
UC Santa Barbara
NCGIA Technical Reports

Title
Algorithms for Hierarchical Spatial Reasoning (96-2)

Permalink
https://escholarship.org/uc/item/5pb7x4mt

Authors
Papadias, Dimitris
Egenhofer, Max

Publication Date
1996-02-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5pb7x4mt
https://escholarship.org
http://www.cdlib.org/


NCGIA
National Center for

Geographic Information and Analysis

Algorithms for
Hierarchical Spatial Reasoning

by

Dirnitris Papadias
and

Max Egenhofer

University of Maine, Orono

Technical Report 96-2

February 1996

Simonett Center for Spatial Analysis State University of New York University of Maine
University of California 301 Wilkeson Quad, Box 610023 348 Boardman Hall
35 10 Phelps Hall Buffalo NY 14261-0001 Orono ME 04469-5711
Santa Barbara, CA 93106-4060 Office (716) 645-2545 Office (207) 581-2149
Office  (805) 893-8224 Fax       (716) 645-5957 Fax          (207) 581-2206
Fax      (805) 893-8617 ncgia@ubvms.cc.buffalo.edu ncgia@spatial.maine.edu
ncgia@ncgia.ucsb.edu



Algorithms for Hierarchical Spatial Reasoning

Dimitris Papadias, Max Egenhofer

National Center for Geographic Information and Analysis &
Department of Spatial Information Science and Engineering

University of Maine, ME 04469-5711
e-mail:{dimitris, max}@spatial.maine.edu

fax: 207- 5812206
tel: 207-5812127

Abstract In several applications, there is the need to reason about spatial relations using multiple
local frames of reference organized in aggregation hierarchies. In this paper we deal with direction
relations, a special class of spatial relations that describe order in space (e.g., north, northeast). We
assume a spatial database of points and regions. Points belong to regions, which may be parts of
larger regions and so on. The direction relations between points in the same region are explicitly
represented. Inference mechanisms are applied to extract the relation between points in different
regions and detect inconsistencies. We study two complementary types of inference. The first one
derives the relation between two points that exist in different regions through chains of common
points using path consistency. The second type of inference uses the relation between ancestor
regions to infer the relation between the points. The paper describes algorithms for both types of
inference and discusses their computational complexity.
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1. INTRODUCTION

Direction relations constitute a special class of spatial relations that deal with order in space (left,

northeast). The large availability of spatial data from various sources and in various forms (e.g., satellite

images, video), in combination with Progress in Multimedia, Image, and Spatial Databases, and

Geographic Information Systems (GIS), created the need to answer queries involving direction (and

other spatial) relations (e.g. “find all major cities northeast of Boston in New England”). This has

motivated a significant amount of research on Reasoning (Smith and Park, 1992; Egenhofer and Sharma,

1993), Query Processing (Clementini et al., 1994; Papadias et al., 1995) and Spatial Query Languages

(Roussopoulos et al., 1988; Egenhofer, 1994, Papadias and Sellis, 1995).

A number of relation-based systems have been proposed for the representation of direction relations.

Chang et al., (1987) designed the 2D strings for iconic indexing in Image Databases. A 2D string is a pair

of one dimensional strings that represent the symbolic projections of the objects on the x and y axis.

Glasgow and Papadias (1992) developed symbolic arrays, nested array structures that preserve directions

relations among the distinct parts of complex spatial entities at different levels. Most of previous work,

however, has focused on the representation and processing of explicit relations; the proposed systems do

not include mechanisms for inference and inconsistency checking. Although some approaches have dealt

with hierarchical direction reasoning, these mainly concern specific types of hierarchies captured by

certain types of representations (Glasgow, 1994).

This paper studies hierarchical reasoning about direction relations in spatial databases of points and

regions. The objects in the database form aggregation hierarchies: a point belongs to a region, which may

be part of another region and so on. As an example, consider that cities are points in states represented by

regions. The states are grouped together to form larger geographic entities (e.g., countries) in the next

level and so on. We assume the existence of multiple hierarchies, that is, a spatial entity (region or point)

could belong to more than one regions in the next level of hierarchy.

Direction relations between objects in the same spatial entity are explicitly represented and consistent.

Although relations within the same entity are consistent, inconsistencies may occur by combining spatial

knowledge from different sources. For example, consider a database of maps. If a city is northeast of

another city in the map of region A, and the second city is north of a third city in the map of region B,

then the existence of the first city south of the third in region C would yield an inconsistency. Such

inconsistencies may occur when data about the same or overlapping areas are collected form different

sources such as images, topographic surveys, verbal descriptions etc. (for an extended discussion see

Frank, 1992). Spatial inference mechanisms are essential for explicating relations and enforcing

consistency in the database.

The rest of the paper is organized as follows: Section 2 defines direction relations between points and

regions, and describes spatial databases preserving directions. Section 3 presents an algorithm for the
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inference of the relation between points using the relations of their ancestor regions. Section 4 describes

a complementary form of inference that uses chains of common points and achieves path consistency for

the whole database. Section 5 studies the complexity of the algorithms and discusses the efficiency of

hierarchical representations. Section 6 proposes extensions for alternative types of direction relations,

and Section 7 concludes with comments.

 2. DIRECTION RELATIONS

There have been two approaches in defining direction relations (Hernandez, 1994). According to the

cone-shaped approach, direction relations are defined using angular regions between objects (Peuquet,

Ci-Xiang, 1987; Dutta, 1989). Our method is projection based, that is, direction relations are defined

using projection lines vertical to the coordinate axes (Mukerjee and Joe, 1991; Sistla et al., 1994). For the

following discussion, P, P1, P2 ... denote points, A, A1, A2 ... regions, and X, X1, X2 ... objects (points or

regions). In this paper we are concerned with spatial DBMSs that store only direction relations between

distinct objects and not absolute coordinates.

2.1 Direction Relations Between Points and Regions

We use the notation A¼ NW(P1,P2) to express that point P1 is NorthWest of P2 in the map of region A.

