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A B S T R A C T   

Pregnancy-related acute respiratory distress syndrome (ARDS) is fast becoming a growing and clinically relevant 
subgroup of ARDS amidst global outbreaks of various viral respiratory pathogens that include H1N1-influenza, 
severe acute respiratory syndrome (SARS), middle east respiratory syndrome (MERS), and the most recent 
COVID-19 pandemic. Pregnancy is a risk factor for severe viral-induced ARDS and commonly associated with 
poor maternal and fetal outcomes including fetal growth-restriction, preterm birth, and spontaneous abortion. 
Physiologic changes of pregnancy further compounded by mechanical and immunologic alterations are theorized 
to impact the development of ARDS from viral pneumonia. The COVID-19 sub-phenotype of ARDS share over-
lapping molecular features of maternal pathogenicity of pregnancy with respect to immune-dysregulation and 
endothelial/microvascular injury (i.e., preeclampsia) that may in part explain a trend toward poor maternal and 
fetal outcomes seen with severe COVID-19 maternal infections. To date, current ARDS diagnostic criteria and 
treatment management fail to include and consider physiologic adaptations that are unique to maternal physi-
ology of pregnancy and consideration of maternal-fetal interactions. Treatment focused on lung-protective 
ventilation strategies have been shown to improve clinical outcomes in adults with ARDS but may have 
adverse maternal-fetal interactions when applied in pregnancy-related ARDS. No specific pharmacotherapy has 
been identified to improve outcomes in pregnancy with ARDS. Adjunctive therapies aimed at immune- 
modulation and anti-viral treatment with COVID-19 infection during pregnancy have been reported but data 
in regard to its efficacy and safety is currently lacking.   

1. Introduction 

The acute respiratory distress syndrome (ARDS) is a heterogenous 
disorder characterized by alveolar epithelial barrier disruption and 
dysregulated inflammation and remains a disease associated with high 
morbidity and mortality [1]. The recent COVID-19 pandemic has led to a 
worldwide increase in ARDS [2]. Once regarded as a relatively rare 
occurrence, pregnancy-related ARDS has now become a more common 
clinical dilemma that results in poor maternal and fetal outcomes [3–6]. 
This recent epidemiological trend is likely secondary to recent outbreaks 
of highly virulent respiratory pathogens (COVID-19, severe acute res-
piratory syndrome (SARS), middle easy respiratory syndrome (MERS), 
H1N1 influenza) and the physiologic maternal adaptations of pregnancy 
that include changes to the respiratory, cardiovascular, immune, and 
coagulation system that can predispose pregnant women to severe 

respiratory disease and sepsis [6–8]. This review discusses the historical 
definitions and epidemiology of pregnancy-related ARDS, pathogenesis 
of ARDS disease, and a brief discussion of ARDS management with 
clinical application in pregnancy. Key differences between classical 
ARDS and the sub-phenotype of COVID-19 ARDS (CARDS) will also be 
reviewed. 

2. Epidemiology 

2.1. Pregnancy and ARDS 

A large population-based cohort study from 1999 to 2000 reported a 
historical incidence rate of acute lung injury to be 78.9 cases per 
100,000 person-years with an in-hospital mortality rate of 38.5% [9]. In 
this modern era of Berlin Criteria for ARDS definition and lung 
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protective ventilation, the prevalence of ARDS was more recently found 
to be 10%, with ARDS accounting for 23% of all ventilated patients [10]. 
It remains a very deadly disease with mortality as high as 34.9% for 
patients with mild ARDS and 46.1% in those with severe ARDS [10]. 
There have been at least 8 million cases of COVID-19 in the United States 
and over 1 million deaths reported by the CDC to date, with initial es-
timates on the annual incidence of CARDS probably exceeding that of 
classical ARDS by at least two-fold [11]. 

The incidence of ARDS during pregnancy is estimated to be similar to 
the historical incidence of ARDS in the general population. The litera-
ture on ARDS in the obstetric population is limited to case reports and 
series with a wide reported incidence from 17 to 130 cases per 100,000 
deliveries [12–14]. These estimates show discrepant regional variation, 
and significant differences in ARDS definitions and study design that 
limit the precision of these studies. Maternal deaths related to ARDS 
have been historically high, ranging from 24 to 39% in older studies [12, 
13,15]. A recent large epidemiologic review through the US Agency for 
Health Quality and Research national database reported an annual 
maternal death rate associated with ARDS ranging from 9 to 14% [16]. 
Perinatal mortality attributed to maternal ARDS is between 20 and 30% 
[12,14]. 

The wide range of maternal mortality rates in ARDS may in part be 
attributed to variable susceptibility of pregnant women to viral respi-
ratory pathogens and the recent epidemics and pandemics of deadly 
influenza and novel coronavirus variants. For example, during the H1N1 
pandemic in 2009, pregnant women with severe H1N1 infections 
accounted for 12% of all pregnancy-related deaths [4]. Further, 5% of 
overall deaths that year were of pregnant women, despite pregnant 
women comprising only 1% of the total population [5], and pregnant 
women accounted for 6.3% of influenza-related hospitalizations and 
5.9% of ICU admissions [17]. Similarly, high case fatalities for pregnant 
women were found during the SARS-CoV and MERS-CoV epidemic at 
19% and 27% respectively [18]. 

2.2. Pregnancy and COVID-19 

2.2.1. Maternal outcomes 
Initial studies reported most pregnant women infected with COVID- 

19 remained asymptomatic or with self-limited disease without 
increased susceptibility [19,20]. The reassurance of these initial small 
regional findings was confounded by retrospective data without 
appropriate control groups that account for age and comorbidities. 
Consistent among larger systematic reviews and case control cohort 
studies accounting for these confounders, pregnancy is a risk factor for 
the development of severe COVID-19-related illness [21–23], with 
symptomatic pregnant women having higher rates of ICU admission 
(10.5 vs 3.9 per 1000 cases), mechanical ventilation support (2.9 vs 1.1 
per 1000 cases), need for ECMO (0.7 vs 0.3 per 1000 cases), and 
maternal death (1.5 vs 1.2 per 1000 cases), compared with symptomatic 
non-pregnant women of reproductive age [24]. 

