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ABSTRACT OF THE DISSERTATION

Exploring the Spectrum of Autism:
Machine Learning and Dynamical Analysis Approaches

by

Debha N. Amatya

Doctor of Philosophy in Neurosciences

University of California San Diego, 2019

Professor Fred H. Gage, Chair
Professor Neal Swerdlow, Co-Chair

Autism spectrum disorder (ASD) is a neurodevelopmental condition that heterogeneously

impacts core domains of human function, such as communication, socialization, and cognition.

Underlying these symptoms are complex genetic changes in a diverse array of genes and pathways.

Developing a mechanistic understanding of ASD remains a major challenge that, left unanswered,

will continue to hinder progress in the clinical management of this increasingly prevalent disorder.

New approaches are needed to improve our understanding of the neurobiology of ASD, as well as

current clinical paradigms.
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In this dissertation, I discuss how techniques from the quantitative fields of machine

learning and dynamical systems theory may be applied to decipher the cellular and molecular

complexity of ASD. In Chapter 2, I address how whole genome sequencing data can be analyzed

through machine learning to predict ASD phenotypes. The machine learning analysis describes

novel methodology to vectorize genomics data and build interpretable classification models that

relate to well-supported findings in the literature. In Chapter 3, I show that neuronal activity

can be modeled as a nonlinear dynamical system to yield novel measures of neuronal state and

dysfunction. I provide evidence for the minimum embedding dimension (MED) as a marker

of diminished dynamical complexity of electrical activity recorded from ASD patient-derived

neurons. I also probe the clinical and gene expression correlates of MED, which overlap with

known ASD risk genes and pathways related to neurodevelopment in cortical and deep brain

structures.

The approaches outlined in this dissertation seek to transfer tools from different quantita-

tive fields to identify convergent cellular and molecular findings that characterize ASD. Genome

classification and dynamical analysis improve on existing methods for the identification of disease

signatures and reveal a set of common biological pathways and brain regions in ASD.

xvii



Chapter 1

Introduction

1.1 The autism spectrum

1.1.1 An expanding definition

Autism spectrum disorder (ASD) is a heritable neurodevelopmental condition that is

characterized by a wide range deficits in social, verbal, and behavioral domains [Mayes and

Calboun, 1999, American Psychiatric Association, 2013]. This combination of debilitating

symptoms impacts the core domains of human functioning and significantly damages the ability

of a child to integrate into family, social, and educational communities.

As the name suggests, ASD encompasses a variety of clinical sub-syndromes that exist on

a continuum from profoundly disabled, like the first autistic cohort reported by Leo Kanner in

1943, to cognitively high-functioning, such as the patients that Hans Asperger described in 1944

[Kanner et al., 1943, Asperger, 1944]. As time has passed, clinical definitions of autism have

broadened, culminating in the creation of the ASD umbrella diagnosis in the latest Diagnostic and

Statistical Manual of Mental Disorders [American Psychiatric Association, 2013]. ASD is often

further complicated by a constellation of possible neurological, cognitive, gastrointestinal, and

immune comorbidities [American Psychiatric Association, 2013]. The most common of these
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include intellectual disability, anxiety, sleep disturbances, poor feeding, and seizures [Zachariah

et al., 2017].

Therefore, with the aforementioned information, a typical presentation of a child affected

by ASD may be as follows: A four-year old boy is brought to see his physician due to poor

appetite, trouble sleeping, and worsening unresponsiveness to his name being called. The boy

had an uncomplicated birth and was in good health as a toddler. The mother describes that the

boy loves watching one particular episode of his favorite show and will cry despite consolation if

the television is turned off prior to completing it. The mother states that he has not demonstrated

interest in other shows or toys for the past two months. The boy was conversant at an age

appropriate level during prior annual clinic visits, but remains silent during the exam today.

The prognostic outlook for most children diagnosed with ASD is as varied as their

symptom profile. Though a small portion of children will respond dramatically to behavioral

intervention and achieve normal development in adulthood, outcomes are significantly dependent

on early diagnosis and difficult to predict. More commonly, adults with ASD reach some degree of

independence but continue to live at home with considerable support for daily activities. Almost

half of people with ASD will require living in a specialized healthcare setting with supervision

and only a small degree of autonomy [Newschaffer et al., 2007].

1.1.2 Societal impact

As definitions and awareness have expanded, the prevalence rates of ASD have increased

over the past few decades. According to the most current estimates, ASD impacts 1 of 59 children

and 1 of 37 boys in the US, positioning it as a major pediatric health issue [Baio, 2014]. Due to

its debilitating nature, early onset, costly treatments, and rising prevalence, ASD is a staggeringly

expensive disease that rivals the economic impact of well-known diseases, such as diabetes and

attention deficit and hyperactivity disorder. In 2015, the cost of ASD, due to direct medical,

indirect medical, and loss of productivity, was estimated to be $268 billion dollars, growing to

2



nearly $500 billion by 2025 [Lavelle et al., 2014, Leigh and Du, 2015]. Therefore, ASD is a

major source of personal and social suffering that has become a key driver for biomedical research

efforts.

1.1.3 Current clinical paradigms

Clinical tools for ASD remain coarse, due to our rudimentary understanding of the biology

underlying the disorder [Vorstman et al., 2017]. Though the rate of diagnosis has increased over

the past two decades, the process remains mostly subjective and dependent on the emergence of

behavioral abnormalities [Fountain et al., 2011]. Molecular markers, such as those used in other

fields of medicine, do not yet exist in the neuropsychiatric management of ASD, and as a result,

preventative care is not an option. Treatments are similarly imprecise and highly dependent on

age at initiation [Butter et al., 2003]. The gold standard treatment for ASD is early intensive

behavioral intervention (EIBI), a remarkably expensive cognitive therapy regimen that requires

up to 40 hours per week of one-on-one treatment for multiple years [Magiati et al., 2007, Reichow

et al., 2012]. Pharmacological interventions are mostly limited to severe cases and are limited

to the management of peripheral symptoms, like aggression or anxiety. No medication has

yet been shown to be disease modifying. Even after the diagnosis of ASD and initiation of a

successful treatment plan, charting the course of recovery or progression is not well-understood.

Therefore, the processes of diagnosis, treatment, and prognosis are all clouded by a high degree

of uncertainty, much to the frustration of patient families and health professionals.

1.2 Autism genetics

Due to its strong heritable component, a major area of research is identifying the genetic

basis of ASD risk. Broadly, this is accomplished by large-scale genetic sequencing efforts that

seek to find variants that are disproportionately found in people with ASD. What follows is a
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brief explanation of key findings related to ASD genetics studies, as well an introduction to the

concept of disease classification based on genomics data.

1.2.1 Heritability and genetic complexity

Autism has been known to be a heritable disorder since the 1970s, when it was first

reported that monozygotic twins had an increased likelihood of sharing a diagnosis [Folstein and

Rutter, 1977]. Since then, numerous studies have echoed this finding and the modern estimated

genetic contribution of ASD is 56% to 95% [Sandin et al., 2017, Colvert et al., 2015]. Despite this

understanding, it has been much more challenging to identify the precise genetic loci that make

up the heritable risk for developing ASD - a phenomenon often dubbed the missing heritability

problem [Manolio et al., 2009]. It has been well-documented that variants associated with

ASD target synaptic functioning, chromatin modifying, and regulatory pathways, but individual

variants are extremely heterogeneous, with none accounting for more than 1% of idiopathic ASD

cases [Geschwind and State, 2015, Sebat et al., 2007, ?, Devlin and Scherer, 2012]. For ASD and

other common traits, like height or intelligence, genetic complexity obfuscates the detection of

individual risk genes.

A central goal of biomedical genomic analysis is to elucidate the relationship between

disease phenotypes and their genetic underpinnings [Green et al., 2011]. For certain conditions,

such as rare monogenic disorders or cancer, genome sequencing has already proven to be

clinically useful in risk assessment, diagnosis, and treatment selection [Worthey et al., 2010, Bick

et al., 2017, The Clinical Lung Cancer Genome Project and Network Genomic Medicine, 2013,

Chapman et al., 2011, Sanford et al., 2018, Khambata-Ford et al., 2007, Slamon et al., 1987].

However, such success has remained more elusive in more common but complex conditions,

which are often influenced by environmental factors and characterized by distributed genetic risk

[Boyle et al., 2017, Manolio et al., 2009]. In these complex traits, variant burden is spread in a

polygenic, or even omnigenic manner, such that diverse genetic perturbations can give rise to
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similar pathway or macroscopic phenotypes. Modeling how risk is integrated across the genome

remains a critical challenge for complex heritable disorders.

Thus far, research efforts have estimated that ASD involves potentially thousands of risk

loci [?, Sandin et al., 2017, Colvert et al., 2015]. Whole genome sequencing enables the detection

of a range of genetic alterations that occur in the ASD population. Consensus findings from

these studies describe an enrichment of de novo or rare gene disrupting mutations, the role of

genetic background and common variation, structural alterations, and the functional diversity

of putative risk genes [Geschwind and State, 2015]. Unfortunately, the inability to understand

how loci interactively impart risk for individual patients stymie efforts to map the pathogenic

mechanisms that underlie clinical symptoms [Manolio et al., 2009, Geschwind and State, 2015].

Progress has been made in the development of polygenic risk scores, however such methods

typically rely on the thresholded hits of genome-wide association studies and do not yet provide

clinically actionable predictions [Weiner et al., 2017, Clarke et al., 2015]. New tools that interpret

sequencing data to provide clinical insight for at-risk children are needed, affording them a greater

chance for healthy development.

1.2.2 Machine learning for genomic classification

Research interest in ASD has sparked the creation of massive genomics databases that

contain high quality DNA sequencing and clinical data for both cases and controls [C Yuen et al.,

2017, Fischbach and Lord, 2010]. These growing databases coincide with the development of

powerful and scalable machine learning methods that excel in finding discriminative patterns

in big data. Unlike traditional association studies, machine learning methods are equipped to

flexibly combine input features to optimize prediction [Libbrecht and Noble, 2015, Leung et al.,

2016]. Machine learning-enabled programs have already demonstrated best in class (sometimes

exceeding human-level) performance in a wide variety of tasks, such as image classification,

natural language processing, and reinforcement-based tasks [LeCun et al., 2015].
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A growing number of sequencing-based machine learning analyses have used a variety

of data representations, including primary base pair sequence, genotype arrays, and RNAseq

transcript counts, to predict biomedically relevant information, such as cancer diagnosis, RNA

splicing patterns, and variant impact [Furey et al., 2000, Wang et al., 2005, Jaganathan et al.,

2019, Zhou and Troyanskaya, 2015, Poplin et al., 2018]. A related field of study, polygenic risk

scoring, has attacked the problem of estimating individual genomic risk in ASD; however, such

techniques often depend on the selection of arbitrarily thresholded hits from GWAS and thus far

have been more useful for complex trait association than prediction [Clarke et al., 2015, Weiner

et al., 2017, Dudbridge, 2013]. In addition to genomics, other sources of data such as patient

behavioral measurements, blood chemistry, imaging, and movement data have been utilized for

the automated classification of ASD [Jacob et al., 2019, Heinsfeld et al., 2018, Emerson et al.,

2017, Howsmon et al., 2017, Wall et al., 2012, Crippa et al., 2015].

Despite the existence of big genomic data and machine learning tools, automated genomic

classification has not yet demonstrated robust and reproducible results for neuropsychiatric

disease prediction. Genetic heterogeneity, low statistical power, and data dimensionality are

common issues encountered in such studies [Geschwind and State, 2015]. In part, these problems

stem from a lack of computationally efficient and biologically relevant representations of an

individual genome [Leung et al., 2016, Bzdok and Meyer-Lindenberg, 2018, Libbrecht and

Noble, 2015]. A vector cast in primary sequence or variant space may have a prohibitively

large dimensionality, whereas smaller representations may not sufficiently encode the complexity

of the disease signature. Machine learning applications in complex conditions like ASD may

be facilitated by the development of genomic representations that balance dimensionality with

biological information content.
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1.3 Cellular studies in ASD

Our understanding of ASD neurobiology is limited by our knowledge of the human brain

and its billions of individual components, neurons. Therefore, another major effort to understand

ASD is rooted in the small-scale but deep exploration of neurons obtained from patients affected

by ASD. These cellular studies offer an important bridge between findings from sequencing

studies and clinical phenotypes, because they allow scientists to peer into the critical cellular

units that translate molecular alterations into cellular disease mechanisms. This section will

describe findings from post-mortem and iPSC-derived neuronal studies in ASD. I will conclude by

discussing how stem cell models of ASD give us living, dynamic neurons that enable functional

readouts, namely electrical activity.

1.3.1 Post-mortem analysis

Post-mortem tissue harvesting and analysis is the traditional means by which neuronal

changes related to ASD can be studied. Though there are inherent advantages in using pri-

mary tissue, its non-functional nature typically limits studies to assessing morphology, cell-type

abundance, or transcriptomic changes [Courchesne et al., 2011, Voineagu et al., 2011, Gupta

et al., 2014]. Some hybrid studies have sought to take DNA sequencing results from large ASD

cohorts and map them to potential transcriptomic consequences in large datasets that have serially

RNA sequenced numerous brain regions at various timepoints of development [Willsey et al.,

2013, Parikshak et al., 2013, Sunkin et al., 2012]. Together, these studies have consistently

identified gene networks and pathways associated with synaptic functioning, immune regulation,

cortical development, and cell motility [Voineagu et al., 2011, Gupta et al., 2014, Willsey et al.,

2013, Parikshak et al., 2013, Luo et al., 2012, Garbett et al., 2008]. Additionally, some of these

studies also report overlap with hits from DNA sequencing efforts. Unfortunately, the specific

sets of differentially expressed genes varies across studies and a consensus transcriptomic profile
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has not yet been identified. Therefore, post-mortem studies tell us that molecular heterogeneity is

still present at the gene expression level, but it is likely that affected gene networks and pathways

are conserved across cohorts.

