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Quantum magnetism on small-world networks

Maxime Dupont1, 2 and Nicolas Laflorencie3

1Department of Physics, University of California, Berkeley, California 94720, USA
2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

3Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France

While classical spin systems in random networks have been intensively studied, much less is known about
quantum magnets in random graphs. Here, we investigate interacting quantum spins on small-world networks,
building on mean-field theory and extensive quantum Monte Carlo simulations. Starting from one-dimensional
(1D) rings, we consider two situations: all-to-all interacting and long-range interactions randomly added. The
effective infinite dimension of the lattice leads to a magnetic ordering at finite temperature 𝑇c with mean-field
criticality. Nevertheless, in contrast to the classical case, we find two distinct power-law behaviors for 𝑇c versus
the average strength of the extra couplings. This is controlled by a competition between a characteristic length
scale of the random graph and the thermal correlation length of the underlying 1D system, thus challenging
mean-field theories. We also investigate the fate of a gapped 1D spin chain against the small-world effect.

I. INTRODUCTION

A. Complex networks and the small-world effect

Understanding complex networks is at the heart of many
scientific fields [1–11], such as computer science, mathemat-
ics, physics, biology, sociology, epidemiology, etc. During the
past two decades, critical phenomena arising in such random
topologies have emerged as a key subject of intense research
in statistical physics [7, 9].

A complex network is a graph with non-trivial and random
properties, as opposed to periodic (or quasi-periodic) lattices
of finite dimension. There are two main features which contrast
with regular graphs: (i) a fluctuating connectivity (a certain
proportion of the links are randomly placed) and (ii) the so-
called small-world (SW) effect [12], which can dramatically
shorten the distances across the network. More precisely, for
a finite graph of 𝑁 sites, the average distance ℓ between two
arbitrary points, also called the graph diameter, grows slower
than any power-law with 𝑁: ℓ ∼ ln 𝑁 , resulting in an infinite
effective dimension.

The SW effect occurs in a large class of complex networks,
such as Erdös-Rényi random graphs [13], scale-free [3] and
SW networks [2]. For the later case, the most popular SW
system is the Watts-Strogatz model [2] in which one ran-
domly rewire with a probability 𝑝 each edge of an initial
one-dimensional (1D) ring, as depicted in Fig. 1 (a). Shortly
after, a variant was proposed in Refs. [14, 15] by simply adding
long-range bonds with probability 𝑝, without diluting the un-
derlying 1D structure, see Fig. 1 (b). This undiluted version
of the SW network, more amenable to analytical treatments,
was argued [4] to bring similar physics as compared to the
original SW proposal of Watts and Strogatz. Another sim-
plification was later proposed by Hastings in Ref. [16] with
a mean-field (MF) version, see Fig. 1 (c), where all possible
long-range links are added, but with a reduced strength ∝ 1/𝑁
vanishing at large sizes. This MF variant was introduced to
avoid randomness and thus facilitate analytical calculations.

(a) Watts − Strogatz small − world (b) Undiluted small − world (c) Hastings model
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FIG. 1. Three types of small-world networks with 𝑁 = 12 sites.
(a) The Watts-Strogatz model in which one randomly rewire with a
probability 𝑝 each edge of an initial 1D ring. (b) Long-range bonds
are added with probability 𝑝, without diluting the underlying 1D
structure. (c) All possible long-range links are added, but with a
reduced strength ∝ 1/𝑁 vanishing at large sizes.

B. Classical magnetism and small-world effect

A strong consequence of the SW effect is that for any finite
concentration 𝑝 > 0 of extra long-range links added across a
lattice of finite dimension 𝑑 (exemplified in Fig. 1 for 𝑑 = 1),
the system will behave as infinite-dimensional 𝑑 = ∞, provided
the number of sites 𝑁 is large enough, typically exceeding a
crossover size 𝑁★ ∼ 1/𝑝 [4, 17, 18]. This drastic change in the
effective dimension of the problem has attracted a lot attention
in the context of interacting classical spin systems [4, 19–28],
while much less is know for the quantum case [29–32].

Classical O(𝑛) models on SW networks have been heavily
investigated for 𝑛 = 1 (Ising) [4, 19, 21, 22, 27], and to a lesser
extent for 𝑛 = 2 (XY) [20, 33]. In both cases, MF theory
(expected above 𝑑u = 4) was found to describe the critical
properties. Note however that scale-free networks with power-
law distributed connectivities [3] do not necessarily display
MF behavior, depending on the power-law exponent of the
connectivity distribution [23, 25, 26, 34]. Non-universal and
non-MF behaviors have also been reported in SW networks
where the long-range interactions [35] or the branching prob-
ability [36] decay as a power-law with the distance. To some
extent, this reminds early renormalization-group results for 𝑛-
vector models with power-law decaying interactions [37, 38].
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C. Small-world quantum magnets

In this work, we want to address the following question:
is there some specificity of quantum spins as compared to
the aforementioned classical results? To this end, we will
focus on spin-1/2 quantum magnets on the SW geometries
depicted in Fig. 1 (b-c). The Hamiltonian is made of two
components, a short-range part H1D and a random long-range
contribution HLR. For the short-range piece, we choose the
XXZ Hamiltonian, defined on a ring by,

H1D = 𝐽
∑︁𝑁

𝑖=1
ℎΔ𝑖,𝑖+1,

with ℎΔ𝑖,𝑖+1 = 𝑆𝑥𝑖 𝑆
𝑥
𝑖+1 + 𝑆𝑦𝑖 𝑆

𝑦
𝑖+1 + Δ𝑆𝑧𝑖 𝑆

𝑧
𝑖+1, (1.1)

with periodic boundary conditions. Δ is the Ising anisotropy
parameter, and the long-range part, which describes interac-
tions beyond nearest neighbors, takes a similar XXZ form,

HLR =
∑︁

𝑖, 𝑗
𝐽LR
𝑖 𝑗 ℎ

Δ
𝑖, 𝑗 , |𝑖 − 𝑗 | > 1. (1.2)

In the rest of the paper, we will focus on two emblematic cases:

1) The ferromagnetic XY model with Δ = 0, and all couplings
negative: 𝐽 < 0 and 𝐽LR

𝑖 𝑗 = −|𝐽LR
𝑖 𝑗 |.

2) The (staggered) antiferromagnetic Heisenberg model de-
fined by Δ = 1, 𝐽 > 0, and staggered couplings be-
yond nearest-neighbor 𝐽LR

𝑖 𝑗 = −(−1) |𝑖− 𝑗 | |𝐽LR
𝑖 𝑗 | which pre-

vent magnetic frustration. This alternating exchange is well-
known to enhance antiferromagnetic correlations [39, 40].