Additionally, COVID-19 is a significant risk factor for both poor 
maternal and perinatal outcomes. The multi-institutional, multinational 
INTERCOVID cohort study demonstrated that the diagnosis of COVID-19 
alone among consecutively enrolled hospitalized pregnant women was 
associated with a higher risk of pregnancy complications. The study 
reported increased preeclampsia/eclampsia (RR 1.76 95% CI 
1.27–2.43), severe co-bacterial infections (RR 3.38 95% CI 1.64–7.01), 
ICU admissions (RR 5.04 95% CI 3.13–8.10), and maternal mortality 
(RR 22.3 95% CI 2.88–172), in addition to poor neonatal outcomes [25]. 
Additionally, among hospitalized pregnant women for COVID-19, the 
majority (50–80%) will deliver during the same hospitalization with a 
c-section rate of 50% or above, and over 25% of these cases being pre-
term births [26,27]. 

There may be a subset of pregnant women at risk of severe respira-
tory illness with COVID-19 [28,29]. In a large review of over 192 studies 
that totaled 64,000 pregnant women with suspected or confirmed 

COVID-19, 17.4% had developed pneumonia and 13.4% had developed 
ARDS [21,30]. Known risk factors for severe COVID-19 and maternal 
death include advanced maternal age, overweight/obesity, smoking, 
Black and Hispanic ethnic minority, pre-existing medical conditions 
such as hypertension, asthma, and diabetes, and the presence of more 
than one comorbidity (Fig. 1) [20,28–31]. Preeclampsia is both a risk 
factor for severe-COVID-19 among pregnant women [30,32], and an 
adverse obstetric-event outcome related to acute COVID-19 infection 
[3]. Among hospitalized pregnant women with COVID-19, 69% of 
women have severe disease, based on pre-specified criteria that includes 
an arterial partial pressure of oxygen divided by the fraction (percent) of 
inspired oxygen (P/F) ratio of <300, and 31% had critical disease, 
marked with respiratory failure needing mechanical ventilation support 
or the presence of shock with multiple organ dysfunction [33]. All 
women in this study with critical disease were in advanced gestation of 
pregnancy (>24 weeks gestation) and the mean body mass index of the 
overall cohort was 34kg/m2. These findings are consistent with the 
COVIDPREG study that found the risk factors for maternal intubation 
include obesity (cause-specific hazard ratio (CSH) 2.0, 95% CI 1.05–3.8, 
p = 0.03) and term of pregnancy (CSH 1.07, 95%CI (1.02–1.1), per + 1 
week gestation, p = 0.01) in their multivariate analysis [34]. Among 
these women admitted to the ICU, 39% were intubated, 8% required 
V–V ECMO support, and 37% went on to require urgent facilitated 
maternal delivery in the ICU with maternal respiratory worsening as the 
main indication for majority of these cases. The CANCOVID-Pres 
observational study also confirmed an increased risk of adverse 
maternal outcomes [35]. Further, with the onset of the Delta variant (B 
1.6.17.2), regional US data found an increase in vaccine-breakthrough 
infections and pregnant women admitted with severe disease, with 
more than 25% of these women requiring hospital admission for severe 
or critical illness with the Delta Variant [36]. 

Fig. 1. Physiological changes during pregnancy that contribute to respiratory 
compromise and susceptibility to COVID-19 induced lung disease. The yellow 
inset box shows risk factors and associations for severe COVID-19 disease 
among pregnant women. ACE2 – angiotensin converting enzyme 2, TMPRSS2 – 
transmembrane serine protease receptor, GE – gastroesophageal, FRC – func-
tional residual capacity, Hgb – hemoglobin, Hct – hematocrit. Copyright Satyan 
Lakshminrusimha. 
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2.2.2. Fetal outcomes 
With the initial onset of the COVID-19 pandemic, the primary con-

cerns regarding fetal outcomes were with respect to COVID-19 and 
vertical transmission. The placenta usually acts as an effective barrier 
preventing maternal transmission to the fetus. However, known viral 
pathogens (i.e., CMV, HSV, VZV, and Zika) have demonstrated vertical 
transmission and the consequence of devastating congenital infections 
and intrauterine death [37]. COVID-19 has shown minimal risk of ver-
tical transmission in pregnancy [33,38,39]. 

Animal models of maternal hypoxia demonstrate an upregulation of 
the angiotensin converting enzyme 2 (ACE2) receptor, the SARS CoV2 
receptor for viral entry, in placental tissue [40] but with low 
co-expression of the serine protease receptor (TMPRSS2), a receptor that 

is critical for S protein priming needed with COVID-19 viral entry [41, 
42]. Placental pathology of severe CARDS mothers has shown no sig-
nificant morphologic changes related to in-utero infection, but instead 
has signs of hypoxic changes and placental insufficiency, marked with 
decidual arteriopathy and features of maternal vascular mal-perfusion 
[3,43,44]. Although there have been some case reports of placental 
swabs positive for COVID-19 in both asymptomatic and symptomatic 
COVID-19 mothers at delivery, neonates born to COVID-19 mothers at 
delivery have largely been negative for COVID-19 [3,26,39,45]. Further, 
significant neonatal respiratory distress appears rare in COVID-19 pos-
itive neonates [46]. 

Neonatal morbidity has been related to higher rates of low birth 
weight (16%), preterm birth (15–23%), and neonatal intensive care 
admissions (24%) [3,25–27,32,33,38]. Two recent studies have 
confirmed small but statistically significant adverse neonatal outcomes 
with maternal COVID-19 infections [35,47]. Although rates of overall 
still-births and perinatal mortality remain relatively low [26,27], there 
is an increased risk of still-births and neonatal death in COVID-19 pos-
itive mothers compared to COVID-19 negative mothers [32]. 