1.3.2 iPSC technology and functional studies

The combination of molecular heterogeneity and the relative inaccessibility of human

neural tissue has posed a major challenge to building a mechanistic understanding of ASD.

In part, this challenge has been addressed by advances in stem cell biology that have enabled

the generation of neurons from human subjects using induction and differentiation techniques

[Vadodaria et al., 2018]. Therefore, a path forward in the cellular mechanistic exploration of

complex heritable conditions, like ASD, is through neuronal studies derived from stem cell

models of phenotypically homogeneous subgroups. Previous studies have shown a correlation

between early brain overgrowth, as measured by head circumference and neuroimaging, and an

increased risk for ASD [Courchesne et al., 2003, Hazlett et al., 2011, Shen et al., 2013]. In this

subset of the ASD population, postmortem analysis has revealed an excess of neurons in the

first three years of life, and seminal iPSC-derived neuronal studies have uncovered increased

proliferation of neural progenitors and reduced synaptogenesis [Courchesne et al., 2011, Liu et al.,

2017, Marchetto et al., 2016, Mariani et al., 2015].

A key advantage of iPSC-derived neurons is the ability to record functional readouts

from otherwise inaccessible living tissue [Vadodaria et al., 2018]. Multielectrode arrays (MEAs)

enable high-throughput, longitudinal recordings of extracellular electrical dynamics from popu-

lations of neurons at millisecond resolution, facilitating the analysis of neurons in vitro [Kreuz,

2013, Samengo, I., Elijah, D., 2013, Baudry and Taketani, 2006]. The analysis of electrical

recordings typically involves the quantification of spiking related variables, such as firing rate,

spike morphology, and network measures. Electrophysiological analyses of neurons derived from

ASD patients have revealed functional defects, such as reductions in neuronal firing, disrupted
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postsynaptic currents, and imbalanced excitatory/inhibitory tone [DeRosa et al., 2018, Liu et al.,

2017, Marchetto et al., 2016, Mariani et al., 2015].

1.3.3 Neuronal activity as a dynamical system

Despite these advances, less attention has been devoted to the nonlinear dynamical analysis

of neuronal signals, which arise from the activity of numerous interacting neurons [Röschke and

Başar, 1988]. Traditional spiking analyses capture some important features, but more sophisticated

methods from the field of dynamical systems theory may extract novel discriminative variables

for the characterization of individual or group electrical activity. One such technique, minimal

embedding dimension (MED) analysis, is a mathematical algorithm to determine the dynamical

complexity of a time-series recording [Kennel et al., 1992]. In this framework, a neuronal network

is thought of as a system comprised of a finite number of n differential equations that govern all

possible states of the system. The purpose of MED analysis is to empirically estimate this n value

by iteratively forming d embeddings on an electrical time-series recording, which are simply

time delayed versions of the original recording. When the embedding dimension, d, matches the

native complexity of the system, n, the system is described as being unfolded and the minimum

embedding dimension is identified [Kennel et al., 1992, Takens, 1981].

Thus, MED is a quantitative indicator of the dynamical complexity of electrical activity.

Subject recordings may be characterized by average MED values, similar to traditional spiking

variables, and group-wise statistics or downstream analysis can be performed. Though this disser-

tation describes the first application of MED analysis to neuronal models to our knowledge, similar

techniques have been applied to electroencephalogram and magnetoencephalogram recordings in

autism, schizophrenia, bipolar, and depression [Akar et al., 2015, Bosl et al., 2011, Fernández

et al., 2018, Jeong et al., 1998]. These studies conclude that dynamical complexity is elevated in

mood disorders, such as bipolar disorder and depression, and it is decreased in developmental

conditions, like schizophrenia and ASD.
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The human brain is a complex nonlinear system that is comprised of multiple interacting

components at a variety of spatiotemporal scales. This complexity poses a challenge to scientific

investigation, but it also provides an opportunity to apply dynamical analysis tools to characterize

neuronal activity in a new way.
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Chapter 2

Genome Vectorization for Machine

Learning Applications to ASD

2.1 Background

2.1.1 Approach

In this section, I propose a gene-based vectorized representation for the classification of

genomes belonging to ASD and neurotypical subjects. In contrast to traditional genomic analyses,

I describe a novel methodology that allows for the simultaneous consideration of gene variant

risk across the entire annotated coding and non-coding genome. I demonstrate that variant burden

vectors can be used to train highly sensitive and specific classification models for idiopathic autism

that provide a new approach to the measurement of genome-wide risk in ASD. Additionally, I

explore how machine learning models can be “reverse engineered” to identify putative ASD risk

genes and mechanistic pathways that align with findings in the ASD genomics literature. Finally,

I explore anatomical correlates throughout neurodevelopment that localize predicted ASD genes

to prenatal cortical growth stages. Combining these factors, this study presents a new method

for the delineation of genomic mechanisms through machine learning. Additionally, genome
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vectorization presents a potential path forward for the holistic assessment of genomic ASD risk

that could precede the development of symptoms and complement standard clinical evaluations,

which remain costly and subjective [Lord et al., 2000, Vadodaria et al., 2018]. I believe that such

a framework will prove useful for the molecular interrogation of ASD as well as other heritable

traits and diseases. Prior to presenting the methods and results of this framework, key background

concepts related to DNA sequencing and machine learning will be covered.

2.1.2 Whole genome sequencing

Whole genome sequencing (WGS) is a modern technology that allows for the comprehen-

sive detection of DNA sequence variants in individual samples. Compared to earlier methods,

like Sanger sequencing, WGS is high-throughput, automated, and much less costly [Metzker,

2010]. Additionally, unlike single nucleotide polymorphism (SNP) sequencing methods, WGS

allows for the detection of all types of sequencing variation (e.g. insertions, deletions, and

structural variation), both common and rare [Cirulli and Goldstein, 2010]. The typical outputs of

a WGS experiment are billions of short reads, which must be aligned to a reference genome to

identify sequence differences in a given sample, known as variant calling. Because WGS covers

both coding and noncoding regions, variants are found in exons, regulatory regions, and many

unannotated regions.

The goal of variant calling is to identify sequence variants that are characteristic of your

sample. In the biomedical research setting, this is accomplished by amassing large collections

of case and control variant calls and performing association statistics for each variant to test for

significance. However, due to the high dimensionality of the variant space and the finding that

complex traits and diseases are characterized by many small effect size variants, WGS studies

often fail to identify robust, replicable loci in conditions like ASD, thus limiting the usefulness of

sequencing in research or clinical applications.
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2.1.3 An algorithm for genome vectorization

A useful way to quantitatively describe individual variant call data is in the form of

a vector of m dimensions or features. Vector valued quantities facilitate the comparison of

observations and are required for numerical applications, like machine learning. Importantly,

vectors also simultaneously represent relevant features, such that data can be holistically compared

across many features at once. Most intuitively, I can describe each subject using a three billion

dimensional vector that describes each base pair value in the genome. Or, instead, I could chose

to focus only on variants to reduce M by a few orders of magnitude. Regardless, due to the large

dimensionality of these vectors, computational calculations and statistical tests are very costly at

this scale. In this chapter, I propose the construction of a gene based vector, which compresses the

feature set to within an order of magnitude of the number of subjects, N, available in the largest

ASD sequencing datasets, facilitating computation. The pseudocode for this simple algorithm,

called genome2vec, is given below:

Algorithm 1: genome2vec for genome vectorization
Input: A set of variants Si for N subjects, a scoring function F , and an index of genes

M
Output: A set of gene-based variant burden vectors V

1 for i = 1 to N do
2 Vi← a 0 vector of index M
3 foreach si ∈ Si do
4 (index, impact) = F(si)
5 update Vi(index)←Vi(index)+ impact

6 return V = {V1,V2, ...Vn}

2.1.4 Classification theory

Vector valued inputs enable data analysis through an ensemble of tools called machine

learning. The goal of all machine learning analyses are to automatically construct a model that
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is descriptive of given data and predictive for future data. As such, machine learning models

are particularly useful in contexts with large feature spaces, imperfect knowledge of feature

importance, and large quantities of data [Domingos, 2012, LeCun et al., 2015]. Three key use

cases of machine learning include regression, clustering, and classification. For the purposes of

this dissertation, I will focus on classification, which is the task of predicting a categorical class

membership from vector-valued data. In this case, genome classification refers to the prediction

of ASD or control status from variant burden vector.

To construct a classification model, three key ingredients are needed: 1) data representa-

tion, 2) model optimization, and 3) model evaluation [Domingos, 2012]. Consider the popular

naive Bayes classififier:

Ĉ = argmax
i∈{1,...,K}

M

∏
k=1

P(xk|Ci) (2.1)

In this probabilistic framework, classification is cast as maximum likelihood estimation problem.

Data, X , is treated as a random variable dependent on the class, C, it is drawn from. Data features

are considered independently and multiplied together based on prior models for each feature to

identify the probabilistically maximal class. Evaluation is performed by compared predicted class,

Ĉ, to true class, C. Similarly, other classification models cast this problem in the mathematical

framework of a separating hyperplane in support vector machines, decision tree in random forest

classification, or curve fitting problem for logistic regression.

2.2 Methodology

2.2.1 Whole genome sequencing data

The primary data for this study were derived from the Autism Speaks MSSNG database

(MSSNG), a large collection of paired genomic and clinical data for ASD and control subjects.

The MSSNG database used in this study (DB5) contained whole genome sequencing data from
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7,187 individuals. Most typically, MSSNG individuals belonged to a trio family structure,

composed of neurotypical parents and a child affected with ASD (3,786 subjects), though other

family structures were also present. Whole genome sequencing was performed for each subject

using a mixture of Illumina and Complete Genomics platforms. Though Complete Genomics

samples were associated with higher error, classification performance still remained acceptably

high (Appendix Figure A.3A). Ninety-one percent of the DNA samples were acquired from

blood, and the remaining samples were acquired from cell lines (5%) and white blood cells (4%)

[C Yuen et al., 2017].

A secondary whole genome sequencing dataset, the SFARI Simons Simplex Collection

(SSC), was used for replication of the machine learning analysis. The version of the SSC used in

this study (phases 1, 2, and 2) contained 7,400 samples, composed of 1,850 quad families. The

quad family structure contained one ASD proband, one neurotypical sibling, and two neurotypical

parents. More sample information is provided in Table 2.1.

Recruitment, informed consent, and study protocols were governed by the respective

institutional review boards of the original creators of the MSSNG and SSC databases. The present

study was exempted from the institutional review board of the Salk Institute, due to the data

having already been collected and de-identified prior to access.

2.2.2 Variant filtering

Annotated variants for the MSSNG subjects, which were called using an analysis pipeline

described by Yuen et al. (2017), were acquired through MSSNG’s Google Cloud BigQuery

service [C Yuen et al., 2017]. Variants were included if they survived filtering criteria for allele

frequency (minor allele frequency ≤ 10%) and effect (damage prediction, conservation, and

known clinical relevance). The precise filters used for the creation of this annotated variant table

are described in the original publication [C Yuen et al., 2017]. Additionally, the annotated variant

table that was used for the bulk of this study excluded variant calls present only in control samples,
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thereby focusing on disease-relevant variants only.

SSC whole genome sequencing variant calls were filtered as similarly as possible to the

primary MSSNG dataset. Additionally, due to the case-control class imbalance caused by the

quad family structure, random resampling was performed before model training to balance the

number of ASD (proband) and control (mother, father, sibling) observations.

2.2.3 Variant scoring and gene-based vectorization

Filtered variants were subsequently scored using the Variant Effect Predictor (VEP) tool

developed by Ensembl [McLaren et al., 2016]. VEP uses a wide range of bioinformatics databases

to assess the impact of both coding and noncoding variation in sequencing data. VEP was used to

score the consequence of each annotated variant on a scale of 1 to 4, as defined by the Sequence

Ontology [Eilbeck et al., 2005]. A score of 1 was assigned to “Modifier” variants, e.g., intergenic

variants or minor regulatory region modifications. A score of 2 was assigned to “Low” impact

variants, e.g., synonymous substitutions. A score of 3 was assigned to “Moderate” impact variants,

e.g., missense mutations and inframe insertions or deletions. Finally, a score of 4 was assigned

to “High” impact variants, e.g., frameshift mutations or transcript ablations. A comprehensive

catalog of variant types and VEP impact scores is included in Supplemental File 1, Table 1.

Gene-based vectorization was performed by calculating the average VEP score for each

gene for a given individual’s set of filtered variants. The gene was selected as the basis for

vectorization for its relatively low dimensionality, yet sufficient specificity in capturing relevant

disease-associated patterns. Averaging was performed to correct for differences in gene length

and the number of variants per subject. In total, each subject variant burden vector had a

dimensionality of 30,676 genes for the MSSNG data.