1. Undiluted small-world

Starting with a 𝑁 sites ring, the undiluted SW model,
Fig. 1 (b), is controlled by a branching parameter 0 < 𝑝 ≤ 0.5
such that we randomly draw b𝑝𝑁c long-ranged links (𝑖, 𝑗)
having a coupling strength |𝐽LR

𝑖 𝑗 | = 𝐽 ′, while 𝐽LR
𝑖 𝑗 = 0 for all

other pairs. The average connectivity is therefore 𝑧 = 2 + 2𝑝,
and the average strength of extra long-range couplings is,

𝐽 ′(𝑝) = 2𝑝𝐽 ′. (1.3)

2. Hastings model

As shown in Fig 1 (c), the MF version of the SW net-
works [16] is built by distributing the long-range couplings
over all sites with |𝐽LR

𝑖 𝑗 | = 2𝑝𝐽 ′/𝑁 for all pairs |𝑖 − 𝑗 | > 1.
This model has no randomness, and the extra-couplings have
a total strength

𝐽 ′(𝑝) = 2𝑝𝐽 ′
𝑁 − 3
𝑁

−→ 2𝑝𝐽 ′ (𝑁 → +∞), (1.4)

thus making this model equivalent to the undiluted small-world
from an energetic point of view, while the connectivity of the
Hastings model is extensive 𝑧 = 𝑁 .

D. Structure of the paper

The rest of the paper is organized as follows. In Sec. II, we
review previous results on classical spin systems and discuss
two MF theories for SW networks. Because of the effective
infinite dimensionality of the lattice, one expects a temperature
phase transition on this geometry. Interestingly, the two ap-
proaches lead to different qualitative behaviors of the critical
temperature 𝑇c with the average strength of extra long-range
couplings 𝐽 ′(𝑝), as defined in Eqs. (1.3) and (1.4). The first
method is based on a comparison between the thermal corre-
lation length of the system without the extra couplings and a
purely geometric quantity: the average distance between two
shortcuts. The other approach is based on the random phase
approximation (RPA). In Sec. III, we consider these approxi-
mate MF treatments for SW graphs built on top of 1D quan-
tum spin chains for the classical Ising chain and the quantum
𝑆 = 1/2 XXZ chain model. In Sec. IV, we then treat SW sys-
tems exactly with quantum Monte Carlo (QMC) simulations
that we compare to the MF approaches. We find that while the
physics of the Hastings model is exactly captured by the RPA,
the undiluted SW system may experience a crossover from one
MF behavior to the other as a function of the branching param-
eter 𝑝. In order to go beyond gapless XXZ physics, we also
explore the fate of a gapped 1D dimerized chain against the
SW effect. To conclude, we present a summary of our findings
and discuss a few perspectives of our study in Sec. V.

II. MEAN-FIELD THEORY

A. Ising and XY models: discussion of previous results

As expected from the infinite-dimensional nature of SW
networks, several authors agreed on the MF nature of the finite
temperature ordering transition for both classical Ising [4, 19,
21, 22, 27] and XY [20] models. In the limit of small branching
probability 𝑝 � 1, a simple MF argument predicts a critical
temperature when the correlation length of the underlying 𝑑-
dimensional lattice 𝜉 (𝑇) ∼ |𝑇 − 𝑇c (0) |−𝜈 (with𝑇c (0) the 𝑝 = 0
critical temperature and 𝜈 the associated critical exponent)
becomes of the order of the average distance between two
shortcuts 𝜁𝑝 ∼ 𝑝−1/𝑑 . This simple argument gives,

𝑇MF
c (𝑝) − 𝑇c (0) ∝ 𝐽𝑝1/𝑑𝜈 . (2.1)

For the 𝑑 = 1 Ising model where 𝑇c (0) = 0 and 𝜈 = ∞ since
𝜉0 (𝑇) ∼ exp(2𝐽/𝑇), the above MF argument yields,

𝑇MF
c,Ising ∝ 2𝐽

/
ln

(
1/𝑝) , (2.2)

in good agreement with the literature [4, 19, 27].
However, when the very same MF reasoning is applied to the

classical XY chain, for which 𝜉 (𝑇) ∼ 𝐽/𝑇 at low temperature,
we get 𝑇MF

c,XY ∝ 𝐽𝑝, a result in disagreement with Monte Carlo
simulations where a surprising 𝑎 ln 𝑝 + 𝑏 (with 𝑎, 𝑏 ∈ R)
scaling has been found [20]. The MF prediction for 𝑇MF

c in
Eq. (2.1) has been critically analyzed by Hastings in Ref. [16]
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where a different scaling with the branching probability was
found,

𝑇MF
c (𝑝) − 𝑇c (𝑝 = 0) ∝ 𝐽𝑝1/𝛾 , (2.3)

with 𝛾 the critical exponent controlling the susceptibility (asso-
ciated to the order parameter) of the underlying 𝑑-dimensional
model: 𝜒(𝑇) ∼ |𝑇 − 𝑇c (0) |−𝛾 when 𝑇 → 𝑇c (0)+. As we will
discuss in more details below, the expression of Eq. (2.3) is
a direct consequence of a random phase approximation treat-
ment of the problem.

When comparing Eq. (2.1) and Eq. (2.3) with numerical
results obtained for the Ising model by Herrero [22], Hastings
argued in favor of Eq. (2.3) since 𝑝1/𝛾 < 𝑝1/𝑑𝜈 in the 𝑝 →
0 limit. However, this statement requires that 𝛾 < 𝑑𝜈, or
equivalently, using Fisher’s identity 𝛾 = (2 − 𝜂)𝜈 [41],

𝑑 + 𝜂 > 2, (2.4)

with 𝜂 the anomalous dimension. This condition is fulfilled for
classical phase transitions in spin systems, but as we will see
below, low-dimensional quantum magnets provide a unique
example where the critical temperature 𝑇c (𝑝) can cross-over
from Eq. (2.3) to Eq. (2.1) when 𝑝 → 0.

B. Random phase approximation

The random phase approximation [42, 43] gives a self-
consistent MF estimate for the ordering transition temperature
of weakly coupled 𝑑-dimensional systems, using,

𝑇RPA
c = 𝜒−1

𝑑

(
1
𝐽⊥

)
, (2.5)

where 𝜒−1
𝑑 is the inverse-susceptibility function of the underly-

ing 𝑑-dimensional system, and 𝐽⊥ is the (weak) MF coupling
between the 𝑑-dimensional units, see App. A.