3. Diagnostic criteria 

3.1. Adaptation of adult ARDS criteria to ARDS in pregnancy 

ARDS is characterized clinically by acute hypoxemia, non- 
cardiogenic pulmonary edema, and reduced pulmonary compliance. It 
was first described in an initial case series by Ashbaugh et al. in 1967 
[48], but without a unifying diagnosis until the American-European 
Consensus Criteria (AECC) in 1994 [49]. However, several issues arose 
from the AECC criteria, and in 2012, members of the ARDS definition 
task force had revised and introduced the Berlin definition in response 
(Table 1) [50]. Since its application, the Berlin criteria provides better 
predictive enrichment, but the diagnosis remains clinically challenging 
and underrecognized. 

Thus far, there is no clear consensus on pregnancy-specific ARDS 
criteria [51–53]. It has been proposed that “obstetric-related ARDS” be 
limited to the onset within the duration of pregnancy and 1-week 
post-partum, while others have included ante-partum and post-partum 
patients of up to 1-month [12,51,54]. To date, the PALICC (Pediatric 
Acute Lung Injury Consensus Criteria) developed in 2015, is the only 
widely accepted specific ARDS criteria developed following the Berlin 
modification, to address key differences in a specific sub-population 
(pediatric ARDS (PARDS)) [55]. As in PARDS, there are physiologic 
differences that need to be considered with ARDS in pregnancy. The 
primary etiologies of obstetric ARDS are often distinct from nonpregnant 
ARDS with specific obstetric causes: tocolytic-induced pulmonary 
edema, amniotic fluid embolism, preeclampsia, acute fatty liver of 
pregnancy, gastric aspiration, placental abruption, obstetric hemor-
rhage, chorioamnionitis, endometritis, septic abortion and retained 
products of conception [12,14,56,57]. The potential etiologies of 
obstetric-related ARDS can impact the primary pathophysiology of dis-
ease, in addition to the progression and outcome of disease. Second, 
application of adult stratifications of hypoxemia severity (mild, mod-
erate, severe) do not take in account the higher physiologic PaO2 levels 
seen in pregnancy and other important maternal-fetal interactions at 
varying PaO2 thresholds. 

In pregnancy, mean PaO2 levels are greater than 100 mmHg and 
significantly higher at all phases of pregnancy compared to non- 
pregnant women due to increase in minute ventilation, with tidal vol-
ume increasing by 30–35% and alveolar ventilation by 50–70% [58,59]. 
Maternal oxygen consumption increases incrementally throughout 
pregnancy, by 20–33% per term gestation, due to increased fetal de-
mands and maternal metabolic processes [59,60]. Mild respiratory 
alkalosis shifts the oxygen dissociation curve to the left and slightly 
higher PaO2 levels optimize oxygen delivery to maternal tissues and 
fetus. The maternal thresholds of acute hypoxia that result in fetal 

Table 1 
AECC and Berlin definition of acute respiratory distress syndrome.  

Characteristics 1994 AECC Definition 2012 Berlin Definition 

Onset Acute Onset Within 1 week of a known clinical 
insult or new or worsening 
respiratory symptoms 

Chest Imaging Bilateral infiltrates Bilateral opacities on Xray or CT 
scan-not fully explained by 
effusions, lobar/lung collapse, or 
nodules 

Origin of 
Edema 

Exclusion of left atrial 
hypertension or pulmonary 
wedge pressure ≤18 mmHg 

Respiratory failure not fully 
explained by cardiac function or 
volume overload. Need objective 
assessment (i.e‥ 
echocardiography) to exclude 
hydrostatic edema if no risk factor 
is present 

Oxygenation - PaO2/FiO2 ≤ 300 mmHg 
is ALI  
- PaO2/FiO2 ≤ 200 is ARDS 

Acute onset of hypoxemia defined 
as PaO2/FiO2 < 300 mmHg on at 
least PEEP 5cmH2Oa  

- PaO2/FiO2 of 201–300 mmHg is 
mild ARDS  
- PaO2/FiO2of 101–200 mmHg is 

moderate ARDS  
- PaO2/FiO2 ≤ 100 mmHg is 

severe ARDS  

a PEEP may be delivered non-invasively if the criteria are in the mild category. 
ARDS, acute respiratory distress syndrome; FiO2, fraction of inspired oxygen; 
PaO2, partial pressure of arterial oxygen; PEEP, positive end-expiratory pres-
sure; SpO2, peripheral capillary oxygen saturation. 

Fig. 2. Pathophysiology of COVID-19 associated ARDS in pregnancy. Physio-
logical changes in a normal lung during pregnancy are shown on the left side. 
The alveolar-capillary barrier is conducive for gas exchange in a normal lung. 
Pathological changes with severe ARDS include epithelial injury, leakage of 
proteinaceous fluid into the alveoli, oxidative injury, inflammation, micro-
thrombi and endothelial damage in the pulmonary vessels. FRC – functional 
residual capacity, IL – interleukin, TNF-α (tumor necrosis factor – alpha), O2

.- - 
superoxide anions, PA – pulmonary artery, Qp – pulmonary blood flow. 
Copyright Satyan Lakshminrusimha. 
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hypoxia and shock are unknown. Acute compromise in maternal oxygen 
delivery shifts uteroplacental blood flow to maternal vital organs, with 
precipitous declines in fetal oxygen delivery [61]. Animal models 
showing even mild to moderate reductions in maternal arterial satura-
tions (to levels of 85%) can have a significant impact of fetal venous 
oxygenation content, nearing thresholds that result in fetal anaerobic 
metabolism increasing the risk of central nervous system damage [62, 
63]. The diagnostic precision of adult ARDS criteria in pregnancy and its 
validity at predicting adverse maternal and fetal outcomes needs to be 
further studied. 

