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Metabolism is essential for cellular homeostasis as cells import nutrients as substrates for

biosynthetic reactions or as energy to power the cell. However, maintenance of this homeostasis in

the face of environmental or genetic insults requires altering metabolic fluxes to achieve a desired

behavior. Redox metabolism is a critical subsystem within the metabolic network and must be

finely tuned to support growth in highly proliferative cells. The chapters of this dissertation are

independent bodies of work that explore how redox metabolism is altered to support stem cell

and cancer cell growth. Chapter 1, titled "Reverse engineering the cancer metabolic network

using flux analysis to understand drivers of human disease," is a review on the utility of applying

metabolic flux analysis (MFA) to study cancer biology. The chapter first introduces techniques
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required for MFA and then highlights recent advances in cancer metabolism that required the

application of MFA. Chapter 2, titled "Enzymatic passaging of human embryonic stem cells

alters central carbon metabolism and glycan abundance," explores how routine enzymatic passage

methods alters metabolism to support increased hexosamine biosynthesis after cleavage of the

glycolayx. Chapter 3, titled "Distinct metabolic states can support self-renewal and lipogenesis in

human pluripotent stem cells under different culture conditions," examines how disparate media

conditions routinely used in stem cell culture maintain pluripotency in distinct metabolic states.

Chemically-defined media forces the cell to reside in an increased biosynthetic state to support

de novo lipogenesis that can be reversed with lipid supplementation. Chapter 4, titled "Lipid

availability influences the metabolic maturation of hPSC-derived cardiomyocytes," describes

how gold-standard culture conditions for cardiomyocyte differentiation present a roadblock

for metabolic maturation. Chapter 5, titled "Combinatorial CRISPR-Cas9 metabolic screens

reveal critical redox control points dependent on the KEAP1-NRF2 regulatory axis," describes

using novel combinatorial CRISPR screening technology to understand glycolytic network

topology and enzyme compensation in cancer cells. Examination of dispensability of redox

genes across cell types revealed a counterintuitive regulation of redox metabolism function and

essentiality controlled by KEAP1-NRF2. Chapter 6, titled "Oncogenic R132 IDH1 mutations

limit NADPH for de novo lipogenesis through (D)2-hydroxyglutarate production in fibrosarcoma

cells," describes how oncogenic mutations in IDH1 reprogram NAD(P)H metabolism to support

2HG production. While the mutation is generally tolerated, 2HG production competes with de

novo lipogenesis for NADPH when cells are placed in lipid-deficient conditions. Taken together,

these collective studies demonstrate the importance of understanding redox-specific metabolic flux

regulation in highly proliferative cells. These findings have impact on bioprocess development of

stem cells and therapeutic targeting of cancer cells.
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Chapter 1

Reverse engineering the cancer metabolic

network using flux analysis to understand

drivers of human disease

1.1 Abstract

Metabolic dysfunction has reemerged as an essential hallmark of tumorigenesis, and

metabolic phenotypes are increasingly being integrated into pre-clinical models of disease. The

complexity of these metabolic networks requires systems-level interrogation, and metabolic flux

analysis (MFA) with stable isotope tracing present a suitable conceptual framework for such

systems. Here we review efforts to elucidate mechanisms through which metabolism influences

tumor growth and survival, with an emphasis on applications using stable isotope tracing and

MFA. Through these approaches researchers can now quantify pathway fluxes in various in

vitro and in vivo contexts to provide mechanistic insights at molecular and physiological scales

respectively. Knowledge and discoveries in cancer models are paving the way toward applications

in other biological contexts and disease models. In turn, MFA approaches will increasingly help
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to uncover new therapeutic opportunities that enhance human health.

1.2 Introduction

1.2.1 Renewed interest in metabolism

A largely forgotten vestige of biochemistry coursework, metabolism is once again being

appreciated as a driver of human disease rather than a downstream effect of some genetic or

transcriptional changes. Since the advent of the genomics revolution, biomedical research has

largely focused on the roles of DNA and RNA dysregulation in disease. This information has

led to an international, multidisciplinary effort to catalog, sequence, and interpret large amounts

of genomics data from various sources [1]. While these efforts have generated large amounts of

publically-available, highly-curated data and new insights into a range of diseases, the next steps

often require researchers to look beyond the mutational or allelic status of disease-associated

genes and gain a more mechanistic understanding of these changes. As such, higher level activities

of the cell are now coming into focus as drivers of pathological phenotype - e.g. transcriptional

and translational regulation, epigenetic states, and systems-level metabolic activities.

Indeed, recent work in cancer, metabolic syndrome, and regenerative medicine has

highlighted situations where metabolic alterations precede other canonical modes of biological

control (e.g. transcriptional activation), demonstrating its importance in biomedicine. Metabolism,

or the biochemical reactions executed by cells, is essential for the maintenance of cellular

function and the response to extrinsic and intrinsic cues. To control such a complex network,

mammalian metabolism has evolved a regulatory framework and interconnectivity that ensures

robust functionality. Advanced methods are required (and are now becoming available) to

decipher the regulation of these processes and their dysfunction in disease settings [2]. In this

review, we will establish the critical need for studying metabolism at a systems-level, introduce

methodological advances that have enabled interrogation of mammalian metabolism, and highlight
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recent work that has utilized stable isotope tracing and MFA to better understand human disease.

1.2.2 Thermodynamics and topology of metabolism

Metabolic reactions can largely be broken down into three main components or functions

- bioenergetics, biosynthesis, and redox balance - with each component having a unique network

behavior requiring systems-level interrogation.

The thermodynamic reality of a cell is the constant need to generate energy that can be

coupled to unfavorable reactions with a positive Gibbs free energy [3–5]. In practice, nutrients are

imported into cells then catabolized to regenerate adenosine triphosphate (ATP), the metabolic

currency of cells. Due to the high energy stored in its phosphoanhydride bonds, ATP hydrolysis is

required to drive thermodynamically unfavorable reactions and allow them to proceed at sufficient

rates. The use of ATP regeneration and hydrolysis in disparate metabolic pathways is a prime

example of how metabolic interconnectivity facilitates life and highlights the importance of the

first law of thermodynamics in understanding metabolic function [6–8].

This connection results in two axioms of bioenergetics: (1) If a cell is consuming large

amounts of ATP, a concomitant production of ATP molecules is needed. A cell can turnover its

ATP pool over six times per minute [9], and ATP levels are "nearly universally homeostatic"

[10]. Therefore, the proper biological unit of measure is the ATP regeneration rate (flux) rather

than a metabolite level or ratio (i.e. nucleotide pool ratios). (2) Cells have evolved enough

production capacity and storage (e.g. glycolysis, oxidative phosphorylation, creatine kinase,

adenylate cyclase) to meet this demand in the face of various insults (e.g. substrate deprivation,

hypoxia). This results in a topological reality where many pathways are connected by ATP,

resulting in highly interdependent nodes within the metabolic network. More complex cells

like eukaryotes have evolved further to compartmentalize reactions to facilitate (and complicate)

pathway function further.

In addition to maintenance of energetic homeostasis, an important role of metabolism is
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to provide biosynthetic precursors. Highly proliferative cells - such as immune cells, tumor cells,

and transit-amplifying stem cells - require a doubling of cellular biomass each time they divide. In

addition, all somatic cells have established rates of lipid and protein turnover/nucleotide synthesis

that require constant production of biosynthetic intermediates [11]. While unique mammalian

auxotrophies exist that contribute to large portions of cellular biomass (i.e. essential amino acids

for protein biosynthesis), cells can choose to either synthesize or uptake macronutrients for the

remaining portion of needed biomass. While the "cheapest" route for a cell would be to uptake

all macromolecules, network topology might dictate the need for flux through a pathway to

provide substrates for a different pathway. This interdependency results in a coupling of catabolic

and anabolic reactions. Biological (and electrical) energy flow is coordinated by the movement

of electrons, and these transfers are mediated by oxidoreductases and reducing equivalents

(e.g. nicotinamide adenine dinucleotide (NAD+), nicotinamide adenine dinucleotide phosphate

(NADP+), and flavin adenine dinucleotide (FAD)). At a high level, cells extract electrons from

reduced substrates (e.g. carbohydrates, fatty acids) and secrete oxidized byproducts (e.g. lactate,

CO2). Therefore, flux through oxidative pathways consumes electron carriers and produces

reducing equivalents. Cells in turn must consume electrons and regenerate electron carriers to

maintain proper redox balance. For example, to maintain glycolytic rates and/or tricarboxylic

acid (TCA) cycle flux, cells must constantly consume electrons via lactate dehydrogenase (LDH)

or respiration to regenerate NAD+ and FAD. This point highlights one potential reason why

rapidly proliferating cells exhibit high glycolytic rates (i.e. the Warburg effect). For example,

diversion of glycolytic intermediates for serine biosynthesis can cause redox fluctuations or

imbalances such that NAD+ is not regenerated at sufficient rates by LDH to maintain glycolytic

flux. Alternate NAD+ recycling pathways such as the malate-aspartate shuttle and glycerol-

phosphate shunt are active in proliferating cells but may be similarly blunted as aspartate and

glycerol-3-phosphate are used for biosynthesis. By maintaining high flux through glycolysis such

redox fluctuations are minimized. Redox balance in cells also extends to environmental stresses

4



through the consumption of reducing equivalents to regenerate antioxidants (i.e. the cycling of

reduced (GSH) and oxidized (GSSG) glutathione). This redox control in cells demonstrates how

cells have evolved metabolic interconnections to maintain homeostasis.