The RPA expression for the critical temperature of Eq. (2.5)
has proven to be very useful in the context of weakly coupled
low-dimensional systems [44] such as coupled spin chains and
ladders [45–47], or layered magnets [48–53]. Interestingly,
a direct quantitative comparison between exact QMC simula-
tions for various 𝑑 = 3 anisotropic spin models and the RPA
expression of Eq. (2.5) gives [44, 47, 54] a very good agree-
ment, but at the expense of reducing the weak coupling 𝐽⊥ by a
non-universal factor 𝐽⊥ → 𝛼𝐽⊥ with 𝛼 ' 0.7 [44, 45, 54–56].

In our SW networks, the long-range branching across the
original 𝑑-dimensional systems induces extra-couplings of av-
erage strength 𝐽 ′(𝑝), as given by Eqs. (1.3) and (1.4). Using
the susceptibility divergence of the bare system at 𝑝 = 0,

𝐽𝜒(𝑇) ∝
(
𝑇 − 𝑇c (0)

𝐽

)−𝛾
, (2.6)

the above RPA formula of Eq. (2.5) yields

𝑇RPA
c (𝑝) − 𝑇c (0) ∝ 𝐽

(
2𝑝
𝐽 ′

𝐽

)1/𝛾
, (2.7)

which recovers Hastings’ expression [16], as given above in
Eq. (2.3). Here, we notice that the RPA estimate explicitly
depends on the shortcut coupling strength 𝐽 ′, while the simpler
MF expression of Eq. (2.1) does not.

In the absence of finite temperature transition 𝑇c (0) = 0
(e.g., for 𝑑 = 1, or 𝑑 = 2 with continuous symmetry, such as
the Heisenberg or XY models), the RPA expression of Eq. (2.7)
is still valid, as we discuss now.

III. THE SPECIAL CASE OF 𝑑 = 1

A. Ising chain

We shall start with a brief discussion of the 𝑑 = 1 Ising
model. As seen above, a simple MF argument, valid for the
highly diluted limit 𝑝 � 1, yields 𝜉 (𝑇c) ∼ e2𝐽/𝑇c (𝑝) ∼ 1/𝑝,
which leads to the well-know form of Eq. (2.2) [4, 19, 27].
However, one can also invoque an RPA treatment of this prob-
lem, using the exponential divergence of the susceptibility

𝜒1d Ising =
1
𝑇

exp
(
2𝐽
𝑇

)
, (3.1)

which gives in the limit 𝑝 � 1

𝑇RPA
c =

2𝐽

ln
(
𝑇 RPA

c
2𝑝𝐽 ′

) ≈ 2𝐽

ln
(
𝐽
𝑝𝐽 ′

) . (3.2)

One sees that if shortcut and nearest-neighbor couplings have
equal strengths 𝐽 = 𝐽 ′, the RPA of Eq. (3.2) becomes equiva-
lent to the simple MF expression of Eq. (2.2).

If 𝐽 ′ < 𝐽, the ordering will be controlled by𝑇RPA
c < 𝑇MF

c . In
the opposite case 𝐽 ′ > 𝐽, the MF temperature𝑇MF

c < 𝑇RPA
c will

take over because the 1D correlation length at 𝑇RPA
c has not

reached the average distance between two shortcuts 𝜁𝑝 ∼ 1/𝑝,
and one would need to further cool down the system to reach
this threshold. We therefore expect from this simple example
that the transition temperature will be given by the minimum
of the two estimates:

𝑇c = min
(
𝑇RPA

c , 𝑇MF
c

)
. (3.3)

B. XXZ chain: the case of Tomonaga-Luttinger liquids

1. Analytical results

The spin-1/2 XXZ chain model, described by H1D in
Eq. (1.1) is a well-known example of Tomonaga-Luttinger
liquid (TLL) in the regime −1 < Δ ≤ 1. Among the vast
amount of knowledge available for this class of systems [57],
let us briefly summarize a few of them, in particular the ones
useful in the context of an RPA treatment of 𝑑 = 1 XXZ SW
models. Only two parameters are sufficient to describe the
low-energy properties of H1D: the velocity of excitations 𝑢
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and the so-called Luttinger exponent 𝐾 . Their dependence on
the Ising anistropy Δ are well-known [58],

𝑢 = 𝜋

√
1 − Δ2

2 arccosΔ
, 𝐾 =

𝜋

2 arccos (−Δ) . (3.4)

In the easy-plane regime |Δ| < 1, the dominant correlations are
transverse with respect to the Ising anistropy and power-law
decaying at 𝑇 = 0 [57],

〈
𝑆𝑥𝑚𝑆

𝑥
𝑛

〉
=

𝐴𝑥𝑥

|𝑚 − 𝑛| 1
2𝐾

e−𝑖𝑞 |𝑚−𝑛 | + · · · , (3.5)

with 𝑞 = 0 (𝑞 = 𝜋) for ferrromagnetic (antiferromagnetic)
interactions. The amplitude 𝐴𝑥𝑥 in Eq. (3.5) is also known
exactly [59]. This quasi-long range (algebraic) order does
not survive at finite temperature where all correlations decay
exponentially with a finite correlation length, diverging at low
temperature,

𝜉 (𝑇) ∝ 𝑢𝐽/𝑇 𝜈 with 𝜈 = 1. (3.6)

In the regime |Δ| < 1, the transverse susceptibility, associated
to the dominant correlation of Eq. (3.5), has the following
low-𝑇 behavior [46, 57],

𝜒𝑥𝑥
(
𝑇
)
=
𝐴𝑥𝑥 sin

(
𝜋

4𝐾
)
𝐵2

(
1

8𝐾 , 1 − 1
4𝐾

)
𝑢𝐽

(
2𝜋𝑇
𝑢𝐽

)−2+ 1
2𝐾

,

(3.7)
with 𝐵(𝑥, 𝑦) = Γ(𝑥)Γ(𝑦)/Γ(𝑥 + 𝑦), making Eq. (3.7) a
parameter-free expression.

