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inspiration for my research, and I felt privileged to be working with him and getting his

scientific advice during the last four and a half years. He has also given me support and

encouragement whenever I needed it, and our frequent discussions on science, books and

politics was a big factor in making my PhD experience so enjoyable.

I am grateful to Brad Paden, Otger Camapas and Gary Leal, for agreeing to serve on

my doctoral committee, and for giving me comments and suggestions that significantly

improved the writing and presentation of this dissertation.

I owe much of my education at UCSB to my lab mates Michael, Ryan, Sophie, Nithin,

Milan, Cory, Marko, Alan and Emir. It was a blessing to work with those talented people

in the same lab, and I learned immeasurably from them about math, healthy eating

habits, and fantasy sport leagues. I wish them luck and hope our paths cross again.

Living in Santa Barbara has left me with a lot of blissful memories. I owe them

to my dear friends Momo, Mehran & Fatemeh, Maryam, Zhinus, Payam, Mohammad,

Kaveh & Salva, 2xFar, Sina, Shahab and Michael. I cannot express here how much they

contributed to my life, I just say that my biggest fear of graduation is that I probably

won’t be seeing them as much in the future.

Finally, I want to thank my family who have given me their unique brand of love and

unwavering support. I am specially grateful to my mom for being so patient with me,

and my dad for believing in me even when I doubt myself. I dedicate this thesis to them

with love and gratitude.

v



Curriculum Vitæ
Hassan Arbabi

Education

2017 Ph.D. in Mechanical Engineering, University of California, Santa
Barbara.

2012 M.Sc. in Mechanical Engineering, University of Tehran, Iran.

2009 B.Sc. in Mechanical Engineering, University of Tehran, Iran.

Publications
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Abstract

Koopman spectral analysis and study of mixing in incompressible flows

by

Hassan Arbabi

The main theme of this thesis is application of recently developed tools in dynamical

systems theory in the study of incompressible fluid flows. These applications fall into two

general categories: the first one is study of the flow evolution as an infinite-dimensional

dynamical system and it is related to classical topics like flow stability and transition.

The second area is the study of flow kinematics where tools of dynamical systems are used

to study the trajectory of particles immersed within the flow, and includes topics like

mixing enhancement, and prediction of pollution movement in the ocean or atmosphere.

In studying flow dynamics, we utilize the Koopman operator framework for data-

driven study of dynamical systems (introduced in chapter 1). The increasing popularity

of this framework is due to a versatile combination of rigorous theory and data analysis

algorithms which allows extraction of dynamic information from almost any type of data

from a dynamical system. In chapter 2, we use the spectral properties of the Koopman

operator, computed from data, to interpret the flow dynamics: we use the Koopman

spectra to determine the attractor geometry, the Koopman eigenfunctions to map the

state space linear coordinates, and the Koopman modes to characterize the unsteady

motion in the flow domain.

We also discuss the numerical computation of the Koopman spectral properties. As of

now, this computation is mostly done through a class of numerical algorithms known as

Dynamic Mode Decomposition (DMD). In chapter 3, we prove the convergence of a class

of DMD algorithms, called Hankel-DMD, for systems with ergodic attractors. Our proofs
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are based on the fact that projections in the space of functions can be approximated via

vector projections in DMD by the virtue of Birkhoff’s ergodic theorem. This new result

also provides insight on dynamics of chaotic systems with continuous spectrum and com-

putation of Koopman eigenvalues for dissipative systems. We compare the performance

of Hankel-DMD to the signal processing techniques used for fluid flows in chapter 2.

One of the important questions in the study of flow kinematics is how to characterize

the mixing in flows with aperiodic time dependence. This question has given rise to a

variety of methodologies that strive to describe the mixing in a given aperiodic flow by

detecting the coherent structures or other objects of special interest. In chapter 4, we

study this problem from a different perspective, namely, we consider how the mixing

portrait is changed while the temporal regime of a bounded flow - the lid-driven cavity

flow - changes from steady to aperiodic. We use the Koopman spectral properties of

the flow (studied in chapter 2) and the so-called hypergraphs to isolate and characterize

the effect of different elements from the flow dynamics on the mixing. For example, we

will see how the interaction between vorticity distribution in the mean flow and non-zero

Koopman frequencies determines the regions of slow mixing.

In chapter 5, we report on application of hypergraphs combined with high-frequency

radar data in the study of surface mixing in Santa Barbara channel (i.e. the patch of

Pacific Ocean between Santa Barbara coastline and Channel Islands) with special focus

on prediction of oil slick movements in the aftermath of 2015 Refugio oil spill.
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Chapter 1

Introduction

1.1 Classical theory of dynamical systems

A dynamical system, in the abstract sense, consists of two elements: a set of states

through which we can describe the evolution of the system in time, and a rule for that

evolution. Although this viewpoint toward dynamical system is very general and may

be applied to almost any system that evolves with time, often the fruitful and conclusive

results are achievable when we pose some mathematical structure on the dynamical

system, for example, we often assume the set of states form a linear space with nice

geometric properties and the rule of evolution has some order of regularity on that space.

The prominent examples of such dynamical systems are amply found in physics, where

we use differential equations to describe the evolution of physical variables. In this thesis,

we specially focus on dynamical systems that can be represented as

ẋ = f(x), (1.1)

1



Introduction Chapter 1

where x is the state, contained in the state space S ⊂ Rn, and f : S → Rn is a vector

field on the state space. Occasionally, we will specify some regularity conditions for f .

We also consider dynamical systems given by the discrete-time map

xt+1 = T (xt), t ∈ Z (1.2)

where x belongs to the state space S ⊂ Rn, T : S → S is the dynamic map and t is the

discrete time index. Just like the continuous-time system in (1.1), we may need to make

some extra assumptions on T in the following chapters. The discrete time representation

of dynamical system does not often show up in physical systems, but we can use it to

represent continuous-time systems, for example, through discrete-time sampling. This

representation also has the benefit of being more practical because the data collected

from dynamical systems come in the form of discrete time samples.

The study of the dynamical systems in (1.1) and (1.2) was dominated by the geometric

viewpoint in much of the last century. In this viewpoint, originally due to Henri Poincaré,

the qualitative properties of the solution curves in the state space are studied using

geometric tools and the emphasis is put on the subsets of the state space that play a big

role in the asymptotic behavior of the trajectories. We briefly describe some concepts

of this theory that we will use in the following chapters, but a more comprehensive

exposition of these notions can be found in [1, 2].

Assuming that the solution to (1.1) exists, we define the flow map F t : S → S to be

the map that takes the initial state to the state at time t ∈ R, i.e.,

F t(x0) = x0 +

∫ t

x0,t′=0

f(x(t′))dt′. (1.3)

2



Introduction Chapter 1

The flow map satisfies the semi-group property, i.e., for every s, t ≥ 0,

F t ◦ F s(x0) = F s(x0) +

∫ t

F s(x0),t′=0

f(x(t′))dt′,

=

∫ F s(x0),s

x0,t′=0

f(x(t′))dt′ +

∫ t

F s(x0),t′=0

f(x(t′))dt′,

=

∫ t+s

x0,t′=0

f(x(t′))dt′,

= F t+s(x0). (1.4)

where ◦ is the composition operator.

Some of the important geometric objects in the state space of continuous-time dy-

namical systems are as follows:

Fixed point: Any point x in the state space such that f(x) = 0 (or F t(x) = x).

The fixed points correspond to the equilibria of physical systems. An important notion

with regard to fixed points is the stability, that is wether the trajectories starting in some

neighborhood of a fixed point stay in its neighborhood over time.

Limit cycle: Limit cycles are (isolated) closed curves in the state space which cor-

respond to the time-periodic solutions of (1.1). The generalized version of limit cycles

are tori (cartesian products of circles) which are associated with quasi-periodic motion.

Invariant sets: An invariant set B in the state space satisfies F t(B) ⊂ B for all t,

i.e., the trajectories starting in B remain in B. The invariant sets are important because

we can separate the study of the dynamics on them from the rest of the state space, and

they include important objects such as fixed points, limit cycles, attractors and invariant

manifolds.

Attractors: An attractor is an attracting set with a dense orbit. An attracting set is

an invariant set to which many initial conditions converge. A dense orbit is a trajectory

that comes arbitrarily close to any point on the attracting set. For example, union of two

3



Introduction Chapter 1

(stable) periodic orbits is an attracting set but not an attractor because the trajectories

on one periodic orbit can not come arbitrarily close to the other periodic orbit. Examples

of attractors are stable fixed points, stable limit cycles and tori, and also stable chaotic

sets like the famous butterfly-shaped set in the chaotic Lorenz system.

Attractors are the objects that determine the asymptotic (that is post-transient or

long-term) dynamics of dissipative dynamical systems. In fact, the mere notion of dissi-

pativity (we can think of it as shrinkage in the state space) is enough to guarantee the

existence of an attractor in many systems [3]. In some cases, the state space contains

more than one attractor, and the attractors divide the state space into different basins;

any point in the basin of attraction for attractor A will converge to A.

Bifurcation: Bifurcation analysis is the study of changes in the qualitative behavior

of all the trajectories due to the changes in vector field f or the map T . For example, if

we add some forcing term to the vector field f a stable fixed point might turn unstable

or a limit cycle might appear out of the blue. Another example is the evolution of

incompressible flows given by Navier-Stokes equations: increasing the Reynolds number

may fundamentally change the flow solution from steady to unsteady, or from periodic

to chaotic.

Here is the traditional approach to study a dynamical system: We first discover or

construct a model for the system in the form of (1.1) or (1.2). Sometimes, if we are

very lucky, we can come up with analytical (or approximation) solutions and use them to

analyze the dynamics, by which, we usually mean finding the attractors, invariant mani-

folds, imminent bifurcations and so on. But most of the times we have to use numerical

computations and then extract information by looking at a collection of trajectories in

the state space.

This approach has contributed the most to our knowledge of dynamical and physical

systems around us, but it is falling short in treating the high-dimensional systems that

4
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lie in the current forefront of science and technology. A set of classic examples, which

regularly arises in physics, is the systems that are governed by PDEs. In those cases, the

state space is infinite-dimensional and the numerical models that we use may have up

to billions of degrees of freedom. Some examples of more recent interest include climate

system of the earth, smart cars and buildings, power networks, and biological systems

with many interacting components like neural networks. The first problem with the

traditional approach is that simulating the evolution of trajectories for these systems is

extremely challenging due to the large size of the problem. Moreover, unlike the 2- or

3-dimensional system, the geometric objects in the state space are difficult to realize and

verify. The second problem is the uncertainty in the models or even the sheer lack of a

model for simulation or analysis. As a result, the field of dynamical analysis, along with

many other disciplines, has started shifting toward a less model-based and more data-

driven perspective. This shift is not only motivated by the need to overcome the above

problems, but it is also fueled by the increasing amount of data produced by today’s

powerful computational resources and experimental apparatus. In the next section, we

introduce the Koopman operator theory, which is a promising framework for integration

of data analysis into our mathematical knowledge of dynamical systems.

1.2 A data-driven viewpoint toward dynamical sys-

tems through the Koopman operator theory

In the context of dynamical systems, we interpret the data as knowledge of some

variable that is related to the state of the system. A natural way to put this into the

mathematical form is to assume that data is knowledge of variables which are functions

of the state. We call these functions observables of the system. Let’s consider an exam-

5
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ple. The unforced motion of an incompressible inviscid fluid inside a box constitutes a

dynamical system; one way to realize the state space is to think of it as the set of all

smooth velocity fields on the flow domain that satisfy the incompressibility condition.

The velocity field changes with time according to a rule of evolution which is the Euler

equation. Some examples of observables on this system are pressure/vorticity at a given

point in the flow domain, velocity at set of points and the total kinetic energy of the flow.

In all these examples, the knowledge of the state, i.e., the velocity field, uniquely deter-

mines the value of the observable. We see that this definition allows us to think of the

data from most of the flow experiments and simulations as values of observables. We also

note that there are some type of data that don’t fit the above definition as an observable

of the system. For example, the position of Lagrangian tracers are not observables of the

above system, since they cannot be determined by mere knowledge of the instantaneous

velocity field. In this case, we can alter our dynamical system to include that observable

as well: we define a second dynamical system to describe the tracer dynamics (the flow

domain is the state space, and the rule of evolution is the time-dependent velocity field).

The coupling of these two dynamical systems would explain all of the above observables.

We observe that choosing the observables on a system requires a careful consideration of

the underlying processes that affects those observables.

In light of the above discussion, we can formulate the data-driven analysis of dy-

namical systems as follows: Given the knowledge of an observable in form of time series

generated by experiment or simulation, what can we say about the evolution of the state?

The Koopman operator theory provides a mathematical framework for data-driven anal-

ysis of dynamical systems by describing the precise relationship between the evolution of

observables and the evolution of state.

Consider the continuous-time dynamical system given in (1.2). We define g : S → R

to be a real-valued observable on this dynamical system. The collection of all such

6
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observables forms a linear vector space. The Koopman operator, denoted by U , is a

linear transformation on this vector space, given by

Ug(x) = g ◦ T (x), (1.5)

where ◦ denotes the composition operation. The linearity of Koopman operator follows

from the linearity of the composition operation, i.e.,

U [g1 + g2](x) = [g1 + g2] ◦ T (x) = g1 ◦ T (x) + g2 ◦ T (x) = Ug1(x) + Ug2(x). (1.6)

For continuous-time dynamical systems, we can define a one-parameter semi-group of

Koopman operators, denoted by {U t}t≥0, where each element of this semi-group is given

by

U tg(x) = g ◦ F t(x), (1.7)

where F t(x) is the flow map defined in (1.3). The linearity of U t follows in the same

way as the discrete-time case. The semi-group property of {U t}t≥0 follows from the

semi-group property of the flow map for autonomous dynamical systems given in (1.4),

U tU sg(x) = U tg ◦ F s(x) = g ◦ F t ◦ F s(x) = g ◦ F t+s(x) = U t+sg(x). (1.8)

An schematic representation of the Koopman operator is shown in figure 1.2. We can

think of this viewpoint as a lifting of the dynamics from the state space to the space of

observables. The advantage of this lifting is that it provides a linear rule of evolution -

given by Koopman operator - while the disadvantage is that the space of observables is

infinite-dimensional. In the next section, we discuss the spectral theory of the Koopman

7
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Figure 1.1: Koopman viewpoint lifts the dynamics from state space to the observable
space, where the dynamics is linear but infinite dimensional.

operator which leads to linear expansions for data generated by nonlinear dynamical

systems. A more detailed account of spectral analysis can be found in chapter 2.

1.3 Koopman linear expansion

A somewhat naive but useful way of thinking about linear operators is to imagine

them as infinite-dimensional matrices. Then, just like matrices, it is always useful to

look at the their eigenvalues and eigenvectors since they give a better understanding of

how a matrix acts on a vector space. Let φj : Rn → C be a complex-valued observable

of the dynamical system in (1.1) and λj a complex number. We call the couple (φj, λj)

8
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an eigenfunction-eigenvalue pair of the Koopman operator if they satisfy

U tφj = eλjtφj. (1.9)

An interesting property of the Koopman eigenfunctions, that we will use later, is that

if (φi, λi) and (φj, λj) are eigenfunction-eigenvalue pairs, so is (φi · φj, λi + λj), that is

U t(φi · φj) = (φi · φj) ◦ F t = (φi ◦ F t) · (φj ◦ F t) = U tφi · U tφj = e(λi+λj)tφi · φj . (1.10)

Let us assume for now that all the observables of the dynamical system lie in the

linear span of Koopman eigenfunctions, that is, for an arbitrary observable like g, we

have

g(x) =
∞∑
k=0

gkφk(x), (1.11)

where gj’s are scalar coefficients. Then we can describe the evolution of g in time as

U tg(x) =
∞∑
k=0

gke
λktφk(x), (1.12)

which says that the evolution of g has a linear expansion in terms of Koopman eigenfunc-

tions. If we fix the initial state x = x0, we see that the signal generated by measuring

g over a trajectory, which is given by U tg(x0) = g ◦ F t(x0) is sum of (infinite number

of) sinusoids and exponentials. This might sound a bit odd for nonlinear systems since

sinusoids and exponentials are usually generated by linear systems.

It turns out that Koopman linear expansion in (1.12) holds for a large class of nonlin-

ear systems, including the ones that have hyperbolic fixed points, limit cycles and tori.

For these systems the spectrum of the Koopman operator consists of only eigenvalues

9



Introduction Chapter 1

and their associated eigenfunctions span the space of observables. Now we consider some

of these systems in more detail. We borrow these examples from [4] where more details

on the regularity of the system and related proofs can be found.

1.3.1 Examples of nonlinear systems with linear Koopman ex-

pansion:

1. Limit cycling is a nonlinear property in the sense that there is no linear system

(x = Ax) that can generate a limit cycle (i.e. isolated periodic orbit). If a limit

cycle has time period T , then the signal generated by measuring g(x) while x is

moving around the limit cycle is going to be T -periodic. From Fourier analysis, we

have

g(x(t)) =
∞∑
k=0

gje
ik(2π/T )t.

where gj’s are the Fourier coefficients. We can construct the eigenfunctions by

letting φk(x(t)) = eik(2π/T )t, and eigenvalues by λk = ik(2π/T ). It is easy to check

that (φk, λk) satisfy (1.9), and the above equation is the Koopman linear expansion

of g.

2. Consider a nonlinear system with a hyperbolic fixed point, that is, the linearization

around the fixed points yields a matrix whose eigenvalues don’t lie on the imaginary

axis. There are a few well-known results in dynamical systems theory, such as

Hartman-Grobman theorem [2], which state that the nonlinear system is conjugate

to a linear system of the same dimension in a neighborhood of the fixed point.

To be more precise, they say that there is an invertible coordinate transformation

y = h(x) such that the dynamics on y-coordinate is given by ẏ = Ay (with the

10
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solution y(t) = eAty(0)) and such that

F t(x) = h−1
(
eAth(x)

)
i.e., to solve the nonlinear system, we can lift it to y-coordinate, and solve the

linear system, and then transform it back to the x-coordinates. We first show the

Koopman linear expansion for linear systems, and then use the conjugacy to derive

the expansion for the nonlinear system.

Let {vj}nj=1 and {λj}nj=1 denote the eigenvectors and eigenvalues of A. The Koop-

man eigenfunctions for the linear system are simply the eigen-coordinates , that

is

φ̃j(y) =< y,wj >,

where wj’s are normalized eigenvectors of A∗. To see this note that

U tφ̃j(y) =< U ty, wj >=< eAty, wj >=< y, eA
∗twj >

=< y, eλ
∗
j twj >= eλjt < y,wj >= eλjtφ̃j(y).

It is easy to show that φj(x) = φ̃j
(
h(x)

)
are eigenfunctions of the Koopman oper-

ator for the nonlinear system. Other Koopman eigenfunctions can be easily con-

structed using the algebraic structure noted in (1.10).

To find the Koopman expansion for the nonlinear system it is easier to further

transform y into a decoupled linear system. If the matrix A is diagonalizable and

V is the matrix of its eigenvectors, then the state variables of the diagonal system

11
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are, not surprisingly, the Koopman eigenfunctions,

z = [z1, z2, . . . , zn]T = V −1y = [φ̃1(y), φ̃2(y), . . . , φ̃n(y)]T

= [φ1(x), φ2(x), . . . , φn(x)]T .

Now consider an observable of the nonlinear dynamical system g(x) = g
(
h−1(y)

)
=

g
(
h−1(V z)

)
= g̃(z) where g̃ is real analytic in z (and therefore y as well). The

Taylor expansion for of this observable in variable z reads

g(x) = g̃(z) =
∑

{k1,...,kn}∈Nn

αk1,...,knz
k1
1 z

k2
2 . . . zknn ,

=
∑

{k1,...,kn}∈Nn

αk1,...,kn , φ
k1
1 (x)φk22 (x) . . . φknn (x),

Using the algebraic property of the Koopman eigenfunctions in (1.10), we can write

the Koopman linear expansion of g as

U tg =
∑

{k1,...,kn}∈Nn

αk1,...,kne
(k1λ1+k2λ2+...+knλn)tφk11 φ

k2
2 . . . φknn .

Recall that the original Hartman-Grobman theorem for nonlinear systems is lo-

cal [2], in the sense that we knew the conjugacy exists for some neighborhood of

the fixed point. But the results in [4] has extended the conjugacy to the whole

basin of attraction for stable fixed points using the properties of the Koopman

eigenfunctions.

3. Now consider the motion in the basin of attraction of a (stable) limit cycle. The

Koopman linear expansion for observables on such system can be constructed by,

roughly speaking, combining the above two examples. That is, observables are
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decomposed into Koopman eigenfunctions, and each Koopman eigenfunction is a

product of a periodic component, corresponding to the limit cycling, and a lin-

early contracting component for the stable motion toward the limit cycle. The

development of this expansion is lengthy and can be found in [4].

The major class of dynamical systems for which the Koopman linear expansion does

not hold is the class of chaotic dynamical systems. It turns out that for these systems,

the eigenfunctions of the Koopman operator do not span the space of observables and

we cannot decompose all the fluctuations of the system into exponentials and sinusoids.

In such cases the Koopman operator usually possesses a continuous spectrum, i.e. a

continuum of eigenvalues in the complex plane which are not associated with any finite-

dimensional subspace of the observables. (We note that chaos in measure-preserving

system is associated by continuous spectrum but continuous spectrum can also be seen

in non-chaotic systems. See the cautionary tale in [4]). We will discuss the continuous

spectrum further in chapter 2.

Nevertheless, some systems may possess mixed spectra which is a combination of

eigenvalues and continuous spectrum. For these systems the evolution of a generic ob-

servable is composed of two parts: one part associated with eigenvalues and eigenfunc-

tions which evolves linearly in time and a fully chaotic part corresponding to continuous

spectrum. As such, the linear expansion (and the Koopman modes defined below) does

hold for part of the data. Example of such a system is given in [5], and we will discuss

an example from fluid mechanics in chapter 2.

1.4 Koopman Mode Decomposition (KMD)

A lot of times the data that is measured on a dynamical systems comes to us not

from a single observable, but multiple observables. For example, when we are monitoring

13
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a power network system, we may have access to the time series of power generation and

consumption on several nodes, or in the study of climate dynamics there are recordings of

atmospheric temperature measured at different stations around the globe. We can easily

integrate these multiplicity of time-series data into the Koopman operator framework

and Koopman linear expansion.

We use g : S → Rm to denote a vector-valued observable, i.e.,

g =



g1

g2

...

gm


, gj : S → R, 1 ≤ j ≤ m.

If we apply the linear Koopman expansion (1.12) to each gj, we can collect all those

expansions into a vector-valued linear expansion for g,

U tg(x) =
∞∑
k=0

gke
λktφk(x). (1.13)

The above expansion is the Koopman Mode Decomposition (KMD) of observable g

and gk is called the Koopman mode of observable g at the eigenvalue λk. Koopman

modes are in fact the projection of the vector-valued observable g onto the Koopman

eigenfunctions. We can think of gk as a structure (or shape) within the data that evolves

as eλkt with time. Let us examine the concept of the Koopman modes in the examples

mentioned above. In the context of power networks, we can associate the network insta-

bilities with the Koopman eigenvalues that grow in time, that is λk > 0, and as such,

the entries of Koopman mode gk give the relative amplitude of each node in unstable

growth and hence predict which nodes are most susceptible to breakdown. In the ex-

ample of climate time series, the Koopman modes of temperature recordings give us the

14
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spatial pattern (depending on the location of stations) of temperature change that is

proportional to eλkt, and therefore indicate the spots with extreme variations.

In some physical problems, we have a field of observables, i.e., an observable that

assigns a physical field to each element of the state space. A prominent example, that

we focus on in the next chapter, is a fluid flow. The pressure field over a subdomain of

the flow, or the whole vorticity field, are two examples of field of observable defined on

a flow, since the knowledge of the flow state (e.g. instantaneous velocity field) unqiuely

determines those fields. We can formalize the notion of a field of observable as a function

g : (S,Ω) → R where Ω is the flow domain and g(x, z) determines the value of the field

at point z in the flow domain when the flow is at state x. The Koopman linear expansion

for g would be

U tg(x, z) =
∞∑
k=0

gk(z)eλktφk(x), (1.14)

where the Koopman mode gk(z) is a fixed field by itself, and similar to the Koopman

mode vectors, determines a shape function on Ω which grows with the amplitude eλkt in

time. In a fluid flow, the Koopman modes of vorticity, are steady vorticity fields, and

the whole flow can be decomposed into such fields. We will consider this extensively in

chapter 2.

1.5 History of Koopman operator theory and its ap-

plication to data analysis

The Koopman operator formalism originated in the early work of Bernard Koopman

in 1931 [6]. He introduced the the linear transformation that we now call the Koopman

operator, and realized that this transformation is unitary for Hamiltonian dynamical
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?

Figure 1.2: Koopman Mode Decomposition fully describes the evolution of observables
on systems with Koopman discrete spectrum, but not for chaotic systems which have
continuous spectrum.

systems (the “U” notation comes from unitary property). This observation by Koopman

inspired John Von Neumann to give the first proof for a precise formulation of ergodic

hypotheses, known as mean ergodic theorem [7]. In the next year, they wrote a paper

together, in which they introduced the notion of the spectrum of a dynamical system, i.e.

the spectrum of the associated Koopman operator, and noted the connection between

chaotic behavior and the continuous part of the Koopman spectrum.

For several decades after the work of Koopman and Von Neumann, the notion of

Koopman operator was mostly limited to the study of measure-preserving systems; it can

be found as the unitary operator in the proof of the mean ergodic theorem or discussions

on the spectrum of measure-preserving dynamical systems [8, 9]. It seldom appeared in

other applied fields until it was brought back to the general scene of dynamical system

by two articles in 2004 and 2005 [5, 10]. The first paper showed how we can construct

important objects like the invariant sets in high-dimensional state spaces from data.