Alternative features spaces were constructed to assess the performance of higher and

lower dimensional representations. Using the MSSNG filtered set, the variant-based vector was a

binary presence/absence array of variants present in at least 50 subjects and thresholded by the
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top half variance variants. For the same data, the chromosome-based vector was constructed by

calculating the average impact score across the autosomal chromosomes for all subjects.

2.2.4 Implementation of machine learning classification models

The individual subject vectors were concatenated as rows to construct a 7,187×30,729

gene-based variant burden matrix. To further reduce the dimensionality of this matrix, unbiased

variance filtering was performed to select the top half of higher variance genes. Machine learning

models were trained on this native gene space matrix to facilitate model interpretation in later

portions of the study. Principal component analysis was only performed for the visualization of

vectors in a two-dimensional space.

Classifiers were trained using five different models: logistic regression (LR), support

vector machines (SVM), multilayer perceptron (neural network), Naive Bayes, and random forest.

The goal of each of these models was to predict the case-control status of a sample given its variant

burden vector. For each model, training was performed using standard 10-fold cross-validation,

during which 90% of the data was iteratively used for training and 10% was used for validation

[Friedman et al., 2001]. Of note, a linear kernel was used for the SVM classifier and no priors

were supplied to the Naive Bayes classifier. Exact model hyperparameters and trained models are

available online at GitHub (see “Availability of Code” section). All models were implemented

using Python 3 and its freely available modules, namely NumPy, SciPy, Pandas, scikit-learn,

Keras, and TensorFlow [Jones et al., 2014, Oliphant, 2006, McKinney et al., 2010, Pedregosa

et al., 2011, Chollet et al., 2015, Abadi et al., 2015].

2.2.5 Analysis of classification performance

Accuracy was measured as the fraction of correct case-control predictions on the validation

or test data only. Accuracy was measured for each fold of cross-validation and displayed on
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a boxplot. Also, using the trained models and validation or test data, I constructed receiver

operating characteristic curves to assess model robustness of balancing sensitivity and specificity.

A representative curve from the final fold of 10-fold cross-validation is shown in Figure 2.6.

2.2.6 Selection and investigation of salient classification genes

The SVM model was selected for further analysis, due to its high accuracy and consistency

across cross-validation trials (93±0.005%). A genome-wide ranking was assigned for each gene,

based on the hyperplane weights learned by the model during training. The top and bottom

quintile (SVM, ASD+ and SVM, ASD-) genes were chosen as representative gene lists for

ASD-relevant and control-relevant genes, respectively. Both of these lists contained 3,067 genes.

In a similar manner, top and bottom quintile genes were selected from the logistic regression

model (LR, ASD+ and LR, ASD-).

These lists were compared to existing sets of putative ASD genes (Princeton), evidence-

based ASD genes (SFARI), and highly brain-expressed genes using a one-tailed binomial test for

overrepresentation [Krishnan et al., 2016, Abrahams et al., 2013, Uhlén et al., 2015]. Significance

was set at p ≤ 0.10, for each test. A set of highly expressed genes in the human liver was also

included as a negative control in this analysis [Uhlén et al., 2015]. The exact gene sets and results

for this portion of the study are included in Supplemental File 1, Table 5.

2.2.7 Gene ontology (GO) analysis

The SVM, ASD+ genes were further studied with the Panther Database online tool to

identify biological processes, molecular functions, and cellular components involved with the

selected list [Thomas et al., 2003, Thomas et al., 2006, Ashburner et al., 2000]. The two-tailed

Fisher’s exact test with false discovery rate correction was used to identify significantly enriched

modules. A complete table of modules with p ≤ 0.05 can be found in Supplemental File 1, Table
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6.

2.2.8 Spatiotemporal enrichment analysis

Spatiotemporal enrichment of the SVM gene rankings was assessed using gene expression

data from the BrainSpan Atlas of the Developing Human Brain [Sunkin et al., 2012]. Normalized

gene transcript counts were acquired for brain samples that varied across multiple time points and

neuroanatomical regions. Twelve developmental stages ranging from early prenatal to adulthood

were included. Regionally, 16 discrete brain structures were included. For a more detailed

description of the BrainSpan samples, documentation for the “Developing Transcriptome” dataset

can be found at http://www.brainspan.org.

In a process similar to one described by Krishnan et al. (2016), representative genes sets

were chosen for each region-stage pair by calculating the modified z-score of a given gene in

the distribution of counts for all region-stage pairs [Krishnan et al., 2016]. The modified z-score

was calculated using the median and median absolute deviation (MAD) in lieu of the average

and standard deviation, because the median provides a better measure of centrality for the counts,

which are typically not normally distributed.

Enrichment was calculated in two steps: 1) the identification of representative stage-region

genes in the BrainSpan Atlas and 2) permutation testing to assess whether representative stage-

region genes were highly ranked in genome-wide classifier rankings. The first step was performed

with a modified z-scoring of genes using the median of reads per kilobase of transcript, per million

(RPKM) count values (M) and median average deviation (MAD), due to the non-normality of

counts data. The procedure follows:

1. Select a stage-region from the BrainSpan Atlas.
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2. For each gene, i, in this stage-region, j, compute:

zi, j =
0.6745× (RPKMi, j−Mi)

MADi
(2.2)

3. For stage-region j, select genes with zi, j ≥ 2 as the representative gene list.

To accomplish the second step, the gene rankings derived from the SVM model were set

to an exponential scale, such that the topmost gene was assigned a value of 1 and the bottommost

gene was assigned a value close to 0. Then, the following procedure was used to compute the

observed ranking difference (dobs) and a distribution of permuted ranking differences (dperm):

1. Convert classifier gene ranking ranki to exponential rank, si, with the following equations:

si =
bri−1
b−1

(2.3)

with b = 100 and

ri =
N− ranki +1

N
(2.4)

with N set to the total number of genes in the ranking.

2. For stage-region j, select its representative genes. Also select a set of random genes of the

same length.

3. Calculate:

dobs = ¯sr1− ¯sr2 (2.5)

where r1 ∈ representative genes and r2 ∈ random genes.

4. For 100,000 iterations, shuffle the genes in the representative and random gene lists and

calculate dperm.
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5. Determine significance with

z =
dobs−mean(dperm)

SD(dperm)
(2.6)

The p-value of the dobs was calculated using the z-score derived from the dperm distribution.

P-values were adjusted for multiple comparisons with Bonferroni correction, and significance

was assigned to adjusted p-values ≤ 0.10. Results for all 192 region-stage pairs are presented in

Supplemental File 1, Table 7.

2.2.9 Cellular type enrichment analysis

Cell-type enrichments were calculated using a set of hand curated marker gene lists

from a large-scale, human brain transcriptomic study [Kang et al., 2011]. Twenty cell types

(primarily classes of GABAergic and glutamatergic neurons, but also glial types) were tested

using a permutation test identical to the method for spatiotemporal enrichment. The cell-type

enrichment results are presented in Supplemental File 1, Table 8 and Appendix Figure A.6.

2.2.10 Performance Generalization

Classification generalizability was tested by creating variant burden vectors that included

all control and case variation that survived the previously mentioned damage, allele frequency, and

conservation filters. Vectors from the MSSNG and SFARI dataset were standardized to include

shared genes, and batch correction was performed with the ComBat tool from the Surrogate

Variable Analysis (sva) toolbox [Leek and Storey, 2007]. Additionally, the SFARI SSC data

was matched to the MSSNG data by only including parental controls and ASD probands in the

analysis. Next dimensionality reduction was performed on the concatenated MSSNG and SFARI

variant burden vectors with principal component analysis, retaining 99% of the variance in the
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data. Finally, the MSSNG and SFARI vectors were separated, and the former was used for model

training and cross-validation, while the latter was saved for model testing. The same models

and performance metrics as described earlier in the methods were used. The full results for this

analysis can be found in Supplemental File 1, Table 9.

2.2.11 Plotting and figure construction

Images were produced using R and its associated packages (ggplot2, pheatmap, Cere-

broViz). Aesthetic editing was performed using Adobe Illustrator.

2.2.12 Availability of code

The code for genome vectorization, machine learning model implementation, and miscel-

laneous functions are available on GitHub: https://github.com/damatya/genome2vec.

2.2.13 Availability of data

All data and results to support the findings of this study are presented in the results and

Appendix materials. Primary data from the MSSNG and SSC databases are available through

protected access from Autism Speaks (https://research.mss.ng/) and SFARI

(https://www.sfari.org/resource/simons-simplex-collection), respectively.

2.3 Results

2.3.1 A machine learning framework for genomic classification

Classification is a general machine learning problem in which labeled data are used to

train a model that can predict the classes of new, unlabeled data. In the context of this study,

genomic classification refers to the prediction of ASD or control status from a representation of
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an individual genome. Figure 2.1 describes an end-to-end genomic classification framework in

which raw DNA sequencing data are automatically processed into a vectorized representation and

passed into a classifier to yield individualized ASD risk prediction and insight into genetic risk

features.

Patient WGS Data
Machine
Learning

Model

Genomic Risk
Assessment

Risk Feature Identification

Vectorized Representation

ARAF
SYN2

NF1
LDHA

RELN
PGK1

Figure 2.1: A framework for genomic classification of ASD. This schematic illustrates an
end-to-end solution for a machine learning approach to the classification of ASD sequencing
data. Whole genome sequencing (WGS) variant calls are transformed into a compact, vectorized
representation that can easily be fed into a machine learning model. Trained models offer
both insight into genetics mechanisms of ASD and assessment of genome-wide risk. Model
investigation reveals how genes are utilized for prediction, allowing biological plausibility and
implications to be assessed.

The creation of a trained genomic classifier requires 1) the availability of a large collection

of labeled case-control genomes and 2) a computationally feasible and biologically relevant

vectorized representation of the genome. To address the first requirement, I used the Autism

Speaks MSSNG database, one of the largest joint repository of ASD and control genomes in

existence (Table 2.1) [C Yuen et al., 2017]. The MSSNG data can be accessed at varying levels

of analysis, ranging from raw sequencing reads to sample summary statistics. For this study,

I utilized coding and non-coding subject variant calls that had been filtered for quality, allele

frequency, and predicted impact (Figure 2.4). Of note, the filtered variants included both rare and

common variants, up to a minor allele frequency of 10%. Unannotated variants, often found in

non-coding regions, did not meet the filtering criteria and were thus excluded from this study.

Given the wide variety of feature scales (primary sequence, variant, gene, etc.) at which

the analysis could be performed, as illustrated in Figure 2.3, the elimination of irrelevant or benign

variation was a crucial step in reducing the dimensionality of the problem. To do so, variants were
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Table 2.1: Whole genome sequencing samples. Many case and control samples are required to
capture the diversity of genomic signatures during model training. The primary data analyzed in
this study belong to the Autism Speaks MSSNG database, and a secondary validation dataset
was acquired from the SFARI SSC. A key difference between the datasets is that MSSNG
is primarily comprised of neurotypical parent controls and ASD probands, i.e. a trio family
structure, whereas SSC is comprised of neurotypical parent and sibling controls and ASD
probands, i.e. a quad family structure. Gender and group splits are written as a percentage of the
dataset sample size. Age is given as the average age, plus or minus one standard deviation.

Autism Speaks MSSNG
(N = 7,187)

SFARI Simons Simplex
Collection (N = 7,400)

Control ASD Control ASD
Male 26.2% 37.4% 36.7% 21.7%

Female 26.2% 10.2% 38.2% 3.3%
Age (years) 41.9± 6.5 9.3± 4.8 N/A 9.6± 3.5

Data
Structure

Trio: father, mother, proband (52.7%) Quad: father, mother, sibling,
proband (100.0%)
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Figure 2.2: Characteristics of whole genome sequencing variants. A. Density plot of variants
that survive filtering across groups. Coarse examination of variant call quantity indicates that
both ASD (red) and control (blue) groups appear to be similar. B. A pie chart of variants, scored
by damage impact, reveal similar distributions in controls (top) and cases (bottom). C. Closer
examination of protein coding variants, binned by functional impact, also yield no differences
between ASD (red) and control (blue) samples. Simplistic measures, such as variant quantity,
predicted impact, and functional consequence, lack the resolution to separate the groups in a
meaningful manner.

included in the primary training data only if they were present in at least one ASD sample call set.

I relaxed this constraint for the final portion of this analysis (Figure 2.12), in which generalization

across datasets was tested. After filtering for rareness and damage, the distribution of variant

calls per subject was very similar between ASD and control subjects (Figure 2.2A). Additionally,
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no significant differences were observed between categories of variant impact (Figure 2.2B), as

measured by the Ensembl Variant Effect Predictor, or functional consequence of protein coding

variants between cases and controls (Figure 2.2C). Together, these results indicated a lack of

obvious differences in quantity and quality at the variant level between groups.
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Figure 2.3: Feature selection of vector scale. This conceptual demonstration shows that the
choice of dimensional scale for vectorization impacts the predictive value of the data. These
axes may theoretically exist on a continuum of maximally fine-grained (e.g., base pair or variant
level) to coarse (e.g., chromosomal blocks).

The MSSNG variant calls comprised the primary study data, and another major ASD

sequencing database, the SFARI Simons Simplex Collection (SSC), was similarly prepared for

replication of this analysis and generalization of methodology (Table 2.1). Both the primary

MSSNG and secondary SSC data were subsequently vectorized and analyzed by machine learning.

