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Abstract

The topic of this paper is our knowledge of the natural numbers, and in par-
ticular, our knowledge of the basic axioms for the natural numbers, namely
the Peano axioms. The thesis defended in this paper is that knowledge of
these axioms may be gained by recourse to judgements of probability. While
considerations of probability have come to the forefront in recent epistemol-
ogy, it seems safe to say that the thesis defended here is heterodox from
the vantage point of traditional philosophy of mathematics. So this paper
focuses on providing a preliminary defense of this thesis, in that it focuses
on responding to several objections. Some of these objections are from the
classical literature, such as Frege’s concern about indiscernibility and circu-
larity (§ 2.1), while other are more recent, such as Baker’s concern about the
unreliability of small samplings in the setting of arithmetic (§ 2.2). Another
family of objections suggests that we simply do not have access to probabil-
ity assignments in the setting of arithmetic, either due to issues related to
the w-rule (§ 3.1) or to the non-computability and non-continuity of prob-
ability assignments (§ 3.2). Articulating these objections and the responses
to them involves developing some non-trivial results on probability assign-
ments (Appendix A-Appendix C), such as a forcing argument to establish
the existence of continuous probability assignments that may be computably
approximated (Theorem 4 Appendix B). In the concluding section, two
problems for future work are discussed: developing the source of arithmeti-
cal confirmation and responding to the probabilistic liar.
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1. Introduction

The topic of this paper is the tenability of a certain type of empiricism
about our knowledge of the Peano axioms. The Peano axioms constitute the
standard contemporary axiomatization of arithmetic, and they consist of two
parts, a set of eight axioms called Robinson’s (), which ensure the correctness
of the addition and multiplication tables, and the principle of mathematical
induction, which says that if zero has a given property and n + 1 has it
whenever n has it, then all natural numbers have this property.! The type
of empiricism about the Peano axioms which I want to consider holds that
arithmetical knowledge is akin to the knowledge by which we infer from the
past to the future, or from the observed to the unobserved. It is not uncom-
mon today to hold that such inductive inferences can be rationally sustained
by appeal to informed judgments of probability. The goal of this paper is
to defend an empiricism which contends that judgements of probability can
help us to secure knowledge of the Peano axioms.

This empiricism merits our attention primarily because standard accounts

'More formally, the axioms of Robinson’s @ are the following:

(Ql) Sz #0 (Q2) Sz=Sy—z=y Q) z#0—Jwz=Sw
Q) z+0=2x (Q5) x+ Sy =S(z+vy) (Q6) z-0=0
QN z-Sy=z-y+z (QQ)a<ycJzax+z=y

For the formal result that indicates that Robinson’s ) ensures the correctness of the
addition and multiplication tables (among other things), see Proposition 1 in § 2.2. The
Peano axioms then consist of Robinson’s @) along with each instance of the mathematical
induction schema, wherein ¢(x) ranges over first-order formulas with one free variable x:

[(0) &V y o(y) = @(S¥))] — [V z ¢(z))] (1)

Hence, what I am describing in this paper as “the Peano axioms” is first-order Peano
arithmetic, as described and studied in e.g. [1]. This is to be distinguished from second-
order Peano arithmetic as studied in e.g. [2], wherein the mathematical induction schema
is replaced by single induction axiom and in which one additionally adds the comprehen-
sion schema, which says that every formula with a free first-order variable determines a
second-order entity. Against the background of second-order logic with the comprehension
schema, the mathematical induction axiom is equivalent to the version of the mathemat-
ical induction schema (1) wherein ¢(z) is permitted to range over second-order formulas
with one free object variable z. Hence it makes no difference to the arguments presented
here whether one works in a first- or second-order setting, and so for the sake of simplicity
I keep here to the first-order setting.



of our knowledge of the Peano axioms face difficult problems, problems going
above and beyond skepticism about knowledge of abstract objects. For in-
stance, logicism suggests that knowledge of the Peano axioms may be based
on knowledge of ostensibly logical principles— such as Hume’s Principle— and
the knowledge that the Peano axioms are representable within these logical
principles (cf. [3] p. xiv, p. 131). The success of logicism thus hinges upon
identifying a concept of representation that can sustain this inference, and as
I have argued elsewhere, it seems that we presently possess no such concept
([4]). Alternatively, some structuralists have suggested that knowledge of the
Peano axioms may be based on our knowledge of the class of finite structures.
However, this account then owes us an explanation of why the analogues of
the Peano axioms hold on the class of finite structures. For example, this
account must tell us something about how we know that there’s no finite
structure that is larger than all the other finite structures (cf. [5] p. 112, [6]
p. 159).

The second reason that this kind of empiricism about the Peano axioms
merits our attention is that it has been suggested in different ways by both
historical and contemporary sources. For instance, prior to Frege, a not un-
common view seems to have been that mathematical induction was an empir-
ical truth akin to enumerative induction. This is why Kastner thought that
mathematical induction was not fit to be an axiom ([7] pp. 426-428), and this
is part of the background to Reid’s begrudging concession that “necessary
truths may sometimes have probable evidence” ([8] VIL.ii.1).2 However, some
contemporary authors writing on the epistemology of arithmetic and arith-
metical cognition have also suggested views related to this. For instance, Rips
and Asmuth— two cognitive scientists who work on mathematical cognition—
have recently considered the suggestion that “the theoretical distinction be-
tween math[ematical] induction and empirical induction” is not as clear as
has been claimed, and that “even if the theoretical difference were secure,
it wouldn’t follow that the psychological counterparts of these operations
are distinct” ([10] p. 205). Finally, in the course of their work on the epis-
temic propriety of randomized algorithms, Gaifman and Easwaran have both
suggested the possibility of extending the notion of probability which they

2Mill, by contrast, thought that proofs related to mathematical induction ought not
be conceived of as instances of enumerative induction (cf. [9] vol. 7 p. 288 ff, Book III,
Chapter 2). The history of this topic obviously deserves more discussion than I am able
to give here.



employ to broader issues in the epistemology of arithmetic ([11] pp. 107-108,
[12] p. 347).

The empiricism about arithmetical knowledge which I want to consider
is centered around the notion of a probability assignment and the associated
confirmation relation. A probability assignment is a mapping P from sen-
tences in a fixed formal language to real numbers that satisfies the following
three axioms (cf. [13] pp. 20 ff, [14] pp. 35 ff):

(P1) P(y) = 0

(P2) Pp) = Lif |= ¢

(P3) PV ¥) = P() + P() if | ~(p & ¥)
In what follows, all the probability assignments under consideration shall be
assumed to have a domain that includes all the sentences in the language
of the Peano axioms. Further, it shall be assumed that the consequence
relation |= in axioms P2-P3 is the logical consequence relation from first-
order logic, so that = ¢ holds if and only if ¢ is true on all models. The
notion of confirmation is then defined as an increase of the probability of
a hypothesis conditional on evidence relative to the background knowledge.
That is, hypothesis h is said to be confirmed by evidence e relative to back-
ground knowledge K if P(hle & K) > P(h|K), assuming that the conditional
probabilities P(hle & K), P(h|K) are defined, where these conditional prob-

abilities are given by the usual equation P(h/|e') = P(g(ff)el). Further, in the
case where confirmation occurs, the quantity P(hle & K) — P(h|K) is said
to be the degree of confirmation.?

Since there are two parts to the Peano axioms— namely Robinson’s Q
and mathematical induction— so there are two complementary forms of em-
piricism which I want to consider here, which I call inceptive empiricism
and amplificatory empiricism. Amplificatory empiricism contends that one
is justified in inferring from the antecedent of an instance of mathematical
induction to its consequent, relative to the background knowledge consisting
of the conjunction of the eight axioms of Robinson’s (), because the conse-
quent is confirmed by the antecedent relative to this background knowledge.
Since in conjunction with the eight axioms of Robinson’s ), the consequent of
such an instance (the claim that all numbers have a given property) logically

3There are many alternative measures of degree of confirmation (cf. [15]). The impor-
tant differences between these measures do not, as far as I can discern, affect the arguments
presented in this paper.



implies its antecedent (the claim that zero has this property and that n + 1
does whenever n does), it then follows that the consequent is confirmed by
the antecedent (relative to the background knowledge consisting of the con-
junction of the eight axioms of Robinson’s @) if the conjunction of these
eight axioms and the antecedent is assigned a non-zero probability strictly
less than the probability assigned to the conjunction of these eight axioms.
Hence, were one to accept amplificatory empiricism, then there would be a
straightforward connection between justification and probability, according
to which one would be justified in inferring from the antecedent of an in-
stance of mathematical induction to its consequent, against the background
knowledge of the eight axioms of Robinson’s (), because of the probabilities
assigned to these sentences.

Whereas amplificatory empiricism is a claim about how one may ratio-
nally proceed from Robinson’s () to mathematical induction, inceptive em-
piricism is a claim about how one may rationally arrive at Robinson’s ) in
the first place. In particular, inceptive empiricism is the contention that one
is justified in inferring from several instances of the axioms of Robinson’s @)
to these axioms themselves because the axioms are confirmed by the con-
junction of these several instances. For instance, Robinson’s () includes the
axiom V x,y [z-S(y) = xy+z]| wherein S denotes the successor function, and
inceptive empiricism claims that confirmation justifies one in inferring to this
axiom from several of its instances, such as 6-5(7) = 6-7+6. Let us call this
type of confirmation, wherein a universal claim is confirmed by several of its
instances, instance confirmation. Further, in the case where the claims in
question are arithmetical in character (resp. physical in character) let us call
this type of confirmation arithmetical instance confirmation (resp. physical
instance confirmation). So inceptive empiricism contends that the axioms of
Robinson’s () can be justified by means of arithmetical instance confirmation.

The goal of this chapter is to defend these two forms of empiricism against
several challenges, and in doing so to defend the tenability of the probabilis-
tic account of the justification of the Peano axioms that is jointly provided
by these two forms of empiricism. In § 2, I focus on direct challenges to
these types of empiricism that are extant in the philosophy of mathematics
literature, focusing on those from Frege’s Grundlagen (§ 2.1) and Baker’s
recent article “Is there a Problem of Induction for Mathematics?” ([16])
(§2.2). In § 3, T turn to various challenges to the effect that we simply don’t
have access to probability assignments in the setting of arithmetic, either
because of issues related to probabilistic analogues of the w-rule (§ 3.1) or to

6



the non-computability and non-continuity of various probability assignments
(§ 3.2). By articulating and responding to the most pressing objections to
inceptive and amplificatory empiricism— objections which, if unanswerable,
would render such empiricism unworthy of further investigation— this paper
constitutes a prolegomenon to a thoroughgoing empiricism about the epis-
temology of arithmetic. In the concluding section § 4, I briefly describe two
primary tasks to which a complete defense of this empiricism must attend,
namely, the sources of arithmetical confirmation and the probabilistic liar.

2. Challenges from the Literature: Frege and Baker
2.1. Frege on Indiscernibility and Chircularity

In the Grundlagen, Frege articulates two distinct objections to empirical
foundations of arithmetic: an objection related to indiscernibility and an ob-
jection related to circularity. Given the signature importance of Frege within
the philosophy of mathematics in general and the philosophy of arithmetic
in particular, it is crucially important to adequately and fully respond to
Frege’s objections. Further, doing so will serve to highlight two distinctive
features of the type of empiricism defended here: first, that it is more appli-
cable to arithmetic than geometry; and second, that it must countenance a
dissimilarity between knowledge of natural numbers and knowledge of real
numbers.

