

of conflict as neighbors might affect each others’ probability of conflict.4 Importantly,

these works also primarily devote their analyses to the marginal information (the effects

of single variables) and do not appear to consider higher order interactions. In contrast,

a contribution of this paper is to highlight the importance of VS, including higher order

interactions, and using this to predict better.

The efforts of Goldstone et al. (2010) and Muchlinski et al. (2015) are clos-

est to the contributions of this paper. Goldstone et al. (2010) avoid using statistical

significance in choosing their explanatory variables for their models predicting politi-

cal instability and instead rely on VS that balances between least prediction error and

stability across different samples of data. Their models do not appear to conduct VS

across higher order interactions, however, only amongst the marginals. Muchlinski et

al. (2015) propose the usage of random forests in the prediction of civil war onset.

While random forests have had a long history in the machine learning literature (see

Ho 1995; Breiman 2001 for the introduction to random forests, and Hastie, Tibshirani,

and Friedman 2008 for a review of its usage), the authors argue that it has been under-

used in the highly appropriate setting of predicting civil wars. This paper contributes to

the literature in a similar fashion by highlighting the importance of VS, particularly VS

for groups of variables, and presenting the Partition Retention as a candidate technique

to conduct VS in conflict forecasting. Furthermore, I demonstrate in simulations and

the civil war application that the PR approach is weakly better than random forests in

predicting.

While variable selection with the intent of good prediction is not new, the em-

phasis on doing so in the application of conflict has not been given nearly enough at-

4Though we note that the authors also include the twin goal of exploring whether information on
geography can help understand where and when conflict might arise and are not only interested in making
better predictions of conflict.
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tention, as evidenced by the sizable amount of research on conflict prediction that uses

significance-based VS. A good VS approach for prediction should be able to not only

choose a variable based on some measure of its ability to predict but should ideally allow

for choosing sets of variables that interact in ways that are good for usage in prediction.

This paper actively embraces this approach to VS for good prediction by proposing the

PR approach for VS. PR is shown elsewhere to predict very well (Fan and Lo 2013; Lo

et al. 2008; Wang et al. 2012) in big data applications. The PR’s I-score is also related

to the theoretical correct prediction rate, making it a good candidate measure of predic-

tivity (Lo et al. 2016), and can be used to retrieve higher order interactions (Chernoff,

Lo, and Zheng 2009).

A related literature in political methodology places emphasis on limiting the

number of explanatory variables in regressions, suggesting that the researcher take cau-

tion in using only variables for which there are reasons to believe are associated with the

outcome of interest and refraining from “kitchen sink” approaches of statistical equa-

tions (Achen 2002; Achen 2005; Ray 2003; Ray 2005). In fact, Achen (2005) discusses

the implications and pitfalls of erroneously and zealously including as many “control”

variables as possible in common regressions. This would seem to have the opposite ad-

vice espoused here — of exploring the predictivity of all variables and variable sets the

researcher has at hand in order to conduct good prediction. The key difference, how-

ever, is again the goal of the researcher. In the case of testing hypotheses and finding

unbiased and consistent effects of certain explanatory variables on dependent variables

of interest, the researcher desires to identify the causal influence of these explanatory

variables. Adding as many control variables as possible could bias these estimates.5

Here, we are primarily concerned with how a researcher might be able to predict

well. As such, our variable sets and models are assessed based on their final abilities

to lower out of sample error rates (or improve out of sample correct prediction rates).

Since we are selecting variables based on their predictivity and not conducting VS from

a theory-guided standpoint, we ought to include as many variables as possible when we

begin our VS process and allow our prediction-based VS approach to do the selection

for us. In this sense, the spirit of this work joins that of Ward and Bakke (2005) in

5See Kadera and Mitchell (2005) for an overview of how control variables can be erroneously used in
international conflict research.
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their call for greater incorporation of contextual factors for better prediction. Thus,

the explanatory variables on which we might conduct VS should include all available

variables— and all of their possible interactions. The VS stage will reduce the number

of final predictors we use in our predictive model and using cross-validation and out-of-

sample testing can alleviate the effects of overfitting.

This full set of possible variables and variable interactions (which I will refer to

as variable sets in this paper) is not small, given the types of data we have available today.

Higher order interactions become more difficult to identify as the number of explanatory

variables grow due to the well-known curse of dimensionality. While the individual

effects contributed by single variables are important, when answering political science

questions we may require information contributed by interactions of variables. This is of

particular importance when we care about predicting a complex social outcome, such as

predicting whether a given country year will see civil war onset, outcomes of elections,

or voter turnout, among others.

To see how the curse of dimensionality might quickly affect the size of variable

sets amongst which we must select a smaller set of highly predictive variable sets, con-

sider the following. We have a single binary outcome variable of interest, Y , and a set

of m explanatory variables X = {X1, ...,Xm}. When m is small relative to the sample

size, for example, five, with a reasonably sized sample we can utilize a logistic regres-

sion with all possible interactions between all variables. We would have a manageable

model of 31 parameters (the sum of five choose all variable set sizes). Simply double the

size of m, however, and the number of parameters the researcher must estimate becomes

1,023.6 In the real world of sample constrained data, uncovering influential higher order

interactions quickly becomes exponentially difficult.

This presents a dilemma — given the full set of possible explanatory variables

and their interactions, and limited sample sizes, how might we identify the most predic-

tive variable sets?
6Number of parameters given m variables is 2m−1.



56

3.4 Variable selection in machine learning

Ideally we want VS methods for prediction to have several key capabilities. First,

they should be able to conduct VS by screening for the predictivity of variables and

variable sets. Second, the VS approach should be able to handle interactions, even when

the data grows in variable size. Recent advances in big data prediction and machine

learning have begun to focus on dealing with large numbers of explanatory variables

for prediction, as well as uncovering higher order interactions. Some favored methods

in the classification literature that have been applied to conflict prediction include lasso

(least absolute shrinkage and selection operator), neural networks and random forests. I

review these approaches in brief here.

3.4.1 Lasso (least absolute shrinkage and selection operator)

Lasso is a shrinkage model that penalizes certain explanatory variables to 0. A

common representation of the model is:

β̂ lasso = argminβ ∑
N
i=1(

(
y−β0−∑

p
j=1 xi jβ j

)2

subject to ∑
p
j=1 |β j| ≤ t.

(3.1)

where y is the outcome of interest and x are explanatory variables. The lasso has been

favored for its simplicity of execution as efficient algorithms exist for applying the L1

lasso penalty ∑
p
1 |β j| to the minimization problem (Tibshirani 1996). The penalizing

constraint allows for the lasso to “tune down” certain coefficients to zero; this is a fa-

vored ability when handling large numbers of parameters under a sparsity assumption.

The lasso estimator can be used for variable selection by selecting variables with non-

zero estimated coefficients (Belloni, Chernozhukov, and Hansen 2014).

3.4.2 Neural networks

Neural networks have been used in political science data for a couple decades

(see Schrodt 1995; Zeng 2000; Beck, King, and Zeng 2000). Indeed, a major applica-

tion of the approach has been in conflict prediction; Beck et al. (Beck, King, and Zeng
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2000) note that a possible improvement to the classic logistic regressions used for pre-

dicting the binary outcome of conflict could be the inclusion of more interaction terms

that would be able to overcome the drawback of the highly restrictive and nearly con-

stant specifications of ex ante probabilities of conflict. However, they too are concerned

with the inherent curse of dimensionality problem that arises with the inclusion of too

many interactions in a finite sample. The authors turn to neural networks as a possi-

ble good alternative approach that can directly handle this problem and find that neural

networks seem to predict marginally better than generalized linear regression models in

forecasting conflict when using the same explanatory variables.7

Neural networks are two-stage regression or classification models. For regres-

sions, the outcome Y is often a single binary output. Here the generalized neural network

equations are presented for K-class classification (Yk, k = 1, ...,K). The outcome Yk is

simply a function of the linear combinations of the features Zm (Z = (Z1, ...,Zm)), which

themselves are linear combinations of the explanatory variable inputs (Xp, p = 1, ...,P):

Zm = σ(α0m +αT
mX), m = 1, ...,M,

Tk = β0k +β T
k Z, k = 1, ...,K,

fk(X) = gk(T ), k = 1, ...,K,

(3.2)

where T = (T1, ...,Tk), and α(v) is an activation function often chosen to be either the

sigmoid σ(v) = 1
1+e−v or a Gaussian radial basis function (see Hastie, Tibshirani, and

Friedman 2008 for a more in depth discussion of neural networks). The output function

gk(T ) is a final transformation of the inputs T ; often the multilogit model transformation

is favored:

gk(T ) =
eTk

∑
K
l=1 eTl

(3.3)

Note that if the activation function σ is the identity function the model reduces to a

linear model in the inputs.

7Though this is disputed by De Marchi et al. (2004).
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3.4.3 Random forests

Random forests is a modification of the technique called bootstrap aggregation

(or “bagging”), proposed by Breiman in (2001). Bagging is a technique that reduces

the variance of an estimated prediction function by averaging amongst a class of noisy

but approximately unbiased models and is particularly useful in high variance, low bias

procedures such as trees. Random forests builds a large set of decorrelated trees and

then averages amongst them, making the random forests approach a relative of boosting.

Random forest can be particularly useful in capturing complex interaction information

in the data.

The random forest procedure is as follows8:

1. For b = 1 to B:

(a) Draw bootstrap sample Z∗ of size N from the training data.

(b) Grow a random-forest tree Tb to the bootstrapped data. This is done by

recursively repeating the below steps for the tree until the minimum node

size nmin is reached.

i. Select m variables from p total variables at random.

ii. Pick the best variable/split-point among the m.

iii. Split the node into two nodes.

2. Output ensemble of trees {Tb}B
1

3. To make a prediction with new x data point:

(a) Regression approach:

f̂ B
r f (x) =

1
B

B

∑
b=1

Tb(x). (3.4)

(b) Classification approach: Let Ĉb(x) be the class prediction of the bth random

forest tree. Then x is classified according to a majority vote:

ĈB
r f (x) = majority vote{Ĉb(x)}B

1 (3.5)

8For a full treatment of the random forests approach see Hastie et al. (2008).



59

While random forests have proven to be computationally efficient and useful for high

dimensional data with interactions, the approach has difficulties discovering interact-

ing information when the data consists of high dimensional information that cannot be

broken down to lower dimensional components. This is due to the forward seeking al-

gorithm in the tree splitting process; a backwards approach would allow for searching

of variable sets that interact at a higher dimension but whose component variables might

only contribute noise on their own.

I propose adoption of another VS approach to the conflict prediction toolkit,

the Partition Retention (PR) method. PR is designed to tackle big data with much

larger numbers of variables. The approach is a backwards partitioning variable selec-

tion method that heavily relies on the usage of an influence measure, the I-score, that is

calculated for each selected variable set, and which is used as a measure to gauge how

predictive that particular variable set is. The backwards dropping feature additionally

allows for discovery and retention of variable sets with noise at lower order interactions

but higher order influence.

3.5 Partition retention

The Partition Retention method is desirable as a statistical tool for social scien-

tists for several reasons. First, it flexibly captures higher order interactions for a very

large number of explanatory variables. Second, the variable sets identified by PR pre-

dicts at worst similar to and at best better than common alternatives (Chernoff, Lo, and

Zheng 2009). This is unsurprising; when the true relationship between a given outcome

variable and a set of independent variables is based mostly on marginal effects, then

methods that focus on marginal effects are likely to do just fine in prediction. However,

should the relationship involve more complicated dependencies amongst the explana-

tory variables, then PR stands at an advantage (Chernoff, Lo, and Zheng 2009). The

last appeal is important. For example, we may desire to know whether a complex net-

work of variables or a simpler process influences a political phenomenon. Finally, the

I-score has been shown to correlate very well with predictivity in highly complex and

high dimensional data (Wang et al. 2012; Lo et al. 2015). More recently, we show in
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Lo et al. (2016) that the reason the I-score appears to do quite well in prediction is

because it shares a relationship with the theoretical correct prediction rate of a variable

set. Indeed, the calculated I-score of a given variable set for a sample can be adjusted to

directly reflect a conservative lower bound of the correct prediction rate for that variable

set.

Originally designed to tackle the overwhelming number of single nucleotide

polymorphisms (SNPs) in the human genome that can jointly result in different disease

phenotypes (and the resulting exponential boom in number of possible different interac-

tions), the PR method has found success in selecting groups of genes highly predictive

for diseases such as breast cancer, irritable bowel disease (IBD), and prostate cancer

(Fan and Lo 2013; Lo et al. 2008; Wang et al. 2012). In brief, the PR approach involves

randomly selecting a smaller subset of a full set of explanatory variables and analyzing

if any of the variables in the subset are associated with the outcome variable. An influ-

ence measure, the I-score, attributes an amount of influence to the subset of variables

and measures the association with the outcome variable. Next, a step-wise elimina-

tion decreases the subset of variables to a returned, smaller set of potentially influential

explanatory variables. These steps are repeated many times and returned subsets are

considered potentially highly influential towards the outcome variable (see Figure 3.1

for an illustration).

Two main innovations form the core of the approach. First, the PR method

offers an alternative measure of influence, the I-score, to the classical significance-based

measures (chi-square, F-statistics, etc.). The I-score is designed to retrieve variable

sets that exhibit high predictivity and can be seen as relatable to a multiple correlation

coefficient. The second innovation is in the approach of backwards-dropping variables

from variable sets in order to identify maximally predictive variable sets. This is in

contrast to the common forward searching (e.g. recursive partition methods), which

are more likely to miss higher order interactions amongst variables if their lower order

signals are weak or mild. I present the I-score first with an example.

Suppose we have a dataset of n observations with a binary observed variable Y of

interest and a set S of explanatory variables measured as X = {X1, ...,XS} . If all X take

at most 3 discrete values (e.g. 0, 1 or 2), then the idea is to partition the n observations
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into 3S partition elements identified with the values of X . There are ni observations in

each ith element. The I-score, or influence measure for how well the particular partition

separates our observations into reasonably similar subsets (classifying between the two

Y outcomes), is:

I =
1
n

3S

∑
i=1

n2
i (Ȳi− Ȳ )2 (3.6)

where Ȳ = ∑i
niȲi
n is the average of Y overall and Ȳi is the average in the ith element.

Suppose we wish to measure the influence of a single variable X1 on I. We would

simply consider the coarser partition formed by the X = {X2, X3, ...,XS} not including

X1. The I-score of this new, coarse partition, differenced from the partition including

the X1 variable is a measure of the influence of X1 on Y when appearing with the other

X variables in X . Should the new coarse partition produce a smaller I-score, we regard

the X1 variable as influential for Y . We repeat this process for all other X variables and

consider the difference in I-scores, ultimately discarding the X variable that produces

the lowest I-score. This procedure is repeated until discarding another X variable from

the remaining set of variables produces only increases in the I-score; at this point the set

of variables remaining are all kept. This is the backwards-dropping element to the PR

approach.

When S becomes too large to estimate the finest partition, we can select a sub-

set or group of m variables from X = (X1,X2, ...,XS) which defines a partition Π∗ of

the sample of n observations into m1 = 3m partition elements. We denote these parti-

tion elements {A1,A2, ...,Am1}. These are all possible values taken by our subset of m

variables. For ease of presentation, let {X1,X2, ...,Xm} denote the group of m variables

selected from the original X . Each A j is a subset of n jY values and ∑n j = n. Every

non-empty A j has a mean value Ȳj. The overall mean is Ȳ = ∑
n jȲ j

n . The I-score is then:

IΠ∗ =
1
n

3m

∑
j=1

n2
j(Ȳj− Ȳ )2 (3.7)

Again, we can compare a coarser partition of {X2,X3, ...,Xm} against the original par-

tition {X1,X2, ...,Xm} by comparing the difference in I-scores under the full set vari-

ables, including X1, that form the original partition against the I-score retained under
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the coarser partition leaving out X1. This difference is a measure of how much X1 con-

tributes in influence on Y in the presence of X = {X1, X2, ..., Xm}. The equation for the

difference between a coarse and finer partition when X1 can take a finite set of values is:

DI =−
1
n ∑

i
∑
j<k

ni jnik(Ȳi j− Ȳ )(Ȳik− Ȳ ) (3.8)

where Ai j is the subset in Ai where X1 = j and has ni j elements averaging to Ȳi j. Asymp-

totic properties of the I-score and DI can be found in Chernoff et al. 2009.

With this new influence score in hand, we turn to the second arm of the PR

approach, the Backwards Dropping Algorithm (BDA). This step essentially involves re-

peated random sampling of subsets of variables from the total number of independent

variables, finding joint I-scores, finding differences in I-scores and dropping variables

from the subsets and rescoring until a maximum I-score is retrieved. The resulting sub-

sets of variables are then ranked by I-score to find the most influential variable subsets.