4. ARDS pathophysiology 

ARDS can be caused by a variety of insults to the alveolar capillary 
barrier that include both direct pulmonary (bacterial and viral pneu-
monia, inhalational injury, aspiration) and indirect non-pulmonary 
sources (non-pulmonary sepsis, trauma, transfusion-related injury) 
[64]. The normal alveolar-capillary unit consists of a single layer of 
endothelial cells and an alveolar epithelial layer lined mainly with type I 
and type II alveolar cells (Fig. 2), that restrict the passage of small sol-
utes and allow for mainly the diffusion of carbon dioxide and oxygen [1, 
65]. Further, type I and type II alveolar cells have additional capacity to 
absorb excess alveolar fluid via ion transport channels, with further fluid 
resorption into the lung interstitium. 

The pathophysiology of ARDS is complex but can be primarily 
characterized by injury to the alveolar capillary barrier leading to 
alveolar edema with high protein fluid, decreased alveolar fluid clear-
ance via direct alveolar cellular injury, and subsequent surfactant loss 
[66–68]. Injury to the capillary endothelium increases endothelial 
permeability and further activates and propagates a systemic inflam-
matory response and coagulation cascade [1,67]. Intra-alveolar mac-
rophages release chemotactic factors and chemokines that enhance 
neutrophil and circulating macrophage recruitment from the impaired 
lung microvasculature into the interstitium and alveolar space. It is 
these key pathogenic features of ARDS: alveolar epithelial injury, 
capillary endothelial injury, hyperinflammation, and coagulation and 
fibrinolysis dysfunction, that characterize the acute exudative phase of 
ARDS marked with hallmark features of hypoxemia from 
intra-pulmonary shunt and dead space, impaired ventilation, and poor 
respiratory compliance [69]. The use of positive pressure ventilation 
especially with high tidal volume and its increased shearing effects and 
high airway pressure, further disrupts the integrity of the lung epithe-
lium and endothelium and exacerbates a cascade of biomechanical in-
flammatory injury and alveolar edema [70,71]. The key pathogenic 
features of ARDS have led to primary research in selected plasma bio-
markers of ARDS, to aid in classifying patients by predominant molec-
ular pathogenesis (i.e., hyperinflammation, pro-coagulation) and 
sub-phenotypes, for risk prediction and targeted therapy development 
[64,72,73]. 

4.1. Clinical manifestations and pathologic features of COVID-19 ARDS 
sub-phenotype 

Viral-induced ARDS are typically characterized by direct alveolar 
epithelial injury, disrupted intercellular junctions, and resultant cellular 
death [74]. Epithelial cell death via apoptotic or necrotic mechanisms 
are caused from direct lytic viral infections, neutrophil-derived media-
tors, and inflammatory macrophages, with loss of the alveolar epithelial 
barrier integrity. In contrast, with respect to CARDS, there is increasing 
evidence to suggest CARDS is primarily characterized by endothelial 
disruption from impaired microvascular permeability, significant 
thrombotic burden, and microcirculatory dysfunction with systemic 
inflammation. Autopsy studies of patients who have died from 
COVID-19 reveal findings of both classic ARDS marked with diffuse 
alveolar damage, hyaline membrane formation, and alveolar cell wall 
injury, but also significant pulmonary intracapillary thrombotic burden 

and of small pulmonary arteries [75,76]. 
The L-type CARDS phenotype has been described as a unique sub- 

type of CARDS with normal respiratory system compliance but with 
severe hypoxemia attributed to ventilation perfusion mismatch from 
pulmonary vasoconstriction [77,78]. Some clinicians argue that the 
L-type CARDS is the earlier stage of CARDS and may further progress to 
an H-type (classical features of ARDS), characterized by poor respiratory 
system compliance, increased lung weight, and non-aerated grav-
ity-dependent regions [79]. Among these sub-groups of patients with 
CARDS, those with both poor respiratory compliance and high throm-
botic burden with elevated d-dimers, have the highest risk of death 
demonstrating mortality rates of 56% [80]. Most deaths related to 
CARDS have evidence of thrombotic disseminated intravascular coag-
ulation and multi-organ failure usually in patients with known comorbid 
risk factors that include hypertension, cardiovascular disease, diabetes 
mellitus, lymphopenia, and kidney disease [81]. Radiographic features 
unique to CARDS include peripheral distribution of opacified disease, 
frost-glass opacities, bilateral and multifocal lung disease, vascular 
thickening, with a lower lung disease predominance [82,83]. 

5. Physiologic considerations in pregnancy and development of 
ARDS 

There are interacting multi-system physiologic changes during 
pregnancy that increase the risk of severe lower respiratory tract in-
fections and the manifestation of ARDS (Table 2 and Fig. 1). These 
physiologic adaptive changes seen with maternal immunity, respiratory 
and cardiovascular physiology will be discussed in detail within the 
context of severe COVID-19 infection. 

The molecular mechanisms of maternal immunopathology of preg-
nancy that increase susceptibility to severe viral disease and adverse 
fetal outcomes especially with certain RNA viruses that include influ-
enza (H1N1) and novel coronaviruses (SARS, MERS, and COVID-19) are 
complex and needs further investigation. In COVID-19, severe lympho-
penia and an imbalance between T regulatory to TH17 cells are seen in 

Table 2 
Maternal physiologic considerations in pregnancy with manifestation of ARDS.  