In § 10 of the Grundlagen, Frege writes that “In ordinary inductions we
often make good use of the proposition that every position in space and every

moment in time is as good as every other,” but that each “[...] number is
formed in its own special way and has its own peculiarities [...]|” ([17] § 10 p.
15). Later, Frege notes that geometrical points are “[...] not really particular

at all, which is what enables them to stand as representatives of the whole
of their kind” ([17] § 13 p. 20). It’s natural to describe Frege’s distinction in
terms of indiscernibility. In a structure M, two elements a,b of M are said
to be indiscernible or homogenous with respect to a first-order formula 0(x)
which has only x free and no parameters, if one has that M models 6(a)
if and only if M models 6(b). Further, a,b are said to be indiscernible or
homogenous if they are so with respect to all such first-order formulas 0(z)
which have only x free and no parameters (cf. Marker [18] § 4.1 pp. 115
ff). Further, it’s obvious that any two natural numbers are not indiscernible
since e.g. two is the second successor of zero whilst no other number has



this property. But if one casts Euclidean geometry as a two-sorted structure
consisting of points and lines, then it turns out that any two points are
indiscernible. This is because there is an automorphism of the structure
taking the one point to the other, and first-order properties are preserved
under such automorphisms.

However, Frege’s point might be thought to be weak since indiscernibility
is a mere artifact of the particular languages employed to describe the struc-
ture. After all, if one gives every object in the structure a specific name by
working in an expanded language with constants for every individual, then
any structure can be made to possess no indiscernibility. In spite of this,
the association of geometric structures with high levels of indiscernibility is
surprisingly resilient. For instance, in apparent independence from Frege,
Weyl too suggests that indiscernibility accounts for the intuitive character
of geometry in contradistinction from arithmetic ([19] p. 7). In more recent
work, Manders has suggested that part of what makes diagrammatic rea-
soning rigorous is that the features traditionally inferred from the diagram—
the so-called coeract features— are invariant under slight perturbations of the
diagram, and another way of putting this same point is that figures and their
slight perturbations are indiscernible with respect to coexact features ([20]
§ 4.2.2 pp. 91 fI). Hence, even though indiscernibility is indeed language-
dependent, many authors agree with Frege that the language in which we
reason about geometric structures does admit high levels of indiscernibility.

So it seems wisest to concede Frege’s claim that some mathematical struc-
tures admit high levels of indiscernibility, and rather to question Frege’s claim
that high levels of indiscernibility are necessary for “ordinary inductions” to
be suasive. The first thing to note is that Frege seems to be operating under
a conception of inductive inference as a species of deductive inference (cf.
[17] § 3 footnote). So indiscernibility would be relevant because one would
be using it as a premise to infer from the truth of a particular 6(a) to the
truth of a general claim V x 6(z). So indiscernibility would then be the
mathematical analogue of the “uniformity” premises that feature in tradi-
tional conceptions of inductive inference stemming from Hume and Mill. It’s
obvious that the probabilistic conception of inductive inference adopted here
is simply not deductive in character, and hence does not rely on any unifor-
mity or indiscernibility premise because it does not proceed deductively from
premises.

However, not only is indiscernibility not a precondition for successful in-
ductive inference, but on the probabilistic conception, known indiscernibility
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is inimical to successful inductive inference. For, traditionally, an important
part of successful inductive inference is the principle that, all else being equal,
the observation of further instances should lead to a higher degree of confir-
mation. But this principle is formally incompatible with known indiscernibil-
ity. For, suppose that the elements of some non-empty domain D are indis-
cernible with respect to a first-order formula 6(z). Assuming all this is part
of the background knowledge K, one will have that e, = A, D(a;) A 0(a;)
and h =V x (D(z) — 6(z)) are pairwise equivalent across K. Hence, for
all n > 1 one will have that

P(hlen & K) — P(h|K) = P(hle; & K) — P(h|K) (2)

So, in the presence of known indiscernibility, the degree of confirmation con-
ferred upon the universal hypothesis h by observing one positive instance e;
is the same as that had by observing e,, for n = 10, 000.

However, note that even though known indiscernibility is incompatible
with “further observed instances confirm to a higher degree,” known indis-
cernibility is not incompatible with “a universal hypothesis may be highly
confirmed by the observation of several instances.” For, if the prior plausi-
bility P(h|K) of the hypothesis is low, where e,, and h are as in the previous
paragraph, then the degree of confirmation will be comparatively high, as we
can see from the below calculation, using the fact that e, and h are pairwise
equivalent across K:

P(hle, & K) — P(h|K) = 1 — P(h|K) (3)

So while there may be confirmation engendered by the observation of several
instances, as equation (3) shows, there is no further degree of confirmation
engendered by the observation of further instances, as equation (2) shows.
Since this is such a basic part of successful inductive practice, it seems that
the conclusion to draw is that the type of probabilistic empiricism considered
here is inapplicable to mathematical settings like geometry where there are
high levels of known indiscernibility. This of course is not to say that some
other form of non-probabilistic empiricism about geometrical knowledge is
not possible, but merely to say that there’s an incompatibility between known
indiscernibility, the probabilistic model of confirmation discussed here, and
the thought that further observed instances engender higher degree of con-
firmation.

The second concern voiced in the Grundlagen by Frege is that a prob-
abilistic foundation of arithmetic would be circular, since “how probability

9



theory could possibly be developed without presupposing arithmetical laws
is beyond comprehension” ([17] § 10 pp. 16-17). Presumably the concern
is that probability assignments take real numbers as values, and hence in
operating with probability assignments one will end up doing calculations
like P(hle) = 2 > 2 = P(W|e), which at first glance seems to involve just
as much arithmetic as does 5-12 > 3 - 12 and other consequences of Robin-
son’s (). So the thought would be that to secure knowledge of the latter via
considerations of probability is patently circular: the only agent to whom
knowledge of probability assignments would be available would be an agent
who already possessed knowledge of Robinson’s () and other basic arithmeti-
cal truths. One response to this circularity objection would be to suggest that
the agent need not be aware of these probabilistic calculations in order to
thereby gain knowledge via these calculations— the probability calculations
might be just another reliable mechanism by which agents acquire knowl-
edge. However, while such broadly externalist considerations are entirely
mainstream in epistemology, it seems that internalist intuitions dominate in
philosophy of mathematics. Hence, it would be good if there were a response
to the circularity objection that is compatible with the idea that agents ac-
quire knowledge through probability by actively reasoning with probability
assignments.

One such response would begin with the observation that even though
real numbers are traditionally defined in terms of natural numbers and se-
quences and sets thereof, a fundamental lesson of mathematical logic in the
20th Century is that the real numbers are a much more tractable structure
than the natural numbers. In particular, Tarski showed that the real field
has a complete and decidable first-order theory and that it consequently has
a computable model like the natural numbers ([18] Corollary 3.2.3 p. 85 and
Corollary 3.3.16 p. 97). In particular, the smallest model of the first-order
theory of the real numbers, namely the real algebraic numbers, has a com-
putable presentation, just like the natural numbers (cf. [2] Theorem I11.9.7
p. 98 or [21] Theorem 4.1 p. 18). Further, additional work shows that the
field of real numbers is mutually interpretable with the Euclidean plane,
which means that each can be recovered from the other— at least up to
isomorphism— using only first-order resources ([22] p. 21 ff, [23] Theorem
21.1 p. 187, Corollary 21.2 p. 191). This work thus suggests a multitude of
sources for the knowledge of real numbers that does not presuppose the nat-
ural numbers: this knowledge might be based on a knowledge of the axioms
of real numbers regarded as an implicit definition thereof, or a knowledge

10



of the computable presentation of the real algebraic integers, or it might
be based on visual knowledge of the Euclidean plane. To be sure, each of
these sources of knowledge — implicit definition, algorithms, visualization—
deserves further study and development. However, here it merely suffices
to stress that none of these sources seems to patently presuppose the type
of arithmetical knowledge codified in the axioms of Robinson’s ) and the
Peano axioms.*

Of course, this response presumes that the operations on probability
assignments which one employs are recoverable in terms of the first-order
field structure of the real numbers, i.e. in terms of addition and multipli-
cation on real numbers. This suffices of course for the types of operations
featuring in P1-P3 and other elementary probability calculations. Further,
this response obviously presumes that knowledge of the properties and laws
of addition and multiplication on real numbers does not presuppose knowl-
edge of the properties and laws of addition and multiplication on natural
numbers. One might object that this is implausible since each of the natural
numbers is a real number, or at least can be canonically identified with a
specific real number. However, any structure of cardinality less than or equal
to the real numbers can be identified with a collection of real numbers, and
no one thinks that knowledge of real numbers presupposes knowledge of all
these other structures. The relevant difference between the natural numbers
and such arbitrary structures is that the natural numbers have a second-order
definition within the real numbers. And I concede for the sake of argument
that knowledge of the second-order properties of the real numbers would pre-
suppose a fairly extensive knowledge of the natural numbers, or at least of
structures similar to the natural numbers. However, the response proffered
above was merely related to the first-order structure of the real numbers,
and hence this response incurs an additional obligation of distinguishing the
source of knowledge of first-order properties of the real numbers from the
source of knowledge of second-order properties of the real numbers.

4That said, it might well be more contentious to say that knowledge of algorithms
does not presuppose knowledge of the Peano axioms than it is to say that implicit defini-
tions and visualization does not so presuppose knowledge of the Peano axioms. But this
might depend on whether the knowledge of algorithms was necessarily viewed as being
implemented, or was rather viewed more as knowledge of an abstract procedure.
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2.2. Baker and the Exigencies of Arithmetical Sampling

In his recent essay “Is there a Problem of Induction for Mathematics?”,
Baker argues that arithmetical instance confirmation is biased in a way in
which physical instance confirmation is not, and that this is due to the sam-
plings in arithmetical instance confirmation being small (cf. [16] pp. 67-68).
Recall from § 1 that arithmetical instance confirmation is our term for when
a universal arithmetical hypothesis is confirmed by several of its instances,
just as physical instance confirmation is our term for when a universal phys-
ical hypothesis is confirmed by several of its instances. Now there are at
least two natural senses in which such samplings may be said to be small,
which we might call setwise-small and pointwise-small. These two notions
of setwise-smallness and pointwise-smallness apply to finite sets of natural
numbers, and they both are defined in terms of a third notion of smallness
which applies to individual natural numbers. To illustrate the latter, 100 is
a small natural number, but 100°% is not a small natural number, and if
one natural number is small and another number is less than it, then that
second natural number is small as well.> Then a set X is said to be setwise-
small if its cardinality is a small natural number, and a set X is said to
be pointwise-small if each element of X is a small natural number. Hence,
with the exception of the set of all small natural numbers, any pointwise-
small set is itself setwise-small. However, the converse is not in general true.
For instance, while Y = {2,3,4} is both setwise- and pointwise-small, the
set X = {20009 30010 400'%} is setwise-small but not pointwise-small.

One version of Baker’s thesis would thus contend that arithmetical in-
stance confirmation is biased in a way in which physical instance confirma-
tion is not, and that this is due to the samplings in arithmetical instance
confirmation being setwise-small. It is presumably indisputable that arith-
metical instance confirmation is in fact based on setwise-small samplings of
natural numbers. For, even with the aid of computers, one can only look
at so many natural numbers, and in comparison with the set of all natural
numbers, the cardinality of such samplings will inevitably appear diminutive.
However, presumably physical instance confirmation relies on setwise-small
samplings in exactly the same manner: indeed, the same sorts of constraints

5Tt might also well be the case that the notion of “being a small natural number” is
a vague term, or is context-sensitive. As far as I can see, this issue does not materially
affect the present discussion.
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that prevent us from doing innumerable calculations also prevent us from
taking innumerable measurements. Hence, a difference between the levels of
bias in arithmetical instance confirmation and physical instance confirmation
cannot be attributable to a difference in the manner in which they rely upon
setwise-small samplings, simply because they so rely on setwise-small sam-
plings in exactly the same way. Hence, versions of Baker’s thesis centered
around setwise-smallness seem plainly untenable.

Thus, it seems that Baker’s thesis might be more profitably understood
in terms of pointwise-smallness. This version of the thesis holds that arith-
metical instance confirmation is unreliable in a way that physical instance
confirmation is not, and that this is due to the samplings in arithmetical in-
stance confirmation being pointwise-small. Here, the unreliability of instance
confirmation is understood in a standard manner, so that a relative increase
in unreliability is concomitant with a relative increase in the number of false
universal hypotheses which are confirmed by several true instances. Now, it
seems hard to dispute that samplings in arithmetical instance confirmation
are drawn exclusively from pointwise-small samples: for, given constraints of
time and space, even the best computers can only calculate with numbers of
so large a size, and mathematicians doing calculations likewise face similar
sampling constraints and limitations.