The second paper discussed the spectral properties of the Koopman operator further,

and introduced the notion of Koopman modes. Both papers also discussed the idea of

applying Koopman methodology to capture the regular components of data in systems
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with combination of chaotic and regular behavior.

In 2009, the idea of Koopman modes was applied to a complex physical example

which is a jet in a cross flow [11]. This work showed the promise of KMD in capturing

the dynamically relevant structures in fluid flows and their associated time scales. Unlike

other decomposition techniques in flows, KMD combines two advantageous properties:

it makes a clear connection between the measurements in the physical domain and the

dynamics of state space (unlike proper orthogonal decomposition), and it is completely

data-driven (unlike the global mode analysis). The work in [11] also showed that KMD

can be computed through a numerical decomposition technique known as Dynamic Mode

Decomposition (DMD) [12]. Since then, KMD and DMD has become immensely popular

in analyzing the nonlinear flows [13, 14, 15, 16, 17, 18, 19, 20, 21]. A review of the

Koopman theory in the context of flows can be found in [22], and we will discuss it

further in chapter 2.

In the recent years, the extent of KMD applications for data-driven analysis has grown

enormously. Some of these applications include model reduction and fault detection in

energy systems for buildings [23, 24], coherency identification and stability assessment

in power networks [25, 26], extracting spatio-temporal patterns in brain activity [27],

background detection and object tracking in videos [28, 29] and design of algorithmic

trade strategies in finance [30].

Parallel to the applications, the computation of Koopman spectral properties (modes,

eigenfunctions and eigenvalues) has also seen a lot of major advancements. For post-

transient systems, the Koopman eigenvalues lie on the unit circle and Fourier analysis

techniques can be used to find the Koopman spectrum and modes [5]. We will discuss this

line of computation in chapter 2. DMD on the other hand, is the more popular technique

for computation of Koopman spectrum from data. In [31] the idea of Extended DMD was

introduced for general computation of Koopman spectrum by sampling the state space.
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The works in [32] and [33] discussed the linear algebraic properties of the algorithm and

suggested new variations for better performance and wider applications. New variants of

DMD were also introduced in [34] to unravel multi-time-scale phenomena and in [35] to

account for linear input to the dynamical system. Due to constant growth in the size of

the available data, new alterations or improvements of DMD are also devised to handle

larger data sets [36, 37], different sampling techniques [38, 33, 37] and noise [39, 40].

The convergence of DMD-type algorithms for computation of Koopman spectrum was

established in [41] and [42]. We will discuss DMD in chapter 3.

The ultimate goal of many data analysis techniques is to provide information that can

be used to predict and manipulate a system to our benefit. Application of the Koopman

operator techniques to data-driven prediction and control are just being developed, with

a few-year lag behind the above work. This lag is perhaps due to the need to account for

the effect of input in the formalism, but promising results have already appeared in this

line of research. The work in [43] showed an example of optimal controller which was

designed based on a finite-dimensional Koopman linear expansion of nonlinear dynamics.

The works in [44, 45] have developed a framework to build state estimators for nonlinear

systems based on Koopman expansions. More recent works, have shown successful ex-

amples of Koopman linear predictors for nonlinear systems [46], and optimal controllers

of Hamiltonian systems designed based on Koopman eigenfunctions [47].
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Chapter 2

Study of dynamics in post-transient

flows via Koopman operator theory

1 In this chapter, we discuss the application of Koopman operator theory to study of

state space dynamics in post-transient flows. By “post-transient”, we mean that the

trajectory in the state space of the flow has converged to an attractor and there are no

transient motions. The major questions to be answered are

1. how can we identify the state space dynamics (for example, type of the attractor)

from data using the Koopman operator formalism?

2. and how can we compute the Koopman operator spectrum for such flows?

The traditional approach to determine the dynamic regime of fluid systems is to look

at the Fourier or power spectrum of time series . The existence of sharp peaks in those

spectra is deemed to indicate periodic motion while broadband spectrum is often inter-

preted as a sign of chaos [48, 49, 50, 51, 52, 53]. We point out the relationship between

1The contents of this chapter are to appear in the journal of Physical Review Fluids.
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this classical viewpoint and the Koopman spectral analysis, and describe how the Koop-

man spectrum of data can be used to determine the geometry of the attractor, using the

results in [4]. However, the Koopman viewpoint generalizes the classical spectral analy-

sis by relating the data spectrum to the geometry of the state space through the notion

of Koopman eigenfunctions and modes. As a result, one could connect this viewpoint

to other state-space analysis and control techniques which are not reachable by Fourier

analysis. In particular, Koopman eigenfunctions and eigenvalues provide linearly evolving

coordinates in the state space and their knowledge can be used to construct nonparamet-

ric predictors [54, 46], state estimators [45, 44] and nonlinear controllers [46, 47] using

linear system strategies. The utility of the Koopman eigenfunctions in the context of flow

decomposition is further discussed in a recent review in [55]. In this chapter, we present

a new way to construct (and visualize) the Koopman eigenfunctions in post-transient

flows which are ergodic in the state space.

We apply the Koopman analysis to the two dimensional lid-driven cavity flow with

regularized lid velocity. This flow provides a good benchmark for our analysis, since it

shows a wide range of dynamic behavior over various Reynolds numbers. The dynamics of

each flow regime is discussed in terms of the Koopman spectral properties: the Koopman

spectrum determines the type of the attractor, the Koopman eigenfunctions indicate the

oscillatory directions of motion in the state space, and the Koopman modes describe the

evolution of velocity field in the flow domain. In particular, we use the Koopman modes

to study the traveling waves that appear as a result of bifurcation from steady solution

to periodic and quasi-periodic flow.

The lid-driven cavity flow becomes fully chaotic at ultimately high Reynolds numbers.

In such flows, the Koopman spectrum is continuous and does not contain any (non-trivial)

eigenvalues. Using the properties of the Koopman operator and plausible assumptions

on the post-transient dynamics, one can show how the measurements of observables on
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the chaotic flow can be interpreted as a realization of a wide-sense stationary stochastic

process. This observation allows us to use the techniques from random signal processing

to compute the continuous spectrum of the Koopman operator. We also study the flow

regimes with mixed spectra, i.e., flows that have both discrete and continuous spectrum.

In those flows, the evolution of flow observables is a mixture of quasi-periodic and chaotic

motion, and the Koopman eigenfunctions help us distinguish and extract the quasi-

periodic components of motion in the state space.

As of now, DMD-type algorithms (discussed in Chapter 3) are the established tools for

computation of Koopman spectral properties. Here, we use a different approch based on

methods of classical spectral analysis. For post-transient flows, the spectrum of the Koop-

man operator (including both continuous and discrete components) lies on the imaginary

axis, and the problem of estimating the Koopman spectrum - under certain assumptions

- reduces to the classical spectral estimation of signals. This problem is challenging for

flows with mixed spectra where there is no a priori model for the continuous spectrum.

Our methodology for Koopman spectral estimation consists of three steps: first, we ap-

ply a high-resolution algorithm - adapted from Laskar [56, 57]- to detect the candidate

discrete Koopman frequencies and modes. The Laskar algorithm provides a control-

lable balance between accuracy and computational efficiency which makes it suitable

for large data sets like high-resolution flow snapshots. Moreover, it makes direct use of

the harmonic averaging [10] which has proven convergence properties for computation

of Koopman modes. In the second step, we use the ergodic properties of the attractor

to discard the spurious frequencies that are artifacts of the continuous spectra. After

extracting the periodic components of the flow, we estimate the continuous Koopman

spectrum by applying the Welch method [58] to the chaotic residual of the data. Our

computational approach is advantageous over DMD-type algorithms since it can handle

the continuous spectrum, and it is related to the well-studied techniques and notions in
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spectral analysis of signals.

A key objective of modal decomposition techniques is to obtain low-dimensional rep-

resentation of the data from experiments or numerical simulations. Therefore, an im-

portant question regarding any decomposition is how efficiently it can capture the flow

evolution. Several authors have already proposed variations of DMD algorithm to obtain

low-dimensional description of the the flow features in an optimal manner [32, 59, 60].

DMD is also used in a data assimilation approach to obtain a low-dimensional dynamic

model of the cylinder wake flow [61]. Here, we study the efficiency of the Koopman modes

by considering the error in the low-dimensional truncations of KMD in representing the

cavity flow dynamics. We also compare the performance of Koopman modes with the

modes obtained by Proper Orthogonal Decomposition (POD).

The outline of this chapter is as follows. In section 2.1, we review the spectral theory

of Koopman operator in more detail and describe how the Koopman spectrum is related

to the geometry of the attractor. In section 2.2, we present the Koopman formalism that

connects the deterministic evolution of dynamical systems to stochastic processes. This

shows us why and how we can use the tools from spectral processing of random signals

to compute the Koopman continuous spectrum. The connection between the KMD of

different observables such as stream function, velocity field and vorticity are discussed in

section 2.3. In section 2.4, we describe the flow settings for the lid-driven cavity flow and

the numerical method for solving Navier-Stokes equation. In section 2.5, we discuss the

problem of estimating the Koopman spectrum. And finally in section 2.6, we present the

results of Koopman spectral analysis for the cavity flow.
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2.1 Koopman spectrum and data dynamics

Before we present a formal description of the Koopman spectral expansion, we have

to review some mathematical notions and specify the appropriate space of observables

to work with: We call a subset of the state space, denoted by A, an attractor of the

dynamical system, if for many initial conditions the systems evolves toward A. Moreover

A is a minimal set in the sense that it cannot be split into smaller sets with the same at-

tracting property (see chapter 1 or [2]). Simple examples of attractors in the state space

of flows include stable fixed points and periodic orbits which correspond to steady and

time-periodic flows, respectively. The attractor could be complicated and have chaotic

behavior such as the butterfly-shaped attractor of the chaotic Lorenz system. The dy-

namics on the attractor usually preserves a measure, which we denote by µ. Roughly

speaking, this assumption implies that the time-averages (and therefore statistical prop-

erties) of observables on the flow are well-defined. Now we let H := L2(A, µ) be the

Hilbert space of square-integrable observables defined on the attractor of the flow A with

respect to measure µ. In this work, we are interested in observables that belong to H. It

turns out that Koopman operator defined in (1.5) is a unitary operator in H [62], which

implies that its spectrum lies on the unit circle. In the following, we use the symbol
µ
=

to describe the functional equalities, i.e., the functions on different sides of
µ
= are equal

everywhere on A except on a set with zero µ-measure. We also use < f, g >H to denote

the inner products in H.

Let us revisit one key assumption that led to derivation of KMD in chapter 1, namely,

the Koopman eigenfunctions spanning the space of observables, in this case, H. For

simple attractors like limit cycles and torus, this assumption holds and the expansion

in (1.13) can be used to explain the behavior of all observables. For systems with more

complicated attractors, the Koopman eigenfunctions might not exist but there is a more
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general form of spectral expansion for the Koopman operator, which we will consider

shortly.

When the trajectory in the state space of the flow evolves on a limit cycle or a torus,

the post-transient flow shows (quasi-)periodic time dependence. Let Ω = [ω1, ω2, . . . , ωm]T

denote the vector of basic frequencies for the motion of state variable on anm−dimensional

torus (for limit cycles m = 1). The Koopman spectral expansion for the flow is given by

([4])

U τg
µ
=
∑

k∈Zm

gkφke
ik·Ωτ . (2.1)

We have dropped the dependence of g and φk on the state u to simplify the notation. The

above equation is a functional equality which holds almost everywhere on the attractor.

However, we can evaluate it for a single trajectory starting from the initial state u0 to

obtain the vector expansion

U τg(u0) =
∑

k∈Zm

gkφk(u0)eik·Ωτ . (2.2)

The term U τg(u0) is the signal generated by observing g over the trajectory starting

at u0. If the attractor is a limit cycle, this signal is time-periodic and (2.2) is simply

the Fourier series expansion in time. If the attractor is a torus, this expansion is a

generalized Fourier expansion for the quasi-periodic signal that is generated by measuring

g. We observe that the Koopman frequencies in the above expansion form a lattice on

the frequency axis. For limit cycling systems, the frequencies are multiples of the basic

frequency ω1, while for the torus attractors, they are linear combinations of the basic

frequencies in Ω with integer coefficients. Hence, a bifurcation from a limit cycle to a

torus can be easily detected by counting the number of basic frequencies in the lattice of

Koopman frequencies obtained from the data.
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The point-evaluated expansion in (2.2) is more suitable for the study of fluid flows

than the function expansion in (2.1). This is due to the fact that each flow simulation

or experiment provides us with only a single trajectory in the state space and direct

evaluation of the Koopman eigenfunctions on arbitrary regions of state space is not

practical. In case of post-transient flows, however, the ergodicity condition - which is

discussed later - allows us to construct and visualize the Koopman eigenfunctions on the

attractor using the signals coming from as few as one trajectory. We will use this fact to

construct and visualize the eigenfunctions in section 2.6.

The converse of the above statements is also true, that is, if the Koopman spectrum

of observables has only a countable number of frequencies, then the flow trajectory must

be evolving on a torus-shaped attractor in the state space. In fact, the representation

theorem from the ergodic theory states that if the post-transient flow dynamics is er-

godic and smooth, the Koopman operator having only discrete spectrum implies that

the motion in the state space is topologically equivalent to rotation on a torus [62]. This

classic result combined with numerical KMD algorithm gives a practical framework for

detecting motion on tori in high-dimensional systems.

For post-transient flows with chaotic behavior, the Koopman eigenfunctions do not

span H and evolution of observables cannot be described based on them. In fact, the

Koopman operator spectra, in addition to eigenvalues, includes so-called continuous spec-

trum which is related to the chaotic component of the flow. The spectral expansion for

the Koopman operator takes a more general form (see e.g. [63]), however, as first stated

in [10], we can still represent it in a way that distinguishes the quasi-periodic and chaotic

components of the evolution. For the scalar observable g, it can be written as

U τg
µ
=
∑

k∈Zm

gkφke
ik·Ωτ +

∫ ∞
−∞

eiατdEα(g). (2.3)
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The first term on the right-hand-side is the contribution of discrete spectrum and de-

scribes the quasi-periodic part of the flow (similar to (2.1)). The second term is the

contribution of the continuous spectrum. Informally speaking, iα with α ∈ (−∞,∞),

denotes a continuum of eigenvalues distributed along the imaginary axis. The term

dEα(·) is the spectral measure of the Koopman operator, that is, for each interval of

frequencies such as I = [α1, α2],
∫
α∈I dEα(g) is the projection of the observable g onto

the eigen-subspace of H associated with I. The above expansion in the functional form is

not suitable for flow applications, and it can be converted to a scalar equality by taking

its inner product with the same observable g. That is

< g,U τg >H=
∞∑
k=1

|gk|2eiωkτ +

∫ ∞
−∞

eiατρg(α)dα. (2.4)

where we have assumed that eigenfunctions are normalized, i.e., ‖φk‖H = 1. In passing

from (2.3) to (2.4), we have made a technical assumption that the spectral measure

of the Koopman operator for the chaotic part is absolutely continuous. The Koopman

spectral density ρg denotes the contribution of the continuous spectrum, such that the

contribution of the frequency interval I to the evolution of g is given by

µg(I) =

∫
I

ρg(α)dα. (2.5)

In order to compute the spectrum of the Koopman operator from the flow data,

we need to assume that the post-transient dynamics is ergodic. This implies that the

statistics of the flow is independent of the initial condition, and the trajectories starting

almost everywhere provide a perfect sampling of observables (in the sense defined in

(2.6) below). The ergodicity assumption holds for post-transient evolution of typical

dynamical systems, including systems with periodic and quasi-periodic attractors and
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many chaotic systems like Lorenz [64]. Under this condition, we can use the pointwise

ergodic theorem [8] to approximate the inner product in (2.4) from the data,

< g,U τg >H= rg(τ) := lim
T→∞

1

T

∫ T

0

g(t)g∗(t+ τ)dt. (2.6)

where rg(τ) is the autocovariance function of g at time τ . Therefore, we can approximate

the spectral density of the Koopman operator by first extracting the chaotic component

of g, then approximating rg using finite-time observations (i.e. finite T in (2.6)), and

finally applying inverse Fourier transform to rg. We will discuss the practical aspects of

this computation in section 2.5.

2.2 Stochastic processes and Koopman representa-

tion of deterministic chaos

In analyzing the chaotic data from experiments and simulations, it is customary to

use the tools from applied probability theory even in the case that underlying dynamical

systems is fully deterministic. The reasoning behind this approach is the duality between

the post-transient evolution of dynamical systems which is measure-preserving and the

stationary stochastic processes. A classic formalism of this duality can be found e.g.

in [65]. In this section, we reiterate this connection in the framework of the Koopman

operator theory with an emphasis on the spectral expansion of observables.

Recall that a continuous-time stochastic process is a collection of real random vari-

ables that are indexed by time, and denoted by

{Xt}t∈R. (2.7)
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where Xt is the random variable at time t with a certain distribution over real line. A

stochastic process is called wide-sense stationary if it satisfies two conditions: its mean

does not change with time, i.e.,

E(Xt) = E(Xt+τ ) = m, for all τ ∈ R (2.8)

where E(·) denotes the expected value over different realizations, and second, its autoco-

variance function only depends on the lag time, i.e.,

cov(Xt, Xt+τ ) = E((Xt −m)(Xt+τ −m)) = cov(τ). (2.9)

Now we consider the deterministic flow evolving on the attractor A which preserves the

normalized measure µ (µ(A) = 1). We see that the collection of observables

{U tg}t∈R, (2.10)

is a stochastic process defined on the probability space (A, µ). Each observable U tg is a

proper random variable whose probability distribution on the real line is given by

P(B) = µ
(
(U tg)−1(B)

)
, B ⊂ R. (2.11)

where P(B) is the probability of the interval B on the real line induced by observable

U tg. Because of the measure-preserving property of the dynamics, this probability is

independent of t, and the stochastic process in (2.10) is identically distributed (but not

independent). Moreover, it is a wide-sense stationary process; in view of (3.15), we can

write

E(U tg) =< U tg, 1 >H=< g,U−t1 >H=< g, 1 >H= E(g), (2.12)
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and

cov(U tg, U t+τg) = < U tg, U t+τg >H,

= < U−tU tg, U τg >H,

= < g,U τg >H= cov(τ).

where we have used the unitary property of the Koopman operator (U t)∗ = U−t. Using

the measure-preserving property, one can go further and show (2.10) is also strictly

stationary [65], but that is not required for the spectral expansion.

According to the Wiener-Khintchine theorem (e.g. [66]), the covariance of any wide-

sense stationary process, such as (2.10), has a spectral expansion in the following form,

cov(g, U τg) =

∫ ∞
−∞

eiατdF (α)

where F is the power spectral distribution of the process. Note that this expansion

holds for the general post-transient dynamics including both chaotic and quasi-periodic

behavior. In the case that there are no quasi-periodic components in the flow, and F is

absolutely continuous similar to (2.4), we can rewrite the above expansion as

cov(g, U τg) =

∫ ∞
−∞

eiατρ(α)dα

where ρ is called the Power Spectral Density (PSD) of the stochastic process. Despite the

deterministic nature of our system, we observe that we can treat the chaotic component

of the data as a a realization of a stationary process, and consequently, the notion of

the Koopman spectral density coincides with that of PSD for random signals. This

observation is specially helpful in computation, since it enables us to use the spectral
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estimation techniques of stochastic signals to find the Koopman spectrum.

2.3 Choice of observables and the relationship be-

tween their Koopman modes

In this section, we consider the choice of observables for KMD and the relation be-

tween their modal decomposition. This question is important since applying KMD to

an observable reveals only the Koopman eigenvalues that are present in the expansion

of that observable. Furthermore, one can use the relationship between the Koopman

modes of different observables to reduce the computational cost of the analysis. Here,

we provide two propositions that describe this relationship.

Proposition 1

Let g, h : Ω×M → R be two fields of observables defined on the flow domain Ω and the

state space of the flow M . Assume g(., z), h(., z) ∈ F(Ω) for every state z ∈ M where

F(Ω) denotes a normed space of fields on Ω. Moreover, the observables are related through

a linear operator D : F(Ω) → F(Ω), such that Dg = h and D is bounded in F . Let gi

and hi denote the Koopman modes of observable g and h, respectively, associated with

the Koopman eigenvalue λj. Then those modes are related to each other via Dgi = hi.

In words, the Koopman mode decomposition commutes with the linear bounded operator

D.

Proof: Let us assume for now that the dynamical system is measure-preserving

which implies λj = iωj, ωj ∈ R. The Koopman modes are computed via the harmonic

30



Study of dynamics in post-transient flows via Koopman operator theory Chapter 2

averaging [10] and it follows that

hj = lim
T→∞

1

T

∫ T

0

h(t)e−iωjtdt (2.13)

= lim
T→∞

1

T

∫ T

0

Dg(t)e−iωjtdt

= lim
T→∞

1

T
D
∫ T

0

g(t)e−iωjtdt

= D lim
T→∞

1

T

∫ T

0

g(t)e−iωjtdt

= D gj

We have used the linearity and continuity (i.e. boundedness) of D in the 3rd and 4th

equalities, respectively. If the system is dissipative, the Koopman modes are given by

Generalized Laplace Analysis formula [22]. The above argument could be used, along

with induction, to prove the statement for that case.

In application to fluids, we are mostly interested in linear operators that involve spatial

derivatives, such as gradient or curl. The derivative operator, however, is not bounded

and therefore needs a special treatment which is given by the following proposition.

Proposition 2

Let g, h : Ω ×M → R be two fields of observables defined on the flow domain Ω and

the state space of the flow denoted by M . Assume the observables are bounded over their

domain and related to each other through

Dg = h, (2.14)

where D denotes the partial derivative with respect to a spatial coordinate in Ω. Let gk and

hk denote the Koopman modes of observables associated with the Koopman frequencies
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ωk, k = 1, 2, . . .. Then

Dgk = hk. (2.15)

for every x ∈ Ω. In words, the Koopman mode decomposition commutes with the spatial

differentiation in the flow domain.

Proof: Define the finite-time harmonic average of g at the frequency ωk by

gTk (x) =
1

T

∫ T

0

g(x, t)e−iωktdt. (2.16)

The Koopman mode of g associated with ωk is then given by

gk = lim
T→∞

gTk . (2.17)

The Leibniz rule implies that the spatial derivative commutes with the finite-time aver-

aging in (2.16), i.e.,

hTk = DgTk . (2.18)

for any finite T . Fix x. If both h(x) and g(x) are integrable functions, then the existence

of gk(x) implies the existence of hk(x) [67], and since the scalar functions hTk (x) and

DgTk (x) are equal up to any finite T , their limits as T →∞ must be equal, i.e., hk(x) =

Dgk(x).

For example, consider the field of stream function ψ and the velocity field u in an

incompressible 2D flow. These two observables are related thorough the linear operator

∇⊥ := [∂/∂y,−∂/∂x]T , that is, u = ∇⊥ψ. Let ψj and uj denote the Koopman modes of

these two observable fields associated with Koopman eigenvalue λj, then

uj = ∇⊥ψj, j = 1, 2, 3, . . . . (2.19)
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A similar relationship could be established between the Koopman modes of the vorticity

field, denoted by ζj, and those of the velocity field,

ζj = ∇× uj, j = 1, 2, 3, . . . . (2.20)

This further implies that applying KMD to either of the these observable fields yields

the same Koopman eigenvalues as long as none of the modes lie in the null space of the

linear operator.

The knowledge of any of the above observable fields, i.e., stream function, velocity

field or vorticity, uniquely determines the state of the system and therefore it can be used

to elicit the Koopman spectrum of all other observables of interest. Thus, we conclude

that applying KMD to any of these fields would give us the information which is sufficient

to detect the flow bifurcations. In the dynamical analysis of the cavity flow, we choose the

stream function as the primary observable for the application of KMD since its Koopman

modes and eigenvalues are least expensive to compute. The Koopman modes of velocity

and vorticity can be computed using (2.19) and (2.20).

2.4 The lid-driven cavity flow

The 2D lid-driven cavity flow is a simple model of a fluid confined to a rectangular

box with a moving lid that induces a circulating flow inside the box. This flow requires

a relatively simple computational setup, and it is commonly used as a benchmark for

computational schemes (see e.g. [68]). It is is also realized in experiments on 2D fluid

phenomena using soap films [69]. The lid-driven cavity flow represents a simplified model

of geophysical flows driven by shear [70, 71], and some common types of mixers in polymer

engineering [72]. This flow is particularly interesting for dynamical analysis since it shows
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a wide range of behaviors by increasing the velocity of the top lid [73, 74, 75, 76, 52, 77].

Our computational model of the flow consists of a square domain [−1, 1]2, with solid

stationary boundaries, except the top lid (at y = 1) which moves with a regularized

velocity profile,

ulid = (1− x2)2, x ∈ [−1, 1]. (2.21)

This boundary condition has a low-order polynomial form which satisfies the continuity

and incompressibility in the top corners (as opposed to the uniform velocity profile), and

it is frequently used in numerical studies on cavity flow [73, 78, 77].

The incompressibility of the flow allows us to use the stream function formulation of

the Navier-Stokes equation,

∂

∂t
∇2ψ +

∂ψ

∂y

∂

∂x
∇2ψ − ∂ψ

∂x

∂

∂y
∇2ψ =

1

Re
∇4ψ, (2.22)

subject to two types of boundary condition on the stream function,

ψ

∣∣∣∣
∂Ω

= 0 and
∂ψ

∂n

∣∣∣∣
∂Ω

= uw, (2.23)

where the wall velocity uw is zero everywhere except at the top wall, where uw(y = 1) =

ulid. The solution of the cavity flow as described above is known to exist and be unique,

and moreover, the flow trajectory asymptotically converges onto a universal attractor in

the state space [79].

For numerical solution, we have used the Chebyshev-spectral collocation method de-

scribed in Ref. [80]. The stream function is approximated by a polynomial of order N in
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spatial directions. This polynomial is determined by its values at the Chebyshev points,

(xi, yj) =

(
cos(

iπ

N
), cos(

jπ

M
)

)
(2.24)

i = 0, 1, . . . , N, j = 0, 1, . . . ,M.