System Physiologic Changes 

Respiratory  • Upward displacement of diaphragm decreasing expiratory 
reserve volume and functional residual capacity  

• Chest wall expansion  
• Hyperemia, mucosal hypersecretion, and edema of the upper 

respiratory tract secondary to hormonal changes  
• Increased respiratory drive secondary to sensitivity of central 

chemoreceptors of the hypothalamus from hormonal changes 
mimic respiratory illness and delay early diagnosis of 
respiratory disease 

Cardiovascular  • Increase in maternal plasma volume and cardiac output  
• Decrease in systemic vascular resistance 

Renal  • Increase in ACE2 activity and hormonal components of the 
renin-angiotensin aldosterone system (RAAS) 

Hematological  • Increase in pro-coagulant clotting factors  
• Decrease in fibrinolytic activity 

Immunity  • Immune chronology with advancing gestation that may 
increase risk of immune dysregulation: 1) first trimester and 
third characterized by pro-inflammatory state to promote im-
plantation and labor 2) Second trimester characterized by anti- 
inflammatory stage to promote fetal growth  

• Shift in T cell population towards T-helper 2 polarization 
promoting humoral response over cellular response  

• Impaired adaptive immune response and impaired viral 
clearance  

• Susceptibility to cytokine storm from innate immune system 
overactivation  

• Further immunomodulatory roles of pregnancy hormones and 
increase susceptibility of viral pathogens of the respiratory 
mucosa 

Gastrointestinal  • Lower esophageal tone increasing risk of aspiration and 
gastrointestinal reflux  

M.J. Lim et al.                                                                                                                                                                                                                                   



Seminars in Fetal and Neonatal Medicine xxx (xxxx) xxx

5

those with severe COVID-19 and multi-organ failure [84]. An increase in 
TH17 cells relative to T regulatory cells can incite an uncontrolled 
cytokine storm and tissue pathology [85,86]. In pregnancy, CD4 T cell 
subset imbalance is a known molecular mechanism of immunopathology 
in fetal loss and severe pregnancy complications such as preeclampsia 
[87–89]. In physiologic pregnancy, the tight regulation of Treg/TH17 
and increase in Treg cells allows for implantation and growth of the 
semi-allogenic fetus [90]. The deregulation of Treg/Th17 cells has been 
proposed as an important mechanism in the pathogenesis of adverse 
pregnancy outcomes observed with severely infected COVID-19 preg-
nant women [84]. 

Hemodynamic adaptations in pregnancy ensure adequate uterine 
blood and fetal-maternal exchange are primarily regulated by the renin- 
angiotensin aldosterone system (RAAS). All hormonal components of 
the RAAS system are upregulated leading to an increase in maternal 
plasma volume and cardiac output and decrease in systemic vascular 
resistance via upregulation in some Ang-(1–7) levels via ACE2 enzy-
matic activity [91–93]. Viral entry into the host cell in COVID-19 
infection is via the ACE2 receptor [94]. The competitive inhibition 
and suppression of ACE2 activity with an acute COVID infection is 
thought to molecularly explain, in part, the significant endothelial 
dysfunction and disordered coagulation seen with severe infection [95]. 
Severe COVID-19 infection and pathologic hypertensive disorders of 
pregnancy (i.e., preeclampsia) share similar pathophysiologic features 
of microvascular thrombosis and multi-organ dysfunction via a dysre-
gulated RAAS system and ACE2 suppression [96–99]. In both states, 
additional complement activation is seen that may further exacerbate a 
pro-coagulopathic condition and generate thrombotic endovascular 
injury [100,101]. These similar overlapping cellular mechanisms of 
injury raise the possibility that pregnant women, especially in those at 
high risk, are at significant risk for both severe COVID-19 infection with 
multi-system organ involvement and precipitating severe preeclampsia. 

6. Treatment/management 

The mainstay of ARDS management remains limited to supportive 
care [69,102]. The landmark ARMA trial supported by the US National 
and Heart Lung and Blood Institute ARDS Network published in 2000 
[103], compared the effects of high tidal volume (TV) ventilation (12 
ml/kg of predicted body weight {PBW}) to lower tidal volume ventila-
tion (6 ml/kg of PBW), and found a lower TV approach improved 

survival, shortened duration of mechanical ventilation, and attenuated 
the systemic inflammatory response with recovery of extra-pulmonary 
organ failure. Since this historic clinical study, the central focus of 
ARDS management has been to minimize the disruptive mechanical 
forces of invasive ventilation as well as minimize excessive oxygen 
therapy that have been known to further propagate lung inflammation 
and impair lung healing. Despite a vast number of clinical treatment 
trials published to date, there have been only a handful of studies 
showing a positive outcome [102,104,105]. The standard supportive 
strategy to current adult ARDS management includes mechanical 
ventilation, neuromuscular blockade, prone positioning, fluid manage-
ment and rescue therapies (i.e., inhaled nitric oxide). Important clinical 
considerations in pregnancy and the COVID ARDS sub-phenotype, with 
each respective strategy will be discussed (Fig. 3). 

6.1. Mechanical ventilation 

6.1.1. Low tidal volume 
Since the ARMA trial and further support from many clinical and pre- 

clinical studies [106–108], the focus of mechanical ventilatory support 
is to minimize the role of mechanical shearing forces on generating 
secondary lung injury. In the ARDS lung, there is non-uniformly aerated 
lung, with consolidated areas of diseased inflamed lung and non-aerated 
gravity dependent regions [109,110]. Low tidal volume (TV) ventilation 
prevents regional overdistention with positive pressure ventilation and 
avoid the stress and strain of mechanical ventilatory forces on the 
diseased lung. The current standard of approach is to scale TV to PBW 
and to minimize driving pressure with target plateau pressures to <30 
cmH20 [103]. 

It is important to note that there are no formal studies evaluating the 
efficacy of low TV ventilation in pregnant and postpartum women 
[111]. For now, both American College of Obstetricians and Gynecolo-
gists (ACOG) and Society of Maternal Fetal Medicine (SMFM) recom-
mends a “lung protective strategy approach” but with saturation goals of 
>95% for all critically ill pregnant women, inclusive of CARDS 
[112–114]. A ventilator strategy that provides optimal lung protection 
during pregnancy needs further area of study. Compared to 
non-pregnant women with ARDS, there are potentially significant dif-
ferences in the distribution of aerated lung and gravity dependent areas 
of atelectasis and diseased lung, due to the upward displacement of the 
diaphragm, compensatory rib expansion with a subcostal angle 

Fig. 3. General principles of management of COVID-19 associated ARDS in pregnancy. Benefits and potential concerns of some of the therapeutic strategies are 
shown. NO – nitric oxide, NIV – non-invasive ventilation, PBW – predicted body weight, NMB – neuromuscular blockade, PEEP – positive end-expiratory pressure. 
See Table 3 for additional information. Copyright Satyan Lakshminrusimha. 
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widening (from 68 to 103◦), and a baseline decrease in functional re-
sidual capacity (FRC) [111,115–117]. Radiographic phenotypic assess-
ment of ARDS have not been assessed in the pregnancy population, and 
thus responsiveness to ventilator manipulations is further limited. 
Application of target TV ventilation to PBW calculation also needs 
further study in pregnancy. The use of PBW in the calculations of TV in 
the ARDSnet protocol are fixed and are also based on nonpregnant data 
for ideal body weight for height [111]. 