Hence, it seems that the only contentious point in this version of Baker’s
thesis is the claim that such a reliance upon pointwise-small samples ren-
ders arithmetical instance confirmation unreliable in a way in which physical
instance confirmation is not. However, there is an obvious analogue of this
reliance upon pointwise-small sampling in the case of physical instance con-
firmation, an analogue suggested by Baker himself. In particular, say that a
sampling of physical data is timewise-smallif each data point in the sampling
was measured (or otherwise observed) at a point in time that is relatively
close to the present. Just as it seems indisputable that samplings of natural
numbers are pointwise-small, so it seems indisputable that samplings of phys-
ical data are timewise-small. However, it is generally conceded that physical
instance confirmation is sufficiently reliable. Hence, if the inference from the
dependence of physical instance confirmation on timewise-small samplings
to the unreliability of physical instance confirmation is rejected, but at the
same time the inference from the dependence of arithmetical instance con-
firmation on pointwise-small samplings to the unreliability of arithmetical
instance confirmation is accepted, then one should be able to point out some
relevant difference between the two cases.

13



Baker suggests that the relevant difference between the two consists in
the fact that “there are no [...] systematic differences between the past
and the future [...]” ([16] p. 68). It may indeed be the case that many
of the properties that interest scientists are in fact temporally invariant in
this sense, so that what is true of timewise-small samplings will likewise be
true in general. However, it is also the case that many of the properties
that interest mathematicians are such that what is true of pointwise-small
samplings is likewise true in general. For instance, this is the case with
respect to the properties that feature in the instance confirmation of the
axioms of Robinson’s ). So if there is to be a disanalogy between the setting
of arithmetic and the setting of the physical sciences here, it has to be with
regard to something more than the fact that many of the properties which
interest scientists (resp. mathematicians) are projectable from timewise-
small samplings (resp. pointwise-small samplings).

Hence, one might try to suggest that the relevant difference between arith-
metical and physical instance confirmation consists in the fact that all phys-
ical properties are projectable from timewise-small samplings, whereas not
all arithmetical properties are projectable from pointwise-small samplings.
But if the key term of physical properties is understood as a naturalistic
term that simply picks out spatio-temporal properties describing portions of
the external world, then it is simply false that all physical properties are so
projectable. Indeed, were this the case, then knowledge of the future would
be much easier to come by than it actually is. Likewise, if the key term of
physical properties is understood historically, as picking out those properties
that have interested certain intellectual communities, then again it is false
that all these properties are temporally-projectable: for, were this the case,
then science would be endowed with a kind of infallibility which is definitively
vitiated by the historical record.

It might then be suggested that the important difference between arith-
metical instance confirmation and physical instance confirmation is the suc-
cess of the extant practice: most of the physical properties picked out by the
community of scientists have in fact turned out to be temporally projectable,
whereas there is no similar track record of success of mathematicians project-
ing from the pointwise-small. So part of the idea here would be that natural
scientists somehow learned to discern the properties of physical objects that
do not depend on their temporal location, whereas mathematicians have yet
to learn to discern the properties of numbers that do not depend on their
location in the ordering of greater-than and less-than on the natural num-
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bers. I am willing to grant all this for the sake of argument: however, what
I want to emphasize is that this does not establish an entailment from the
reliance upon pointwise-small samplings to the unreliability of arithmetical
instance confirmation, any more than pointing to the failures of pre-scientific
communities to project from the temporally-small would establish that there
is an entailment from the reliance upon temporally-small samplings to the
unreliability of physical instance confirmation.

Hence, it seems that no relevant difference has been identified which would
justify us in accepting the inference from the reliance upon pointwise-small
samplings to the unreliability of arithmetical instance confirmation while si-
multaneously rejecting the inference from the reliance upon temporally-small
samplings to the unreliability of physical instance confirmation. However, it
is important to emphasize that one could legitimately reject the need to
identify such a relevant difference. For instance, one might legitimately re-
ject such a need by producing a valid premise-conclusion argument (with
plausible premises) for the inference from the reliance upon pointwise-small
samplings to the unreliability of arithmetical instance confirmation. How-
ever, neither Baker nor anyone else that I know of has produced such an
argument. Absent such an argument for this inference, it does not seem to
be unreasonable philosophical methodology to withhold assent from this in-
ference until some relevant difference between it and a clearly dubious albeit
similar inference has been identified.

Even if one withholds assent from Baker’s thesis, nonetheless his work
raises a pressing question for the types of empiricism considered in this paper.
In particular, Baker centers his discussion around the Goldbach conjecture, a
conjecture which at the time of writing is unresolved but of which multitudes
of cases have been manually and computer verified. It’s not obvious that
this observational evidence has raised the collective credence assigned to the
conjecture by the community, and hence this casts a level of doubt over the
plausibility of the types of empiricism considered here. Baker has in effect set
the task of explaining why this evidence has not raised our credence in the
conjecture, and even if there is reason to withhold assent from Baker’s own
explanation, his work calls on one who would find a place for confirmation
in mathematics to explain why this evidence has not raised our credence in
this conjecture.

But it turns out that the probabilistic model of confirmation explains
this fact, and the explanation concerns the comparative syntactic simplicity
of the Goldbach conjecture. Recall that a X9-formula is a formula which
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begins with one existential quantifier and all of whose other quantifiers are
bounded, i.e. are of the form 3y < z or V y < z. Then we have the following
important proposition (cf. [1] Theorem 1.8 p. 30, [24] Corollary 2.9 p. 25):

Proposition 1. (X{-Completeness of Robinson’s ): Suppose that ¢ is a 39-
sentence. Then ¢ is true on the standard model if and only if it is provable
from Robinson’s Q).

Here the standard model is simply the structure (w,0,S,+, x, <), where of
course w = {0, 1,2,...} is the set of natural numbers. Now, suppose that P is
a probability assignment that gives non-zero probability to the conjunction of
the eight axioms of Robinson’s (). Suppose that h =V z ¢(z) where ¢ is X9
and suppose that e, = A", ¢(5(0)) where S°(0) = 0 and S“*! = S(S%(0)).
Then if A is true on the standard model, then each e,, is true on the standard
model, and hence by the above proposition are provable from Robinson’s (),
so that P(e, & K) = P(K), where K is the conjunction of the eight axioms
of Robinson’s (). Then

P(hle, & K) — P(h|K) =0 (4)

and hence evidence e, does not confirm the hypothesis h relative to back-
ground knowledge K. So in sum, any true arithmetical statement of the
form V x ¢(z) where ¢(z) is X} cannot be confirmed by its instances rel-
ative to any probability assignment that gives non-zero probability to the
conjunction of the eight axioms of Robinson’s ).

It turns out that the Goldbach conjecture and many other number the-
oretic statements such as Fermat’s Last Theorem and Goodstein’s theorem
have this simple syntactic form. Hence, the probabilistic model of confir-
mation indicates that these hypotheses will incur no confirmation by the
observation of many instances. One might view this as a weakness of the
theory, since one might require that (a) the observation of several instances
of a universal hypothesis always confers some limited measure of confirmation
on the universal hypothesis. However, one might alternatively begin with the
thought that we should privilege the judgements of practitioners and hence
hold that (b) our confidence has not been substantially raised in classical
number theoretic conjectures by virtue of the verification of many instances.
My own sense is that much of the suspicion about confirmation in mathemat-
ics is brought about by the conjunction of (a) and (b). Obviously, the proba-
bilistic model proffered here removes the tension by rejecting (a), and it while
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it is compatible with (b), it is also compatible with holding that arithmetical
instance confirmation can and should raise our credence in other cases, and
in particular, either when Robinson’s () is not yet in the background knowl-
edge (as in the case of inceptive empiricism) or when the number-theoretic
hypotheses display more syntactic complexity (as in the case of the instances
of mathematical induction featuring in amplificatory empiricism).

So having said this, one might like some explicit assurance that there
actually are probability assignments on which either (i) the axioms of Robin-
son’s () are confirmed to a high degree by evidence consisting of various of its
instances, or (ii) the hypothesis consisting of the consequent of an instance
of mathematical induction is confirmed to a high degree by the evidence con-
sisting of the antecedent of this instance of mathematical induction against
background knowledge which includes Robinson’s ). With respect to (i),
one can prove the following elementary proposition:

Proposition 2. Let K be a finitely axiomatized L-theory. Suppose that h,e
are L-sentences such that K + h - e and K ¥ e and K + h is consistent.
Let € > 0 with € < 1. Then there is a probability assignment such that

1—e<P(hle& K)— P(h|K) < 1 (5)

For the proof of this proposition, see Appendix B. This proposition is
applicable to (i) since if one lets A be an axiom of Robinson’s ) and e be
the conjunction of several instances of this universal hypothesis and one lets
K be the empty theory, then the triple h,e, K will satisfy the antecedents
of the proposition. But this is of course not to say that the probability
assignment thereby acquired will necessarily be natural or anything like an
intended model of the pre-theoretic probabilistic notions. Regarding (ii), it
is helpful to first introduce some terminology to talk about the antecedent
and consequent of an instance of mathematical induction. As is standard,
let us abbreviate an instance of mathematical induction as:

L, = [p(0) &V n (p(n) = p(n+1))] = [V e(n)] (6)

wherein ¢(z) is an L-formula with one distinguished free variable x, and
wherein L is the signature of first-order arithmetic, and so consists just of
zero, successor, addition, multiplication, and less-than. Let us then define:

e(ly) = ¢(0)&Vnp(n)—en+1) (7)
V'n p(n) (8)

>
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Expressed in terms of these abbreviations, we have that I, = e(I,) — h(l,).
Since h(I,) trivially implies e(/,), we have that the above proposition applies
whenever K ¥ e(I,) and K + h([,) is consistent.

But this is still yet merely a sufficient condition, and so it’s useful to
point out that there actually are several examples wherein the degree of
confirmation is high. In the case where the background information K is
true on the standard model of arithmetic, we have the following proposition:

Proposition 3. Let K be a finitely axiomatized extension of Robinson’s ()
that is true on the standard model of arithmetic. Then there are infinitely
many L-formulas ¢(z) such that for all € > 0 with € < 1 there is a probability
assignment P such that

1 —e< P(h(ly)le(ly) & K) = P(h(L,)|K) <1 (9)

As with the earlier proposition, we defer the proof until Appendix B. So this
proposition tells us that there are many instances [, of mathematical induc-
tion such that its consequent h(1,) can be confirmed to a high degree relative
to its antecedent e([,) against the background of theories like Robinson’s Q).
Obviously we cannot demand that all instances of mathematical induction
are like this. For instance, consider the instances of mathematical induction
corresponding to the formulas ¢g(x) = 2 = z and p1(z) = x # z. There is
no confirmation in either of these two cases: in the first case because both
e(1,,) and h([,,) are tautologies, and in the second case because both —e(I,, )
and —h(l,,) are tautologies. So in short, we have a sufficient condition for
when the consequent of an instance of mathematical induction is confirmed
by its antecedent, and we further have that there are infinitely many in-
stances wherein there is actually a high degree of confirmation. So while the
discussion of Baker has lead to an explanation of why there is never confir-
mation of e.g. the Goldbach conjecture by its instances, nonetheless there
is sometimes high degree of confirmation of the axioms of Robinson’s @) by
its instances, and there is sometimes high degree of confirmation of an in-
stance of mathematical induction by its antecedent relative to background
knowledge.