Below are the steps to BDA (also illustrated in Figure 3.1).

3.5.1 Steps in the PR approach

1. Randomly draw a subgroup m of variables from the total number S variables.

Calculate the I-score of this group of m variables. Call this I(m).

2. From m, randomly draw a single variable from the group and calculate the I-score

for the remaining m− 1 variables. Do this for each variable in m. Compare I-

scores in (2) with the I-score in (1), I(m). If I(m) is larger than all the I-scores

in (2), keep all m variables as influential, and the process ends here. If not, find

the variable that, when removed, results in the largest positive I-score difference.

This variable is regarded as not influential towards the outcome and is discarded;

there remain m−1 variables.

3. Repeat step 2 until removal of any remaining variables from a set of size m∗

results in a lower I-score than the I-score of set m∗. m∗ is the set of interacting

and influential variables for the outcome of interest.
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4. Repeat steps 1-3 many times for coverage of the full set of combinations of set m

variables.

5. Repeat steps 1-4 for other random draws from S of size m.

A key characteristic of this process is its recursive search for influential variable sets.

Forward seeking algorithms (inter alia, random forests) rely on starting with single vari-

ables and deciphering further partitions of the data according to measures of marginal

effects; the resulting variable sets are thus partitioned along specific types of dependency

amongst the variables chosen. The boon of backwards dropping is that removing vari-

ables (not adding them) leave the joint dependencies amongst the remaining variables

in the variable set intact (Chernoff, Lo, and Zheng 2009).

Although a returned influential variable set may be of higher order, lower-order

influences in the same variable set may also exist, albeit masked by the higher I-score

of the entire variable set. That is, suppose a variable set composed of 3 variables,

{X1, X2, X3} is returned by the PR backwards dropping algorithm as highly predictive.

While the three-way interaction is clearly important, the variable set may be masking

(slightly less) influential interactions at the lower order; any two-way combination of

the three variables or their marginal effects may also be important. Consequently, when

incorporating the returned variables and variable sets into our model of choice for pre-

diction, we should include all combinations of lower-order interactions as well. While

this will result in more parameters to estimate, a) we have already heavily reduced the

number of parameters, compared to the parameters for the original universe of possible

variables and their interactions, and b) we can easily harness common models such as

lasso or other shrinkage and selection methods for our prediction modeling stage.9

3.6 Simulations

Simulations are presented in this section to illustrate the PR’s VS ability com-

pared against other favored approaches such as lasso or random forests. Five models of

9This paper focuses on the VS aspect of prediction and leaves the equally important aspect of model
selection outside the scope of the paper.
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data are introduced with differences in both the existence of information amongst inter-

actions and whether or not the data is linear. For the first four models, the outcome vari-

able is y and there are 12 possible x explanatory variables, x = {x1,x2, ...,x12}. Model

1 is linear and additive, where the influential variables are {x1}, {x2}, and {x3}. Model

2 is linear and interactive, where the influential variable set is {x1,x2,x3,x4}. Model

3 is a nonlinear model without interactions where three variables are influential, {x1},
{x2} and {x3}. Finally, Model 4 is a nonlinear and interactive model where {x1,x2,x3}
are influential together. The remaining variables are always noisy and unrelated to the

outcome y. For the fifth model, the outcome variable is y, and there are 20 possible

x explanatory variables. The variable set {x1,x2,x3} is important, while the remaining

17 variables are noisy. This last model is designed to illustrate how the different VS

approaches might fare as the dimensionality grows while the sample size (n) remains

constant. The n size for each simulation is 100 observations.

Below are the five model specifications:

1. Linear additive:

y = 0.2x1 +0.5x2−0.1x3

2. Linear interactive:

y = x1 ∗ x2 ∗ x3 ∗ x4

3. Nonlinear:

y = (x1 + x2 + x3) mod 2

4. Nonlinear interactive:

y = (x1 ∗ x2 ∗ x3) mod 2

5. Nonlinear interactive (with 20 possible variables):

y = (x1 ∗ x2 ∗ x3) mod 2

I simulate 100 datasets for each model and conduct VS on each dataset for every model

using lasso, random forests, and evaluating variable set I-scores. The VS task for each



65

approach is to retrieve the true influential variable sets amongst the remaining noisy

ones. To analyze the simulated data with lasso and random forests, I use the open-source

R packages “glmnet” and “randomForests”. As VS is conducted within the models for

these two approaches, some work must be done to retrieve the variables found to be

important by lasso and random forest.

For lasso, this is more straightforward. All variable sets are introduced into the

lasso model. In the case of Models 1 through 4, this is the set of all possible variable

interactions amongst the 12 variables — a total of 4,095 unique variable sets. For the last

model, this is a total of 263,949 unique variable sets if we restrict our variable sets to up

to eight-way interactions. Lasso carries out VS by simply penalizing the parameters of

variable sets that are discarded to zero (after 10-fold cross validation within the dataset

to find the appropriate tuning parameter value). Variable sets for which parameters are

not penalized to zero are considered important and kept as predictors.

For random forests, if the focus is prediction, variable importance can be mea-

sured through the “mean decrease in gini” results from each random forest model run.

This measure is used for prediction using out-of-bag (OOB) samples, where the jth

variable’s importance is measured by random permutation of the variables in the bth

tree. For details, see Hastie et al. (2008, p.503). Unfortunately, as of the writing of

this paper, there are no obvious approaches to conducting the same type of variable set

importance ranking for neural networks; as such, the VS comparisons in the simulations

do not present neural networks.

The PR approach is also presented. As discussed, the I-score can be calculated

for each variable set under consideration. The I-scores of different variable sets, given a

common dataset, can be directly compared against one another; searching for the largest

I-scores should return the most influential variable sets. For a full replication of the

simulation, see simulation details in the Appendix.

3.6.1 Lasso VS

We consider how well using the lasso for VS in the first four models fares. Here

VS is amongst the 12 candidate variables and all their interactions. I conduct lasso

VS among all possible variable sets in Models 1-4. For Models 1 and 4, the lasso
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retrieves the correct variables and variable sets, {x1}, {x2}, and {x3} for Model 1 and

{x1,x2,x3} for Model 4, for all 100 simulations. Models 2 and 3 show some variation

in VS, however. These are presented in Figures 3.2 and 3.3, respectively. The x-axes

span the 100 simulated datasets. The y-axes are a list of any variable sets retained in

any of the 100 simulations. White cells indicate that the variable sets were penalized

to zero in the corresponding simulations. For instance, in Model 2, the variable set

(x1 ∗x2 ∗x3 ∗x4 ∗x8 ∗x12) was penalized to zero and not selected in simulation 100. Red

shaded cells indicate that the variable sets were kept in the corresponding simulations

and had positive coefficients (with darker shading for larger coefficients). Blue shaded

cells indicate that the variable sets were kept in corresponding simulations, but had

negative coefficients (again with darker shading for larger, more negative coefficients).

Correctly selected variable sets are highlighted in yellow throughout.

In Model 2, the lasso manages to select the correct variable set, {x1,x2,x3,x4} (or

(x1,x2,x3,x4) in Figure 3.2), through a good number of the simulations but also selects

six other variable sets with similar frequency throughout the simulations. In Model

3, the nonlinear model, many variable sets are retained (see Figure 3.3). The top 50

variable sets are shown (only a fraction of the lasso-retained variable sets); the approach

seems to have difficulties in finding the truly influential variables ({x1},{x2}, and {x3}).
The 50 top variable sets span many noisy variable sets, are not consistent across the 100

simulations, and do not include x1, x2, and x3 as individually selected variables.

For Model 5, the lasso is unable to run on all possible variable sets. Reducing

to eight-way interactions (263,949 variable sets) is still problematic due to (1) memory

insufficiencies in an average home PC desktop and (2) an inability to estimate the model

with an overly small number of observations n compared to the number of variable sets

(here we can consider these as parameters p, and in this case, n
p = 100

263,949 = 0.00038).

The lasso thus faces some difficulties in conducting VS with interactions and nonlinear

models, though is promising with linear models. It can also can face some computational

ceilings when n
p becomes too small.
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3.6.2 Random forests VS

We consider VS with random forests. Figures 3.4,3.5,3.6, and 3.7 presents heat

maps of the random forests variable set importance measure “mean decrease in gini”

across the first four models. Note, these maps have slightly different interpretations

with regard to their heat colorings when compared to the lasso VS. Here variable sets

are ranked based on their variable set importance measures directly. Thus, the more

red a cell appears, the more important random forest has determined the variable set to

be for that simulated dataset, while the more blue the cell appears the less important

the variable set. White cells are of medium importance. Note here only the top 50

variable sets (out of a total of 4095) are shown for presentation clarity. Again, the x-axes

across the four Figures depict the 100 simulated datasets. The y-axes are the variable

sets under consideration. Random forests appears to be able to select the important

variables in Models 1 and 3, {x1},{x2},{x3} and {x1},{x2},{x3} respectively, and to

discard the remaining noisy variables (see Figures 3.4 and 3.6, respectively). In Figure

3.5, which depicts Model 2, the linear interactive model, random forests retrieves the

individual variables {x1}, {x2}, {x3} and {x4} as the most important. These are indeed

the variables that are influential for the outcome, but the random forests approach does

not indicate that these variables should be interacted as a four-way interaction in order

to predict the outcome well. For Model 4 (see Figure 3.7), random forests selects {x1},
{x2}, and {x3} as individually important but does not indicate that these variables should

be interacted to be influential for the outcome.

In Model 5, which is a scenario where the ratio of n
p is quite small (0.00038),

random forests appears to be able to select the individual important variables x1,x2, x3

though does not return these variables as a set for the top three returned variable sets

(see Figure 3.8).

3.6.3 Partition retention VS

We turn finally to the PR VS. The first four models are shown in Figures 3.9,

3.10, 3.11 and 3.12. All variable set I-scores were calculated for each of the 100 simula-

tions and across all four models. The average top ranked 50 I-scores for each model are
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presented in the heat maps. For instance, in Model 4 (Figure 3.12), the variable set with

the highest I-score on average across all 100 simulated datasets was (x1 ∗ x2 ∗ x3) and

is thus ranked as the top row. Incidentally, this is also the correct variable set to select

for Model 4. The more red the cell appears, the higher the I-score for the correspond-

ing variable set and simulation. The more blue the cell appears, the lower the I-score

associated with that cell.

In Figure 3.9, which depicts Model 1, the top two variable sets include the vari-

ables (x1), (x2), and (x3). While these appear in a two-way and three-way interaction

variable set, as noted earlier, in the PR approach the backwards partitioning requires

that lower orders of returned variable sets are kept as well, as these might be influen-

tial, and merely appear less influential than the higher order in the sample. Thus the

PR approach would retrieve the individual variables, (x1), (x2), and (x3), which are the

truly influential ones for Model 1. The same holds for Model 3 (Figure 3.11) — the top

retrieved variable set is (x1 ∗ x2 ∗ x3), which when allowing for retention of lower order

variable sets, also returns the truly influential variables (x1), (x2), and (x3).

In Model 2 (Figure 3.10), the top returned variable set across simulations, based

on I-score ranking is (x1 ∗ x2 ∗ x3 ∗ x4), which is the truly influential variable set. Fig-

ure 3.12, which shows Model 4, likewise depicts the PR returning the truly influential

variable set (x1 ∗ x2 ∗ x3) as the top variable set across the simulations.

In Model 5, the I-scores of variable sets up to eight-way interactions (for a total

of 263,949 variable sets) were calculated. The average top ranked 50 I-scores are pre-

sented in Figure 3.13. The first ranked variable set is (x1∗x2∗x3), which is the true set of

important variables. The PR VS approach thus reliably returns the important variables

and variable sets throughout linear, nonlinear and interactive scenarios.

Finally, I provide a depiction of the I-score dropping process across the five

models in Figures 3.14, 3.15, 3.16, 3.17, and 3.18. In each of the models, the I-score is

plotted along the y-axes, while the x-axes are the variable sets under consideration. The

boxplots depict the distribution of I-score values of the given variable set across the 100

simulated datasets. For instance, in the first model depicted in Figure 3.14, the variable

set “x1− x3” (or {x1,x2,x3}) has an average I-score across the simulated datasets of

about 14. This is the highest I-score in the graph and also corresponds to the group of
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truly influential variables for the model. For each model, regardless of functional form

or the existence of interactions, the highest I-score as variables are removed from the

starting set of all 12 variables identifies the group of influential variables for each model

(the fifth model has a starting set of 20 variables but is also able to identify the group of

influential variables for the model). Finally the I-score dropping process is presented for

Model 5 in Figure 3.18, where the highest average I-score is also at the correct variable

set “x1− x3”.

It seems the I-score can comfortably select correct influential variables and is

able to distinguish these variables apart from noisy ones. When the model does not

include interactions and nonlinearities, lasso and random forests are also reasonable VS

approaches. Random forests and PR can conduct VS when n
p decreases to 0.00038, but

lasso faces some difficulties at that stage. To further illustrate the PR approach, we turn

to a real data application on civil war onsets in the next section.

3.7 Application: civil war onset

In this section, I analyze the Fearon and Laitin dataset from their 2003 paper on

civil wars using the PR approach as well as some comparison models, including Fearon

and Laitin’s main specified model. Ward et al. (2010) used the same data gathered by

Fearon and Laitin (2003) as well as Collier and Hoeffler (2004) to demonstrate the poor

predictive abilities of the models built from statistically significant variables. I build on

Ward et al.’s work to show: first, high statistical significance does not necessarily lead to

high predictivity. I discuss this phenomenon in further detail in Lo et al. (2015). In the

results section to follow, I show that a model including a PR VS stage to predict com-

pares favorably with Fearon and Laitin’s theoretically motivated main specified model,

increasing out of sample correct prediction rates from 78.98% to 98.05%. Second, im-

portant information helpful towards predicting may be lost when only using marginal

effects of independent variables. I present top returned variable sets in the PR VS stage

to illustrate the highly interactive and nonlinear effects of the explanatory variables on

civil war onset.

The original Fearon and Laitin dataset included a total of 82 variables. After
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removing variables that contained more than two thirds missing values, 39 variables

were included in the variables list including the dependent variable for civil war onset,

“onset”. I used median imputation on the remaining variables with missing values.10

I create lagged versions of up to five periods of variables that change over time (for

instance, country-years coded as 1 for “Asia” do not change over time). This creates

a total of 96 variables, inclusive of the onset dependent variable (see Tables 3.1, 3.2

and 3.3). If we wish to search amongst all variables as well as interactions up to say,

8-way interactions between variables, then this amounts to evaluating 121,550,931,645

variable sets. Given the size of the sample, n= 6610 observations, and the need to create

folds of data with testing data set aside to evaluate our predictions without overfitting,

we can already see that the variable space to explore is quite overwhelming and certainly

vastly larger than the n size.

The number of values each variable can take directly factors into how much the

data can be partitioned across a variable space. I have recoded continuous variables

so they take a maximum of 3 possible discrete values (here, 0, 1 and 2) in order to

keep the partition space manageable for the VS process. While this surely removes

some information from each continuous variable, the retained information boosts the

number of variables we can analyze and the number of interactions we can consider.

The recoded variables are only used in the VS process. After identifying groups of

variables, the researcher can turn to the original variable forms when constructing final

predictors for the prediction process.

In order to discretize continuous variables, I used k-means clustering, where

k = 3. For instance, the variable “popl”, which is lagged population, is a variable that

can take any positive integer value.

Many papers have approached predicting civil wars using a training set for in-

sample variable selection and prediction and leaving aside an independent testing set

to find an out of sample prediction rate. Cross-validation is a common approach for

tackling the problem of model overfitting (Geisser 1993, Kohavi 1995) and is a desirable

way to identify out-of-sample prediction rates. Currently the literature is short on a

10Imputation is a highly important and well-studied field in and of itself but I do not venture into this
here and simply use median imputation for ease of presentation. Converting to mean imputation produces
similar outcomes.
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widely agreed upon cross-validation techniques for time-series or panel data, however.11

For the purposes of this analysis, training data always occurs prior to testing data in

each of the three folds so that no future information is used in the training portion of

the analysis. This exercise attempts to mimic the “real world” where the researcher

might have data on the past years at hand and wishes to predict the future. I divide

the data into three sequential, but overlapping folds, so that there are three training

sets and three corresponding testing sets (see Table 3.10)12. Fold 1 is composed of a

training set spanning the years 1945-1984 inclusive, with a testing set of 1985-1986.