2. Consequences for the critical temperature

From the above expression of the transverse susceptibility
Eq. (3.7), one can identify the susceptibility exponent to be
𝛾 = 2− 1

2𝐾 . Quite interestingly, we see that the above condition
Eq. (2.4) is not fulfilled for TLL with𝐾 = (2𝜂)−1 > 1/2, which
applies to the entire easy-axis regime (−1 ≤ Δ < 1), except
at isotropic point. Inverting Eq. (3.7) yields a parameter-free
expression for the RPA estimate of the critical temperature,

𝑇RPA
c (𝑝) = 𝑢𝐽 𝑓 (𝐾, 𝐴𝑥𝑥 )

(
2𝑝𝐽 ′

𝑢𝐽

) 2𝐾
4𝐾−1

, (3.8)

with the dimensionless prefactor,

𝑓
(
𝐾, 𝐴𝑥𝑥

)
=

1
2𝜋

[
𝐴𝑥𝑥 sin

( 𝜋
4𝐾

)
𝐵2

(
1

8𝐾
, 1 − 1

4𝐾

)] 2𝐾
4𝐾−1

.

(3.9)
When comparing the RPA prediction with the simple MF ex-
pression of Eq. (2.1) using the temperature dependence of the
correlation length of Eq. (3.6),

𝑇MF
c (𝑝) = 2𝑢𝐽𝑝, (3.10)

we anticipate a crossover at low branching probability 𝑝★

from an RPA regime of Eq. (3.8) to the linear MF regime

0.01 0.1 1
� 0
�
�
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10�6

10�4
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100

?
¢

� = �0.5 � = 0.0 � = 0.5

�1 0 1
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10�4

100
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FIG. 2. The crossover probability 𝑝★, defined in Eq. (3.11), is plotted
versus the long-range coupling 𝐽 ′/𝐽 for different values of Ising
anisotropy Δ. The inset shows the behavior of the 𝐽 ′/𝐽-independent
prefactor of 𝑝★ versus Δ. Note its singular behavior as |Δ| → 1.

of Eq. (3.10) (provided that 𝐾 > 1/2). This occurs when
𝑇RPA

c (𝑝★) = 𝑇MF
c (𝑝★), meaning that,

𝑝★ = 𝑝0 (Δ)
(
𝐽 ′

𝐽

)𝜇Δ
, (3.11)

where 𝑝0 (Δ) = 𝑢−𝜇Δ [ 𝑓 (𝐾, 𝐴𝑥𝑥)]1+𝜇Δ is plotted in
Fig. 2 (inset) as a function of the Ising anisotropy, and the
exponent 𝜇Δ = 𝜋/arccos(Δ) varies between 1 for Δ = −1 and
+∞ when Δ → 1. Eq. (3.11) is plotted against 𝐽 ′/𝐽 in Fig. 2
for various anisotropies Δ. This defines the range of validity
of the RPA expression for the critical temperature Eq. (3.8) for
𝑝 > 𝑝★. Below 𝑝★, the simpler linear MF argument Eq. (3.10)
is expected.

The antiferromagnetic Heisenberg case (Δ = 1) is more
subtle since the TLL parameter 𝐾 = 1/2 and logarithmic cor-
rections [60–67] are expected in the temperature dependence
of both the correlation length and the staggered susceptibil-
ity. This will be discussed in more details in the following
(Sec. III C 2).

C. Quantum Monte Carlo results for the 𝑑 = 1 susceptibilities

We simulate the 𝑆 = 1/2 XXZ chain model Eq. (1.1) at
finite temperature 𝑇 with QMC, using the stochastic series
expansion with directed loop updates [68–70].

Noting ℎsb a symmetry-breaking field coupled to the order
parameter 〈𝑚〉, the linear response function (susceptibility 𝜒)
takes the form,

𝜒 =
𝜕
〈
𝑚

(
ℎsb

)〉
𝜕ℎsb

�����
ℎsb=0

=
∫ 1/𝑇

0
d𝜏

〈
𝑚† (𝜏)𝑚(0)〉, (3.12)

with 𝑚(𝜏) = e−𝜏H𝑚e𝜏H in the Heisenberg picture where 𝜏
is the imaginary time. The right-hand side of Eq. (3.12) is
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Tomonaga Luttinger− liquid
∝ T−3/2 (XY model)
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FIG. 3. QMC transverse susceptibility of the XY chain (Δ = 0 and
𝑝 = 0) as a function of the temperature 𝑇 for different system sizes
from 𝑁 = 128 to 𝑁 = 2048. The straight black line is the parameter-
free expression of Eq. (3.7). It fits asymptotically well the QMC data
at low-energy for 𝑇/𝐽 . 0.1, when the Tomonaga-Luttinger liquid
description becomes valid.

derived from the Kubo formula [71]. In the ferromagnetic XY
model, 𝑚 =

∑
𝑗 (𝑆𝑥𝑗 + 𝑖𝑆𝑦𝑗 )/𝑁 , while in the antiferromagnetic

Heisenberg model, one has 𝑚 =
∑
𝑗 (−1) 𝑗𝑆𝑧𝑗/𝑁 .

1. The spin-1/2 ferromagnetic XY chain

Eq. (3.7) provides a parameter-free expression which gives
for Δ = 0 in the low-temperature limit,

𝐽𝜒Δ=0
𝑥𝑥 (𝑇) = 0.474061...

(
𝐽

𝑇

)3/2
. (3.13)

This expression is plotted in Fig. 3, together with QMC results
where one sees a very good agreement at low temperature.

2. The spin-1/2 antiferromagnetic Heisenberg chain

The Heisenberg spin-1/2 chain model is known to have loga-
rithmic corrections in most observables [60–67]. In particular,
the staggered susceptibility [73] is expected to follow [74],

𝜒Δ=1
𝜋

(
𝑇
)
=
𝜒0
𝑇

√︃
ln

(
𝐽Λ/𝑇 )

. (3.14)

In order to apply the RPA analysis, it appears very impor-
tant to have a correct description for 𝜒Δ=1

𝜋 (𝑇). In Fig. 4 we
show our QMC results for large spin chains, up to 𝐿 = 4096
sites. Our data are very well described by Eq. (3.14), with
𝜒0 = 0.2823(16) and Λ = 22.7(20), in the temperature range
0.002𝐽 ≤ 𝑇 ≤ 0.1𝐽, These parameters differ from the ones re-
ported in Refs. [75–77] where QMC was performed at higher
temperature.

Classical
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FIG. 4. QMC results for the staggered susceptibility of the Heisen-
berg chain (𝑝 = 0) as a function of the temperature 𝑇 . Different
symbols show system sizes from 𝑁 = 128 to 𝑁 = 4096. The classical
result [72] is also shown by the solid line. Inset:

(
𝑇 𝜒

)2 is plotted
against

(
𝑇/𝐽)−1. The solid line is a fit to the form 𝜒2

0 (lnΛ − ln𝑇),
according to Eq. (3.14), with 𝜒0 = 0.2823(16) and Λ = 22.7(20).

