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AND 
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ABSTRACT 

Using a generalized form of the logistic equation, dN/dt = rN [ 1 -(N/K)0], where 0 
permits the inflection point of the growth curve to vary between K/e and K, it is shown 
that, under certain conditions, there are evolutionary optima for the value of 8. All other 
things equal, a high value of 0 is favored. If there is a maximum on the absolute growth 
rate, the optimal value of 6’ is high in a stable environment and low in an unstable 
environment. 

It has been fashionable to divide population growth curves-plots of 

dN/dt versus N-into two types: r and K. The former curve is relatively 

high and narrow, the latter low and broad [3]. Yet this dichotomy leaves out 

fundamental degrees of freedom of the growth curve. Gilpin and Ayala [l] 

have empirically demonstrated that Drosophila growth curves follow a 

generalized logistic equation: 

$=,N[ I-($,“] (1) 

an equation which was first written down by Verhulst [5]. N is population 

density, r is the low density rate of growth, K is the saturation density 

(carrying capacity), and B is the asymmetry of the growth curve. 

When 0= 1, the equation is the normal logistic and the growth curve is 

symmetrical about N = K/2. For B less than 1, the maximum growth occurs 

for N less than K/2 but greater than K/e, where e is the base of natural 
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logarithms (see Appendix). This lower bound on the maximum rate of 
growth may at first seem artifactual. It may, however,, be a strength of the 
model, for it would be biologically absurd if the maxumum growth occurred 
at N = 0. For 0 greater than 1, the maximum growth occurs between K/2 
and K. Further analysis of this model is carried out in the Appendix. 

The biological meaning of 0 may be seen another way. The relative per 
capita growth limitation that an additional (or, in economic terminology, 
marginal) individual has is 

For 0= 1, the logistic case, this is - l/K. That is, each individual has the 
same effect on the per capita growth rate, regardless of the density at which 
it is added. In general, this per capita growth limitation is 

0 N8 --(-I N K 

This relationship is plotted as a function of N for different values of 0 in 
Fig. 1. For 0 < 1, individuals introduced earlier (i.e., at low densities) have 
much greater growth limitation than individuals introduced later. For 0 > 1, 
individuals introduced later have greater growth limitation. 

The different parameter values of 0 have different underlying biological 
mechanisms. The logistic case, 6= 1, could correspond to cases where 
homogeneous resources are supplied to the system at a constant rate, or to 
cases where the effect of interference between individuals is additive. The 
case 0 > 1 could correspond to a territorial system in which there is no 

FIG. 1. Relative per capita growth limitation versus density for values of 8=0.2, 1, 

and 5. K is taken as 100. Note that the integral under all three curves is 1. 
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growth limitation until all of the individual territories are filled. The case 
0< 1 could correspond to a situation of resource heterogeneity in which the 
first individuals exhaust the quality resources, or to cases where interference 
is perceived in a nonlinear fashion such that the affect of interference from 
a few individuals is as serious as interference from may individuals, as 
might be the case with certain metabolic waste products. 

In the following we will analyze the growth strategies involving intraspe- 
cific differences between r, K and 8. For simplicity, we must assume no 
interaction between strains or genotypes. A genotype or strain will only 
interact with the total population density, N. 

r-selection occurs in the absence of competition and other forms of 
density-dependent growth regulations. It may be said to occur in un- 
saturated environments. The population grows exponentially (positive or 
negative). Genotypes with higher r are favored by natutal selection. This 
increases the average r of the entire population. 

K-selection connotes selection under density-dependent population regu- 
lation, where the population density is at or near a steady state. It may be 
said to occur in saturated environments. K-selection is for improved compe- 
titive ability. This may involve increased effectiveness in the exploitation of 
resources, defined to be the ability of the population to subsist at the lowest 
possible resource densities. Or it may involve interference; either the ability 
to interfere with a competitor, or the ability to escape the pre-existing 
interference of a competitor. 