Given the polynomial approximation and the prescribed boundary condition in (2.23),

we use the transformed variable q(x, y) defined by

ψ(x, y) = (1− x2)(1− y2)q(x, y). (2.25)

which satisfies the Dirichlet boundary condition identically, and turns the Neumann

boundary condition into Dirichlet boundary condition, i.e.,

q(±1, y) = q(x,−1) = 0, (2.26)

q(x,+1) = −1

2
utop(x). (2.27)

For the temporal discretization of the ordinary differential equations on q(xi, yi), we have

used the second-order Crank-Nicholson scheme for the diffusion terms and second-order

Adams-Bashforth discretization for the convection terms. The flow solutions studied

in this work are computed using zero initial velocity. The numerical solutions of the

steady flow obtained by our method agree with the results reported in [73]. There is also

agreement on the time periods of the periodic flows between the two studies. To the best

of our knowledge, however, there are no reported benchmark solutions for quasi-periodic

or aperiodic flow.
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2.5 Numerical computation of Koopman spectrum

and modes using techniques from signal process-

ing

As discussed in section section 2.1, the Koopman spectrum of post-transient flows

lies on the imaginary axis, and its estimation reduces to the classical spectral analysis of

flow signals. In this work, we are specially interested in flows that possess a continuous

spectrum in addition to discrete frequencies. Reliable estimation of each of these two

components from data has a rich history in the context of signal processing and is still

a subject of ongoing research. The Discrete Fourier Transform (DFT) algorithm, by

itself, gives a good approximation for the location of the discrete frequencies and there

are a large number of the so-called high- or super-resolution algorithms, based on DFT

or otherwise, that improve the accuracy of such estimation. For continuous spectra,

however, the DFT is a poor estimator. Application of DFT to the autocovariance function

in (2.6) produces an estimate of spectral density with high fluctuations that do not

diminish with the increase of data samples [81]. Therefore, the algorithms developed to

resolve continuous spectrum use some type of local averaging over frequency domain to

reduce this variance. Conversely, this averaging process reduces the frequency resolution

and makes these algorithms ill-suited for detection of discrete spectra [82].

Our strategy for computing the Koopman spectrum is to first detect and extract the

discrete frequencies using a high-resolution algorithm, and then apply a continuous spec-

tra estimator to the remainder. Note that estimation of mixed spectrum (i.e. including

both continuous and discrete) from finite-data is an ill-posed inverse problem, and most

of the developed methods for accurate estimation of mixed spectrum are parametric,

in the sense that they are based on specific models for the continuous spectrum such
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as colored or auto-regressive noise [82, 83, 84], which are not valid for typical chaotic

dynamical systems. Our methodology here is non-parametric, and the only assumption

that we make on the continuous spectrum is that it is absolutely continuous (section 2.1).

Instead, we connect our analysis to the theory of dynamical systems through the ergod-

icity assumption. Namely, given the ergodicity of motion on the attractor, we use the

fact that the Koopman modes are unique (i.e. depend only on the observable and the

flow parameters) which allows us to identify and discard the spurious discrete frequencies

that are not robust with respect to the choice of initial condition or the time interval of

integration.

The succession of ideas in this section are as follows: first, we describe the idea of har-

monic averaging from classical ergodic theory which has proven convergence properties

for computation of Koopman modes given the knowledge of Koopman frequencies. Then,

we discuss the Laskar algorithm for computation of the discrete spectrum and benchmark

its numerical performance against other high-resolution algorithms. In the last subsec-

tion, we discuss our procedure for approximation of Koopman continuous spectrum from

the chaotic component of the data, and test its performance for two well-known chaotic

dynamical systems.

2.5.1 Harmonic averaging and DFT

For post-transient flows, the Koopman eigenfunctions are orthogonal [10] and the

Koopman modes can be computed via direct projection of the observables onto the

Koopman eigenfunctions. Let φj be the normalized Koopman eigenfunctions (‖φj‖ = 1)

associated with the frequency ωj. We observe that the Koopman eigenfunction evolves

as φτ (u0) = eiωτ over a single trajectory of the system. Using the pointwsie ergodic
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theorem, we can compute the Koopman modes using the harmonic average,

gj :=< g, φj >H= lim
T→∞

1

T

∫ T

0

g(τ)e−iωjτdτ. (2.28)

The above limit is known to exist for almost every initial condition under the as-

sumption that the dynamics on the attractor is preserving a measure [67] - which is less

restrictive than ergodicity. The time series obtained by experiments and simulations con-

sists of time-discrete samples over finite intervals. Assuming uniform sampling at time

instants {τ0 = 0, τ1, . . . , τN−1 = T}, we can approximate the harmonic average as

gNj =
1

N

N−1∑
k=0

g(k)e−iωjτk , (2.29)

where g(k) is the value of observable at the sampling time τk. For any ωj that is a

Koopman frequency, we have gNj → gj as N →∞, and otherwise gNj → 0. For periodic

and quasi-periodic attractors, the rate of convergence is proportional to N [85], but for

typical chaotic systems it scales with
√
N [86].

Given a uniform sampling in time, we can use DFT frequencies as a rough approxi-

mation of the Koopman frequencies. Let the number of samples N be even, and denote

the sampling interval by ∆τ := T/(N − 1). The DFT grid of frequencies is

Ωj =
2πj

N∆τ
, j = −N

2
,−N

2
+ 1, . . . , 0, . . . ,

N

2
− 1, (2.30)

Accordingly, computing the harmonic average in (2.29) reduces to computing the DFT

amplitude of the observations,

ĝj =
1

N

N−1∑
k=0

g(k)e−iΩjk∆τ . (2.31)
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DFT is already shown to be equivalent to DMD when applied to a linearly indepen-

dent sequence of snapshots with zero mean [32]. The advantage of using DFT to find

the Koopman modes lies in its relative simplicity and the availability of Fast Fourier

Transform (FFT) algorithms for its implementation. On the other hand, it suffers from

two basic shortcomings. The first one is the picket fencing, i.e., the Koopman frequencies

depend on the dynamics and may occupy arbitrary locations on the real interval, whereas

the DFT frequencies are determined by the sampling rate and observation interval. The

second phenomenon, known as spectral leakage, refers to the spillage of energy from a

frequency to its neighborhood, and it is due to the finite length of observation interval

which leads to errors in approximation of the modes [87, 81]. In the following, we discuss

some of the methods developed to overcome these problems.

2.5.2 Estimation of Koopman frequencies

The problem of detecting discrete frequencies from noisy signals is often called line

spectral estimation. The general goal of the methods for line spectral estimation is to

eliminate the shortcomings of DFT and compute estimates of frequencies with errors that

are smaller than the DFT frequency resolution. Many of such methods use DFT as a

preliminary step because of its computational efficiency, and often utilize a combination of

windowing and interpolation to reduce the leakage and fencing problem (see e.g. [88, 89,

90]). Some other techniques, including Prony analysis [91] and Nonlinear Last-Squares

(NLS) method [81], treat the line spectral estimation as a data fitting problem to find

the frequencies and associated amplitudes that represent the time series with least error.

These methods do not face the the DFT shortcomings, but they are more costly for

computation and suffer vulnerability to noise (e.g. Prony analysis) or the choice of initial

guess for the optimal values of fitting (e.g. NLS) [81]. We note that using Prony analysis
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to compute the Koopman modes is explored in [92].

There are also the so-called subspace techniques which exploit the linear algebraic

properties of matrices that embed the signal information. The two most popular algo-

rithm in this class are the MUSIC [93] and ESPRIT [94] which use eigen-decomposition

of the data covariance matrix. These methods circumvent the obstacles of the DFT-

based methods by posing the frequency estimation as an eigenvalue problem, which leads

to accurate estimates at a higher computational complexity due to the embedding of

time-series in large matrices. Moreover, these methods are parametric and their good

performance is only guaranteed when the noise follows a pre-determined model (which

is usually white noise) [81]. A more recent class of super-resolution algorithms recast

the line spectral estimation as a convex optimization of measures on the frequency do-

main [95, 96]. Under the two conditions of spectral sparsity and minimum separation

between the frequencies, this framework recovers the exact values of frequencies from a

finite number of time samples. Unfortunately, this framework has a high computational

complexity and it is only suitable for discrete spectrum identification in presence of little

noise.

In this work, we adapt the algorithm suggested by Laskar [56, 57] to compute the

discrete Koopman frequencies and the associated modes. This algorithm is attractive

for two reasons: first, it makes explicit use of harmonic averaging which allows us to

assess its convergence based on the theory. In fact, this algorithm was invented to

detect chaotic motion from data in Hamiltonian systems with a moderate number of

degrees of freedom, like the solar system (see [56]). Secondly, this algorithm is related

to a popular sparse approximation technique known as Orthogonal Matching Pursuit

(OMP)[97]. OMP efficiently approximates a sparse vector (i.e. vector with few non-

zero elements) given a relatively small number of linear measurements on the sparse

vector through an iterative greedy algorithm. Different variants of this algorithm are
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frequently used in decomposition of signals and images into sinusoids, wavelets etc. (see

e.g. [98, 99, 100, 101]).

The main idea in Laskar algorithm is to discretize the frequency domain and use OMP

(implemented as FFT and harmonic averaging) to find the frequencies and associated

amplitudes that best explain the time-sampled values of the observables (which are the

linear measurements in the sense of OMP). The algorithm also uses windowing and

adaptive refinement of the initial grid to diminish the effect of spectral leakage and picket

fencing. The computational steps are outlined in algorithm 1, and below we describe the

structure of data matrix used as the input.

Let {g(0),g(1), . . . ,g(N − 1)} be the set of observations on the vector-valued ob-

servable g, made on uniformly-spaced time instants {τ0 = 0, τ1, . . . , τN−1 = T}. The

snapshot data matrix G is defined as

G = [g(0)|g(1)| . . . |g(N − 1)]. (2.32)

Also let ‖ · ‖ denote an appropriate vector norm on g(·), and σ denote the expected

‖ · ‖-norm of measurement or computation noise in the data. We denote by S(ω) the

sinusoid associated with frequency ω, that is

S(ω) = [1, eiωτ1 , eiωτ2 , . . . , eiωτN−1 ]T . (2.33)

We also make use of windowing functions in the general form of a weight vector:

W = [w0, w1, w2, . . . , wN−1]T . (2.34)
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Algorithm 1 (Adapted) Laskar algorithm for estimation of Koopman frequencies

Require: Snapshot matrix GM×N .

Ensure: Set of Koopman frequencies Ω = {ω1, . . . , ωm} and matrix of Koopman modes

V = [g1, . . . ,gm].

1: Let R = G and initialize the dictionaries D = [ ] and Ω = { }.

2: Apply row-wise FFT to R. Pick the DFT frequency ω̂ := ωj which yields the complex

amplitude gj with highest ‖ · ‖-norm and satisfying ‖gj‖ > σ. If there is no such

frequency proceed to step 8.

3: Compute the windowed harmonic average

Vω = S∗(ω)diag(W )RT (2.35)

over a refined grid of frequencies centered around ω̂. Pick the frequency ωk that

yields Vωk
with the highest ‖ · ‖-norm.

4: Add ωk and its sinusoid to the dictionary:

Ω ← Ω ∪ {ωk}, (2.36)

D ← [D S(ωk)]. (2.37)

5: Solve the least-square problem

W = arg minŴ‖G
T −DŴ‖fro. (2.38)

6: Compute the new remainder R by subtracting the contribution of the frequencies in

the dictionary

R = GT −DW. (2.39)

7: Go to step 2.

8: Return Ω and V = W T .
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Choice of data matrix G and appropriate norm: We have applied the above

algorithm to the vector of the stream function (ψ) values at the computational grid

points given in (2.25). The Koopman modes of velocity and vorticity are subsequently

computed using (2.19) and (2.20). The results reported in this paper are computed using

the sampling rate ωs = 10 sec−1, where sec is the unit of the the characteristic time given

by

1 sec :=
LR
UR

(2.40)

and LR and UR are the half of the cavity side length and maximum velocity on the top

lid, respectively. Our numerical experiments show that the computed frequencies are

independent of the sampling frequency ωs ∈ [10, 200]. We have chosen the vector-norm

in the above algorithm such that it reflects the kinetic-energy norm of the Koopman

modes, that is,

‖uj‖ := ‖uj‖KE =

(∫
Ω
|∇⊥ψj|2ds
U2
R

)1/2

. (2.41)

with UR denoting the maximum velocity on the top lid. We choose σ2 = 10−6‖u0‖2. This

is a heuristic choice and reflects how strong a periodic component we want to resolve.

Other factors that might be considered are the accuracy of the numerical simulation and

the computational cost.

Dictionary of frequencies for real-valued data and choice of the window

function: Given that the spectrum is symmetric for real-valued data, we can effectively

reduce the computational cost by doing the search and refinement (step 1 and 2) for a

non-zero frequency ωk and then add the pair (−ωk, ωk) to the dictionary in step 3. To

evaluate the filtered harmonic average in step 2, we use the Hann window given by

w(k) =
1

2
+

1

2
cos(πk/N). (2.42)
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Using the window function is not necessary but improves the detection of frequencies

that are close to each other - in the case of quasi-periodic flow - as it reduces the local

spectral leakage. Alternative window functions can be chosen based on the proximity

and relative strength of the frequencies (see e.g. [81]).

Least-square projection and harmonic average: The least-square problem in

step 4 is equivalent to orthogonal projection of observables onto the Koopman eigenfunc-

tions. In fact, in the limit of N → ∞, the computation of Koopman modes in step 4

reduces to the harmonic average in (2.28). To see this, note that the solution to (2.38)

is given by W = D†GT , however as N → ∞, the columns of D become orthogonal and

D† → (1/N)D∗. It is easy to check that (1/N)D∗GT yields the harmonic average of

columns of GT , i.e., the Koopman modes.

Computational complexity: Given GM×N , the implementation of FFT in step 1

requires O(MN logN) operations. An efficient implementation of step 2 in a form of

matrix multiplication requires O(MNd) operations with d being the size of the refined

grid. The complexity of the least square problem using direct methods is O(K2N +

KNM) where K is the number of frequencies. Since the algorithm runs K iterations,

the total complexity is O(K2NM + K3N + KMNd). For a typical application to flow

snapshots (i.e. M,N � K), the complexity will be O(KMNd).

Benchmark: We compare the performance of Laskar algorithm to two other high-

resolution algorithms. The first one is the Newtonized Orthogonal Matching Pursuit

(NOMP) [101]. The benchmark study in [101] suggests that NOMP is a near-optimal

algorithm in the sense that its accuracy is close to the theoretical limit. This algorithm

is similar to Laskar, but one of its distinctive features is the refinement of all frequency

estimates after the detection of each new frequency. The computational run-time of

NOMP is approximately O(K2) longer than Laskar, where K is the number of detected

frequencies. We also implement the MUSIC algorithm using the rootmusic() function
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in MATLAB. This algorithm estimates the frequencies based on the eigen-decomposition

of the data covariance matrix and has a high computational complexity which does not

allow its implementation on large number of observables. In case of large data sets

where these two algorithms cannot be applied to the all data, we implement them in the

compact form, i.e., we choose the sampling of the stream function at 10 random points,

and apply MUSIC/NOMP to compute the Koopman frequencies and then compute the

Koopman modes using an orthogonal projection onto the dictionary of sinusoids.

Spectral estimation by MUSIC and NOMP do not suffer from the fencing problem

since they don’t use the discretization of the frequency domain, and therefore provide

accurate estimates of Koopman frequencies for (purely) periodic and quasi-periodic flows.

The accuracy of Laskar algorithm, on the other hand, depends on the choice of adap-

tive frequency grid, and higher resolutions requires evaluating (2.35) over finer grids.

However, comparison (in FIG. 2.1) shows that Laskar algorithm is better suited for

computing the Koopman frequencies and modes in case of large flow data with mixed

spectrum. The reason for this is two-fold: Many super-resolution algorithms are based

on a special model for the noise spectrum (e.g., the MUSIC algorithm relies on the white

noise model), which does not hold for the continuous spectrum of dynamical systems.

(In the context of detecting discrete frequencies, we treat the continuous spectrum as

noise.) The second reason is related to the computational cost of the algorithm. The

super-resolution algorithms that are not based on FFT are computationally expensive,

and can only be applied in the compact form, (i.e. applying to one or few observables

simultaneously). In such cases, they may fail to capture many of low-energy frequencies

in the presence of noise, as in the case of mixed spectra shown in FIG. 2.1. (We have

verified those frequencies by the criteria introduced in the next section and the fact that

they lie on the lattice of frequencies described in (2.1)). In contrast, the computational

parsimony of the Laskar algorithm allows estimation of the frequencies using a larger set
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Figure 2.1: Comparison of Laskar Algorithm with MUSIC [93] and NOMP[101]. In the
right panel, the continuous spectrum and frequencies with ‖uj‖ < 10−3 are omitted
to avoid clutter.

of (and possibly all) the observables. This, in turn, increases the effective signal-to-noise

ratio for the low-energy periodic components which leads to detection of their associated

frequencies.

2.5.3 Detection of the spurious frequencies in flows with mixed

spectra

In the case of mixed spectra, application of high-resolution methods to the data

might produce peaks that are not genuine Koopman frequencies, but artifacts of the

continuous spectrum. In such flows, we need a criteria to distinguish such peaks from

the actual frequencies. On the other hand, the assumption of the ergodicity implies that

the Koopman modes are unique (i.e. don’t depend on the initial condition), and therefore

Koopman modes computed over different (and sufficiently long) intervals should be the

same. To use this notion we run Laskar’a algorithm on different (overlapping or non-

overlapping) chunks of the snapshot matrix. We discard the frequencies whose associated

modes show too much variability depending on the time interval of computation. In the

results to be presented, we have discarded the modes that show more than %5 variability

in the kinetic energy norm, while the modes are computed over intervals of 1000 sec and
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longer.

2.5.4 Estimation of Koopman continuous spectrum

Recall from S2.2, that the spectral density of the Koopman operator appearing in

(2.4) coincides with the PSD of the chaotic component of signals generated by measuring

observables. If g is a real-valued observable with purely continuous spectrum, then we

can approximate the autocovariance function in (2.6) using the time series data

r(±τ) =
1

N

N−1∑
k=0

g(k)g(k + τ), 0 ≤ τ ≤ N − 1, (2.43)

and compute the correlogram approximation of PSD as

ρg(α) =
N−1∑

τ=−(N−1)

r(τ)e−iατ , α ∈ [0, 2π). (2.44)

Such a direct evaluation produces a highly fluctuating estimate of ρg, and the computation

must be modified to get a more reliable estimate [102].

We use the Welch method [58] to approximate the continuous part of the Koopman

spectrum. The idea behind this algorithm is simple: it approximates the spectral density

of the signal over small (and possibly overlapping) subsamples of the data using FFT, and

averages the computed densities over all those subsamples. The averaging process reduces

the variance of PSD estimation by a factor that is equal to the number of subsamples

[58]. This reduction in the variance comes at the price of low spectral resolution (which

increases with the length of subsamples), and using too many subsamples may result

in over-averaging and getting a flat spectrum. Therefore, the number and length of

windows should be chosen carefully to maintain an accurate estimate while resolving the

distribution of energy over frequencies.
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The Welch method reduces to the Bartlett method [103] in case of non-overlapping

subsamples. Bartlett was among the first to realize that different subsamples of the

data can be averaged to find a better estimate of the spectral density given that the

autocovariance decays rapidly enough and the subsamples are sufficiently large. This

methodology can be interpreted as special case in the well-known class of Balckman-

Tukey estimators [104] and the general class of filter bank approaches. We refer the

reader to [81] for a discussion of connections between these methods.

We apply the Welch method, outlined in algorithm 2, to the chaotic component of the

velocity field. This component is computed by extracting the contribution of Koopman

modes from the original data matrix. To measure the contribution of the continuous

spectrum to the whole flow field, we compute the kinetic energy density of the continuous

spectrum given by

p(ω) :=
1

U2
R

∫
Ω

ρu(ω)ds. (2.45)

This definition would allows us to compute the kinetic energy content of each frequency

interval via integrating p(ω) over that interval, i.e.,

P (I) :=
1

2π

∫
I

p(ω)dω. (2.46)

and we will recover the average kinetic energy of chaotic fluctuations by calculating

P ([0, 2π)).
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Algorithm 2 Welch method for estimation of Koopman continuous spectrum

Require: Snapshot matrix GM×N , length of subsamples L and overlapping length K.

Ensure: Matrix of spectral densities RM×L.

1: Let S = FLOOR[(M − L)/K]− 1 be the number of subsamples.

2: for the i-th row of G denoted by r do

3: Divide r into S subsamples given by

rj(m) = r((j − 1)K +m), m = 1, 2, . . . , L, j = 1, 2, . . . , S.

4: for each subsample rj do

5: Use FFT to compute the PSD of rj (2.44) and denote it by φj(ωk) where ωk

with k =, 1, . . . , L are the L-point FFT frequencies.

6: end for

7: Let

Rik =
1

S

S∑
j=1

φj(ωk)

8: end for

9: Return R and Ω = {ω0, ω1, . . . , ωL}.

We test the Welch algorithm using two well-known chaotic dynamical systems. The

first one is a discrete-time map on a periodic 2D domain, known as Arnold’s cat map,

and given by

x(t+ 1) = 2x(t) + y(t) mod 1,

y(t+ 1) = x(t) + y(t) mod 1.
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For the choice of observables

g1(x, y) = e2πi(2x+y) +
1

2
e2πi(5x+3y),

g2(x, y) = g1(x, y) +
1

4
e2πi(13x+8y).

the Koopman spectral density is known in analytical form [105],

ρ(g1; θ) =
1

2π

(
5

4
+ cos θ

)
,

ρ(g2; θ) =
1

2π

(
21

16
+

5

4
cos θ +

1

2
cos 2θ

)
.

where θ ∈ [0, 2π) is the discrete-time frequency.

The second system that we consider is the chaotic Lorenz system:

ẋ = 10(y − x),

ẏ = x(28− z)− y,

ż = xy − 8

3
z.

This system is known to have only continuous spectrum (except the zero frequency) [64],

but no analytical expression exists for the spectral density of non-trivial observables. We

compare the Welch estimation of the Lorenz spectrum with the recent results in [106]

which is based on the approximation of Fourier moments of the spectral measure and the

Christoffel-Darboux kernel. In particular, we consider the observable

g3(x, y, z) = x.

and compute its spectral density ρ(g3;ω) where ω ∈ [0, ωs/2) is the continuous time
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Figure 2.2: Validation of Welch method for computing Koopman spectral density in
Arnold’s cat map (the left two panels) and chaotic Lorenz system. The densities for
cat map are known in analytic form [105], and the numerical benchmark results for
Lorenz system are from [106].

frequency and sampling frequency ωs is 10π. The comparison in FIG. 2.2 shows great

agreement between the results of Welch method, analytic densities of the cat map and

the numerical results of [106] on Lorenz system.

2.6 Cavity flow dynamics and KMD

2.6.1 Koopman spectrum

Figure 2.3 shows the distribution of kinetic energy in the discrete and continuous

spectrum of the Koopman operator. The energy contained in Koopman modes (black

bars in the figure) is simply the kinetic energy contained in each mode, but the rep-

resentation of energy over the continuous spectrum is slightly different: the amount of

energy contained at each frequency interval is the integral of the kinetic energy density of

continuous spectrum (defined in (2.45) and shown as the blue curve) over that interval.

The evolution of the Koopman spectrum in FIG. 2.3 indicates the sequence of the

51



Study of dynamics in post-transient flows via Koopman operator theory Chapter 2

bifurcations as follows: for Re ≤ 10000, the cavity flow induced by regularized lid velocity

converges to a steady laminar solution which corresponds to a fixed point in the state

space of the flow. The Koopman mode expansion for steady flow is trivial (hence not

shown) and consists of zero frequency with an associated mode which is the steady flow.

At a Reynolds number slightly above 10000, the steady solution becomes unstable and

the numerical solution converges to a time-periodic flow which maintains stability up to

Re = 15000. The kinetic energy in this range is fully distributed in the Koopman modes.

The basic frequency of periodic flow decreases with the Reynolds number, until at Re ≥

15000, another bifurcation occurs and the solution converges to a quasi-periodic flow.

The basic frequencies of the quasi-periodic flow also decrease with the Re, but around

Re = 18000 another bifurcation occurs and the level of kinetic energy lying in continuous

spectrum quickly rises to a few percent. This kinetic energy of continuous spectra keeps

rising such that at Re ≥ 22000 we cannot detect any robust Koopman modes which

indicates there are no quasi-periodic components in the state space dynamics.

The discrete Koopman frequencies obtained for periodic, quasi-periodic, and interest-

ingly, the mixed-spectra flow match the lattice structure of the frequencies in the KMD of

quasi-periodic flow (2.1). That is, every frequency is accurately described by the integer

combination of one or two basic frequencies (table 2.1). From the representation theorem

mentioned in section 2.1, we recall that this means the attractor is shaped like a limit

cycle or a torus in the state space. For the flow with the mixed spectra, however, no

such theorem exists but we can speculate that it consists of both a quasi-periodic factor

and a chaotic factor. This type of attractor is called skew-periodic in the literature of

dynamical systems theory [107].