There are nine “primitive” direction relations between points if we assume projection-based definitions

(Freksa, 1992; Papadias and Sellis, 1994). Figure 1 illustrates these relations depending on the position

of a primary point with respect to a reference point (denoted by *) in region A. In addition to the eight

relations of Figure 1, there is also SamePosition which means that the points are at the same location.

y

*

NorthWest

RestrictedWest

SouthWest

x

RestrictedNorth NorthEast

RestrictedSouth

RestrictedEast

SouthEast

Figure 1 Primitive direction relations between points

Exactly one of the previous relations holds true between any pair of point objects in a region. The

primitive relations are transitive and SP is also symmetric. The rest form four pairs of converse relations

(e.g., A¼ NW(P1,P2) ⇔ A¼ SE(P2,P1)). U denotes the universal relation, the disjunction of all primitive

relations. The relation ∅ denotes the empty relation (the relation that arises during inconsistencies). The

above relations form a relation algebra and can be used for relation-based reasoning. They constitute the

set of high resolution relations; we also define a set of low resolution relations using disjunctions:

A¼ N(P1,P2) ≡ A¼ NW(P1,P2) ∨ A¼ RN(P1,P2) ∨ A¼ NE(P1,P2) (North)

A¼ E(P1,P2) ≡ A¼ NE(P1,P2)∨ A¼ RE(P1,P2)∨ A¼ SE(P1,P2) (East)
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A¼ S(P1,P2) ≡ A¼ SW(P1,P2)∨ A¼ RS(P1,P2) ∨ A¼ SE(P1,P2) (South)

A¼ W(P1,P2) ≡ A¼ NW(P1,P2)∨ A¼ RW(P1,P2) ∨ A¼ SW(P1,P2) (West)

A¼ SL(P1,P2) ≡ A¼ RW(P1,P2) ∨ A¼ SP(P1,P2) ∨ A¼ RE(P1,P2)     (SameLevel)

A¼ SH(P1,P2) ≡ A¼ RN(P1,P2) ∨ A¼ SP(P1,P2)∨ A¼ RS(P1,P2)   (SamewidtH)

In order to define direction relations between regions we use projections on the x and y axis. There

are 13 mutually exclusive relations between intervals in 1D space (Allen, 1983). If we extend Allen’s

relations to 2D space we get the 169 primitive relations between region projections of Figure 2. A¼ P1-1

(A1,A2) means that A1 and A2 are related by projection relation P1-1 in the map of area A that contains A1

and A2. Previous structures aimed at the representation of direction relations, such as the 2D Strings and

Symbolic Arrays, preserve only the above type of relations and discard other forms of spatial

information, such as shape, distance and topological relations.
P i_1 P i_2 P i_3 P i_4 P i_5 P i_6 P i_7 P i_8 P i_9 P i_10 P i_11 P i_12 P i_13

P 1_j

P2_j

P3_j

P 4_j

P 5_j

P 6_j

P 7_j

P 8_j

P 9_j

P 10_j

P 11_j

P 12_j

P 13_j

Figure 2 Projection relations in 2D space

2.2 Retrieval of Direction Relations in Spatial Databases

Let DB be a spatial database of maps each corresponding to a distinct region. For every map there is a

relation-based representation (2D string, symbolic array, a relational table or a set of binary predicates)

that stores the relations between all pairs of objects in the region. The objects in the map can be either

points or regions but not both (the regions that contain points are called leaf regions). Each pair of
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objects in a map is related by a primitive direction relation explicitly represented. The relation of each

point with itself is SP and the projection relation of each region with itself is P7-7. Converse pairs of

objects are related by converse relations.

The hierarchy is represented by pointers to next-level areas (IN relation). DB ¼ IN(Xi,Aj) denotes that

object (point or region) Xi is a part of (therefore, totally contained in) the next level region Aj. IN* is the

transitive closure of IN. DB ¼ IN*(X i,Aj) denotes that the relation IN* between objects Xi and Aj is

satisfied in the database: DB ¼ IN*(X i,Aj) ≡ DB ¼ IN(Xi,Aj) ∨ ∃ Ak
 [DB ¼ IN*(X i,Ak) ∧ DB ¼

IN*(A k,Aj)]. Object Xi is IN* Aj in database DB if: X i belongs to the next-level region Aj, or, there is a

region Ak such that Xi is IN* Ak and Ak is IN* Aj. IN* is not explicitly represented, but is computed by

the function mark that traverses the hierarchy bottom-up in a depth first manner, and marks all the

ancestors of a point in the hierarchy:

function IN*(P,A i )

DB¼ IN*(P,A i )=True;

for each region A k such that DB ¼ IN(A i ,A k)

if not (DB ¼ IN*(P,A k)) then IN*(P,A k)

end-for

function Mark(P)

for each region A such that DB ¼ IN(P,A)

IN*(P,A);

For demonstration, we use the example of Figure 3a. At the lower level (level 2) we have four points

(cities) that belong to three regions (Greece, Balkan Peninsula and U.K.) which are parts of a top region

(Europe). Figure 3b illustrates the information that is actually stored in the database (we omit the

relations between the irrelevant European regions, the relations SP for points, the projection P7-7 for

regions, and the converse relations for points and regions).

*Athens

*Belgrade

*Athens

* Heraklion*London

UK Balkan_Peninsula Greece

Europe

NW(Athens,Heraklion)Greece¼

NW(Belgrade,Athens)Balkan_Peninsula ¼

IN(London, UK)¼DB

IN(Greece, Europe)¼DB

IN(Balkan_Peninsula, Europe)¼DB

IN(UK, Europe)¼DB

(UK, Balkan Peninsula)¼Europe P1-1

(UK, Greece)¼Europe P1-1

(Greece, Balkan Peninsula)¼Europe P11-11

level 0 - top region

level 1 - leaf regions

level 2 - points

IN(Athens, Greece)¼DB
IN(Athens, Balkan_Peninsula)¼DB

IN(Heraklion, Greece)¼DB

additional relations between the regions of Europe ..... 

Figure 3 A geographic example
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R, R1, R2 ... denote relation variables between points, and r, r1, r2 ... between regions. The general

problem is to retrieve, the explicit, or implicit, relation between any pair of points Pi and Pj in the

database: DB ¼ R(Pi,Pj). There are three cases regarding the direction relations between points. The first

case is explicit retrieval,  that is, there is a region A, such that A contains Pi and Pj:  ∃ A (A ¼ R(Pi,Pj))⇒

DB ¼ R(Pi,Pj). The relation between two points in the database is R, if the points are related by R in some

region. In the example of Figure 3, the relation NW between Belgrade and Athens is explicitly

represented in the Balkan Peninsula. Inconsistencies during explicit retrieval arise when Pi and Pj exist

together in multiple maps and their relations in these maps are different (e.g., A1¼ NW(P1,P2) and A2¼

NE(P1,P2)). The following algorithm performs explicit retrieval by retrieving all leaf region and

examining the relations between all pairs of points in them1.