Fold 2’s training set spans 1952-1991 while the testing set is from 1992-1993. Fold

3’s training set covers 1958-1997 while 1998-1999 serve as the testing data. This is

to allow for a little more confidence in the reported out of sample error rates as three

separate independent testing sets are laid aside to conduct the testing errors. The average

out of sample error rates are taken across the three testing set folds.

For each of the training sets, I run the backwards dropping algorithm (PR steps

1 through 4) 100,000 times with a maximum starting variable set size of 8. This is

equivalent to allowing for capture of up to 8-way interactions, or 8-variable sets. The

starting partition size is thus 38 = 6,561 partition cells. Sample size and computational

power constraints determine the maximum starting variable set size in the backwards

dropping process. Given the training set sizes in each fold, choosing from 8 to 10

as maximum variable set sizes are feasible. I choose 8 ultimately as this made the

processing time faster (dropping from nearly 3 hours per training set to 30 minutes on a

home PC desktop) and also because the top returned influential variable sets were very

similar when using 8, 9 or 10 starting variable set sizes.

I retain variable sets with the top normalized I-scores to create predictors. These

predictors are then used on the testing data in a logistic lasso regression with onset as

the outcome variable.13

11The question of whether to validate the model or the variables in time series dependent data comes to
play in a way that does usually plague the researcher when conducting cross validation on otherwise iid
sample data.

12Since the onset variable appears as 1 in only roughly 10% of the sample, we require a large enough n
size in both training and testing sizes for each fold in order to have a reasonable number of onsets equal
to 1. Three folds were chosen for this reason as increasing folds after this quickly decreases the number
of onsets across folds to minimal or no onsets.

13I use logistic lasso as my model. Logistic regression is a common binary choice model for the civil
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3.7.1 PR Variable Selection results

Table 3.5 displays the top returned variable sets from each of the three training

sets, ranked from row 1 to row 5 in the Table where row 1 has the highest I-score. Recall

that this is the result of the novel variable selection stage I propose as helpful in predic-

tion efforts. Using the PR’s I-score and backwards dropping from randomly drawn

8-variable groups, I identify variable sets with the highest I-scores and keep these as

variable sets of interest for prediction. Most if not all of the variables are unsurprising;

after all, the population of variables collected by Fearon and Laitin were specifically

meant to either control for or be significantly associated with civil wars. However, what

is perhaps most interesting is that the top returned variable sets are all composed of

groups of variables which suggests that there is information from higher order inter-

actions and nonlinearities in how our explanatory variables are related with civil war

onset. This is due to the highly complex nature of social phenomena like conflict, of

which previous methodologies have not fully accounted.

While the civil war literature stresses the importance of how new a state might

be or how fragile (as measured in the Fearon and Laitin data through variables like “nw-

state” and “instab”) on the probability of seeing a civil war onset, what Table 3.5 tells us

is there are important nonlinearities in how these variables affect onset. Indeed, Hegre

et al. (2001) note the importance of the “newness” of a state in affecting the potential for

civil war outbreak. That some version of the “nwstate” variable (“nwstate”, followed by

“l2” to denote lagged 2 years, for example) is present in 11 out of the 15 variable sets in

Table 3.5 provides some evidence into the nonlinear and time-dependent ways in which

the proximity to independence of a country can affect the onset of civil war. Likewise,

variations of the nwstate variable seem to appear frequently in these variable sets with

war literature. Because of the inclusion of all lower orders of each higher-order influential interaction
from the backwards dropping process however, we are left with a slightly large number of parameters
to estimate (though this is still orders of magnitude smaller than the number of parameters needed to
estimate all variable interactions). The lasso is a common shrinkage and selection approach (see Hastie,
Tibshirani, and Friedman 2008 and Tibshirani 1996). I also try to estimate the lasso on a comparison
model to demonstrate that it is not the lasso itself that brings higher prediction rates, but lasso on all
higher order interactions up to 8-way interactions is unable to run due to memory insufficiencies and
overly small n

p . Reducing to 4-way interactions still faces the same problems. I discuss this further in the
“Feasibility and Costs” section. Correct prediction (and error rates) rates are found for each fold’s testing
sets, using 0-1 loss.
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variations of the instability (“instab”) variable. This further suggests that not only are

the two variables nonlinearly affecting the onset of civil wars differently over time, they

ought to be considered together. The interested researcher could also certainly take this

suggestive evidence as preliminary material for developing a theory that considers how a

country’s proximity to independence and its recent history of instability affect the onset

of civil war.

Similarly, Fearon and Laitin (2003) argue that an insurgent group’s ability to

mount an insurgency is key in whether a civil war occurs. One of their hypotheses pos-

tulates that increases in proxies for strength of the insurgent band should increase the

probability of civil war. These proxies include: newly independent states (“nwstate”),

political instability at the center (“instab”), a regime that mixes democratic and auto-

cratic features (“anoc”), and a large country population (“pop”). The authors test these

variables individually and find that these variables are all significantly associated with

civil war. What I find is that these variables (short of the population variable) all ap-

pear in interacting ways to predict civil war onset, as evidenced by their appearances

across many of the variable sets in Table 3.5. Lagged variations of these variables are

picked up by the top variables but that these variables return in groups suggests that they

likely work together to predict civil war onset, and not merely on their own. Interest-

ingly, Fearon and Laitin find that the percent of Muslims in each country (“muslim”)

is not significantly associated with civil war onset and thus leave out this variable in

their main regression specification. I find that the “muslim” variable appears in vari-

ous lagged forms in nine of the fifteen top variable sets across the three training sets,

but only in conjunction with other variables. As these top variable sets demonstrate, it is

highly possible that the percent of Muslims in each country nonlinearly and interactively

predict civil war with other variables. It is possible that the variable carries little to no

marginal information but requires interaction with other variables such as “new state”

and “instability”, which always appear alongside “muslim” in the table.

In this way, we might be able to take the exercise of variable selection as both

an important step to prediction with high dimensional data, but also as a preliminary

theory-building step. After conducting variable selection via PR, we turn to modeling.
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3.7.2 Prediction results

For each of the three fold training sets, I incorporate returned influential variable

sets into model form and test out-of-sample prediction error rates. Here each training

set and its associated set of influential variables (found through PR) are subjected to the

logistic lasso with a 10-fold cross validation within the logistic lasso model in order to

determine the tuning parameter value that minimizes training error. No testing sets have

been touched at this stage. I refer to this main model as “PR Lasso” henceforth. This is

because a model is required after VS by PR, and the PR approach itself does not dictate a

model. As previously noted, since the PR-returned variable sets allow for the possibility

of lower order interactions (that have possibly slightly less signal than the higher-order

variable set returned), it is prudent to account for all subsets of variables in a returned

variable set. Again, the reduction in variable sets, and thus dimensionality, should be

significant enough to more than make up for the extra estimation efforts required for the

lower-order variable sets. It is thus reasonable to apply a model that has a penalizing

element such as lasso.

I also run the following comparison models: random forests (“RF”), neural net-

works (“NN”), lasso on the variables selected in Fearon and Laitin’s main model (see

Fearon and Laitin 2003; “FL lasso”), and a logistic regression on the variables selected

in the Fearon and Laitin model (“FL logistic”), which is a replica of Fearon and Laitin’s

main model applied to each of the three training data.

Feasibility and costs

I briefly discuss the feasibility and costs of running each of the prediction mod-

els. All computing times are considered for a standard Dell PC home desktop. The

PR lasso requires first conducting PR VS (here on up to 8-way interactions), which for

each fold requires 15 minutes of computing time, followed by the prediction model it-

self which requires a couple minutes per model. Neural networks (“NN”) and random

forests (“RF”) conduct VS and model fitting at the same time and require roughly 10-15

minutes for each model. The “FL logistic” model similarly requires very little com-

putation time (only a few minutes), in part because the model only estimates eleven

coefficient parameters.
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The reader might be interested in the performance of lasso on all variable sets

as a relevant comparison to the PR lasso model. The lasso model on all variable sets

up to 8-way interactions (to mimic the order of interactions PR can handle) is unable

to run due to the overly small proportion of sample size to parameters estimated (p is

too much larger than n; n
p = 3.295x10−8). Reducing the order to 6-way interactions

limits the parameters somewhat ( n
p = 4.729x−6) but lasso is still unable to run.14 Thus,

the lasso model is excluded in the application due to an inability to estimate the model.

This should not be overly surprising, as Model 5 in the Simulations section tells us

that when n
p = 0.00038 the lasso already starts running into a computational ceiling.

Thus, a shortcoming to the lasso approach is that it seems to buckle under computation

power constraints earlier than random forests, neural networks and PR. When n
p is of

reasonable size and the true data generating process is not extremely nonlinear, lasso

can be very good for prediction.

Results

Table 3.6 presents the error rates across the different models and three testing

data sets. Recall that VS and model training are all conducted on the training data;

testing data are set aside to determine out of sample prediction error rates. For each of

the three folds, the lowest error rates are boldfaced; what should be noted is that the PR

Lasso always does quite well in that it has the lowest prediction error rates across the

three folds.

The PR approach has the lowest average error rate of 1.95% (or 98.05% correct

prediction rate) for predicting the onset of a civil war. Random forests and neural net-

works also perform reasonably well, with slightly higher average error rates of 2.72%

and 2.70% respectively. On the other hand, the average error rate across the three folds

for the “FL Logistic” model, which recall is the model that mirrors Fearon and Laitin’s

main specified model, applied to each of the training data ) is 26.02% (average correct

prediction rate=73.98%). The “FL Lasso” model the error rate is 30.13% and the av-

erage correct prediction rate is 69.87%. What is clear is that using significance as a

14The models were run in R on a standard 64-bit PC (Dell) home desktop. The memory required for
the matrix sizes also greatly exceeded the capacity available.
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criterion to variable select (both FL models) leads to poorer prediction performance.

In Table 3.7, I break down the errors into false positives and negatives. False

positives occur when the model predicts civil war onset when no onset occurs, while

false negatives are when the model predicts no onset of civil war when in reality an onset

did occur. The PR model produce the least false positives and false negatives across the

three folds, while the FL lasso and FL logistic models produce the most. While the FL

lasso and FL logistic also produced fewer false negatives in Fold 2 than the remaining

four models, the total number of mistakes (false positives and false negatives together)

the two models make are nearly tenfold that of the PR, RF, and NN models.

3.8 Conclusion

Predicting civil war onsets requires both identifying highly influential variables

and variable sets and selecting good models that minimize prediction errors in out-of-

sample testing. Since the main goal is minimizing error rates, and not establishing

significance of key independent variables as in the case of theory-building and testing,

we should approach predicting civil wars differently. Current efforts towards predic-

tion often turn to theoretical work on the causes of civil war as a method of identifying

variables to use in models for prediction. Selecting significant variables for prediction

does not seem to automatically lead to better predictions, however. I argue in this pa-

per that it is in fact the universe of collected independent variables — and all of their

possible interactions — that compose the full set of possible variables to consider for

prediction. This approach to finding variables and variable sets is more appropriate for

a prediction-oriented goal.

However, given the large number of variables and their interactions, selecting

for influential variables without using significance as a criterion and taking into account

higher order interactions is a difficult feat. This paper proposes applying the PR method

as a possible candidate for these two goals and illustrates the method using simulations

and an application to Fearon and Laitin’s 2003 civil wars data. Results from the sim-

ulations and data application are promising. In the simulations, the PR I-score is able

to locate influential variable sets even when the underlying data generating process is
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nonlinear and interactive. Other favored approaches such as random forests and lasso

appear to perform well, but are less reliable when the data is both nonlinear and interac-

tive. In addition, the lasso begins to break down as the number of parameters p increases

too much compared to the number of observations n ( n
p decreases substantially).

In the data application, compared to similar models that use significance-based

selection of variables, the model that uses variable sets returned through PR searching

(“PR lasso”) improves prediction rates from 69.87% and 73.98% to 98.05%. The PR

approach performs weakly better than well-known machine learning approaches such

as random forests and neural networks. As such, it can be regarded as a candidate

technique in predicting conflict and a helpful addition to the prediction toolkit.

The real data application conducted in this paper demonstrates the applicability

of the PR method. It is highly likely that important existing variables not collected in the

Fearon and Laitin dataset may also capture important information for the prediction of

civil war. As our datasets grow in political science, researchers can and should consider

the big data problems of dimensionality reduction as not simply baggage but also oppor-

tunity; it is very possible that large amounts of information can be found in these higher

dimensions and that these interactions can be found using appropriate VS strategies.
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3.10 Tables and Figures
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Figure 3.1: Backwards Dropping Process. The BDA process involves randomly
drawing a subset of starting variables and calculating I-scores as random variables are
dropped from the subset.
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Simulations 1−100
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Figure 3.2: Lasso VS for Model 2. The x-axes represent the 100 simulations, and the
y-axes depict the variable sets returned that were not penalized to 0 by the lasso. White
cells indicate that some variable sets were penalized 0 in the corresponding simulations.
Red cells indicate variable sets retained by lasso with positive coefficients; blue cells
indicate variable sets retained by lasso with negative coefficients. The correctly selected
variable set is highlighted in yellow.
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Figure 3.3: Lasso VS for Model 3. The x-axes represent the 100 simulations, and the
y-axes depict the variable sets returned that were not penalized to 0 by the lasso. White
cells indicate that some variable sets were penalized 0 in the corresponding simulations.
Red cells indicate variable sets retained by lasso with positive coefficients; blue cells
indicate variable sets retained by lasso with negative coefficients. No variable sets are
highlighted as the correct variable set was not selected in the top 50.
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Figure 3.4: Random forests VS for Model 1. The x-axis depicts the 100 simulations,
and the y-axis depicts the top 50 variable sets in descending order of variable set im-
portance from the top to bottom. The correctly selected variable sets are highlighted in
yellow.



83

x2,x3,x4,x8x3,x4,x12x1,x3,x4,x6x4,x9x2,x4,x12x1,x2,x4,x6x2,x3x1,x3,x4,x10x1,x2,x3,x4,x6x1,x2,x4,x10x2,x3,x4,x12x3,x4,x9x1,x2,x3,x4,x10x2,x4,x9x2,x3,x4,x9x2,x3,x4,x6x3,x4,x6x2,x3,x4,x10x3,x4,x10x2,x4,x6x2,x4,x10x4,x6x4,x10x1,x2,x3,x4,x11x1,x2,x3,x4,x5x1,x3,x4,x11x1,x2,x4,x11x1,x3,x4,x5x1,x2,x4,x5x1,x4,x11x1,x4,x5x2,x3,x4,x11x2,x3,x4,x5x3,x4,x11x3,x4,x5x2,x4,x11x2,x4,x5x1,x2,x3,x4x4,x11x4,x5x1,x3,x4x1,x2,x4x2,x3,x4x1,x4x3,x4x2,x4x1x3x2x4