It is important to understand that K-selection is not correlated with 
changes of K, the single species equilibrium population density. Failure to 
realize this has led to much confusion in the literature. First, increased 

exploitation effectiveness, defined above, can either increase or decrease the 
equilibrium density K of a consumer population: K will decrease if the 
exploitation population is beyond the optimal harvesting rate of its renew- 
able resources, and will increase otherwise [2]. An example where selection 
for increased exploitation effectiveness reduces K is shown in Fig. 2. Two 
haploid strains of a consumer population compete for a single (logistically) 
renewable resource; the superior competitor overexploits the resource and 
thus comes to equilibrium at a lower density. Second, interference may also 
lower K. Any form of intraspecific aggression wastes energy that could 
otherwise be used for reproduction; this would likely reduce equilibrium 
densities. Poisoning would behave the same way. And territorality in which 
extra resources were claimed would clearly lower K. 

It is thus rather obvious that selection should favor different growth 
strategies in saturated and unsaturated environments. More interesting 
strategic possibilities occur in partially saturated environments, wherein a 
population is periodically disturbed below its equilibrium density (its K) 

and must grow back to this steady state. 
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FIG. 2. Hypothetical instance of exploitation of a renewable resource (R) by two 

genetic strains of a haplold species, whose densities are denoted by C, and C,. The zero 

growth planes for each of the two genetic strains and for the resource are drawn. C, can 

reduce the resource below the density required for Cl’s continued survival; thus. the C, 

strain will exclude C,. But the equilibrium density of a pure strain of C, (the solid circle m 

the C,-R plane where the C, and R zero growth planes intersect) is lower than the 

equilibrium density of a pure C, strain. Thus, evolution from C, to C, reduces the 
equilibrium density of the species. 

Assume that a population whose growth is described by Eq. (1) has been 

K-selected for a long period of time. All genetic strains in the population 

would have to have the same K; that is, their growth curves would have to 

be zero at N = K, where N is the sum of the densities of all of the strains. 

Differences in r and 13 would be neutral. Thus, there could be a variety of 

genetic strains with growth curves of different height and asymmetry, all of 

which crossed the N axis at the same point, K [see Fig. 3(a),(c),(e)]. 

If such a population now enters an evolutionary time regime in which its 

density is periodically reduced below K, the strains of different r and 8. 

which had previously been neutral, will be selected. If the population is 

disturbed to and maintained at a density N =(I - D)K, where D is the 

percent disturbance, the genetic strain with the highest per capita growth 

rate will be selected. The K of the various genetic strains will initially 

remain the same. 

The conventional r-selection argument, which assumes 0 is fixed at unity, 

goes as follows. Different genotypes have different growth rates as a 

function of the total population density, N. When N is reduced below K, 
the genotypes with the highest (1,’ N)dN/dt will be selected. This is pic- 

tured in Fig. 3(a),(b). 
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FIG. 3. Population (upper row) and per capita (lower row) growth curves for various 
instances of Eq. (1). K is fixed in all cases. 0= I in (a) and (b); the values of rare labeled. 
r= 1 in (c) and (d); the values of 0 are labeled. (dN / dt)max is constant in (e) and (f); the 
values of 0 are labeled. 

With () free to change, the possibilities expand. There are two limiting 
cases; r may be fixed, or the maximum dN / dt may be fixed. If r is fixed, 
the situation is as pictured in Fig. 3(c),(d). Genotypes with the highest() are 
selected. That is, genotypes that maintain a high growth rate until very near 
the population's equilibrium density are selectively favored. These would be 
genotypes that could maintain their "intrinsic" r as long as there was any 
free resources. 