1.3 Methods of quantifying fluxes

1.3.1 Need of metabolic tracing

The interconnectivity, redundancies, and cross-dependencies that exist within metabolic

pathways manifest themselves in classic emergent network behavior, where changes in one

node can result in far-reaching and unforeseen states. For example, altering one pathway by

modulating substrate availability or through molecular and pharmacological interventions can

lead to system-wide changes in metabolic pathway fluxes as cells attempt to maintain homeostasis

[12]. Historically, technological limitations forced scientists to interrogate metabolism at the

resolution of individual enzymes. While this approach led to the elucidation of fundamental

metabolic pathways, like the TCA cycle, a critical need for systems-level analyses has now

emerged.

With technological advances such as gas chromatography-coupled mass spectrometry

(GC/MS), liquid chromatography-coupled mass spectrometry (LC/MS), and nuclear magnetic

resonance spectroscopy (NMR), researchers now have the ability to rapidly and simultaneously

quantify large numbers of metabolites in a given biological setting [13]. These developments

have been essential in driving both the rapid growth in new information about metabolic con-

trol/function and the metabolic basis of human disease [14–16]. In addition to the inherent

complexities of studying any network, mammalian metabolism has unique features and must

be studied at multiple length scales (Figure 1.1) For example, many metabolic pathways have

many redundant, compartment-specific forms that can be regulated independently (e.g. TCA

cycle enzymes in the mitochondria, cytosol, and/or peroxisome), or cells can reside in local
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cellular communities that interact to elicit a broader function (e.g. beta cells within islets or

stromal-epithelial interactions). On the other hand, diseases manifest themselves throughout

the body, where dysregulated insulin secretion by the pancreas in diabetes affects distal muscle

microvascular, liver, adipose tissue, and neurological functions.

With these realities of network and length-scale complexity, recent work has focused on

the use of systems biology to parse through and integrate all available "omics" data - genomics,

transcriptomics, and metabolomics. However, sequencing data is better used for identification of

novel mutations in metabolic disease [1, 17] and pathway activation [18], as germline mutations

and transcript level changes do not always directly map to changes in a specific metabolic pathway.

Additionally, metabolomics studies have been successfully used to identify metabolic shifts and

implicate potentially altered metabolic pathways [19]. However, rapid metabolomics platforms

serve as a hypothesis generating methodology because one cannot necessarily infer metabolic

flux alterations a priori through metabolite level changes. Since the primary driver of metabolic

phenotypes is alteration of flux, stable isotope tracing and metabolic flux analysis (MFA) have

emerged as critically important tools for interrogating metabolism [20].

1.3.2 Stable isotope tracing

Modeling approaches have been applied to metabolic systems for some time and center

around the need to conserve mass in the context of network stoichiometry and cellular needs [21].

These systems are often highly underdetermined, and fluxes are resolved to varying extents by the

application of constraints, which may include uptake/secretion from media, transcriptomics or

proteomics data, and/or isotopic labeling [22]. The most detailed information is often provided by

the use of stable isotope tracing and metabolomics, whereby a given atom of interest is "tracked"

throughout the metabolic network by culturing cells with a tracer (e.g. [1-13C]glutamine where

13C isotope is in the 1 position of the glutamine molecule). Analogous to a dye mixing through a

continuously-stirred tank reactor, stable isotopes (e.g. 13C, 2H, and 15N) within a given substrate
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Figure 1.1: MFA applied to biological systems at different scales comes with a tradeoff
in molecular resolution versus physiologic relevance. Use of metabolic flux analysis is
technically feasible in many systems, but measurements in more physiologically complex
systems come at a cost of molecular resolution. Integration of in vivo and in vitro MFA results
will be important in the future as more therapeutic targets in metabolic pathways are identified.
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are fed to cells, tissues, or animals which then consume the "heavy" metabolite of interest and

metabolize it in various downstream reactions (Figure 1.2). By then measuring the presence

of an isotopologue-a metabolite with a different molecular weight due to the presence of the

stable isotope-the fraction of an individual molecule coming from a tracer can be quantified using

knowledge of atom transitions throughout the metabolic network (Figure 1.2).

Figure 1.2: Stable isotope tracing paradigm. Isotopologue or mass isotopomer distributions
(MIDs) are the central measurement in metabolic flux analysis. Stable isotope variants (i.e.
13C, 15N, 2H) of carbohydrates, fatty acids, or amino acids are introduced into a biological
system of interest. The labeled atoms of interest propagate throughout the metabolic network,
and the biological matrix is sampled as needed. Mass spectrometry is used to measure isotope
enrichment within individual metabolite pools to determine MIDs for all compounds of interest.

As an example, when cells metabolize [U-13C6]glucose the fully-labeled pyruvate gener-

ated from glycolysis may be oxidized and/or carboxylated in mitochondria (Figure 1.3). When

the cell oxidizes pyruvate, the 13C carbon in the first position of pyruvate will be lost during the
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decarboxylation step of pyruvate dehydrogenase (PDH), yielding an M+2 labeled AcCoA. When

pyruvate is metabolized by pyruvate carboxylase (PC) all three 13C atoms will be present on the

resulting M+3 oxaloacetate. These metabolites condense to form citrate, resulting in a pool of

labeled species with mass increments from 0 to 6, depending on the relative contribution of PC,

PDH, and other pathways that produce or consume AcCoA, oxaloacetate, and citrate (Figure 1.3).

This isotopologue or mass isotopomer distribution (MID) subsequently allows for inference of

flux through certain metabolic reactions (Figure 1.2). In this simplified metabolite network, the

ratio of the M+2 portion of the citrate pool vs the M+3 portion is a proxy of how many pyruvate

molecules were catalyzed by PDH vs PC. However, data generated in real metabolic networks is

more complex than that presented here due to TCA cycling and additional inputs into the citrate

pool. Since many input and output fluxes influence labeling in well-connected metabolite pools,

computational tools are often necessary to resolve information on fluxes for such systems [23].

MIDs therefore contain detailed information on relative fluxes, and these data are in-

corporated into models that estimate fluxes and associated confidence intervals within a given

biological system [24]. The choice of tracer(s) will impact the specific pathways and fluxes to be

resolved and should be considered carefully [25, 26]. Ultimately, MFA integrates extracellular

flux measurements (e.g. glucose uptake and lactate secretion), biomass composition, growth rates,

and intracellular steady state labeling data to estimate intracellular fluxes [27, 28]. By constraining

potential flux measurements with physiological biomass demands and metabolite fluxes in and

out of the system, MFA solves the inverse problem - where intracellular fluxes are estimated,

theoretical labeling patterns calculated, error between theoretical and experimental data calculated,

and estimated fluxes iterated through error minimization until a best fit is achieved [29]. Long

applied to study microbial and prokaryote metabolic networks [24], advances in computational

frameworks [30, 31] and software packages [32–36] have made mammalian applications far

more tractable. Exchange fluxes (i.e. the minimum of the forward and reverse flux for a given

reaction) can be the most difficult to resolve [37]. Compartmentation also complicates analyses
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and interpretation of labeling data [29] and indeed MFA can help to resolve such information in

certain settings [38–40]. Most MFA applications rely on the resolution of fluxes in a scaled-down,

user-defined subset of the metabolic network, such as glycolysis, the oxPPP, and the TCA cycle

[24]. Researchers have begun to apply genome-wide metabolic reaction networks in MFA studies

of microbes more recently [41, 42].