2.3.2 Gene-based vectorization for whole genome sequencing data

The second necessary component for this analysis is a vectorized representation that can

be utilized to train machine learning classification models. Vectorization requires the choice

of a consistent set of genomic axes with which distinct samples can be represented, compared,
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and analyzed. As shown in Figure 2.3, a vectorization at the base pair or variant level would

maximally encode genetic risk at the cost of computational efficiency and statistical power. Due to

the sparsity of high dimensional representations at limited sample sizes, overfitting to individual

subject differences pose a major challenge to the training of generalizable classification models. In

contrast, a vector that summarizes chromosomal variant burden would be computationally efficient

but too coarse for biological predictions. Appendix Figure A.1 shows that both variant-based and

chromosome-based vectorizations failed to separate cases and controls in the MSSNG data. Due

to the intractability of higher-dimensional representations, our selection of a feature space was

constrained to a more compact scale [Keogh and Mueen, 2011, Sherry et al., 2001]. A gene-based

vector was a seemingly optimal trade-off of numerical efficiency and biological relevancy for

this analysis (Figure 2.3). At a scale of roughly 30,000 genes, the vector dimensionality is

sufficiently small such that statistical inference is feasible with the available sample size, and the

convergence of variant burden at the gene level affords flexibility in modeling the heterogeneity

of how biological states might be impacted in ASD [Crick, 1970].

Raw Variants

Filtered Variants

Complete Genomics, Illumina HiSeq

High-quality, rare & damaging variants 

Variants Scoring
Variant Effect Predictor (VEP) algorithm

Vectorization
Integration of variant scores, per gene

Figure 2.4: Pipeline for variant processing. Filtered variants that were selected for quality,
rareness, and damage criterion were scored and averaged for each gene and subject.

I performed gene-based vectorization by scoring variants and summarizing burden by
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gene for each subject, as described in Figure 2.4. Using the Ensembl Variant Effect Predictor

algorithm, variants were scored on a four-tier scale: “Modifier”, “Low”, “Moderate”, and “High”

consequence (see Methods). Next, these labels were converted to numerical values and averaged

per gene for each individual, resulting in our gene-based variant burden vector. Finally, the subject

variant burden vectors were then subsequently stacked on each other to yield a variant burden

matrix, which had the shape of 7,187 subjects × 30,729 genes. A portion of this matrix, in which

ith subject and jth gene burden were colorized on a standardized scale, is shown in Figure 2.5A.

Though differential genomic trends between cases and controls may be difficult to ascertain with

the human eye, machine learning models excel at finding patterns in such data. To visualize the

separability of the classes, I performed principal component analysis (PCA) on the variant burden

matrix and plotted the top two principal components (Figure 2.5B). Two distinct clusters based

on sequencing platform were observable (Appendix Figure A.2). More importantly, though the

groups did not entirely form distinct clusters in this view, an ASD-control decision boundary was

apparent, which was suggestive of amenability to classification.

2.3.3 Classification of variant burden vectors

I achieved classification of ASD and control variant burden vectors with five different

models: logistic regression, support vector machines (SVM), multilayer perceptron neural net-

work, naive Bayes, and random forest. Though these models differ in their implementation, each

one functions by receiving a variant burden vector input and producing a class prediction as

output. Prior to training, I filtered the variant burden matrix based on gene column variance to

further reduce dimensionality in an unbiased manner. As shown in Figure 2.6, I constructed our

classification models using a 10-fold cross-validation scheme that iteratively utilized 90% of the

data for training and the remainder for validation.

All five models demonstrated high mean accuracies, ranging between 85% and 95%,

which generalized well to the validation data (Figure 2.7A). Logistic regression, SVM, and the
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Figure 2.5: Visualization of variant burden vectors. A. Depiction of real vectors from MSSNG
dataset. Each row represents an individual subject’s variant burden vector and a set scale of gene
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control and ASD subjects, respectively. B. Principal components (PC) analysis plot of variant
burden vectors reveals a decision boundary between the ASD and control groups. Two distinct
clusters are formed by samples sequenced on Illumina and Complete Genomics platforms, as
shown in the Appendix. {
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15,338 genesVariance
Filter
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Figure 2.6: Classification model training and testing scheme. Vectors were purged of low
variance genes then used to train classification models with 10-fold cross-validation. In this
scheme, 90% of the data is iteratively used to train the model and 10% is left to test performance.

artificial neural network exceeded an average of 90% accuracy. Of these, the SVM model had

the least variance across folds (93±0.005%, mean±SD accuracy across folds). Cross-validation

accuracies for each classifier are described in Supplemental File 1, Table 2. Further, I examined

classifier sensitivity and specificity through the receiver operating characteristic curves shown
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in Figure 2.7B, revealing strong performance, particularly in the logistic regression, SVM, and

neural network models. This level of performance suggests robust vector separability and the

successful identification of ASD-relevant genomic patterns.
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Figure 2.7: Classification model performance for MSSNG data. Vectors were purged of low
variance genes then used to train classification models with 10-fold cross-validation. In this
scheme, 90% of the data is iteratively used to train the model and 10% is left to test performance.
A. Average model accuracy. Five different classification models performed well across cross-
validation. Particularly, the SVM model demonstrated high accuracy with the most consistency
across folds (93±0.005%, mean±SD). B. Representative receiver operating characteristic curves
show balanced model sensitivity and specificity. The classifier curve colors are specified in the
legend, and the black curve represents a random classifier. Area under the receiving operating
characteristic curve (AUROC), a performance measure of binary classification, is also listed in
the legend for each model.

The classification performance within various covariate groups (e.g., sequencing platform

and gender) does not substantially differ in accuracy, as shown in Appendix Figure A.3. Therefore,

the classification result is robust to variability in experimental conditions. Additionally, both

scrambling of group labels and variant burden vector columns per subject were sufficient to break

classification performance, indicating that the ground truth labeling and distribution of variant

burden across the genome is structured in a meaningful way (Appendix Figure A.4).

I repeated variant burden vectorization and machine learning analysis in the SFARI SSC
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to study the replicability of these methods in independent data. The random forest, logistic

regression, and SVM classifiers converged on highly accurate solutions (greater than 85% mean

accuracy over 10-fold cross-validation). However, the naive Bayes and neural network models

were unable to achieve similar performance as their counterparts trained in the MSSNG cohort.

In part, this gap may stem from an increased difficulty in learning the subtle differences between

genomic patterns in healthy versus affected sibling pairs, which are present in this quad family

structured data. Performance metrics for the SFARI SSC validation data are presented in Appendix

Figure A.5 and Supplemental File 1, Table 3.

2.3.4 Relevance of salient classification genes to ASD neurobiology

A common issue in machine learning is the seemingly uninterpretable nature of complex

models, often referred to as the “black box” problem [Castelvecchi, 2016]. Despite the perfor-

mance presented in this paper, a thorough interrogation of the biological plausibility of the result

is necessary for informing future clinical and biological applications. Therefore, the learned

genome-wide weights in the SVM and logistic regression models were used as a measure for

classification salience. The top and bottom weighted quintiles of genes were extracted to create

lists associated with positive (ASD+) and negative (ASD-) ASD prediction, as shown in Figure

2.8. The complete list of ASD+ and ASD- genes for both SVM and logistic regression models

can be found in Supplemental File 1, Table 4.

Given the presumed importance of the ASD+ lists, I hypothesized that these genes would

be enriched for known ASD risk genes and pathways, as well as genes specifically relevant in

brain function. Figure 2.9A shows that enrichment analysis of the classifier ASD+ list revealed

significant convergence with genes implicated in ASD and brain function, as reported by SFARI

and the Human Protein Atlas. Additionally, significant overlap (p = 0.000524, one-tailed binomial

test) was found between the classifier ASD+ list and a set of putative ASD genes from a genome-

wide prediction study by Krishnan et al. (2016) [Krishnan et al., 2016]. Conversely, classifier
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Figure 2.8: Extraction of salient classification genes. A quintile plot of SVM hyperplane
weights is shown. The top quintile ASD+ list is composed of genes deemed to be important for
ASD classification, and the bottom quintile ASD- list is attributed to a control class prediction.

ASD- genes were not enriched for SFARI and brain-related gene sets, and a negative control set

of liver expressed genes was not enriched in either ASD+ or ASD- genes. Comprehensive results

and gene lists for the gene enrichment analysis are in Supplemental File 1, Table 5.
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Figure 2.9: Analysis of ASD+ genes and biological pathways. A. ASD+ classifier genes are
enriched for SFARI and brain-related gene sets. Enrichment was calculated using a one-tailed
binomial test with a p-value significance cutoff of 0.10. B. Gene ontology analysis suggests
neurodevelopmental pathway involvement. SVM, ASD+ genes were tested for enrichment using
a two-tailed Fisher’s exact test with false discovery rate correction with a significance cutoff of
0.05. A portion of relevant results include ion binding, synaptic, and sensory perception terms.
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I conducted gene ontology analysis to examine the enrichment of biological pathways

related to the ASD+ genes [Thomas et al., 2003, Ashburner et al., 2000]. Given the consistency

of the SVM classifier, I tested the SVM, ASD+ genes for overlap with annotated biological

processes, molecular functions, and cellular components. Figure 2.9B shows a selection of

significant findings, in which specific biological processes associated with neuron development

and function, such as ion binding, regulatory pathways, and synaptic terms, are among the most

apparent categories. In contrast, the SVM, ASD- list was not associated with enrichment in any

biological process. Complete results for the gene ontology analysis of the SVM, ASD+ genes are

in Supplemental File 1, Table 6.

2.3.5 Spatiotemporal and cellular localization of salient classification genes

ASD is a complex neurodevelopmental condition that is hypothesized to impact cortical

neural circuits during prenatal time points [Willsey et al., 2013, Parikshak et al., 2013, Zhou and

Troyanskaya, 2015, Courchesne et al., 2018]. To asses the spatiotemporal relevance of the genes

predicted by our model, I constructed a permutation distribution to test whether the genome-

wide rankings corresponded to 12 developmental stages and 16 brain regions derived from the

BrainSpan Atlas of the Developing Human Brain (Figure 2.10A) [Sunkin et al., 2012, Zhou

and Troyanskaya, 2015]. This analysis revealed a significant involvement of early mid-fetal

stages (13-18 pcw), particularly in a cluster of specific cortical regions that included the primary

visual cortex (V1C), primary auditory temporal cortex (A1C), and inferior temporal cortex (ITC)

regions, as well as the primary somatosensory cortex (S1C). The regional enrichments of the

most significant developmental stage, early mid-fetal 2, are visualized in situ in Figure 2.10B.

Primarily, cortical regions were associated with high genome-wide average rank. However, some

inner structures, such as the hippocampus and striatum, were also significantly enriched in the

ASD+ ranking.

I also examined the convergence of the SVM genome-wide rankings with cell type-specific
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Figure 2.10: Brain-wide spatiotemporal enrichment of ASD+ genes. A. Cortical regions during
early mid-fetal development are enriched for highly ranked classifier genes. Significance was
calculated with a permutation testing procedure, as described in the Methods. In this heat
map, the inverse log of the adjusted p-values is shown, after Bonferroni correction for multiple
comparisons. The grayed out cells in the heat map correspond to brain structures absent in the
early fetal brain. B. Neuroanatomical visualization of putative ASD brain regions. The raw
permutation test p-values were plotted for the developmental stage with the most significance,
early mid-prenatal 2 (16-18 pcw). Broad patterns of cortical enrichment are evident. The
included brain regions are the primary visual cortex (V1C), primary auditory cortex (A1C),
inferior temporal cortex (ITC), medial frontal cortex (MFC), cerebellar cortex (CBC), primary
somatosensory cortex (S1C), hippocampus (HIP), superior temporal cortex (STC), ventral
frontal cortex (VFC), striatum (STR), inferior parietal cortex (IPC), olfactory cortex (OFC),
mediodorsal nucleus of thalamus (MD), primary motor cortex (M1C), amygdala (AMY), dorsal
frontal cortex (DFC).

transcriptional programs [Kang et al., 2011]. Twenty neural cell types, including astrocytes,

inhibitory and excitatory neuronal types, microglia, and oligodendrocytes, were analyzed for

enrichment using permutation testing. Of these, two types of GABAergic interneurons (CCK

and CALB2), GABAergic progenitors, and cortical layers 2-4 and layer 6 glutamatergic neurons

were significantly elevated in our classifier rankings (Appendix Figure A.6). Further analysis

revealed that excitatory and inhibitory cell type risk was not uniformly distributed across the

ASD sample. These findings demonstrate developmental convergence on specific excitatory and

inhibitory neuronal cell-types, consistent with previous reports [Willsey et al., 2013, Parikshak

et al., 2013, Courchesne and Pierce, 2005]. Additionally, our results suggest that mechanistic

heterogeneity may in part be a function of differing variant burden in diverse neural cell types.
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2.3.6 Generalizable ASD Classification

Apart from interpretability, another major challenge in machine learning is model gen-

eralizability. That is, whether a classification model trained on one dataset is robust enough to

perform well in another dataset. Thus far, I have demonstrated highly accurate performance

during repeated training and validation within MSSNG and SFARI SSC cohorts that have been

purged of control only variation (Figure 2.7 and Appendix Figure A.5). Here, I sought to assess

classification generalization across MSSNG and SFARI datasets in the context of including all

control and case variants to mitigate class bias (Figure 2.11). Please note, the MSSNG and

SFARI datasets were balanced, such that primarily healthy parent controls and ASD probands

(trio structures) were considered. {
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MSSNG Vectors
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MSSNG Vector
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Normalization
and PCA
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Figure 2.11: Training and testing scheme to analyze generalizability across MSSNG and SFARI
datasets. The primary dataset used in this study excluded variants found only in controls, thus
facilitating classification performance. Models were retrained using datasets that included all
filtered variants from both ASD cases and controls, thus mitigating class bias. Variant burden
vectors were transformed using batch correction and principal component analysis (PCA) with
inclusion of 99% of data variance. The MSSNG data was used for training classification models
with 10-fold cross-validation, and the SFARI data was used exclusively for testing.