Simulations 1−100

To
p 

50
 v

ar
ia

bl
e 

se
ts

RF VS: Model 2 

−20 0 10 20
Value

Color Key

x1,x2,x3,x4

Figure 3.5: Random forests VS for Model 2. The x-axis depicts the 100 simulations,
and the y-axis depicts the top 50 variable sets in descending order of variable set im-
portance from the top to bottom. The correctly selected variable sets are highlighted in
yellow.
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Figure 3.6: Random forests VS for Model 3. The x-axis depicts the 100 simulations,
and the y-axis depicts the top 50 variable sets in descending order of variable set im-
portance from the top to bottom. The correctly selected variable sets are highlighted in
yellow.
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Figure 3.7: Random forests VS for Model 4. The x-axis depicts the 100 simulations,
and the y-axis depicts the top 50 variable sets in descending order of variable set im-
portance from the top to bottom. The correctly selected variable sets are highlighted in
yellow.
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Figure 3.8: Random forests VS for Model 5. The x-axis depicts the 100 simulations,
and the y-axis depicts the top 50 variable sets in descending order of variable set im-
portance from the top to bottom. The correctly selected variable sets are highlighted in
yellow.
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Figure 3.9: I-score VS for Model 1. Variables (x1,x2,x3) are influential in Model 1.
The x-axis depicts the top 50 variable sets ordered by I-score. The y-axis depicts the
corresponding I-scores of each variable set. The correctly selected variable sets are
highlighted in yellow.
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Figure 3.10: I-score VS for Model 2. Variable set (x1,x2,x3,x4) is influential in Model
2. The x-axis depicts the top 50 variable sets ordered by I-score. The y-axis depicts
the corresponding I-scores of each variable set. The correctly selected variable set is
highlighted in yellow.
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Figure 3.11: I-score VS for Model 3. Variables (x1,x2,x3) are influential in Model
3. The x-axis depicts the top 50 variable sets ordered by I-score. The y-axis depicts
the corresponding I-scores of each variable set. The correctly selected variable set is
highlighted in yellow.
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Figure 3.12: I-score VS for Model 4. Variable set (x1,x2,x3,x4) is influential in Model
4. The x-axis depicts the top 50 variable sets ordered by I-score. The y-axis depicts
the corresponding I-scores of each variable set. The correctly selected variable set is
highlighted in yellow.
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Figure 3.13: I-score VS for Model 5. The variable set (x1,x2,x3) is influential in
Model 5. The x-axes depict the top 50 variable sets ordered by I-score. The y-axes
depict the corresponding I-scores of each variable set. The correctly selected variable
set is highlighted in yellow.
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Figure 3.14: I-score drop in Model 1. Variables (x1,x2,x3) are influential in Model
1. The x-axis depicts variable sets considered. The y-axis depicts the corresponding
I-scores of each variable set. Boxplots indicate the distribution of I-scores for each
variable set across simulations. The correctly selected variable set is highlighted in
yellow.
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Figure 3.15: I-score drop in Model 2. Variable set (x1,x2,x3,x4) is influential in Model
2. The x-axis depicts variable sets considered. The y-axis depicts the corresponding
I-scores of each variable set. Boxplots indicate the distribution of I-scores for each
variable set across simulations. The correctly selected variable set is highlighted in
yellow.
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Figure 3.16: I-score drop in Model 3. Variables (x1,x2,x3) are influential in Model
3. The x-axis depicts variable sets considered. The y-axis depicts the corresponding
I-scores of each variable set. Boxplots indicate the distribution of I-scores for each
variable set across simulations. The correctly selected variable set is highlighted in
yellow.
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Figure 3.17: I-score drop in Model 4. The variable set (x1,x2,x3) is influential in
Model 4.The x-axis depicts variable sets considered. The y-axis depicts the correspond-
ing I-scores of each variable set. Boxplots indicate the distribution of I-scores for each
variable set across simulations. The correctly selected variable set is highlighted in yel-
low.
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Figure 3.18: I-score drop in Model 5. Variable set (x1,x2,x3) is influential in Model 5.
The x-axes depict variable sets considered. The y-axes depict the corresponding I-scores
of each variable set. Boxplots indicate the distribution of I-scores for each variable set
across simulations. The correctly selected variable set is highlighted in yellow.
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Table 3.1: Fearon & Laitin variables “ccode” through “plurall5”

Statistic Mean St. Dev. Min Max

ccode 450.622 248.143 2 950
year 1,975.548 15.075 1,945 1,999
popl 31,149.740 101,250.800 222.000 1,238,599.000
popl2 30,448.010 99,351.290 222.000 1,227,177.000
popl3 29,756.370 97,460.450 222.000 1,215,414.000
popl4 29,073.640 95,578.420 222.000 1,203,324.000
popl5 28,403.760 93,704.140 222.000 1,190,918.000
lpopl1 9.049 1.455 5.403 14.029
polity2l −0.506 7.480 −10 10
gdpenl 3.592 4.465 0.048 66.735
gdptypel 0.842 1.357 0 4
gdptypel2 0.798 1.349 0 4
gdptypel3 0.756 1.341 0 4
gdptypel4 0.713 1.331 0 4
gdptypel5 0.670 1.320 0 4
lgdpenl1 7.649 1.038 3.871 11.108
mtnest 18.088 20.966 0.000 94.300
lmtnest 2.177 1.404 0.000 4.557
elevdiff 3,180.187 2,008.973 53 9,002
ethfracl 0.383 0.282 0.001 0.925
ethfracl2 0.381 0.279 0.001 0.925
ethfracl3 0.380 0.276 0.001 0.925
ethfracl4 0.378 0.273 0.001 0.925
ethfracl5 0.374 0.269 0.001 0.925
efl 0.460 0.264 0.002 1.000
efl2 0.461 0.261 0.002 1.000
efl3 0.461 0.258 0.002 1.000
efl4 0.462 0.255 0.002 1.000
efl5 0.462 0.252 0.002 1.000
plurall 0.661 0.243 0.004 0.999
plurall2 0.661 0.240 0.004 0.999
plurall3 0.662 0.237 0.004 0.999
plurall4 0.663 0.234 0.004 0.999
plurall5 0.664 0.231 0.004 0.999
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Table 3.2: Fearon & Laitin variables “secondl” through “warl”

Statistic Mean St. Dev. Min Max

secondl 0.153 0.110 0.000 0.440
secondl2 0.153 0.108 0.000 0.440
secondl3 0.153 0.107 0.000 0.440
secondl4 0.152 0.106 0.000 0.440
secondl5 0.152 0.104 0.000 0.440
numlangl 6.782 7.144 1 46
numlangl2 6.715 7.072 1 46
numlangl3 6.648 6.999 1 46
numlangl4 6.581 6.925 1 46
numlangl5 6.514 6.849 1 46
relfracl 0.367 0.216 0.000 0.783
relfracl2 0.366 0.213 0.000 0.783
relfracl3 0.365 0.211 0.000 0.783
relfracl4 0.364 0.208 0.000 0.783
relfracl5 0.363 0.205 0.000 0.783
plurrell 72.969 20.163 25 100
plurrell2 73.156 19.934 25 100
plurrell3 73.344 19.700 25 100
plurrell4 73.532 19.461 25 100
plurrell5 73.720 19.218 25 100
minrelpcl 18.190 12.786 0 50
minrelpcl2 18.110 12.626 0 50
minrelpcl3 18.030 12.463 0 50
minrelpcl4 17.950 12.298 0 50
minrelpcl5 17.748 12.153 0 50
musliml 24.964 37.146 0.000 100.000
musliml2 24.335 36.834 0.000 100.000
musliml3 23.707 36.509 0.000 100.000
musliml4 23.078 36.170 0.000 100.000
musliml5 22.450 35.816 0.000 100.000
warsl 0.150 0.407 0 4
warsl2 0.145 0.400 0 4
warsl3 0.140 0.393 0 4
warsl4 0.135 0.386 0 4
warsl5 0.129 0.378 0 4
warl 0.135 0.341 0 1
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Table 3.3: Fearon & Laitin variables “western” through “onset”

Statistic Mean St. Dev. Min Max

western 0.175 0.380 0 1
eeurop 0.098 0.297 0 1
lamerica 0.183 0.387 0 1
ssafrica 0.241 0.428 0 1
asia 0.166 0.372 0 1
nafrme 0.138 0.345 0 1
colbrit 0.287 0.452 0 1
colfra 0.171 0.377 0 1
oill 0.126 0.332 0 1
oill2 0.123 0.328 0 1
oill3 0.119 0.324 0 1
oill4 0.115 0.319 0 1
oill5 0.111 0.314 0 1
ncontig 0.173 0.379 0 1
nwstate 0.030 0.170 0 1
instabl 0.142 0.349 0 1
instabl2 0.138 0.345 0 1
instabl3 0.134 0.341 0 1
instabl4 0.131 0.337 0 1
instabl5 0.125 0.331 0 1
anocl 0.223 0.416 0 1
deml 0.329 0.470 0 1
cowwarl 0.067 0.251 0 1
sdwarl 0.124 0.330 0 1
colwarl 0.081 0.273 0 1
onset 0.017 0.137 0 4

Table 3.4: 3-fold training and testing sets
Training set years Testing set years # of cases # of controls

Fold 1 1945-1984 1985-1986 71 4319
Fold 2 1952-1991 1992-1993 75 4786
Fold 3 1958-1997 1998-1999 90 5210
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Table 3.5: Example of top returned variable sets. Returned variable sets with the
highest I-scores each of the three training sets are illustrated here. Variables with num-
bers at the end of their names are lagged the corresponding number of years.

Fold 1 Fold 2 Fold 3
1 musliml3, warsl2, asia,

nwstate, instabl5, sdwarl (6)
musliml5, asia, nwstate,

instabl, instabl5, sdwarl (6
var)

asia, nwstate, instabl4, anocl,
sdwarl, colwarl (6 var)

2 asia, nafrme, nwstate, sdwarl
(4 var)

musliml2, asia, nwstate,
instabl3, instabl4, sdwarl (6

var)

musliml5, asia, nwstate,
instabl, sdwarl (5 var)

3 musliml4, asia, nwstate,
instabl,sdwarl (5 var)

musliml5, asia, nwstate,
instabl4, anocl (5 var)

musliml5, warsl3, nwstate,
instabl3, instabl5, sdwarl (6

var)
4 popl, musliml5, nwstate,

instabl, sdwarl (5 variables)
popl2, musliml4, nwstate,

instabl4, anocl (5 var)
warsl, instabl4, anocl, sdwarl

(4 var)
5 asia, nafrme, sdwarl, colwarl

(4 variables)
numlangl2, ssafrica, colfra,
instabl, cowwarl, colwarl (6

var)

warl, instabl4, anocl, sdwarl
(4 var)

Table 3.6: Model error rates: The “PR Lasso” model includes searching for interac-
tion terms of up to 8-way interactions. The “FL Lasso” and “FL Logistic” models are
run on explanatory models from Fearon and Laitin’s (2003) main model specification:
war lagged, gdp, population, mountainous region, non-contiguous state, oil, new state,
instability, democracy, ethnic fractionalization, and religious fractionalization.

Testing error rate PR Lasso RF NN FL Lasso FL Logistic
Fold 1 0.36% 0.73% 0.36% 20.81% 19.71%
Fold 2 4.21% 5.83% 6.47% 29.45% 33.98%
Fold 3 1.28% 1.6% 1.28% 40.13% 24.36%

Average error rate 1.95% 2.72% 2.70% 30.13% 26.02%
Average correct
prediction rate

98.05% 97.28% 97.3% 69.87% 73.98%
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Table 3.7: False positives (+) and False negatives (-).
Fold 1 Fold 2 Fold 3

False + False - False + False - False + False -
PR Lasso 0 1 0 13 0 4

RF 1 1 7 13 1 4
NN 0 1 5 13 0 4

Lasso 0 1 0 13 0 4
FL Lasso 56 1 102 3 87 1

FL Logistic 53 1 88 3 75 1
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Appendix A

Appendix for Chapter 1

A.1 Partition Retention and I score

The partition retention (PR) approach to variable selection depends heavily on

the I-score applied to small groups of explanatory variables. Suppose we have n obser-

vations on a disease phenotype Y . When dealing with a small group of m SNP’s, each

individual is represented by a value Y of the dependent variable and one of m1 = 3m

possible cells into which the m variables fall. Then the value of I is given by

I =
m1

∑
j=1

n j

n
(Ȳj− Ȳ )2

s2/n j
=

∑
m1
j=1 n2

j(Ȳj− Ȳ )2

∑
n
i=1(Yi− Ȳ )2 ,

where Yi corresponds to the i-th individual, Ȳ is the mean of all n Y values, s is the

standard deviation of all n Y values, Ȳj is the mean of the Y values in cell j, n j is the

number of individuals in cell j, and n is the total number of individuals. The measure

I is a statistic which may be calculated from the observed data, and does not involve

knowing the underlying distributions, as did Truth in Example 4.

The I-score has several desirable properties. First it does not require specifica-

tion of a model for the joint effect of the m SNPs on Y . It is designed to capture the

discrepancy between the conditional means of Y given the values of the SNPS and the

overall mean of Y . Unlike odds ratios as a measure of effect in assessing simple 2× 2

tables, I captures and aggregates all discrepancy (signals) from all m1 cells and forms
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a flexible measure. It can be used as a measure to assess joint influence or effect sizes,

and, importantly, is well-correlated with predictivity.

Second, under the null hypothesis that the subset has no effect on Y , the expected

value of I remains non-increasing when dropping variables from the subset. In other

words, the I score is robust to changes to the number of SNPs, m. And I has the property

that adjoining to the group another variable which is independent of Y will tend to

decrease I, the PR method is based on selecting a group at random and sequentially

eliminating those variables which diminish I the most, and retaining those for which I

can no longer be diminished. Those variables, that are retained most often from many

randomly chosen groups are candidates for variable selection. The fact that I does not

automatically increase as more variables are added to the group being measured is a

good property of the I-score.

Finally, under the null hypothesis of no effect I acts like a weighted average of

independent chi-squares with one degree of freedom. Therefore, I values substantially

larger than 1 are worth noting.
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Appendix for Chapter 2

Proof of Lemma 1:

It is obvious that |a| ≤ b. Let S1 be the sum of the positive values of z j and S2

the sum of the negative values. Let T1 be the sum of the squares of the positive values

and T2 the sum of the squares of the negative values. It follows that S1 + S2 = a and

S1−S2 = b and thus S1 = (a+b)/2 and S2 = (a−b)/2. Then clearly T1 ≤ S1
2 and T2 ≤ S2

2.

Consequently,
K

∑
j=1

z j
2 = T1 +T2 ≤ S1

2 +S2
2 =

a2 +b2

2
(B.1)

which is equivalent to the inequality in Equation (2.5) and equality is attained when

there are at most one positive and one negative component if |a|< 1.

B.1 Proof of Theorem 1:

We prove that the I-score approaches a constant multiple of θI asymptotically.

Under the null hypothesis of no association between X = {Xk, k = 1, ...,m} and

Y, IΠX can be asymptotically expressed as ∑
m1
j=1 λ jχ

2
j (a weighted average), where λ j is

between 0 and 1 and ∑
m1
j=1 λ j is equal to 1−∑

m1
j=1 p j

2, where p j is the cell j’s probability.

{χ2
j } are m1 chi-squares, each with degree of freedom, df= 1 (see Chernoff, Lo, and

Zheng 2009).

Furthermore, the above formulation and properties of IΠX apply to the specified
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Y model with case-control study (where Y = 1 designates case and Y = 0 designates

control) as demonstrated in Chernoff, Lo, and Zheng 2009. More specifically, in a case-

control study with nd cases and nu controls (letting n= nd +nu), ns2
nIΠX can be expressed

as the following:

ns2
nIΠX = ∑

j∈ΠX

n2
j(Ȳ j− Ȳ )2

= ∑
j∈ΠX

(nm
d, j +nm

u, j)
2
( nm

d, j

nm
d, j +nm

u, j
− nd

nd +nu

)2

=

(
ndnu

nd +nu

)2

∑
j∈ΠX

(nm
d, j

nd
−

nm
u, j

nu

)2

where nm
d, j and nm

u, j denote the numbers of cases and controls falling in jth cell, and ΠX

stands for the partition formed by m variables in X. Since the PR method1 seeks the

partition that yields larger I-scores, one can decompose the following:

ns2
nIΠX = ∑

j∈ΠX

n2
j(Ȳj− Ȳ )2 = An +Bn +Cn

where, An = ∑ j∈ΠX n2
j(Ȳj−µ j)

2, Bn = ∑ j∈ΠX n2
j(Ȳ −µ j)

2, and Cn = ∑ j∈ΠX−2n2
j(Ȳj−

µ j)(Ȳ−µ j). Here, µ j and µ are the local and grand means of Y , that is, E(Ȳj) = µ j; Ȳ =

µ = nd
nd+nu

for fixed n. It is easy to see that both terms An and Cn, when divided by n2

converge to 0 in probability as n−→ ∞. We turn to the final term, Bn. Note that:

lim
n

Bn

n2
P
= lim

n ∑
j∈ΠX

(
n2

j

n2 )(µ j−µ)2

In a case-control study, we have:

µ j =
ndP( j|d)

ndP( j|d)+nuP( j|u)

and

µ =
nd

nd +nu

1The PR method encompasses a backwards dropping algorithm (BDA) that is introduced in Wang
et al. 2012; we directly cite and present the BDA in the SI.
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Since for every j, n j
n converges (in probability) to p j = λP( j|d) + (1− λ )P( j|u) as

n→ ∞, if limn
nd
n = λ , a fixed constant between 0 and 1, it follows that:

Bn

n2 = ∑
j∈ΠX

(
n2

j

n2 )(µ j−µ)2 P→ ∑
j∈ΠX

p2
j
( λP( j|d)

λP( j|d)+(1−λ )P( j|u)
−λ

)2 as n→ ∞

= ∑
j∈ΠX

{
λP( j|d)−λ [λP( j|d)+(1−λ )P( j|u)]

}2

= ∑
j∈ΠX

{
λ (1−λ )P( j|d)− [λ (1−λ )P( j|u)]

}2

= λ
2(1−λ )2

∑
j∈ΠX

[P( j|d)−P( j|u)]2

= λ
2(1−λ )2

∑
j∈ΠX

[P( j|d)−P( j|u)]2

Thus, ignoring the constant term in the above equation, the I-score can guide a search for

X partitions which leads to finding larger values of the summation term ∑ j∈ΠX[P( j|d)
−P( j|u)]2. We have proven Theorem 1.