Explicit_retrieval

// initialization

for each point P i

for each point P j

if i=j then R(P i ,P j )= SP;

else R(P i ,P j )=U;

end-for

end-for

// retrieval from leaf regions

for each (leaf) region A k

retrieve A k;

for each point P i  such that DB ¼ IN(P i ,A k)

for each point P j  such that DB ¼ IN(P j ,A k) and i<j

get the relation R’ : A k ¼ R’(P i ,P j );

R(Pi ,P j )= R(P i ,P j ) ∩R’;

if R= ∅ then return INCONSISTENCY DUE TO EXPLICIT RETRIEVAL;

else R(P j ,P i )=converse(R(P i ,P j ));

end-for

end-for

end-for

In the second case, inference through regions, Pi and Pj do not exist in the same region, but their

relation can be inferred using the relations between their ancestor regions. The notation rÆR means that

when the relation r holds true between two regions, then the relation R holds between all pairs of points

in the regions. For example, P1-1Æ NW, since if two regions (e.g., U.K., Greece) are related by projection

relation P1-1, the relation between any two points (e.g., London, Athens), each belonging to one region, is

NW.  Inference through regions can be described as: [∃Ak ∃Al (DB¼ IN*(Pi,Ak) ∧ DB ¼ IN*(Pj,Al) ∧ DB

                                                
1 All the algorithms assume that information in each region is arc consistent: A¼R(Pi, Pj) ⇔ A¼converse(R(Pj, Pi)) and work

only on the pairs (Pi, Pj) for which i<j.
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¼ r(Ak,Al)) ∧ (r Æ R)] ⇒ DB ¼ R(Pi,Pj). That is, the relation between Pi and Pj is R, if: Pi and Pj are IN*

regions Ak and Al which are related by projection relation r, and r implies the relation R for all pairs of

points in Ak and Al. Inconsistencies during inference through regions arise when the relation between Pi

and Pj in some map is not consistent with the relation between some of their ancestors regions. As an

example consider: A¼ RN(P1,P2) and DB¼ IN*(P1,A1) and DB¼ IN*(P2,A2) and DB¼ P1-1(A1,A2). This

is an inconsistency because P1-1Æ NW (and not RN).

In the third case (inference through points), the relation between Pi and Pj that belong to different

maps is inferred by a chain of common points using composition2 of spatial relations: [∃P (DB¼ Rk(Pi,P) 

∧ DB ¼ Rl(P, Pj)) ∧ (Rk ∗ Rl = R)] ⇒ DB ¼ R(Pi,Pj). That is, DB satisfies the direction relation R between

Pi and Pj if: there is a point P such that the relation Rk between Pi and P, and the relation Rl between P

and Pj is satisfied in the database, and there is a composition rule Rk∗ Rl = R. The relation NW between

Heraklion and Belgrade can be inferred because: Balkan_Peninsula ¼ NW(Belgrade, Athens) and Greece 

¼ NW(Athens, Heraklion), and NW*NW=NW. Inconsistencies in this case arise when different relations

are inferred by different chains of points, or when the inferred relation contradicts the results of explicit

retrieval or inference through regions (e.g., A1¼ NW(P1,P) and A2¼ NW(P,P2) and A3¼ RS(P1,P2)).

Unlike explicit retrieval which is straightforward, the other two cases require inference mechanisms

that potentially search large parts of the database. In the next sections we discuss algorithms that extract

the relation between all pairs of points and detect inconsistencies. For each case we provide rules of

inference, we describe extensive examples, and we obtain formulas for the cost.

3. HIERARCHICAL SPATIAL INFERENCE THROUGH REGIONS

This type of inference usually provides good results with minimum computational overhead under the

condition that the points belong to “ancestor” regions with non-overlapping projections on at least one

axis. The same result is not always achievable using inference through common points (even if such

common points exist). As an example consider the configuration of Figure 4a. Figure 4b illustrates the

hierarchical structure and the explicit relations for the objects that co-exist in some map. Inference

through the chain P1, P2, P3, and P4 yields the universal relation between P1 and P4. On the other hand,

the projection relation P1-13 between A1 and A4 yields the relation NE. Therefore, in some case inference

through regions provides more accurate results than inference through points (while some other times the

opposite happens).

                                                
2The problem of composition can be defined as "if the spatial relation between Pi and P, and between P and Pj is known, what

are the possible relations between Pi and Pj?". The symbol * denotes path composition (Frank, 1992): R1 ∗ R2 = R means that

(R1 (X,Z) ∧R2 (Z,Y)) ⇒ R(X,Y)
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P
1

P
4

P2

P
3

*
*

**

A
1

2A

3A

4A

5A

P 4P
2

A 4A 3A 2A 1

A 5

3PP1

SW NE RE

P3-11 P11-11P11-11

P1-11
P3-13

P1-13

Figure 4 Inference through regions that yields better results than inference through common points

3.1 Rules of Inference

In the case that the projections of two regions are disjoint on both axes (projections P1-1, P1-13, P13-13, and

P13-1 in Figure 2), then high resolution information can be inferred for both south-north and west-east

directions. However, not all projections allow such inferences regarding the relations between points.

When the projections of the regions are disjoint on only one axis, low resolution relations about this axis

can be derived, but information on the other axis is lost. For example, all cities of Germany are North of

all cities of Italy (Figure 5a). No conclusion can be drawn about the relation of the cities on the x axis: a

city in Germany can be NE, RN or NW of a city in Italy.

 In the case that the projections on some axis are not disjoint, but meet at the boundary then some

information can still be inferred on this projection. In Figure 5b we can infer that all cities of the U.K are

N of or SL of all cities of France. If regions overlap on both projections, no direction relation can be

inferred between the points of the regions (Figure 5c). Depending on the shapes of the regions, any

relation between points may be allowable.

Italy

Germany

France

U.K.

France

Belgium

Figure 5 Non disjoint projections

Figure 6 summarises the relations that can be derived about points given the projection relation

between regions. High resolution relations can only be inferred in the case that we have disjoint

projections on both axes. Non-overlapping projections on one axis imply low resolution relations

regarding this axis. Projections that meet, imply relations such a N ∨ SL, or NW ∨ RN. The entries of
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Figure 6 with U, correspond to overlapping projections on both axes (therefore no conclusion can be

drawn about the relations between points).

P 1 2 3 4 5 6 7 8 9 10 11 12 13

1 NW NW∨RN N N N N N N N N N NE∨RN NE

2 NW∨RW NW∨RN∨RW∨SP N∨SL N∨SL N∨SL N∨SL N∨SL N∨SL N∨SL N∨SL N∨SL NE∨RN∨RE∨SP NE∨RE

3 W W∨SH U U U U U U U U U E∨SH E

4 W W∨SH U U U U U U U U U E∨SH E

5 W W∨SH U U U U U U U U U E∨SH E

6 W W∨SH U U U U U U U U U E∨SH E

7 W W∨SH U U U U U U U U U E∨SH E

8 W W∨SH U U U U U U U U U E∨SH E

9 W W∨SH U U U U U U U U U E∨SH E

10 W W∨SH U U U U U U U U U E∨SH E

11 W W∨SH U U U U U U U U U E∨SH E

12 SW∨RW SW∨RS∨RW∨SP S∨SL S∨SL S∨SL S∨SL S∨SL S∨SL S∨SL S∨SL S∨SL SE∨RS∨RE∨SP SE∨RE

13 SW SW∨RS S S S S S S S S S SE∨RS SE

Figure 6 Direction information conveyed by projections

In general, there is significant information loss in this type of inference when there is a large number

of objects with overlapping projections. However, experiments with spatial access methods for

Geographic Information Systems have shown that for usual values of data density (sum of all region

areas divided by the area of the global space) the vast majority of projections are disjoint (Papadias and

Theodoridis, to appear). For verification, we created 10,000 regions of various sizes, randomly

distributed over the global space. The percentage of regions that have disjoint projections on both axes

with respect to a reference region object varied from 99.9% to 99.5%. Similar numbers are produced by

real geographic data sets used as standard benchmarks for databases (see Faloutsos and Kamel, 1994).