The evolution of the Koopman spectrum in FIG. 2.3 offers a picture of transition to

chaos that is consistent with the theory of Ruelle and Takens [108]. According to this

theory, the chaotic state of the flow can be reached after one or two Hopf bifurcations
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Re=13000 Re=16000 Re=19000
(periodic) (quasi-periodic) (mixed spectra)

St k St k St k
0.000000 0 0.000000 (0,0) 0.000000 (0,0)
0.159826 1 0.155375 (1,0) 0.243822 (1,1)
0.319653 2 0.252287 (1,1) 0.150046 (1,0)
0.479479 3 0.096911 (0,1) 0.206310 (2,-1)
0.639303 4 0.193823 (0,2) 0.093778 (0,1)
0.799130 5 0.310751 (2,0) 0.300089 (2,0)
0.958954 6 0.213839 (2,-1) 0.187556 (0,2)

0.349197 (1,2) 0.056266 (1,-1)
0.407661 (2,1) 0.450133 (8,-8)
0.058463 (1,-1) 0.393868 (7,-7)
0.116927 (2,-2) 0.337602 (6,-6)
0.135359 (-1,3) 0.225068 (4,-4)
0.446109 (1,3) 0.487643 (2,2)
0.290733 (0,3) 0.018756 (2,-3)
0.038447 (-1,2) 0.431379 (6,-5)
0.504573 (2,2) 0.543910 (8,-7)
0.020017 (2,-3) 0.375111 (0,4)
0.232270 (-1,4) 0.468886 (0,5)
0.466125 (3,0) 0.693955 (9,-7)
0.272303 (3,-2) 0.581423 (2,3)

Table 2.1: Koopman frequencies with highest kinetic energy in the lid-driven cav-
ity flow. The basic frequency vector is St = 0.159826 for the flow at Re=13000,
St = [0.15538, 0.09691] for Re=16000 and St = [0.15005, 0.09378] for Re = 19000.
The rest of the frequencies can be described (to the sixth digit of accuracy) as a linear
combination of the basic frequencies. The coefficients of the combination are given by
k in the table.
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Figure 2.3: Distribution of energy in the discrete (black bar) and continuous (blue
curve) spectrum of the Koopman operator for cavity flow. The evolution of spectrum
indicates the transition from periodic to chaotic flow. The ratio of average chaotic
fluctuation energy to total kinetic energy of unsteady motion is 1.5× 10−3, 0.11 and
1.00 for Re = 16000, 19000 and 30000, respectively.

from an initially stable steady flow. Physical evidence for this theory appeared in the

experiments on rotating Couette flow and natural convection by Swinney and Gollub [48].

In particular, they detected the flow bifurcations using the power spectrum of velocity

measurements at a single point in the flow domain. The transition to chaos was marked

by the sudden growth of “background noise” in the power spectrum of the quasi-periodic

flow. The above results show that the Koopman spectrum can be used as a generalized

spectral tool for study of bifurcations; it offers a clear quantification of the energy in

terms of true periodicity and contribution of continuous spectra for deterministic flows,

and furthermore it connects the discrete spectrum to the state space geometry and flow

domain.
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2.6.2 Koopman eigenfunctions

In this section, we discuss the relationship between the Koopman spectrum and the

state space dynamics. This relationship is realized through the notion of Koopman

eigenfunctions, which are associated with the Koopman eigenvalues. For post-transient

flows, the eigenfunctions provide an intrinsic coordinate on the state space along which

the time evolution is linear oscillation. First, we construct the Koopman eigenfunctions

for the quasi-periodic cavity flow using the theory presented in [4, 5], and then we discuss

its application to the flow with mixed spectra. Note that for flows with ultimately high

Reynolds (e.g. Re = 30000), the only Koopman frequency is zero and there are no

oscillatory Koopman eigenfunctions and modes.

Consider the quasi-periodic flow at Re = 16000. This flow possesses a torus-shaped

attractor and the state space trajectory evolves on this torus with two basic frequencies

ω1 and ω2 (whose non-dimensional values are given in table 2.1. We can parameterize the

torus using two time-linear coordinates, that is (θ, γ) ∈ [0, 2π)2 with the linear evolution

equation

θ̇ = ω1,

γ̇ = ω2.

The evolution of the trajectories on the actual torus in the state space is nonlinear,

but the tuple (θ, γ) are angular coordinates along a torus with uniform flow which is

dynamically equivalent to the actual torus in the state space [4]. On this time-linear

coordinates the Koopman eigenfunctions are the same as the Fourier functions, i.e., the

Koopman eigenfunction φk,l associated with frequency ωk,l = kω1 + lω2 is

φk,l(θ, γ) = eikθ+ilγ. (2.47)
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Although there is no analytical formula for transformation from the actual attractor to

the time-linear coordinates defined above, we can construct the eigenfunctions in the

state space using information on a trajectory, given that the trajectory is ergodic and

sufficiently long. We can normalize an the eigenfunctions such that φt=0(u) = 1, and

hence the value of the eigenfunction along the trajectory is given by setting θ = ω1t and

γ = ω2t in (2.47).

Figure 2.4 shows the construction of the eigenfunctions in the state space of the flow.

The state space is realized by delay embedding of some typical observables [109] - in this

case the stream function at random points in the flow domain. The attractor of the peri-

odic flow is a limit cycle (top row in the figure) and the Koopman eigenfunctions (shown

as color field) correspond to the one dimensional linear time coordinate (θ ∈ [0, 2π)).

For the quasi-periodic flow, the attractor is a 2-torus and the Koopman eigenfunctions

show the directions on the torus where the evolution is linear and periodic, e.g., the

eigenfunction φ0,1, shown in the rightmost panel of the second row shows the coordinate

γ along which the trajectories oscillate with frequency ω2.

For skew-periodic attractors (i.e. flow with mixed spectra) the eigenfunctions are even

more interesting because they provide coordinates on an attractor which is not exactly a

torus, but possesses directions with periodic motion. The embedded attractor of the flow

at Re = 19000, for example, is similar to a torus which is related to the fact that this

flow possesses a strong discrete spectrum (in the energy sense) with two basic frequencies

and a relatively weak continuous spectrum. In fact, using the Koopman eigenfunctions,

we can compute the factors (i.e. geometric slice) of such an attractor, on which, the

motion is purely quasi-periodic. The existence of such factorization for systems with

discrete Koopman eigenvalues was shown in [5]. Here, we use this idea to reconstruct the

quasi-periodic component of the attractor at Re = 19000. Let E be the observable whose

embedding is used to construct the attractor. According to the (2.3), this observable can
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be split to two components:

E = Eqp + Ec, (2.48)

where Eqp denotes the component of E that lies in the span of Koopman eigenfunctions

(including the eigenfunction at zero frequency), and Ec is the chaotic component that

belongs to subspace associated with the continuous spectrum. By doing KMD on E, we

can extract its Koopman modes and reconstruct the evolution quasi-periodic component

Eqp over the trajectory which is given by the first two terms in (2.3). The embedding

of Eqp constructs the torus which corresponds to the quasi-periodic part of the motion.

As such, the general motion on the skew-periodic attractor (third row of the figure)

can be decomposed into rotational motion along its quasi-periodic component (bottom

row) superposed with chaotic motion in an unknown direction. We stress that the above

constructions are valid for any type of state space realization as long as the data from

an ergodic trajectory is available.

2.6.3 Koopman modes

The Koopman modes of the vorticity field associated with the basic frequencies of

each flow are shown in FIG. 2.5. Each mode can be interpreted as the component of

the vorticity field along the eigenfunction coordinates in the state space (the color field

in FIG. 2.4). For the eigenfunction at zero frequency, this component is the mean flow

(Koopman mode associated with zero frequency) and does not change in time. The

oscillatory modes however are components of the vorticity field that linearly oscillate

along the eigenfunction directions.

The major share of kinetic energy in all the unsteady regimes is contained within

the mean flow. This mode is essentially composed of the central vortex in the flow and

the corner eddies in the left corners. For fully chaotic flows, the mean flow is the only
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Figure 2.4: The (real part of) Koopman eigenfunctions shown as color field on the
periodic, quasi-periodic and skew-periodic attractors (row 1-3). The last row is the
quasi-periodic component of the skew-periodic attractor extracted using Koopman
eigenfunctions. The attractors are reconstructed using delay embedding of stream
function values at random points in the flow domain (E) with the time delay of 1.0 sec
for the periodic flow, and 2.4 sec for the rest.
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Figure 2.5: The Koopman modes of vorticity in cavity flow (see the caption in next page).
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Figure 2.5: The Koopman modes of the cavity flow associated with basic Koopman
frequencies: The color field shows the real part of vorticity, with clockwise rotation
shown in red, and counterclockwise in blue. The general structure of Koopman modes
associated with same frequency trace remains unchanged as the Reynolds number is
varied.
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Koopman mode, and its structure is similar to the mean flow of periodic and quasi-

periodic flow except for the intensification of the downstream eddy in the bottom right

corner.

The oscillatory Koopman modes, on the other hand, describe the flow oscillations

around the edge of the central vortex in the mean flow. To be more precise, the evolution

of the mode uk can be written as

u(t) = uke
iωkt + uke

iωkt,

= 2Re(uk) cosωkt− 2Im(uk) sinωkt. (2.49)

A careful examination of the figure shows that Re(uk) and Im(uk) are similar for each

k but appear to be shifted in the direction along the shear layer of the mean flow. This

observation is related to the fact that the unsteady motion in periodic and quasi-periodic

regimes corresponds to wave(s) that travel along the downstream edge of the central

vortex. This traveling wave structure is observed in the previous studies of cavity flow

(see e.g. the sequence of flow snapshots in [74, 76]) but never characterized.

The Koopman modes provide a straightforward framework to characterize the trav-

eling waves from the data. Let’s consider a simple example first: let [0, 1] be a periodic

domain, over which, the general form of traveling wave is

f(ωt− 2πkx), x ∈ [0, 1] (2.50)
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with f being 2π-periodic. Using the Fourier series expansion, we have

f(ωt− 2πkx) =
∞∑

j=−∞

eij(ωt−2πkx),

=
∞∑

j=−∞

eijωte−2πjkx. (2.51)

Clearly, the last expression is the KMD of f with the Koopman modes given as fj(x) =

exp−2πjkx. Having this example in mind, we can compute the wave numbers (and

phase velocity) of traveling waves in the cavity flow through the following steps: First,

we compute the phase of each Koopman mode given by

θk := ∠uk = tan−1

(
Re(uk)

Im(uk)

)
. (2.52)

Then, we sample the values of θk along the direction of travel, denoted by x̂, and compute

the average local slope of θk(x̂) to get the wave number of the mode. This process is

summarized in FIG. 2.6 (a) for the Koopman mode u1 of the periodic flow at Re = 13000.

The results of this computation for different Koopman modes (shown in FIG. 2.6(b))

indicates that the Koopman modes associated with higher frequencies have proportionally

higher wave numbers. This is expected from the KMD expansion of traveling wave (2.51).

Moreover, it suggests that the wave numbers rarely change with the Reynolds number,

however the phase velocity (slope of the lines in FIG. 2.6(b)) slightly decreases due to

the decrease in the Koopman frequencies. We note that the above methodology based

on Koopman modes is in fact a boiled down and cleaner version of a popular technique

for extraction of the wave numbers from experimental data. Examples of application

for this technique which is based on Hilbert transform are the study nonlinear waves in

thermally-driven flows [110, 111], and internal waves in stratified flows [112].

An interesting observation is that the oscillatory Koopman modes show a remarkable
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Figure 2.6: (a) The process of extracting the (spatial) wave number from each Koop-
man mode and (b) relationship between the Koopman frequency and wave number of
Koopman modes.
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structural robustness in the range Re = 11000 − 19000, despite the flow undergoing

bifurcations from periodic to quasi-periodic and then skew-periodic. An examples of this

robustness are the modes in panel 2, 7 and 12 in FIG. 2.5 (counting from top left to

right) which correspond to the frequency trace of St1,0 in periodic, quasi-periodic and

mixed-spectra regimes, and panel 8 and 13 associated with the frequency St0,2 in quasi-

periodic and mixed-spectra regimes. This observation suggests that Koopman modes

may provide a suitable basis for reduced modeling of flows (e.g. [113]) over wide range

of Reynolds number.

2.6.4 Spectral Projections and Proper Orthogonal Decomposi-

tion (POD)

We study the the efficiency of Koopman modes in representing the flow, by computing

the error of the spectral-projection models. An n−dimensional spectral projection model,

is an n-term truncation of the KMD where the modes are sorted based on their kinetic

energy. The error defined as

ẽ(n) =
1

T

∫ T

0

∥∥∥∥∥u(x, t)−
n∑
k=1

uk(x)eiωkt

∥∥∥∥∥ dt (2.53)

gives the kinetic-energy norm of the difference between the spectral projection model

(the sum in the above expression) and the actual flow field. Given the finite-dimensional

nature of these models, they are essentially quasi-periodic approximations of the flow.

The time-averaged kinetic energy of the error for the spectral projections of order 1-10

is shown in FIG. 2.7. In the periodic and quasi-periodic flows, the bulk of the motion is

readily captured by a few Koopman modes and the low-order projections approximate

the flow with great accuracy. As the flow becomes less periodic with the increase of
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Reynolds number, the approximation error increases as well. For fully chaotic flows, the

only Koopman mode is the mean flow and therefore there are no low-dimensional spectral

projections except the steady one-dimensional model which is the mean flow itself. For

purpose of comparison, however, we have plotted the error of spectral projections using

Fourier modes (computed via FFT) at Re=30000. The kinetic energy of unsteady motion

in this flow is spread in the continuous spectrum and any low-dimensional approximation

using oscillatory components would involve large errors.

Figure 2.7 also shows an instructive comparison between Koopman mode decompo-

sition and the Proper Orthogonal Decomposition (POD). POD is a decomposition of

the flow field into spatially-orthogonal modes such that the POD-truncated models have

the minimum energy error among all choices of orthogonal decompositions [114]. Due

to its optimality and advantageous numerical properties, POD has been the keystone

of many studies on coherent structures and low-order modeling of complex flows, in-

clduing the lid-driven cavity flow [75, 77]. In case of periodic and quasi-periodic flow,

Figure 2.7: The normalized kinetic energy of the error for approximation in Koopman
mode decomposition (KMD) and Proper Orthogonal Decomposition (POD) as func-
tion of number of modes used in the approximation (n). For Re = 30000 FFT modes
are used in lieu of Koopman modes.

the low-dimensional spectral projection model gives a better approximation than POD-
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truncated models (first two panels in FIG. 2.7). This observation is not contradictory to

the optimality of POD-truncated models, but due to the fact that Koopman modes are

complex-valued for oscillating systems which allows for better representation of dynamics

evolving on limit cycles or torus as previously suggested in [10](see example 4 therein).

We speculate that this observations would be valid for other flows that may exhibit strong

quasi-periodic behavior over some parameter range, for example, periodically-driven flows

(e.g. [115]), rotating Couette flow [116] and Rayleigh-Bernard convection [48], flow in

converging-diverging channel [117] and behind bluff objects [50].

For flows with mixed spectra, the error of approximation with spectral projection

and POD is generally comparable but as the Reynolds number increases and the flow

becomes more chaotic, POD-truncated models perform better. These observations sup-

port the alternative decomposition for model reduction proposed in [10], in which, the

KMD is used to extract the periodic components of the flow, and then POD is used for

representation of the remaining chaotic component.

2.7 Summary

In this chapter, we proposed a new approach for computation of Koopman spectrum

and modes, which comprises of a high-resolution algorithm to detect the eigenvalues,

and an averaging estimation of the continuous spectrum. In contrast to DMD-type

algorithms, this methodology is capable of computing the continuous spectrum of the

Koopman operator and detecting genuine Koopman frequencies for flows with mixed

spectra.

We also used the spectral properties of the Koopman operator for analysis of a post-

transient flow. Understanding of the asymptotic dynamics in the state space of the flow

is achieved by inspecting the Koopman spectrum and eigenfunctions obtained by KMD
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of numerical flow data. In case of periodic or quasi-periodic attractors, the dominant

Koopman frequencies possess a lattice-type structure whereas chaotic flows are associated

with the continuous part of the Koopman spectrum. In between these two regimes,

we observed flows that exhibit a combination of chaotic and quasi-periodic behavior

(i.e. skew-periodic attractor) which is associated with mixed Koopman spectrum. The

Koopman eigenfunctions, on the other hand, determine the directions of linear evolution

on quasi-periodic and skew-periodic attractors.

Study of unsteady lid-driven cavity flow suggests that in case of periodic and quasi-

periodic flow, a handful of Koopman modes are sufficient to represent the spatio-temporal

patterns. In fact, the Koopman modes offer a more efficient representation of such flows

than POD modes. This is due to the fact that complex-valued Koopman modes are more

suitable for describing the evolution on limit cycles and tori.
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Chapter 3

DMD and computation of Koopman

spectrum for systems with ergodic

attractors

1 Dynamic Mode Decomposition, or DMD in short, is a linear data decomposition tech-

nique which was introduced by P. J. Schmid in the context of fluid mechanics [12]. Short

after the introduction of this method, it was speculated in [11] that linear expansion in

DMD provides a finite dimensional approximation of the Koopman mode decomposition

(1.13). Since then, DMD has become the de facto method for computation of Koop-

man modes in high-dimensional systems. In this chapter, we establish the convergence

of a class of DMD algorithm, called Hankel-DMD, for computation of the Koopman

eigenvalues and eigenfunctions for systems with ergodic attractors.

The Hankel-DMD algorithm acts on data coming from observables, arranged in

Hankel-type matrices. Our proof for convergence relies on the observation that vector

1The contents of this chapter are previously published in SIAM Journal of Applied Dynamical Sys-
tems, and reproduced here with permission from SIAM.
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projections in DMD can be used to approximate the function projections by the virtue

of Birkhoff’s ergodic theorem. Using this fact, we show that applying DMD to Hankel

data matrices in the limit of infinite-time observations yields the true Koopman eigen-

functions and eigenvalues. We also show that the Singular Value Decomposition (SVD),

which is the central part of most DMD algorithms, converges to the Proper Orthogonal

Decomposition (POD) of observables on ergodic sets. We use this result to obtain a rep-

resentation of the dynamics of systems with continuous spectrum based on the lifting of

the coordinates to the space of observables. The numerical application of these methods

is demonstrated using well-known dynamical systems and example of lid-riven cavity flow

discussed in the previous chapters.

The Hankel matrices of data are created by delay-embedding of time series mea-

surements on the observables. Delay-embedding is an established method for geometric

reconstruction of attractors for nonlinear systems based on measurements of generic ob-

servables [109, 118]. By combining delay-embedding with DMD, we are able to extract

analytic information about the state space (such as the frequency of motion along the

quasi-periodic attractor or the structure of isochrons) which cannot be computed from

geometric reconstruction. On the other hand, Hankel matrices are extensively used in

the context of linear system identification (e.g. [119, 120]). The relationship between

KMD and linear system identification methods was first pointed out in [33]. It was

shown that applying DMD to the Hankel data matrix recovers the same linear system,

up to a similarity transformation, as the one obtained by Eigensystem Realization Al-

gorithm (ERA)[119]. In a more recent study, Brunton et al. [121] proposed a new

framework for Koopman analysis using the Hankel-matrix representation of data. Using

this framework, they were able to extract a linear system with intermittent forcing that

could be used for local predictions of chaotic systems (also see [43] and [27]). Our work

strengthens the above results by providing a rigorous connection between linear analysis
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of delay-embedded data and identification of nonlinear systems using the Koopman oper-

ator theory. The key element in our methodology is to use the vector projections of DMD

to approximate the projections of observables in the Hilbert space of functions defined

on the attractor. This observation has already been utilized in a different approach for

study of the Koopman operator [122]. We also note that the Hankel-DMD algorithm

is closely related to the Prony approximation of KMD [92], and it can interpreted as a

variation of Extended DMD algorithm [31] on ergodic trajectories (also see [123]).

The outline of this chapter is as follows: In 3.1, we describe a few important vari-

ants of DMD algorithm. In 3.2, we review some elementary ergodic theory, the Hankel

representation of data and prove the convergence of the companion-matrix Hankel-DMD

method. In 3.2.1, we extend the application of this method to observations on trajectories

that converge to an ergodic attractors. In 3.3, we point out a new connection between

the SVD on data matrices and POD on the ensemble of observables on ergodic dynamical

systems. By using this interpretation of SVD, we are able to show the convergence of

the Exact DMD for ergodic systems in 3.4. These results enable us to extract the Koop-

man spectral properties from measurements on multiple observables. We recapitualte

the Hankel-DMD algorithm and present some numerical examples in 3.5. We summarize

our results in 3.6.

3.1 Review of DMD

The original goal of DMD algorithm (in [12]) was to extract the spatial flow structures

that evolve linearly with time, i.e., the structures that grow or decay exponentially -

possibly with complex exponents. The connection between this numerical algorithm

and the linear expansion of observables in KMD was first noted in [11], and a different

variant of this algorithm was used to compute the Koopman modes of a jet in cross
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flow. The initial success of this algorithm in the context of fluid mechanics motivated

an ongoing line of research on data-driven analysis of high-dimensional and complex

systems using the Koopman operator theory, and consequently, a large number of DMD-

type algorithms have been proposed in the recent years for computation of the Koopman

spectral properties [38, 33, 31, 35, 34].

The three variants of DMD that we consider here are the companion-matrix DMD [11],

the SVD-enhanced DMD [12], and the Exact DMD [33]. The SVD-enhanced and Exact

variants of DMD are more suitable for numerical implementation, while the companion-

matrix method enables a more straightforward proof for the first result of this chapter.

In the following, we first describe the mathematical settings for application of DMD, and

then describe the above three algorithms and the connections between them.

In this chapter, we will use a slightly different notation from previous chapters to

avoid confusion with the notation for data matrices. We will consider the discrete-time

dynamical system

z′ = T(z), (3.1)

where z ∈M is the state, and we let

f :=



f1

f2

...

fn


: M → Rn (3.2)
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be a vector-valued observable defined on the dynamical system in (3.1), and let

D :=



f1(z0) f1 ◦ T (z0) . . . f1 ◦ Tm(z0)

f2(z0) f2 ◦ T (z0) . . . f2 ◦ Tm(z0)

...
...

. . .
...

fn(z0) fn ◦ T (z0) . . . fn ◦ Tm(z0)


(3.3)

be the matrix of measurements recorded on f along a trajectory starting at the initial

condition z0 ∈ M . Each column of D is called a data snapshot since it contains the

measurements on the system at a single time instant. Assuming only discrete eigenvalues

for the Koopman operator, we can rewrite the Koopman mode expansion in (1.13) for

each snapshot in the form of

Di :=



f1 ◦ T i(z0)

f2 ◦ T i(z0)

...

fn ◦ T i(z0)


=
∞∑
j=1

λijvj (3.4)

by absorbing the scalar values of φj(z0) into the mode vj. In numerical approximation

of the Koopman modes, however, we often assume this expansion is finite dimensional

and use

f i =
n∑
j=1

λ̃ijṽj (3.5)

where ṽj and λ̃j are approximations to the Koopman modes and eigenvalues in (3.4).

This expansion resembles the spectral expansion for a linear operator acting on Rn. This

operator, which maps each column of D to the next is called the DMD operator. The
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general strategy of DMD algorithms is to construct the DMD operator, in the form of

a matrix, and extract the dynamic modes and eigenvalues from the spectrum of that

matrix. In the companion-matrix DMD (algorithm 3), as the name suggests, the DMD

operator is realized in the form of a companion matrix:

Algorithm 3 Companion-matrix DMD

Consider the data matrix D defined in (3.3).

1: Define X = [D0 D1 . . . Dm−1]

2: Form the companion matrix

C̃ =



0 0 . . . 0 c̃0

1 0 . . . 0 c̃1

0 1 . . . 0 c2

...
...

. . .
...

...

0 0 . . . 1 cm−1


, (3.6)

with

(
c0, c1, c2, . . . , cm−2

)T
= X†Dm.

The X† denotes the Moore-Penrose pseudo-inverse of X [124].

3: Let (λj, wj), j = 1, 2, . . . ,m be the eigenvalue-eigenvector pairs for C̃. Then λj’s are

the dynamic eigenvalues. Dynamic modes ṽj are given by

ṽj = Xwj, j = 1, 2, . . . ,m. (3.7)

In the above algorithm, the companion matrix C̃ is the realization of the DMD

operator in the basis which consists of the columns in X. The pseudo-inverse in step 2
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is used to project the last snapshot of D onto this basis. In the case that Dm lies in the

range of X, we have

r := Dm −X(X†Dm) = 0 (3.8)

which means that the companion matrix C̃ exactly maps each column of D to the next. If

columns of X are linearly dependent, however, the above projection is not unique, and the

problem of determining the DMD operator is generally over-constrained. Furthermore,

when X is ill-conditioned, the projection in step 2 becomes numerically unstable.

The SVD-enhanced DMD algorithm (algorithm 4), offers a more robust algorithm for

computation of dynamic modes and eigenvalues:

Algorithm 4 SVD-enhanced DMD

Consider the data matrix D defined in (3.3).

1: Define X = [D0 D1 . . . Dm−1] and Y = [D1 D2 . . . Dm]

2: Compute the SVD of X:

X = WSṼ ∗.

3: Form the matrix

Â = W ∗Y Ṽ S−1.

4: Let (λj, wj), j = 1, 2, . . . ,m be the eigenvalue-eigenvector pairs for Â. Then λj’s are

the dynamic eigenvalues. Dynamic modes ṽj are given by

ṽj = Wwj, j = 1, 2, . . . ,m.
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In this method, the left singular vectors W are used as the basis to compute a realiza-

tion of the DMD operator, which is Â. In fact, column vectors in W form an orthogonal

basis which enhances the numerical stability of the projection process (the term W ∗Y in

step 3). When X is full rank and λj’s are distinct, the dynamic modes and eigenvalues

computed by this algorithm are the same as the companion-matrix algorithm [32].

The Exact DMD algorithm (algorithm 5) generalizes the SVD-enhanced algorithm to

the case where the sampling of the data might be non-sequential. For example, consider

the data matrices

X =



f1(z0) f1(z1) . . . f1(zm)

f2(z0) f2(z1) . . . f2(zm)

...
...

. . .
...

fn(z0) fn(z1) . . . fn(zm)


(3.9)

and

Y =



f1 ◦ T (z0) f1 ◦ T (z1) . . . f1 ◦ T (zm)

f2 ◦ T (z0) f2 ◦ T (z1) . . . f2 ◦ T (zm)

...
...