B.2 Proof of Corollary 1:

The asymptotic lower bound of Equation (2.6) is a consequence of Lemma 1 and

Theorem 1. In theory, the above corollary allows us to apply a useful lower bound for

identifying good variable sets with large I-scores. In practice, however, once the variable

sets are found (through their large I-scores), the true prediction rates can be greater than

the identified lower bounds. Theorem 1 provides a simple asymptotic behaviors of I-

score under some strict assumptions. We offer similar derivations below following two

levels of relaxations of the constraints.

We remark that with additional work, one can show that the convergence given

in Equation (2.6) can be extended to be uniformly over all partitions {Π} with bounded

number of cells and for all λ that stay away from 0 and 1.
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B.3 Proof of Corollary 2:

COROLLARY 2 Under the assumptions of an arbitrary prior π(d) and nd
n → λ as

n→ ∞, the correct prediction rate can be easily seen as:

θ
∗
c [pXd , pXu] =

1
2
+

1
2 ∑

j∈ΠX

∣∣P( j|d)π(d)−P( j|u)π(u)
∣∣ (B.2)

Let the modified score I∗
Πn

be defined as

ns2
nI∗Πn

=
1
4 ∑

j∈ΠX

n2
j

[
ȳ j(

π(d)
λ

)− (1− ȳ j)(
π(u)
1−λ

)

]2

. (B.3)

Then we have:

lim
n→∞

s2
nI∗

Πn

n
P
=

1
4 ∑

j∈ΠX

[
P( j|d)π(d)−P( j|u)π(u)

]2
. (B.4)

Similar lower bounds to Corollary 1 can then be derived as:

θ
∗
c [pXd , pXu] =

1
2
+

1
2 ∑

j∈ΠX

∣∣P( j|d)π(d)−P( j|u)π(u)
∣∣ (B.5)

≥ 1
2
+

1
2

√
lim
n→∞

λ (1−λ )I∗
Πn

2n
−a2 (B.6)

where a = ∑ j∈ΠX(P( j|d)π(d)−P( j|u)π(u)) = π(d)−π(u).

Similar to Corollary 1, Equation (B.5) is a direct consequence of Equation (B.4)

and Lemma 1 (but with z j replaced by |P( j|d)π(d)−P( j|u)π(u)|).

B.4 Generalizing to different loss and cost functions:

Thus far, we have used a 0-1 loss on the binary classification problem. The 0-1

loss treats false negatives and false positives equally. In real applications, the scientist

may wish to weigh the costs of different incorrect predictions differently. For instance,

failing to detect a cancer patient may be deemed a more costly mistake to make than

that of misclassifying a healthy patient because ameliorating the former mistake later on
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can be more difficult. The different cost amounts in making a loan decision is another

example. The cost of lending to a defaulter may be seen as greater than that of the loss-

of-business cost of declining a loan to a non-defaulter due to some positive level of risk

aversion. Let loss function L be defined as:

L(d,u) = l1, L(u,d) = l2 (B.7)

and

L(d,d) = L(u,u) = 0 (B.8)

where l1 and l2 are the prices paid (or losses incurred) for misclassifying a diseased

individual to the healthy class or a healthy person to a diseased class, respectively. We

can derive the optimum Bayes’ solution by minimizing the expected predicted loss, that

is, to assign future observations to the class with less loss, given its j value. We simply

assign a test sample with partition (predictor) j to d if:

P( j|d)π(d)L(u,d)< P( j|u)π(u)L(d,u)

otherwise, assign to u. Equivalently, choose d if

P( j|d)π(d)l2 < P( j|u)π(u)l1

otherwise u. In this way, the expected loss of adopting this rule is thus:

el =
1
2 ∑

j∈ΠX

min{a j,b j},

where a j = P( j|d)π(d)l2 and b j = P( j|u)π(u)l1. The random rule of choosing d or u

with equal probabilities has an expected loss of:

γ =
1
2 ∑(a j +b j) =

1
2
(π(d)l2 +π(u)l1) ,
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a constant independent of partition Πx. So, the “correct prediction gain”, θ l
c (interpreted

as the improvement of correct prediction with respect to γ), can be defined as:

θ
l
c =

1
2 ∑

j∈ΠX

max{a j,b j}=
1
2 ∑

j∈ΠX

(a j +b j)− el = γ− el

Again we have

θ
l
c =

γ

2
+

cl− el

2

=
γ

2
+

1
2 ∑

j∈ΠX

∣∣a j−b j
∣∣

After standardizing by γ , we obtain the correct prediction rate as:

θc =
θ l

c
γ

=
1
2
+

1
2γ

∑
j∈ΠX

∣∣a j−b j
∣∣

Collecting the above discussion together, let the cost-based I-score Ic
ΠX

be defined as:

ns2
nIc

ΠX
=

1
4γ2 ∑

j∈ΠX

n2
j

[
ȳ j

(
π(d)

λ

)
l2− (1− ȳ j)

(
π(u)
1−λ

)
l1

]2

≈ n2

4γ2 ∑
j∈ΠX

[P( j|d)π(d)l2−P( j|u)π(u)l1]2 . (B.9)

B.5 Corollary 3:

We present the following lower bound in Corollary 3. Let

∑
j∈ΠX

(P( j|d)π(d)l2−P( j|u)π(u)l1) = π(d)l2−π(u)l1 = a.
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COROLLARY 3. Under the assumptions of Corollary 2 and using the loss function

L described in Equation (B.7), then

lim
n→∞

s2
nIc

ΠX

n
P
=

1
4γ2 ∑

j∈ΠX

[P( j|d)π(d)l2−P( j|u)π(u)l1]2 (B.10)

Furthermore, one can derive a similar lower bound for the correct prediction rate

θc as:

θc =
1
2
+

1
2γ

∑
j∈ΠX

∣∣a j−b j
∣∣

P
≥ lim

n→∞

1
2
+

1
2γ

√
λ (1−λ )Ic

ΠX

n
−a2


=

1
2
+

1
2γ

√
lim
n→∞

λ (1−λ )Ic
ΠX

n
−a2 (B.11)

The proofs for Equations (B.10) and (B.11) are quite similar to that for Corollary 2

given above; we shall omit them.

B.6 Backwards Dropping Algorithm

The backward dropping algorithm (BDA) is a greedy algorithm to search for

the variable subset that maximizes the I-score through stepwise elimination of variables

from an initial subset sampled in some way from the variable space.2 The details are as

follows.

1. Training set: Consider a training set {(y1, x1), ..., (yn, xn)} of n observations,

where xi = (x1i, ..., xpi) is a p-dimensional vector of explanatory variables. Typi-

cally p is very large. All explanatory variables are discrete.

2. Sampling from variable space: select an initial subset of k explanatory variables

Sb = {Xb1, ..., Xbk}, b = 1, ..., B.

2The presentation of the backward dropping algorithm is taken directly from section 2.2 of Wang et
al. (2012).
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3. Compute I-score: I(Sb) = ∑ j∈Pk
n2

j(Ȳj− Ȳ )2.

4. Drop variables: Tentatively drop each variable in Sb and recalculate the I-score

with one variable less. Then drop the one that gives the highest I-score. Call this

new subset S′b which has one variable less than Sb.

5. Return set: Continue the next round of dropping on S′b until only one variable is

left. Keep the subset that yields the highest I-score in the whole dropping process.

Refer to this subset as the return set Rb. Keep it for future use.

If no variable in the initial subset has influence on Y , then the values of I will not change

much in the dropping process. On the other hand, when influential variables are included

in the subset then the I-score will increase (decrease) rapidly before (after) reaching the

maximum.

B.7 Simulation details for Variable set of size 6

In this 6-SNP model, we created two sets of 3 SNPs with the same disease model.

Individuals with no risk genotypes on both sets have odds that is one third of the baseline

odds. Individuals with risk genotypes on only one set have odds that is three times that

of the baseline. Individuals with risk genotypes on both sets have odds that is 6 times

that of the baseline. All other simulation parameters were set to be equivalent to the 3

SNP example.
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Figure B.1: Variable set size 6: Comparison of the training rate and I-score against
the out of sample prediction rate Again we compare two statistics, I score lower bound
and the training set prediction rate against the out of sample prediction rate. Lower
bound from the I score is provided in red, training set prediction rate in blue, and the
out of sample prediction rate is in light blue. The thick black line in all six graphs is the
true Bayes rate. All x-axes correspond to variable sets (described in red for important
variables and black for noisy ones) while all y-axes correspond to (correct) prediction
rate. There are six important variables in this example, x1, x2, x3, x4, x5, and x6. The
top row of graphs compares the (red) I score statistics against the (light blue) out of
sample prediction rate. The lower row of graphs compares the (dark blue) training set
prediction rate against the (light blue) out of sample prediction rate. From left to right
the graphs increase in sample size from 500 cases and 500 controls, to 1000 cases and
1000 controls in the middle, to 2000 cases and 200 controls on the right.
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Appendix for Chapter 3

C.1 Simulation details
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Simulation details

Recall:
I =

n∑

i=1
(na

i − nu
i )2

### Setting up the simulation. required libraries: glmnet, randomForest, psych, ggplot2,
gplots, car, nnet, NeuralNetTools, Matrix

Functions

To compute I score

f.list.I=function(var.list, data.x, data.y){
kk=length(var.list)
if(kk>1){xx=data.x[,as.vector(var.list)]%*%as.vector((3^(0:(kk-1))))

#values 1 3 9 for 3 variables
}else{xx=as.matrix(data.x)[,var.list]}
yy=unlist(data.y)
dat.mat=table(xx,yy)
n.d=dat.mat[,1]
n.u=dat.mat[,2]
nn.d=sum(n.d)
nn.u=sum(n.u)
i.score=nn.d*nn.u*sum((n.d/nn.d-n.u/nn.u)^2)/(nn.d+nn.u)
return(c(var.list, i.score))

}

To compute group importance for RF

# uses library("randomForest")
var.share <- function(rf.obj, members) {

count <- table(rf.obj$forest$bestvar)[-1]
names(count) <- names(rf.obj$forest$ncat)
share <- count[members] / sum(count[members])
return(share)

}

group.importance <- function(rf.obj, groups) {
var.imp <- as.matrix(sapply(groups, function(g) {
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sum(importance(rf.obj, 2)[g, ]*var.share(rf.obj, g))
}))
colnames(var.imp) <- "MeanDecreaseGini"
return(var.imp)

}

Models 1-4 we assume we have 12 variables. . . .

set.seed(323) #to reproduce
p.x=c(0.5, 0.5, 0.5, 0.4, 0.1,0.2,0.5,0.4,0.3,0.2,0.1,0.7)
xx=NULL
n=100
sim=100 #number of simulated datasets
x=vector("list", sim)
for(j in 1:sim){xx=NULL

for(i in 1:length(p.x)){xx=cbind(xx, rbinom(n, 1, p.x[i]))}
colnames(xx)=c("x1", "x2","x3","x4","x5","x6","x7","x8","x9",

"x10","x11","x12")
xx=as.data.frame(xx)
x[[j]]=xx
rm(xx)

}

Generate Models 1-4

set.seed(323)
sim=100
y1=array(data=NA,c(sim,n,1))
#Model 1: linear additive x1+x2-x3
for(j in 1:sim){yy=(0.2*x[[j]][,1]+0.1*x[[j]][,2]-0.1*x[[j]][,3])

y1[j,,]=yy
rm(yy)}

Generate Y data for Models 1-4

set.seed(323)
sim=100
y1=y2=y3=y4=array(data=NA,c(sim,n,1))
#Model 1: linear additive x1+x2-x3
for(j in 1:sim){

yy=(0.2*x[[j]][,1]+0.1*x[[j]][,2]-0.1*x[[j]][,3])
y1[j,,]=yy
rm(yy)
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}
#Model 2: linear interactive x1*x2*x3*x4
for(j in 1:sim){

yy=(x[[j]][,1]*x[[j]][,2]*x[[j]][,3]*x[[j]][,4])
y2[j,,]=yy
rm(yy)

}
#Model 3: nonlinear (x1+x2+x3)mod2
for(j in 1:sim){

yy=(x[[j]][,1]+x[[j]][,2]+x[[j]][,3])%%2
y3[j,,]=yy
rm(yy)

}
#Model 4: nonlinear interactive (x1*x2*x3)mod2
for(j in 1:sim){

yy=(5*x[[j]][,1]*x[[j]][,2]*x[[j]][,3])%%2
y4[j,,]=yy
rm(yy)

}

Generate Model 5 Now create 5th example where data is much noisier, and p>>n (not just
p>n). We will have 100 datapoints (n=100), but there are 20 variables, with an interactive
variable set predicting the outcome Y .

### 20 x variables
set.seed(323)
p.x2=c(0.5, 0.4, 0.5, 0.4, 0.6,0.5,0.5,0.4,0.3,0.2,0.1,0.7,0.2,

0.3,0.4,0.5,0.1,0.4,0.5,0.1) #20variables
xx2=NULL
n=100
sim=100 #number of simulated datasets
x2=vector("list", sim)
for(j in 1:sim){

xx2=NULL
for(i in 1:length(p.x2)){

xx2=cbind(xx2, rbinom(n, 1, p.x2[i]))
}

colnames(xx2)=c("x1", "x2","x3","x4","x5","x6","x7","x8","x9","x10","x11",
"x12","x13","x14","x15","x16","x17","x18","x19","x20")

xx2=as.data.frame(xx2)
x2[[j]]=xx2
rm(xx2)

}
### Y outcome
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set.seed(323)
sim=100
y5=array(data=NA,c(sim,n,1))
#Model 5:
for(j in 1:sim){

yy2=(x2[[j]][,1]*x2[[j]][,2]*x2[[j]][,3])%%2
y5[j,,]=yy2
rm(yy2)

}

I-score VS for Models 1-4 #I-score VS Model 1

sim=100
list.c=NULL

for(i in 1:12){
list.c[[i]]=combn(12,i)}

# all 1way interactions
iscore1=matrix(NA,sim,ncol(list.c[[1]]))

for(i in 1:sim){
for(j in 1:ncol(list.c[[1]])){

iscore1[i,j]=f.list.I(c(list.c[[1]][1,j]), as.matrix(x[[i]]),
y1[i,,])[2]}}

names=paste("x", format(1:length(p.x),trim=TRUE), sep="")
colnames(iscore1)=names

#2way
iscore2=matrix(NA,sim,ncol(list.c[[2]]))
for(i in 1:sim){

for(j in 1:ncol(list.c[[2]])){
iscore2[i,j]=f.list.I(c(list.c[[2]][1,j],list.c[[2]][2,j]),

as.matrix(x[[i]]), y1[i,,])[3]}}
#colnames2way
n2=NULL
for(i in 1:ncol(list.c[[2]])){
n2[i]=paste(names[list.c[[2]][1,i]],names[list.c[[2]][2,i]],sep="*")}
colnames(iscore2)=n2

#3way
iscore3=matrix(NA,sim,ncol(list.c[[3]]))

for(i in 1:sim){
for(j in 1:ncol(list.c[[3]])){

iscore3[i,j]=f.list.I(c(list.c[[3]][1,j],list.c[[3]][2,j],
list.c[[3]][3,j]), as.matrix(x[[i]]), y1[i,,])[4]}}

#colnames3way
n3=NULL
for(i in 1:ncol(list.c[[3]])){
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n3[i]=paste(names[list.c[[3]][1,i]],names[list.c[[3]][2,i]],
names[list.c[[3]][3,i]],sep="*")}

colnames(iscore3)=n3
### use above code to similarly create iscore4,...,iscore12 ###

#plot
dat=data.matrix(cbind(iscore1,iscore2,iscore3,iscore4,iscore5,iscore6,

iscore7,iscore8,iscore9,iscore10,iscore11,iscore12))
mns <- colMeans(dat, na.rm=TRUE)
dat2 <- dat[,order(-mns)]
dat3=t(dat2)
dat4=dat3[1:50,]
#plot
heatmap.2(dat4,density.info="none",trace="none",labCol=NA,

main="PR VS: Model 1 ",xlab="Simulations 1-100",
ylab="Top 50 variable sets", margins=c(10,10),
col=cm.colors(256),dendrogram='none',Rowv=FALSE,Colv=FALSE)