The above observations refer to “flat” representations; the hierarchical organization in multiple levels

results in increased information loss (for a discussion see Section 5). Nevertheless, chances are that

inference through regions will produce a high resolution relation. Traditional spatial data structures, such

as the R-trees (Guttman, 1984), take advantage of this fact for the efficient retrieval of overlap queries by

hierarchical decomposition of space. However, spatial data structures assume that global coordinates are

stored, and cannot be used when only the relative positions of objects in the same spatial entity are

known (as happens here).

3.2 The Algorithm

Initially the relation between any pair of points is given by explicit retrieval. Inference through regions

starts with the procedure mark which traverses the hierarchy bottom-up and computes the IN* relation

for all points. Then the algorithm retrieves one by one all non-leaf regions A and gets the relation r: A¼
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r(Ak,Al) for all pairs of regions IN A. Let R' be the relation implied by r: r→R' (according to the rules of

Figure 6). If R' ≠ U the relation between all pairs of points Pi such that DB¼IN*(Pi,Ak), and Pj such that

DB¼IN*(Pj,Al) is updated to R(Pi,Pj)=R(Pi,Pj)∩R'.

Inference_through_regions

// Bottom up traversal - marking of nodes

for each point P i

mark(P i );

// Extraction of relations

for each non-leaf region A

  retrieve A;

  for each region A k such that DB ¼IN(A k,A)

     for each region A l  such that DB ¼IN(A l ,A) and i<j

get the relation r : A ¼ r(A k,A l );

lookup R’: r Æ R’;

if R’ ≠ U then

           for each point P i  such that DB ¼IN*(P i ,A k)

             for each point P j  such that DB ¼IN*(P j ,A l )

R(Pi ,P j )=R(P i ,P j ) ∩R’  ;

if R(P i ,P j )= ∅ then return INCONSISTENCY DUE TO INFERENCE THROUGH REGIONS;

else R(P j ,P i )=converse(R(P i ,P j ));

             end-for

           end-for

     end-for

  end-for

end-for

In order to demonstrate how the algorithm works, we use the configuration of Figure 7. There are five

points and eight regions organized hierarchically. Each object belongs to the next level region that fully

contains it.

A
4

P
4
*

5A

3A2A

P
2
*

1A

6A

8A

P
3

P
1 *

P
5 *

7A

*

P 4P
2

A 4A 3A 2A 1

A 6 A 7

A 8

level 2 - leaf regions

level 3 - points

level 1 

3PP1 5P

A 5

NW NW RW

P3-2
P1-1

P1-3

P9-11
P3-11

level 0 

Figure 7 Example of inference through regions
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The initial relation between each pair of points is given by explicit retrieval. Figure 8 illustrates the

explicit relations between all pairs of points in the form of a constraint network. First A6 is retrieved and

the relation between A2 and A3 is found to be P3-2. Since P3-2→W∨SH, the relation between P2 (that

belongs to A2) and P4 (that belongs to A3) is refined to U∩(W∨SH)=  W∨SH (Figure 8b). The relation

between P3 and the other points of A2 and A3 remains unchanged because NW∩(W∨SH)=NW and

RW∩(W∨SH)=RW (for (P2,P3) and (P3,P4) respectively). Then A7 is retrieved and the relation NW

between P4 and P5 is inferred because the ancestor regions of the two points (A4 and A5) are related by

P1-1 and, P1-1 → NW (Figure 8c). After the retrieval of A8 (the last non-leaf region) the network takes its

final form of Figure 8d. Because A8¼ P1-3(A1,A7), and P1-3→N, the relation North is inferred between all

points of A1 and the ones IN* A7, resulting in N(P1,P4), N(P1,P5), N(P2,P5) and NW(P2,P4)∨ RN(P2,P4)

(the last relation is obtained by N∩(W∨SH)). The relations P3-11(A1,A6) and P9-11(A6,A7) do not allow

any inferences because P3-11 → U and P9-11 → U.

P

2P

1

5P

4P

NW

RW 3P

NW

P

2P

1

5P

4P

NW

RW 3P

NW
W∨SH

P

2P

1

5P

4P

NW

RW 3P

NW
W∨SHNW

P

2P

1

5P

4P

NW

RW 3P

NWNW∨RNNW

N
N

N

initial relations after retrieval of A6 after retrieval of A7 after retrieval of A8

Figure 8 Illustration of the algorithm

Since the algorithm generates the permitted relations for all pairs of points, it needs to be performed

only once and its results can be stored for future use. The above algorithm produces fast (an analysis is

given later in the paper) and high resolution relations in many situations. However, in cases where we

have overlapping projections with multiple common points (as in the example of Figure 7) further

refinements are possible by using the common points.

4. HIERARCHICAL SPATIAL INFERENCE THROUGH POINTS

Inference using common points, can be formulated as path consistency problem in a network of binary

direction constraints. Each constraint in the network is a disjunction of primitive relations and represents

the permitted relations between a pair of points after explicit retrieval and inference through regions have

taken place (e.g., Figure 8d). Path consistency uses the relative positions of common points to derive the

relation between any two points as they are implied by the given constraints. Inference is achieved by

excluding relations that cause inconsistencies and maintaining only the ones that could participate in a

solution of the network.
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4.1 Rules of Inference

In order to apply some path consistency algorithm we need a set of composition rules for direction

relations. Figure 9 describes the rules that are applied in order to produce the possible direction relations

between Pi and Pj when their relation with respect to a third point P is known. Frank (in press) describes

composition of direction relations based on the concepts of projections and cone-shaped directions.