Better resolution of intracellular fluxes can be achieved by incorporating dynamic labeling

and pool size information into non-stationary MFA (NS-MFA) models. Steady-state labeling

provides a relative measure of fluxes into and out of metabolic pools but requires the system to

be at both metabolic and isotopic steady-state [43]. Such data are often not very informative

for the analysis of linear pathways (e.g. glycolysis) or exchange fluxes. NS-MFA provides

an alternative computational framework for integration of labeling data, extracellular fluxes,

and biomass demands [44]. Unlike traditional MFA which relies on algebraic solutions, the

transient labeling data and pool size data are incorporated into an ODE-based model [45]. While

increased precision is achieved by incorporation of more experimental data, more care is needed

on experimental design (e.g. sampling and quenching) and more data acquisition/analysis is

required [44, 46]. This review will focus almost exclusively on steady-state MFA and basic

tracing applications; however, use of NS-MFA has been reviewed extensively [47], and numerous

protocols are available [44, 48, 49]. This approach is increasingly being applied to mammalian

systems [50–52].

When applied in a coordinated fashion, stable isotope tracing, metabolomics, and com-

putational modeling can effectively resolve metabolic flux alterations in the context of both

microenvironmental cues and pathophysiological alterations. In short, stable isotopes can inform

on aspects of metabolism that cannot be learned through other measurements. The remainder of

this review will focus on recent examples in biomedicine of how stable isotope tracing and MFA

have been used to understand the metabolic mechanisms driving human disease and associated

pathologies. A primary (and still emerging) area of focus is applications to cancer biology, though
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additional examples will be included to highlight the versatility of these approaches.

1.4 Cancer

1.4.1 Renewed appreciation of metabolic dysregulation in cancer

A desire to resolve the metabolic differences between normal tissue, tumors, and metastatic

cells has re-invigorated interest in metabolic tracing and flux analysis over the last decade.

Metabolism is tightly linked to the pathophysiology of a cancer cell, an observation first described

by Otto Warburg in the early 20th century. He noted that rat tumors were susceptible to glucose

deprivation (rather than oxygen deprivation) and exhibited higher than normal "fermentation"

(glycolysis) to meet their ATP demands [53]. He later extended these observations to postulate

mitochondrial dysfunction as the cause of neoplasia, since mitochondrial "poisons" are carcino-

genic and cancer cells increased fermentation in response to irreversible low respiration rates

[54]. Although at that time others (correctly) questioned whether mitochondrial dysfunction

was a driver of neoplasia, in part due to radioactive isotope tracing indicating that mitochondria

respiration was still active in cancer cells [55], the phenomenon that cancer cells are highly

glycolytic was widely accepted [56]. Over time, however, the idea of metabolism as a driver of

tumorigenesis largely fell to way side.

Cancer has now been reappreciated as a disease of metabolism [57, 58]. Recent work has

succeeded in reinvigorating the study of metabolism as a means to both detect and study cancer

growth [59, 60]. For example, since the late 1990s, accumulation of 2-deoxy-2-[18F]fluoro-D-

glucose (FDG) and subsequent imaging through positron emission tomography (PET) has been

an FDA-approved method (FDG-PET) for the noninvasive detection of tumors [61]. Related

approaches now aim to study consumption of other nutrients or specific metabolic rates using novel

tracer compounds or hyperpolarized NMR [62–65]. In addition to these diagnostic approaches,

significant effort is now being applied to elucidate how metabolic pathways contribute to cancer
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Figure 1.3: Tracing TCA metabolism using 13C glucose and glutamine. In this example, la-
beling on citrate and other intermediates from fully labeled [U-13C6]glucose changes depending
on routes used for anaplerosis and AcCoA generation. Oxidation of glucose-derived pyruvate
by PDH results in M+2 citrate. Carboxylation through PC results in M+3 or M+5 citrate.
[U-13C5]glutamine oxidation or reduction results in M+4 and M+5 citrate, respectively. Taken
together, relative flux changes in well-connected nodes (e.g. TCA cycles) result in measureable
differences in labeling. Open circles depict 12C carbon atoms, filled circles depict 13C carbon
atoms.
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initiation and progression [66].

Beyond the metabolic reprogramming required for proliferation, the discovery of mu-

tations in genes encoding metabolic enzymes that directly impact tumorigenesis has been an

important catalyst driving this resurgence in metabolic research [67, 68]. For example, the

first widely characterized metabolic mutations were the loss of succinate dehydrogenase (SDH)

and fumarate hydratase (FH), which are associated with development of paragangliomas and

leiomyosarcomas, respectively [69]. These loss-of-function mutations lead to increases in succi-

nate or fumarate levels within tumors, which are thought to inhibit aKG-dependent dioxygenases

that impact HIF1α stabilization and other biological processes [70–72]. Metabolic modeling

was used to understand how a FH-null cancer cell could operate without a functional TCA cycle,

elucidating a critical dependency on heme biosynthesis [73]. More generally, these findings

highlighted critical links between metabolism and tumor formation while offering potential new

avenues for therapeutic intervention.

Another critical demonstration of metabolic alterations in cancer is the discovery of mutant

isocitrate dehydrogenase (mtIDH) tumors. First identified via exome sequencing of gliomas [74,

75], both IDH1 and IDH2 are now known to be mutated somewhat frequently in acute myeloid

leukemia, low-grade gliomas, and chondrosarcomas [76]. These mutations are characterized by a

gain-of-function, where D-2-hydroxyglutarate (2HG) is produced at millimolar concentrations

intracellularly [77]. Mutant IDH1 and IDH2 reduce aKG to 2HG by consuming an NADPH

reducing equivalent, either in the cytosol or mitochondria [78]. Similar to SDH and FH-null

tumors, 2HG can disrupt aKG-dependent dioxygenase activity, in particular those regulating

DNA and histone demethylation, and tumors often present with hypermethylation phenotype [79–

83]. This mutation connects a fundamental node in the metabolic network with deep biological

perturbations that are associated with tumor progression. Due to the highly compartment-specific

and cofactor-dependent nature of this class of mutations, metabolic tracing is uniquely situated

to understand the underlying metabolic features in these tumors [84]. However, cells harboring
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such mutations exhibit only minor metabolic changes under normal physiological conditions,

but under hypoxic or pharmacological redox stresses that impact mitochondrial function more

tractable changes have emerged [85–87].

While these examples demonstrate how mutations in TCA cycle enzymes directly con-

tribute to tumorigenesis, cancers in general hijack different metabolic pathways to fuel their

proliferative needs (Figure 1.4). These pathways vary with environment, tissue of origin, and the

genetic landscape of that cell. Therefore, a critical need exists to extend these MFA methods to

understand how diverse cancers alter their metabolism to survive and what metabolic features can

be therapeutically targeted.

1.4.2 Glutamine metabolism

Glutamine, the most abundant amino acid in plasma and culture media, is consumed by

cancer cells in vitro at rates greater than any other amino acid. As such, glucose and glutamine are

the most highly consumed carbon substrates in tumor cell cultures. Despite this fact, Hosios et al.

recently applied 13C and 14C tracers to observe that glucose and glutamine only make up 25% of a

cancer cell’s total dry weight and only around 50% of its carbon [88]. The remaining carbon was

found to come generally from amino acid uptake (both essential and non-essential amino acids),

highlighting the large protein component of mammalian cells and contrasting lower organisms

that can derive their biomass carbon entirely from glucose [88]. These data showcase the utility

of flux-based studies that trace the fate of carbon atoms within cells, as more traditional "black

box" approach (i.e. only looking at metabolite secretions and uptakes) would have suggested a

smaller role for amino acid carbon.

These results also demonstrate the importance of protein synthesis for cancer cell growth,

which requires both carbon and nitrogen. Indeed, glutamine is first and foremost a nitrogen donor

(and/or carrier) within mammals. It is a precursor to glutamate, proline, and other amino acids;

in addition, it is also an obligate nitrogen donor for asparagine, nucleotides, and hexosamines.
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Figure 1.4: Metabolic pathways dysregulated in the context of disease. Glycolysis and the
pentose phosphate pathway are fueled by glucose and generate biosynthetic intermediates,
reducing equivalents, and ATP. Mitochondria are fueled by pyruvate, amino acids, and lipids,
performing both anabolic and catabolic metabolism to generate energy. Serine, glycine, and
folate-mediated one carbon metabolism are active in both cytosol and mitochondrial com-
partments. These pathways are connected orthogonally via cofactors and other disease- or
tissue-specific pathways; as such, pathways beyond central carbon metabolism must be investi-
gated in specific biological contexts.
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Several studies have highlighted the importance of glutamine availability in driving these processes

[89–91]. In fact, hexosamine biosynthetic fluxes in cultured cells are similar those measured for

nucleotide (i.e., ribose) synthesis in proliferating stem cells [92]. Glutathione is an antioxidant

present at high concentrations within cells, and recent studies have highlighted the role of

glutaminase and the xCT transporter in coordinating glutamine uptake, glutamate secretion, and

cystine consumption from culture medium in cancer cells [93, 94]. Indeed, the high rates of

glutaminolysis that occur in cultured tumor cells is at least partially attributable to the need for

cystine uptake.