In Figure 2.12A and B, I show that the Naive Bayes classifier accurately discerns ASD and

control vectors when trained and cross-validated on the MSSNG dataset and tested on the SFARI

dataset. The remaining models either performed poorly in cross-validation or were unable to

generalize to the test data and might require further optimization or additional training to achieve

performance similar to the Naive Bayes model. Importantly, this generalizable performance
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was achieved by batch correction across datasets and dimensionality reduction through principal

component analysis (Figure 2.11). The demonstration of moderate but generalizable classification

performance is an important confirmation of the value of the genome vectorization technique,

and it suggests utility for scenarios in which prior case or control status is unknown, such as the

clinical setting.
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Figure 2.12: Generalizable classification of ASD vectors. A. Average model accuracy. Five dif-
ferent classification models were tested, but only the Naive Bayes model consistently performed
well in both cross-validation and testing (CV: 72±1.8% and Test: 73±0.4%, mean±SD). B.
The receiver operating characteristic curves of the Naive Bayes model shows balanced model
sensitivity and specificity. The cross-validation and testing curve colors are specified in the
legend, and the black curve represents a random classifier. Area under the receiving operating
characteristic curve (AUC), a performance measure of binary classification, is also listed in the
legend for each model.

2.4 Discussion

In this study, I report a novel genomic representation that successfully enables a machine

learning-based analysis of ASD. The introduction of these tools for the exploration of complex

35



heritable diseases like ASD is timely. Sequencing databases now routinely possess thousands

of subject observations. This abundance of data supports machine learning applications, which

are designed for the automatic identification of salient patterns among feature-rich data, such as

the variant burden vectors presented here. By considering integrated variant risk simultaneously

across all genes, genome vectorization provides an alternative to GWAS or polygenic risk scoring,

which are better suited for identifying highly penetrant variants in weakly polygenic contexts

and limited in predictive power. Additionally, by including both coding and noncoding, rare

and common, and de novo and inherited variation, I maximize the pool of information which

classification models can leverage. Genome vectorization is a new solution to the problem of

mapping genotype to phenotype for complex heritable disorders like ASD.

An omnigenic framework for modeling ASD implies that disease risk is a function of

high impact-driver mutations working in tandem with common variants in virtually any gene

[Boyle et al., 2017]. Due to the interconnectedness of biological networks, diverse molecular

changes may converge on stereotyped cellular states and disease phenotypes [Geschwind and

State, 2015]. By modeling genome-wide risk, our vectorization method in essence tests whether

an omnigenic model can be fit to sequencing data acquired from ASD subjects. I derive our

rationale for this approach from the ASD genomics literature, which has convincingly shown that

disease risk is aggregated through a combination of rare gene disrupting mutations and common

variation at heterogeneous loci [Geschwind and State, 2015, Weiner et al., 2017, Sebat et al.,

2007, Iossifov et al., 2014]. Vectorization was performed on a large cohort of ASD and control

genomes, and the resulting variant burden vectors were successfully used to train highly accurate

classification models. Classification generalized across cross-validation folds, diverse model

types, and covariate subgroups of the data, indicating a robust result that supports an omnigenic

model for ASD.

An emphasis of this study was to probe the interpretability of the classification models to

facilitate biological understanding. The ASD+ list, a set of salient classification gene features,
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was automatically chosen based on the learned model weights. These ASD+ genes demonstrated

a specific and statistically significant overlap with known ASD risk genes, brain-expressed genes,

and neuronal biological pathways that recapitulate pertinent findings from standard RNA and DNA

sequencing analyses in the literature [?, Parikshak et al., 2013, Willsey et al., 2013, Fischbach

and Lord, 2010]. Given the genetic heterogeneity within the ASD population, variant burden

vectors account for a spectrum of molecular changes, ranging from numerous, distributed low

impact mutations to a smaller number of deleterious protein-coding events. Though risk may be

distributed widely across the genome, our results suggest that the most salient ASD genes play

important roles in neural development and synaptic function.

The hypothesis that the genetic programs implicated in ASD affect prenatal development

in cortical regions and cell types is well-supported [Parikshak et al., 2013, Willsey et al., 2013,

Courchesne and Pierce, 2005, Courchesne et al., 2011, Chow et al., 2012, Marchetto et al., 2016].

Using our novel machine learning approach, I present concordant evidence that salient genes for

ASD classification are enriched in cortical development, particularly during midfetal time points

at 13-18 pcw. At this stage of gestation, the generation of new neurons occurs at an exponential

rate, representing a critical period of neuronal growth and circuit formation [Rabinowicz et al.,

1996, Gohlke et al., 2007, Courchesne et al., 2018]. Therefore, disruptions in significantly

enriched regions, such as the auditory and somatosensory cortices, at this critical juncture could

initiate pathological programs with far-reaching effects later in pediatric development. The

identified cortical regions have been previously tied to ASD neurobiology through both molecular

and neuroimaging studies [Gaffrey et al., 2007, Gervais et al., 2004, Schultz et al., 2000, Khan

et al., 2015, Tabuchi et al., 2007, Willsey et al., 2013]. Postmortem sequencing and gene knockout

studies have correlated high-confidence ASD gene mutations to transcriptomic and synaptic

disruptions in the somatosensory cortex [Willsey et al., 2013, Tabuchi et al., 2007]. Functional

imaging studies have linked abnormal connectivity in the auditory and inferior temporal cortices to

specific ASD-related cognitive deficits, such as deficits in voice and facial recognition, respectively
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[Gervais et al., 2004, Schultz et al., 2000]. The ability to recapitulate these regions, which were

identified using diverse modalities, is a validation of both our machine learning approach and

existing findings in the field.

The ASD+ genes identified by the classification models suggest that both inhibitory

GABAergic and excitatory glutamatergic neuronal cell types are impacted by variant burden

differentially across the ASD population (Appendix Figure A.6 and Supplemental File 1, Table

8). Previous studies have implicated both of these cell types in ASD, supporting the theory that

excitatory-inhibitory dysregulation is an important mechanistic driver in this disease [Willsey

et al., 2013, Parikshak et al., 2013, Marchetto et al., 2016, Mariani et al., 2015, Chao et al., 2010].

The advantage of performing our analysis at a population level is that the distribution of excitatory

and inhibitory neuronal risk can be analyzed, revealing variant burden heterogeneity that may

explain differences in neural circuit and patient behavioral phenotypes.

Despite its considerable potential, genome vectorization can be improved and further

explored. First, as a novel machine learning method, the success of this approach should be

replicated in other ASD sequencing datasets, as well as datasets of related conditions. It is

reassuring that the findings presented in this study replicate across two large, independent

datasets and map nicely to existing knowledge in the field of ASD neurobiology. Confidence

in this machine learning technique will grow as it is tested in the ever growing iterations of

ASD sequencing databases and those of other heritable neurodevelopmental and psychiatric

conditions, such as bipolar disorder and schizophrenia. Second, the ASD+ gene list is a ranking

of salient model genes that may inform biological experimentation. By combining this genome-

wide ranking with knowledge of tissue or cell specific contexts, our approach could be further

augmented by targeting mutations in cellular models to disrupt highly ranked and molecularly

relevant genetic pathways. Additionally, the creation of quadratic or polynomial vector feature

spaces could reveal salient gene-gene interactions that are suggestive of nonlinear ASD risk and

epistatic phenomena that may be tested in vitro. Finally, this study provides evidence that variant
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burden vectors encode sufficient information for the accurate and generalizable classification of

ASD cases from healthy controls, i.e. unaffected parents and siblings. The clinical implications

of this result are enticing. However, expectations should be tempered till the demonstration of

high performance in a controlled prospective analysis with unrelated subjects and a standardized

medical genomics pipeline. Further validation is critical for the development of new clinical tools

that utilize genome vectorization.

This initial study provides convincing preliminary evidence that our novel method facili-

tates molecular classification and risk gene identification in the context of ASD. By applying this

tool to large sequencing databases, I was able to demonstrate that genome-wide variant burden

is a useful vectorized quantity that encodes disease-specific risk and informs the analysis of

genes, pathways, neurodevelopmental time points, brain regions, and cell types related to ASD.

Using tools such as genome vectorization, I believe that the automated detection of molecular

risk patterns has the potential to guide biological research and clinical management for complex

heritable conditions moving forward.

Chapter 2, in full, is a reprint of the material as it has been written in a manuscript that has

been submitted for publication. The authors of this study are Debha Amatya, Simon Schafer, Tim-

othy Tadros, Saket Navlakha, Bhooma Thiruvahindrapuram, Stephen Scherer, Graham McVicker,

and Fred Gage. The dissertation author was the primary investigator of this paper.
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Chapter 3

Dynamical Analysis of Neuronal Electrical

Activity in ASD
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3.1 Background

3.1.1 Approach

In this chapter, I used minimum embedding dimension (MED) analysis to quantify

dynamical complexity differences in the electrical activity of individuals with ASD, comorbid

with early brain overgrowth, and neurotypical controls. Given the evidence of synaptic disruption

in previous studies, I hypothesized that ASD samples would exhibit reduced dynamical complexity

during neuronal differentiation [Liu et al., 2017, Marchetto et al., 2016, Mariani et al., 2015]. I

further explored how MED captured the spectrum of healthy and abnormal states present in this

cohort through gene expression analysis. Unlike case-control labels, I expected that MED would

reveal more robust patterns of differential gene expression, because it was cellularly derived and

encoded both individual and ASD-related features. Through the application of dynamical analysis

techniques to patient-derived neuronal recordings, I suggest a novel paradigm for investigation of

the disease-related signatures in ASD.

3.1.2 Dynamical complexity

Electrical activity arising from cultured neurons can be modeled as a dynamical system.

Doing so is advantageous, because these methods excel at capturing the inherent nonlinearity

of such data, which allow for new measures of neuronal function to be gleaned. The dynamical

complexity of an electrical recording is one measure that can be quantified in the MED variable.

The false nearest neighbors (FNN) method was proposed by Kennel et al. (1992) to find

the MED for time-series dynamic systems [Kennel et al., 1992]. In this framework, a time-series

arises from a dynamical system composed of n differential equations. All possible states of the

system can be geometrically represented by an attractor, which is a regular shape formed when

the n state variables (e.g. x,y) are plotted against one another. The governing equations and state

space trajectory of the Hénon map, a simple two variable system are presented in Figure 3.1.
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Figure 3.1: Using the Hénon map to understand MED. The goal of the MED technique is to
estimate the dimensional complexity of the system using only a time-series recording from a
single variable in the system. This can be accomplished by using an algorithm to minimize the
number of false nearest neighbors (FNNs) identified by iteratively plotting the time series over
embedded versions of itself. A. The Hénon map is a 2-variable (x and y) nonlinear dynamical
system that exhibits chaotic behavior in time, simulated to recorded electrical activity. B. A
state space reconstruction of this system reveals a smooth and regular attractor (right), in which
some (x, y) coordinate pairs are closer together in space (blue and green) relative to other
pairs (red). This attractor is a geometric representation of the 2-variable system, which can be
summarized as having a dimensionality, or complexity, of 2, because it is fully unfolded in the
(x, y) coordinate space.

When only a single variable is accessible, I can instead use d delayed embeddings of this

variable to reconstruct the attractor. For example, for y(n) from time-series x(t):

y(n) = (x(n),x(n+T ), ...,x(n+(d−1)T )) (3.1)

where T is time delay and the trajectory evolves by y(n),y(n+1). If the embedding dimension d is

lower than the native embedding dimension, the system is not fully unfolded and the reconstruction

fails to represent the dynamics of the system, which leads to false nearest neighbors (FNN) in the

geometric space, as shown in Figure 3.2.

When iteratively increasing the embedding dimension from d to d+1, the FNN percentage

decreases during the unfolding process until the MED is reached and the state space is fully

represented. Therefore, plotting the FNN percentage against the embedding dimension, reveals

the MED, a quantitative indicator of the intrinsic complexity of the system. Figure 3.2 visually
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Figure 3.2: The false nearest neighbors algorithm. Demonstration of the false NN procedure to
find MED. The recording of a single variable from a dynamical system, such as x in the Hénon
system or electrical activity in a system of neurons, can be embedded with delayed versions
of the time series to reconstruct the original attractor of the entire system. This allows for the
iterative testing of embedding dimensions and measurement of conserved neighboring points
until a minimum is reached. In the example of the Hénon system, 1-dimensional embedding
clusters all 3 points together. A 2-dimensional embedding appropriately separates the red
point from the blue and green points. Finally, a 3-dimensional embedding fails to create a
further separation of these points, signifying that sufficient complexity is captured by a 2-
dimensional embedding for the Hénon system. In the case of MEA recordings, MED provides a
measurement of dynamical complexity of neural activity, potentially providing new insights into
the neurobiology of development and ASD.

demonstrates these concepts in an intuitive manner.
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Figure 3.3: The MED recapitulates the dimensionality of a dynamical system. The false nearest
neighbors (FNN) algorithm can be used to find the minimum embedding dimension (MED).
Percentage of false NN is minimized when a time series is embedded in its native dimensionality.
For the Hénon system, the MED occurs at 2, because it is a 2-variable system.
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3.2 Methodology

3.2.1 iPSC samples and neuronal differentiation

iPSC lines were derived from two sources. First, 13 samples from Marchetto et al.