#### Example of i-score dropping #####
sim=100
iscore=matrix(NA,sim,12) #for groups var
for(i in 1:sim){

iscore[i,1]=f.list.I(c(1), as.matrix(x[[i]]), y1[i,,])[2]
iscore[i,2]=f.list.I(c(1,2), as.matrix(x[[i]]), y1[i,,])[3]
iscore[i,3]=f.list.I(c(1,2,3), as.matrix(x[[i]]), y1[i,,])[4]
iscore[i,4]=f.list.I(c(1,2,3,4),as.matrix(x[[i]]),y1[i,,])[5]
iscore[i,5]=f.list.I(c(1,2,3,4,5),as.matrix(x[[i]]),y1[i,,])[6]
iscore[i,6]=f.list.I(c(1,2,3,4,5,6),as.matrix(x[[i]]),y1[i,,])[7]
iscore[i,7]=f.list.I(c(1,2,3,4,5,6,7),as.matrix(x[[i]]),y1[i,,])[8]
iscore[i,8]=f.list.I(c(1,2,3,4,5,6,7,8),as.matrix(x[[i]]),y1[i,,])[9]
iscore[i,9]=f.list.I(c(1,2,3,4,5,6,7,8,9),as.matrix(x[[i]]),y1[i,,])[10]
iscore[i,10]=f.list.I(c(1,2,3,4,5,6,7,8,9,10),

as.matrix(x[[i]]),y1[i,,])[11]
iscore[i,11]=f.list.I(c(1,2,3,4,5,6,7,8,9,10,11),

as.matrix(x[[i]]),y1[i,,])[12]
iscore[i,12]=f.list.I(c(1,2,3,4,5,6,7,8,9,10,11,12),

as.matrix(x[[i]]),y1[i,,])[13]
}

var.names=c("x1","x1,x2","x1-x3","x1-x4","x1-x5","x1-x6","x1-x7",
"x1-x8","x1-x9","x1-x10","x1-x11","x1-x12")

colnames(iscore)=var.names
#plot
boxplot(iscore,notch=FALSE,main="I-score VS: Model 1",
ylab="I-score",las=2)
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error.bars(iscore,ylab="I-score",xlim=c(0,5),
labels=var.names, add=TRUE)

abline(h=0)
dev.off()

I-score VS Model 2

sim=100
list.c=NULL

for(i in 1:12){
list.c[[i]]=combn(12,i)}

#all 1way interactions
iscore1=matrix(NA,sim,ncol(list.c[[1]]))

for(i in 1:sim){
for(j in 1:ncol(list.c[[1]])){

iscore1[i,j]=f.list.I(c(list.c[[1]][1,j]),
as.matrix(x[[i]]), y2[i,,])[2]}}

names=paste("x", format(1:length(p.x),trim=TRUE), sep="")
colnames(iscore1)=names

#2way
iscore2=matrix(NA,sim,ncol(list.c[[2]]))
for(i in 1:sim){

for(j in 1:ncol(list.c[[2]])){
iscore2[i,j]=f.list.I(c(list.c[[2]][1,j],list.c[[2]][2,j]),

as.matrix(x[[i]]), y2[i,,])[3]}}
#colnames2way
n2=NULL
for(i in 1:ncol(list.c[[2]])){
n2[i]=paste(names[list.c[[2]][1,i]],names[list.c[[2]][2,i]],sep="*")}
colnames(iscore2)=n2

#3way
iscore3=matrix(NA,sim,ncol(list.c[[3]]))

for(i in 1:sim){
for(j in 1:ncol(list.c[[3]])){

iscore3[i,j]=f.list.I(c(list.c[[3]][1,j],list.c[[3]][2,j],
list.c[[3]][3,j]),as.matrix(x[[i]]), y2[i,,])[4]}}

#colnames3way
n3=NULL
for(i in 1:ncol(list.c[[3]])){
n3[i]=paste(names[list.c[[3]][1,i]],names[list.c[[3]][2,i]],

names[list.c[[3]][3,i]],sep="*")}
colnames(iscore3)=n3
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### use above code to similarly create iscore4,...,iscore12 ###

#plot
dat=data.matrix(cbind(iscore1,iscore2,iscore3,iscore4,iscore5,iscore6,

iscore7,iscore8,iscore9,iscore10,iscore11,iscore12))
mns <- colMeans(dat, na.rm=TRUE)
dat2 <- dat[,order(-mns)]
dat3=t(dat2) #dat3 dim=4095x100
dat4=dat3[1:50,]
#plot
heatmap.2(dat4,density.info="none",trace="none",labCol=NA,

main="PR VS: Model 2 ",xlab="Simulations 1-100",
ylab="Top 50 variable sets", margins=c(10,10),
col=cm.colors(256),dendrogram='none',Rowv=FALSE,Colv=FALSE)

###################
sim=100
iscore=matrix(NA,sim,12)
for(i in 1:sim){

iscore[i,1]=f.list.I(c(1), as.matrix(x[[i]]), y2[i,,])[2]
iscore[i,2]=f.list.I(c(1,3), as.matrix(x[[i]]), y2[i,,])[3]
iscore[i,3]=f.list.I(c(1,2,3), as.matrix(x[[i]]), y2[i,,])[4]
iscore[i,4]=f.list.I(c(1,2,3,4),as.matrix(x[[i]]),y2[i,,])[5]
iscore[i,5]=f.list.I(c(1,2,3,4,5),as.matrix(x[[i]]),y2[i,,])[6]
iscore[i,6]=f.list.I(c(1,2,3,4,5,6),as.matrix(x[[i]]),y2[i,,])[7]
iscore[i,7]=f.list.I(c(1,2,3,4,5,6,7),as.matrix(x[[i]]),y2[i,,])[8]
iscore[i,8]=f.list.I(c(1,2,3,4,5,6,7,8),as.matrix(x[[i]]),y2[i,,])[9]
iscore[i,9]=f.list.I(c(1,2,3,4,5,6,7,8,9),as.matrix(x[[i]]),y2[i,,])[10]
iscore[i,10]=f.list.I(c(1,2,3,4,5,6,7,8,9,10),

as.matrix(x[[i]]),y2[i,,])[11]
iscore[i,11]=f.list.I(c(1,2,3,4,5,6,7,8,9,10,11),

as.matrix(x[[i]]),y2[i,,])[12]
iscore[i,12]=f.list.I(c(1,2,3,4,5,6,7,8,9,10,11,12),

as.matrix(x[[i]]),y2[i,,])[13]
}
var.names=c("x1","x1,x3","x1-x3","x1-x4","x1-x5","x1-x6","x1-x7",

"x1-x8","x1-x9","x1-x10","x1-x11","x1-x12")
colnames(iscore)=var.names
plot(c(0,3), c(0,14), xlab="variable sets",

ylab="I-score", type="n",
xaxt="n",
main="I-score VS: Model 2", cex=1.2)

boxplot(iscore,notch=FALSE,main="I-score VS: Model 2"
,ylab="I-score",las=2)
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error.bars(iscore,ylab="I-score"#,xlab="Variable sets"
,xlim=c(0,5),labels=var.names, add=TRUE)

abline(h=0)
dev.off()

I-score VS Model 3

###################
sim=100
list.c=NULL

for(i in 1:12){
list.c[[i]]=combn(12,i)}

# all 1way interactions
iscore1=matrix(NA,sim,ncol(list.c[[1]]))

for(i in 1:sim){
for(j in 1:ncol(list.c[[1]])){

iscore1[i,j]=f.list.I(c(list.c[[1]][1,j]), as.matrix(x[[i]]),
y3[i,,])[2]}}

names=paste("x", format(1:length(p.x),trim=TRUE), sep="")
colnames(iscore1)=names

#2way
iscore2=matrix(NA,sim,ncol(list.c[[2]]))
for(i in 1:sim){

for(j in 1:ncol(list.c[[2]])){
iscore2[i,j]=f.list.I(c(list.c[[2]][1,j],list.c[[2]][2,j]),

as.matrix(x[[i]]),y3[i,,])[3]}}
#colnames2way
n2=NULL
for(i in 1:ncol(list.c[[2]])){
n2[i]=paste(names[list.c[[2]][1,i]],names[list.c[[2]][2,i]],sep="*")}
colnames(iscore2)=n2

#3way
iscore3=matrix(NA,sim,ncol(list.c[[3]]))

for(i in 1:sim){
for(j in 1:ncol(list.c[[3]])){

iscore3[i,j]=f.list.I(c(list.c[[3]][1,j],list.c[[3]][2,j],
list.c[[3]][3,j]), as.matrix(x[[i]]), y3[i,,])[4]}}

#colnames3way
n3=NULL
for(i in 1:ncol(list.c[[3]])){
n3[i]=paste(names[list.c[[3]][1,i]],names[list.c[[3]][2,i]],

names[list.c[[3]][3,i]],sep="*")}
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colnames(iscore3)=n3
### use above code to similarly create iscore4,...,iscore12 ###

#plot
dat=data.matrix(cbind(iscore1,iscore2,iscore3,iscore4,iscore5,iscore6,

iscore7,iscore8,iscore9,iscore10,iscore11,iscore12))
mns <- colMeans(dat, na.rm=TRUE)
dat2 <- dat[,order(-mns)]
dat3=t(dat2)
dat4=dat3[1:50,]
#plot
heatmap.2(dat4,density.info="none",trace="none",labCol=NA,

main="PR VS: Model 3",xlab="Simulations 1-100",
ylab="Top 50 variable sets",

margins=c(10,10),col=cm.colors(256),dendrogram='none',
Rowv=FALSE,Colv=FALSE)

######################
sim=100
iscore=matrix(NA,sim,12)
for(i in 1:sim){

iscore[i,1]=f.list.I(c(1), as.matrix(x[[i]]), y3[i,,])[2]
iscore[i,2]=f.list.I(c(1,2), as.matrix(x[[i]]), y3[i,,])[3]
iscore[i,3]=f.list.I(c(1,2,3), as.matrix(x[[i]]), y3[i,,])[4]
iscore[i,4]=f.list.I(c(1,2,3,4),as.matrix(x[[i]]),y3[i,,])[5]
iscore[i,5]=f.list.I(c(1,2,3,4,5),as.matrix(x[[i]]),y3[i,,])[6]
iscore[i,6]=f.list.I(c(1,2,3,4,5,6),as.matrix(x[[i]]),y3[i,,])[7]
iscore[i,7]=f.list.I(c(1,2,3,4,5,6,7),as.matrix(x[[i]]),y3[i,,])[8]
iscore[i,8]=f.list.I(c(1,2,3,4,5,6,7,8),as.matrix(x[[i]]),y3[i,,])[9]
iscore[i,9]=f.list.I(c(1,2,3,4,5,6,7,8,9),as.matrix(x[[i]]),y3[i,,])[10]
iscore[i,10]=f.list.I(c(1,2,3,4,5,6,7,8,9,10),

as.matrix(x[[i]]),y3[i,,])[11]
iscore[i,11]=f.list.I(c(1,2,3,4,5,6,7,8,9,10,11),

as.matrix(x[[i]]),y3[i,,])[12]
iscore[i,12]=f.list.I(c(1,2,3,4,5,6,7,8,9,10,11,12),as.matrix(x[[i]]),

y3[i,,])[13]
}
var.names=c("x1","x1,x2","x1-x3","x1-x4","x1-x5","x1-x6","x1-x7",

"x1-x8","x1-x9","x1-x10","x1-x11","x1-x12")
colnames(iscore)=var.names
plot(c(0,3), c(0,14), xlab="variable sets", ylab="I-score", type="n",

xaxt="n",main="I-score VS: Model 3", cex=1.2)
boxplot(iscore,notch=FALSE,main="I-score VS: Model 3"

,ylab="I-score",las=2)
error.bars(iscore,ylab="I-score"#,xlab="Variable sets"

128



,xlim=c(0,5),labels=var.names, add=TRUE)
abline(h=0)
dev.off()

I-score VS Model 4

################
sim=100
list.c=NULL

for(i in 1:12){
list.c[[i]]=combn(12,i)}

#all 1way interactions
iscore1=matrix(NA,sim,ncol(list.c[[1]]))

for(i in 1:sim){
for(j in 1:ncol(list.c[[1]])){

iscore1[i,j]=f.list.I(c(list.c[[1]][1,j]), as.matrix(x[[i]]), y4[i,,])[2]
}}

names=paste("x", format(1:length(p.x),trim=TRUE), sep="")
colnames(iscore1)=names

#2way
iscore2=matrix(NA,sim,ncol(list.c[[2]]))
for(i in 1:sim){

for(j in 1:ncol(list.c[[2]])){
iscore2[i,j]=f.list.I(c(list.c[[2]][1,j],list.c[[2]][2,j]),

as.matrix(x[[i]]), y4[i,,])[3]}}
#colnames2way
n2=NULL
for(i in 1:ncol(list.c[[2]])){
n2[i]=paste(names[list.c[[2]][1,i]],names[list.c[[2]][2,i]],sep="*")}
colnames(iscore2)=n2

#3way
iscore3=matrix(NA,sim,ncol(list.c[[3]]))

for(i in 1:sim){
for(j in 1:ncol(list.c[[3]])){

iscore3[i,j]=f.list.I(c(list.c[[3]][1,j],list.c[[3]][2,j],
list.c[[3]][3,j]),as.matrix(x[[i]]), y4[i,,])[4]}}

#colnames3way
n3=NULL
for(i in 1:ncol(list.c[[3]])){
n3[i]=paste(names[list.c[[3]][1,i]],names[list.c[[3]][2,i]],

names[list.c[[3]][3,i]],sep="*")}
colnames(iscore3)=n3
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### use above code to similarly create iscore4,...,iscore12 ###

vars=data.matrix(cbind(iscore2[,1],iscore2[,22]))
colnames(vars)=c("x1*x2","x3*x4")
dat=data.matrix(cbind(vars,iscore1,iscore2[,2:21],

iscore2[,23:ncol(iscore2)],iscore3,
iscore4,iscore5,iscore6,iscore7,iscore8,
iscore9,iscore10,iscore11,iscore12))

test=dat[,3:ncol(dat)]
mns <- colMeans(test, na.rm=TRUE)
test2 <- test[,order(-mns)]
test3 =cbind(vars,test2)
test4=t(test3)
test5=test4[1:50,]
#plot
heatmap.2(test5,density.info="none",trace="none",labCol=NA,

main="PR VS: Model 4",xlab="Simulations 1-100",
ylab="Variable sets",

margins=c(10,10),col=cm.colors(256),dendrogram='none',
Rowv=FALSE,Colv=FALSE)

## plot used for descending
dat=data.matrix(cbind(iscore1,iscore2,iscore3,iscore4,iscore5,iscore6,

iscore7,iscore8,iscore9,iscore10,iscore11,iscore12))
mns <- colMeans(dat, na.rm=TRUE)
dat2 <- dat[,order(-mns)]
dat3=t(dat2)
dat4=dat3[1:50,]
#plot
heatmap.2(dat4,density.info="none",trace="none",labCol=NA,

main="PR VS: Model 4",xlab="Simulations 1-100",
ylab="Top 50 variable sets",

margins=c(10,10),col=cm.colors(256),dendrogram='none',Rowv=FALSE,Colv=FALSE)
#################
sim=100
iscore=matrix(NA,sim,12)
for(i in 1:sim){

iscore[i,1]=f.list.I(c(3), as.matrix(x[[i]]), y4[i,,])[2]
iscore[i,2]=f.list.I(c(2,3), as.matrix(x[[i]]), y4[i,,])[3]
iscore[i,3]=f.list.I(c(1,2,3), as.matrix(x[[i]]), y4[i,,])[4]
iscore[i,4]=f.list.I(c(1,2,3,4),as.matrix(x[[i]]),y4[i,,])[5]
iscore[i,5]=f.list.I(c(1,2,3,4,5),as.matrix(x[[i]]),y4[i,,])[6]
iscore[i,6]=f.list.I(c(1,2,3,4,5,6),as.matrix(x[[i]]),y4[i,,])[7]
iscore[i,7]=f.list.I(c(1,2,3,4,5,6,7),as.matrix(x[[i]]),y4[i,,])[8]
iscore[i,8]=f.list.I(c(1,2,3,4,5,6,7,8),as.matrix(x[[i]]),y4[i,,])[9]
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iscore[i,9]=f.list.I(c(1,2,3,4,5,6,7,8,9),as.matrix(x[[i]]),y4[i,,])[10]
iscore[i,10]=f.list.I(c(1,2,3,4,5,6,7,8,9,10),

as.matrix(x[[i]]),y4[i,,])[11]
iscore[i,11]=f.list.I(c(1,2,3,4,5,6,7,8,9,10,11),

as.matrix(x[[i]]),y4[i,,])[12]
iscore[i,12]=f.list.I(c(1,2,3,4,5,6,7,8,9,10,11,12),

as.matrix(x[[i]]),y4[i,,])[13]}
var.names=c("x3","x2,x3","x1-x3","x1-x4","x1-x5","x1-x6","x1-x7","x1-x8",

"x1-x9","x1-x10","x1-x11","x1-x12")
colnames(iscore)=var.names
plot(c(0,3), c(0,14), xlab="variable sets",ylab="I-score", type="n",

xaxt="n",main="I-score VS: Model 4", cex=1.2)
boxplot(iscore,notch=FALSE,main="I-score VS: Model 4"