IV. QUANTUM MONTE CARLO RESULTS FOR THE
SMALL-WORLD

We now turn to SW networks. In the undiluted case shown
in Fig. 1 (b), we average the QMC results over different lattices
with 𝑝 > 0 (typically a few hundreds), since the long-ranged
links are randomly drawn, while only one sample is enough
for the disorder-free Hastings model of Fig. 1 (c).

A. Observables

To characterize the finite-temperature transition, we con-
sider the square of the order parameter

〈
𝑚2〉, directly accessi-

ble from the normalized structure factor for both the staggered
antiferromagnetic Heisenberg and ferromagnetic XY models
(see also Sec. III C). It can also be evaluated by looking at the
spin-spin correlation at long distance,

〈
𝑚2〉 = lim

|𝑚−𝑛 |→+∞

{ ���〈𝑆𝑧𝑚𝑆𝑧𝑛〉��� XXX case,〈
𝑆𝑥𝑚𝑆

𝑥
𝑛 + 𝑆𝑦𝑚𝑆𝑦𝑛

〉
XY case.

(4.1)

On a finite-size system, the longest distance is taken along the
1D ring with |𝑚 − 𝑛| = 𝑁/2. One can average over the 𝑁/2
pairs of such lattice sites.

Another quantity of interest is the fourth-order Binder ra-
tio [78],

𝑄 =
〈
𝑚4〉/〈

𝑚2〉2
, (4.2)

which takes a system-size independent value at the transition
and is therefore useful to detect it.
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B. Mean-field behavior

1. Critical exponents

In infinitely coordinated systems, where each site is coupled
to all others (e.g., the Hastings model), the concepts of dimen-
sionality and length, involved in the standard finite-size scaling
hypothesis, are not well-defined. Botet, Jullien, and Pfeuty ex-
tended the hypothesis to such systems [79, 80] by substituting
the correlation length 𝜉 with a coherence number N , indepen-
dent of the dimensionality. Similarly to 𝜉, it diverges at the
transition N ∼ |𝑇 −𝑇c |−𝜈̃ with 𝜈̃ a critical exponent depending
on the system but not its dimension. The authors found that,

𝜈̃ = 𝜈MF 𝑑u, (4.3)

with 𝑑u the upper critical dimension and 𝜈MF the correla-
tion length exponent of the MF theory. Eq. (4.3) has been
verified for various physical systems and found to apply to
more generic infinite-dimensional geometries such as SW net-
works [20, 29, 79, 80]. For the XY and Heisenberg universality
classes considered in this work, one has 𝑑u = 4 and 𝜈MF = 1/2,
yielding 𝜈̃ = 2. As a result, close to the critical temperature
𝑇c, the square of the order parameter follows,

〈
𝑚2〉 = 𝑁−2𝛽MF/𝜈̃ F𝑚2

(
𝑡𝑁1/𝜈̃

)
, (4.4)

with 𝑁 the number of lattice sites, 𝛽MF = 1/2 the order pa-
rameter MF exponent, F𝑚2 a universal scaling function and
𝑡 = (𝑇 − 𝑇c)/𝑇c the reduced temperature. The Binder ratio of
Eq. (4.2) equally follows,

𝑄 = F𝑄
(
𝑡𝑁1/𝜈̃

)
, (4.5)

with F𝑄 the corresponding scaling function.

2. Corrections to scaling

Note that irrelevant corrections to the above scaling laws
should also be considered with a modified scaling function,

F → (
1 + 𝑏𝑁−𝜔 )F (

𝑡𝑁1/𝜈̃ + 𝑐𝑁−𝜙/𝜈̃
)
, (4.6)

where 𝑏, 𝑐 are non-universal parameters, and 𝜔, 𝜙 are cor-
rections to scaling exponents [81, 82]. In practice, we make
a fourth order Taylor expansion of the scaling function, i.e.,
F (𝑥) ' ∑4

𝑛=0 𝑎𝑛𝑥
𝑛 with 𝑥 = 𝑡𝑁1/𝜈̃ + 𝑐𝑁−𝜙/𝜈̃ according to

Eq. (4.6). At this stage, 𝑇c, 𝑏, 𝑐, 𝜔, 𝜙, 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4 are
all parameters obtained by non-linear least squares fitting. Us-
ing the values of the exponents 𝛽MF and 𝜈̃ give very good data
collapses, see Fig. 5.

We use a standard least squares fitting method to obtain the
parameters. For each dataset, the fitting procedure is repeated
≈ 103 times where each data point is generated from a normal
distribution of mean and standard deviation corresponding to
the statistical QMC average and error, respectively [83].
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FIG. 5. Hastings model. Data collapse for the staggered XXX anti-
ferromagnet with 𝐽 ′/𝐽 = 0.25. Three estimates are considered: (a)
the binder cumulant, (b) the square of the order parameter evaluated
from the spin-spin correlation at long distance and (c) the normalized
structure factor. Setting 𝜈̃ = 2 and 𝛽MF = 1/2, we find that𝑇c ' 0.16.
The other fitting parameters are reported in App. B. The insets show
the data crossing without any correction to the scaling.

3. Hastings model

We first discuss the infinitely connected Hastings model
where the long-range couplings take the form |𝐽LR

𝑖 𝑗 | = 𝐽 ′/𝑁 ,
∀|𝑖 − 𝑗 | > 1. Fig. 5 shows QMC results for the staggered
antiferromagnetic Heisenberg model with 𝐽 ′/𝐽 = 0.25. The
three panels display the different observables used to extract the
ordering transition, which all agree perfectly with an estimate
𝑇𝑐 ' 0.16.