In the absence of glutamine, cancer cells can become on dependent on non-essential

amino acid or protein uptake from stroma or the microenvironment, respectively. Tracer-based

studies have described the importance of macropinocytosis and autophagy in allowing tumors to

acquire proteinogenic amino acids under such nutrient-limiting conditions [95–97]. Alternatively,

pancreatic tumor stroma use autophagy to provide alanine for cancer cell growth [98]. Yang et

al. performed MFA modeling to delineate the role of cancer-associated fibroblasts (CAFs) in

providing glutamine to ovarian cancer cells [99]. Although it remains challenging to deconvolute

labeling results and decipher cell-specific fluxes [100], analysis of systems containing multiple

cell types will continue to grow in importance as we gain a better understanding of tumor

heterogeneity and immune cell interactions.

Some tumor cells rewire their mitochondria such that alternate substrates are used to fuel

TCA metabolism. For example, the mitochondrial pyruvate carrier (MPC) is often expressed

at lower levels in colorectal cancer and over-expression of MPC mitigates cell growth under

anchorage-independence or as xenografts [101]. Notably, respiration is unchanged upon inhibition

or knockdown of MPC [102], suggesting mitochondria remain functional and active. MFA studies

on cells with reduced MPC activity or expression have highlighted how cells compensate when

pyruvate flux into mitochondria is compromised [38, 103]. Under these conditions, glutaminolysis

is significantly increased to maintain anaplerotic flux and biosynthesis of amino acids (e.g.
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aspartate), nucleotides, and fatty acids. -oxidation of fatty acids was increased nearly 10-fold in

Mpc2 knockdown cells, and additional evidence indicated that BCAA catabolism was elevated

upon MPC inhibition [38]. These studies highlight how mitochondria adapt to MPC inhibition.

While this rewiring may benefit tumor growth, therapeutic benefits in diseases such as metabolic

syndrome and neurodegeneration may also emerge [104–107].

Oxidative stress also causes rewiring of glutamine metabolism within mitochondria.

Indeed, in response to hypoxic insult pyruvate oxidation is decreased [108] and cells rely on

glutamine to support proliferation [109]. Glutaminolytic flux is increased to support oxidative

TCA metabolism [85, 110, 111], since respiration remains active in low oxygen conditions. Thus,

oxidation of aKG sustains respiration. However, NADP-dependent IDHs are reversible and

have the capacity to reductively carboxylate aKG in mammals [112, 113], offering cells another

pathway to generate AcCoA and reducing equivalents. Detailed tracer studies and MFA have

more recently been applied to better understand how this pathway is controlled. Indeed, hypoxia

reprograms TCA metabolism such that reductive carboxylation is the major route through which

cells produce citrate and lipogenic AcCoA [114, 115]. Similar changes occur in "pseudohypoxic"

renal carcinoma cells (RCC) that are deficient in the Von Hippel-Lindau tumor suppressor [114,

115]; tumors where this pathway may be therapeutically relevant. Indeed, evidence from in

vivo tumor models and patient samples suggest this mode of TCA metabolism is active in VHL-

deficient RCC downstream of HIFs [116, 117]. This pathway also seems critical for aspartate

production upstream of the pyrimidine synthesis pathway [118].

At the same time, mitochondrial redox stress caused by mutations in mitochondrial

Complex I or III induce cells to activate the reductive carboxylation pathway, with similar

changes occurring using pharmacological inhibitors of the electron transport chain (ETC) [119].

Roles for the mitochondrial nicotinamide nucleotide transhydrogenase (NNT) enzyme in driving

this metabolic state have also been established [120, 121]. These findings have all suggesting

that the cellular redox state and pyridine nucleotides influence reductive carboxylation activity.
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Indeed, modulation of NAD+/NADH ratio and citrate abundance are critical drivers of reductive

carboxylation flux [122]. As such, activity in this pathway seems to be driven by redox stress

caused by many different physiological conditions, including hypoxia, mitochondrial inhibitors,

and lipid deficiency.

1.4.3 Redox metabolism

Reducing equivalents in the cell are transported between reactions using pyridine nu-

cleotides, NAD+ and NADP+. These cofactors are essential for the various oxidoreductase

reactions required for proper biosynthesis and redox control, with NADPH selectively required

for cellular anabolism (i.e. fatty acid and proline synthesis) and antioxidant response (i.e. regen-

eration of GSH) [3]. A major contributor to cytosolic NADPH production is the oxPPP [123],

extensively studied with a variety of 13C glucose tracers [25, 124]. However, these tracers cannot

establish cofactor specificity and do not directly measure reducing equivalent pool.

Instead, because the transfer of electrons occurs through the transfer of a hydride anion,

use of 3H (tritium) [125, 126] and 2H (deuteurium) [127, 128] glucose tracers provides deep

insight into cellular electron pools. Through the use of [1-2H] and [3-2H]glucose tracers, labeling

of cytosolic NADPH was achieved through oxPPP enzymes, G6PD and PGD respectively [51,

129]. Total cellular NADPH production flux was estimated to be 10 nmol L-1 hr-1 (5-20% of

glucose uptake rate) by estimation of oxPPP contribution to NADPH and measurement oxPPP

flux [51]. Concomitant analysis of NADPH consumption (i.e. fatty acid, DNA, and proline

synthesis) revealed that biosynthetic demands of NADPH was only 80% of production with the

rest presumably used in redox defense [51]. Hydride transfer from NADPH to lipids can also be

used as an indirect measure of cytosolic NADPH labeling, such that ISA-based modeling allows

estimation of tracer contributions to this metabolic pool [129]. The importance of the oxidative

pentose phosphate pathway in pluripotent stem cells (greater than many cancer cells) [130] and

malic enzyme in adipocytes [130] have been elucidated using this approach.
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Reducing equivalents cannot be directly transported across intracellular membranes (e.g.

mitochondria) and these reactions are highly compartmentalized [123]. Instead, the cell relies on

futile metabolic cycles to transport reducing equivalents into organelles (e.g. malate-aspartate

shuttle) and maintain proper, compartmental redox homeostasis [131]. Use of [4-2H]glucose

was able to label both cytosolic and mitochondrial NADH pools, through GAPDH and malate-

aspartate shuttle respectively [129]. To better elucidate compartment-specific redox metabolism,

an endogenous redox reporter system was developed through low-level, ecotopic expression of

mtIDH in cytosol or mitochondria [129]. Examination of labeling on 2HG found that the oxPPP

contributed significantly to cytosolic NADPH but the mitochondrial NADPH pool was mostly

labeled by hydride anions from NADH [129]. Taken together, these results highlight the powerful

application of positional deuterium labels as donors for compartment-specific electron pools.

Somatic cells have evolved their metabolism to reside within distinct niches. Normal cells

reside in close contact with the extracellular matrix (ECM). For a cancerous cell to metastasize to

a distant site, the cell must depart its ECM-rich niche and survive in atypical microenvironments.

Cancer cells undergoing metastasis must therefore reprogram metabolic pathways to overcome

such stresses. Previous studies have shown that ECM-detachment induces increased levels

of cellular reactive oxygen species (ROS) and can lead to anoikis in non-transformed cells

[132]. Activation of the PI(3)K pathway in this context led to higher glucose consumption and

increased cell survival after ECM detachment, due to increased oxPPP flux and which maintains

β -oxidation and ATP levels [132, 133]. More recently, Piskounova et al. observed that metastatic

cells increased expression of enzymes in one carbon metabolism (discussed below) and more

specifically the mitochondrial NADPH producing enzyme, ALDH1L2 [134]. These enzymes

increase survival of ECM-detached cancer cells and enhance metastatic potential of tumor cells

in vivo [134].

Stable isotope tracing has recently been used to elucidate the specific directionality of how

some cellular metabolic pathways are perturbed to enable NADPH production under anchorage
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independent stress. Using both 13C glucose and glutamine tracers, cells grown in anchorage-

independent conditions were found to oxidize less glucose and exhibited increased reductive

carboxylation activity [39]. However, unlike previous studies of reductive carboxylation, these

effects were not due to any HIF-mediated changes to the cell, did not change the contribution

of glutamine carbon to fatty acid synthesis, and could be reversed by simply re-attaching the

cells to ECM [39]. Instead, reductive carboxylation flux coordinated metabolic shuttling of

cytosolic NADPH into the mitochondrial matrix to enhance cell survival [39]. Furthermore,

CRISPR knockouts of both IDH1 and IDH2 and [3-2H]glucose tracing confirmed that reductive

carboxylation flux occurred in the cytosol but used to generate mitochondrial NADPH [39].