Earlier we stated that: any true arithmetical statement of the form
V x p(x) where () is ¥¢ cannot be confirmed by its instances relative to
any probability assignment that gives non-zero probability to the conjunction
of the eight axioms of Robinson’s (). One might be of a mind that this fact
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is simply a reductio of the view on offer here, since it shows that compar-
atively simple universal hypotheses cannot be confirmed by their instances
once Robinson’s () is in the background knowledge. However, the view on
offer here primarily seeks to articulate a viable candidate for the source of
our knowledge of arithmetical axioms. If this source is a source of knowledge
for these axioms but for comparatively few other arithmetical truths, then
it’s not obvious that this should be a strike against the view on offer here. To
provide an account of knowledge of axioms of an area of mathematics need
not be to provide a mechanism by which to assay all mathematical truths in
that area.

3. Challenges from Access to Probability Assignments

Both inceptive and amplificatory empiricism presuppose that confirma-
tion is a source of justification in the setting of arithmetic, and the challenges
to be considered in this section suggest in different ways that we do not have
access to this source of justification in the setting of arithmetic, due to the fact
that probability in this setting is quite different in character from probability
in the setting of the natural sciences. In particular, the challenges considered
here adduce reasons for thinking that access to probability assignments in
the setting of arithmetic is no less difficult than access to arithmetical truth
itself.

3.1. Countable Additivity: Aligning the True and the Probable

The first such challenge relates to countable additivity. There are several
different versions of countable additivity, but their common impetus lies in
the thought that the probability axioms P1-P3 articulate rules of probability
only for the propositional connectives. For instance, it is straightforward to
derive from P1-P3 the following rules which relate probabilities to disjunc-
tions, conjunctions, and negations:

(P4) P(o V) + Pp &) = P(p) + P(¢)

(P5) P(=p) =1—P(¢)
The basic motivation behind countable additivity is to exhibit analogous
rules for the quantifiers. In particular, suppose that the formal language or
signature under consideration is the signature L of the Peano axioms. One
can then articulate the following version of countable additivity, which for
the sake of disambiguation can be referred to as w-additivity, wherein ¢(x)
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is an L-formula with free variable z, and wherein S°(0) = 0 and S"™' =
S(S%(0)):

(Pw) P(V z p(x)) = limy P(A\1, #(S"(0)))
Hence, the idea of w-additivity is that the probability of a universal arithmeti-
cal hypothesis may be approximated arbitrarily closely by the probabilities
assigned to the sentences expressing that further and further arithmetical
terms satisfy this hypothesis.

To obtain a different version of countable additivity, one can consider an
extension to a setting where one can form new sentences by taking conjunc-
tions and disjunctions over countable sets of sentences. These operations of
conjunction and disjunction are respectively written as A, ¢, and \/, ¢n,
and the resulting class of sentences are called L, -sentences. Relative to
a natural semantics and deductive system for these sentences, there is a
completeness theorem for L, ,-sentences ([25] Theorem 3 p. 16, [26] Theo-
rem 3.2.1 p. 280), and hence the notion of a probability assignment on these
sentences can be defined. In particular, an L, -probability assignment is an
assignment of real numbers to L, -sentences which satisfies P1-P3 (relative
to the consequence relation on L, -sentences for which the completeness
theorem holds). One can then consider the following version of countable
additivity, which for the sake of disambiguation can be referred to as ws-
additivity, where ¢, ¢1, ... is a countable sequence of L, ,-sentences:

(Pr) PN, @n) = limy PN )
Outside of the difference between the universal quantifier and infinite con-
junction, the primary difference Pw and Pw; is that on the right-hand side
of Pw the natural number n is employed to make a number-theoretic state-
ment about the n-th successor of zero, whereas on the right-hand side of Pw;
it is only employed as an index for the sentence ¢,,, which may or may not
be a statement about numbers at all.

While this difference between w-additivity and wi-additivity may seem
innocuous, it is not difficult to see that w-additivity and only w-additivity
requires that “having a high probability” align with arithmetical truth. For,
suppose that the conjunction of the eight axioms of Robinson’s () is assigned
a high probability, say greater than 1 —e¢, where € is some small non-zero error
threshold. Under these circumstances, it follows from the :.9-completeness
of Robinson’s @ (cf. Proposition 1 in § 2.2) that if a probability assignment
satisfies w-additivity, then an arithmetical sentence is true of the standard
model if and only if it has probability greater than 1 — e. More formally, we
have the following result, whose proof we defer until Appendix A:
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Proposition 4. Proposition on the Alignment of the True and the Proba-
ble: Suppose that L is the signature of Peano arithmetic and that K is the
conjunction of the eight axioms of Robinson’s (). Suppose that 0 < ¢ < %
Suppose that P is an w-additive probability assignment such that P(K) >
1 — ¢ Then (a) (w,0,S,+,%,<) E ¢ if and only if P(p) > 1 — ¢, and
(b) (w,0,S,4+, x, <) | ¢ implies P(p & K) = P(K).

Here the standard model is the structure (w, 0, S, +, x, <), where of course w =
{0,1,2,...} is the set of natural numbers. Hence, if a probability assignment
satisfies w-additivity, then registering a high probability by reference to this
assignment is coextensive with truth for arithmetical sentences. However,
the same is not the case with respect to wi-additivity. In particular, it is
not difficult to see that for any sentence of first-order predicate logic which
is not a consequence of the axioms of Robinson’s (), there is an w;-additive
probability assignment that assigns this sentence probability zero and that
still gives the conjunction of the axioms of Robinson’s ) a high probability.
This simple fact shows that unlike w-additivity, it is not the case that the
satisfaction of w;-additivity forces the alignment of the arithmetically true
and the arithmetically probable.

There are at least two reasons why it is important that we not be com-
mitted to w-additivity. First, if we were so committed, then the alignment in
part (a) of Proposition 4 would cast doubt on our access to judgements about
confirmation and probability in the setting of arithmetic. To see this, con-
sider an analogous scenario centered not around probability but around per-
ception. Should someone posit perception as a source of justification about
arithmetic, but then inform us that this sort of perception happened to be
infallible, it seems that the proper response would be to question whether
this type of perception is something which we actually possess, given that it
is so manifestly different from our normal modes of perception. The second
problem caused by w-additivity is that part (b) of Proposition 4 implies that
a true hypothesis h cannot be confirmed by true evidence e. In particular,
if h and e are true on the standard model and K is as in Proposition 4, then
we have

Ph&e& K) Ph&K)
P(hle &K) — P(h|K) = — =1-1=0 10
(hle &K) = P(K) = =5 = =0 (10)
So since such confirmation is vital to the ultimate tenability of inceptive
empiricism and amplificatory empiricism, it is necessary to say why these

forms of empiricism are not committed to w-additivity.
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My response to this challenge is to argue that the reasons which com-
mit inceptive empiricism and amplificatory empiricism to the probability
axioms P1-P3 do not extend to w-additivity, even though they do extend
to wy-additivity. For, it is common today to justify commitment to P1-P3
by taking recourse to Dutch Book arguments, and just as it is demonstra-
ble that wi-additivity is justifiable by recourse to such arguments, so it is
likewise demonstrable that w-additivity is not so justifiable. Let me first de-
scribe the relevant theorems and non-theorems before turning to the relation
of the theorems to the justification of probability axioms. The theorems and
non-theorems in question here concern complete consistent theories 1" in the
signature L of the Peano axioms, and in what follows it will be convenient
to regard such complete extensions as zero-one valued functions on the set
of L-sentences, so that T'(¢) = 1if T |= ¢ and T(p) = 0 otherwise. Having
this convention in place, the standard version of the Dutch Book Theorem
reads as follows (cf. [13] p. 79, [14] p. 38):

Theorem 1. Dutch Book Theorem, Standard Version: Suppose that P is a
function from L-sentences to real numbers. Then P is a probability assign-
ment if for every finite sequence of real numbers s, ..., sy and every finite
sequence of L-sentences @1, ..., @y, there is a complete consistent L-theory T’

such that Zﬁle $n(T(¢n) — P(pn)) > 0.

The situation described in the antecedent of the theorem is commonly
vivified as follows. Suppose that a bookie offers stakes s,, of units of currency
on sentence ¢, and that a bettor provides the bookie with s, P(¢,) units.
Suppose further that there is an agreement in place that if ,, turns out false,
then the bettor wins nothing (for a net total of —s,,P(¢,) units), and that
if ¢,, turns out true, then the bettor wins s, (for net total of s, — s, P(v,)
units). Finally, say that the bettor is invulnerable to a Dutch book if for
any finite sequence of bets there is always some situation— representable in
terms of a complete, consistent theory— in which the net total due to the
bettor across all bets is not strictly negative. Hence, cast in these terms, the
Dutch Book theorem says that invulnerability to a Dutch book is a sufficient
condition for an assignment to be a probability assignment.

The technical point which I view as relevant here is that while the anal-
ogous theorem holds for wy-additivity, it does not hold for w-additivity. In
particular, it is well-known that by appropriately augmenting the proof of the
standard version of the Dutch Book Theorem, one can establish the following
(cf. [27] pp. 411-412):

22



Theorem 2. Dutch Book Theorem, wy-additive Version: Suppose that P is a
function from L, ,-sentences to real numbers. Then P is an w;-additive L, -
probability assignment if for every infinite sequence of real numbers s, and
every infinite sequence of L, ,-sentences ¢, such that the sequence s, P(¢;,)
is absolutely convergent, there is a complete consistent L,,,-theory 7" such

that ), s.(T(¢n) — P(pn)) > 0.

In developing the analogous version for wi-additivity, it turns out that it
is important to include the stipulation about absolute convergence. Here,
absolute convergence means that » - |s,P(¢,)| < 0o, i.e. that the sequence
of partial sums 32", |s, P()| approaches a finite limit in the real numbers.
In terms of the betting scenario described above, this corresponds to the
requirement that the units of currency potentially exchanged between the
bookie and the bettor be finite. However, when we turn from w;-additivity
to w-additivity, what we find is that the analogous version of the Dutch Book
Theorem is false:

Proposition 5. Counterexample to Dutch Book Theorem, w-additive Ver-
sion: There is a function P from L-sentences to real numbers such that (i) P is
not an w-additive probability assignment, and such that (ii) P has the fol-
lowing property: for every infinite sequence of real numbers s, and ev-
ery infinite sequence of L-sentences ¢, such that the sequence s, P(¢,)
is absolutely convergent, there is a complete consistent L-theory T such

that Zn $n(T(Pn) — P(pn)) = 0.

The proof of this proposition is deferred until Appendix A, so that we may
focus here on discussing the import of these results.

The philosophical significance of Dutch Book Theorem resides in the fact
that invulnerability to a Dutch book is indicative of a certain type of ratio-
nality when the assignment in question is reflective of degrees of belief, so
that the theorems show that conformity to the probability axioms P1-P3 is
a necessary condition of a certain type of rationality. The type of rationality
implicated here is of course minimally thought to require a disposition to ar-
range degrees of belief in such a way that were one to bet units of currency on
these degrees of belief, then there would be at least one situation in which a
loss would not be suffered. There are thus at least two presuppositions to the
contention that this type of rationality constitutes an epistemic virtue. The
first presupposition is that some virtues are revealed purely in terms of coun-
terfactual behavior, since it is obviously not envisioned here that one actually
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engages in such betting scenarios. But while such “dormant virtues” may
be a rarity in the practical sphere, they are commonplace in the theoretical
sphere. For instance, there is a virtue related to consistency which consists
in a disposition to retract previously endorsed axioms were they to exhibit a
demonstrable inconsistency, and it seems reasonable to say that this virtue
is present in our reasoning even if it turns out that the axioms in question
(say the set-theoretic axioms) are in fact consistent. The second presupposi-
tion is that there is a suitable abundance of potential situations across which
gains or losses may be incurred, since were the number or variety of these
situations to be highly curtailed, then the demands of invulnerability would
become quite severe. However, since we are identifying potential situations
with complete consistent theories in a given formal language or signature,
the fact that there are continuum many of these in the setting of arithmetic
(cf. [28] Theorem 6.2 (iii), (v) p. 76) would seem sufficient to allay concerns
about the severity of the demands of invulnerability.