Unlike Frank who uses the notion of Euclidean approximate to deal with uncertainty, our system

generates a disjunction of the potential primitive relations (which are expressed by the low resolution

relations).
NW

(P,Pj)
RN

(P,Pj)
NE

(P,Pj)
RW

(P,Pj)
SP

(P,Pj)
RE

(P,Pj)
SW

(P,Pj)
RS

(P,Pj)
SE

(P,Pj)
N

(P,Pj)
E

(P,Pj)
S

(P,Pj)
W

(P,Pj)
SL

(P,Pj)
SH

(P,Pj)

NW(Pi,P) NW NW N NW NW N W W U N U U W N W

RN(Pi,P) NW RN NE NW RN NE W SH E N E U W N SH

NE(Pi,P) N NE NE N NE NE U E E N E U U N E

RW(Pi,P) NW NW N RW RW SL SW SW S N U S W SL W

SP(Pi,P) NW RN NE RW SP RE SW RS SE N E S W SL SH

RE(Pi,P) N NE NE SL RE RE S SE SE N E S U SL E

SW(Pi,P) W W U SW SW S SW SW S U U S W S W

RS(Pi,P) W SH E SW RS SE SW RS SE U E S W S SH

SE(Pi,P) U E E S SE SE S SE SE U E S U S E

N(Pi,P) N N N N N N U U U N U U U N U

E(Pi,P) U E E U E E U E E U E U U U E

S(Pi,P) U U U S S S S S S U U S U S U

W(Pi,P) W W U W W U W W U U U U W U W

SL(Pi,P) N N N SL SL SL S S S N U S U SL U

SH(Pi,P) W U E W SH E W SH E U E U W U SH

Figure 9 Composition table for low and high resolution relations

The composition constraint Rk * Rl is computed by forming the cross products of the primitive

constraints that comprise Rk and Rl, composing each resulting ordered pair by looking up the results in

the composition table, and taking the union of the resulting sets. Besides the primitive relations, the table

of Figure 9 contains the low resolution relations (U is not included, because the composition of U with

any relation is U). Notice that this set of relations is closed under composition; in a network where all the

initial constraints belong to this set, the final constraint (after path consistency) between each pair of

objects is also a high, or low resolution relation, or U.

In addition to the above 16 relations, the type of networks that result after inference through regions,

may contain another 16 relations such as NW∨RN (see Figure 6). Composition is also closed under all 32

relations. Figure 10 illustrates the compositions of the five new relations at the upper-left corner of the

table of Figure 6 with all relations. The remaining relations of Figure 6 produce the symmetrical relations
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on the corresponding axes. The result of composition is always one of the 32 relations3; therefore, the

constraint between each pair of points in the network is always one of the above relations and arbitrary

disjunctions do not appear at any phase of inference through points. As we discuss later, this fact is

important for the consistency of the relations in the final network, and for the cost of execution.

NW(P,Pj)∨
RN(P,Pj)

NW(P,Pj)∨
RW(P,Pj)

NW(P,Pj)∨RN(P,Pj)

∨RW(P,Pj)∨SP(P,Pj)

N(P,Pj)∨
SL(P,Pj)

W(P,Pj)∨
SH(P,Pj)

NW(Pi,P) NW NW NW N W

RN(Pi,P) NW∨RN NW NW∨RN N W∨SH

NE(Pi,P) N N N N U

RW(Pi,P) NW NW∨RW NW∨RW N∨SL W

SP(Pi,P) NW∨RN NW∨RW NW∨RN∨RW∨SP N∨SL W∨SH

RE(Pi,P) N N∨SL N∨SL N∨SL U

SW(Pi,P) W W W U W

RS(Pi,P) W∨SH W W∨SH U W∨SH

SE(Pi,P) U U U U U

N(Pi,P) N N N N U

E(Pi,P) U U U U U

S(Pi,P) U U U U U

W(Pi,P) W W W U W

SL(Pi,P) N N∨SL N∨SL N∨SL U

SH(Pi,P) W∨SH W W∨SH U W∨SH

NW(Pi,P)∨RN(Pi,P) NW∨RN NW NW∨RN N W∨SH

NW(Pi,P)∨RW(Pi,P) NW NW∨RW NW∨ RW N∨SL W

NW(Pi,P)∨RN(Pi,P)∨RW(Pi,P) ∨SP(Pi,P) NW∨RN NW∨RW NW∨RN∨RW∨SP N∨SL W

N(Pi,P)∨SL(Pi,P) N N∨SL N∨SL N∨SL U

W(Pi,P)∨SH(Pi,P) W∨SH W W∨SH U W∨SH

SW(Pi,P)∨RW(Pi,P) W W W U W

SW(Pi,P)∨RS(Pi,P) W∨SH W W∨SH U W∨SH

SW(Pi,P)∨RS(Pi,P)∨RW(Pi,P) ∨SP(Pi,P) W∨SH W W∨SH U W

S(Pi,P)∨SL(Pi,P) U U U U U

SE(Pi,P)∨RS(Pi,P) U U U U U

SE(Pi,P)∨RE(Pi,P) U U U U U

SE(Pi,P)∨RS(Pi,P)∨RE(Pi,P) ∨SP(Pi,P) U U U U U

E(Pi,P)∨SH(Pi,P) U U U U U

NE(Pi,P)∨RE(Pi,P) N N∨SL N∨SL N∨SL U

NE(Pi,P)∨RN(Pi,P) N N N N U

NE(Pi,P)∨RE(Pi,P)∨RN(Pi,P) ∨SP(Pi,P) N N∨SL N∨SL N∨SL U

Figure 10 Composition table for relations generated after inference through regions

4.2 The Algorithm

A number of path consistency algorithms have been proposed (Allen, 1983; Macworth and Freuder,

1985). The following one is a variation modified for the current problem. Initially the network is derived

                                                
3 Sharma (1995), makes similar observations regarding the closure of compositions in 2D space.
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from explicit retrieval and inference through regions. All pairs of points whose relation is not U are

inserted into a queue. Then every pair is popped from the queue and the corresponding relation is used to

refine the relation between the popped points and all the other points that co-exist with them in some

region. The pairs of points whose relation is refined are pushed in the queue for propagation of the

update through the network.

Inference_through_points

for each point P i

for each point P j  such that i<j

if R(P i ,P j ) ≠U then push-queue(P i ,P j );

while not-empty-queue

    pop-queue(P i ,P j );

for each (leaf) region A l  such that DB ¼ IN(P i ,A l )

retrieve A l ;

for each point P k such that DB ¼ IN(P k,A l ) and k ≠ i and k ≠ j

Rt (P k,P j )=R(P k,P j ) ∩ (R(P k,P i )*R(P i ,P j ));

if R t =∅ then return INCONSISTENCY DUE TO PATH CONSISTENCY;

else if R t (P k,P j ) ⊂ R(P k,P j ) then

R(Pk,P j )= R t (P k,P j );

R(Pj ,P k)=converse(R(P k,P j ));

if not in-queue(P k,P j ) then push-queue(P k,P j );

end-for

end-for

for each (leaf) region A m such that DB ¼ IN(P j ,A m)

retrieve A m;

for each point P k such that DB ¼ IN(P k,A m) and k ≠ i and k ≠ i

Rt (P i ,P k)=R(P i ,P k) ∩ (R(P i ,P j )* R(P j ,P k));

if R t =∅ then return INCONSISTENCY DUE TO PATH CONSISTENCY;

else if R t (P i ,P k) ⊂ R(P i ,P k) then

R(Pi ,P k)= R t (P i ,P k);