This leaves a model where cells protect against increased mitochondrial oxidative stress after

detachment by using the futile cycle of IDH1 and IDH2 to transport NADPH into the mitochondria

and regenerate mitochondrial GSH.

1.4.4 Serine biosynthesis and one carbon metabolism

Serine is a critically important metabolite for proliferating cells given its role in biosyn-

thetic and redox-associated pathways [135]. Indeed, phosphoglycerate dehydrogenase (PHGDH)

catalyzes one of the initial steps of serine synthesis and is amplified in some breast cancers and

melanomas [136, 137]. Glycine lies immediately downstream of serine and is important for cell

growth due to its use in purine metabolism and glutathione synthesis [138]. Serine also con-

tributes to folate-mediated one carbon metabolism (FOCM), which lies at a critical biosynthetic

node supporting nucleotide synthesis as well as methylation [139, 140]. Intriguingly, several

enzymes within these pathways are expressed at higher levels in aggressive tumors, including the

mitochondrial enzyme methylene tetrahydrofolate dehydrogenase 2 (MTHFD2) [141]. And this

pathway is classically targeted in cancer and autoimmune diseases using the chemotherapeutics

methotrexate or Pemetrexed [142]. However, even with the wealth of evidence demonstrating

its importance, the specific mechanisms through which this pathway supports tumor growth and
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survival is still not definitively clear.

Analysis of tumor cell responses to serine and glycine deprivation has identified specific

susceptibilities in cells as a function of their genotype. In particular, loss of p53 sensitized

colon cancer cells to serine/glycine starvation by arresting cells in the G1 phase of the cell cycle

[143]. Additionally, p53 deficiency induced shunting of serine to glycine for glutathione synthesis

to support antioxidant functions [143]. Various other stress (often associated with redox) can

modulate sensitivity to serine and/or glycine deprivation as well as the serine synthesis pathway,

including metformin and hypoxia [144, 145]. More recently, serine and glycine deprivation

was shown to reduce tumor growth in several genetically-engineered mouse models of cancer

[146]. These results highlight the importance of serine availability for tumor growth, though the

metabolic driver of this sensitization downstream of serine is not fully clear. To this end, Jain et

al. applied extracellular flux analysis of metabolites consumed and secreted by the NCI-60 panel

of cell lines and observed that glycine uptake correlated most tightly with cell growth rate [138].

Tracing with [13C]glycine was then used to suggest that the glycine is directly used to support de

novo purine synthesis rather supplying 1C units [138]. However, glycine alone does not rescue

cell growth in serine-deprived conditions [143, 147]. Extensive tracing of serine and glycine

conversion to nucleotides in HCT116 cells has indicated that glycine cannot replace serine due to

the required consumption of 1C units and its impact on purine nucleotides [147], suggesting that

cells selectively uptake serine to generate both glycine and 1C units.

Notably, removal of dietary serine and glycine was not effective in Kras mutant tumors,

presumably due to the upregulation of serine biosynthesis in tumors of this genotype [146].

Other oncogenic pathways have also been associated with this metabolic pathway. For example,

NRF2 is the master transcriptional regulator of the cellular antioxidant response and regulates

expression of serine biosynthesis enzymes in non-small cell lung cancer [148]. Through a

mechanism driven by the transcription factor ATF4, NRF2 expression was found to contribute

to tumorigenesis by activating serine biosynthesis and supporting FOCM and transsulfuration
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reactions (glutathione) [148]. Similar mechanisms mediated through mTORC1 have also been

implicated to upregulate de novo purine biosynthesis [149]. Consistent with the amplification

of PHGDH in breast cancers and activation by ATF4, these pathways are important for breast

cancer cell in anchorage-independent conditions and as xenografts. Taken together, these results

highlight an important role for serine metabolism in tumor growth, in particular downstream of

cellular stresses.

Beyond nucleotide biosynthesis, serine has an established role in supplying mitochondrial

glycine/1C units through FOCM, with the former contributing to heme biosynthesis. Importantly,

FOCM can supply mitochondrial reducing equivalents through 1C oxidation enzymes (e.g.

MTHFD2, MTHFD2L, ALDH1L1) [139, 140] or glycine cleavage [150], and flux balance analysis

(FBA) modeling has suggested this pathway coordinates ATP regeneration along with glycolysis

[151]. Experimental evidence has also recently supported a role for this pathway in generating

reducing equivalents in proliferating cells. Indeed, only knockdown of oxPPP and FOCM

enzymes perturbed cellular redox state [51]. Additionally, glycine oxidation measured with 14C

tracers was found to be greater than purine synthesis rates, further suggesting a role in redox

homeostasis [51]. Through the use of mutant IDH2 reporters and 2H serine tracers (section 3.3),

FOCM was demonstrated to contribute significantly to mitochondrial reducing equivalent pools

[129]. Importantly, minimal label from serine was observed in cytosolic reporters or on palmitate,

suggesting mitochondrial oxidation of 1C units MTHFD2 or MTHFD2L was the predominant

route of NAD(P)H regeneration in this pathway [129]. In fact, as previously suggested by Herbig

et al. [152], most cells were found to supply cytosolic 1C units through mitochondrial FOCM

flux, even to the point of secreting excess formate [153, 154]. Loss of mitochondrial FOCM

enzymes made cells dependent on extracellular serine/glycine and retarded growth of xenografts,

but compensatory reversal of FOCM flux was observed both in vitro and in vivo [154]. Several

studies have also connected these pathways to cancer through hypoxia and "stemness" [141, 145,

155], highlighting the need to study flux through this pathway in various microenvironments and
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biological contexts.

1.5 Emerging links between metabolism and epigenetics

Finally, recent studies have established critical links between metabolic pathways and

cellular epigenetics. Canonical epigenetic "marks" (e.g. methylation, acetylation) on DNA, RNA,

and proteins are all metabolic intermediates and demonstrate a powerful relationship between

metabolic pathway flux and epigenetic regulation [156]. In this manner, altered metabolic pathway

activity can influence gene expression in the context of disease (reviewed extensively for cancer

in [157]). Many metabolites (e.g. AcCoA, NAD+, aKG) also moonlight as substrates for the

enzymatic addition and removal of epigenetic "marks" and other post-translational modifications

[158]. In turn, numerous studies have elucidated how availability and/or localization of these

metabolites can control histone acetylation [159, 160], enzyme acetylation [161, 162], and

histone/nucleotide methylation (see section 3.1. discussion on aKG-dependent dioxygenases).

For example, modulation of acetyl-CoA synthetase expression within the hippocampus decreased

availability of AcCoA for histone acetylation and impaired long-term spatial memory [163].

While these studies have effectively demonstrated the causal link between metabolism and

epigenetics, how dysregulation of distal metabolic pathways can modulate epigenetics remains

poorly understood in many contexts. The widely studied epigenetic signature, methylation,

connects amino acid metabolism (methionine and serine) to nucleotides through transfer of

methyl groups [164] and provides one such example of distal metabolic reprogramming of

epigenetics.

While methionine is considered the primary methylation donor through S-adenosyl methio-

nine (SAM) pools [165], generation of 1C units from serine and remethylation of homocysteine

provides an alternate source that links glycolytic flux to methylation [166]. Indeed in vivo tracer

analysis of whole-body SAM pools confirmed that methionine was the primary donor of methyl
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groups ( 70% of methyl group flux), though 1C units needed for re-methylation came solely

from serine (estimated to be 3% of total serine flux) [167]. Loss of the nutrient sensor LKB1

increased serine biosynthesis and cycling that led to enhanced DNA methylation and retrotrans-

poson silencing in a mouse-model of pancreatic cancer [168]. In addition, methionine deprivation

reversibly altered histone methylation (e.g. H3K4me3) and expression of 1C-consuming enzymes

to presumably reduce SAM consumption [169]. On the other hand, in vitro analysis of cellular

DNA and RNA found that serine provided 1C units for methylation only under methionine

starvation conditions [170]. Serine, however, was found to support methylation through purine

synthesis (i.e. ATP) for SAM production [170]. These findings highlight yet another set of

pathways and biological functions through which serine influences cancer biology.