(2017) comprised the bulk of the lines [Marchetto et al., 2016]. These included 8 lines derived

from ASD patients with an early brain overgrowth phenotype and 5 age-matched neurotypical

control lines. Second, 2 additional control lines from neurotypical adults were added to balance

the groups. The samples from the first cohort included standardized clinical and functional

assessments, including the Autism Diagnostic Observation Schedule, Wechsler Intelligence

Scale, and Vineland Adaptive Behavior Scale. Sample metadata and clinical scores are given

in Supplemental File 2, Table 1. Samples were obtained with approval by the internal review

board of the Salk Institute for Biological Studies and informed consent of all subjects. Neuronal

differentiation was accomplished through differentiation of the iPSCs into neural progenitor cells,

followed by the removal of FGF2 to drive maturation into neurons, as described in the literature

[Marchetto et al., 2016].

3.2.2 MEA recordings and spike analysis

Ninety-six-well MEA plates from Axion Biosystems (San Francisco, CA, USA) were

used to record electrical activity of neurons derived from all 15 subjects. Each subject’s cells were

plated in replicates of 6 and seeded with 10,000 neural progenitor cells (NPCs) that were induced

into neuronal differentiation the next day. Wells were coated with poly-ornithine and laminin

before cell seeding. Cells were fed every other day and measurements were taken twice a week

before feeding. The Maestro MEA system and AxIS software (Axion Biosystems) were used

to record neuronal electrical activity from the plates. Voltages were recorded at a frequency of

12.5 kHz and bandpass filtered between 10 Hz and 2.5 kHz. Spike detection was performed using

an adaptive threshold set to 5.5 standard deviations above the mean activity of each electrode.
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Following 5 minutes of plate rest time, recordings were performed for 10 minutes. A total of 15

separate recordings were performed over a timespan of 47 days, for each subject.

Multielectrode data analysis was performed using the Axion Biosystems Neural Metrics

Tool, which calculated standard spike-related variables. Bursts were detected with an adaptive

Poisson algorithm for high spiking activity that occurred on a single electrode. Variables were

averaged across subject replicates and plotted by group for each day of the recordings. The 95%

confidence interval around the mean was also calculated and plotted for each day to aid in the

discovery of significant trends.

3.2.3 False nearest neighbors and embedding dimension analysis

Two criteria were used to define the FNNs, as described by Kennel et al. (1992) [Kennel

et al., 1992]. The first criterion is the tolerance threshold parameter, Rtol , which measures how

the neighbor distances change relative to previous distances when increasing d to d +1. If the

neighbors are false, adding another dimension would largely increase the neighbor distances

during the unfolding process. The second criterion models noise in the data. I introduced a

threshold parameter Atol to compare the neighbor distances in dimension d+1 with the size of

the attractors in dimension d. By combining these two criteria, the MED for time-series data

contaminated by noise can be effectively found.

I set T = 2, and I used the same threshold parameters as in Kennel’s original study

Rtol = 15 and Atol = 2 [Kennel et al., 1992]. FNN was implemented in MATLAB R2017b

(Natick, MA, USA) and performed on both real MEA data and simulated data from the Hénon

map [Hénon, 1976, MATLAB, 2017].
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3.2.4 RNA sequencing

At 15 days post-differentiation, the neurons positive for PSA-NCAM (Anti PSA-NCAM

Antibody, Miltenyi Biotec) were sorted using flow cytometry to isolate neuronal fate-committed

cells. RNA was extracted after cell sorting on TRIzol LS reagent (Invitrogene) from all 15

neuronal samples. Total RNA was extracted using DNA Free RNA Kit (Zymo Research) according

to the manufacturer’s instructions. RNA quality was assayed using Agilent Technologies 2200

TapeStation and samples with integrity superior to RIN 8.5 were used for library preparation.

Stranded mRNA sequencing libraries were prepared using the Illumina TruSeq Stranded mRNA

Library Prep Kit according to the manufacturer’s instructions. RNA with a poly A tail was

isolated using magnetic beads conjugated to polyT oligos. mRNA was then fragmented and

reverse transcribed into cDNA. dUTPs were incorporated, followed by second strand cDNA

synthesis. The dUTP-incorporated second strand was not amplified. cDNA was then end repaired,

index adapter ligated and PCR amplified. AMPure XP beads (Beckman Coulter) were used

to purify nucleic acid after each step of the library prep. All sequencing libraries were then

quantified, pooled and sequenced at single-end 50 base-pair (bp) on Illumina HiSeq 2500 at the

Salk Institute Next Generation Sequencing Core.

1000ng of RNA was used for library preparation with the Illumina TruSeq RNA Sample

Preparation Kit. The RNAs were sequenced on Illumina HiSeq2000 with 50 bp paired-end reads,

generating 50 million high-quality sequencing fragments per sample, on average. Sequenced

reads were quality-tested using FASTQC [Andrews, 2010] and aligned to the hg19 [Lander et al.,

2001] human genome using the STAR aligner [Dobin et al., 2013] version 2.4.0k. Mapping was

carried out using default parameters (up to 10 mismatches per read, and up to 9 multi-mapping

locations per read). The genome index was constructed using the gene annotation supplied with

the hg19 Illumina iGenomes collection [Illumina, 2015] and sjdbOverhang value of 100. Raw

gene expression was quantified across all gene exons (RNA-Seq) using the top-expressed isoform

as proxy for gene expression. Transcripts per million (TPM) values were calculated for each
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sample:

T PMi =
Xi

li
× 1

Σ
X j
l j

×106 (3.2)

where Xi was the count estimate for gene i and li was the length of the transcript as determined

by querying the Ensembl mart with dataset set as “hsapiens gene ensembl”, using biomaRt in R

version 3.5.1. TPM values were log2(T PMi +1) transformed for downstream analyses.

Two subject outliers were detected by visual inspection of a principal component analysis

plot of the normalized gene counts matrix (Appendix Figure B.3). Thirteen samples were retained

for further analysis, including 7 ASD lines and 6 control lines.

3.2.5 Differential expression analysis

Gene-based read counts were analyzed for differential expression using the R DeSeq2

package, which uses variance stabilization techniques and the negative binomial distribution

to detect expression changes across experimental conditions (Boston, MA, USA) [Love et al.,

2014]. Here, two conditions were analyzed for differential expression, using two different model

matrices. First, differential expression with respect to MED was analyzed:

Xi ∝ MED (3.3)

Second, autism-associated genes were gleaned by testing a model that included autism and

autism-MED interactions:

Xi ∝ MED+MED×ASD+ASD (3.4)

A total of 24,162 genes was examined for differential expression, and genes were deemed

significant if pFDR ≤ 0.05. An expanded set of genes with praw ≤ 0.05 were used to asses broad
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trends in the data with follow up analyses Plotting of individual gene expression results, top gene

summaries, and heatmaps were performed using transcript per million normalized counts that

were corrected for covariates with the R ComBat package (Boston, MA, USA) [Leek and Storey,

2007]. All gene expression data are deposited at Gene Expression Omnibus (GEO accession:

GSE125020).

3.2.6 Gene ontology analysis

Gene ontology (GO) analysis was performed to determine which biological pathways

were associated with differentially expressed genes. The statistical overrepresentation tool

from PantherDB was used to perform Fisher’s exact tests for a list of uncorrected differentially

expressed genes and each GO term in the database [Mi et al., 2016, Thomas et al., 2003]. P-values

were adjusted for multiple comparisons using false discovery rate correction. Biological processes

with a pFDR ≤ 0.05 were reported and plotted.

3.2.7 Statistical tests for gene list overlap and clinical correlations

Statistical analyses for gene list overlap and clinical correlations were performed using R

version 3.51 (Vienna, Austria) [Team et al., 2013]. Clinical correlation was examined between

MED day 15 average values and subject clinical scores. To further explore the differential

expression results, overlap was measured with ASD genes, brain expressed genes, and a negative

control of liver-expressed genes [Abrahams et al., 2013, Krishnan et al., 2016, Uhlén et al.,

2015]. Tissue-specific gene sets were obtained from the Human Protein Atlas (available from

www.proteinatlas.org). For each list of interest, overlap was tested using the binomial test, and

significance was assigned to p≤ 0.05. Supplemental File 2, Table 4 further describes the gene

lists used in this study. Clinical correlations between MED and various clinical endpoints were

calculated using the Pearson correlation test. Presented correlations are significant at p≤ 0.05
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level.

3.2.8 Spatiotemporal enrichment analysis

Spatiotemporal enrichment of the MED differentially expressed genes was assessed

using gene expression data from the BrainSpan Atlas of the Developing Human Brain [Sunkin

et al., 2012]. Normalized gene transcript counts were acquired for region-stage pairs. Twelve

developmental stages and 16 discrete brain structures were included. In a process similar to one

described by Krishnan et al. (2016), representative genes sets were chosen for each region-stage

pair by calculating the modified z-score of a given gene in the distribution of counts for all

region-stage pairs [Krishnan et al., 2016]. The modified z-score was calculated using the median,

and the median absolute deviation (MAD) of each gene across all pairs was calculated for the ith

gene and jth region-stage pair:

zi, j =
0.645× (counti, j−mediani)

MADi
(3.5)

For the jth region-stage, all genes for which zi, j ≥ 2 were selected as representative genes. For

each region-stage, the representative genes are listed in the Supplemental File 2, Table 7.

Enrichment was calculated by performing the Fisher’s exact test using the list of differ-

entially expressed MED genes and each representative region-stage set of genes. Enrichment

scores were corrected for multiple comparisons using false discovery rate controlling, and pFDR

values are plotted in the heatmap in Figure 3.14. Significance was assigned to region-stage pairs

with pFDR less than 0.05. The table detailing all spatiotemporal enrichments is listed in the

Supplemental File 2, Table 8.
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3.3 Results

3.3.1 Study design and MED analysis technique

This study was designed to identify a new dynamical electrophysiological endophenotype

associated with idiopathic ASD, as well as the gene expression correlates of this signal. To

accomplish this, iPSC lines derived from 8 ASD patients with early brain overgrowth and 7

neurotypical controls were obtained and differentiated into neurons using a pan-cortical protocol.

A schematic of the study design is depicted in Figure 3.4, and a description of the samples is

given in Table 3.1.
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Figure 3.4: Study design for dynamical analysis of neuronal lines. iPSCs from 7 neurotypical
controls and 8 ASD cases were differentiated into neurons. Neurons were studied using RNA
sequencing and MEA recordings to identify disease signatures that integrate across both levels
of analysis.

Additional clinical metadata for these samples is presented in Supplemental File 2, Table

1. From the neural progenitor phase, longitudinal electrical recordings were gathered with MEA

over the course of 47 days. For each recording, standard spike related variables, as well as MED, a

measure of dynamical complexity, were computed. On day 15 post-differentiation, the developing

cells were sorted for neuronal identity using the PSA-NCAM marker and then RNA sequenced.

The subsequent analysis focused on linking the observed dynamical endophenotype with gene

expression changes that relate to ASD biology. This was done by using the average day 15 MED

values for each subject as a variable in the gene expression models fit to the RNAseq data.

Figure 3.5 depicts how dynamical complexity may vary across samples, even when
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Table 3.1: Samples for neuronal analysis. A description of subjects, from whom iPSC cell lines
were generated and subsequently differentiated into neurons for analysis. Abbreviations: IQ
(Wechsler Intelligence Quotient), ADOS (Autism Diagnostic Observation Schedule), Vineland
ABC (Vineland Adaptive Behavioral Composite, second edition). Age, IQ, ADOS, and Vineland
ABC scores were recorded at the time of biopsy. Brain volume was computed via MRI during
early childhood. All samples were derived from males. ASD cases met the diagnostic criteria
as defined by ADOS total score cutoffs or DSM-IV guidelines. Where relevant, quantities are
shown as averages one standard deviation.

iPSC Lines (N=15)
Control ASD

Samples 7 8
Brain Volume (cm3) 1,237.2±86.6 1,372.9±87.8

Age (years) 25.0±27.7 13.3±5.6
IQ 118.6±8.6 67.9±14.9

ADOS − 16.75±2.8
Vineland ABC 99±6.2 57.13±15.1

standard measures like firing rate remain constant. In such cases, nonlinear dynamical differences

may uncover new patterns of disruption in gene expression. Further intuition for MED analysis is

provided by a simulated example of the Hénon map, a two-dimensional dynamical system, in

Figure 3.2.

Dynamical 
Complexity

Subject 1

Subject 2

Subject 3

Gene A
Expression

Gene B
Expression

�
Figure 3.5: Visualizing dynamical complexity. Dynamical complexity may vary even when
standard spiking variables are constant. For these pedagogical examples, the firing rate is
constant at 20 spiking events in the interval. Nevertheless, differences in the organization of
the spiking events may result in large differences in complexity, as measured by dynamical
analysis. These differences may distinguish groups of interest, such as ASD, and correlate to
gene expression changes related to neuronal dysfunction.
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3.3.2 Neuronal electrical recordings and dynamical analysis

To glean new knowledge from this in vitro model of ASD, both standard analytical tools

and nonlinear dynamical methods were applied to the electrical recordings of the neurons. This

approach is novel but also appropriate, as neuronal activity is a nonlinear dynamical system that

arises from the firing of nascent neuronal networks. Representative electrical recordings and

spiking events are shown in Figure 3.6.
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Figure 3.6: Electrical recordings from neuronal lines. Raw electrode waveforms (top) are used
for spike detection (bottom) and downstream analyses.