The same analysis can be performed for various values of
𝐽 ′/𝐽, for both the XY ferromagnet and the staggered XXX
antiferromagnet. QMC results for the critical temperature as
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� 0(?)/�
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RPA (QMC)
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Staggered AF Heisenberg

FIG. 6. Critical temperature of the Hastings model, plotted as a
function of the average long-range coupling strength 𝐽 ′(𝑝)/𝐽 for
the ferromagnetic XY and staggered antiferromagnetic Heisenberg
models. The RPA estimates (analytical and QMC) are also displayed
for each model.

a function of 𝐽 ′/𝐽 are reported in Fig. 6 where a direct com-
parison to the RPA prediction is provided. Here, we clearly
observe that not only the critical exponents obey MF predic-
tions (Fig. 5), but the chain-MF theory provides through the
RPA prediction of Eq. (2.5) a perfectly quantitative estimate for
𝑇c of the Hastings model, and this remains true up to 𝐽 ′/𝐽 = 1.
Therefore the 1D character of the underlying spin chain lattice
is fundamental, despite the infinitely connected nature of the
Hastings model.
𝑇RPA

c is also shown in Fig. 6, together with QMC data. For
the XY ferromagnet, Eq. (3.8) yields

𝑇RPA
c,XY

/
𝐽 = 0.60798...

(
𝐽 ′

𝐽

)2/3
, (4.7)

which clearly agrees very well with QMC below 𝐽 ′/𝐽 ∼ 0.2.
The staggered XXX antiferromagnetic case is a bit more subtle
because of logarithmic corrections discussed above. Interest-
ingly, the rather simple form Eq. (3.14) yields the following
RPA expression for the critical temperature,

𝜒0
𝑇c

√︁
ln(𝐽Λ/𝑇c) = 1

𝐽 ′
(4.8)

Using the Lambert𝑊-function [84], it gives for 𝐽 ′ � 𝐽,

𝑇RPA
c,XXX ≈ 𝜒0𝐽

′

√√√
ln

(
𝐽

𝐽 ′

)
+ 𝐴 − ln

√︄
2 ln

(
𝐽

𝐽 ′

)
+ 2𝐴, (4.9)

with 𝜒0 = 0.2823(16) and 𝐴 = ln
(
Λ
√

2
)
− ln 𝜒0 = 4.73(9).

This RPA analytical estimate for 𝑇c compares very well to
QMC data, as shown in Fig. 6.

In this toy-model with infinite connectivity, the chain-MF
theory provides with the RPA expression an exact estimate

for the critical temperature measured by QMC. As anticipated
by Hastings in Ref. [16], the simple MF expression Eq. (2.1)
obtained for SW geometries in the diluted limit does not apply
in this case. In the following we address the disordered case
with low connectivity for both the XY ferromagnet and the
XXX antiferromagnet.

C. The Undiluted small-world geometry

We now turn to the disordered case with a finite branch-
ing probability 𝑝 ≤ 0.5 and long-range couplings 𝐽 ′ = 𝐽. In
contrast to the disorder-free Hastings model, here we have to
perform disorder averaging, typically over a few hundreds of
independent samples. The average distance between short-
cuts being 𝜁𝑝 ≈ (2𝑝)−1, QMC simulations have to be ideally
achieved over systems of length 𝑁 � 𝜁𝑝 . This natural scale
fixes a limit to the accessible concentrations 𝑝 & 10−2 in our
simulations.

Despite the very low connectivity 𝑧 = 2 + 2𝑝, a finite tem-
perature transition is clearly detected in our QMC simulations,
see Fig. 7. We obtain MF critical exponents, as expected from
the 𝑑 = ∞ nature of the SW network, even in the vanishing
𝑝 limit. Nevertheless, there are notable differences with the
infinitely connected Hastings model, as we discuss now.

Fig. 7 (c) shows the concentration 𝑝 dependence of the crit-
ical temperature for both ferromagnetic (XY) and antiferro-
magnetic (XXX) ordering transitions. QMC estimates for 𝑇c
are compared to the RPA result. We first discuss the staggered
XXX antiferromagnet (orange colors). In this case, QMC re-
sults and RPA estimates are not equal, but they seemingly get
closer when 𝐽 ′(𝑝) → 0. Following similar ideas developed in
Refs. [44, 45, 54–56], we introduce a renormalization param-
eter 𝛼, such that the exact critical temperature follows from
the RPA formula, with a 𝑝-dependent renormalization of the
average long-range coupling 𝐽 ′(𝑝),

𝑇c = 𝜒
−1

(
1

𝛼𝐽 ′(𝑝)

)
. (4.10)

Remarkably, we observe in the inset of Fig. 7 (c) that 𝛼 in-
creases towards unity when 𝑝 → 0, thus making the RPA
result asymptotically exact in this extreme limit.

The XY model shows a strikingly different trend. Indeed,
while the RPA behavior 𝑇c ∼ (𝐽 ′(𝑝)/𝐽)2/3 gives a reasonable
description of the exact QMC data at intermediate coupling
strengths, this is no longer the case when 𝐽 ′(𝑝)/𝐽 . 0.1 where
an increasing deviation is clearly observed. This result is a
consequence of the crossover from RPA to MF discussed in
Sec. III B 2. Indeed, taking Eq. (3.11) for the XY case atΔ = 0,
we anticipate a crossover probability 𝑝★ ≈ 0.11 below which
the average distance between two shortcuts 𝜁𝑝 becomes larger
than the 1D correlation length value at the RPA temperature
𝜉 (𝑇RPA

c ). As predicted, we clearly observe a downturn for 𝑇c
towards the linear behavior Eq. (3.10) shown by a dashed line
in Fig. 7 (c). This crossover is a direct consequence of the
underlying Luttinger liquid behavior which allows to break the
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ã
� 1

+1
#
�l

�

# = 512
# = 768
# = 1024
# = 1536
# = 2048

0.04 0.06 0.08
)/�

0.5

1.0

⌦ <
2↵ co

rr
� #

�2
V

M
F/
ã

0.04 0.06 0.08
)/�

1

2

⌦ <
2↵ su

m
� #

�2
V

M
F/
ã
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FIG. 7. Data collapse for the XY ferromagnet on the SW network
with 𝑝 = 0.03125: the square of the order parameter evaluated from
(a) the normalized structure factor and (b) the spin-spin correlation at
long distance. Setting 𝜈̃ = 2 and 𝛽MF = 1/2, we find that 𝑇c ' 0.065.
The other fitting parameters are reported in App. B. The insets show
the data crossing without any correction to the scaling. (c) Critical
temperature of the ferromagnetic XY and staggered antiferromagnetic
Heisenberg models versus the average strength of the extra couplings.
In each case, the analytical RPA estimate is also displayed. In the stag-
gered antiferromagnetic Heisenberg model, the two estimates agree
as 𝐽 ′(𝑝) → 0. We plot in the inset the renormalization parameter 𝛼
(see text). As 𝐽 ′(𝑝) → 0, one sees that 𝛼 → 1. In the ferromagnetic
XY case, the RPA and QMC estimates deviate below 𝐽 ′(𝑝)/𝐽 ∼ 0.1.
The dashed line is a linear fit ∝ 𝐽 ′(𝑝)/𝐽.

condition of Eq. (2.4): here 𝜂 > 1, with 𝜂 = arccos(−Δ)/𝜋 ≤ 1
for the 𝑑 = 1 XXZ model.