In addition, the clinical application of a low TV ventilation approach 
is facilitated by the allowances of permissive hypoxia and hypercapnia 
(ARDSnet goals: PaO2 of 55–80 mmHg, SpO2 88–95% and pH of 
7.3–7.45). The goals of a safe permissible threshold of lower PaO2 and 
PCO2 goals in pregnancy is unknown but limited when considering the 
risk of adverse maternal-fetal interactions and fetal hypoxia. As stated 
earlier, the normative PaO2 and SPo2 ranges are even higher among 
healthy pregnant [118–120] with expert opinion suggesting the PaO2 
goals in pregnancy should be at least >70 mmHg and SpO2 > 95% [121, 
122]. 

Permissive hypercapnia and pCO2 thresholds are also important 
considerations of an applied ventilation strategy in ARDS within preg-
nancy. Pregnant women have a known higher minute ventilation, when 
compared to non-pregnant women, and chronic respiratory alkalosis 
(with pH of 7.4–7.45, pCO2 27–32 mmHg) with renal compensation 
(HCO3 18–21 mEq/L) [123]. The upper maternal thresholds of pCO2 
goals to allow for low TV ventilation approach is unknown, with con-
cerns that maternal and fetal hypercapnia are known to be tightly 
associated with each other. The allowance of fetal hypercapnia and 
acidosis results in a rightward shift in the oxyhemoglobin curve, limiting 
binding of oxygen molecules to fetal hemoglobin, and impairing fetal 
oxygenation [111,124]. 

6.1.2. PEEP 
Positive-end expiratory pressure (PEEP) is an important lung pro-

tective strategy in ARDS to not only help maintain adequate oxygena-
tion, but for maintenance of alveolar recruitment and prevent cyclic 
collapse of distal airspaces with a low tidal volume. There have been 
several clinical trials to assess a given PEEP strategy, and to date, no 
single clinical trial has shown clinical superiority with a PEEP strategy 
[125–127]. However, a meta-analysis has shown higher PEEP improves 
survival among a sub-group of patients with moderate to severe ARDS 
[128]. Compared to classical ARDS, it has been proposed that the 
CARDS is a disease of severe hypoxemia but of largely compliant lungs, 
with severe hypoxemia related more to dead-space and V/Q mismatch 
from microvascular thrombi than of non-aerated lung regions. Thus, 
some have argued that of limited benefit with a high PEEP strategy in 
CARDS [77], with small studies showing no additional clinical benefit of 
high PEEP support [129,130]. 

In pregnancy, a high PEEP strategy for ventilatory support is 
generally considered controversial. With a high PEEP strategy, there 
may be some benefit with alveolar recruitment, especially considering a 
low baseline FRC. However, pregnant patients are at risk of significant 
hemodynamic changes, especially in late gestation with positive pres-
sure support [131–133]. Hypotension with resultant maternal and fetal 
shock can result from impaired venous return from high intrathoracic 
pressure paired with a compressed inferior vena cava (IVC) from an 
expanding uterus. Thus, the risks and benefits of the upper thresholds of 
PEEP support applied in pregnancy must be thoroughly considered and 
close maternal and fetal monitoring is needed for any manipulation of 
end-expiratory pressure. 

6.1.3. Non-invasive positive pressure ventilation 
The advent of non-invasive ventilation (NIV) has been shown to 

reduce the need for endotracheal intubations and mortality among adult 
patients with varied etiologies of acute respiratory failure. However, 
whether NIV is beneficial in ARDS is unclear [1,134]. There have been 
some studies that have shown it may be beneficial in mild ARDS and 

may avoid secondary iatrogenic complications (i.e., delirium, neuro-
muscular weakness, and nosocomial infections) [135–137]. Conversely, 
there are clinical concerns that the use of prolonged NIV without sig-
nificant improvement may delay intubation and invasive mechanical 
ventilation support. Additionally, with the inability to control for min-
ute ventilation with NIV, patients with evolving and worsening ARDS 
may experience further deleterious effects from high TV ventilation. A 
recent sub-study of the LUNG SAFE trial showed the use of NIV was 
associated with higher ICU mortality than in those who were 
matched-controlled with invasive ventilation [10]. Further the use of 
NIV was independently associated with under-recognition of ARDS by 
clinicians at study entry and throughout the clinical trial. In contrast, the 
FLORALI study showed in patients with acute hypoxemic failure 
(marked with P/F < 300), the use of high flow improved 90-day survival 
compared to those with standard oxygen support or non-invasive 
ventilation, and reduced rates of intubation in those with moderate to 
severe hypoxemia (P/F < 200 mm Hg) [138]. The use of NIV in 
COVID-19 patients outside the ICU was associated with success rates 
between 60 and 75% [139]. 