Hence, my response to the challenge of w-additivity is to suggest that
inceptive and amplificatory empiricism be conceived as justifying their ap-
peal to confirmation and probability by means of Dutch Book Theorems,
so that the fact that there is no w-additive Dutch Book Theorem may be
taken as evidence that these forms of empiricism are not committed to w-
additivity. While this response clearly meets the challenge of w-additivity,
it has at least two drawbacks. The first is that if these forms of empiricism
are tied to the philosophical interpretation of the Dutch Book Theorems
described above, then all the concerns voiced in the literature about this
interpretation automatically become concerns for these forms of empiricism.
The second drawback is that if inceptive and amplificatory empiricism are go-
ing to operate only with those rules of probability that are licensed by Dutch
Book Theorems, then these forms of empiricism cannot justify the contention
that various kinds of confirmation actually occur by recourse to probabilistic
rules. For instance, inceptive empiricism turns on the supposition that sev-
eral instances of a universal arithmetical hypothesis are assigned a non-zero
probability strictly less than one, and this supposition by no means follows
from the probability axioms P1-P3 alone. Hence, if these forms of empiricism
are only allowed to operate with these probabilistic rules, then for their ul-
timate success they must provide other reasons for giving such assignments.
This concern is related to the future task, described in the concluding § 4, of
articulating further the sources of arithmetical probabilities.

Before turning to the challenge from computability, it is helpful to briefly
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compare this response to w-additivity to Isaacson’ well-known response to
the w-rule ([29] § III). The w-rule is a proof-theoretic rule which licenses
the inference to the claim that V = ¢(z) from the totality of all claims
of the form ¢(S™(0)), where n ranges over natural numbers. For the very
same reasons that the arithmetically true and the highly probable become
aligned under w-additive probability assignments that assign high probability
to Robinson’s @), so the arithmetically true is aligned with that which is
derivable from Robinson’s () in deductive systems augmented by the w-rule.
[saacson was concerned with this because he had previously argued that
the Peano axioms in conjunction with the standard rules of inference were
effectively complete and completely determined our concept of number ([30]).
Thus Isaacson was concerned to show that the w-rule was not part of our
concept of number, since otherwise the collapse of truth and proof engendered
by the w-rule would make this concept vastly outstrip that which is given to
us by the Peano axioms and standard rules of inference.

One of Isaacson’s basic strategies was to point out that standard defenses
of the w-rule appealed to truth about the natural numbers, and such an ap-
peal to truth about the natural numbers is not part of our concept of number,
but goes above and beyond this concept, and is essentially a second-order
or higher-order concept ([29] p. 108). There are many differences between
[saacson’s strategy for handling the w-rule and the above strategy for han-
dling w-additivity, but the one difference that perhaps bears mentioning is
that the discussion of w-additivity did not at any place appeal to points spe-
cific to our concept of number. Rather, this discussion focused entirely on
what did and did not follow from a standard justification of the probability
axioms. The analogue of this strategy in Isaacson’s setting would be to ar-
gue the w-rule did not follow from some standard justification of the other
accepted rules of inference such as modus ponens.

3.2. Non-Computability and Non-Continuity of Assignments

The aim of this section is to describe two related challenges to our access
to probability assignments in the setting of arithmetic. The first challenge
simply asks whether probability assignments in this setting may be com-
putable, and suggests that if they are not, then there is no reason to think
that this is something to which we are capable of implicitly or explicitly ap-
pealing. The second challenge begins from the observation that one basic
class of probability assignments are the finite counting assignments. Let us
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say that P is a finite counting assignment if it may be written in the form:

P(p) =a1-Ti(p) + -+ an - To(p) (11)

where the positive real numbers a; sum to 1, and where the T; are distinct
complete consistent theories in the language of the Peano axioms (where we
view such theories as zero-one valued functions on sentences). The second
challenge then asks whether probability assignments in this setting are al-
ways finite counting assignments, and suggests that if they are, then a basic
dilemma presents itself relating to true arithmetic Th(N), i.e. the set of sen-
tences true on the standard model (w, 0, S, +, x, <) of the Peano axioms. On
the one hand, if one of the T; is equal Th(N), then the question is: why do
we think that access to P is any easier than access to T;7 On the other hand,
if none of the T; are equal to Th(N), then the question is: why do we think
that these are a reliable guide to arithmetical truth?

In regard to the first challenge, it turns out that if Robinson’s Q is
given non-zero probability, then the probability assignment must be non-
computable. This is encapsulated in the following theorem, whose proof we
defer until Appendix B:

Theorem 3. Theorem on Non-Computability of Probability Assignments:
Suppose that P : Sent(L) — R is a probability assignment that assigns
the eight axioms of Robinson’s ) non-zero probability. Then the set of
pairs {(¢,7) € Sent(L) x Q : P(p) > r} is non-computable.

Hence, in regard to this challenge, it is merely a question of how the advocate
of the types of empiricism articulated here is going to respond to the sug-
gestion that we do not have access to the non-computable. In regard to the
second challenge, it turns out that there are many probability assignments
that are not finite counting assignments. In particular, if K is a theory, then
let’s say that P is K-sound if K |= ¢ implies P(p) = 1 and let’s say that P
is K-regular if the converse holds, i.e. P(¢) =1 implies K |= . Then using
a forcing argument, the details of which we present in Appendix B, we can
establish the following:

Theorem 4. Theorem on Continuous Probability Assignments: Suppose
that K is a consistent computable extension of Robinson’s (). Then there
is a K-sound K-regular probability assignment P such that P is not a fi-
nite counting assignment. Further, P may be chosen so that the set of
pairs {(¢,7) € Sent(L) x Q : P(p) > r} is computable in the halting set.
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Since there are many different consistent computable extensions of Robin-
son’s (@, it thus follows that there are many probability assignments that
are not finite counting assignments. Hence, the dilemma associated to the
second challenge can be avoided simply by suggesting that the probability
assignments which we avail ourselves of are not finite counting assignments.

So how should the advocate of the types of empiricism considered here re-
spond to the concern that we can’t access the non-computable? It would be a
mistake to dismiss this concern out of hand, since there is a long tradition in
the foundations of mathematics and the philosophy of mathematics of priv-
ileging computable theories. These discussions often appear in the context
of Godel’s incompleteness theorems, which apply only to computable theo-
ries. For instance, in their textbook presentation of these theorems, Cori and
Lascar write: “To be recursive is a reasonable requirement for a theory; we
might even say that non-recursive theories are artificial: how could we hope
to deal with derivations if we do not have effective knowledge of axioms?”
([31] p. 87). To avoid incompleteness, Godel himself articulated (but did not
endorse) the view that “[...] the human mind [...]| infinitely surpasses the
powers of any finite machine” ([32] p. 310). Boolos, speaking of authors who
went on to argue for this view, says: “It is fair to say that the arguments
of these writers have as yet obtained little credence” ([32] p. 295). Hence,
if one is appealing to the non-computable in an epistemic context, then one
is deviating non-trivially from the apparent consensus in the foundations of
mathematics and the philosophy of mathematics.

Another response would suggest that the distinction between the com-
putable and the non-computable is more of a continuum than a binary op-
position. For instance, there are a large class of non-computable sets X that
can be computably approrimated, in that there is a computable sequence of
sets X, such that for each n one has:

lianS(n) = X(n) (12)

where the limit notation merely indicates that there’s some stage s, such
that X(n) = X (n) for all s > s, or in other words: for each input n there’s
some stage past which the approximating sequence X, agrees with the true
value X on this input.® Appealing to computable approximations might be
persuasive depending on the type of arguments put forward for the require-

6The term “computably approximable” is my own. This notion does not have its own
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ment of computability. For instance, to answer Cori and Lascar’s question
about how to deal with derivations in the setting of the non-computable, one
could simply point to small but established literature on proof predicates for
theories given in computably approximated manner (cf. [34]). However, one
vulnerability of this line of argument is that there are computably approx-
imated theories that avoid the incompleteness theorems (cf. [28] Theorem
3.6 p. 54, Theorem 6.1 p. 75). So one might worry that any dissatisfaction
with an appeal to computable approximation in the setting of the incom-
pleteness theorems would transfer over to the setting of access to probability
assignments.

In my view, a better response is to suggest that the probability assignment
should be represented not as a single probability assignment, but rather as
a large family of probability assignments.” One could then view the agent
as being committed to and working off of a formal or informal description
of this class probability assignments. This description would differ from
formal descriptions codified in the Peano axioms in that it would describe
not the notion of natural number per se, but rather the notion of a probability
assignment defined on sentences in the signature of the Peano axioms. This
would meet the concern about access to the non-computable since this formal
theory of probability would itself be computable, just like the formal theory of
the Peano axioms is computable even though it has no computable consistent
extensions.® Further, this approach is also compatible with the requirement
that the probability assignment not be a finite counting assignment, since
there are various axioms on probability assignments that preclude their being
finite counting assignments.”

name in the computability theory literature simply because The Limit Lemma and Post’s
Theorem together imply that a set of natural numbers is computably approximable if and
only if it is AY (cf. [33] Lemma I11.3.3 p. 57 and Theorem IV.2.2 p. 64).

"This view is not new but has been advocated by many others for various different
reasons. See Joyce [35] p. 171 for references and discussion.

8There’s a certain similarity between this point and Kelly’s use of computably ap-
proximable sets of natural numbers. Kelly suggests that we view scientific hypotheses
not as specifying a single stream of empirical data but rather as specifying a large class
of such streams, so that whilst each single stream may be computationally complex, the
description of the class itself may be comparatively simple (cf. [36]).

9In particular, equation (B.7) from Appendix B will suffice to preclude the probability
assignment from being a finite counting assignment.

28



4. Conclusions

So this essay has been a preliminary defense of an empiricism according to
which our knowledge of arithmetic is of a piece with the knowledge by which
we infer from the past to the future or from the observed to the unobserved.
It is a preliminary defense in that I have not adduced positive arguments
for the types of empiricism which I consider here, but rather have defended
the tenability of these forms of empiricism against various challenges and
objections. These objections are by no means the only objections which one
could mount against this type of empiricism, but in my view they are the
objections that are the most pressing, precisely because they concern various
apparent difficulties that emerge when one begins to take seriously the idea
that just as enumerative induction can be justified by recourse to informed
judgments of probability, so too can mathematical induction and the other
Peano axioms.

The primary task for future work on these forms of empiricism lies in
developing and articulating an account of the sources of arithmetical confir-
mation. This task really splits into two parts. First, it is necessary to present
a positive account of our access to probability assignments, and whether these
are merely reflective of credences or whether notions like exchangeability (cf.
[37] § 8, [38]) can be used to facilitate this access. Second, it is necessary to
say something about the perceptual or other evidential sources which we may
draw on in updating probabilities. In the ordinary empirical setting, the idea
is usually that we update on observations. Hence, a positive account of how
this might possibly work in the setting of arithmetic is required, and here it
will be necessary to discuss explicitly how this relates to other treatments
of non-deductive reasoning in mathematics by authors such as Kitcher [39)],
Maddy [40], and Giaquinto [41], [42].

Another important task resides in assaying the extent to which the prob-
lems that affect formal treatments of truth in the setting of arithmetic may or
may not affect formal treatments of probability in the setting of arithmetic.
In particular, a pressing problem deserving of independent discussion is the
problem of what I call the probabilistic liar. This is a sentence \ which is
equivalent to the claim that P(A) < e for some small value of € > 0. This
presents an acute problem for our concept of confirmation because one can
show, under reasonable hypotheses, that the hypothesis A is confirmed by
the evidence that P(\) < € (cf. Proposition 12 in Appendix C). Hence,
the probabilistic account of confirmation presented here would suggest that
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one could infer from the improbability of A to the truth of A\, a result that
seems intuitively incorrect. Hence, in future work it is necessary to discuss
the extent to which this seeming incorrectness may be contained or assuaged.
However, just as work on formal theories of truth is merely technical if not
properly motivated by the tenability of deflationism or other minimal theo-
ries of truth, so it has been necessary to focus in this essay on first defending
the tenability of a probabilistic conception of justification of arithmetical
axioms.