Note that for the XXX case, the RPA estimate Eq. (4.9) has
multiplicative logarithmic corrections, slowly growing when
𝑝 → 0. Therefore one should expect, in principle, to observe a
similar crossover towards the MF expression Eq. (3.10) for the
staggered XXX antiferromagnet. However, this effect is clearly
out of reach since it would theoretically occur for 𝑝★ ≈ 10−9.

D. Influence of a spin gap

We finally investigate a dimerized antiferromagnetic chain,
governed by the following Heisenberg Hamiltonian,

H1D = 𝐽
∑︁𝑁

𝑖=1

[
1 + 𝛿(−1)𝑖] 𝑺𝑖 · 𝑺𝑖+1. (4.11)

In contrast with the previous study, here the ring has a gapped
ground-state, with a finite 𝑇 = 0 correlation length [85]. In-
stead of a divergent staggered susceptibility, now 𝜒𝜋 saturates
at low temperature to a finite value, 𝜒0

𝜋 , as visible in Fig. 8
(inset) for a dimerization parameter 𝛿 = 0.25.

Consequently, according to RPA, Eq. (2.5), the absence of
low-𝑇 divergence for 𝜒𝜋 should imply a critical coupling 𝐽 ′c =
1/𝜒0

𝜋 , below which 𝑇c = 0. This is well known for instance in
the case of coupled Haldane chains [86, 87]. Here we performe
QMC simulations of the Hastings model with extra couplings
of varying strength 𝐽 ′/𝑁 for a dimerization parameter 𝛿 =
0.25. 𝑇c estimates are reported in Fig. 8, together with the
RPA result, obtained using 𝑇RPA

c = 𝜒−1
𝜋 (1/𝐽 ′) when a solution

exists, and 𝑇c = 0 otherwise. The agreement is excellent, even
when 𝐽 ′/𝐽 > 1. The 𝑇 = 0 critical coupling 𝐽 ′c ≈ 0.53 is also
perfectly captured by the RPA treatment.
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FIG. 8. Critical temperature of the dimerized antiferromagnetic
model Eq. (4.11) with 𝛿 = 0.25 and additional long-range couplings
of the Hastings form of strength 𝐽 ′(𝑝). The RPA estimate compares
perfectly to the QMC results. Inset: Temperature dependence of the
staggered susceptibility of the 1D dimerized system.
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V. SUMMARY AND CONCLUSION

In this work, building on mean-field theory and extensive
quantum Monte Carlo simulations, we investigated interacting
quantum spins on small-world networks. Starting from 1D
rings, we considered two situations: all-to-all interacting and
long-range interactions randomly added. The effective infinite
dimension of the lattice leads to a magnetic ordering at finite
temperature 𝑇c with mean-field criticality.

First, we showed that different mean-field treatments led to
different power-law behaviors for the scaling of 𝑇c versus the
average strength 𝐽 ′ of the extra couplings. The first approach
is controlled by a competition between a characteristic length
scale of the small-world network and the thermal correlation
length of the underlying 1D system, and leads to 𝑇c ∝ 𝐽 ′. The
other approach is based on the random phase approximation.
For a critical 1D system with anomalous exponent 𝜂, it gives
𝑇c ∝ 𝐽 ′1/(2−𝜂) .

Before confronting these approximate treatments with un-
biased quantum Monte Carlo simulations of the problem,
we compared analytical RPA based on low-energy physics
with numerical RPA in order to quantitatively define the low-
temperature limit of the analytical approaches. By computing
the transverse susceptibility of the XY chain and the staggered
susceptibility of the Heisenberg chain with exchange coupling
𝐽, we found that the analytical low-energy approaches become
asymptotically exact for 𝑇 . 𝐽.

Starting with the all-to-all interacting system (Hastings
model), we first checked that the transition belonged to the
mean-field universality class. Because of the effective infi-
nite dimensionality of the system, the correlation length expo-
nent is rescaled as 𝜈̃ → 𝜈MF𝑑u with 𝜈MF = 1/2 the standard
mean-field theory exponent and 𝑑u = 4 the upper critical di-
mension [79, 80], which we verified in a finite-size scaling
analysis. Finally, we found that for the Hastings model, the
critical temperature 𝑇c scales according to the random phase
approximation versus the average strength 𝐽 ′ of the extra cou-
plings.

We then considered the system with long-range interactions,
randomly added with a finite probability 𝑝. Similarly to the
Hastings model, we checked that its criticality belongs to the
mean-field universality class. However, we found in this case
that the critical temperature shows both the 𝑇c ∝ 𝐽 ′1/(2−𝜂) and
𝑇c ∝ 𝐽 ′ scalings, with a crossover from one to the other. As 𝐽 ′
is reduced, the linear scaling takes over the RPA behavior when
the characteristic length scale of the network becomes larger
than the 1D thermal correlation length at the RPA temperature.

Finally, we investigated the fate of a gapped 1D spin chain
against the small-world effect by considering the dimerized
spin-half Heisenberg chain. We found that the gap of the
1D system leads to a critical value 𝐽 ′c for magnetic ordering.
Beyond 𝐽 ′c, the critical temperature behavior behavior is well-
captured by the RPA estimate.

For future work, it would be interesting to investigate how
the order parameter at zero temperature responds to the small-
world effect. For instance, a TLL-based approach predicts that
〈𝑚2〉 ∝ 𝐽 ′𝜂/(2−𝜂) [46, 47, 57, 88, 89], but as for the scaling of

the critical temperature, one might expect a crossover towards
another MF regime as a function of 𝐽 ′.