R(Pk,P i )=converse(R(P i ,P k));

if not in-queue(P i ,P k) then push-queue(P i ,P k);

end-for

end-for

end-while

In order to demonstrate the algorithm, we use the configuration of Figure 7 and the network of Figure

8d. After explicit retrieval and inference through regions have been applied, the pairs of points whose

relation is not U are pushed into a queue. Here we assume the order of Figure 11a, but the order is not

important. First the pair  (P1,P2) is popped and all the regions that contain these points are retrieved. P3

co-exists with P2 in region A2 and its relation with P1 is updated according to:

R(P1,P3)=R(P1,P3)∩(R(P1,P2)*R(P2,P3))=U∩(NW*NW)=NW. Because the new relation is a refinement
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of the previous one (NW⊂U) the pair (P1,P3) is pushed into the queue for propagation. The new network

and the state of the queue at this phase are illustrated in Figure 11b. Then the pair (P1,P4) is popped from

the queue, the regions A1, A3, and A4 are retrieved, and the relations between the points (P2,P4), and

(P1,P3) are updated. However the network does not change at this stage because: R(P2,P4) = R(P2,P4) ∩
(R(P2,P1)*R(P1,P4)) = (NW∨RN) ∩ (SE*N) = NW∨RN, and R(P1,P3) = R(P1,P3) ∩ (R(P1,P4)*R(P4,P3))

= NW∩(N*RE)=NW. Similarly the pair  (P1,P5) will not alter the network, while the pair  (P2,P3) will

produce: R(P2,P4) =NW. The remaining pairs update the network in the same fashion; the final state after

the termination of the algorithm is illustrated in Figure 11c.

P

2P

1

5P

4P

NW

RW 3P

NWNW ∨ RNNW

N
N

N

(P1,P2)

(P1,P4)

(P1,P5)

(P2,P3)

(P2,P4)

(P2,P5)

(P3,P4)

(P4,P5)

P

2P

1

5P

4P

NW

RW 3P

NWNW ∨ RNNW
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N
N

(P1,P3)

(P1,P4)

(P1,P5)

(P2,P3)

(P2,P4)

(P2,P5)

(P3,P4)

(P4,P5)

NW

P

2P

1

5P

4P

NW

RW 3P

NWNWNW

NW
NW

NW
NW

NW

initial network and queue after (P1,P2) has been popped final network

Figure 11 Illustration of the algorithm

Path consistency refines the constraints between each pair of points by pruning from the constraints

the relations that cause inconsistencies (relations that are not consistent with the explicit relations

between some other pairs). However, path consistency does not achieve global consistency (does not

remove all inconsistencies) from general constraint networks4. Van Beek and Cohen (1991) have proven

that any path consistent, point algebra network that contains inconsistent relations, has a subgraph of four

vertices isomorphic to the network of Figure 12a. This network is path consistent because every

primitive  relation that appears in a constraint participates in at least one solution of each triangle

(Figures 12b-12e). Still, the relation SL (SameLevel) between P1 and P4 causes inconsistency because it

will enforce SL between P2 and P3, which is not allowed by the initial constraints. Van Beek (1992)

demonstrates that such problems are created in networks that contain inequality (N or S but not SL - in

our context North can be substituted by >, SameLevel by = and, South by <).

P

P

P

N, SL N,SL

P

N,SL
N,SL

N,SL

N,S

1

2 3

4

P

P

P

N, SL N,SL

N,S

1

2 3

SL(P1,P2),N(P2,P3),N(P1,P3)

N(P1,P2),S(P2,P3),SL(P1,P3)

P P

P

N,SL
N,SL

N,S2 3

4

N(P2,P3),SL(P3,P4),N(P2,P4)

S(P2,P3),N(P3,P4),SL(P2,P4)

P

P
N, SL

P

N,SL

N,SL

1

2

4

N(P1,P2),N(P2,P4),N(P1,P4)

SL(P1,P2),SL(P2,P4),SL(P1,P4)

P

P

N,SL

P

N,SL
N,SL

1

3

4

N(P1,P3),N(P3,P4),N(P1,P4)

SL(P1,P3),SL(P3,P4),SL(P1,P4)

Figure 12 Path consistent spatial constraint network with inconsistent relations

                                                
4 Constraint satisfaction problems are in general exponential in nature, while path consistency is polynomial. Grigni et al.,
(1995) have proven that constraint satisfaction in networks of topological relations is NP-Complete, and realizability in space is
NP-Hard.
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Nevertheless, in the type of problem we study here, we start with the set of constraints imposed after

inference through regions, and not with arbitrary disjunctions. This set is closed under composition.

Therefore, path consistency does not produce inequality (e.g., North ∨ South) on any axis, and the

network does not contain inconsistent relations after the application of the above algorithm.

5. ON THE EFFICIENCY OF HIERARCHICAL REPRESENTATIONS

In this section we discuss a unified framework for hierarchical spatial inference, we describe the

computational complexity of the algorithms and we study the efficiency of hierarchical representations.

5.1 A Unified Framework for Hierarchical Spatial Inference

In the previous sections we demonstrated three different ways of generating the relations between pairs

of points. We argued that first explicit retrieval obtains the relations between pairs of points that exist in

the same region, then inference through regions generates additional constraints imposed by the relations

between the ancestor regions, and finally inference through points takes advantage of common points to

produce further refinements. The order in which explicit retrieval and inference though regions are

performed is not important. As long as the content of the database remains unaltered they will generate

the same result independently on which is performed first. On the other hand, inference through points

has always to be performed at the end, otherwise it may not produce all relations.

Assume, for example, that path consistency is applied before inference through regions to the

configuration of Figure 7. The explicit relations are illustrated in Figure 13a, and the path consistent

network in Figure 13b. The subsequent application of inference through regions will refine some

relations (in particular the relations between P5 and P1, P2 and P4) resulting in the network of Figure 13c

which lacks some relations with respect to the network of Figure 11c (e.g., the relation between P5 and P3
is U). The problem is created by isolated regions (regions, such as A5, that do not contain common points

with other regions). Inference through points has to be applied again in order propagate the new relations

and generate the network of Figure 11c.