. . .
...

fn ◦ T (z0) fn ◦ T (z1) . . . fn ◦ T (zm)

,


(3.10)

where {z0, z1, . . . , zm} denotes a set of arbitrary states of the dynamical system in (3.1).

The Exact DMD algorithm computes the operator that maps each column of X to the

corresponding column in Y .

The finite-dimensional operator that maps the columns of X to Y is known as the
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Algorithm 5 Exact DMD

Consider the data matrices X and Y defined in (3.9) and (3.10).
1: Define X = [D0 D1 . . . Dm−1] and Y = [D1 D2 . . . Dm]
2: Compute the SVD of X:

X = WSṼ ∗.

3: Form the matrix

Â = W ∗Y Ṽ S−1.

4: Let (λj, wj), j = 1, 2, . . . ,m be the eigenvalue-eigenvector pairs for Â. Then λj’s are
the dynamic eigenvalues.

5: The exact dynamic modes ṽj are given by

ṽj =
1

λj
Y Ṽ S−1wj, j = 1, 2, . . . ,m.

6: The projected dynamic modes χj are given by

χj = Wwj, j = 1, 2, . . . ,m.

Exact DMD operator, with the explicit realization,

Ã = Y X†. (3.11)

The matrix Ã is not actually formed in algorithm 5, however, the dynamic eigenvalues

and exact dynamic modes form the eigen-decomposition of Ã. We note that the projected

dynamic modes and exact dynamic modes coincide if the column space of Y lie in the

range of X. Moreover, applying Exact DMD to X and Y matrices defined in algorithm

4 yields the same eigenvalues and modes as SVD-enhanced DMD.

In the following, we will show how DMD operators converge to a finite-dimensional

representation of the Koopman operator for ergodic systems. The critical observation

that enables us to do so, is the fact that vector projections in the DMD algorithm can
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be used to approximate the projections in the function space of observables.

3.2 Ergodic theory and Hankel-matrix representa-

tion of data

In this section, we recall the elementary ergodic theory and give a new interpreta-

tion of Hankel-matrix representation of data in the context of the Koopman operator

theory. The main result of this section is proposition 3 which asserts the convergence

of companion-matrix Hankel-DMD for computation of Koopman spectrum. Despite the

intuitive proof of its convergence, this method is not well-suited for numerical practice,

and a more suitable alternative for numerical computation will be presented in section

3.4 and 3.5. In section 3.2.1, we present analogous results for the basin of attraction of

ergodic attractors.

Consider the dynamics on a compact invariant set A, possibly the attractor of a

dissipative dynamical system, given by the measure-preserving map T : A → A. Let µ

be the preserved measure with µ(A) = 1, and assume that for every invariant set B ⊂ A,

µ(B) = 0 or µ(A − B) = 0, i.e., the map T is ergodic on A. A few examples of ergodic

sets in dynamical systems are limit cycles, tori with uniform flow and chaotic sets like

Lorenz attractor. We define the Hilbert space H to be the set of all observables on A

which are square-integrable with respect to the measure µ, i.e.,

H := {f : A→ R s.t.

∫
A

|f |2dµ <∞}. (3.12)

The Birkhoff’s ergodic theorem [125] asserts the existence of infinite-time average of such

observables and relates it to the spatial average over the set A. More precisely, if f ∈ H,
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then

lim
N→∞

1

N

N−1∑
k=0

f ◦ T k(z) =

∫
A

fdµ, for almost every z ∈ A. (3.13)

An important consequence of this theorem is that the inner products of observables in H

can be approximated using the time series of observations. To see this, denote by f̃m(z0)

and g̃m(z0) the vector of m sequential observations made on observables f, g ∈ H along

a trajectory starting at z0,

f̃m(z0) = [f(z0), f ◦ T (z0), . . . , f ◦ Tm−1(z0)] (3.14a)

g̃m(z0) = [g(z0), g ◦ T (z0), . . . , g ◦ Tm−1(z0)] (3.14b)

Then for almost every z0 ∈ A,

lim
m→∞

1

m
< f̃m(z0), g̃m(z0) >= lim

m→∞

1

m

m−1∑
k=0

(fg∗) ◦ T k(z0) =

∫
A

fg∗dµ =< f, g >H (3.15)

where we have used < ., . > for vector inner product and < ., . >H for the inner product

of functions in H. The key observation in this work is that using the data vectors such

as f̃m(z0) we can approximate the projection of observables onto each other according to

(3.15).

Now consider the longer sequence of observations

f̃m+n = [f(z0), f ◦ T (z0), . . . , f ◦ Tm−1(z0), . . . , f ◦ Tm+n−1(z0)]
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which could be rearranged into a Hankel matrix by delay-embedding of dimension m,

H̃ =



f(z0) f ◦ T (z0) . . . f ◦ T n(z0)

f ◦ T (z0) f ◦ T 2(z0) . . . f ◦ T n+1(z0)

...
...

. . .
...

f ◦ Tm−1(z0) f ◦ Tm(z0) . . . f ◦ Tm+n−1(z0)


(3.16)

Given the definition of the Koopman operator in (1.5), we also observe that j−th column

of this matrix is the sampling of the observable U j−1f along the same trajectory, and we

can rewrite it in a more compact form,

H̃ =
(
f̃m, Uf̃m, . . . , U

nf̃m

)
.

This matrix can be viewed as a sampling of the Krylov sequence of observable f , defined

as

Fn := [f, Uf, . . . , Unf ].

The basic idea of the Hankel-DMD method is to extract the Koopman spectra from

this sequence, which is analogous to the idea of Krylov subspace methods for computing

the eigenvalues of large matrices [126]. A simplifying assumption that we utilize in most

of this chapter is that there exists a finite-dimensional subspace of H which is invariant

under the action of the Koopman operator and contains our observable of interest f . In

general, the existence of finite-dimensional Koopman-invariant subspaces is equivalent to

the existence of the eigenvalues (i.e. discrete spectrum) for Koopman operator. To be

more precise, if such invariant subspace exists, then the Koopman operator restricted to

this subspace can be realized in the form of a finite-dimensional matrix and therefore it
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must have at least one (complex) eigenvalue. Conversely, if the Koopman operator has

eigenvalues, the span of a finite number of associated eigenfunctions forms an invariant

subspace. However, it is not guaranteed that the arbitrary observables such as f are

contained within such subspaces.

Let k be the dimension of the minimal Koopman-invariant subspace, denoted by K,

which contains f . Then the first k iterates of f under the action of the Koopman operator

span K, i.e.,

K = span(Fn), for every n ≥ k − 1 (3.17)

This condition follows from the fact that the Koopman eigenvalues are simple for

ergodic systems [62], and as a result, f is cyclic in K [63]. The following proposition

shows that the eigenvalues and eigenfunctions obtained by applying DMD to H̃ converge

to true eigenfunctions and eigenvalues of the Koopman operator. Our proof strategy is

to show that companion matrix formed in algorithm 3 approximates the k−by−k matrix

which represents the Koopman operator restricted to K.

Proposition 3 (Convergence of the companion-matrix Hankel-DMD algorithm)

Let the dynamical system in (3.1) be ergodic, and Fn = [f, Uf, . . . , Unf ] span a k-

dimensional subspace of H (with k < n) which is invariant under the action of the

Koopman operator. Consider the dynamic eigenvalues and dynamic modes obtained by

applying the companion-matrix DMD (algorithm 3) to the first k + 1 columns of the

Hankel matrix H̃m×n defined in (3.16).

Then, for almost every z0, as m→∞:

(a) The dynamic eigenvalues converge to the Koopman eigenvalues associated with the

k-dimensional subspace.

(b) The dynamic modes converge to the sampling of associated Koopman eigenfunctions

on the trajectory starting at z0.
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Proof: Consider the first k elements of Fn,

(
f, Uf, . . . , Uk−1f

)
(3.18)

which are linearly independent. These observables provide a basis for K, and the restric-

tion of Koopman operator to K can be (exactly) realized as the companion matrix

C =



0 0 . . . 0 c0

1 0 . . . 0 c1

0 1 . . . 0 c2

...
...

. . .
...

...

0 0 . . . 1 ck−1


where the last column is the coordinate vector of the function Ukf in the basis, and it is

given by



c0

c1

...

ck−1


= G−1



< f, Ukf >H

< Uf, Ukf >H
...

< Uk−1f, Ukf >H


(3.19)

Here, G is the Gramian matrix of the basis given by

Gij =< U i−1f, U j−1f >H .

Now consider the numerical companion-matrix DMD algorithm and let X be the matrix

that contains the first k columns of H̃. When applied to the first k+1 columns of H̃, the

algorithm seeks the eigenvalues of the companion matrix C̃, whose last column is given
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by



c̃0

c̃1

...

c̃k−1


= X†Ukf̃m = G̃−1



1
m
< f̃m, U

kf̃m >

1
m
< Uf̃m, U

kf̃m >

...

1
m
< Uk−1f̃m, U

kf̃m >


(3.20)

In the second equality, we have used the following relationship for the Moore-Penrose

pseudo-inverse of a full-rank data matrix X,

X† = (X∗X)−1X∗ = (
1

m
X∗X)−1(

1

m
X∗) := G̃−1(

1

m
X∗).

and defined the numerical Gramian matrix by

G̃ij =
1

m
< U i−1f̃m, U

j−1f̃m > .

The averaged inner products in the rightmost vector of (3.20) converge to the vector

of Hilbert-space inner products in (3.19), due to (3.15). The same argument suggests

element-wise convergence of the numerical Gramian matrix to the G in (3.19), i.e.,

lim
m→∞

G̃ij = Gij.

Furthermore

lim
m→∞

G̃−1 =
(

lim
m→∞

G̃
)−1

= G−1

We have interchanged the limit and inverting operations in the above since G is invertible

(because the basis is linearly independent). Thus the DMD operator C̃ converges to the
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Koopman operator realization C. The eigenvalues of matrix are depend continuously on

its entries which guarantees the convergence of the eigenvalues of C̃ to the eigenvalues

of C as well. This proves the statement in (a). Now let vk be the set of normalized

eigenvectors of C, that is,

Cvj = λjvj, ‖vj‖ = 1, j = 1, . . . , k.

These eigenvectors give the coordinates of Koopman eigenfunctions in the basis of (3.18).

Namely, φj, j = 1, . . . , k defined by

φi =
(
f, Uf, . . . , Uk−1f

)
vi, i = 1, . . . , k. (3.21)

are a set of Koopman eigenfunctions in the invariant subspace. Given the convergence of

C̃ to C and convergence of their eigenvalues, the normalized eigenvectors of C̃, denoted

by ṽj, j = 0, 1, . . . , k also converge to vj’s. We define the set of candidate functions by

φ̃i =
(
f, Uf, . . . , Uk−1f

)
ṽi, i = 1, . . . , k. (3.22)

and show that they converge to φi as m → ∞. Consider an adjoint basis of (3.18)

denoted by {gj}, j = 0, 1, .., k − 1 defined such that < gi, U
jf >H= δij with δ being the

Kronecker delta. We have

lim
m→∞

< φ̃i, gj >H= lim
m→∞

ṽij = vij =< φi, gj >H

where vij is the i−th entry of vj. The above statement shows the weak convergence of

the φ̃j to φj for j = 1, . . . , k. However, both set of functions belong to the same finite-

dimensional subspace and therefore weak convergence is strong convergence. The j-th
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dynamic mode given by

wi =
(
f̃m, Uf̃m, . . . , U

k−1f̃m

)
ṽi (3.23)

is the sampling of φ̃j along the trajectory, and convergence of φ̃j means that wj converges

to the value of Koopman eigenfunction φj on the trajectory starting at z0. The propo-

sition is valid for almost every initial condition for which the ergodic average in (3.13)

exists.

Remark 1 In the above results, the data vectors can be replaced with any sampling vector

of the observables that satisfy the convergence of inner products as in (3.15). For example,

instead of using f̃ as defined in (3.14a), we can use the sampling vectors of the form

f̂m(z0) = [f(z0), f ◦ T l(z0), f ◦ T 2l(z0), . . . , f ◦ T (m−1)l(z0)]

where l is a positive finite integer.

3.2.1 Extension of Hankel-DMD to the basin of attraction

Consider the ergodic set A to be an attractor of the dynamical system (3.1) with

a basin of attraction B. The existence of ergodic average in (3.13) can be extended

to trajectories starting in B by assuming that the invariant measure on A is a physical

measure [127, 128]. To formalize this notion, let ν denote the standard Lebesgue measure

on B. We assume that there is a subset B ⊂ B such that ν(B−B) = 0 and for every initial

condition in B the ergodic averages of continuous functions exist. That is, if f : B → R
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is continuous, then

lim
N→∞

1

N

N∑
k=0

f ◦ T k(z) =

∫
A

fdµ, for ν−almost every z ∈ B. (3.24)

Roughly speaking, this assumption implies that the invariant measure µ rules the asymp-

totics of almost every trajectory in B, and therefore it is relevant for physical observations

and experiments. Using (3.24), we can extend proposition 3 to the trajectories starting

almost everywhere in B. The only extra requirement is that the observable must be

continuous in the basin of attraction.

Proposition 4 (Convergence of Hankel-DMD in the basin of attraction)

Let A be the ergodic attractor of the dynamical system (3.1) with the basin of attraction

B which supports a physical measure. Assume f : B → R is a continuous function with

f |A belonging to a k-dimensional Koopman-invariant subspace of H. Let H̃ be the Hankel

matrix (3.16) of observations on f along the trajectory starting at z0 ∈ B with n > k.

Consider the dynamic modes and eigenvalues obtained by applying the companion-matrix

DMD (algorithm 3) to the first k + 1 columns of H̃.

Then, for ν−almost every z0, as m→∞:

(a) The dynamic eigenvalues converge to the Koopman eigenvalues.

(b) The dynamic modes converge to the value of associated eigenfunctions φj along the

trajectory starting at z0.

Proof: The proof of (a) is similar to proposition 3 and follows from the extension

of ergodic averages to the basin of attraction by (3.24). To show that the dynamic mode

wj converges to Koopman eigenfunctions along the trajectory, we need to consider the
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evolution of wj under the action of the Koopman operator:

lim
m→∞

Uwj = lim
m→∞

U [f̃m, Uf̃m, . . . , U
k−1f̃m]ṽj

= lim
m→∞

[Uf̃m, U
2f̃m, . . . , U

kf̃m]ṽj

= lim
m→∞

[f̃m, Uf̃m, . . . , U
k−1f̃m]C̃ṽj

= lim
m→∞

[Uf̃m, U
2f̃m, . . . , U

kf̃m]λ̃j ṽj

= lim
m→∞

λ̃jwj

= λjwj.

Therefore, wj converges to the sampling of values of the eigenfunction associated with

eigenvalue λj.

3.3 SVD and POD for ergodic systems

SVD is a central algorithm of linear algebra that lies at the heart of many data

analysis techniques for dynamical systems including linear subspace identification meth-

ods [120] and DMD [12, 33]. POD, on the other hand, is a data analysis technique

frequently used for complex and high-dimensional dynamical systems. Also known as

Principal Component Analysis (PCA), or Karhonen-Loeve decomposition, POD yields

an orthogonal basis for representing ensemble of observations which is optimal with re-

spect to a pre-defined inner product. It is known that for finite-dimensional observables

on discrete-time dynamical systems, POD reduces to SVD [129]. Here, we establish a

slightly different connection between these two concepts in the case of ergodic systems.

Our motivation for derivation of these results is the role of SVD in DMD algorithms,

however, the orthogonal basis that is generated by this process can be used for further
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analysis of dynamics in the space of observables, for example, to construct a basis for

computing the eigenfunctions of the Koopman generator as in [122]. We first review

POD and then record our main result in proposition 5.

Let F = [f1, f2, . . . , fn] be an ensemble of observables in the Hilbert space H which

spans a k−dimensional subspace. Applying POD to F yields the expansion

F = ΨΣV ∗, (3.25)

= [ψ1, ψ2, . . . , ψk]



σ1 0 . . . 0

0 σ2 . . . 0

...
...

. . .
...

0 0 . . . σk





v∗1

v∗2
...

v∗k


,

where ψj’s, j = 1, 2, . . . , k form an orthonormal basis for span{F}, and are often called

the empirical orthogonal functions or POD basis of F . The diagonal elements of Σ,

denoted by σj, j = 1, 2, . . . , k are all positive and signify the H-norm contribution of the

basis element ψj to the F . The columns of V , denoted by vi and called the principal

coordinates, are the normalized coordinates of vectors in F with respect to the POD

basis. This decomposition can be alternatively written as a summation,

fi =
k∑
j=1

σjψjvji. (3.26)

If we index the principal coordinates such that σ1 > σ2 > . . . > σk > 0, then this

decomposition minimizes the expression

ep =
1

n

n∑
i=1

∥∥∥∥∥
p∑
j=1

σjψjvji − fi

∥∥∥∥∥
H

for any p ≤ k, over the choice of all orthonormal bases for span{F}. The term ep
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denotes the average error in approximating fi’s by truncating the sum in (3.26) at length

p. This property, by design, guarantees that low-dimensional representations of F using

truncations of POD involves the least ‖·‖H-error compared to other choices of orthogonal

decomposition.

An established method for computation of POD is the method of snapshots [130]: we

first form the Gramian matrix G, given by Gij =< fi, fj >H. The columns of V are given

as the normalized eigenvectors of G associated with its non-zero eigenvalues, and those

non-zero eigenvalues happen to be σ2
i ’s, that is,

GV = V Σ2. (3.27)

Since G is a symmetric real matrix, V will be an orthonormal matrix and the decompo-

sition in (3.25) can be easily inverted to yield the orthonormal basis functions,

ψj =
1

σj
Fvj.

The SVD of tall rectangular matrix has a similar structure to POD. Consider Xm×n, with

m > n, to be a matrix of rank r. The reduced SVD of X is

X = WSṼ ∗ (3.28)

=

 w1 w2 . . . wr





s1 0 . . . 0

0 s2 . . . 0

...
...

. . .
...

0 0 . . . sr





ṽ∗1

ṽ∗2
...

ṽ∗r


where W and V are orthonormal matrices, and S is a diagonal matrix holding the singular

values s1 > s2 > . . . > sr > 0. The columns of W and V are called, respectively, left and
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right singular vectors of X.

The usual practice of POD in data analysis is to let H be the space of snapshots, e.g.

Rm equipped with the usual Euclidean inner product, which makes POD and SVD iden-

tical [129]. In that case, F would be a snapshot matrix such as (3.3) and its left singular

vectors are the POD basis. We are interested in H, however, as the infinite-dimensional

space of observables defined in (3.12). Given the sampling of a set of observables on a sin-

gle ergodic trajectory, our computational goal is to get the sampling of the orthonormal

basis functions for the subspace of H spanned by those observables. The next proposition

shows that this can be achieved by applying SVD to a data matrix whose columns are

ergodic sampling of those observables. Incidentally, such matrix is the transpose of a

snapshot matrix!

Proposition 5 (Convergence of SVD to POD for ergodic systems)

Let F = [f1, f2, . . . , fn] be an ensemble of observables on the ergodic dynamical system

in (3.1). Assume F spans a k−dimensional subspace of H and let

F = ΨΣV ∗,

be the POD of F . Now consider the data matrix,

F̃ =



f1(z0) f2(z0) . . . fn(z0)

f1 ◦ T (z0) f2 ◦ T (z0) . . . fn ◦ T (z0)

...
...

. . .
...

f1 ◦ Tm−1(z0) f2 ◦ Tm−1(z0) . . . fn ◦ T (z0)


(3.29)

and let

1√
m
F̃ ≈ WSV ∗
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be the reduced SVD of (1/
√
m)F̃ .

Then, for almost every z0, as m→∞,

(a) sj → σj for j = 1, 2, . . . , k and sj → 0 for j = k + 1, . . . , n.

(b) ṽj → vj for j = 1, 2, . . . , k.

(c)
√
mwj converges to the sampling of ψj along the trajectory starting at z0 j = 1, 2, . . . , k.

Proof: Consider the numerical Gramian matrix

G̃ := (
1√
m
F̃ )∗(

1√
m
F̃ ) =

1

m
F̃ ∗F̃ .

As shown in the proof of (3), the assumption of ergodicity implies the convergence of G̃

to the Gramian matrix G in (3.27) as m → ∞. Now denote by λj, j = 1, 2, . . . , k, the

k eigenvalues of G̃ that converge to positive eigenvalues of G, and denote by λ′j, j =

1, . . . , n − k, the eigenvalues of G̃ that converge to zero. There exists m0 such that for

any m > m0, all the singular values sj =
√
λj are larger than s′j =

√
λ′j and therefore

occupy the first k diagonal entries of S, which completes the proof of statement in (a).

The statement in (b) follows from the convergence of the normalized eigenvectors of

G̃ associated with λj’s to those of G. To show that (c) is true, we first construct the

candidate functions by letting

ψ̃j =
1

sj
F ṽj, j = 1, 2, . . . , k (3.30)

We compute the entries of the orthogonal projection matrix P defined by Pi,j =< ψi, ψ̃j >

and consider its limit as m→∞,

lim
m→∞

Pi,j = lim
m→∞

(
1

σi
Fvi)∗(

1

sj
F ṽj) =

1

σi
v∗iF∗F lim

m→∞

1

sj
ṽj =

1

σ2
i

v∗iGvj = δij (3.31)
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In the last equality, we have used (3.27). This calculation shows that ψ̃j’s are weakly

convergent to ψj’s, and since they belong to the same finite-dimensional space, that

implies strong convergence as well. Noting the definition of left singular vector

wj =
1√
msj

F̃ vj, (3.32)

it is easy to see that
√
mwj is the sampling of the candidate function ψ̃j along the

trajectory starting at z0.

3.3.1 Representation of chaotic dynamics in space of observ-

ables using Hankel matrix and SVD

Using the above results, we are able to construct an orthonormal basis on the state

space from the time series of an ergodic system and give a new data-driven represen-

tation of chaotic dynamical systems. Recall that the columns of the Hankel matrix H̃

defined in (3.16) provides an ergodic sampling of the Krylov sequence of observables

Fn = [f, Uf, , Unf ] along a trajectory in the state space. Therefore by applying SVD

to H̃, we can approximate an orthonormal basis for Fn, and furthermore, represent the

Koopman evolution of observable f in the form of principal coordinates.

We show an example of this approach using the well-known chaotic attractor of the

Lorenz system [131]. This attractor is proven to have the mixing property which implies

ergodicity [64]. The Lorenz system is given by

ż1 = σ(z2 − z1),

ż2 = z1(ρ− z3)− z2,

ż3 = z1z2 − βz3,
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with [z1, z2, z3] ∈ R3 and parameter values σ = 10, ρ = 28 and β = 8/3. First, we sample

the value of observable f(z) = z1 every 0.01 seconds on a random trajectory, and then

form a tall Hankel matrix as in (3.16) with m = 10000 and n = 100. Figure 3.1 shows the

values of first six left singular vectors of the Hankel matrix, which approximate the basis

functions ψj. The corresponding right singular vectors, shown in fig. 3.2, approximate

the principal coordinates of Fn. We make note that the computed basis functions and

their associated singular values show little change with m for m ≥ 10000.

Figure 3.1: The first six POD basis functions of [f, Uf, . . . , U if, . . . , U100f ] for chaotic
Lorenz system. The observable is f(z1, z2, z3) = z1 and the Hankel matrix has the
dimensions m = 10000 and n = 100.

In mixing attractors such as Lorenz, the only discrete eigenvalue for the Koopman

operator is λ = 1, which is associated with eigenfunction that is constant almost every-

where on the attractor. In this case, the Koopman operator cannot have any invariant

finite-dimensional subspace other than span of almost-everywhere constant functions. As

a result, for a typical observable f , the Krylov sequence Fn is always n+ 1-dimensional

and growing with iterations of U . This observation shows that despite the fact that

evolution of principal coordinates in fig. 3.2 is linear, there is no finite-dimensional linear

92



DMD and computation of Koopman spectrum Chapter 3

Figure 3.2: The principal coordinates for [f, Uf, . . . , U if, . . . , U100f ] with
f(z1, z2, z3) = z1 in the basis shown in fig. 3.1.

system that can describe their evolution.

Proposition 5 offers a lifting of coordinates from state space to the space of observables

which can be useful in the study of chaotic systems. Application of SVD to embedded

time series in the form of Hankel matrix is a popular technique in the study of climate

time series under the name of Singular Spectrum Analysis (SSA) [82]. This method

is frequently used for pattern extraction and spectral filtering of short and noisy time

series. In a more recent example, Brunton and co-workers [121] have introduced a new

framework based on the SVD of Hankel data matrix to construct a linear representation

of several chaotic systems including Lorenz attractor. They have discovered that the

evolution of principal coordinates in some classes of chaotic systems - including Lorenz

attractor - can be described via a low-dimensional linear system with intermittent forcing.

By using such model, they were able to predict the highly nonlinear behavior of those

systems over short time windows given the knowledge of the forcing. This suggests that

replacing the state-space trajectory-based analysis with the evolution of coordinates in

space of observable gives a more robust representation of the dynamics for analysis and

control purposes.
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3.4 Convergence of Exact Hankel-DMD and exten-

sion to multiple observables

In this section, we review the functional setting for Exact DMD and prove its conver-

gence for ergodic systems using the assumption of invariant subspace. We then discuss

using this method combined with Hankel matrices to compute the Koopman spectra from

observations on single or multiple observables. The summary of the numerical algorithm

with several examples will be given in the next section.

Let F =: [f1, f2, . . . , fn] denote a set of observables defined on the discrete dynamical

system in (3.1). We make the assumption that F spans a k−dimensional subspace

of H, with k ≤ n, which is invariant under the Koopman operator. Also denote by

UF =: [Uf1, Uf2, . . . , Ufn] the image set of those observables under the action of the

Koopman operator. We seek to realize the Koopman operator, restricted to this subspace,

as a k-by-k matrix, given the knowledge of F and UF .