Traditional metrics, such as the mean firing rate, fail to show statistical separation between

the ASD and control group (Figure 3.7). However, more complex measures, such as bursting and

the variation of interspike intervals (ISI) within bursts, are able to show a difference between

groups, suggesting that dynamical analysis may also capture features related to bursting that

fundamentally distinguish ASD and control electrical activity (Figure 3.7, 3.8, and Appendix

Figure B.1).

MED was computed to quantify the dynamical complexity of the electrical recordings.
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Figure 3.7: Bursting variables highlight electrophysiological differences. Group average values
with 95% confidence intervals are given over several timepoints for two variables. Mean firing
rate fails to distinguish control (blue) and ASD (red) groups over any day of the recording period.
However, number of bursting electrodes does show significant group-based differences for day
15 and 17. For the relevant figures in this chapter, significance was as tested with Welch’s
two-sided t-test and indicated by asterisks. * corresponds to p≤ 5×10−2, ** corresponds to
p≤ 5×10−3, *** corresponds to p≤ 5×10−5, and **** corresponds to p≤ 5×10−7.

A previous study provided evidence that iPSC-derived ASD neurons were characterized by

diminished synaptogenesis, thus compromising the process of forming connected networks

[Marchetto et al., 2016]. It was expected that MED would capture this ASD-related deficit of

electrophysiological complexity, thereby uncovering a novel endophenotype for this disorder.

A difference between ASD and control MED was found to emerge after 11 days of

differentiation and persist with statistical significance through 1.5 more weeks of recording,

as shown in Figure 3.9. Correlation analysis between MED and bursting variables revealed a

significant association with the number of bursting electrodes and the ISI coefficient of variation,

strengthening the relationship between dynamical complexity and coordinated spiking activity

and variation. Despite this relationship, the variance associated with MED was less than that of

bursting variables, suggesting improved precision in the characterization of electrical activity.
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Figure 3.8: Overview of group-wise differences across measures. This binary matrix indicates
at which timepoints a measure was able to detect a significant difference between cases and
controls (black squares). The MED outperforms all measures in distinguishing groups, but it
does overlap with some bursting variables, as further explored in Appendix Figure B.1.

Appendix Figure B.2 details average subject-wise MED boxplots across the key timepoints of the

study, including the day when RNA sequencing was performed.

To assess the behavioral relevance of MED, the correlation between subject MED values

and cognitive scores was examined. This revealed a significant correlation in two relevant

endpoints, the Vineland ABC Score and Nonverbal IQ, as shown in Figure 3.10. This suggests

that cellular dynamic state may meaningfully impact cognitive and behavioral states relevant to

ASD. Therefore, MED is a novel cellular electrophysiological endophenotype that is related to

both ASD status and some of its relevant clinical features.

3.3.3 Differential expression models for ASD and MED

RNA sequencing was performed at 15 days post-differentiation in order to explore the

gene expression correlates of MED and ASD. Given that MED captures both individual and ASD-

related electrical dynamics, I expected that it would be associated with robust and biologically

relevant transcriptomic alterations (Appendix Figure B.2). To test this rationale, gene expression
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Figure 3.9: MED offers a sustained and statistically significant separation of groups. Average
MED values and 95% confidence intervals for both groups are depicted for the first eight
timepoints. The controls subjects (blue) are associated with higher MED complexity score, in
comparison to the ASD subjects (red). The dotted rectangle indicates values of the MED during
day 15 of the MEA recordings, when RNA sequencing was performed.

was examined with respect to 1) MED and 2) ASD interacting with MED in separate models.

Two subject outliers were excluded based on principal component analysis (Appendix Figure B.3).

As shown in Figure 3.11, before FDR correction, the MED model identified 1,423 differentially

expressed genes, and the ASD interaction model was associated with 761 genes. After controlling

for multiple comparisons, MED was associated with 53 genes in comparison to 7 for ASD within

each respective model.

The comprehensive lists of differentially expressed genes are given in Supplemental File

2, Tables 2 and 3, and examples of genes differentially expressed with respect to MED value are

shown in Appendix Figure B.4. Of note, a model that only included the ASD status without MED
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Figure 3.10: MED is correlated to clinical endpoints of interest. Low MED scores, which are
associated with ASD diagnosis, are correlated to lower Vineland adaptive behavior score (left)
and lower early nonverbal IQ (right). The grey shading represents a 95% confidence interval
around the fitted curve, as estimated by a linear model.

was unable to find any differentially expressed genes after FDR correction. This result suggests

that cell-derived endophenotypes could represent a path forward in studying complex genetic

disorders, such as idiopathic ASD. Binary ASD-control labels do not account for the tremendous

intersubject heterogeneity present in such samples, and cellular markers may better model both

individual and group-related variance for gene expression analyses.

3.3.4 Interrogation of the MED signature

The gene expression signature of the MED was examined in relation to known ASD genes

and pathways, as well as brain regions and stages of development. For these comparisons, the full

set of differentially expressed MED and ASD genes, prior to FDR correction, was considered.

Figure 3.13A shows that both ASD and MED genes are overrepresented in brain-expressed genes

and putative ASD genes. However, the enrichment effect sizes were markedly larger for MED

genes. This finding provides evidence that MED is related to relevant physiological and disease-

relevant gene lists. Next, biological pathways were analyzed through gene ontology analysis,
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Figure 3.11: Gene expression signatures of MED and ASD. A. MED is associated with
differential expression in 1,423 genes before multiple comparison correction and 53 genes
after correction, as depicted in the heatmaps. Hierarchical clustering of the samples based on
gene expression separates low and high complexity samples, as indicated by the MED color
bar. B. Examination of ASD genes in a combined MED and ASD interaction model identifies
761 differentially expressed genes before correction and 7 differentially expressed genes after
multiple comparison correction.
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Top MED Genes
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Figure 3.12: Differentially expressed MED genes. The log2 fold changes of the 53 differentially
expressed genes after multiple comparison correction for MED are shown. The red bars
correspond to genes that are negatively correlated to MED, and the blue bars correspond to
genes that are positively correlated to MED. Bolded genes are also implicated in ASD risk or
brain function in previous studies. Most differentially expressed genes are negatively correlated
to MED, and positively correlated genes have less variability in their fold changes.

as shown in Figure 3.13B. MED genes were enriched in neurodevelopmental, cell migration,

junction assembly, and regulatory terms. Additional exploration of cellular components related
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to the MED gene signature showed a significant overlap with neuronal components, such as the

synapse, postsynaptic density, axon, and dendritic spines. Full results for gene ontology analysis

testing of biological processes and cellular components are given in Supplemental File 2, Tables 5

and 6, respectively. These findings suggest that MED encodes a measure of neuronal maturation

and participation in circuit formation.

A
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SFARI,
ASD genes

Princeton,
ASD Predicted

Brain expressed

Genes
ASD
MED

0 5 10 15 20−log(p)
Response to growth factor
Regulation of ion transport

Reg. of cell junction assembly
Response to hormone

Dentate gyrus development
Forebrain development

Cell migration
Cell projection morphogenesis

Neuron development
Neurogenesis

MED Biological Processes

1 2 3 4 5 6−log(pFDR) 0

B

Figure 3.13: Enrichment of MED gene expression signature with ASD-related genes and
biological pathways. To interpret the broad biological relevance of MED and ASD expression
signatures, differentially expressed genes prior FDR correction were further analyzed. A. The
MEA (black) and ASD (gray) differentially expressed genes were tested for enrichment in
5 lists: 1) highly brain-expressed genes, 2) putative ASD risk genes, 3) gold standard ASD
risk genes, and 4) highly liver-expressed genes (negative control). Significance was testing
using the binomial test with a cutoff of p = 0.05 (red line). Both ASD and MED genes were
enriched in brain, Princeton, and SFARI lists, though the effect size of the MED signature
was notably stronger. Neither set overlapped with liver-expressed genes, a negative control. B.
Biological processes implicated with MED. The gene expression signature of MED impacts
neurodevelopmental, cell migration, and growth-related ontologies. Significance of enrichment
was calculated using the Fisher’s exact test with false discovery rate control and a cutoff of
pFDR = 0.05 (red line).

Finally, to localize the set of MED genes to developmental time points and brain regions,

data from the BrainSpan Atlas were used to identify enrichments in specific region-stage pairs.

The enrichments were visualized as a matrix in Figure 3.14A for all region-stage pairs, and

regional involvement during the highly enriched, late prenatal timepoint was mapped onto a

representation of the brain in Figure 3.14B. Supplemental File 2, Table 8 lists the exact p-values

obtained for the spatiotemporal analysis. This analysis uncovered a strong prenatal temporal

enrichment in a mixture of cortical and deep structures (e.g., the visual cortex, inferior temporal
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cortex, and thalamus), as well as a secondary involvement of late childhood cortical regions,

suggesting that MED-related ASD pathology might play out at various stages of development

with diverse structural involvement.
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Figure 3.14: Spatiotemporal analysis of MED gene expression signature. A. Gene lists from 16
neuroanatomical regions and 13 developmental stages were tested for enrichment with the MED
genes. The neuroanatomical regions include the inferior temporal cortex (ITC), thalamus (THA),
dorsal frontal cortex (DFC), medial frontal cortex (MFC), cerebellar cortex (CB), ventral frontal
cortex (VFC), hippocampus (HIP), superior temporal cortex (STC), primary visual cortex (V1C),
amygdala (AMY), inferior parietal cortex (IPC), primary auditory cortex (A1C), striatum (STR),
primary motor cortex (M1C), olfactory cortex (OFC), and primary somatosensory cortex (S1C).
Fisher’s exact test was performed for each region-stage pair and plotted on a heatmap after false
discovery rate correction. A variety of cortical and deeper structures are implicated in MED,
primarily at prenatal timepoints. A strong enrichment of the DFC and MFC are also indicated
during late childhood. The grayed-out regions represent structures that are not present in the
early prenatal brain. B. Visualization of cortical and interior MED-associated regions during late
prenatal development (25-28 pcw). Raw enrichment p-values were plotted to show the range
of structural involvement at this timepoint. Cortical regions such as the A1C, S1C, and ITC
are enriched for the MED signature; however, deeper lying structures such as the thalamus and
striatum are also revealed.
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3.4 Discussion

In this chapter, I propose a new endophenotype for idiopathic ASD, called MED, which

is derived from the dynamical complexity of neuronal electrical recordings. Previous in vitro

studies examining ASD neurons have demonstrated both single unit recording abnormalities

and alterations in spiking and bursting properties using MEA [Liu et al., 2017, Marchetto et al.,

2016, Mariani et al., 2015]. Patient EEG studies have shown that recordings taken from people

diagnosed with ASD exhibit reduced dynamical complexity compared to controls [Bosl et al.,

2011]. For the first time, I demonstrate ASD-related nonlinear dynamical electrophysiologic

alterations using iPSC derived neurons. Traditional spiking variables, such as firing rate, failed

to capture statistically significant differences between the ASD and control group at day 15-21

days post-differentiation. Other electrophysiological variables related to bursting did successfully

separate the case and control groups, but with less precision than MED. This finding suggests

that dynamical complexity may be related to the integrated and synchronized firing of neuronal

networks in culture rather than the isolated behavior of single units.

The divergence in dynamical complexity occurs early on in differentiation from the neural

progenitor phase and peaks after 2 weeks of maturation. A recent study using the same ASD

samples revealed that transient pathological priming of expression networks occurs around this

timepoint, supporting the relevance of this early developmental period [Schafer et al., 2019].

Mirroring the findings in this chapter, MED deficits in the ASD group begin to lessen after 2

weeks of recording, along with a general trend of decreasing activity noted for across measures in

both groups, perhaps due to the pruning of weakly connected neurons and the establishment of

more mature circuits. The convergence of MED at later timepoints suggests that the electrical

complexity gap may be a transient phenomenon in development that nevertheless may disrupt the

early formation of neural connections and contribute to ASD pathology at later timepoints. The

mechanism by which neuronal complexity deficits may propagate to the circuit and brain-wide
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levels to drive pathology remains an interesting avenue for further study.

The clear and sustained reduction in complexity found in the ASD group may arise

from deficiencies in synaptogenesis, which were previously reported in this cohort [Marchetto

et al., 2016]. Diffuclty in forming synaptic connections in vitro likely diminishes the underlying

complexity of their electrical outputs, as measured by MED. Other iPSC studies report an excess

in ASD synapse formation, potentially highlighting the heterogeneity of cellular mechanisms in

this disorder [Mariani et al., 2015]. Additionally, compared to simulated Hénon map data, real

electrical recordings contain unpredictable and uninterpretable noise that leads to a non-zero FNN

percentage and imprecision in MED estimation. As such, the estimated MEDs in our analysis

may not exactly represent the true dimensionality of these neuronal systems. However, MED still

provides value, because it reflects the relative dimensional complexity of the electrical signals,

which is sufficient to distinguish the ASD and control group. A key area of investigation is the

generalizability of MED as an endophenotype in other cohorts of ASD, particularly those without

an early brain overgrowth phenotype.