Appendix A. Proofs of Results Stated in § 3.1

The aim of this brief appendix is to present proofs of two results from § 3.1,
namely the proposition on the alignment of the true and the probable (Propo-
sition 4) and the counterexample to the w-additive Dutch Book Theorem
(Proposition 5).

Proposition 4. Proposition on the Alignment of the True and the Proba-
ble: Suppose that L is the signature of Peano arithmetic and that K is the
conjunction of the eight axioms of Robinson’s (). Suppose that 0 < ¢ < %
Suppose that P is an w-additive probability assignment such that P(K) >
1 —e Then (a) (w,0,5,+,%,<) E ¢ if and only if P(¢) > 1 — €, and
(b) (w,0,S,4, x,<) = ¢ implies P(p & K) = P(K).

Proof. Let us first establish (b), and then show how (a) follows from (b).
Hence, we now show by induction on the syntactic complexity of ¢ that
(w,0,8,+,%,<) E ¢ implies P(p & K) = P(K). (i) First, by the 3%-
completeness of Robinson’s @) (cf. Proposition 1 in § 2.2) and by P1-P3, it
follows that if ¢ is X9 and (w,0, S, +, x, <) | ¢ then P(p & K) = P(K).
(ii) Second, if ¢(x) is AY and (w,0,S,+,%x,<) E V z ¢(x), then by w-
additivity and (i) it follows that

P([Y x p(a]) & K) = lm P([/\ o(S'(0))] & K) = P(K) (A1)

=0

(iii) Suppose that the statement is true for all X2 and II9-formulas for n > 1.
Suppose that p(z) is X2 or TI2. Suppose that (w,0,5,+, x, <) E 3z ().
Then (w,0,5,+, X, <) | ¢(S™(0)) for some m > 0. Then by the induction
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hypothesis and w-additivity it follows that

P(Bz p(2)] & K) =lim P(\/[o(5(0)) & K]) > P(o(5™(0)) & K) = P(K)
i=0
(A.2)
But it also follows from P1-P3 that P([3 = ¢(z)] & K) < P(K), so that
in fact we have P([3 = ¢(z)] & K) = P(K). Now, suppose that the struc-
ture (w,0, 5,4+, X, <) =V x ¢(x). Then by the induction hypothesis and w-
additivity it follows that

PV 2 p(2)] & K) = lim P([/\ o(5(0))] & K) = P(K) (A.3)

=0

Hence, we have finished verifying (b). Now let us explain how this im-
plies (a). For (a), note that it suffices to prove the left-to-right direction.
For suppose that we knew the left-to-right direction, i.e. suppose we knew
that (w,0,S5,+, x,<) | ¢ implies P(¢) > 1 —e. To prove the right-to-
left direction, suppose for the sake of contradiction that we are given sen-
tence ¢ such that P(p) > 1 — € and (w,0,S,+, X, <) | —¢. Then by the
left-to-right direction, it follows that P(—y) > 1 — ¢ and from P1-P3 it fol-
lows that 1 — P(p) > 1 — € and hence P(p) < € < 3 < 1—¢€ < P(p),
which is a contradiction. Hence, in fact, for (a) it suffices to prove the
left-to-right direction. Now, note that the left-to-right direction of (a) fol-
lows almost automatically from (b). For, it follows from P1-P3 and (b)

that P(p) > Plp & K)=P(K)>1—e O

Proposition 5. Counterexample to Dutch Book Theorem, w-additive Ver-
sion: There is a function P from L-sentences to real numbers such that (i) P is
not an w-additive probability assignment, and such that (ii) P has the fol-
lowing property: for every infinite sequence of real numbers s, and ev-
ery infinite sequence of L-sentences ¢, such that the sequence s, P(¢,)
is absolutely convergent, there is a complete consistent L-theory T such

that 3, s.(T(¢n) — P(pn)) > 0.

Proof. Choose a complete consistent L-theory Tj such that T; implies Robin-
son’s () and such that Ty proves —), where v is true on the standard model
and where ¢y = V x 1¢g(x) begins with a universal quantifier followed by a
quantifier-free formula ¥y(x) or by a formula ¥y(x) whose quantifiers are
bounded. For instance, the claim that z is always strictly less than 2x
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for non-zero values of = can be expressed in this way, as well as the con-
sistency statement for the Peano axioms. Given this sentence v and this
theory Ty, then define a function P from L-sentences to real numbers by
setting P(p) = Ty(p). By the X9-completeness of Robinson’s @ (cf. Propo-
sition 1 in § 2.2), it follows that

P(Y @ o(x)) = To($) = 0# 1 =limTy( /\ vo(S"(0))) = lim P( /\ ¢(5"(0))

(A.4)
This implies (i), namely that P is not an w-additive probability assignment.
For (ii), note that this follows trivially, since we may choose T' = T, O

Appendix B. Proofs of Results Stated in § 3.2 and § 2.2

In this section we present proofs of results from § 3.2 and § 2.2, namely the
theorem on the non-computability of probability assignments (Theorem 3
from § 3.2), the theorem on continuous probability assignments (Theorem 4
from § 3.2), and the propositions on high degree of confirmation (Proposition
2 and 3 from § 2.2).

Theorem 3. Theorem on Non-Computability of Probability Assignments:
Suppose that P : Sent(L) — R is a probability assignment that assigns
the eight axioms of Robinson’s () non-zero probability. Then the set of
pairs {(p,r) € Sent(L) x Q : P(y) > r} is non-computable.

Proof. For ease of reference, let us abbreviate

P ={(p,r) € Sent(L) x Q: P(g) >r} (B.1)

Here we are viewing both sentences in the formal language of arithmetic, as
well as rational numbers, as coded by natural numbers in the usual way, so
that P can _be viewed as a subset of natural numbers. Hence, it suffices to
show that P is non- computable. For this, it suffices to show P computes a
complete consistent extension of Robinson’s ¢, which is known to be non-
computable by work of Tarski (cf. [43] Theorem 9 p. 60, [44] Theorem 2
p. 19). To this end, enumerate the sentences Sent(L) in the signature L of
Robinson’s () as @1, ..., ¢y, ... in such a way that ¢ is the conjunction of the
eight axioms of Robinson’s (). Supposing that P is a probability assignment
such that P(p1) > 0, it must be shown that P computes a complete consistent
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extension Tp of Robinson’s Q). Let Tp(p1) = 1, and suppose that for all i < n
it has already been decided whether to set Tp(p;) = 0 or Tp(p;) = 1 in such
a way that for ¢ < n:

0<P( N\ e& N - (B.2)

Tp(pi)=1 Tp(p:)=0
Then it follows from P1-P3 that

0<P( A wl&en&| N -eD+P( N\ el&l N -l &-pn)
Tp(pi)=1 Tp(pi)=0 Tp(pi)=1 Tp(pi)=0
(B.3)

so that at least one of the two quantities featured in this sum is strictly
positive. If one computes from P that the first quantity is strictly positive,
then set T'(p,) = 1 and T(—y,) = 0, and otherwise do the converse. This
construction results in complete theory Tp which extends Robinson’s ) and
which is computable from P. Further, this theory is consistent, since if not,
then there is some finite fragment of the theory which proves a contradiction.
Since the axioms P1-P3 imply that contradictions are assigned probability
zero, and since they likewise imply that equivalent sentences are assigned the
same probability, and since anything which proves a contradiction is equiv-
alent to a contradiction, it follows from P1-P3 that the conjunction of some
finite fragment of T» would be assigned probability zero. This contradicts our
construction, in which all the finite fragments of T were assigned non-zero
probability. O]

So now we turn to developing the materials needed to prove the theorem
on continuous probability assignments (Theorem 4). Recall from § 3.2 that
a finite counting assignment is a probability assignment P of the following
form:

P(¢) = a1 - Ti(r) + -+ + an - T() (B.4)

where 11, ..., T, are distinct complete theories and a;+---+a, = 1 and a; >
0. Note that any function P satisfying equation (B.4) is in fact a probability
assignment. For, to see that P3 is satisfied, note that if = = (¢ A ) then
since T; is complete we have T;(o V ) = Ti(p) + T;(¢).

The theorem on continuous probability shows that there are many prob-
ability assignments that are not finite counting assignments. It does this by
showing that we can build such assignments that interact well with consis-
tent computable extensions of Robinson’s (), of which there are known to
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be many. Hence, let us now introduce some terminology on how theories
and probability assignments may relate to one another. Regrettably, even
though these notions are absolutely basic, there seems to be no established
terminology for these notions. So letting K be a theory in a language L,
let us stipulate that a probability assignment P : Sent(L) — R is K-sound
if K F ¢ implies P(p) = 1; and that P is K-regular if P(p) = 1 im-
plies K F . It’s perhaps helpful to explicitly point out that P is K-regular
iff P(¢) = 0 implies K F —.

The notion of a finite counting assignment was motivated in § 3.2 by
way of a philosophical dilemma for the kinds of empiricism considered in
this paper. However, it is important to stress that it is connected to the
well-studied mathematical notion of a continuous probability measure. To
see this connection, let us briefly recall some basic concepts from descriptive
set theory and measure theory. Suppose that K is a theory in a countable
language L. Then let [K] be the topological space of complete consistent
extensions of K, where the topology is generated by the classes [¢] = {T €
K] : T = ¢} (cf. [28] p. 41). Suppose that P is a K-sound probability
assignment. Then the Carathéodory Extension Theorem ([45] Theorem 1.14
p. 31, [46] Prop051t1on 17.6 p. 106) implies that there is a unique probability
assignment P : Borel([K]) — R such that P([¢]) = P(p), where Borel([K])
designates the Borel subsets of [K]. Finally, we _say that an atom of Pis a
theory T' € [K] such that P({T}) > 0. Further P is said to be continuous if
it has no atoms (cf. [46] p. 117).

To see the connection with finite counting measures let us prove the fol-
lowing proposition, which describes exactly the atoms of P when P is a
finite counting measure. First let us briefly review some notation on finite
strings used in this proof and some subsequent proofs. The set of finite
strings o, 7, p, ... of zeros and one is designated as 2<“, and elements of
this set are written with lower-case Greek letters, perhaps subscripted. One
writes ¢ =< 7 if 7 extends o as a string, and one writes |o| for the length
of o, and one views o as a function o : {0,...,|o| —1} — {0,1}. Finally, we
write o L7 if o and 7 have no common extension. Now, let ¢1,...,¢,,... be
a fixed enumeration of Sent(L) and for o € 2<“ define the following sentence,
wherein i range over numbers < |o|:

o=\ @A\ =) (B.5)

o(i)=1 o(i)=0

These sentences will be useful in what follows since they allow us to define
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finite initial segments of complete theories in terms of finite strings of ze-
ros and ones. With this terminology in place, let us prove the proposition
describing the atoms of P when P is a finite counting measure:

Proposition 6. Suppose that P is a finite counting assignment as in equa-
tion (B.4), and further suppose that P is K-sound. Then P({7;}) > 0.
Further, if P({T'}) > 0 then 7' = T; for some i.

Proof. For ¢ > 0 define T; | £ € 2<% by (T; | £)(j) = 1 iff T;(p;) = 1. Note
that {T;} = (),~lx71¢]. Hence by continuity from below (cf. [45] Theorem
1.8 p. 25) we have obtain the first identity in the following equation:

PU{T}) = lim P([xr, e)) = a; > 0 (B.6)

The second identity in the above equation follows from the fact that since
there are only finitely many complete distinct theories Ti,...,T,, there is
some sentence ¢, such that Tj(p,,) = 1 iff j = i. Now suppose, for the sake
of contradiction, that P({T}) > 0 but that T # T} for all i. Choose t; such
that T'(¢;) = 1 but Tj(¢;) = 0. Then P(A?, 4;) = 0 and hence P({T}) =

~

limg P([xrie]) < PN ) = 0. =

Now we show how to characterize the continuity of P in terms of proper-
ties of P. This is important both for the proof of Theorem 4, as well as for
a philosophical point made at the end of § 3.2, namely that we can isolate
an axiomatic condition on P that guarantees that it is not a finite counting
assignment. In particular, if P satisfies equation (B.7) in the below proposi-
tion, then it cannot be a finite counting assignment. For, if it were a finite
counting assignment, then by the previous proposition P would have atoms.