,ylab="I-score",las=2)
error.bars(iscore,ylab="I-score"#,xlab="Variable sets"

,xlim=c(0,5),labels=var.names, add=TRUE)
abline(h=0)
dev.off()

I-score VS for Model 5 (noisier dataset with smaller n/p)

I-score VS for Model 5

################
sim=100
list.c=NULL

for(i in 1:20){
list.c[[i]]=combn(20,i)}

#all 1way interactions
iscore1=matrix(NA,sim,ncol(list.c[[1]]))

for(i in 1:sim){
for(j in 1:ncol(list.c[[1]])){

iscore1[i,j]=f.list.I(c(list.c[[1]][1,j]), as.matrix(x2[[i]]),
y5[i,,])[2]}}

names=paste("x", format(1:length(p.x2),trim=TRUE), sep="")
colnames(iscore1)=names

#2way
iscore2=matrix(NA,sim,ncol(list.c[[2]]))
for(i in 1:sim){

for(j in 1:ncol(list.c[[2]])){
iscore2[i,j]=f.list.I(c(list.c[[2]][1,j],list.c[[2]][2,j]),

as.matrix(x2[[i]]), y5[i,,])[3]}}
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#colnames2way
n2=NULL
for(i in 1:ncol(list.c[[2]])){
n2[i]=paste(names[list.c[[2]][1,i]],

names[list.c[[2]][2,i]],sep="*")}
colnames(iscore2)=n2

#3way
iscore3=matrix(NA,sim,ncol(list.c[[3]]))

for(i in 1:sim){
for(j in 1:ncol(list.c[[3]])){

iscore3[i,j]=f.list.I(c(list.c[[3]][1,j],list.c[[3]][2,j],
list.c[[3]][3,j]),as.matrix(x2[[i]]), y5[i,,])[4]}}

#colnames3way
n3=NULL
for(i in 1:ncol(list.c[[3]])){
n3[i]=paste(names[list.c[[3]][1,i]],names[list.c[[3]][2,i]],

names[list.c[[3]][3,i]],sep="*")}
colnames(iscore3)=n3

### use above code to similarly create iscore4,...,onwards ###

##########################################
dat=data.matrix(cbind(iscore1,iscore2,iscore3,iscore4,iscore5,iscore6,

iscore7,iscore8))#,
#iscore9,iscore10,iscore11,iscore12,iscore13,iscore14,iscore15,
#iscore16,iscore17,iscore18,iscore19,iscore20))

test=cbind(dat[,211],dat[,15512],dat[,1:210],dat[,212:15511],
dat[,15513:ncol(dat)])

colnames(test)[1]="x1*x2*x3"
colnames(test)[2]="x4*x5*x6*x7*x8"
mns <- colMeans(test, na.rm=TRUE)
test2 <- test[,order(-mns)]
test3=t(test2)
test4=test3[1:50,]
#plot
heatmap.2(test4,density.info="none",trace="none",labCol=NA,

main="PR VS: Model 5 ",xlab="Simulations 1-100",
ylab="Top 50 variable sets",margins=c(10,10),

col=cm.colors(256),dendrogram='none',Rowv=FALSE,Colv=FALSE)
##################
sim=100
iscore=matrix(NA,sim,20)
for(i in 1:sim){

iscore[i,1]=f.list.I(c(3), as.matrix(x2[[i]]), y5[i,,])[2]
iscore[i,2]=f.list.I(c(2,3), as.matrix(x2[[i]]), y5[i,,])[3]
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iscore[i,3]=f.list.I(c(1,2,3), as.matrix(x2[[i]]), y5[i,,])[4]
iscore[i,4]=f.list.I(c(1,2,3,4),as.matrix(x2[[i]]),y5[i,,])[5]
iscore[i,5]=f.list.I(c(1,2,3,4,5),as.matrix(x2[[i]]),y5[i,,])[6]
iscore[i,6]=f.list.I(c(1,2,3,4,5,6),as.matrix(x2[[i]]),y5[i,,])[7]
iscore[i,7]=f.list.I(c(1,2,3,4,5,6,7),as.matrix(x2[[i]]),y5[i,,])[8]
iscore[i,8]=f.list.I(c(1,2,3,4,5,6,7,8),as.matrix(x2[[i]]),y5[i,,])[9]
iscore[i,9]=f.list.I(c(1,2,3,4,5,6,7,8,9),as.matrix(x2[[i]]),y5[i,,])[10]
iscore[i,10]=f.list.I(c(1,2,3,4,5,6,7,8,9,10),

as.matrix(x2[[i]]),y5[i,,])[11]
iscore[i,11]=f.list.I(c(1,2,3,4,5,6,7,8,9,10,11),

as.matrix(x2[[i]]),y5[i,,])[12]
iscore[i,12]=f.list.I(c(1,2,3,4,5,6,7,8,9,10,11,12),

as.matrix(x2[[i]]),y5[i,,])[13]
iscore[i,13]=f.list.I(c(1,2,3,4,5,6,7,8,9,10,11,12,13),

as.matrix(x2[[i]]),y5[i,,])[14]
iscore[i,14]=f.list.I(c(1,2,3,4,5,6,7,8,9,10,11,12,13,14),

as.matrix(x2[[i]]),y5[i,,])[15]
iscore[i,15]=f.list.I(c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),

as.matrix(x2[[i]]),y5[i,,])[16]
iscore[i,16]=f.list.I(c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),

as.matrix(x2[[i]]),y5[i,,])[17]
iscore[i,17]=f.list.I(c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),

as.matrix(x2[[i]]),y5[i,,])[18]
iscore[i,18]=f.list.I(c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),

as.matrix(x2[[i]]),y5[i,,])[19]
iscore[i,19]=f.list.I(c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),

as.matrix(x2[[i]]),y5[i,,])[20]
iscore[i,20]=f.list.I(c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),

as.matrix(x2[[i]]),y5[i,,])[21]
}
var.names=c("x3","x2,x3","x1-x3","x1-x4","x1-x5","x1-x6","x1-x7","x1-x8",

"x1-x9","x1-x10","x1-x11","x1-x12","x1-x13","x1-x14","x1-x15",
"x1-x16","x1-x17","x1-x18","x1-x19","x1-x20")

colnames(iscore)=var.names
plot(c(0,3), c(0,14), xlab="variable sets",

ylab="I-score", type="n",
xaxt="n",
main="I-score VS: Model 5", cex=1.2)

boxplot(iscore,notch=FALSE,main="I-score VS: Model 5"#,xlab="variable sets"
,ylab="I-score",las=2)

error.bars(iscore,ylab="I-score"#,xlab="Variable sets"
,xlim=c(0,5),labels=var.names, add=TRUE)

abline(h=0)
dev.off()
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Lasso VS for Models 1-4

Lasso VS Model 1

########model 1#######
mylasso1=vector("list",100)
las=vector("list",100)
coefs=NULL
for(i in 1:100){

dat.int=model.matrix(~(x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12)^12-1,
x[[i]])# with interactions up to 12way

names=colnames(dat.int)
names=gsub(":","",names)
colnames(dat.int)=names
dat.int=as.data.frame(dat.int)
dat.int2=sparse.model.matrix(~.,dat.int)
mylasso1[[i]] = cv.glmnet(as.matrix(dat.int2),y1[i,,],

nfolds=10,family="gaussian")
las[[i]] = glmnet(as.matrix(dat.int2),y1[i,,],

lambda=mylasso[[i]]$lambda.min,family="gaussian")
rm(dat.int,dat.int2)}

for(i in 1:100){
sim.num[i]=paste("sim",i,sep="")}

sim.num=c("V1",sim.num)
#first merge

a1=as.matrix(rownames(las1[[1]]$beta)[which(las1[[1]]$beta!=0)])
b1=as.matrix((las1[[1]]$beta)[which(las1[[1]]$beta!=0)])
c1=as.data.frame(cbind(a1,b1))
a2=as.matrix(rownames(las1[[2]]$beta)[which(las1[[2]]$beta!=0)])
b2=as.matrix((las1[[2]]$beta)[which(las1[[2]]$beta!=0)])
c2=as.data.frame(cbind(a2,b2))
coefs=merge(c1,c2,by="V1",all.x=TRUE,all.y=TRUE)
colnames(coefs)=sim.num[1:3]

#remaining merges
for(i in 3:sim){

a=as.matrix(rownames(las[[i]]$beta)[which(las[[i]]$beta!=0)])
b=as.matrix((las[[i]]$beta)[which(las[[i]]$beta!=0)])
c=as.data.frame(cbind(a,b))
coefs=merge(coefs,c,by="V1",all.x=TRUE,all.y=TRUE)
colnames(coefs)[ncol(coefs)]=sim.num[i+1]
rm(a,b,c)}

coefs2=data.matrix(coefs[,2:ncol(coefs)])
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cnames=coefs[,1]
row.names(coefs2)=cnames
mns <- rowMeans(coefs2, na.rm=TRUE)
coefs2 <- coefs2[order(-mns),]
# to plot:
heat_model=heatmap(coefs2,Rowv=NA,Colv=NA,col=cm.colors(256),

scale="column",labCol=NA,main="Lasso VS: Model 1",
xlab="Simulations 1-100",ylab="Variable sets",
margins=c(5,10),keep.dendro=FALSE)

dev.off()

Lasso VS Model 2

mylasso1=vector("list", 100)
las=vector("list",100)
coefs=NULL
for(i in 1:100){#first 25 simulations

dat.int=model.matrix(~(x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12)^12-1,
x[[i]])# with interactions up to 12way

names=colnames(dat.int)
names=gsub(":","",names)
colnames(dat.int)=names
dat.int=as.data.frame(dat.int)
dat.int2=sparse.model.matrix(~.,dat.int)
mylasso1[[i]] = cv.glmnet(as.matrix(dat.int2),y2[i,,],

nfolds=10,family="gaussian") #4095 variable sets
las[[i]] = glmnet(as.matrix(dat.int2),y2[i,,],

lambda=mylasso[[i]]$lambda.min,family="gaussian")
rm(dat.int,dat.int2)}

sim.num=NULL #names holder for colnames 2:ncol
for(i in 1:100){ #names

sim.num[i]=paste("sim",i,sep="")}
sim.num=c("V1",sim.num)
#first merge
a1=as.matrix(rownames(las1[[1]]$beta)[which(las1[[1]]$beta!=0)])
b1=as.matrix((las1[[1]]$beta)[which(las1[[1]]$beta!=0)])
c1=as.data.frame(cbind(a1,b1))
a2=as.matrix(rownames(las1[[2]]$beta)[which(las1[[2]]$beta!=0)])
b2=as.matrix((las1[[2]]$beta)[which(las1[[2]]$beta!=0)])
c2=as.data.frame(cbind(a2,b2))
coefs=merge(c1,c2,by="V1",all.x=TRUE,all.y=TRUE)
colnames(coefs)=sim.num[1:3]
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#remaining merges
for(i in 3:sim){

a=as.matrix(rownames(las[[i]]$beta)[which(las[[i]]$beta!=0)])
b=as.matrix((las[[i]]$beta)[which(las[[i]]$beta!=0)])
c=as.data.frame(cbind(a,b))
coefs=merge(coefs,c,by="V1",all.x=TRUE,all.y=TRUE)
colnames(coefs)[ncol(coefs)]=sim.num[i+1]
rm(a,b,c)}

coefs2=data.matrix(coefs[,2:ncol(coefs)])
cnames=coefs[,1]
row.names(coefs2)=cnames
mns <- rowMeans(coefs2, na.rm=TRUE)
coefs2 <- coefs2[order(-mns),]
# to plot:
heat_model=heatmap(coefs2,Rowv=NA,Colv=NA,col=cm.colors(256),

scale="column",labCol=NA,main="Lasso VS: Model 2",
xlab="Simulations 1-100",ylab="Variable sets",
margins=c(5,10),keep.dendro=FALSE)

dev.off()

Lasso VS Model 3

mylasso1=vector("list", 100)
las=vector("list",100)
coefs=NULL
for(i in 1:100){

dat.int=model.matrix(~(x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12)^12-1,
x[[i]])# with interactions up to 12way

names=colnames(dat.int)
names=gsub(":","",names)
colnames(dat.int)=names
dat.int=as.data.frame(dat.int)
dat.int2=sparse.model.matrix(~.,dat.int)#save this as a sparse matrix
mylasso1[[i]] = cv.glmnet(as.matrix(dat.int2),y3[i,,],

nfolds=10,family="gaussian") #4095 variable sets
las[[i]] = glmnet(as.matrix(dat.int2),y3[i,,],

lambda=mylasso[[i]]$lambda.min,family="gaussian")
rm(dat.int,dat.int2)}

sim.num=NULL
for(i in 1:100){ #names

sim.num[i]=paste("sim",i,sep="")}
sim.num=c("V1",sim.num)
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#first merge
a1=as.matrix(rownames(las[[1]]$beta)[which(las[[1]]$beta!=0)])
b1=as.matrix((las[[1]]$beta)[which(las[[1]]$beta!=0)])
c1=as.data.frame(cbind(a1,b1))
a2=as.matrix(rownames(las[[2]]$beta)[which(las[[2]]$beta!=0)])
b2=as.matrix((las[[2]]$beta)[which(las[[2]]$beta!=0)])
c2=as.data.frame(cbind(a2,b2))
coefs=merge(c1,c2,by="V1",all.x=TRUE,all.y=TRUE)
colnames(coefs)=sim.num[1:3]
#remaining merges
for(i in 3:sim){

a=as.matrix(rownames(las[[i]]$beta)[which(las[[i]]$beta!=0)])
b=as.matrix((las[[i]]$beta)[which(las[[i]]$beta!=0)])
c=as.data.frame(cbind(a,b))
coefs=merge(coefs,c,by="V1",all.x=TRUE,all.y=TRUE)
colnames(coefs)[ncol(coefs)]=sim.num[i+1]
rm(a,b,c)}

coefs2=data.matrix(coefs[,2:ncol(coefs)])
cnames=coefs[,1]
row.names(coefs2)=cnames
mns <- rowMeans(coefs2, na.rm=TRUE)
coefs2 <- coefs2[order(-mns),]
coefs3=coefs2[1:50,]
# to plot:
heat_model=heatmap(coefs3,Rowv=NA,Colv=NA,col=cm.colors(256),

scale="column",labCol=NA,main="Lasso VS: Model 3",
xlab="Simulations 1-100",ylab="Top 50 variable sets",
margins=c(5,10),keep.dendro=FALSE)

dev.off()

Lasso VS Model 4

mylasso1=vector("list", 100)
las=vector("list",100)
coefs=NULL
for(i in 1:100){

dat.int=model.matrix(~(x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12)^12-1,
x[[i]])# with interactions up to 12way

names=colnames(dat.int)
names=gsub(":","",names)
colnames(dat.int)=names
dat.int=as.data.frame(dat.int)

137



dat.int2=sparse.model.matrix(~.,dat.int)#save this as a sparse matrix
mylasso1[[i]] = cv.glmnet(as.matrix(dat.int2),y4[i,,],nfolds=10,

family="gaussian") #4095 variable sets
las[[i]] = glmnet(as.matrix(dat.int2),y4[i,,],

lambda=mylasso[[i]]$lambda.min,family="gaussian")
rm(dat.int,dat.int2)}

#create dataframe rows are variables x1-x12,
#cols simulation numbers with first col holding var names.
#data are lasso coefficients not penalized to 0.
sim.num=NULL
for(i in 1:100){ #names

sim.num[i]=paste("sim",i,sep="")}
sim.num=c("V1",sim.num)
#first merge

a1=as.matrix(rownames(las[[1]]$beta)[which(las[[1]]$beta!=0)])
b1=as.matrix((las[[1]]$beta)[which(las[[1]]$beta!=0)])
c1=as.data.frame(cbind(a1,b1))

a2=as.matrix(rownames(las[[2]]$beta)[which(las[[2]]$beta!=0)])
b2=as.matrix((las[[2]]$beta)[which(las[[2]]$beta!=0)])
c2=as.data.frame(cbind(a2,b2))

coefs=merge(c1,c2,by="V1",all.x=TRUE,all.y=TRUE)
colnames(coefs)=sim.num[1:3]