P

2P

1

5P

4P

NW

RW 3P

NW

P
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1

5P

4P

NW

RW 3P

NWNW

NW NW

P

2P

1

5P

4P

NW

RW 3P

NWNWNW

N
NW

N
NW

after explicit retrieval after inference through points after inference through regions

Figure 13 Permutation of the functions

Figure 14 illustrates a unified framework for inference and inconsistency checking in spatial

databases of points and objects involving the previous mechanisms. Either explicit retrieval, or inference
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through regions can be applied after the initialization (which is included as part of the explicit retrieval in

Section 2 but can be an independent function). Inference through points should be the final phase. This

framework explicates the relations between all pairs of points and its results can be stored and used to

answer future queries involving direction relations. It should be executed either when there is an update

in the database, at periodical time intervals as batch processes, or after the number of modifications in

the database becomes larger than a specified threshold.

initialization

explicit
retrieval

inference
through regions

inference
through points

Figure 14 A Unified framework

5.2 Cost of Inference

In order to obtain formulas for the cost of the algorithms we make the following simplifications

(although such simplifications may not apply for real applications, they provide a good measure for the

expected cost in most cases). Each region contains k objects (points or other regions). Each object

belongs to m regions in the upper hierarchy level, except for the region at the top (0 level) that does not

belong to any region, and the objects at level 1 that belong only to the top-level region. It is always the

case that  k/m>1 and in regular applications k/m>>1. N is the total number of points in the database. We

assume that there is a buffer that stores the N(N-1)/2 relations between all pairs of points.

For demonstration we use Figure 15, where k=4 and m=2. The objects are represented as nodes in a

hierarchy of height h. For each object (except for the ones at levels 0 and 1) there are m copies

(illustrated as overlapping nodes), each corresponding to an instance of the object in a parent node (this

data replication also exists in the database because each object is represented in all parent regions).

level 0

level 1

level 2

level h-1

level h

leaf region nodes

point nodes

......

...... ...... ...... ......

Figure 15 Hierarchical structure for k=4 and m=2
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The cost is a function of the number of map retrievals because such operations require access to

secondary storage (i.e., retrieval of the disk pages that contain the map). This is common practice in

database literature where indexing methods are compared on the number of accessed pages from the disk

(Guttman 1984; Faloutsos and Kamel, 1994). In the case of explicit retrieval, for example, we have to

retrieve all leaf regions. Due to the fact that leaf regions store all points and their copies, their number is

mN/k. Therefore, explicit retrieval performs mN/k map retrievals.

In order to measure the cost of inference through regions we need to calculate the number of non-leaf

regions, because all these regions are retrieved. There is only one node at level 0, k nodes at level 1, and

k2 at level 2. Out of these k2 nodes, k2/m correspond to objects and the rest to copies. Level 3 contains k

nodes for each original node of the previous level resulting in a total of k3/m nodes out of which only

k3/m2 are original and represented at level 4. Similarly, at level h-1 there are kh-1/mh-2 nodes that

correspond to actual leaf regions. Since the number of leaf regions is mN/k, we have the following

equation that provides a formula for h:

k

m

m N

k
h

N

m

h

h k m

−

− =
⋅

⇒ = 





1

2 log ( )( / )   (1)

The number of non-leaf regions (and therefore the number of map retrievals during inference through

regions) is the sum of original regions from level 0 to level h-2. Substituting the height of equation 1 we

get the following approximation for the cost of inference though regions:

m
N k

k k m
2 −

−( )
(2)

In order to find the cost of inference through points we start with the observation that composition is

closed under the initial constraints. A constraint imposed by inference through regions or explicit

retrieval may be refined a number of times until it reaches its final state at the end of path consistency.

Each time a refinement happens the corresponding pair of points is pushed to the queue. Figure 16

illustrates the possible refinements for the 32 constraints that may appear in the network. A constraint at

any level may only be refined to a constraint of a lower level. For example, a constraint between two

points may initially be U and become N∨SL, then  NW∨RN∨RW∨SP, then NW∨RN and finally NW.

The links in Figure 16 connect each constraint with the constraints of the immediately lower level that it

can be refined. The maximum number of refinements for any constraint is four.
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NW NE RW RE SW RSRN

N SSL W ESH NW∨ RN∨RW SW∨RS∨RW SE∨ RS∨RE NE∨ RN∨RE

N∨ SL S∨ SL W ∨ SH E ∨ SH

NW ∨ RN NW∨RW SW∨RW SW∨ RS SE∨ RS SE∨ RE NE∨ RE NE∨ RN

SESP

∨ SP ∨SP ∨SP ∨ SP

Figure 16 Refinement of direction constraints

There exist N(N-1)/2 distinct pairs of points in the database and each may be pushed into the queue a

maximum of four times. Each time a pair is popped from the queue, 2m map retrievals are performed to

retrieve the points that are related with the popped points in some region. Therefore, inference through

points requires 4mN(N-1) map retrievals in the worst case.

5. 3 Storage Efficiency and Information Loss

The hierarchical representation of space reduces storage requirements significantly because only spatial

information within the same region is explicitly represented. All the other relations are extracted by the

inference mechanisms. Assume a relational model where the binary relations between all pairs of points

are stored as tupples in a large "flat" table, containing a total of N(N-1)/2 tupples. The hierarchical

variation of the same database would contain a number of  "small" tables each standing for a distinct

region. The number of such tables equals the number of original regions in the hierarchy:

 1
1

2+ + + ≈
−
−

−

−k
k

m
m

N m

k m

h

h... (3)

Each small table contains k(k-1)/2 tupples representing the relations between the objects in the

corresponding region. In addition, we need an extra table representing the IN relations. For each point

and region there exist m pointers (tupples) to their father regions. By adding the relation and the IN

tupples we get the total number of tupples of in the hierarchical version.
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Assume an implementation where the average capacity k of each region equals the usual disk page

capacity in points (k=100 points). Each point (or region) belongs to m=4 regions. The database contains

N=106 points (a moderate number given the sizes of existing spatial databases). Substituting these

numbers to equation 4 we get approximately 55*106 tupples for the hierarchical version as opposed to

5*1011 for the flat database.
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In addition to storage efficiency, the hierarchical decomposition of space in natural geographic

entities optimizes queries that involve objects within the same entity (“find all major cities of France

northeast of Paris”). For such queries only the map(s) corresponding to the entity (i.e., France) needs to

be retrieved, while in a flat representation the same query could involve searching the whole database in

the worst case. The trade-off that hierarchical representations pay for efficiency is information loss

regarding the relations between points that exist in different regions, when such relations cannot be

inferred.

Consider the example of Figure 17 where P1 belongs to A1 which in turn belongs to A3 and so on. The

grey zones show the areas of information loss, that is, areas that correspond to projections of P1’s

ancestor at the current level. A high resolution relation between P1 and some other point can be inferred

only if an ancestor of the second point is disjoint with the corresponding grey zones of its level. When a

region overlaps one or more of these zones, information about one or both axes is lost. For example, the

inferred relation between P1 and P2 is North; no east-west information can be extracted because A2

overlaps the grey area corresponding to A1’s projection on the x axis. Similarly, no relation can be

inferred between P1 and P3, because A3 and A5 have overlapping projections on both axes (although the

leaf regions A2 and A4 have disjoint projections their relation is not explicitly represented in some parent

region). In general, the information loss increases as the distance of the points in the hierarchy increases.