1.6 Observations from in vivo studies

Many of the studies discussed above applied MFA and related approaches to cancer

cells cultured in vitro. Clearly, in vivo models better recapitulate the physiologic conditions of

human tumors; as such, increasing efforts have focused on in vivo tracing methods to characterize

metabolism in these settings. However, the design, execution, and interpretation of such studies is

complicated by a number of different factors: 1) administration of tracer may impact metabolism

and downstream signaling, which is particularly important for glucose and insulin signaling, 2)

labeling is quickly scrambled due to cross-tissue metabolic activity, and 3) multiple cell types

exist within each tissue (e.g. epithelia, stroma). As such, comprehensive models that incorporate

isotope labeling data from in vivo studies may have limited impact. On the other hand, analyses

that focus on specific pathways/reactions have yielded insights into the metabolism of tumors in

vivo.

As noted above, glutamine’s role as a major substrate fueling TCA metabolism in cancer

cells is well documented [171]. The concept of decreased glucose oxidation and increased
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glutamine anaplerosis has largely been studied using in vitro models [91, 114, 116]. More

recently, in vivo studies have challenged the concept that glutamine rather than glucose is

the predominant supporting the TCA cycle in tumors. While some early studies highlighted

a potential role for glutamine synthase (GS) in supporting breast cancer growth [172], more

definitive evidence of GS supporting tumor growth has come from in vivo tracing studies. Using

15N tracing, Tardito et al. observed that glioblastoma cell lines sustained growth in physiological

and glutamine-free conditions through the amination of glutamate to provide glutamine for purine

synthesis [173]. Subsequently, infusion of mice (or human patients) with either 13C glucose

or 13C glutamine followed by enrichment analysis demonstrated that both GBM xenografts

and contralateral primary brain tissues synthesized glutamine de novo from glucose, with little

evidence of high glutaminolysis activity [173].

If glutamine is not required for anaplerosis, what pathways take its place in vivo? To

this end, early studies on the mitochondrial metabolism of non-small-cell lung cancer (NSCLC)

tumors noted increased PC activity in human tumor biopsies that were infused with 13C glucose

prior to surgery and analyzed by NMR [174]. These results and additional studies with tumor

slices incubated with 13C glucose and glutamine tracers demonstrated that pyruvate carboxylase

(PC) was an important anaplerotic path used by tumor cells to support mitochondrial metabolism

[174]. Subsequently, knockdown of PC in lung cancer cell lines severely limited biosynthesis

and growth of these cells as xenografts [174]. Similar results were previously noted in cell-

based tracer studies using glutamine-free conditions [175]. Indeed, PC may emerge as a more

critical enzyme in tumors with defective TCA metabolism. For example, PC flux is critical for

supporting aspartate synthesis in cultured SDH-null cells [176, 177]. However how these rare

tumors metabolize glucose and glutamine in vivo is not well characterized.

Detailed tracer studies in genetically engineered mouse models (GEMMs) of lung cancer

as well as human patients have further supported the importance of glucose oxidation and

anaplerosis in tumors [174, 178, 179]. Infusion of glucose tracers and enrichment analysis in

25



three independent NSCLC GEMMs demonstrated that all tumor types exhibited increased glucose

oxidation through PDH and PC as compared to adjacent normal lung tissue [178]. However, when

cells derived from the GEMMs are placed in vitro, there is an increased reliance on glutamine,

and Gls1 knockout cell lines could not be expanded in culture [178]. Conversely, knockout

cell lines of both Pdh1a and Pcx in GEMM cells were successfully isolated in vitro but could

not form xenografts [178]. The importance of mitochondrial glucose metabolism has also been

demonstrated in human lung tumors [179]. After first examining tumor characteristics such

as grade, stage, stromal fraction, mutation status, and perfusion, Hensley et al. infused 13C

glucose before quantifying isotope enrichment within tumor biopsies and normal lung tissue

[179]. Interestingly, lactate labeling suggested catabolism of lactate itself contributed significantly

more to tumors, and this was confirmed using a 13C lactate tracer in syngenic mouse xenograft

models [179]. Finally, by correlating enrichment results with tumor perfusion data, a model

where highly perfused tumors consumed more alternative fuels from the circulation (e.g. lactate)

and less perfused tumors more exclusively used glucose as a primary fuel source was constructed

[179]. These findings challenge Warburg’s notion of defective mitochondria and the concept that

tumors preferentially use glycolysis which pervades the literature.

Beyond mitochondrial metabolism, the routes through which tumors acquire lipids are also

of great interest to the research community. Fatty acids can be taken up through the circulation

or synthesized de novo. In fact, some cancer cell populations upregulate expression of CD36, a

fatty acid scavenger that is also important for the survival of metastatic cells [180–182]. While

some cell types preferentially consume lipids from their environment [130, 183], many tumors

upregulate fatty acid biosynthetic machinery [184–186]. In human cancers, aggressiveness is

correlated with upregulation of fatty acid synthesis machinery (FASN) but different cell types

show varying sensitivity to FASN inhibition [187]. While sensitivity to FASN inhibition could not

be explained by the relative rate of palmitate synthesis, application of 13C glucose and lipidomics

to quantify synthesis of intact lipids indicated that FASN inhibitor sensitivity correlated with
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the synthesis of signaling lipids [187]. However, lipids are significantly more abundant in the

body compared to cell culture media, so questions remained about the importance of de novo

lipogenesis for tumor progression. To this end, fatty acid synthesis is readily quantified in

vivo using 2H2O, as deuterons are incorporated into fatty acids through numerous pathways

[188]. Administration of 2H2O to tumor-bearing mice indicated that tumor lipids contained large

fractions of newly synthesized fatty acids [189]. Similar results were obtained in both xenografts

and GEMMs, which are better vascularized and likely to have adequate circulating lipids available

[189]. Furthermore, treatment of these animal models with an AcCoA carboxylase inhibitor

impeded growth and synergized with co-treatment carboplatin [189]. Taken together, while cell

culture-based experiments will continue to be important for defining metabolic processes at the

cellular and sub-cellular levels, these studies highlight the importance and utility of analyzing

tumors in their physiologic microenvironment.

1.7 Conclusion

Metabolomics, stable isotope tracing, and metabolic flux analysis are powerful platform

technologies that facilitate the study of human disease. Through careful design and execution

of MFA experiments, researchers now have the ability to interrogate metabolic fluxes in a

variety of biological contexts. Simplified systems provide molecular-level resolution but lack

physiological relevance; in vivo models and patient studies have more clinical significance but

provide less mechanistic insight (Figure 1.1). A wealth of new knowledge into the metabolic

basis of tumorigenesis and cancer cell proliferation has now emerged over the past decade. Since

each tissue and disease state involves distinct metabolic pathways, application of MFA to various

biological systems offers a path that will be rich in new discoveries. For example, with a well-

described role of metabolism [190], MFA is increasingly being applied to study unique features of

hPSCs and their regenerative medicine applications [130, 191]. Established metabolic pathways
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are now being observed to have distinct functions in certain tissues or cell types [192, 193], and

new pathways are being discovered that modulate immune cell function [194, 195]. In all these

situations, elucidation of metabolic fluxes will be essential to fully appreciate the mechanisms

through which metabolism contributes to human disease.
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Chapter 2

Enzymatic passaging of human embryonic

stem cells alters central carbon metabolism

and glycan abundance

2.1 Abstract

To realize the potential of human embryonic stem cells (hESCs) in regenerative medicine

and drug discovery applications, large numbers of cells that accurately recapitulate cell and tissue

function must be robustly produced. Previous studies have suggested that genetic instability

and epigenetic changes occur as a consequence of enzymatic passaging. However, the potential

impacts of such passaging methods on the metabolism of hESCs have not been described. Using

stable isotope tracing and mass spectrometry-based metabolomics we have explored how different

passaging reagents impact hESC metabolism. Enzymatic passaging caused significant decreases

in glucose utilization throughout central carbon metabolism along with attenuated de novo lipoge-

nesis. In addition, we developed and validated a method for rapidly quantifying glycan abundance

and isotopic labeling in hydrolyzed biomass. Enzymatic passaging reagents significantly altered
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levels of glycans immediately after digestion but surprisingly glucose contribution to glycans was

not affected. These results demonstrate that there is an immediate effect on hESC metabolism

after enzymatic passaging in both central carbon metabolism and biosynthesis. HESCs subjected

to enzymatic passaging are routinely placed in a state requiring re-synthesis of biomass compo-

nents, subtly influencing their metabolic needs in a manner that may impact cell performance in

regenerative medicine applications.