The value of a continuous endophenotype of ASD is that it more robustly captures

individual and group-wise variance than binary labels for follow-up analyses, such as RNA

sequencing. The detection of molecular changes related to idiopathic ASD is complicated by

the immense genetic heterogeneity associated with the disorder [Devlin and Scherer, 2012, ?].

Though this study sample is much smaller than those typically recruited for genomic analyses,

this iPSC-based approach offers a major advantage over other methods in that cellular variables

relevant to disease may be directly recorded and studied in relation to gene expression changes

[Vadodaria et al., 2018]. In this manner, I are able to find molecular changes associated with

idiopathic ASD by tapping into the fundamental electrical dynamics that lie at the core of the

disease. MED was associated with a broader differential gene expression signature than ASD

status (53 vs 7 differentially expressed giants, after FDR correction), and these genes were

associated with ASD-relevant genes and pathways such as neurogenesis, cell migration, and

62



synaptic components. These findings agree with sequencing studies that have shown ASD

impacts a variety of neurodevelopmental processes such as neuronal proliferation, migration, and

synaptogenesis [Courchesne et al., 2018, Krumm et al., 2014, Marchetto et al., 2016, Mariani

et al., 2015, Parikshak et al., 2013, Pinto et al., 2014, ?, Voineagu et al., 2011, Willsey et al.,

2013]. Therefore, the validity of MED as a cellular endophenotype for ASD is demonstrated both

directly, through electrical recordings, and indirectly, through the examination of gene expression

trends related to MED.

ASD disrupts the normal formation of brain circuits during the early stages of life. In

concordance with the literature, this study shows that the MED gene signature is most relevant

during fetal development [Courchesne et al., 2018, Parikshak et al., 2013, Willsey et al., 2013].

However, some of the results in this study differ from the findings in related work. First, unlike

other studies, which primarily localize gene expression signatures to cortical regions, I find

that the expression changes correlated to MED impact both cortical structures (e.g., frontal and

temporal regions) and deeper structures (e.g., hippocampus and thalamus) [Parikshak et al.,

2013, Willsey et al., 2013]. However, recent studies using functional imaging have linked ASD

to reductions in hippocampal activity and disruptions in thalamocortical connectivity [Cooper

et al., 2017, Nair et al., 2013]. Second, the MED expression signature was also implicated in

the late childhood timepoint, suggesting either mechanistic heterogeneity within the idiopathic

ASD population or complexity in longitudinal disease mechanisms. The meaning of this finding

is unclear at present, due to a lack of appropriate longitudinal genetic or imaging datasets for

ASD. Regardless, these spatiotemporal findings indicate a mixture of previously demonstrated

and novel associations uncovered through the integration electrical endophenotypes for ASD and

gene expression analysis.

In summary, I demonstrate that nonlinear dynamical analysis can be applied to electrical

recordings from patient-derived neurons to reveal differences in MED complexity between ASD

and control subjects. The MED is associated with gene expression changes that both validate
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existing genetic and mechanistic studies and present new knowledge, such as the implication of

fetal basal brain regions and late childhood cortical development in ASD mechanisms. iPSC-

derived models are a rich platform to study neurodevelopmental disorders because they allow

for the examination of cellular disease mechanisms on otherwise inaccessible tissue. Further

investigation of MED as an endophenotype for ASD will shed light on the utility of this novel

approach. I believe that this integration of methods is a good strategy for tackling the immense

heterogeneity associated with idiopathic ASD and hope that it may facilitate future studies in

autism and related disorders.

Chapter 3, in full, is a reprint of the material as it has been written in a manuscript that has

been submitted for publication. The authors of this study are Debha Amatya, Sara Linker, Ana

Mendes, Renata Santos, Galina Erikson, Maxim Shokhirev, Yuansheng Zhou, Tatyana Sharpee,

Fred Gage, Maria Marchetto, and Yeni Kim. The dissertation author was the primary investigator

of this paper.
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Chapter 4

Conclusions

Neuropsychiatry is in need of biologically derived markers for the classification and

characterization of mental disorders. This dissertation covers two innovative approaches that

quantitatively describe the genomic and electrical patterns of ASD. Both methods show promise

in their ability to resolve ASD-related changes from normal function and concordance with

existing findings in the literature.

In Chapter 2, I explore the question of how machine learning can be applied to massive

whole genome sequencing datasets to train predictive classification models of ASD. I present

genome vectorization as a method that facilitates this process by holistically summarizing variant

burden per gene in the genome in a useful vector format. By training classification models

and testing both within and across datasets, I provide convincing evidence that this method

enables genomic classification of ASD subjects. Further, I argue that these models detect disease-

specific risk in expected genes, pathways, neurodevelopmental time points, brain regions, and

cell types related to ASD. Thus, I provide a preliminary demonstration of the potential utility

of genome vectorization and machine learning for the molecular classification of disease risk in

ASD, warranting further study of clinical utility and applicability in other traits or disorders of

interest.
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Outside of the applications discussed in this dissertation, the uses of a vectorized genomic

representation are manifold. In essence, this novel representation for whole genome sequencing

data is a new means for interrogating the link between genotype and phenotype. Apart from

binary classification, potential uses for variant burden vectors include correlation model training

to prognosticate continuous clinical variables (e.g. symptom severity scores or age of onset),

clustering analysis to identify previously unidentified genomic subtypes within a complex disease,

and multinomial classification models to differentiate phenotypically similar disorders (e.g. bipo-

lar and major depression). With the mounting need for biomarkers for diagnosis and prognosis in

neuropsychiatry, techniques such as genome vectorization offer hope for families that desperately

seek the benefits of precise, quantitative tools that already exist in other branches of medicine.

In Chapter 3, I applied dynamical analysis techniques to present a novel marker of

neuronal dysfunction in ASD. Though the molecular determinants of ASD are heterogeneous,

it is likely that mechanistic convergence can be detected in the electrical activity of neurons.

By nature, this activity is highly nonlinear, resulting from the complex interactions between

numerous units. Therefore, the dynamical analysis framework was well-suited for studying these

signals. Particularly, my analysis suggests that genetic alterations in ASD neurons manifest as

defective neuronal network formation and reduced dynamical complexity in early development,

as measured by MED. The gene expression correlates of MED overlap with known autism risk

genes, as well as neurodevelopmental pathways and relevant timepoints in brain regions. The

combination of dynamical analysis with iPSC-derived cellular models is a powerful new way to

tap into disease-related electrical alterations that may be missed by standard electrical measures.

Autism exists manifests as a diverse spectrum, and measures like MED allow for patients

to be more informatively described, in comparison to binary case-control labels. In order to further

understand dynamical complexity, I believe that it is important to forge ahead with studying both

the underlying causes and emergent effects of this phenomenon. Specifically, rigorous biological

experimentation is needed to isolate the link between synaptic disruption and MED. Additionally,
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in vivo electrical and behavioral recordings are likely required to trace the effects of reduced

dynamical complexity to circuit level and behavioral phenotypes associated with ASD. Till then,

value may be added by replicating this finding in other ASD cohorts, namely those without

macrencephaly, to judge the reproducibility of the result.

Both genome vectorization and dynamical analysis were performed with the intetion

that the right technique should be selected to solve the right problem. Genomic risk prediction

can be cast as a binary classification problem, which unlocks the power of machine learning

to detect genomic patterns of risk in big data. Dynamical analysis is capable of modeling the

complexity and nonlinearity of neuronal electrical signals to accurately resolve differences in

neurodevelopment in ASD and control subjects. Though differing approaches, dynamical analysis

and machine learning did lead to convergent findings related to ASD. First, genes implicated in

both analyses overlap with autism risk genes implicated in GWAS and brain expressed genes.

Second, cortical regions and prenatal timepoints are critical in the pathogenesis of ASD. Third,

some of the pathways most relevant to ASD involve the synapse and ion channels. Therefore,

molecular heterogeneity in ASD does impact stereotyped pathways, regions, and timepoints in

development. Dynamical analysis and machine learning help us hone into ASD signatures in

powerful and new ways, and the application of these tools to autism, or other complex disorders,

may improve both our biological understanding and medical management of such diseases.

67



Appendix A

Genome Vectorization for Machine

Learning Applications to ASD
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Appendix Figure A.1: Vectorization scale impacts classification performance. These alternative
feature scales were attempted to motivate the choice of a gene-based vectorization. A. Variant-
based vectors were constructed by forming binary presence/absence arrays from approximately
100,000 of the most commonly occurring variants in the MSSNG data. Of the four classifiers
tested, none exceeded random accuracy. The artificial neural network model was unable to
be tested due to insufficient computational resources. B. Variant burden was binned across
autosomal chromosomes to test the performance of a chromosome-based vectorization. This too
resulted in close to random classification accuracy.
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Appendix Figure A.2: Coloring the principal component (PC) analysis plot of the variant
burden matrix by sequencing platform reveals that Illumina and Complete Genomics samples
segregate. Therefore, sequencing platform is a notable covariate for variant burden vectors.
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Appendix Figure A.3: Three important covariates were further examined by stratified analysis
of performance: sequencing platform, sex, and DNA source. Accuracy was measured for the
SVM classifier with 10-fold cross-validation. A. Illumina samples (HiSeqX and HiSeq) show
better performance than the Complete Genomics samples, but both platforms show accuracy
greater than 85%. B. Stratification by sex shows similarly high classification accuracy across
gender. C. Stratification by DNA source shows similarly high performance across whole blood,
white blood cell, and cell line samples.
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Appendix Figure A.4: Classification performance is abolished by scrambling either case-
control labels or gene columns per subject. Accuracy was measured for both the SVM and
logistic regression (LR) classifiers with 10-fold cross-validation. A. Scrambling each subject’s
variant burden vector gene columns disrupts common patterns of variant burden across ASD
vectors. Classification performance for this scenario is essentially random. B. Scrambling the
case-control labels for the variant burden vectors also results in close to random performance.
Therefore, the labels encode meaningful differences between the vectors of each group.
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Appendix Figure A.5: Classification performance is reproducible in an independent ASD
genomics data. The SFARI Simons Simplex Collection (SSC) was used to validate the genome
vectorization and classification methodology. Unlike the primary MSSNG data, the SSC
includes healthy sibling controls, which increase the complex of the learning problem and
impact performance. A. High accuracy is obtained by three of the classification models (random
forest, SVM, and logistic regression) but not by the neural network and naive Bayes classifiers.
B. Similarly, the logistic regression, SVM, and random forest models are able to achieve
a high degree of sensitivity and specificity for this classification task. The classifier curve
colors are specified in the legend, and the black curve represents a random classifier. Area
under the receiving operating characteristic curve (AUROC), a performance measure of binary
classification, is also listed in the legend for each model.
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Appendix Figure A.6: A dataset containing genetic correlates for 20 neural cell types was used
to examine enrichment in the genome-wide rankings predicted by the SVM classification model
[Kang et al., 2011]. A. Highly ranked genes are enriched for both cortical glutamatergic neurons
(layer 2-4 and layer 6) and GABAergic neurons (CCK and CALB2), as well as pan GABA
cell types. B. ASD subjects vary with respect to both relative and absolute risk of excitatory
(layer 2-4 and layer 6 cortical glutamatergic neurons) versus inhibitory (CCK and CALB2
cortical interneurons) cell-types. The vast majority of subjects possess nontrivial variant risk
(low, moderate, and high damage) in a mixture of excitatory and inhibitory neuronal genes.
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Appendix B

Dynamical Analysis of Neuronal Electrical

Activity in ASD
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Appendix Figure B.1: Additional MEA Spiking Variables and Correlation to the MED. Time-
series plots of the ASD (red) and control (blue) groups for A. standard deviation (S.D.) of
interspike interval (ISI) in bursts, B. ISI coefficient of variation show statistically significant
trends across ASD and control samples. The concordance of these trends with the MED suggests
a relationship between bursting and spiking variance and dynamical complexity. The plots show
average values at each timepoint with a 95% confidence interval. Significance was tested using a
Welch’s two-sided t-test. Correlation plots between MED and spiking variables show significant
associations between MED and C. number of bursting electrodes and D. ISI coefficient of
variation. For these panels, the line represents a fitted linear with a 95% confidence interval for
the model in grey shading.
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Appendix Figure B.2: MED Intersubject Variability. A-H show boxplots for 7 control (blue)
and 8 ASD (red) subject MED values averaged over replicates for eight timepoints of MEA
recording. The diminished dynamical complexity of the ASD subjects becomes apparent in
the second week timepoints, through the course of the remaining days. Despite the group
differences, these panels reveal the individual subject variation in the measurement. F. Of note,
this panel shows the MED subject values for day 15 of the recordings, which was the day that
cells were extracted for RNAseq. The average subject MED values on this day were used as the
variable of interest for gene expression analysis.
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Appendix Figure B.3: RNA Sequencing Counts Matrix PCA Plot. Principal components
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ASD-4, which were removed for differential expression analysis. In parentheses, the percentage
of variance explained by each principal component is given.
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Appendix Figure B.4: Examples of Genes Differentially Expressed for MED. Individual gene
plots for genes that are differentially expressed for the MED value reveal linear correlations
between gene expression and dynamical complexity. These relationships capture transcriptomic
variance more comprehensively than ASD-control group labels. For all panels, the grey shading
represents a 95% confidence interval around the mean values, as estimated by a linear model.
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