P1

A1

*

P2*

A2A3 P3
*

A4
A5

A6

P
2P1

A 3A 2A 1

A 3 A 5

A 6

P3

Figure 17 Information loss in hierarchical representations

Using the example of Figure 3, all relations between cities in the same European country are

represented but relations between some cities that belong to different countries with overlapping

projections are lost. Extending the example, we would not be able to derive the relation between a city in

Europe and a city in Asia by inference through regions because Europe and Asia have overlapping

projections on both axes. Such relations may be possible only by inference through common points if

such points exist. However, in practical applications this information loss is not very important because

the vast majority of spatial queries refers to objects within the same geographic entity. Queries of the

form “find all cities of France north of Africa” are not common, and if they are imposed, chances are that

there is enough information to infer the answer.
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6.  EXTENSIONS

The algorithms of this paper can be applied to different sets of direction relations under the condition that

the inference rules are modified for the specific case. In this section we use as our basis an alternative set

of projection-based direction relations, called direction relations with neutral area first defined in

(Frank, 1992). According to these definitions the restricted relations are not line segments, but areas that

extend d/2 from each side of the reference point (where d is determined by the application requirements).

SamePosition is a square of side d. Figure 18 illustrates the direction relations with neutral area between

points. Such relations are useful in cases that there is uncertainty of location.

y

*

NW

RW

SW

x

RN NE

RS

RE

SE

d/2
SP

d/2

Figure 18 Direction relations with neutral area between points

Projection relations with neutral area can be defined accordingly for regions. There exist 15 (instead

of 13) relations on each axis, because there are two new relations for the cases where the primary region

is totally contained within d/2 distance from some edge point. Figure 19 illustrates the first 45 of the 225

possible relations between region projections. Topaloglou (1994) defined similar projections relations to

model objects with fuzzy boundaries, an application domain unsuitable for the direction relations of the

previous sections.

d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d d

Figure 19 Direction relations with neutral area between regions

Inference through regions can be achieved if we assume the region relations of Section 2 (i.e.,

relations between points are defined according to Figure 18, and relations between regions according to

Figure 2). However, in this case there is significant information loss even for disjoint projections on both

axes. For example, P1-1 would imply NW∨RN∨RW∨SP instead of NW. On the other hand, assuming the

relations of Figure 19, the table for inference through regions is identical to the one of Figure 6 (with the

inclusion of two extra rows and columns for the additional relations). The table for inference through

points is significantly different from the one in Figure 9 (e.g., the restricted relations are not transitive

anymore). Figure 20 illustrates the composition table for directions with neutral area.
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NW(P,Pj) RN(P,Pj) NE(P,Pj) RW(P,Pj) SP(P,Pj) RE(P,Pj) SW(P,Pj) RS(P,Pj) SE(P,Pj)

NW(Pi,P) NW NW∨RN N NW∨RW NW∨RN∨R
W∨SP

N∨SL W W∨SH U

RN(Pi,P) NW∨RN N NE∨RN NW∨RN∨RW
∨SP

N∨SL NE∨RN∨RE∨
SP

W∨SH U E∨SH

NE(Pi,P) N NE∨RN NE N∨SL NE∨RN∨RE
∨SP

NE∨RE U E∨SH E

RW(Pi,P) NW∨RW NW∨RN∨RW
∨SP

N∨SL W W∨SH U SW∨RW RW∨SP∨SW
∨RS

S∨SL

SP(Pi,P) NW∨RN∨RW
∨SP

N∨SL NE∨RN∨RE∨
SP

W∨SH U E∨SH SW∨RS∨RW
∨SP

S∨SL SE∨RS∨RE∨
SP

RE(Pi,P) N∨SL NE∨RN∨RE∨
SP

NE∨RE U E∨SH E S∨SL SE∨RS∨RE∨
SP

SE∨RE

SW(Pi,P) W W∨SH U SW∨RW SW∨RS∨RW
∨SP

S∨SL SW SW∨RS S

RS(Pi,P) W∨SH U E∨SH RW∨SP∨SW∨
RS

S∨SL SE∨RS∨RE∨
SP

SW∨RS S SE∨RS

SE(Pi,P) U E∨SH E S∨SL SE∨RS∨RE∨
SP

SE∨RE S SE∨RS SE

Figure 20 Composition table for directions with neutral area

Unlike topological relations where the intersection model (Egenhofer and Franzosa, 1991) has

become a standard in both research literature and commercial products, there are not widely accepted

definitions for direction relations. People have used different types of direction relations to match

different needs that range from cognitive modelling (Herskovits, 1986) to image similarity retrieval (Lee

et al., 1992) and from robot navigation (Holmes and Jungert, 1992) to user interfaces (Roussopoulos et

al., 1988). Although, in this paper, we have used a specific set of relations, the algorithms for

hierarchical reasoning can be applied to any set of direction relations with the corresponding inference

rules.

7. CONCLUSIONS

The hierarchical representation of space has a strong psychological motivation (Hirtle and Jonides, 1985)

and numerous computational advantages that have been exploited in a number of areas such as Data

Structures (Guttman, 1984) and Wayfinding (Car and Frank, 1994). In this paper we focus on

hierarchical spatial reasoning involving direction relations in 2D space. Although we have dealt with a

set of projection-based direction relations often found in the literature, the methods of the paper are not

relation-specific. They could be applied to alternative sets of relations with the appropriate rules of

inference.

We present two complementary algorithms for spatial inference and inconsistency detection in

hierarchically structured spatial databases: (1) the first achieves inference of direction relations between

points through their ancestor regions, and, (2) the second performs inference through chains of common

points and path consistency. For both algorithms we provide the corresponding inference rules and

formulas for their cost. Because the algorithms generate the relations between all pairs of points they
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don’t need to be executed for each individual query, but only after the contents of the database are

modified.

Hierarchical representations result in information loss with respect to flat representations. Some

relations between points in different regions cannot be derived by inference. On the other hand, they

have significant storage advantages and facilitate query processing for queries involving objects within

the same entity. Furthermore, in some cases, hierarchical representations are not just an option but a

necessity. Even in a single system, data about the same or overlapping areas but from different sources

are stored separately. This information may be incomplete or inconsistent, and inference mechanisms are

required to explicate relations and remove inconsistencies.

As interoperability issues are solved, heterogeneous spatial databases and open GIS will soon become

a reality. Such systems will store huge amounts of spatial data in various formats and of variable quality.

Users will query the systems requiring fast and accurate results (and not answers of the form "A is north

and south of B"). Spatial inference mechanisms will play an important role for the detection of

inconsistencies in the data and the integration of the different systems.
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