Let

F = ΨΣV ∗. (3.33)

be the POD of ensemble F with Ψ = [ψ1, ψ2, . . . , ψk] denoting its POD basis. Since F

spans an invariant subspace, the functions in UF also belong to the same subspace and

their principal coordinates can be obtained by orthonormal projection, i.e.,

Ω = Ψ∗UF . (3.34)

The restriction of the Koopman operator to the invariant subspace is then given by

matrix A which maps the columns of ΣV ∗ to the columns of Ω. The following lemma,
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which summarizes some of the results in [33], gives the explicit form of matrix A and

asserts its uniqueness under the prescribed condition on F and UF .

Lemma 1 Let Xk×n with n ≥ k be a matrix whose range is equal to Rk. Let Yk×n be

another matrix which is linearly consistent with X, i.e., whenever Xc = 0 for c ∈ Rn,

then Y c = 0 as well. Then the Exact DMD operator A := Y X† is the unique matrix that

satisfies AX = Y .

Proof: First, we note that condition of Y being linearly consistent with X implies

that A satisfies AX = Y (theorem 2 in [33]). To see the uniqueness, let Ã be another

matrix which satisfies ÃX = Y . Now let b ∈ Rk be an arbitrary vector. Given that X

spans Rk, we can write b = Xd for some d ∈ Rn. Consequently,

Ãb = ÃXd = Y d = AXd = Ab,

which means that action of A and Ã on all elements of Rk is the same, therefore Ã = A.

Since F and UF are related through a linear operator, their principal coordinates with

respect to the same orthogonal basis satisfy the condition of linear consistency, and the

Koopman operator restricted to the invariant subspace is represented by the matrix

A = Ω(ΣV ∗)† = ΩV Σ−1, (3.35)

where we have used the fact that Σ is diagonal and V is orthonormal. Let (wj, λj), j =

1, 2, . . . , k denote the eigenvector-eigenvalue pairs of A. Then λj’s are the Koopman

eigenvalues and the associated Koopman eigenfunctions are given by

φj = Ψwj, j = 1, 2, . . . , k. (3.36)
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Now we can assert the convergence of Exact DMD projected modes and eigenvalues to

Koopman eigenfunctions and eigenvalues given the ergodic sampling of functions in F

and UF .
Proposition 6 (Convergence of Exact DMD for ergodic sampling)

Let F =: [f1, f2, . . . , fn] denote a set of observables that span a k−dimensional invariant

subspace of the Koopman operator with k ≤ n, defined on the dynamical system (3.1)

which is ergodic. Now consider the data matrices

X =



f1(z0) f2(z0) . . . fn(z0)

f1 ◦ T (z0) f2 ◦ T (z0) . . . fn ◦ T (z0)

...
...

. . .
...

f1 ◦ Tm−1(z0) f2 ◦ Tm−1(z0) . . . fn ◦ Tm−1(z0)


and

Y =



f1 ◦ T (z0) f2 ◦ T (z0) . . . fn ◦ T (z0)

f1 ◦ T 2(z0) f2 ◦ T 2(z0) . . . fn ◦ T 2(z0)

...
...

. . .
...

f1 ◦ Tm(z0) f2 ◦ Tm(z0) . . . fn ◦ Tm(z0)


Let λj and χj denote the dynamic eigenvalues and projected dynamic modes, respectively,

obtained by applying Exact DMD (algorithm 5) to X and Y , using a k-dimensional

truncation of SVD (i.e. with discarding the n− k smallest singular values) in step 2.

Then, for almost every z0, as m→∞:

(a) The dynamic eigenvalues converge to the Koopman eigenvalues.

(b)
√
mχj for j = 1, 2, . . . , k converge to the sampling of Koopman eigenfunctions along

the trajectory starting at z0.

Proof: We first show that as m→∞, the matrix Ã constructed in the step 3 of the
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algorithm 5 converges to the matrix A in (3.35). Let X = WSṼ be the k-dimensional

truncated SVD of X. It follows from the proof of proposition 5 that S/
√
m → Σ and

Ṽ → V as m→∞. Then

lim
m→∞

Ã = lim
m→∞

W ∗Y Ṽ S−1 =

(
lim
m→∞

1√
m
W ∗Y

)
V Σ−1. (3.37)

We need to show that Ω̃ := 1/
√
mW ∗Y converges to Ω (defined in (3.34)) as m→∞.

To this end, recall the candidate functions in Ψ̃ defined in proof of proposition 5. We see

that

Ω̃i,j =
1√
m
W ∗
i Yj =

1

m

m−1∑
l=0

(ψ̃i ◦ T l(z0))∗(Ufj ◦ T l(z0)) :=
1

m

m−1∑
l=0

ψ̃l∗i Uf
l
j (3.38)

Since ψ̃i’s are defined by linear combination of functions in F , they lie in the span of Ψ.

In fact, we have

ψ̃i =
k∑
q=1

Pi,qψq, (3.39)

where Pi,q denotes an entry of the orthogonal projection matrix P defined in the proof

of proposition 5. The computation in (3.31) shows that as m → ∞, we have Pi,q → 0

if q 6= i and Pi,i → 1. Now we replace ψ̃i in (3.38) with its expansion in (3.39), while
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considering the term

d1 : = Ω̃i,j −
1

m

m−1∑
l=0

(ψi ◦ T l(z0))∗(Ufj ◦ T l(z0)), (3.40)

:= Ω̃i,j −
1

m

m−1∑
l=0

ψl∗i Uf
l
j,

=
k∑
q=1

Pi,q
1

m

m−1∑
l=0

ψl∗q Uf
l
j −

1

m

m−1∑
l=0

ψl∗i Uf
l
j,

=
k∑

q=1, q 6=i

Pi,q
1

m

m−1∑
l=0

ψl∗q Uf
l
j + (Pi,i − 1)

1

m

m−1∑
l=0

ψl∗i Uf
l
j.

The convergence of sums over l for m→∞ in the last line is given by (3.15). Combining

that with the convergence of Pi,q’s, we can conclude that for every ε > 0, there exists m1

such that for any m > m1, we have |d1| < ε/2. Now consider the term

d2 =
1

m

m−1∑
l=0

ψl∗i Uf
l
j − Ωi,j (3.41)

=
1

m

m−1∑
l=0

ψl∗i Uf
l
j− < ψi, Ufj > .

The convergence in (3.15) again implies that for every ε > 0 there exists an m2 such that

for any m > m2, we have |d2| < ε/2. Now it becomes clear that

|Ω̃i,j − Ωi,j| = |d1 + d2| ≤ |d1|+ |d2| = ε, (3.42)

for any m > max(m1,m2). This proves the convergence of Ω̃ to Ω, which, by revisiting

(3.37), means

lim
m→∞

Ã = A. (3.43)
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The eigenvalues of Ã converge to the eigenvalues of A which are the Koopman eigen-

values. Let w̃j, j = 1, 2, . . . , k denote the normalized eigenvectors of Ã, and define the

candidate functions φ̃j = Ψ̃w̃j = ΨPw̃j. Given that P converges to I, and w̃j converges

to wj as m → ∞, it follows that φ̃j strongly converge to the Koopman eigenfunctions

φj = Ψwj.

Now note that
√
mχj =

√
mUw̃j is the sampling of candidate eigenfunction φ̃j along

the trajectory, and therefore it converges to the sampling of the Koopman eigenfunction

φj as m→∞.

Recall that in section 3.2.1, we extended the application of companion-matrix Hankel-

DMD to the basin of attraction of an ergodic set A by assuming the invariant measure

on A is physical. An analogous extension of the above proposition can be stated using

the same assumption:

Corollary 1 Proposition 6 is also valid for ν−almost every z0 ∈ B (ν is the Lebesgue

measure), where B is the basin of attraction for the ergodic attractor A of the dynamical

system (3.1), given that

(i) The invariant measure on A is a physical measure,

(ii) F|A spans a k-dimensional invaraint subspace of H, and

(iii) F is continuous over B.

Proof: The proof is similar to proposition 4.

Let us first consider the application of the above proposition using measurements on

a single observable f . We can supplement those measurements using delay-embedding

which is equivalent to setting F = [f, Uf, . . . , Un−1f ]. An ergodic sampling of F and

UF is then given by data matrices

X = H̃ Y = UH̃
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where H̃ is the Hankel matrix defined in (3.16) and UH̃ is the same matrix but shifted

one step forward in time. In such case, the Exact DMD reduces to the SVD-enhanced

DMD as discussed in section 3.1.

In case of multiple observables, we can combine the delay-embedded measurements

of the observables with each other. For example, let f and g be the only observables that

could be measured on a dynamical system. Then, we let

F = [f, Uf, . . . , U l−1f, g, Ug, . . . , U q−1g]

and data matrices would contain blocks of Hankel matrices, i.e.,

X =

[
H̃f H̃g

]
, Y =

[
UH̃f UH̃g

]
, (3.44)

The above proposition guarantees the convergence of the Exact DMD method if l and

q are chosen large enough, e.g., l, q > k + 1 where k is the dimension of the invariant

subspace containing f and g.

In numerical practice, however, the block Hankel matrices need some scaling. For

instance assume ‖g‖H � ‖f‖H. The POD basis that corresponds to the measurements

on g is associated with smaller singular values and might be discarded through a low-

dimensional SVD truncation. To remedy this issue, we can use the fact that the ratio

of the norm between observables in ergodic systems can be approximated from the mea-

surements:

α :=
‖f‖H
‖g‖H

= lim
m→∞

‖f̃m‖
‖g̃m‖

, (3.45)

where f̃m and g̃m are the observation vectors defined in (3.14a). The scaled data matrices
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in that case become

X =

[
H̃f αH̃g

]
, Y =

[
UH̃f αUH̃g

]
. (3.46)

3.5 Numerical application of Hankel-DMD method

Algorithm 6 summarizes the Hankel-DMD method for extracting the Koopman spec-

trum from single or multiple observables. This algorithm acts on Hankel matrices of the

data in the form of

H̃ i =



fi(zi) fi ◦ T (zi) . . . fi ◦ T n(zi)

fi ◦ T (zi) fi ◦ T 2(zi) . . . fi ◦ T n+1(zi)

...
...

. . .
...

fi ◦ Tm−1(zi) fi ◦ Tm(zi) . . . fi ◦ Tm+n−1(zi)


, i = 1, 2, . . . l, (3.47)

and UH̃ i which is the same matrix shifted forward in time. The data from observable

fi is collected from a trajectory starting at zi which is in the basin of attraction of an

ergodic attractor. Unlike the classical DMD algorithms in section 3.1, the number of

modes obtained by this method depends on the length of the signal and the dimension

of subspace in which the observable lies.

The rate of convergence for the Hankel-DMD can be established by considering the

rate of convergence for ergodic averages. For periodic and quasi-periodic attractors, the

error of approximating the inner products by (3.15) is generally bounded by |c/m| for

some c ∈ R [85]. For strongly mixing systems, the rate of convergence slows down to

c/
√
m. However, for the general class of ergodic systems convergence rates cannot be

established [132]. As we will see in this section, a few hundred samples would be enough

to determine the Koopman frequencies of periodic systems with great accuracy, while a
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few thousand would be enough for systems with a 2-torus attractor.

Remark 2 In proving the convergence of the Hankel-DMD algorithm, we have assumed

the explicit knowledge of the dimension of the invariant subspace (k) that contains the

observable. In numerical practice, k can be found in the SVD step of the algorithm:

proposition 5 showed that as m→∞, the number of singular values converging to positive

values is equal to k. Therefore, we can approximate the invariant subspace by counting

the number of singular values that don’t seem to decay to zero. We can implement this

assumption in algorithm 6 by hard-thresholding of the SVD in step 3, i.e., discarding

the singular values that are smaller than a specified threshold. Such a threshold can be

selected based on the desired numerical accuracy and considering the rate of convergence

for ergodic averages which is discussed above. In case that the observable lies in an

infinite-dimensional Koopman invariant subspace, we are going to assume that it lives

in a finite-dimensional subspace down to a specific numerical accuracy. We can enforce

this accuracy, again, by hard-thresholding the SVD. In the following examples, we have

chosen the hard threshold of SVD to be 1e-10.

3.5.1 Application to single observable: periodic and quasi-periodic

cavity flow

In chapter 2, the lid-driven cavity flow was shown to exhibit periodic and quasi-

periodic behavior at Reynolds numbers (Re) in the range of 10000-18000. The Koopman

eigenvalues were computed by applying an adaptive combination of FFT and harmonic

averaging to the discretized field of stream function, which is an observable with ∼

4000 values. We use the Hankel-DMD method (algorithm 6) to extract the Koopman

eigenvalues and eigenfunctions using a scalar valued observable (the kinetic energy) and

compare our results with the following cases studied in chapter 2:

102



DMD and computation of Koopman spectrum Chapter 3

Algorithm 6 Hankel DMD

Consider the Hankel matrices H̃ i’s defined in (3.47).
1: Compute the scaling factors

αi =
‖H i

n+1‖
‖H1

n+1‖
, i = 2, 3, . . . , l,

where H i
n+1 is the last column of H i.

2: Form the composite matrices

X =
[
H̃1 α2H̃2 . . . αlH̃l

]
, Y =

[
UH̃f α2UH̃2 . . . αlUH̃l

]
.

3: Compute the truncated SVD of X (see remark 2):

X = WSṼ ∗.

4: Form the matrix

Â = W ∗Y Ṽ S−1.

5: Let (λj, wj), j = 1, 2, . . . ,m be the eigenvalue-eigenvector pairs for Â. Then λj’s
approximate the Koopman eigenvalues.

6: The dynamic modes χj given by

χj = Wwj, j = 1, 2, . . . ,m.

approximate the Koopman eigenfunctions.
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• At Re = 13000, the trajectory in the state space of the flow converges to a limit

cycle with the basic frequency of ω0 = 1.0042 rad/sec. The Koopman frequencies

in the decomposition of analytic observables are multiples of the basic frequency,

i.e., kω0, k = 0, 1, 2, . . ..

• At Re = 16000, the post-transient flow is quasi-periodic with two basic frequencies

ω1 = 0.9762 rad/sec and ω2 = 0.6089 rad/sec. In this case, the flow trajectory

wraps around a 2-torus in the state space of the flow and the Koopman frequencies

are integral multiples of ω1 and ω2, that is ω = k · (ω1, ω2), k ∈ Z2.

Let {Ei := E(t0 + i∆t)} denote the measurements on the kinetic energy of the flow

at the time instants t0 + i∆t, i = 0, 1, 2, . . . , s. We first build the Hankel matrices of the

kinetic energy observable,

H̃E =



E0 E1 . . . En

E1 E2 . . . En+1

E2 E3 . . . En+2

...
...

. . .
...

Em−1 Em . . . Em+n−1


, UH̃E =



E1 E2 . . . En+1

E2 E3 . . . En+2

E3 E4 . . . En+3

...
...

. . .
...

Em Em+1 . . . Em+n


. (3.48)

and then apply algorithm 6. Due to the discrete-time nature of the measurements,

the eigenvalues computed by this method correspond to the discrete map obtained by

strobing the original continuous-time dynamical system at intervals of length ∆t. The

eigenvalues λj, j = 1, 2, . . . computed via Hankel-DMD are related to the Koopman

frequencies ωj, j = 1, 2, . . . through the following:

λj = eiωj∆t.
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The computed dynamic modes φ̃j approximate the value of the associated Koopman

eigenfunctions along the first m points on the trajectory of the system.

For the periodic flow, we use 200 samples of the kinetic energy signal, with sampling

interval of 0.1 sec, to form the above Hankel matrix with m = n = 100. In table

table 3.1, we present frequencies obtained using the DMD-Hankel method, labeled by ω̃k,

and compare with frequencies computed in chapter 2. We also compare the computed

eigenfunctions with the theory for periodic and quasi-periodic attractors presented in [4].

In fact, the Koopman eigenfunctions for periodic and quasi-periodic attractors are the

Fourier basis in the time-linear coordinates defined on the attractor. To make this notion

precise, let s ∈ [0, 2π) be the parametrization of the limit cycle given by ṡ = ω0. The

Koopman eigenfunction associated with the Koopman frequency ωk := kω0 is given by

φk = eiks, k = 1, 2, 3, . . . . (3.49)

The real part of the Koopman eigenfunctions φ̃k computed via the Hankel-DMD method

are shown along the trajectory in figure fig. 3.3. The mean squared error in the approx-

imation of the six eigenfunctions with largest vector energy is from an order of 10−5 or

smaller ( last column in the table table 3.1).

k ω̃k ωk (ch. 2) relative error var(φ̃k − φk)
0 0 0 0 < 1e−10
1 1.00421 1.00423 1.59e−5 1.46e−6
2 2.00843 2.00840 1.56e−5 2.25e−5
3 3.01264 3.01262 4.94e−6 < 1.00e−10
4 4.01685 4.01680 1.55e−5 < 1.00e−10
6 6.02528 6.02525 5.03e−6 < 1.00e−10

Table 3.1: The dominant Koopman frequencies and eigenfunctions for periodic cavity
flow computed using observations on kinetic energy.

For the quasi-periodic cavity flow, a longer sequence of observations is required to
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Figure 3.3: Real part of the computed Koopman eigenfunctions φ̃k along the trajectory
for periodic cavity flow at Re = 13000.

Figure 3.4: The trajectory of quasi-periodic flow on the parameterized torus defined in (3.50).
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sufficiently sample the attractor which is a 2-torus. The eigenvalues shown in table 3.2

are computed using 6500 samples of the kinetic energy signal with sampling interval of

0.1 seconds, and by setting m = 6000 and n = 500. Once the basic frequency vector

(ω1, ω2) is determined, the attractor can be parameterized by the time-linear coordinates

(θ, η) ∈ [0, 2π)2 with

θ = ω1t,

η = ω2t. (3.50)

The trajectory of the system on the parameterized torus is shown in fig. 3.4. The Koop-

man eigenfunctions associated with the frequency k · (ω1, ω2) are given by

φk = eik·(θ,η), k ∈ Z2. (3.51)

The modes obtained by Hankel-DMD method provide an approximation of the Koop-

man eigenfunction along the trajectory (the dots in fig. 3.4) which could be extended to

the whole torus through an interpolation process. Using this technique, we have plotted

the Koopman eigenfunctions on the parameterized torus in fig. 3.5. The computed value

of frequencies and eigenfunctions are in good agreement with the results in chapter 2

(Table 3.2).

3.5.2 Asymptotic phase for nonlinear oscillators

We show an application of corollary 1 by computing the asymptotic phase for trajec-

tories of the Van der Pol oscillator. For definition of this problem, we closely follow the
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Figure 3.5: Real part of Koopman eigenfunctions φ̃k on the parameterized torus of
quasi-periodic cavity flow at Re = 16000, computed using kinetic energy observable.

k ω̃k ωk (ch. 2) relative error var(φ̃k − φk)

(0, 0) 0 0 0 1.64e− 9
(0, 1) 0.60891 0.60890 1.58e−5 9.58e−4

(2,−3) 0.12443 0.12598 1.23e−2 1.69e−1
(−1, 2) 0.24159 0.24149 3.96e−4 1.88e−2
(1, 0) 0.97624 0.97624 3.68e−6 1.12e−3
(0, 2) 1.21781 1.21773 6.40e−5 6.29e−3

Table 3.2: The dominant Koopman frequencies and eigenfunctions for quasi-periodic
cavity flow computed using observations on kinetic energy.

discussion in [133]. Consider the classical Van der Pol model

ż1 = z2, ż2 = µ(1− z2
1)z2 − z1. z := (z1, z2) ∈ R2. (3.52)

For the parameter value µ = 0.3, all the trajectories in the state space R2 converge to

a limit cycle Γ with the basic frequency ω0 ≈ 0.995. However, the trajectories converge

to different orbits on the limit cycle and their asymptotic phase depends on the initial

condition. The problem of determining the asymptotic phase associated with each initial

condition in the state space is of great importance, e.g., in analysis and control of oscillator
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networks that arise in biology (see e.g. [134, 135]). The Koopman eigenfunctions provide

a natural answer for this problem; if φ0 is the Koopman eigenfunction associated with

ω0, the initial conditions lying on the same level set of φ0 converge to the same orbit

and will have the same asymptotic phase [133]. The methodology developed in [133] is

to compute the Koopman eigenfunction by taking the Fourier (or harmonic) average of

a typical observable which requires prior knowledge of ω0.

We use a slight variation of Hankel-DMD algorithm to compute the basic (Koopman)

frequency of the limit cycle and the corresponding eigenfunction φ0 in the same compu-

tation. Consider two trajectories of (3.52) starting at initial conditions z1 = (4, 4) and

z2 = (0, 4). The observable that we use is f(z) = z1 + z2, sampled at every 0.1 second

over a time interval of 35 seconds (m = 250 and n = 100). Recall from remark 1 that

we can use various vectors of ergodic sampling with Hankel-DMD algorithm to compute

the spectrum and eigenfunctions of the Koopman operator. We populate the Hankel

matrices with observation on both trajectories, such that the l−th column of the Hankel

matrix, denoted by H l, is given by

H l = [f(z1), f(z2), f ◦ T (z1), f ◦ T (z2), . . . , f ◦ Tm−1(z1), f ◦ Tm−1(z2)]T .

Similarly,

UH l = [f ◦ T (z1), f ◦ T (z2), f ◦ T 2(z1), f ◦ T 2(z2) . . . , f ◦ Tm(z1), f ◦ Tm(z2)]T .

The dynamic modes obtained by applying the Exact DMD to these Hankel matrices

approximate the Koopman eigenfunctions along the two trajectories in the form of

φ̃0(z1, z2) := [φ0(z1), φ0(z2), φ0 ◦ T (z1), φ0 ◦ T (z2), . . . , φ0 ◦ Tm−1(z1), φ0 ◦ Tm−1(z2)]T .
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Figure 3.6: Asymptotic phase for Van der Pol oscillator: The Koopman eigenfunction
associated with ω0 along the trajectory starting at z1 (left), and asymptotic phase for
points along two trajectories starting at z1 and z2 (right). The states with the same
color converge to the same orbit on the limit cycle.

Figure 3.6 shows the agreement between Hankel-DMD and the Koopman eigenfunc-

tion obtained from Fourier averaging with known frequency [133]. The right panel shows

θ = ∠φ̃0 plotted as the color field along the trajectories which characterizes the asymp-

totic phase of each point on the trajectories.

3.5.3 Application to multiple observables: the quasi-periodic

cavity flow

We show the application of algorithm 6 with multiple observables by revisiting the

example of quasi-periodic flow in section 3.5.1. Let {Gi := G(t0 + i∆t)} be the set of

measurements of the stream function at a point on the flow domain (x = y = 0.3827 in

the domain defined in ch. 2). Also let E be the kinetic energy of the flow. We use the

Hankel matrices of observations on G and E, by setting m = 6000 and n = 500 and form

the data matrices

X =

[
H̃E α̃H̃G

]
, Y =

[
UH̃E α̃UH̃G

]
. (3.53)
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Figure 3.7: Real part of Koopman eigenfunctions φ̃k on the parameterized torus of
quasi-periodic cavity flow at Re = 16000, computed using two observables: kinetic
energy and stream function.

where we have approximated the scaling factor α̃ by

α̃ =
‖G̃m‖
‖Ẽm‖

. (3.54)

Table 3.3 shows the error in approximation of Koopman frequencies and eigenvalues using

two observables. The accuracy of computation is comparable to the single-observable

computation in section 3.5.1. However, since we are supplementing the observation on

E with measurements on G, we are able to capture new eigenfunctions, three of which

are shown in the bottom row of fig. 3.7.

3.6 Summary

In this chapter, we have studied the convergence of DMD algorithms for systems with

ergodic attractors. Our approach is based on approximation of the function projections

using the vector projection in DMD, which is made possible by the Birkhoff’s ergodic
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k ω̃k ωk (ch. 2) relative error var(φ̃k − φk)

(0, 0) 0 0 0 6.76e− 9
(0, 1) 0.60892 0.60890 1.67e−5 9.38e−4
(1, 0) 0.97624 0.97624 5.86e−6 5.90e−3

(1,−1) 0.36732 0.36728 1.13e−4 6.98e−4
(−3, 5) 0.11680 — — 1.34e−1
(2,−1) 1.34353 1.34352 3.68e−6 1.10e−2

Table 3.3: Accuracy of the dominant Koopman frequencies and eigenfunctions for
quasi-periodic cavity flow computed using Hankel-DMD method with two observables.

theorem. We showed a precise connection between SVD, which is frequently used in the

DMD algorithms, and POD of ensemble of observables on the state space. By applying

SVD to Hankel-embedded time series, we gave a new representation of chaotic dynamics

on mixing attractors based on the evolution of coordinates in the space of observables.

This representation turns out to be more beneficial for analysis and control purposes

than the classic state-space trajectory-based representation. To compute the discrete

Koopman operator for systems with ergodic attractors, we introduced the Hankel-DMD

algorithm which is equivalent of applying the classic DMD algorithm to Hankel-type

data matrices. This algorithm can compute Koopman spectrum using a small number

of observables and trajectories in high-dimensional systems like fluid flows, with proven

convergence properties.

In chapter 2, we discussed the application of Fourier spectral techniques for compu-

tation of Koopman spectrum. Unlike those methods, DMD-type algorithms are not yet

capable of capturing continuous spectrum, however, they offer two advantageous feature:

DMD is capable of capturing dissipative eigenvalues. In fact, Hankel-DMD method shows

promise for computing the such eigenvalues and we will discuss it in future articles. And

more importantly, DMD yields an approximation of the Koopman operator in the form

of a linear system which can be used for control. A couple of promising studies have

already appeared in this direction [46, 47].
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Mixing in the lid-driven cavity flow

Mixing is an important aspect of many natural and industrial flows. Characterizing the

vertical mixing in the ocean and atmosphere, for example, constitutes the main challenge

in modeling the earth climate [136, 137], while understanding the horizontal mixing on

the ocean surface helps us predict the movement of pollution, which could lead to more

effective strategies for containment [138]. Other examples from natural flows include the

mixing in the earth mantle which led to formation of oceanic islands with nonuniform

geochemistry [139], blood flow mixing in relation to health and disease [140] and the

role of mixing in shaping the ecological equilibrium in oceanic environment [141]. For

the industrial flows, on the other hand, we often try to manipulate mixing, e.g., design

devices that efficiently mix the fluids given the constraints by the specific application

[142, 143]. All such efforts are based on our understanding of many factors that play into

mixing like the flow dynamics, device geometry, initial configuration of the mixing fluids,

etc..