Besides, it is very stimulating to think of the small-world
effect in the presence of disorder [90]. It has been found to
host unusual physics for non-interacting fermions [91, 92],
and it would be interesting to study the problem for interact-
ing quantum systems, similarly to what has been done on the
Cayley tree [93] for bosons in a random potential. Random
exchange spin systems also offer a very promising platform, in
particular to explore the issue of infinite randomness critical-
ity [94] against the small-world effect [95]. We further note
that magnetic frustration, occurring in the long-range interac-
tions across the ring [96] for instance, is another fascinating
route where one could find more exotic quantum phases of
matter. Finally, it is fascinating to observe that small-world
quantum magnets are now available in experiments, with for
instance all-to-all spin models, or tree-like tunable Heisenberg-
type systems which can be realized in cold atom setups coupled
to an optical cavity [97–99].
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Appendix A: Chain mean-field theory and random phase
approximation

1. Chain mean-field theory

We recall the basic idea of treating the long-range part in
mean-field. One looks at the fluctuations around the average
value of the operators in the long-range part by making the
substitution,

𝑆
𝑥,𝑦,𝑧
𝑖 =

〈
𝑆
𝑥,𝑦,𝑧
𝑖

〉 + (
𝑆
𝑥,𝑦,𝑧
𝑖 − 〈

𝑆
𝑥,𝑦,𝑧
𝑖

〉)
. (A1)
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Neglecting quadratic terms and up to an irrelevant constant,
one gets the following effective 1D Hamiltonian,

HXXX
eff = 𝐽

∑︁
𝑖
𝑺𝑖 · 𝑺𝑖+1 +

∑︁
𝑖, 𝑗
𝐽LR
𝑖 𝑗

〈
𝑆𝑧𝑗

〉
𝑆𝑧𝑖 , (A2)

in the staggered antiferromagnetic Heisenberg case (Δ = 1),
where magnetic order, induced by long-range couplings, has
been assumed along the 𝑧 spin component. For the ferromag-
netic XY model (Δ = 0), the ordering is expected in the 𝑥𝑦
plane. We suppose it is along the 𝑥 spin component and obtain
the effective 1D model as follows,

HXY
eff = 𝐽

∑︁
𝑖

(
𝑆𝑥𝑖 𝑆

𝑥
𝑖+1 + 𝑆𝑦𝑖 𝑆

𝑦
𝑖+1

)
+

∑︁
𝑖, 𝑗
𝐽LR
𝑖 𝑗

〈
𝑆𝑥𝑗

〉
𝑆𝑥𝑖 . (A3)

In both cases, the idea is to assume symmetry breaking. Con-
sidering an homogeneous system, one can replace

〈
𝑆𝑥,𝑧𝑗

〉
by

the corresponding order parameter 〈𝑚〉. In the staggered anti-
ferromagnetic Heisenberg case,

HXXX
eff = 𝐽

∑︁
𝑖
𝑺𝑖 · 𝑺𝑖+1 + 〈𝑚〉

∑︁
𝑖, 𝑗
𝐽LR
𝑖 𝑗 (−1) 𝑗𝑆𝑧𝑖 , (A4)

where the factor (−1) 𝑗 comes from the fact that 〈𝑚〉 =
(−1) 𝑗 〈𝑆𝑧𝑗 〉. In the XY case, the order is ferromagnetic,

HXY
eff = 𝐽

∑︁
𝑖

(
𝑆𝑥𝑖 𝑆

𝑥
𝑖+1 + 𝑆𝑦𝑖 𝑆

𝑦
𝑖+1

)
+ 〈𝑚〉

∑︁
𝑖, 𝑗
𝐽LR
𝑖 𝑗 𝑆

𝑥
𝑖 . (A5)

2. Random phase approxmation

The linear response to a tiny symmetry-breaking field ℎsb
coupled to the order parameter operator 𝑚 takes the form,

〈𝑚〉 = 𝜒1D (
𝑇
)
ℎsb, (A6)

where 𝜒1D (𝑇) is the susceptibility. Neglecting possible inho-
mogeneities in the SW branching by using the fact that the aver-
age strength of extra-couplings across the ring is 𝐽 ′(𝑝) = 2𝑝𝐽 ′
and including explicitely the symmetry-breaking field for the
antiferromagnetic XXX model of Eq. (A4), one gets,

HXXX
eff = 𝐽

∑︁
𝑖
𝑺𝑖 · 𝑺𝑖+1 + 〈𝑚〉𝐽 ′(𝑝)

∑︁
𝑖
(−1)𝑖𝑆𝑧𝑖

+ ℎsb
∑︁

𝑖
(−1)𝑖𝑆𝑧𝑖 , (A7)

and similarly for the XY case of Eq. (A5),

HXY
eff = 𝐽

∑︁
𝑖
𝑺𝑖 · 𝑺𝑖+1 + 〈𝑚〉𝐽 ′(𝑝)

∑︁
𝑖
𝑆𝑥𝑖

+ ℎsb
∑︁

𝑖
𝑆𝑥𝑖 . (A8)

Within the chain mean-field approach, the total effective sym-
metry breaking field is ℎsb + 𝐽 ′(𝑝)〈𝑚〉. Therefore,

〈𝑚〉 = 𝜒1D (𝑇)
(
ℎsb + 𝐽 ′(𝑝)〈𝑚〉

)
. (A9)

Isolating the order parameter from Eq. (A9), one gets,

〈𝑚〉 = 𝜒1D (𝑇)
1 − 𝐽 ′(𝑝)𝜒1D (𝑇)

ℎsb = 𝜒RPA (𝑇)ℎsb. (A10)

Because magnetic ordering occurs at 𝑇 = 𝑇RPA
c with a diver-

gence of the susceptibility, one finds the condition,

𝜒1D
(
𝑇RPA

c

)
= 1

/
𝐽 ′(𝑝). (A11)

By inverting it, one can get the RPA estimate of the critical
temperature 𝑇RPA

c .

Appendix B: Fitting parameters for the scaling functions

Following the scaling analysis including corrections to the
sccaling (see Sec. IV B 2), the fitting parameters for the data
collapse of Figs. 5 and 7 are reported in Tab. I.

Quantity 𝑇c 𝜔 𝜙 𝑏 𝑐

Staggered AF Heisenberg (Hastings, 𝐽 ′/𝐽 = 0.125)
𝑄 (Binder) 0.154(5) 1.49(2) 3.72(1) −41(1) 4613(10)
〈𝑚2〉corr 0.156(4) 4.89(7) 0.66(2) −1.60(3) 9.24(5)
〈𝑚2〉sum 0.165(7) 0.37(6) 0.7(1) 667(9) 37(1)

XY Ferromagnet (Small-world, 𝑝 = 0.03125)
〈𝑚2〉corr 0.064(3) 1.67(3) 2.74(8) 81(2) −30(1)
〈𝑚2〉sum 0.061(6) 1.20(8) 2.08(12) 290(4) 1036(12)

TABLE I. Fitting parameters for the data collapse of Figs. 5 and 7.
See Sec. IV B 2 for a definition of the different parameters.
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