2.2 Introduction

Human embryonic stem cells (hESCs) are characterized by their ability to differentiate

into the three terminal germ layers and self-renew indefinitely. This makes them ideal cell types

for regenerative medicine and drug discovery applications. However, the impact of in vitro culture

conditions on cell performance and stability must be monitored and validated to ensure these

cells recapitulate actual tissue functions. Since the initial isolation and expansion of hESC lines

on feeder layer conditions [1], more recently developed, chemically-defined culture conditions

have become commonly used for the isolation and culture of hESCs and induced pluripotent

stem cells (iPSCs) [2]. Along with the engineering of defined culture conditions, a concomitant

development of enzymatic passaging methods to replace laborious mechanical passaging methods

also occurred. Analysis of cells cultivated using these enzymatic passaging techniques has

suggested these approaches increase karyotypic instability of hESCs [3–5]. Another recent study

has indicated that enzymatic passaging may cause increased genetic instability and differential

DNA methylation [6]. While these studies have addressed the effects of enzymatic passaging

on cellular genetics and epigenetic alterations, the impacts of passaging method on cellular

metabolism have not been examined.

HESC metabolism is characterized by a greater reliance on glycolysis compared to

cells in the differentiated state [7–9]. Glycolytic flux is essential for maintenance of the stem
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cell phenotype, as evidenced by the impact of inhibitors of glycolysis on pluripotency marker

expression and cellular reprogramming [10, 11]. While glucose metabolism provides cellular

energy by producing adenosine triphosphate (ATP) and reducing equivalents, glucose is also the

primary carbon source for a myriad of biosynthetic precursors, including ribose for nucleotides,

non-essential amino acids, and acetyl-coenzyme A (AcCoA) for lipids. Though commonly

overlooked in studies of intermediary metabolism, glucose (in addition to glutamine) also provides

the necessary building blocks for the synthesis of glycan moieties, which are essential for protein

function and trafficking. Glycans are also the key components that comprise the glycocalyx,

which surrounds the cell membrane of some cells [12]. Through the cleavage of extracellular

proteins and their associated glycans, enzymatic digestion could affect the phenotype of hESCs by

impacting their metabolic demands or ability to respond to extracellular signaling cues [13–17].

To understand the influence of enzymatic passaging on hESC metabolism we utilized

stable isotope tracing and mass spectrometry-based metabolomics to characterize central carbon

metabolism after passaging. We developed and applied a method for rapid quantitation of glycan,

nucleotide, and amino acid pools to explore the impact of passaging reagents on hESC biomass.

Finally, we determined how enzymatic passaging affects biosynthetic flux to lipids, nucleotides

and carbohydrates. Our results demonstrate that enzymatic passaging alters hESC metabolism

and the cell’s ability to synthesize biosynthetic intermediates while highlighting the quantitative

importance of metabolic flux to glycan pools.

2.3 Materials and Methods

2.3.1 Cell culture

WA09 hESCs (H9s) were maintained on Synthemax II-SC coated (Corning, Corning, NY)

plates in mTESR1 (Stem Cell Technologies, Vancouver, BC). hESCs were passaged every 5 days

by exposure to Versene (Gibco, Grand Island, NY) for 10 min at 37◦C. Synthemax II-SC coating
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was performed by dispensing 2 mL of working dilution (25 µg/mL) to each well of a 6-well of a

tissue culture polystyrene plate and incubating for 2 hours. For isotopic labeling experiments, cells

were maintained in mTESR1 media with uniformly-labeled glucose (tracer mTESR) by adding

5x mTESR1 supplement to custom DMEM/F-12. Custom DMEM/F-12 (Hyclone Laboratories,

Logan, UT) without amino acids, D-glucose, sodium pyruvate, sodium bicarbonate, and phenol

red was supplemented with all amino acids, sodium pyruvate, sodium bicarbonate (14 mM;

Sigma-Aldrich, St. Louis, MO), HEPES (15mM; from 1M stock, Gibco, Grand Island, NY), and

[U-13C6] Glucose (99%; Cambridge Isotopes, Cambridge, MA) at DMEM/F-12 levels.

2.3.2 Enzymatic passaging experiments

H9s (p29-35) were grown on Synthemax II-SC coated plates to 50-70% confluency. Cells

were rinsed with 1 mL PBS and then exposed at 37◦C to either 1 mL Versene for 10 minutes,

Accutase (Innovative Cell Technology, San Diego, CA) for 5 minutes, or Trypsin-EDTA (0.25%;

Gibco, Grand Island, NY) for 5 minutes. Versene-treated cells were then split to 3 wells by

aspirating Versene and resuspending in 6 mL mTESR. Accutase-treated cells were split to 3 wells

by adding 9 mL PBS to Accutase solution, centrifuging at 300g for 5 min, and resuspending in

6 mL mTESR after aspiration. Trypsin-treated cells were split to 3 wells by adding 9 mL PBS

to Trypsin solution, centrifuging at 300g for 5 min, and resuspending pellet in 6 mL mTESR

after aspiration. Cells traced immediately after passaging were resuspended in tracer mTESR.

Cells traced 24 hours after passaging were resuspended in mTESR1 immediately after passaging,

rinsed with PBS 24 hours later, and changed into tracer mTESR before extracting 4 hours later.

For experiments with ROCK inhibitor, 5 µM of Y-27632 (Tocris, Avon, UK) was added to media.

For quantitation of biomass abundances after passaging, cells in triplicate were rinsed

with 1 mL PBS and exposed at 37◦C to 1mL Versene for 10 minutes, TrypLE Express (Gibco,

Grand Island, NY) for 5 minutes, Accutase for 5 minutes, or Trypsin-EDTA for 5 minutes. 1

mL of PBS was immediately added after incubation to quench enzymatic digestion and then
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transferred to 15 mL conical tube containing 7 mL PBS. Each well was then washed with 1 mL

PBS and added to the respective conical tube. Cells were then centrifuged at 300g for 5 minutes

and supernatant was aspirated. Cells were then washed twice by resuspension of the pellet in 1

mL 0.9% (w/v) saline, centrifugation at 300g for 5 minutes, and aspiration of supernatant. Pellets

were then stored at -20◦C for metabolite extraction.

2.3.3 Metabolite Extraction and GC-MS Analysis

Polar metabolites and fatty acids were extracted using methanol/water/chloroform as

previously described [18]. Briefly, cells were rinsed with 0.9% (w/v) saline and 250 µL of

-80◦C MeOH was added to quench metabolic reactions. 100 µL of ice-cold water supplemented

with 10 µg/mL norvaline was then added to each well and cells were collected by scraping.

The lysate was moved to a fresh 1.5 mL eppendorf tube and 250 µL of -20◦C chloroform

supplemented with 10 µg/mL heptadecanoate was added. After vortexing and centrifugation,

the top aqueous layer and bottom organic layer were collected and dried under airflow. The

remaining "interface" layer containing biomass was washed twice by addition of -80◦C 500 µL of

MeOH, centrifugation at 21,000g, and decanting of supernatant. Interface layers were then dried

by ambient air overnight and stored at -20◦C. For cell pellets, a similar procedure was performed

as previously described, except the cell pellet was resuspended in ice cold MeOH/water solution

with norvaline by pipetting and then cells were lysed by vortexing for 1 min. Chloroform was

then added and polar/non-polar fractions were collected. To prepare biomass components for

relative quantitation and isotopomer analysis, acid hydrolysis of interface layer was performed by

first drying the rinsed interface under airflow then incubating in 500 µL of 6M HCl at 80◦C for 2

hours. Hydrolyzed biomass solution was split to five aliquots and dried by airflow overnight for

subsequent GC/MS analysis.

Fatty acids and polar metabolites were derivatized as previously described [18]. For

fatty acids, dried nonpolar fraction was saponified and esterified to form fatty acid methyl esters
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(FAMEs) by addition of 500 µL of 2% (w/v) H2SO4 in MeOH and incubated at 50◦C for 120

minutes. FAMEs were then extracted by addition of saturated NaCl and hexane before collection

and drying of the inorganic layer. For polar metabolites, methoxime-tBDMS derivatives were

formed by addition of 15 µL 2% (w/v) methoxylamine hydrochloride (MP Biomedicals, Solon,

OH) in pyridine and incubated at 45◦C for 60 minutes. Samples were then silylated by addition

of 15 µL of N-tert-butyldimethylsily-N-methyltrifluoroacetamide (MTBSTFA) with 1% tert-

butyldimethylchlorosilane (tBDMS) (Regis Technologies, Morton Grove, IL) and incubated at

45◦C for 30 minutes. For biomass analysis of sugars and glycan residues that were too large for

tBDMS derivatization, methoxime-trimethylsilyl (TMS) derivatives were formed by addition

of 15 µL 2% (w/v) methoxylamine hydrochloride (MP Biomedicals, Solon, OH) in pyridine

and incubated at 37◦C for 60 minutes. Samples were then silylated by addition of 15 µL of

N-methyltrimethylsilyltrifluoroacetamide (MSTFA; Regis Technologies, Morton Grove, IL) and

incubated at 45◦C for 30 minutes.