There is limited data regarding clinical use of NIV and its effective-
ness in pregnancy. Routine use as an oxygen modality is not recom-
mended given concerns for higher risk of aspiration secondary to 
physiological changes of decreased lower esophageal tone, delayed 
gastric emptying, risk of aspiration, and increased intrabdominal pres-
sure [51,131]. However, the routine use of NIV/HFNC support has been 
more widely reported in the literature for management of respiratory 
failure in COVID-19 and pregnancy. In a large systematic review of 
pregnant women with COVID-19, ICU admission rate was 7.2% and 
15.1% required the use of NIV [27]. The COVIDPREG study reported 
high flow nasal cannula and non-invasive ventilation successfully 
managed as its sole oxygenation technique in 51% of critically ill 
pregnant women with severe COVID-19, with 29% of women requiring 
several different oxygenation modalities and 39% of the overall cohort 
needing intubation and invasive ventilation support [34]. Endotracheal 
intubation in pregnancy is difficult. The incidence of failed intubations is 
eight times greater than that of the non-pregnant population [56,140]. 
Increased mucosal edema of the upper airway, the anatomic changes 
related to pregnancy, and poor FRC make pregnancies high risk for a 
difficult airway and intolerant of withstanding prolonged periods of 
apnea [56]. Further, supine positioning late in gestation and the 
increased intrathoracic pressure with positive pressure ventilation may 
result in significant hypotension during the peri-intubation period and 
high risk for adverse maternal-fetal interactions [111]. 

6.1.4. Timing of delivery 
These concerns related to mechanical ventilation (MV) support in 

pregnancy also highlight the important question of when mechanical 
relief with a facilitated delivery is warranted. Thus far, it is unclear 
whether delivery results in significant maternal clinical improvement 
and increased survival [14,141]. The COVIDPREG reports a facilitated 
delivery at a rate of 37% among critically ill mothers with severe COVID 
pneumonia, with mainly maternal indications to improve oxygenation 
and ventilation in 80% of these patients [34]. Delivery resulted in an 
increase in P/F ratio by 9% (p = 0.02) and a decrease in driving pressure 
by 27% (p = 0.02), and plateau pressure by 8% (p = 0.05). Obese 
mothers experienced the greatest improvement in driving pressure 
following delivery (80 vs 56%, p = 0.19). 

The SMFM at this time recommends the timing of delivery in criti-
cally ill pregnant patients be individualized and based on a shared 
decision-making model discussed with the family, maternal-fetal medi-
cine and critical care teams [113]. If delivery is considered based on the 
severity of hypoxemia alone, it is recommended that other rescue op-
tions be considered such as alternative ventilatory methods, prone 
positioning and ECLS support, especially with a gestational age of less 
than 32 weeks. 
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6.1.5. Neuromuscular blockade (NMB) 
In ARDS, spontaneously breathing patients even with high level of 

sedation may experience ventilator dyssynchrony and resultant elevated 
transpulmonary pressures, further exacerbating ventilator induced lung 
injury [142,143]. The use of early NMB improves 90-day survival and 
ventilator-free days with early use of cisatracurium in those with mod-
erate to severe ARDS (P/F < 150) [104], in an initial randomized 
controlled trial, but these results could not be replicated in a more recent 
clinical trial [144]. The use of NMB is not recommended for early 
routine use in severe ARDS with MV but may be considered an option for 
those requiring deep sedation to facilitate a lung protective strategy, 
minimize ventilator dyssynchrony, and/or for prone positioning. 

The long term maternal-fetal effects from continuous sedation/ 
analgesic and NMB medications are unknown. With MV in a critically ill 
peripartum patient being a historically rare clinical conundrum, many 
maternal-fetal medicine specialists are unfamiliar with sedation man-
agement, and there are no formal guidelines with a personalized 
approach to pregnancy [133]. Non-depolarizing NMB cross the placenta 
in variable amounts with little known about the fetal effects of neuro-
muscular infusion [145]. There have been reports of short term partial 
neuromuscular weakness of neonates with most clinical studies limited 
to its use in short-term peri-partum use during C-section [145–148]. 
Older case reports of fetal paralysis and development of neonatal 
arthrogryposis with prolonged maternal administration of NMB have 
been reported, but there are no cases of this effect with modern day use 
of non-depolarizing agents [149]. Currently, there is no major contra-
indication for paralysis to facilitate maternal ventilation and oxygena-
tion in ARDS and pregnancy [112,150,151], with major obstetric 
societies recommending minimized duration as clinically tolerated 
[122,151,152]. 

6.1.6. Proning 
The use of prone positioning in ARDS has been proposed to improve 

oxygenation and reduce secondary ventilator-induced lung injury by 
homogenizing areas of regional overdistention and atelectasis. The 
PROSEVA trial showed its early application improved 28-day and 90- 
day survival with an extended 16-h per day proning protocol, among 
those with moderate to severe ARDS [105]. Since publication, prone 
positioning has been incorporated by many critical care physicians as 
part of standard therapy in patients with severe refractory hypoxemia. 
Proning awake patients with COVID-19 resulted in reduced need for 
intubation and invasive mechanical ventilation [153]. Further, a recent 
systematic review and meta-analysis of published studies have shown 
improvement in oxygenation parameters in intubated patients with se-
vere COVID pneumonia [154]. 

Clinical experience and expertise surrounding application of prone 
positioning in late gestation is limited and institutionally specific. 
Although with the recent COVID-pandemic, clinical algorithms and 
educational videos have been increasingly published in the medical 
literature [155], with special attention made to offload the gravid uterus 
and avoid aortocaval compression [155,156]. In addition, prone posi-
tioning has been shown in clinical studies to be technically feasible and 
well-tolerated among a study of healthy pregnant volunteers in the third 
trimester, without any significant hemodynamic effect or signs of fetal 
distress [157]. A study of 100 pregnant patients with COVID-19 found 8 
needed mechanical ventilation and 4 underwent proning with 
improvement in P/F ratios [158], A larger retrospective study had 
demonstrated both safety and maternal and fetal tolerability of pro-
longed serial proning sessions (median duration 16 h) in 17 consecutive 
pregnant patients (mean gestation of 32 weeks) with severe-COVID 
pneumonia needing mechanical ventilation [159]. Larger studies are 
needed to evaluate the clinical efficacy of prolonged daily proning on 
maternal and neonatal outcomes in pregnant patients with severe ARDS. 