Study of mixing in real-world problems is difficult. Most of rigorous analysis in this

field comes from theory of chaotic advection, which treats the fluid flow as a dynamical

system with trajectories that describe the paths of objects. This theory has made an
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enormous impact on how we view the transport of material in flows which are steady or

time-periodic, but it offers significantly less insight for flows which are aperiodic in time.

On the other hand, most of the natural flows and many industrial flows show aperiodic

time dependence. As a result, a large number of techniques have been developed to fill

the gap between the knowledge of mixing in periodic flows and the aperiodic flows that

appear in practice. Most of these techniques strive to characterize the mixing in a given

aperiodic flow by detecting the coherent structures and visualizing the flow in a way that

is most informative about the collective behavior of Lagrangian trajectories.

Here, we study mixing from a different perspective, namely, we consider how the

mixing portrait is changed while the temporal regime of a bounded flow - the lid-driven

cavity flow - changes from steady to aperiodic. This change occurs naturally due to a

sequence of bifurcations in the flow dynamics with the increase of the Reynolds number.

We also use KMD and POD to characterize the number of modes for each flow that play

a significant role in mixing.

We discuss the mixing as the advection of passive tracers, and therefore, ignore the

inertial and finite-size effects for particles and molecular diffusion for scalar fields. In

other words, we focus on the limit of infinite Peclet number and zero Stokes number in

transport of materials with the flow. In order to visualize the mixing in such setting, we

use the so-called hypergraphs, which are maps that partition the flow domain based on

the Lagrangian deformation of the fluid blobs.

An interesting observation from chapter 2 is that vorticity distribution in the mean

flow is almost unform in the center. For steady flows, this observation is the result of

the Prandtl-Batchelor theory, but here, we extend this to periodic flows and discuss its

consequences for mixing. We will also use projection models (based on POD and KMD)

to compute the “dimensionality of mixing”, that is, the order of Koopman-POD reduced

models that are required to emulate the actual mixing in cavity flow.
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In section 4.1, we review the literature related to the dynamical-systems analysis of

mixing, and also the mixing of the cavity flow. In section 4.2, we explain how we com-

pute and utilize hypergraphs to interpret mixing. In section 4.3, we define KMD+POD

projection models. In section 4.4, we present the results of our analysis. We give the

proof of the Prandtl-Batchelor theory for periodic flows in section 4.6.

4.1 Related work

4.1.1 Dynamical-systems methods for study of mixing

The foremost contributions to study of mixing in incompressible flows come from the

paradigm of chaotic advection. This paradigm was initiated by the seminal paper of Aref

[144] which showed that chaotic mixing can be achieved in time-periodic flows - contrary

to the long-standing belief that chaotic mixing requires chaotic flow field. Using the

example of blinking vortex flow, he showed the connection between the concept of non-

integrability in dynamical systems theory and the flow mixing property. The pioneering

textbook by Ottino [145] further emphasized the connection between geometry of mixing

in flows and the dynamical systems theory. It also highlighted the role of stretching

and folding in the mixing process, and presented a systematic study of many steady and

periodic flows. Another breakthrough in the study of periodic flows was the invention of

lobe dynamics [146, 147]. In this approach, the spatial domain of a time-periodic flow is

partitioned into different regions separated by the invariant manifolds of the flow Poincaré

map. The flux of material between those regions is then quantified by the interchange of

the so-called lobes at the intersection of those orbits. Further contributions to the field

of chaotic advection are too many to enumerate here, and we refer the reader to [148] for

a more detailed review of this field.
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The majority of the natural and industrial flows exhibit aperiodic time dependence.

Unfortunately, chaotic advection theory is incapable of answering the questions that arise

in the context of such flows. This is mainly due to the fact that geometric notions in

this theory (like invariant manifolds and Poincaré maps), are not well-defined for aperi-

odic flows or have no significance for observations over finite time. The methodologies

developed to address this shortcoming, either try to extend the modern techniques of

dynamical systems theory to finite-time and aperiodic flows, or give a new formulation of

the concepts related to mixing. In the following, we review some of those methodologies

that have gained popularity in the last two decades.

A notable contribution to study of mixing in finite time is the theory of Lagrangian

Coherent Structures (LCS). This theory aims to find the material surfaces with maximal

attracting, repelling or shear impact on the nearby fluid elements. The LCS defined as

such affect the mixing by forming transport barriers or vortical structures that travel

with the ambient flow [149]. The hyperbolic LCS are finite-time analogues of invariant

manifolds from classical dynamical systems, and serve as boundaries of regions in the

flow that show different dynamical behavior [150]. The elliptic (or shear) LCS, on the

other hand, are a generalization of structures known as Kolmogorov-Arnold-Moser tori

in dynamical systems, and denote the vortical coherent sets [151]. The location of LCS

was initially linked to the maxima in the field of the finite-time Lyapunov exponent [152],

but recently they have been reformulated based on variational principles (see e.g. [153]).

Another approach toward study of mixing is built on purely topological aspects of

2D flows in bounded domains [154]. In this approach, the space-time trajectories of a

set of tracers within the flow, are abstractly represented by algebraic objects known as

braids. The degree of tangling in the braids is proportional to the topological entropy

of the flow, which is, the maximum rate of stretching for material loops within the flow.

This entropy indicates the complexity of motion and the strength of mixing. Using
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the symbolic representation of the braids, one is able to compute lower bounds on the

topological entropy to analyze the mixing performance of stirring protocols or design

new efficient mixers [155, 156]. The braid analysis has also been deployed to compute

the invariant sets [157] and quantify the complexity of the motion over finite time using

spatially sparse measurements [158].

The theory of finite-time coherent sets offers another framework for characterization

of mixing in aperiodic flows. This theory was initiated by introduction of almost-invariant

sets, which are defined as sets that exhibit minimal leakage of trajectories in autonomous

dynamical systems [159, 160]. Later on, the notion of almost-invariant sets was extended

to that of (finite-time) coherent sets, i.e., the sets traveling with the flow that have

minimal mixing with their surrounding, and used in the study of finite-time transport

[161, 162]. This framework is based on approximating the transfer operator of dynamical

systems which pushes forward the densities in the state space according to the dynamics.

In an equivalent formulation, a coherent set is defined as a set whose perimeter-to-volume

ratio remains small while traveling with the flow, and therefore allows minimal dispersion

across its boundary [163].

The dynamical-system analysis of the flow domain could be alternatively pursued from

a statistical viewpoint. The invariant sets in the spatial extent of a steady or periodic

incompressible flow coincide with the level sets of infinite-time averages along Lagrangian

trajectories [164]. This allows a feasible detection of invariant subdomains in flows with

simple time dependence in numerical and experimental settings [165, 85, 166]. Using this

theory, one can also build a low-dimensional representation of Lagrangian dynamics, track

the changes in the structure of invariant subdomains, and easily detect the qualitative

changes in the mixing behavior [167]. This technique was applied to aperiodic flows in

[168], and the mathematical formulation was extended to finite-time observations in [169].

A descendant of this approach is the theory of mesohyperbolicity which partitions the flow
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domain into regions with hyperbolic or elliptic behavior over finite time. This partition

reveals the the regions which show chaotic-like mixing over finite time and separates them

from the stagnating regions [170]. The theory and application of mesohyperbolicity is

recently extended to 3D flows in [171].

4.1.2 Previous studies on mixing in lid-driven cavity flow

The mixing in the lid-driven cavity has been explored from many aspects and under

different settings. This flow requires a relatively simple computational or experimental

setup, and it represents a simplified model of geophysical flows driven by shear [70, 71],

or a common type of mixers in polymer engineering known as single-screw extruder

[72]. Most of the previous studies have focused on low-Reynolds cavity flows with time-

dependent lid motion, and investigated the effect of different factors like lid motion

frequency and cavity geometry on enhancement of mixing.

In the steady lid-driven cavity flow at low Reynolds, mixing is generally poor since the

tracers are confined to move along the streamlines [145]. The experiments in [172] and

[173] showed that mixing is greatly improved if periodic lid motion is used to generate

periodic flow. In that case, the motion of tracers inside the cavity is comprised of both

periodic and chaotic trajectories. The chaotic trajectories make the well-mixed regions

while the tracers with periodic motion form the so-called periodic islands. These islands

prevent full mixing because the fluid blobs inside them remain coherent and trapped,

and do not spread over the cavity. The experiments showed that size of these islands

are dependent on the forcing frequency, and therefore it was understood that there are

optimal frequencies, at which, the islands are virtually nonexistent, and overall mixing

can be achieved. [174] and [175] identified such frequency ranges by studying the linear

stability of the periodic orbits that correspond to those islands. Their results showed
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good agreement with simulation and previous experiments, and motivated further studies

on detection of periodic orbits inside the periodic cavity flow and their role in mixing

[176, 177, 178, 179, 180].

The notion of aperiodic mixing is explored in few studies regarding the lid-driven

cavity flow. [181] and [182] proposed a non-random aperiodic protocol for the lid motion

to enhance mixing. The underlying idea in these work is to manipulate the symmetries

in the flow to break up the periodic islands. The numerical studies in [183] also showed

that the aperiodic lid motion leads to stronger and more uniform mixing in the cavity

flow.

There are also other studies that investigated the mixing in lid-driven cavity flow

with different geometries [182, 184, 185], or under the effect of flow stratification [70],

multi-phase flow configuration [186, 187], and motion of freely moving solid bodies within

the flow [188, 189, 190].

4.2 Visualizing mixing with hypergraphs

In this work, we use hypergraphs as a tool to detect regions of different mixing behav-

ior in the lid-driven cavity flow. The use of hypergraphs in the study of mixing was first

introduced by [170], with a successful prediction of oil slick movement in the Deepwater

Horizon oil spill. In this section, we explain how hypergraphs can be computed, and

utilized to examine mixing for 2D incompressible flows. The reader is referred to [171]

for a more detailed discussion of hypergraphs and extension to 3D flows.

The hypergraphs are visualizations of a scalar field known as mesohyperbolicity which

partitions the flow domain according to the type of Lagrangian deformation. The field

of mesohyperbolicity is defined as follows: Consider the trajectory of a passive tracer

passing through x at time t0. We denote by u∗t0+T
t0 (x), the time-averaged Lagrangian
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velocity of the tracer over the time interval [t0, t0 + T ]. The mesohyperbolicity field at

the location x and time T is given by

M(x, T ) ≡ det
∣∣∇xu∗t0+T

t0
(x)
∣∣ . (4.1)

This field uniquely determines the type of Lagrangian fluid deformation in the neighbor-

hood of the tracer over the time interval [t0, t0 + T ]:

1. In the regions where M < 0, the fluid element centered at the tracer is stretched

in one direction and contracted in the other while moving. This deformation is similar

to behavior of trajectories in the vicinity of a hyperbolic fixed point in a plane, hence

called mesohyperbolic.

2. When 0 ≤M ≤ 4/T 2, the fluid elements undergo rotation while traveling with the

tracer. We call this behavior mesoelliptic.

3. The regions with M > 4/T 2 show the combination of the above deformations, i.e.,

the material element rotates while it is stretched in one direction and contracted in the

other. This type of deformation is called mesohelical.

In the hypergraphs presented in this thesis, the mesohyperbolic behavior is marked

by blue, mesoelliptic by green, and mesohelical by red. A typical hypergraph for the

periodic cavity flow is shown in fig. 4.1 (left panel). A comparison with the Poincaré

map of the same flow (right panel) shows how hypergraphs can be used to determine

the well-mixed regions in the flow: The islands of periodic motion which correspond to

poorly-mixed regions stand out as concentric bands of alternating colors. The well-mixed

regions, however, are revealed in hypergraphs as areas with a fine-grained mixture of the

mesohyperbolic and mesohelical deformation (red and blue).

The work in [170] extended the application of hypergarphs to study of finite-time and

aperiodic mixing in 2D incompressible flows. Over finite time intervals, the regions of
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Figure 4.1: (a) Poincaré map of periodic cavity flow at Re = 13000, computed using
300 random trajectories over 2000 time periods. (b) Hypergraph of the same flow over
1000 sec, computed on a grid of 300× 300 initial conditions. Blue, red and green col-
ors correspond to mesohyperbolic, mesohelical and mesoelliptic behavior respectively.
The (chaotic) mixing zones stand out in the hypergraph as regions with fine mixtures
of red and blue.

substantial mixing stand out in hypergraphs as areas with a fine-grained combination of

red and blue - similar to periodic flows, because those regions host an extensive amount of

stretching and folding of the material elements, which is closely associated with (infinite-

time) genuine chaotic motion. On the other hand, the poorly-mixed regions divide into

two subgroups: regions that are consistently meso-elliptic and therefore show rotation and

stagnation zones, and regions with a dominant type of either meso-hyperbolic (blue) or

meso-elliptic (red) which denote likely passages for tracer motion in the form of coherent

blobs.

4.2.1 Computation and visualization of hypergraphs

Consider the trajectory of a passive tracer starting at x at time t0. The position of

this tracer at time t > t0 is given by the flow map F(x, t), which solves the ordinary
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differential equation (ODE)

Ḟ(x, t) = u(F(x, t), t), t ∈ [t0, t0 + T ], F(x, t0) = x, (4.2)

where u denotes the velocity field. The average Lagrangian velocity of the tracer is

computed from the flow map,

u∗t0+T
t0

(x) =
1

T
(F(x, t0 + T )− x). (4.3)

Computing the mesohyperbolicity field defined in (4.1) requires two steps of computa-

tion. The first step is to solve the above ODE. This is often achieved by direct integration

of (4.8) for a grid of passive tracers initially distributed over the flow domain. The sec-

ond step is to evaluate the gradient of lagrangian velocity. There are two approaches to

accomplish this step. In the first approach, the gradient is computed via finite difference

on the initial grid of tracers. An auxiliary grid collocated around points of the initial grid

can be used to improve the numerical efficiency (see e.g. the computation of the flow map

gradient in [153]). The major disadvantage of this method is that in hyperbolic regions,

the tracer paths diverge exponentially and the distance between them might become too

large for implementation of the finite difference method. In that case, the primary grid

points should be equipped with a new auxiliary grid to carry on the computation.

In the second approach, which we take here, the use of finite difference is avoided by

integrating the linear differential equation for the flow map gradient [191],

d

dt
∇F(x, t) = ∇u(F(x, t), t) · ∇F(x, t), t ∈ [t0, t0 + T ], ∇F(x, t0) = I, (4.4)

with I being the identity matrix. This ODE is solved along with (4.8) for the same set
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of tracers. The Lagrangian velocity gradient is given by

∇u∗t0+T
t0

(x) =
1

T
(∇F(x, t0 + T )− I). (4.5)

This approach requires nearly the same computational effort as the finite difference ap-

proach, given that the instantaneous field of∇u is readily available. We used the standard

4th-order Runge-Kutta method to integrate equations (4.8) and (4.4). In doing so, the

velocity field obtained by numerical solution of Navier-Stokes equations was interpolated

using the spline method in space, and the linear method in time. In the hypergraphs

plotted in this paper, the mesohyperbolicity field, M(x) := det |∇u∗t0+T
t0 (x)|, is plotted

and partitioned into the mesohyperbolic (M < 0), mesoelliptic (0 < M < 4/T 2), and

mesohelical (M > 4/T 2) regions, which are respectively marked by blue, green and red

colors. For more readability, the value of mesohyperbolicity field in hypergraphs is cut

off for M > 8/T 2 and M < −4/T 2.

4.3 KMD+POD projection models

In chapter 2, we used the Koopman spectral projections to study the efficiency of

Koopman modes in low-dimensional presentation of the flow dynamics. As discussed

in section 2.1, the chaotic component of the post-transient flow is a realization of a

stationary stochastic process, and therefore it is most beneficial to use statistical tools

like POD to obtain a decomposition of such process. POD, also known as principal

component analysis, is a linear decomposition of the flow field into spatially orthogonal

modes with uncorrelated time-dependent coefficients. Here we use POD to complement
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KMD, and construct a modal decomposition of the full flow in the form of

u(x, t) =
∑
J∈Z2

uJ(x)eJ·Ωt +
∑
k

ak(t)φk(x). (4.6)

The first sum is the KMD of the quasi-periodic component of the flow (described in

section 2.1), and the second sum is the POD of the chaotic component. The time-

dependent coefficient ak is the principal coordinate associated with the POD mode φk.

Under the assumption of ergodicity for post-transient flows, the POD modes are unique

and independent of the initial condition in the limit of infinitely long observations.

A KMD+POD projected model of order m + n is a truncation of the above decom-

position containing m Koopman modes and n POD modes, i.e.,

um,n(x, t) =
m∑
j=1

uj(x)eωjt +
n∑
k=1

ak(t)φk(x). (4.7)

We can use such models to characterize the effect of Koopman or POD modes on the

flow mixing. For example the effect of the i−th Koopman mode can be realized as the

difference between the mixing in ui−1,0 and ui,0. In particular, we will be interested to

the number of modes that play a role in mixing of each flow regime.

4.4 Mixing in the cavity flow

The hypergraphs in fig. 4.2 show the mixing portrait of cavity flow over different

flow regimes and time intervals. In the periodic flow (Re = 13000), the central region

of cavity is occupied with islands of periodic motion, whereas its surrounding area next

to the walls (except two little eddies in the bottom corners) seems to be fully mixed.

In the quasi-periodic flow (Re = 16000) the mixing area grows inward and fills all the
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cavity domain except a mesoelliptic region in the center. The behavior of the flow with

the mixed spectra (Re = 20000) is similar to quasi-periodic mixing, that is, the mixing

region emerges from the walls and expands inward, but we see that the coherent island

in the center is larger than the quasi-periodic flow. This observation implies that mixing

in the flow with mixed spectra (depending on the initial configuration of material) could

be slower than quasi-periodic mixing. For a fully chaotic flow (Re = 30000), full mixing

in the center can be achieved, however, as shown in the figure, there might be islands of

coherent motion that persist for long intervals.

The above observations are somewhat contrary to the physical intuition from fluid

mechanics. We would expect that mixing would improve with the increase of Reynolds

number and transition to chaos, however, the sequence in fig. 4.2 suggests that this

enhancement is non-monotonic (the island in the center is larger for Re = 20000 than

Re = 16000). This phenomena can be explained as follows: as the flow transitions from

quasi-periodic to chaotic, the kinetic energy moves from a few dozens of Koopman modes

to chaotic fluctuations with broadband spectra and small spatial scales. This transfer of

energy enhances the local mixing, but it is not as efficient in bulk stretching and folding of

the material as the quasi-periodic motion, and as a result the bulk mixing may decrease.

As the Reynolds number is further increased, the chaotic fluctuations become stronger

and therefore mixing still increases.

The mixing of incompressible flows is often studied using volume-preserving maps

from dynamical systems [147]. The work in [192] have made a similar observation on

a class of 2D maps (called standard map) which undergo a range of dynamic behavior

as the perturbation parameter is varied. At low parameter values, the state space is

foliated with periodic and quasi-periodic orbit (similar to the laminae in a laminar flow).

As the parameter value increases, most of the regular orbits are destroyed and replaced

with chaotic motion (i.e. exponential mixing), but at the same time, some islands of
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Figure 4.2: Hypergraphs of cavity flow for different Reynolds and over different time
intervals.
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periodic motion are formed in the state space. As a result, there will be an initial decline

of mixing before the perturbation parameter passes a threshold over which there are no

islands and full mixing is achieved.

Another outstanding feature of cavity flow is that the mixing in the center of the

cavity is much slower than mixing in the areas next to the walls. In the next section, we

connect this observation to the distribution of vorticity in the mean flow and analysis of

periodically perturbed 2D dynamical systems.

4.4.1 Mixing in periodic flow and Prandtl-Batchelor theory

An important finding of all the previous studies on time-periodic bounded flows is

that the time period of the flow is the most critical parameter that affects the mixing.

The experiments by Ottino et al. on lid-driven cavity flow, for example, have shown

that the period of the flow governs the existence and size of the periodic islands, and

therefore determines whether partial or complete mixing is achieved [172, 173]. The work

in [174] studied the influence of the flow period on the stability of periodic orbits of tracer

motion and detected different ranges of flow period for which full mixing occurs. In some

of those works, the relationship between flow period and the typical tracer circulation

period in the steady flow was mentioned, and even exploited to enhance mixing. Another

example is the numerical and experimental study of a 3D laminar vortex flow in [193],

which showed that uniform mixing takes place when the flow period is close to the typical

tracer circulation times. Another interesting example is the topological study of mixing

in lid-driven cavity flow by [180]. The proposed periodic lid motion achieves topological

chaos by making a delicate match between circulation period of certain tracers and the

period of the lid motion.

Here, we use the relationship between the time period of the flow and circulation
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period of tracers in the mean flow to show why mixing in the center of the cavity is

poor. As suggested by the Koopman spectrum of fig. 2.3, the periodic flow can be

considered as a mean flow (i.e. the first Koopman mode) which is perturbed by a low-

energy time-periodic velocity field (i.e. sum of Koopman oscillatory modes). Therefore,

we consider the circulation periods of the mean flow and study the effect of the time-

periodic perturbation on the trajectory of the tracers. A critical feature of the mean flow,

that is persistent over the considered range of Reynolds number, is the relatively-uniform

distribution of vorticity in the central region (fig. 2.5). The occurrence of this so-called

inviscid core in steady flows at high Reynolds numbers is anticipated by the Prandtl-

Batchelor theory. This theory states that in regions of the flow with closed streamlines

and small viscous forces, the vorticity will be constant [194, 195]. No analogue of this

theory exists for general unsteady flows. Inspired by our numerical results, however, we

have explored the applicability of this theory to periodic and quasi-periodic flows in the

Appendix 4.6. Particularly, we show that the conclusion of the Prandtl-Batchelor theory

holds for the mean vorticity field of time-periodic flows.

The constant vorticity in the core of the mean flow leads to a uniform distribution

of circulation periods for tracers (blue curve in figure 4.3). In contrast, the circulation

periods of the smaller vortices vary largely over smaller length scales (red, yellow and

cyan curves). Given these observations, we can use the theory of perturbations for 2D

Hamiltonian systems to predict the qualitative motion of tracers when the mean flow

is subjected to a small-energy time-periodic perturbations. The classical techniques for

such predictions, e.g., Melnikov method and Kolmogorv-Arnold-Moser (KAM) theory,

are aimed to predict wether any chaotic trajectories appear as the perturbations are

introduced to the Hamiltonian system [1]. The essence of these techniques is to detect

the resonances between the circulating tracers of the mean flow and the perturbing flow

field, which leads to chaos, e.g., through formation of homoclinic tangles. Contrasting the
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Figure 4.3: Resonance analysis for mixing at Re = 13000: Time period of tracer
circulation in different zones of the mean flow (left); blue curve corresponds to a set
of tracers released on the blue line in the center vortex (right) and so on. The dashed
lines show multiples of the (Eulerian) flow time period .

circulation periods of the mean flow at Re = 13000 to the time period of the flow and its

subharmonics (fig. 4.3 left) shows that the motion of tracers in secondary vortices more

frequently resonates with the perturbing flow field, and hence, those regions contain a

larger number of chaotic trajectories. The top row in fig. 4.2, indeed, suggests that regions

of secondary corner are host the bulk of mixing. Those mixing regions are connected to

each other through a mixing band adjacent to the cavity walls.

We note that the uniform distribution of mean vorticity holds for flows at higher

Reynolds numbers as well, as evident by the first column of fig. 2.5. However, since

the perturbations are not periodic, no resonance analysis can be directly performed.

Nevertheless, we speculate that the uniform distribution of vorticity makes the central

vortex less prone to develop chaotic trajectories and causes the slow mixing in the center

that is observed at quasi-periodic and aperiodic flows.
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4.4.2 Approximation of mixing using projection models

In this section, we consider approximation of mixing using the projection models

defined in section 4.3. The projection models built using Koopman modes are in fact

quasi-periodic approximations of the flow, and the advantage of using such models instead

of an aperiodic flow, is that we can extend the dynamical-system techniques to such

models. Similarly, low-dimensional projections based on POD might be used to construct

effective diffusivity models using e.g. the techniques in [196].

Here is how we measure the error of mixing approximation by a projection model:

We advect a blob of material (e.g. a black dye), using the full flow and its projection

models, and then measure the distance of the advected blob in the projection models

with the full flow. We have chosen the rectanagular blob shown in fig. 4.4. By trial and

error, we have found that this choice gives a generic representation of mixing in all the

flow regimes. Let c(x, t) denote the distribution of the black dye at time t. In absence

of diffusion, c evolves in time due to the advection by the velocity field,

∂c

∂t
+ u · ∇c = 0. (4.8)

We have solved this equation using the near optimal 5-th order weighted essentially non-

oscillatory scheme for spatial discretization, and 3rd-order total-variation-diminishing

Runge-Kutta for time stepping [197]. Figure 4.4 shows the advected blob in the flow at

Re = 20000 and its projection models of various orders.

To quantify the error of projection models in approximation of mixing, we use the mix-

norm introduced in [192]. This type of norm, which is a Sobolev norm of negative index,

is proven to be the appropriate choice for evaluation of mixing in advection-dominated

transport (see e.g. [198]). Let c′ denote the difference of the advected distribution in the

flow and a projection model. Assuming that c′ is square-integrable, it can be represented
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Figure 4.4: Approximating the mixing at Re = 20000 using the KMD+POD pro-
jection model defined in (4.7). m and n denote the number of Koopman and POD
modes, respectively.
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as

c′(x) =
∑
k∈Z2

ckfk(x), (4.9)

where fk’s are the standard Fourier basis on the cavity domain, i.e.,

fk(x) = eiπ(k1x+k2y). (4.10)

Then, the mix-norm of c′ is defined as

Φ(c′) =
∑
k∈Z2

1√
1 + π‖k‖2

ck, (4.11)

which is simply a weighted combination of Fourier coefficients. The main feature of this

norm is that it is multiscale; it puts less weight on smaller spatial scales (i.e. Fourier

coefficients associated with higher wave numbers). So two distributions would be close

in the mix-norm if their large-scale features are similar. Use of mix-norm in studying

advection-dominated transport is further justified by considering concepts from measur-

able dynamical systems theory, for example, if a dynamical system is “mixing”, then the

mix-norm of any centered measurable observable converges to zero. See the discussion

in [192, 198] for further details.