Proposition 7. Suppose that K is a countable theory and that P is K-
sound. Then P is continuous iff

Ve>030>0V0 (Jo|=0— P(x,) <e¢) (B.7)

Proof. First suppose that P is continuous but that

Je>0VL>030 (lo|=0AP(x,) >¢) (B.8)
Consider the following set of strings S = {0 € 2<“ : P(x,) > €}. Then
if o € 2<¥ and 7 =< ¢ we have that = (xo — X-), so that P(x,) > P(x,) > €.
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So S'is a tree, and further the hypothesis in equation (B.8) implies that S is a
infinite tree, so that by Konig’s Lemma it follows that it has a path T". Then
we have IB({T }) = lim, P(xr1¢) > € > 0, which contradicts our assumption
that P is continuous. Now, conversely, suppose for the sake of contradiction
that equation (B.7) holds but that P is not continuous. Then P({T}) > 0
for some T' € [K]. Choose € > 0 such that P({T}) > e > 0. Then by
hypothesis in equation (B.7), we have ﬁ(XT[g()) < € for some ¢y > 0. Then
we have P({T}) = lim, P(xry¢) < €. O

Now we focus on establishing Theorem 4. The proof of this theorem is
a recursion-theoretic forcing argument (cf. [47] Chapter 13 pp. 273 ff, [48]
Chapter 12 pp. 737 ff). Hence, the idea is to first define a partial order in
Definition 5 below, then to show in the next two propositions that certain
sets are dense in this partial order. Then, as usual, the theorem (Theorem 4)
follows from showing that we can effectively construct (in an oracle) a set
that is generic for these dense sets. To define this partial order, let us first
introduce some further notation. Suppose that s = (¢o, ..., v, 1) is a finite
sequence of L-sentences. If ¢ = (1g,..., 1, 1) is another finite sequence,
then we say that ¢t C s if {¢o, ..., Ym-1} € {®0,...,pe_1}. For o € 2<¢
with |o| = ¢ we define the following, where the conjunctions are over i < ¢:

/\ oih N\ e (B.9)

o(i)= o(i)=0

Further, we define:
s={\/x, lol==lon| =0} (B.10)

Note that for ¢ # 7 we have that the x2 and x? are incompatible. Also,
note that 5 is closed under the propositional connectives, in the sense that
if ¢, is in 5 then there is £ in 5 such that ¢ is equivalent to —¢ (resp. to p A
¥, o V1, ¢ — ). Finally, note that each element ¢; of s = (po,...,vr1)
is equivalent to an element of 5, namely the disjunction over all Xo, such
that 0;(i) = 1. Hence, by abuse of notation, we may assume that s C s.
Now we can present the definition of the partial order:

Definition 5. Suppose that K is a countable theory. If s = (g, ..., @p1) i8
a finite sequence of L-sentences, then we say that P : 5§ — Qis a K-sound s-
probability-assignment if it satisfies P1-P3 and K-soundness with respect to
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the sentences in 5. The collection of all K-sound s-probability assignments for
all s is designated as P[K]. There is a natural partial order on P[K] defined
by extension. In particular, if P’ is an K-sound s’-probability-assignment
and P is a K-sound s-probability assignment, then we write P’ < P iff s’ D
sand P’ | § = P. Finally, if P € P and P is a K-sound s-probability
assignment, then we write domg(P) = s and dom(P) = 5. Finally, we
define P, [ K] to be the subset of elements P of P[K] satisfying the additional
condition of K-regularity with respect to the sentences in the set s = dom(P).

Note that the condition P’ [ 5= P in the definition of extension makes
good sense since each element of § is equivalent to an element of s’. In
particular, if s has length ¢ and s’ has length ¢/ > ¢ and |o| = ¢, then

Vo ox (B.11)

Tro & |T|=¢

Xo

Finally, if Py is a K-sound s-probability assignment and P is a K-sound
probability assignment, then we may define P < P, to simply mean that P |
s=F.

Note that P being a K-sound s-probability-assignment is a H?’K—condition
since provability occurs in the antecedent of conditions in the P1-P3 condi-
tions and K-soundness, and that K-regularity is correspondingly a E?’K—
condition. Thus, both P[K] and P,[K] are computable in the halting set
when K is computable. Now we turn to showing that various sets are dense
in our partial order. Recall that D is dense in a partial order P if for ev-
ery P € P there is P’ € D such that P’ < P. The basic idea of the below
proposition is very clear: we'’re trying to find a way to extend a probabil-
ity assignment defined on n sentences to a probability assignment defined
on n + 1 sentences. The only thing that makes this harder than the obvious
proof in the propositional case is that the (n 4 1)-st sentence might not be
independent of the earlier sentences.

Proposition 8. Suppose that ¢ is an L-sentence. Then the set D, = {P €
P[K] : domy(P) > ¢} is dense in P[K] and Pyeg[K]. In particular, if P is a K-
sound s-probability assignment in P[K] (resp. in P[K]), and s = s~ (¢),
then there is a K-sound s'-probability assignment P’ extending P and in P[K]
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(resp. in P [K]) such that

P(xs) ifKAXSEY,

P'(x; ANY) =40 it KA xS |E -, (B.12)
TP(x5) otherwise,
0 i KA 0,

PG A=) = P0;)  iEKAXSE Y, (B.13)

1P(x5) otherwise,

Proof. 1t suffices to show that if we define P’ by using equations (B.12)-(B.13)
and extend additively, then we satisfy P1-P3 and K-soundness (resp. K-
regularity). From this definition, P1 and P3 are trivial. Note that it is also
trivial that P'(x3) = P(x%) since P’ is defined by extending additively:

P'(xz) = P'((g AV (xg A1) = PG AY)+P (xg A1) = Px;) (B.14)

So we focus on verifying K-soundness, from which P2 trivially follows. So
suppose that K |= £ where

n

§= VG A0 vV 0 A -0) (B.15)

i=1

Let us define ¥ = {oy,...,0,} and © = {7y, ..., 7,,}. First consider the case
where ¥ = () or © = (). Without loss of generality, we consider the case
where © = (). Then since K |= 1), we have K A x5 = 1. So we may argue
as follows:

P'(\/ x5 A) =) P(xs AY) = ZP X5, = \/xa =1 (B.16)
=1 =1

So now we move onto the case where ¥ # () and © # (). Then we define: R =
YN0 and ¥ = ¥\ Rand © = ©\ R. Now note that if p ¢ X UO then K |=
=X, Further, we have that K A x5, E ¢ for o; € ¥ and K A X7, = - for
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7; € ©'. Then we may argue

1= P\ x)+P(\/ x))+P(\ x)+P(\ x)

pEXUO PER oey’ TEO!
= D PO+ PO+ D PO+ Y PG
pEXUO pER oey’ TEO!
= 04+ ) [POGAD) +POGA-D]+ Y PG AL+ D P A )
PER ey’ TEO!
= PO (B.17)

Now, in the case where P satisfied K-regularity, we also want to verify that P’
is regular. So suppose that P(§) = 0 where £ is from s'. Since ¢ is from ¢,
it is a disjunction as in equation (B.15). So each of these disjuncts also has
probability zero under P’.

Consider first a disjunct of the form x; A. Since P'(x;, A1) = 0, we
claim that the definition in equation (B.12) and K-regularity of P requires
that K = —(xj, A¥), or what is the same K = —x; V —¢. For, there
are three case to consider, depending on the three cases in the definition in
equation (B.12). First suppose that K A xos = ¢. Then 0 = P'(x;. A¢) =
P(x;.), which by the K-regularity of P implies that K = —x;.. Second
suppose that K A X, = —t. Then we have K = x,+ — — or what is
the same: K |= “Xos V 71p. Third suppose that neither K A x,s = 1 nor
K A Xos = =¢. Then 0 = P'(x5. Avp) = 5P(x%,), which by the K-regularity
of P requires that K |= -5 .

Consider second a disjunct of the form Xz, N —). Now we argue that since
P (Xij A =) = 0, the definition in equation (B.13) and K-regularity of P
requires that K = ﬂ(Xij A=), or what is the same K |= =Xz, V4. For, there
are three case to consider, depending on the three cases in the definition in
equation (B.13). First suppose that K A x: |= ¢. Then trivially we have
K E Xrs — ¢ or what is the same K = X V. Second, suppose that
K A Xrs = b, Then we have 0 = P'(x;, A =) = P(x7,), which by the
K-regularity of P requires that K |= X3, Third suppose that neither
K A Xrs E ¢ nor K A Xrs = —). Then 0 = P’(Xij A ) = %P(Xij), which
by the K-regularity of P requires that K |= X3,

Putting all this information together, we have that K = —(xJ A 1)
and K | _‘(X% A —)). Since the conjunction of all these is equivalent to —¢&,
we have that K = ¢, which is what we wanted to show. O
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Now we focus on our second density proposition, which by Proposition 7
is obviously what we need if we want our generic to be continuous and hence
not a finite counting assignment:

Proposition 9. Suppose that K is a consistent computable extension of
Robinson’s (). Suppose that € > 0. Then the following set is dense in P[K]
and e [K]:

D, ={P € P[K] : domg(P) = s = (p0,...,p0-1) & [Vo |o| =0 = P(x;) < €|}
(B.18)

Proof. 1t suffices to show how to extend P with dom(P) = s = (vo, ..., ©r_1)
to P'in P[K] (resp. in Pyeg[K]) where dom(P) = s" = s7(¢) in such a way
that we have P'(x5AY) = P'(xi A=) = £ P(x%). For by repeatedly applying
this, we may successively “halve” the probabilities until we get below e. But
by the previous proposition, and in particular equations (B.12)-(B.13), it
suffices to find ¢ that is independent of all K A x& with P(x3) > 0. So let

C={oce2:|o|=0& P(x}) >0} (B.19)

Hence for each 0 € C' we have that K A xJ is a consistent computable
extension of Robinson’s ). For each o € C' choose ¢, which is independent
of K Ax: (cf. [1] Theorem 2.10 p. 161, [44] Theorem 2 p. 26). Define the
sentence ¥ = A .o(X5 = ¢,). Then KAxS ¥ forallo € C. For,if oy € C
and K A x5 F ¢, then we have K A X5 F ¢q,. Likewise, K A xj ¥ = for
all o € C. For, suppose 0g € C and K A x5 = —t. Since K A X5 ¥ —=¢q,
choose a model M of K and x;, and ¢, and hence also of —¢). Since the x3’s
for p € C are all inequivalent, the only disjunct of \/ _~(x5 A —¢,) which
can be true on M is the disjunct corresponding to oy. But this of course
implies that M = —p,,. Hence, in fact we have found . O

Finally, putting all of these things together, we may prove our last theo-
rem of this appendix. Note that there’s an obvious connection to the notion
of computable approximations described at the end of § 3.2 since anything
computable in the halting set is computably approximable.