6.1.7. Fluid management 
The optimal strategy for fluid management in ARDS is clinically 

challenging, balancing the risk of increased pulmonary edema with the 
risk of decreased perfusion pressure to vital organs with restrictive fluid 
management approach. In animal models of acute lung injury, increases 
in vascular hydrostatic pressure has been shown to worsen pulmonary 
edema and by decreasing pulmonary vascular pressure, alveolar edema 
is improved. In 2008, the NHLBI ARDSnet published the Fluid and 
Catheter Treatment trial (FACTT) evaluating the effectiveness of a 
conversative vs liberal fluid strategy, utilizing data from serial mea-
surements of either a central venous pressure or a pulmonary arterial 
wedge pressure, to guide a strict fluid management protocol [160]. 
Irrespective of mode of vascular filling pressure measurement, a con-
servative fluid management arm showed a significant increase in 
ventilator free days, improved oxygenation, and decreased ICU days. 
However, there was no significant reduction in mortality. Following the 
FACCT trial, a simplified approach conservative fluid management 
approach (FACCT LITE) utilizing CVP and urine output to guide fluid 
management was published and has further shown similar outcomes as 
the original conservative fluid strategy protocol with respect to 
ventilator-free days and survival. Conservative fluid implementation 
strategies such as routine use of diuretics and a net negative fluid bal-
ance of 500–1000 ml/day in patients with hemodynamic stability, have 
been recommended in the management of ARDS [1]. 

There are many physiologic considerations to consider with con-
servative fluid directed goals in pregnancy, which include maternal-fetal 
interactions and maintaining adequate uteroplacental blood flow in the 
setting of maternal hypoxia. The physiologic changes that occur in late 
pregnancy and labor include dynamic changes related to cardiac output, 
systemic vascular resistance, and pulmonary capillary wedge pressure 
[111]. Many of these physiologic changes increase risk of pulmonary 
edema particularly in late gestation, a phenomenon thought primarily 
driven by hydrostatic capillary forces [111,161]. Thus, there is a degree 
of clinical uncertainty when deciding optimal fluid management. 

6.2. Rescue therapies 

6.2.1. Nitric oxide 
Inhaled nitric oxide (iNO) can achieve selective vasodilation of the 

pulmonary circulation in areas of ventilation, improving ventilation 
perfusion matching and oxygenation in ARDS [162]. However, no 
clinical studies have demonstrated improvement in clinical outcomes in 
ARDS patients, even in those with severe ARDS [163]. The CARDS 
sub-phenotype, marked with pulmonary micro-thrombosis endothelial 
injury and microvascular vasoconstriction, has been proposed as a 
sub-phenotype that may benefit from iNO. In addition, in-vitro studies 
have shown that iNO may have antiviral activity against certain strains 
of coronavirus. A large multi-center randomized control trial is currently 
investigating the treatment effect of iNO on oxygenation and overall 
survival in those with severe ARDS secondary to COVID-19 pneumonia 
[164]. So far, small prospective cohort studies investigating the use of 
iNO as a rescue therapy following proning in severe-COVID pneumonia 
have not shown significant immediate improvements in oxygenation 
[165–167]. The use of iNO should be considered as a short-term rescue 
therapy and as a therapeutic bridge to ECLS or other adjunct therapies, 
especially in consideration of potential theoretical benefits with the 
COVID ARDS sub-phenotype. 

The therapeutic use and safety profile of iNO in pregnancy is very 
limited in study. Case reports have reported improvement in oxygena-
tion and no neonatal complications at delivery, in the treatment of 
maternal pulmonary hypertension [168,169]. A case series of six preg-
nant women treated with high dose iNO for the treatment of severe 
COVID, showed maternal tolerance, with no reports of maternal 
methemoglobinemia, and further no fetal or neonatal complications 
attributed to iNO use [164]. The use of ECLS for CARDS is reviewed in 
this issue. 
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6.2.2. Adjunctive therapies in COVID-19 
Table 3 provides a list of the most common drugs used as adjunct 

therapy among those hospitalized with COVID-19 infection. Data on the 
safety and efficacy of these drugs are lacking, specifically in pregnant 
CARDS patients. Therapeutic management of pregnant patients with 
severe COVID-19 are recommended as the same as any other adult with 
severe infection with the following exceptions: 1) the panel recommends 
against the use of molnupiravir (anti-viral) due to concern of fetal 
teratogenicity in animal studies and 2) no formal recommendation for 
the use of therapeutic anticoagulation in those without evidence of 
venous thromboembolism [170]. Anti-SARS-CoV-2 monoclonal anti-
body products (mAB) are not currently authorized for use in the US due 
to concern for lack of susceptibility with current circulant subvariants of 
COVID-19. A recent large propensity-matched cohort study of pregnant 
women, with moderate-to-severe COVID-19 infection, reported a reas-
suring safety profile without increase in obstetric-related complications 
among those treated with mAB products, although there was no differ-
ence in clinical outcomes with mAB use compared to those without 
treatment[171]. 

7. Conclusion 

ARDS remains a significant underrecognized and deadly illness, with 
the COVID-19 pandemic leading to a worldwide increase in the inci-
dence of ARDS. Pregnancy is now a widely recognized risk factor for 
severe viral-induced ARDS due to impart the interacting physiologic 
adaptations of pregnancy. Like prior epidemics with H1N1, SARS, and 
MERS, COVID-19 is associated with poor maternal and fetal outcomes. 
Severe COVID-19 infection shares similar overlapping cellular mecha-
nisms of microvascular injury and immunopathogenesis related to 
pathogenic disorders of pregnancy and spontaneous intrauterine fetal 
loss, that may explain this epidemiologic trend. Supportive care related 
to lung-protective strategy, neuromuscular blockade and conservative 
fluid approach are not studied within the pregnancy ARDS sub- 
population and pose potential limitations in application due to 
concern for adverse maternal-fetal interactions. Application of current 
adjunctive pharmacologic therapies in COVID-19 share similar limita-
tions in use. 
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