It is also possible to consider that the maximum dN / dt may be limited. 
This could occur in "falling fruit" systems, or in systems where the surface 
area of a resource, not its total density, was the important limiting factor. 
This situation is as pictured in Fig. 3(e),(f). r is inversely related to () (see 
Appendix). As can be seen from Fig. 3(f), the favored genotype depends on 
the extent to which the population density is disturbed below K. For low 
disturbances, a high() is favored. For high disturbances, a low 0, less than I, 
is favored. But notice that the spread between the per individual growth 
curves [Fig. 3(f)] is much greater with large disturbances than with small 
disturbances. This suggests that even if large disturbances were relatively 
rare with respect to small disturbances, the "optimal" () could nonetheless 
be below I. 

This second line of argument may be supported with a population 
strategy model. Assume that K and the maximum dN / dt are fixed, and 
only () may vary (these three uniquely determine r; see Appendix). Instead 
of measuring fitness as the growth rate of a genotype within a population at 
a particular density, introduce a different measure, a population fitness 
measure. A population pays a cost, a reduction of fitness, when it is 
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disturbed below its equilibrium density K. It is more vulnerable to random 
extinction. It loses genetic variability faster. A competitor species may be 
able to initiate an invasion. This cost, this reduction in population fitness, 
may be assumed to be proportional to some power of the difference 
between the current population density and its potential equilibrium den- 

sity : 

Cost=(N- K)“. (2) 

The total cost TC, which is a function of the percent disturbance D a 
population pays when disturbed from K to (1 - D)K, is the integral, over 
the time it takes the population to return to K, of the cost per unit time: 

TC(D)=~m[N(f)-K]ndt, 
0 

where 

N(O)=(l-D)K. (4) 

This integral converges; it may be calculated on a digital computer. Figure 
4 shows the cost of a disturbance from equilibrium as a function of 0 and 
the degree of the disturbance, D. n was assumed to be 2, but the form of the 
results of Fig. 4 is quite insensitive to the value of n. 

Figure 4 shows two things. First, there i’s an “optimal” value of 0, defined 
to the 0 that minimizes cost, for a given degree of disturbance. For large 
distrubances, the optimal value of 0 is less than 1; for small disturbances, 
greater than 1. Second, greater costs are associated with larger disturbances, 
and these may be more important for determining the optimal 0 where D is 
variable. This population fitness approach is thus in complete agreement 
with the individual selection approach first outlined. 

The concepts of r- and K-selection and strategy engendered many 
interesting empirical studies. This occurred despite imprecision in the defi- 
nition of the terms. In fact, it is probable that this occurred exactly because 
of the fuzzy, metaphorical nature of the definitions. In this paper, we have 
introduced the mathematically based concept of &selection. We believe, 
however, that B-selection should be viewed more loosely than in the present 
context. Asymmetry in population growth curves may have played an 
important role in evolution. We hope that questions related to this idea will 
be investigated by experiment and observation. 
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FIG. 4. log(cost) as a function of 0 and D, computed from Eq. (3). The solid lines 

show cost for a fixed degree of disturbance (D = up to 20). The value of f/ that minimizes 

the cost of a given disturbance is indicated by the dashed line. 

APPENDIX 

The value of N at which the maximum growth occurs, denoted N*, for 

the equation 

may be found by taking the partial derivative of this equation with respect 
to N and setting it equal to zero: 

0 
=o CA2) 
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The limiting values as B approaches 0 and infinity are 

‘/@ 
=K 

Substituting N* into Eq. (AI) gives the maximum growth rate: 

which is 

The limiting values for this as B approaches 0 and infinity are 

‘10 
= rK. 

(A3) 

(A4) 

(A5) 

(A7) 

(fw 

(A9) 

If the maximum growth rate is fixed and if K and 0 are given, Eq. (A7) 
may be solved for r: 

r= dN C-1 
max(l+e)‘+e 

dt OK ’ (A101 

Richards [4] has also analyzed Eq. (Al); he demonstrated that in the 
limit as 0 approaches 0 the equation becomes the Gompertz equation, 
dN/dt = rN ln(K/ N), which directly explains the result (A4). 
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