Theorem 4. Theorem on Continuous Probability Assignments: Suppose
that K is a consistent computable extension of Robinson’s (). Then there
is a K-sound K-regular probability assignment P such that P is not a fi-
nite counting assignment. Further, P may be chosen so that the set of
pairs {(¢,7) € Sent(L) x Q : P(p) > r} is computable in the halting set.
Further, for any Fy € Py;[K], P can be chosen so that P < F.
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Proof. Define a subset G C Py, [K] as follows computably in the halting set.
Let Py be some arbitrary element of P,es[K]. Suppose P, < P,_; < --- < F
has been defined. If n is even, choose P, ;1 < P, from P, [K] such that P,
is in D, where 3 is the Godel number of . If n is odd, choose P,y <
P, such that P,; is in D, where ¢ = 27". Now define a K-sound K-
regular probability assignment P by setting P(p) = P'(p) for any P’ € G
with ¢ € domg(P’). We can do this since G intersects D,. Further, by
Proposition 7, P is continuous since it intersects each D, for € > 0. Further,
clearly this definition is recursive in the halting set since the sets D, and D,

are computable in the halting set for rational e. O]

Now we turn to the proofs of Propositions 2 and 3 from § 2.2. Given
the aims of this paper, it’s natural to ask whether the condition of “not
being a finite counting assignment” is compatible with their actually being
instances of mathematical induction whose consequent is strongly confirmed
by its antecedent against the background of theories such as Robinson’s Q).
An affirmative answer to this question is established by Proposition 3. How-
ever, let us begin with some preliminary observations related to a preliminary
proposition (namely, Proposition 2 below). As mentioned in § 1, for a hy-
pothesis h to be confirmed by evidence e against background knowledge K
means that

0 < P(hle & K) — P(h|K) (B.20)
Since we are viewing probability assignments as functions P : Sent(L) — R,
the condition in equation (B.20) only makes sense if K is a finitely axiom-
atized theory so that we can view it as the conjunction of its members.
Further, if K F e, then the condition in equation (B.20) cannot occur, since
in this circumstance we will have P(hle & K) = P(h|K), at least if the
quotients are defined. Likewise, if K + h is inconsistent, then similarly the
condition in equation (B.20) cannot occur, since in this circumstance we will
have P(hle & K) =0 = P(h|K), assuming the quotients are defined. These
elementary observations thus motivate restricting attention to when K is
finitely axiomatized, K ¥ e, and K + h is consistent. Finally, in many of our
canonical applications discussed in this paper, we also have that K + h F e.
When all these conditions are met, the following proposition indicates that
one may construct probability assignments wherein the degree of confirma-
tion is high. This proposition was first stated at the close of § 2.2:

Proposition 2. Let K be a finitely axiomatized L-theory. Suppose that h, e
are L-sentences such that K + h F e and K ¥ e and K + h is consistent.
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Let € > 0 with € < 1. Then there is a probability assignment such that
1—e<P(hle& K)— P(h|K) <1 (B.21)
Moreover, P may be taken to be K-sound and K-regular.

Proof. Enumerate the L-sentences ¢,, such that K + e ¥ ¢,,, where without
loss of generality we may assume that ¢; = —h. This is because if K +e - —h
then K4 h F —e, so that K + h proves both e and —e, and hence K + h would
not be consistent, contrary to hypothesis. Enumerate the L-sentences ¢}
such that K ¥ ¢} and K + e I ¢, where without loss of generality we may
assume that ¢} = e. Choose witnessing L-structures M,, = K + e + —p,
and M = K+-¢!+-e, noting that M; = hand M = —eA—h and M, = e.
Let T, be the complete theory of M, and let T be the complete theory

of My. Let n = 5 and let § = 1 — 7. Define two sequences of real numbers
a, and a’ by a; = én and a, = (;277 forn > 1 and a;, = % for n > 0,

noting that >, a, = on+ (1 —0)p = nand >~ a’ = 1 —n. Define
a K-sound, K-regular probability assignment P : Sent(L) — R as follows:

P) = anTu(¥) + ) aTi(v) (B.22)

Then since T1(h) = 1 and T (h) = 0, we have that én < P(h) < 7. Further,
since T,(e) = 1 and T)(e) = 0, we have that P(e) = 7. Then since P is
K-sound we have P(K) = 1, and hence we may calculate:

P(h )
Phle & K)— POhK) = 28— py > 21 51— (B23)
P(e) U
Further, since K +h F e, we have that P(h) < P(e) and hence P(hle & K) <
1. Since P(h|K) > on > 0, we have that P(hle & K) — P(h|K) < 1. O

The above proposition applies directly to the setting where K is empty
and h is an axiom of Robinson’s () and e is several instances of this universal
arithmetical hypothesis h. To apply this proposition to the example of math-
ematical induction and to combine it with the the probability assignment not
being a finite counting assignment, let us first introduce some notation. As
is standard, let us abbreviate an instance of mathematical induction as:

I,=[p(0) &Vn o) »pn+1)] > Fnem)]  (B24)
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wherein ¢(z) is an L-formula with one distinguished free variable z. (The set
of such formulas are henceforth abbreviated as Form(L)). One of the ideas of
this paper is that the consequent of I, may be confirmed by the antecedent
of I, against the background of Robinson’s ). Let us further introduce some
abbreviations for the antecedent and consequent of /,:

e(l,) = ¢(0)&Vnepn)—en+1) (B.25)
h(l,) = Vnen) (B.26)

Expressed in terms of these abbreviations, we have that I, = e(I,) — h(l,).
Using these abbreviations, we can now state and prove the following proposi-
tions, which says that so long as the background knowledge does not prove the
antecedent of mathematical induction and is consistent with the consequent
of the instance of mathematical induction, a high degree confirmation of the
consequent by the antecedent is compatible with the probability assignment
not being a finite counting assignment:

Proposition 10. Let K be a finitely axiomatized extension of Robinson’s Q).
Suppose that ¢(z) is an L-formula such that K ¥ e(l,) and K + h(l,) is
consistent. Let € > 0 such that e < 1. Then there is a K-sound, K-regular
probability assignment which is not a finite counting assignment such that

1 — ¢ < P(h(I,)|e(I,) & K) — P(h(I,)|K) < 1 (B.27)

Proof. Since K, h(I,),e(l,) satisfy the antecedents of the preceding propo-
sition, we have that there is a K-sound, K-regular probability assignment
P satistying equation (B.27). Let s = (K, e(l,),h(l,)) and let Py = P | 5.
Then by Theorem 4, there is a K-sound K-regular probability assignment
P’ which is not a finite counting assignment such that P’ < P,. Since P,
Py, and P agree on the values of boolean combinations of K, e(I,), h(I,), we
have the equation (B.27) continues to hold when we replace P by P’. O

So it’s thus natural to ask whether there are any examples of L-formulas
o(x) with K ¥ e(I,) and with K + h(l,) being consistent. The following
proposition directly implies that there are infinitely many of them, at least
when K is true on the standard model. But, at the same time, the proposition
says that there is no computable method for detecting them:
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Proposition 11. Let K be a finitely axiomatized extension of Robinson’s ()
that is true on the standard model. Then following set Cx computes the
halting set:

Ckx ={¢(z) € Form(L) : K ¥ e(1,) & K + h(I,) is consistent}  (B.28)

Further, suppose that P is a K-sound K-regular probability assignment.
Then the following set Ck p is equal to Cx and thus also computes the
halting set:

Ck.p={¢(x) € Form(L) : 0< P(h(1,)le(l,) & K)— P(h(l,)|K) <1
& P(e(1,) & K), P(h(1,) & K) > 0} (B.29)

Proof. For C, it suffices to show that Cx can compute whether an arbi-
trary II{-sentence V = ¢(x) is true on the standard model. First note that
h(I,) is identical to V x t¥(x). Second note that by the Y9-completeness
of Robinson’s @, a II{-sentence is true on the standard model if and only
if it is consistent with K. (For the X{-completeness of Robinson’s Q, see
Proposition 1 in § 2.2).

Now, let #(n) express that “there is no proof of 0 = 1 of length < n steps
from the axioms of K + PA.” Then h(ly) is identical to Con(K + PA). Let
o(x) = Y(x) A b(x), so that h(1,) = h(Iy) A h(ly). Hence K + PA ¥ h(1,)
and thus K ¥ e(I,). Hence ¢(z) € Ck if and only if K + h(1,) is consistent,
which happens if and only if h(I;) A h(Iy) is true on the standard model.
Since we know that h(Iy) is true on the standard model, we thus have that
o(x) € Ck if and only if h(Iy) is true on the standard model. Since ¢ was
produced computably from v, we thus can thus compute from C'x whether
an arbitrary I1{-sentence V z ¢() is true on the standard model.

Now, suppose that P is a K-sound K-regular probability assignment. In
this paragraph, we show that

p(z) € Cx <= ¢(z) € Ckp (B.30)

For the sake of readability, in this paragraph we write h = h(/,) and e = e(/,)
and we omit the K inside the P-operator, which we can do since P is K-
sound. For the left-to-right direction of equation (B.30), suppose that p(z) €
Ck. Then since K ¥ —h, we have by K-regularity that P(—h) < 1 and hence
1 — P(h) < 1so P(h) > 0. Since K ¥ e, by K-regularity we have P(e) < 1,
500 < P(h) < P(e) < 1,500 < 38 < 1,50 503 — P(h) < 1= P(h) < 1.
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ﬁ > 1 and hence % > P(h) and thus

1;((’3 — P(h) > 0. For the right-to-left direction of equation (B.30), suppose
that ¢(x) € Ckxp. We claim that K ¥ e. For, suppose not. Then the
quantity P(hle) — P(h) = 0, contrary to hypothesis. Likewise, we claim that
K + h is consistent. For, suppose not. Then K | —h, and by K-soundness,

we have that P(h) = 0, contrary to hypothesis. O

Further, since P(e) < 1, we have

Finally, we can thus deduce the following proposition, which was first stated
at the close of § 2.2. The statement given here differs from the original state-
ment in § 2.2 in that it is additionally noted here that the probability as-
signment can be taken to have properties such as K-soundness, K-regularity,
and to not be a finite counting assignment.

Proposition 3. Let K be a finitely axiomatized extension of Robinson’s ()
that is true on the standard model of arithmetic. There are infinitely many
L-formulas ¢(z) such that for all € > 0 with ¢ < 1 there is a probability
assignment P such that

1— €< P(h(I,)|e(I,) & K) — P(h(I,)|K) < 1 (B.31)

Moreover, the probability assignments P may be taken to be K-sound, K-
regular, and not finite counting assignments.

Proof. This follows directly from the two previous propositions since the C'x
is non-computable and hence infinite. O

Appendix C. Proofs of Results Stated in § 4

The aim of this last appendix is to prove a result mentioned in § 4 on the
probabilistic liar. This proposition needs only one definition. If L is a count-
able signature, then let us say that probability assignment P : Sent(L) — R
is arithmetically definable if the following set is arithmetically definable:

P ={(p,r) € Sent(L) x Q: P(g) > r} (C.1)

Now we may prove the following proposition, where recall from Appendix B
that K-soundness means K + ¢ implies P(y) = 1; and that K-regularity
means P(p) = 1 implies K F ¢; and where recall from § 3.2 that true arith-
metic or Th(N) is the set of sentences that are true on the standard model
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(w,0,8,4, x, <) of the Peano axioms. Finally, note that by the last the-
orem of Appendix B, namely, Theorem 4, there are many K-sound, K-
regular arithmetically definable probability assignments, since the halting
set is arithmetically definable and since being arithmetically definable is pre-
served downwards under relative computability.

Proposition 12. (The Probabilistic Liar) Suppose that K is a consistent
extension of Robinson’s ) which is a subtheory of true arithmetic. Suppose
that P is a K-sound K-regular probability assignment that is arithmetically
definable. Suppose finally that 0 < e < 1 is a rational number. Then there
is a sentence A, such that

QF (A < P(\) <€) (C.2)
0 < P(\) < POJP(A) <e) =1 (C.3)
0 < POAJP(A) <€) — P(\) < 1 (C.4)

Proof. Of course equation (C.4) follows directly from equation (C.3). So it
suffices to prove equations (C.2)-(C.3). By diagonalization (cf. [44] Lemma
1 p. 17, [1] Theorem III.2.1 p. 158), choose a sentence A = A, such that
QF (A< P()\) <e¢). Since K is an extension of Robinson’s ) and P is K-
sound, we have P(A\) = P(P(\) < ¢). Suppose that P(A) = 0. Since P is K-
regular, we then have that K F =\. Since K is a subtheory of true arithmetic,
we have that —\ is true and hence also that =[P(\) < € is true, which
implies P(\) > ¢, a contradiction. Clearly we also have that P(A\|P(\) <
¢) = 1. Finally, to see that P(\) < 1, suppose that P(\) = 1. Since P is K-
regular, we have that K = A. Since K is a subtheory of true arithmetic, we
then have that P(A\) < e < 1, a contradiction. This is the one place in the
proof where we use the hypothesis that ¢ < 1. O
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