Figure 4.5 shows the normalized error of mixing approximations,

ẽ(t) =
Φ(c′(x, t))

Φ(c(x, 0))
(4.12)

for different flow regimes. The figure suggests that the number of modes required to

describe the mixing increases proportionally with the complexity of the Eulerian flow

dynamics. The mixing in the periodic flow is 2-dimensional, in the sense that, two

Koopman modes (mean flow + the dominant oscillatory Koopman mode) are enough to
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describe the advection of the blob within an accuracy of a few percents over long times.

The number of modes required to achieve the same level of accuracy is raised to 40 for

quasi-periodic flow, and O(1000) for flows with mixed or purely continuous spectrum.

This result shows that as the complexity of the flow grows, the process of mixing increases

proportionally and tools of modal decomposition like POD and KMD are not suitable to

obtain a low-dimensional mixing model of the flow.

4.5 Summary

We made three main observations in this chapter: Mixing in the central vortex of

the cavity flow is slower than the areas adjacent to the walls. We explained this for

periodic flows using a combination of Koopman mode analysis and the so-called Prandtl-

Batchelor theory on vorticity distribution in high-Reynolds flows. Based on numerical

observations, we conjectured that this theory holds for quasi-periodic flows, and explains

the slow growth of mixing in the center compared to the areas adjacent to the walls.

We studied the efficiency of Koopman+POD projection models in approximation

of mixing. It turns out that the complexity of the mixing process by advection grows

proportional to the complexity of the Eulerian flow dynamics, and no low-order quasi-

periodic model (based on data decomposition) can explain the mixing of aperiodic flows

accurately.

Another interesting observation was that mixing of cavity flow grows non-monotonically

with Reynolds number in the transition regime. This is due to the transfer of kinetic

energy to small-scale motion which leads to formation of larger coherent islands. This

phenomenon had already been noted in the study of 2D volume-preserving discrete-time

maps in dynamical systems theory.
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Figure 4.5: Mix-norm error of mixing approximation using projection models defined
in (4.7). m and n denote the number of Koopman modes and POD modes used,
respectively.
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4.6 Appendix: Prandtl-Batchelor theory

4.6.1 The Prandtl-Batchelor theory for steady flows

The Prandtl-Batchelor theory, as stated by [195], maintains that in the regions of

steady 2D flow where viscous forces are small and streamlines are closed, the vorticity is

constant. The first step in proving this argument is to note that when viscous forces are

small, the transport of vorticity in a 2D flow is dominated by advection (i.e. vorticity

diffusion is negligible), and therefore vorticity is constant along the streamlines, i.e.,

ω = ω(ψ) (4.13)

where ψ denotes the stream function. Now consider the Navier-Stokes equation written

as

∂u

∂t
+ ω × u +∇(

u2

2
) = −∇(

p

ρ
) + ν∇2u. (4.14)

By integrating this equation along a closed streamline, we get

∮
∂u

∂t
· ds +

∮
ω × u · ds +

∮
∇(

u2

2
+
p

ρ
) · ds =

∮
ν∇2u · ds. (4.15)

In steady flows the leftmost term vanishes identically. Moreover, ds is parallel to the

velocity field and perpendicular to ω×u at every point on the streamline, so the second

term vanishes as well. And finally, the last term on left-hand-side is zero because it

describes the change of a potential function over a closed curve. This leads to the

conclusion that sum of the shear forces along the closed streamline is zero, i.e.,

∮
∇2u · ds =

∮
∇× ω · ds = 0. (4.16)
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Now consider the curvilinear coordinate (s, n) with s and n denoting the increments along

and normal to the streamline respectively. In this coordinate system, we have u = (q, 0)

with q = |u| and ∂/∂n = q∂/∂ψ. Using this, (4.16) becomes

∮
∇× ω · ds =

∮
(−∂ω

∂n
,
∂ω

∂s
).(ds, 0) =

∮
−∂ω
∂n

ds =

∮
−dω
dψ

qds = −dω
dψ

∮
qds = 0,

(4.17)

which implies dω/dψ = 0. As a result, the vorticity does not change as we move from

one closed streamline to another,

ω(ψ) = ω0 const. (4.18)

4.6.2 Extension to periodic and quasi-periodic flows

A general feature of unsteady cavity flow that is persistent over the considered range

of Reynolds number is the relatively uniform distribution of vorticity in the central region

of the mean flow (the first Koopman mode). There are no theories that extend the above

arguments to the case of unsteady flows. Inspired by the observations in this study, we

draw a general condition on the distribution of vorticity in periodic and quasi-periodic

flows which, to some extent, resembles the Prandtl-Batchelor theory. Our approach is

based on the convergence of Lagrangian averages based on ergodic theory. Consider

the evolution of the vorticity in a 2D incompressible flow, given by the Navier-Stokes

equation,

Dω(x, t)

Dt
= ν∇2ω(x, t) (4.19)

By taking the time average of this equation along an arbitrary trajectory starting at x0

at time 0, we get

1

T

∫ T

0

Dω(x, t)

Dt
dt =

1

T

∫ T

0

ν∇2ω(x, t)dt. (4.20)
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We take the limit of the above averages as T →∞,

lim
T→∞

1

T

∫ T

0

Dω(x, t)

Dt
dt = lim

T→∞

1

T

∫ T

0

ν∇2ω(x, t)dt. (4.21)

We use f ∗(x0, t0) to denote the Lagrangian infinite-time average of function f on a

trajectory starting at (x0, t0), for example,

(
Dω

Dt

)∗
(x0, t0) := lim

T→∞

1

T

∫ T

0

Dω(x[t], t)

Dt
dt (4.22)

where x[t] is the location of the trajectory at time t. When the velocity field has a periodic

or quasi-periodic dependence on time, this average exists for almost every pair of (x0, t)

due to the Birkhoff’s ergodic theorem [8]. Moreover, this average must be zero, otherwise

the vorticity along the trajectory grows unboundedly. This implies that the right-hand

side of (4.21) is zero as well, and the average of the shear forces that the trajectory

endures over long times goes to zero. Combining this with the fact that time-averaging

operation commutes with the spatial Laplacian operator, we arrive at

lim
T→∞

1

T

∫ T

0

ν∇2ω(x, t)dt = ν∇2 lim
T→∞

1

T

∫ T

0

ω(x, t)dt,

0 = ∇2ω∗(x0, t). (4.23)

Furthermore, in a bounded flow with high Reynolds number, the viscous forces in

regions far from the wall, e.g., the central region of cavity, are negligible and the vorticity

is conserved along the trajectories confined to such regions. Therefore, the Eulerian time

average of vorticity at the point x0, denoted by ω(x0), could be obtained by tracking
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back the vorticity along the trajectory that passes through x0 at time 0,

ω(x0, 0) := lim
T→∞

∫ ∞
0

ω(x0, t)dt = lim
T→∞

∫ ∞
0

ω(x[−t],−t)dt = ω∗−(x0, 0) (4.24)

where ω∗−(x0, 0) is the Lagrangian average of vorticity on the trajectory starting at (x0, 0)

and going backward in time. The previously mentioned ergodic theorem together with the

periodic or quasi-periodic dependence of the flow field on time guarantees the existence of

this Lagrangian average. Additionally, it must be equal to the forward-time Lagrangian

average along the same trajectory. This leads to the conclusion that in the regions far

from the wall, the Eulerian and Lagrangian time averages of the vorticity field coincide

and

∇2ω(x) = 0. (4.25)

This Laplace equation governs the distribution of mean vorticity in periodic and quasi-

periodic flow in the regions where viscous forces are small. To show that the mean

vorticity distribution in the center of cavity is uniform, one only needs to supplement

this equation with a constant Dirichlet boundary condition.

In the following, we show the existence of such boundary condition for periodic cavity

flow. Let us define the extended flow domain as the Cartesian product of the 2D spatial

domain with the time axis. In the case of periodic flow, the time axis can be replaced with

a circle (given by θ ∈ [0, 2π)) since the dependence of the flow on time is periodic. Now

consider the trajectory of passive tracers in the extended flow domain and assume that

viscous forces in the center of the cavity are negligible. Then the vorticity is conserved

along the trajectories, and the level sets of vorticity form invariant surfaces of the motion

in the extended domain. Moreover if the boundaries of the flow field are analytic, the level

sets of vorticity form families of tori or invariant surfaces filled with closed orbits [199].
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Intersections of such tori with the plane θ = 0 yield families of closed level sets of vorticity.

Trajectories starting on such a curve would have the same Lagrangian average for the

vorticity and hence the same Eulerian average. Therefore such curve would provide

a constant boundary condition for the Laplace equation and proves the uniformity of

vorticity in the cavity core. For a quasi periodic flow, the extended domain has (at least)

four dimensions and no general description of the invariant surfaces in the flow exists.

Therefore, other means should be used to find the appropriate boundary condition for

(4.25). For Euler flows with arbitrary time dependence, the Lagrangian averages defined

above are not guaranteed to exist and no general conditions on distribution of mean

vorticity could be obtained.
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Chapter 5

A case study of mixing on the ocean

surface: 2015 Refugio Oil Spill

1 On May 19, 2015, an oil pipeline near Refugio State Park (located 16 miles north of

UCSB) broke down, which led to spilling of 21000 gallons of crude oil into the Pacific

Ocean. Soon after, a joint committee of federal and state agencies, along with the

pipeline company started monitoring the nearby coastal area to detect and control the

environmental damage caused by the oil spill. Our research group at UCSB also began

a collaboration with Libe Washburn’s research group at the Marine Science Institute to

estimate the oil spill spread on the surface of the ocean. The short-term goal of this

project was to provide the authorities with the information about the likely destinations

of floating oil slicks, so that a better cleanup strategy could be devised.

The process of computing the oil spread consisted of two major steps: in the first step,

performed in Washburn’s Lab, the surface velocity maps for the Santa Barbara channel

(i.e. the patch of Pacific Ocean between Santa Barbara coastline and Channel Islands)

1This chapter is a report on an ongoing project in collaboration with Libe Washburn’s group in
Marine Science Institute at UCSB, and Stefan Ivić’s group in University of Rijeka, Croatia. I also want
to thank Milan Korda for valuable discussions and guidance on the optimization problem.
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was computed using the data from a number of High-Frequency (HF) radars located on

several spots on the coastline. In the second step, we processed that data and rendered

hypergraphs (introduced in section 4.2) of Santa Barbara channel to estimate the likely

paths for the oil movement.

A major obstacle that we faced in the above project was that the velocity data

computed by HF radars do not satisfy two physical conditions that are expected for

incompressible flows: 1- the computed surface velocity had an artificially high divergence

which prohibits using hypergraphs (or other techniques based on flow map analysis like

LCS detection) for mixing analysis, and 2- the velocity is not zero on the grid points that

represent the shoreline and therefore violates the no-slip and no-penetration boundary

conditions. The novel aspect of our work was adding a post-processing step to eliminate

these problems. Instead of using the velocity field given to us, we looked for the closest

velocity field (in the kinetic energy sense) which is both divergence-free and zero-valued

on the shoreline. This leads to an optimization problem which has a closed-form linear

algebraic solution and can be easily implemented for large data sets. The post-processing

step significantly improved the performance of hypergraphs in detecting the destinations

of floating oil slicks.

In this chapter, we report on the above post-processing step and present some pre-

liminary results of applying hypergraphs to the Santa Barbara channel. The completion

of this project awaits the disclosure of field measurement data from the extent of oil spill

by state and federal agencies. This chapter is organized as follows: in section 5.1, we

review the oil spill incident. Section 5.2 gives a brief explanation of how HF radars work.

Section 5.3 discusses correcting the velocity field to satisfy the appropriate boundary

condition and divergence-free condition. In section 5.4, we present the hypergraphs and

their utility in the case of Refugio oil spill.
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5.1 The oil spill

2 The oil and gas that is produced on the offshore platforms near Gaviota coast is

transported through a subsea pipeline to an ExxonMobil onshore facility located 11 miles

north of Goleta. In this facility, the crude oil is separated from gas and other products,

and then sent through pipeline 901, which is 10-mile long and operated by Plains All

American Pipeline (PAA), to a pump station near Gaviota. From there, the oil is sent to

a gathering facility in north of L.A. and thereafter distributed to refineries throughout

Southern California. [200, 201, 202].

On the morning of 19 May, 2015, pipeline 901 breached in a location east of the

Refugio Beach State Park. The underground pipeline started leaking dozens of yards

away from US Highway 101, and soon after, the crude oil started flowing onto a storm

drainage under the highway, and found its way to the ocean by passing through the

narrow strip of the park that separates the highway from the beach.

The Refugio beach park is one of the most diverse and well-studied marine biological

environments on the west coast of US. As a result of the oil spill, hundreds of animals in

this area, including dolphins, sea lions and different species of birds and land mammals

were covered with crude oil and many of them died [203]. According to PAA, the cleanup

operation in the first two months after the spill has cost about 92 million dollars [204],

and as of July 2015, the company was expected to end up paying over 160 million dollars

more for other damages and legal claims [205]. Besides the local damages, there were

also numerous reports of tar balls washing up on other spots on the coast in Ventura as

well as beaches in Los Angeles county [206, 207]. In some of those spots, the collected

tar balls matched the chemical composition of Refugio oil, however, the comprehensive

results of such tests are not officially released. We expect that more information will be

2Disclaimer: All the information in this section is gathered from online news sources, and recounted
here, only to provide a complete narrative of the study.
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disclosed on this subject during the legal trial of the responsible party, which is going to

commence in on January 22, 2018.

5.2 HF radar and velocity maps

The operation of an HF radar is based on the backscattering of radio waves from the

ocean surface. The radar emits a radio wave, in the range of 10-50 MHz, and then collects

the scattered radio wave in the range of wave numbers that are commensurate with the

wave numbers of typical ocean surface waves. Using techniques from signal processing,

the radar extracts three pieces of information from each signal:

1. Target range: The HF radar emits a frequency modulated wave (i.e. the frequency

increases linearly with time), and the traveling time of the signal is estimated by

the large-scale frequency shift between the transmitted and received signal. This

traveling time multiplied by the wave speed gives the distance of the scattering

surface from the radar.

2. Target speed: The motion of the scattering surface causes an extra shift in the

frequency of the return signal due to the Doppler effect. This small-scale shift is

used to compute the radial component of the surface velocity (where the origin is

the radar location). Simultaneous measurements from (at least) one more radar is

used to resolve the full velocity vector at the target location.

3. Target bearing (direction): Each radar has multiple receiving antennas with differ-

ent orientations. The measurements of each antenna depends on its orientation and

the direction of the received wave. The latter can be estimated from the difference

in the measurements of the antennas.

A more detailed description of HF radar operation can be found in e.g. [208, 209].
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The HF radars are capable of measuring surface currents in large areas (up to 150km

in diameter), and producing maps with high resolution both in space (a few hundred

meters) and in time (10-15 minutes). This resolution is still unmatched by other means

of collecting ocean surface data, such as in-situ measurements by floating buoys (which

are too sparse in space) or satellite maps which have low spatial resolutions (around 30km

and lower). This makes the data obtained by HF radars a unique resource for guidance

of containment operations in case of hazardous material spills.

The data that was used to predict the motion of the oil slicks from the Refugio spill,

was rendered using a network of six to seven HF radars on the southern California coast

(see [210] for a description of the radar network in the Santa Barbara area). The farthest

north radar is located on Point Sal (5 miles west of Santa Maria) and the southernmost

was located in Manhattan beach. The data has a spatial and temporal resolution of 2

km and 1 hour, respectively. The top panel in fig. 5.1 shows a snapshot of data rendered

by the HF radar network.

5.3 Correction of the velocity field data

As mentioned in the beginning of this chapter, the velocity fields generated from HF

radar data suffer from two major inconsistencies: they are not divergence-free, and have

non-zero velocity on the shorelines. Note that due to the upwelling process, the non-zero

divergence is expected in some spots in the ocean, however, the data provided to us

had an order of magnitude higher divergence which is attributed to measurement errors.

These two problems have a large negative impact on the performance of the hypergraphs,

and we devised a method to remove them. The method is simple: at each time step, we

replace the velocity field with another velocity field that is divergence-free and zero on

the shorelines, and it has minimum kinetic energy of difference with the original velocity
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field. In the following, we formalize this problem and present the solution.

Let x denote the set of m grid points over which the velocity field data is given.

The surface velocity field data at each time instant is 2m-vector (the velocity has two

components at each point), and the set of all such vectors forms the vector space R2m.

We define an inner product on this space given by

< u, v >= u∗Wv, u, v ∈ R2m, (5.1)

where W is a semi-definite positive matrix which reflects the weight of each grid point in

the inner product. We choose W such that it reflects the kinetic energy of the flow field.

For example, if x is a uniform grid, we have W = 1
2
I2m×2m. Using this inner product, we

can define a new notion of distance on R2m,

dist(u, v) = ‖u− v‖ =
√
< u− v, u− v > =

√
(u− v)∗W (u− v). (5.2)

In words, the distance between u and v is the kinetic energy of velocity field u− v.

Let D be the discretized divergence operator on x. û is divergence-free (in the discrete

sense) if Dû = 0. The set of all divergence-free velocity fields forms a subspace in

R2m, called the null space of operator D, and denoted by N (D). We also define P

as a linear transformation that maps the velocity field to its values on the shoreline.

If there are s grid points on the shoreline, P is a 2s × 2m matrix such that Pii = 1

if xi is on the shore and Pij = 0 otherwise. The null space of P , denoted by N (P ), is

exactly the set of velocity fields that satisfy the no-slip boundary condition. As such, any

velocity field that satisfies both no-slip and divergence-free condition lies in the subspace

N = N (D) ∩ N (P ). Another way to represent this subspace is to define a new linear
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transformation E = [D P ]T and then

N = N (E) (5.3)

We can recast our problem as follows: Given u, find û which is the closest point of N

to u. Or, alternatively,

min
û
dist(û− u) s.t. Eû = 0. (5.4)

Since N is a (closed) subspace, the solution to the above problem exists, and fur-

thermore it is given by orthogonal projection of u onto this subspace [211]. Let A be a

full-rank matrix whose columns form a basis of N, then

û = AA†u. (5.5)

where A† is matrix pseudo-inverse [124] with respect to the inner product in (5.1). There

are two standard ways to compute a basis for the null space: most accurate and stable

method is based on SVD of E which could be computationally intensive while the second

method is based on the QR decomposition of ET which is faster and less memory de-

manding. In any case, A needs to be computed once, and then it can be used for different

snapshots of the velocity field.

In some studies on the ocean transport and mixing, the velocity on the shoreline is

replaced with non-zero velocity like diffusive models or bounce-back velocity to stop the

trajectories from running into the land. In that case, we would like the solution û to

satisfy Pû = b where b is the prescribed velocity field on the shoreline. We can revise the

above formulation to solve for such û that is also divergence-free, and the closest possible

choice to the original velocity field u. The revised form of the optimization problem for
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this case becomes

min
û
dist(û− u) s.t. Eû =

0

b

 . (5.6)

Let us assume for now that we have access to a velocity field v which satisfies the con-

straint of the above problem (Ev = [0 bT ]T ) but is not necessarily the closest choice to

u. We introduce the new optimization variable w = û− v, and note that

Ew = E(û− v) = Eû− Ev =

0

b

−
0

b

 = 0 (5.7)

Now we can rewrite (5.6) for w,

min
w
dist(w − (u− v)) s.t. Ew = 0. (5.8)

This problem shares an identical form with (5.4) and can be solved similarly using or-

thogonal projection. Once optimal w is found, we can invert the above variable change

and get the solution to (5.6),

û = AA†(u− v) + v. (5.9)

The question remains on how to find an initial v. This requires finding one solution to the

undetermined linear system Ev = [0 bT ]T , and it can be solved either by direct methods

(reduced QR for example) or iterative approaches.

Figure 5.1 shows the result of above optimization process (with b = 0) for a snapshot

of velocity field obtained by HF radar.
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Figure 5.1: The velocity field produced by HF radars (top), and optimized velocity
field with zero divergence and zero velocity on the shoreline (bottom). The divergence
field unit is sec−1.
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5.4 Detecting the extension of the spill using hyper-

graphs

Just a few days after the oil spill, reports of tar balls washing up on the shores in

different areas appeared in the news. (Note that oil slicks usually break up into tar balls

due to waves and wind). These shores include Ventura [212], Zuma beach in Malibu

[213], and Manhattan Beach [214].

Recall from section 4.2, that the hypergraphs partition the flow domain based on the

type of Lagrangian deformation that fluid elements experience. There are three types

of Lagrangian behavior: meso-hyperbolic (colored blue in hypergraphs) which shows

stretching, meso-elliptic (green) which shows rotational deformation, and meso-helical

(red) which shows combination of rotational and stretching behavior. The key property of

hypergraphs here is that they show the likely passages for finite-time advective transport

in the form of hyperbolic or helical streaks (blue and red streaks). This property was

first noted and utilized for oil spill path prediction in [170].

The hypergraphs of Santa Barbara channel in the days after the oil spill (fig. 5.2)

reveal a few features of mixing that are important for the oil spreading. First, the surface

current around the Refugio beach produces active mixing that moves the oil away from

the spill spot. The immediate destination of the oil is the counter-clockwise rotating

vortex north of Channel Islands (the vortex can be seen in velocity fields of fig. 5.1).

However, the red and blue streaks that extend out of this vortex show that oil is likely to

travel to the Santa Cruz Island (rightmost island in the figure) and the Ventura beach.

The red and blue streaks also point to other spots farther south on the shore as likely

destinations for the tar balls. These spots include the Zuma Beach and Manhattan Beach

where tar balls were sighted.
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Figure 5.2: Hypergraphs of Santa Barbara channel over different time lapses from the
start of the oil spill. The marked spots are some of the locations where tar balls were
spotted.
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5.5 Future work

In this chapter, we reported on using the real-time data generated by HF radars

combined with hypergraphs, for prediction of oil pill extent on the ocean surface. In

particular, we devised a post-processing scheme to correct the physical inconsistencies of

the data which are detrimental to the performance of the hypergraphs. Application to

the case of Refugio oil spill shows the promise of the this methodology (HF radar data +

hypergraph analysis) for almost real-time detection of oil spill extent, which could lead to

better cleanup or containment strategies. The next step would be to test the performance

of hypergraphs against the observational data and creating a software platform to make

this analysis more accessible for future applications.
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Conclusion

In this thesis, we studied a few topics at the intersection of fluid mechanics and mod-

ern dynamical systems theory. We demonstrated the promise of the Koopman operator

framework for comprehensive analysis of post-transient flows, and discussed the use of

classical signal processing techniques, as well as modern algorithms like DMD, in extrac-

tion of state space dynamics from data. We also investigated the mixing in a bounded

shear-driven flow using a combination of tools from the Koopman operator framework,

and other tools of dynamical systems like hypergraphs and mix-norm.

The most exciting direction in this line of research is to integrate control into the

data-driven framework of the Koopman operator. The control of complex fluid flows

have so far evaded general control startegies due to the high-dimensionality and extreme

nonlinearity of the flows. The few promising works in the area of Koopman control

framework, have dealt with low-dimensional systems, and the current challenge is to

extend this analysis to high dimensional systems. This necessitates development of more

efficient numerical algorithms for approximation of the Koopman operator, and more

effective sampling techniques in high-dimensional spaces.

Our study on lid-driven cavity flow shows that the mixing may not uniformly improve
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with the increase of Reynolds. This was attributed to the transfer of kinetic energy into

small-scale structures in the velocity field, which leads to formation of large coherent

islands in the flow. As such, it seems that a naive increasing of the power input to

the flow is not the wisest choice to improve the performance of mixing devices. One

strategy to enhance the mixing in these situations is to induce flow motions, for example

through modulation of driving solid boundaries, that could break up the those islands

based on the resonance phenomena. An ultimate framework for control and enhancement

of mixing in general situations would be to formulate the problem as a coupling of the

flow dynamics (i.e. Navier Stokes equations) and kinematics (i.e. passive advection equa-

tions) into a high-dimensional dynamical system and then apply control techniques. This

problem has been studied in a limited capacity so far due to the nonlinearity and high-

dimensionality, however, with the advent of data-driven controllers in the near futures,

could be a promising area for research.

Finally, one of the most significant problems in the current forefront of science is the

modeling of the earth climate. The central challenge lies in the uncertainty in charac-

teristics of mixing process in the atmosphere and ocean. The models that we studied

in this work are very simple compared to the climate models and neglect important fac-

tors like stratification and external forcing, however, they could be used to build insight

for behavior of ultimately high Reynolds flows and development of mixing models using

techniques like averaging and homogenization.
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[5] I. Mezić and A. Banaszuk, Comparison of systems with complex behavior, Physica
D: Nonlinear Phenomena 197 (2004), no. 1 101–133.

[6] B. O. Koopman, Hamiltonian systems and transformation in Hilbert space,
Proceedings of the National Academy of Sciences of the United States of America
17 (1931), no. 5 315.

[7] P. R. Halmos, The legend of john von neumann, The American Mathematical
Monthly 80 (1973), no. 4 382–394.

[8] K. E. Petersen, Ergodic theory, vol. 2. Cambridge University Press, 1989.

[9] R. Mane, Ergodic Theory and Differentiable Dynamics. Springer-Verlag, New
York, 1987.
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de fluides élastique et sur celles de la force expansive de la vapeur de lalkool,a
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