#remaining merges
for(i in 3:sim){

a=as.matrix(rownames(las[[i]]$beta)[which(las[[i]]$beta!=0)])
b=as.matrix((las[[i]]$beta)[which(las[[i]]$beta!=0)])
c=as.data.frame(cbind(a,b))
coefs=merge(coefs,c,by="V1",all.x=TRUE,all.y=TRUE)
colnames(coefs)[ncol(coefs)]=sim.num[i+1]
rm(a,b,c)}

coefs2=data.matrix(coefs[,2:ncol(coefs)])
cnames=coefs[,1]
row.names(coefs2)=cnames
mns <- rowMeans(coefs2, na.rm=TRUE)
coefs2 <- coefs2[order(-mns),]
coefs3=coefs2[1:50,]
#plot
heat_model=heatmap(coefs3,Rowv=NA,Colv=NA,col=cm.colors(256),

scale="column",labCol=NA,main="Lasso VS: Model 3",
xlab="Simulations 1-100",ylab="Top 50 variable sets",
margins=c(5,10),keep.dendro=FALSE)

dev.off()
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Simulations for Model 5 do not run (too much computational burden)
RF VS for Models 1-4

RF VS Model 1

rf=vector("list", sim)
imp=vector("list",sim)
######## for marginals (1way)#####
for(i in 1:sim){
rf[[i]]=randomForest(x[[i]],as.factor(y1[i,,]),importance=TRUE)}
dat=NULL
for(i in 1:length(imp)){

dat=cbind(dat, data.matrix(importance(rf[[i]],type=1)))}
c=NULL
for(i in 1:12){

c[[i]]=combn(12,i)}
names=paste("x", format(1:length(p.x),trim=TRUE), sep="")

########2way#####
ind=matrix(NA,nrow=2,ncol=ncol(c[[2]]))#all 2way
for(j in 1:ncol(c[[2]])){
a=c[[2]][,j][1]
b=c[[2]][,j][2]
ind[1,j]=names(x[[i]])[a]
ind[2,j]=names(x[[i]])[b]}
groups2=NULL
for(j in 1:ncol(ind)){

groups2[j]=list(c(ind[1,j],ind[2,j]))}
a=as.data.frame(NA,nrow=length(groups2),ncol=1)
colnames(a)="var2"
for(i in 1:length(groups2)){

aa=strsplit(groups2[[i]],'""')
bb=paste(aa[[1]],aa[[2]],sep=",")
a[i,1]=bb
rm(aa,bb)}

g2.imp=matrix(NA,nrow=length(groups2),ncol=sim)
for(i in 1:sim){

g2.imp[,i]=group.importance(rf[[i]], groups2)}
rownames(g2.imp)=a[,1]
dat=rbind(dat,g2.imp)

rm(a,dat2,dat3,dat4,ind,b)
########3way########
ind=matrix(NA,nrow=3,ncol=ncol(c[[3]]))
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for(j in 1:ncol(c[[3]])){
a1=c[[3]][,j][1]
a2=c[[3]][,j][2]
a3=c[[3]][,j][3]
ind[1,j]=names[a1]
ind[2,j]=names[a2]
ind[3,j]=names[a3]}

groups=NULL
for(j in 1:ncol(ind)){

groups[j]=list(c(ind[1,j],ind[2,j],ind[3,j]))}
a=as.data.frame(NA,nrow=length(groups),ncol=1)
colnames(a)="var3"
for(i in 1:length(groups)){

aa=strsplit(groups[[i]],'""')
bb=paste(aa[[1]],aa[[2]],aa[[3]],sep=",")
a[i,1]=bb
rm(aa,bb)}

g3.imp=matrix(NA,nrow=length(groups),ncol=sim)
for(i in 1:sim){

g3.imp[,i]=group.importance(rf[[i]], groups)}
rownames(g3.imp)=a[,1]
dat=rbind(dat,g3.imp)
### use above code to similarly create g4.imp,...,g12.imp
###plot
mns <- rowMeans(dat, na.rm=TRUE)
dat2 <- dat[order(-mns),]
dat3=dat2[1:50,]
#plot
heatmap.2(dat3,density.info="none",trace="none",labCol=NA,

main="RF VS: Model 1 ",xlab="Simulations 1-100",
ylab="Top 50 variable sets",margins=c(10,10),
col=cm.colors(256),dendrogram='none',Rowv=FALSE,Colv=FALSE)

RF VS Model 2

rf=vector("list", sim)
imp=vector("list",sim)
######## for marginals (1way)#####
for(i in 1:sim){
rf[[i]]=randomForest(x[[i]],as.factor(y2[i,,]),importance=TRUE)}
dat=NULL
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for(i in 1:length(imp)){
dat=cbind(dat, data.matrix(importance(rf[[i]],type=1)))}
c=NULL
for(i in 1:12){

c[[i]]=combn(12,i)}
names=paste("x", format(1:length(p.x),trim=TRUE), sep="")

########2way#####
ind=matrix(NA,nrow=2,ncol=ncol(c[[2]]))#all 2way
for(j in 1:ncol(c[[2]])){

a=c[[2]][,j][1]
b=c[[2]][,j][2]
ind[1,j]=names(x[[i]])[a]
ind[2,j]=names(x[[i]])[b]}

groups2=NULL
for(j in 1:ncol(ind)){

groups2[j]=list(c(ind[1,j],ind[2,j]))}
a=as.data.frame(NA,nrow=length(groups2),ncol=1)
colnames(a)="var2"
for(i in 1:length(groups2)){

aa=strsplit(groups2[[i]],'""')
bb=paste(aa[[1]],aa[[2]],sep=",")
a[i,1]=bb
rm(aa,bb)}

g2.imp=matrix(NA,nrow=length(groups2),ncol=sim)
for(i in 1:sim){

g2.imp[,i]=group.importance(rf[[i]], groups2)}
rownames(g2.imp)=a[,1]
dat=rbind(dat,g2.imp)

rm(a,dat2,dat3,dat4,ind,b)
########3way########
ind=matrix(NA,nrow=3,ncol=ncol(c[[3]]))#all 3way

for(j in 1:ncol(c[[3]])){
a1=c[[3]][,j][1]
a2=c[[3]][,j][2]
a3=c[[3]][,j][3]
ind[1,j]=names[a1]
ind[2,j]=names[a2]
ind[3,j]=names[a3]}

groups=NULL
for(j in 1:ncol(ind)){

groups[j]=list(c(ind[1,j],ind[2,j],ind[3,j]))}
a=as.data.frame(NA,nrow=length(groups),ncol=1)
colnames(a)="var3"
for(i in 1:length(groups)){
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aa=strsplit(groups[[i]],'""')
bb=paste(aa[[1]],aa[[2]],aa[[3]],sep=",")
a[i,1]=bb
rm(aa,bb)}

g3.imp=matrix(NA,nrow=length(groups),ncol=sim)
for(i in 1:sim){

g3.imp[,i]=group.importance(rf[[i]], groups)}
rownames(g3.imp)=a[,1]
dat=rbind(dat,g3.imp)
### use above code to similarly create g4.imp,...,g12.imp
###plot
mns <- rowMeans(dat, na.rm=TRUE)
dat2 <- dat[order(-mns),]
dat3=dat2[1:50,]
#plot
heatmap.2(dat3,density.info="none",trace="none",

labCol=NA,main="RF VS: Model 2 ",xlab="Simulations 1-100",
ylab="Top 50 variable sets", margins=c(10,10),
col=cm.colors(256),dendrogram='none',Rowv=FALSE,Colv=FALSE)

RF VS Model 3

rf=vector("list", sim)
imp=vector("list",sim)
######## for marginals (1way)#####
for(i in 1:sim){
rf[[i]]=randomForest(x[[i]],as.factor(y3[i,,]),importance=TRUE)}
dat=NULL
for(i in 1:length(imp)){

dat=cbind(dat, data.matrix(importance(rf[[i]],type=1)))}
c=NULL
for(i in 1:12){

c[[i]]=combn(12,i)}
names=paste("x", format(1:length(p.x),trim=TRUE), sep="")

########2way#####
ind=matrix(NA,nrow=2,ncol=ncol(c[[2]]))#all 2way
for(j in 1:ncol(c[[2]])){

a=c[[2]][,j][1]
b=c[[2]][,j][2]
ind[1,j]=names(x[[i]])[a]
ind[2,j]=names(x[[i]])[b]}
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groups2=NULL
for(j in 1:ncol(ind)){

groups2[j]=list(c(ind[1,j],ind[2,j]))}
a=as.data.frame(NA,nrow=length(groups2),ncol=1)
colnames(a)="var2"
for(i in 1:length(groups2)){

aa=strsplit(groups2[[i]],'""')
bb=paste(aa[[1]],aa[[2]],sep=",")
a[i,1]=bb
rm(aa,bb)}

g2.imp=matrix(NA,nrow=length(groups2),ncol=sim)
for(i in 1:sim){

g2.imp[,i]=group.importance(rf[[i]], groups2)}
rownames(g2.imp)=a[,1]
dat=rbind(dat,g2.imp)

rm(a,dat2,dat3,ind,b)
########3way########
ind=matrix(NA,nrow=3,ncol=ncol(c[[3]]))#all 3way

ind=matrix(NA,nrow=3,ncol=ncol(c[[3]]))#all 2way
for(j in 1:ncol(c[[3]])){

a1=c[[3]][,j][1]
a2=c[[3]][,j][2]
a3=c[[3]][,j][3]
ind[1,j]=names[a1]
ind[2,j]=names[a2]
ind[3,j]=names[a3]}

groups=NULL
for(j in 1:ncol(ind)){

groups[j]=list(c(ind[1,j],ind[2,j],ind[3,j]))}
a=as.data.frame(NA,nrow=length(groups),ncol=1)
colnames(a)="var3"
for(i in 1:length(groups)){

aa=strsplit(groups[[i]],'""')
bb=paste(aa[[1]],aa[[2]],aa[[3]],sep=",")
a[i,1]=bb
rm(aa,bb)}

g3.imp=matrix(NA,nrow=length(groups),ncol=sim)
for(i in 1:sim){

g3.imp[,i]=group.importance(rf[[i]], groups)}
rownames(g3.imp)=a[,1]
dat=rbind(dat,g3.imp)
### use above code to similarly create g4.imp,...,g12.imp
###plot
mns <- rowMeans(dat, na.rm=TRUE)
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dat2 <- dat[order(-mns),]
dat3=dat2[1:50,]
#plot
heatmap.2(dat3,density.info="none",trace="none",

labCol=NA,main="RF VS: Model 3 ",xlab="Simulations 1-100",
ylab="Top 50 variable sets", margins=c(10,10),
col=cm.colors(256),dendrogram='none',Rowv=FALSE,Colv=FALSE)

RF VS Model 4

rf=vector("list", sim)
imp=vector("list",sim)
######## for marginals (1way)#####
for(i in 1:sim){
rf[[i]]=randomForest(x[[i]],as.factor(y4[i,,]),importance=TRUE)}
dat=NULL
for(i in 1:length(imp)){

dat=cbind(dat, data.matrix(importance(rf[[i]],type=1)))}
c=NULL
for(i in 1:12){

c[[i]]=combn(12,i)}
names=paste("x", format(1:length(p.x),trim=TRUE), sep="")

########2way#####
ind=matrix(NA,nrow=2,ncol=ncol(c[[2]]))#all 2way
for(j in 1:ncol(c[[2]])){

a=c[[2]][,j][1]
b=c[[2]][,j][2]
ind[1,j]=names(x[[i]])[a]
ind[2,j]=names(x[[i]])[b]}

groups2=NULL
for(j in 1:ncol(ind)){

groups2[j]=list(c(ind[1,j],ind[2,j]))}
a=as.data.frame(NA,nrow=length(groups2),ncol=1)
colnames(a)="var2"
for(i in 1:length(groups2)){

aa=strsplit(groups2[[i]],'""')
bb=paste(aa[[1]],aa[[2]],sep=",")
a[i,1]=bb
rm(aa,bb)}

g2.imp=matrix(NA,nrow=length(groups2),ncol=sim)
for(i in 1:sim){
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g2.imp[,i]=group.importance(rf[[i]], groups2)}
rownames(g2.imp)=a[,1]
dat=rbind(dat,g2.imp)

rm(a,dat2,dat3,ind,b)
########3way########
ind=matrix(NA,nrow=3,ncol=ncol(c[[3]]))#all 3way

ind=matrix(NA,nrow=3,ncol=ncol(c[[3]]))#all 2way
for(j in 1:ncol(c[[3]])){

a1=c[[3]][,j][1]
a2=c[[3]][,j][2]
a3=c[[3]][,j][3]
ind[1,j]=names[a1]
ind[2,j]=names[a2]
ind[3,j]=names[a3]}

groups=NULL
for(j in 1:ncol(ind)){

groups[j]=list(c(ind[1,j],ind[2,j],ind[3,j]))}
a=as.data.frame(NA,nrow=length(groups),ncol=1)#each row is name of three vars
colnames(a)="var3"
for(i in 1:length(groups)){

aa=strsplit(groups[[i]],'""')
bb=paste(aa[[1]],aa[[2]],aa[[3]],sep=",")
a[i,1]=bb
rm(aa,bb)}

g3.imp=matrix(NA,nrow=length(groups),ncol=sim)
for(i in 1:sim){

g3.imp[,i]=group.importance(rf[[i]], groups)}
rownames(g3.imp)=a[,1]
dat=rbind(dat,g3.imp)
### use above code to similarly create g4.imp,...,g12.imp
###plot
mns <- rowMeans(dat, na.rm=TRUE)
dat2 <- dat[order(-mns),]
dat3=dat2[1:50,]
#plot
heatmap.2(dat3,density.info="none",trace="none",labCol=NA,

main="RF VS: Model 4",xlab="Simulations 1-100",
ylab="Top 50 variable sets", margins=c(10,10),
col=cm.colors(256),dendrogram='none',Rowv=FALSE,Colv=FALSE)

RF VS for Model 5 (noisier dataset with smaller n/p)
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RF VS for Model 5

rf=vector("list", sim)
imp=vector("list",sim)
######## for marginals (1way)#####
for(i in 1:sim){
rf[[i]]=randomForest(x2[[i]],as.factor(y5[i,,]),importance=TRUE)}
dat=NULL
for(i in 1:length(imp)){

dat=cbind(dat, data.matrix(importance(rf[[i]],type=1)))}
c=NULL
for(i in 1:20){

c[[i]]=combn(20,i)}
names=paste("x", format(1:length(p.x2),trim=TRUE), sep="")

########2way#####
ind=matrix(NA,nrow=2,ncol=ncol(c[[2]]))#all 2way
for(j in 1:ncol(c[[2]])){

a=c[[2]][,j][1]
b=c[[2]][,j][2]
ind[1,j]=names(x2[[i]])[a]
ind[2,j]=names(x2[[i]])[b]}

groups2=NULL
for(j in 1:ncol(ind)){

groups2[j]=list(c(ind[1,j],ind[2,j]))}
a=as.data.frame(NA,nrow=length(groups2),ncol=1)
colnames(a)="var2"
for(i in 1:length(groups2)){

aa=strsplit(groups2[[i]],'""')
bb=paste(aa[[1]],aa[[2]],sep=",")
a[i,1]=bb
rm(aa,bb)}

g2.imp=matrix(NA,nrow=length(groups2),ncol=sim)
for(i in 1:sim){

g2.imp[,i]=group.importance(rf[[i]], groups2)}
rownames(g2.imp)=a[,1]
dat=rbind(dat,g2.imp)

rm(a,dat2,dat3,ind,b)
########3way########
ind=matrix(NA,nrow=3,ncol=ncol(c[[3]]))#all 3way

ind=matrix(NA,nrow=3,ncol=ncol(c[[3]]))#all 2way
for(j in 1:ncol(c[[3]])){

a1=c[[3]][,j][1]
a2=c[[3]][,j][2]
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a3=c[[3]][,j][3]
ind[1,j]=names[a1]
ind[2,j]=names[a2]
ind[3,j]=names[a3]}

groups=NULL
for(j in 1:ncol(ind)){

groups[j]=list(c(ind[1,j],ind[2,j],ind[3,j]))}
a=as.data.frame(NA,nrow=length(groups),ncol=1)
colnames(a)="var3"
for(i in 1:length(groups)){

aa=strsplit(groups[[i]],'""')
bb=paste(aa[[1]],aa[[2]],aa[[3]],sep=",")
a[i,1]=bb
rm(aa,bb)}

g3.imp=matrix(NA,nrow=length(groups),ncol=sim)
for(i in 1:sim){

g3.imp[,i]=group.importance(rf[[i]], groups)}
rownames(g3.imp)=a[,1]
dat=rbind(dat,g3.imp)
### use above code to similarly create g4.imp,...,g12.imp
###plot
mns <- rowMeans(dat, na.rm=TRUE)
dat2 <- dat[order(-mns),]
dat3=dat2[1:50,]
#plot
heatmap.2(dat3,density.info="none",trace="none",labCol=NA,

main="RF VS: Model 5",xlab="Simulations 1-100",
ylab="Top 50 variable sets", margins=c(10,10),
col=cm.colors(256),dendrogram='none',Rowv=FALSE,Colv=FALSE)
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