Polar and interface samples were analyzed by GC-MS using a DB-35MS column (30m

x 0.25mm i.d. x 0.25µm, Agilent J&W Scientific, Santa Clara, CA) in an Agilent 7890B gas

chromatograph (GC) interfaced with a 5977C mass spectrometer (MS). Electron impact ionization

was performed with the MS scanning over the range of 100-650 m/z for polar metabolites and

70-850 m/z for biomass metabolites. For separation of polar metabolites the GC oven was held at

100◦C for 1 min after injection, increased to 255◦C at 3.5◦C/min, and finally increased to 320◦C

at 15◦C/min and held for 3 min. For separation of the biomass metabolites the GC oven was held

at 80◦C for 6 min after injection, increased to 300◦C at 6◦C/min and held for 10 min, and finally

increased to 325◦C at 10◦C/min and held for 4 min.

Derivatized fatty acids were analyzed by GC-MS using a select FAME column (100m

x 0.25mm i.d. x 0.25µm; Agilent J&W Scientific, Santa Clara, CA) as above, with the MS

scanning over the range 120-400 m/z. For separation the GC oven was held at 80◦C for 1 min after

injection, increased to 160◦C at 20◦C/min, increased to 198◦C at 1◦C/min, and finally increased

54



to 250◦C at 5◦C/min and held for 15 min.

2.3.4 Mass isotopomer distributions, isotopomer spectral analysis (ISA),

and flux analysis

Mass isotopomer distributions and total abundances were determined by integration of

mass fragments (Table 1) and correcting for natural abundances using in-house algorithms [18].

Total abundances were normalized by counts of adenine and guanine. Isotopomer spectral analysis

(ISA) was performed as previously described [18]. ISA compares experimental labeling of fatty

acids to simulated labeling using a reaction network where C14:0 is condensation of 7 AcCoAs,

C16:0 is condensation of 8 AcCoAs, C16:1c is condensation of 8 AcCoAs, C18:0 is condensation

of 9 AcCoAs, and C18:1n9c is condensation of 9 AcCoAs. Parameters for contribution of glucose

to lipogenic AcCoA (D value) and percentage of newly synthesized fatty acid (g(t) value) and

their 95% confidence intervals are then calculated using best-fit model from INCA MFA software

[19]. Per biomass molar quantitation of glucose, galactose, glucosamine, mannosamine, serine,

ribose, and leucine was accomplished by determining the ratio of each and comparing to the

molar amount of leucine in mammalian cells per gram dry weight [20]. Amino acid fragments

were taken from previously described work and validated [21].

2.3.5 Statistical analyses

All results shown as averages of triplicates presented as mean ± SD. P values were

calculated using a Student’s two-tailed t test; *, P value between 0.01 and 0.05; **, P value

between 0.001 and 0.01; ***, P value <0.001. All errors associated with ISA are 95% confidence

intervals determined via confidence interval analysis [22].
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Table 2.1: Metabolite fragments used for GC/MS analysis.

Metabolite Derivatization Fragments for integration m/z Positions of labeled carbons Retention Time (min)

Alanine TBDMS C11H26O2NSi2 260 123 13.1
Lactate TBDMS C11H25O3Si2 261 123 11.9
Citrate TBDMS C26H55O7Si4 591 123456 41.2
Adenine TMS C11H21N5Si2 279 27.4

TMS C10H18N5Si2 264
Galactose TMS C13H31O3Si3 319 3456 23.8
Glucose TMS C13H31O3Si3 319 3456 23.9
Glucosamine TMS C13H31O3Si3 319 3456 24.7
Guanine TMS C14H29ON5Si3 367 31.5

TMS C13H26ON5Si3 352
Mannosamine TMS C13H31O3Si3 319 3456 24.5
Ribose TMS C12H31O3Si3 307 345 20.3
Serine TMS C11H28O3NSi3 306 123 14.4
Leucine TMS C8H20NSi 158 12.1

2.4 Results

2.4.1 Enzymatic passaging decreases glucose oxidation and fatty acid syn-

thesis in hESCs

To investigate the effects of enzymatic passaging on hESC metabolism we used stable

isotope tracing with [U-13C6]glucose and GC/MS analysis to probe intermediary metabolism and

lipid synthesis (Figure 2.1A). By quantifying the extent of metabolite labeling and pool sizes in

hESCs after various treatments we were able to quantify relative changes in flux through each

pathway. Accutase treatment induced a significant decrease in glucose contribution to both lactate

and alanine as compared to clumped passaging (Versene treatment) (Figure 2.1B). Additionally, a

significantly lower contribution of glucose to the TCA-intermediate citrate was seen in Accutase

treated cells (Figure 2.1B and S2.1A). Importantly, the pool sizes of each metabolite 4 hours after

enzyme treatment were similar to or lower than that observed with clumped passaging (Figure

S2.1B). Therefore, the differential labeling we observed indicated that flux through glycolysis

and into mitochondria were significantly decreased in Accutase treated cells. Similar changes

in glucose-derived labeling were observed when cells were passaged with Trypsin, indicating
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the impact on central carbon metabolism is not specific to Accutase (Figure S2.1D). Previous

work has demonstrated that addition of a Rho-associated kinase (ROCK) inhibitor can prevent

single cell dissociation-induced apoptosis [23]. To account for these effects we also investigated

whether the addition of Y-27632 could rescue defects in glucose metabolism. While addition

of ROCK inhibitor rescued labeling in lactate and citrate, flux to alanine only increased slightly

(Figure 2.1B and S2.1A). Taken together, these results suggest that enzymatic passaging lowered

flux through glycolysis and into the TCA cycle, and addition of ROCK inhibitor only partially

rescued this metabolic phenotype.
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Figure 2.1: Enzymatic passaging alters central carbon metabolism. (A) Atom-transition
map depicting flow of [U-13C6]glucose (UGlc) carbon through central carbon metabolism
and lipid biosynthesis. Green circles depict 13C atoms and open circles depict 12C atoms.
(B) Percentage of labeled metabolites from UGlc 4 hours after non-enzymatic or enzymatic
passaging. Higher labeling indicates greater glucose usage for glycolysis, non-essential amino
acid synthesis, and TCA metabolism. (C) Percentage of labeled metabolites from UGlc one day
after non-enzymatic or enzymatic passaging (i.e., labeled from 24-28 hours after passaging).
Defects in glucose catabolism mediated through enzymatic passaging are still present. (D)
Relative abundance of fatty acid species after enzymatic or non-enzymatic passaging. (E)
Contribution of UGlc to lipogenic AcCoA as determined by ISA model. Decrease in contribution
is consistent with decreased labeling in the lipogenic metabolite citrate. (F) Normalized fatty acid
flux for synthesized fatty acid species calculated using total pool size and fractional synthesis
from ISA model. Error bars represent SD (B-D) or 95% CI (E-F) for three replicates. *, P value
between 0.01 and 0.05; **, P value between 0.001 and 0.01; ***, P value <0.001 by Student’s
two-tailed t test; or, * indicates significance by nonoverlapping 95% confidence intervals
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To determine whether enzymatic passaging elicited sustained effects on intermediary

metabolism we quantified abundance and labeling of the same metabolite pools when applying

tracer 24 hours after re-plating. Interestingly, even after 24 hours we still observed significant,

though slight, decreases in lactate, alanine, and citrate abundances (Figure S2.1C) and labeling

(Figure 2.1C). These data suggest that enzymatic passaging may impact cell metabolism last

longer than the immediate period after passaging.

Having observed differences in flux to the lipogenic intermediate citrate, we then explored

whether enzymatic passaging impacted lipid metabolism. Specifically, we quantified the relative

abundance and isotopic labeling in various fatty acid species from saponified lipid fractions

of hESCs. Measurement of total cellular fatty acid abundances showed a clear decrease in all

measured species upon enzymatic passaging, and addition of ROCK inhibitor failed to rescue

any defect (Figure 2.1D). Decreases in abundance were observed in saturated, unsaturated, and

polyunsaturated fatty acids, implicating pan defects in lipid metabolism. Indeed, since decreases

were observed in both non-essential (e.g. C16:0) and essential (e.g. C20:3n6) fatty acids, these

data indicate that lipid synthesis and uptake were compromised in cells passaged using enzymatic

reagents. To quantify biosynthetic fluxes in greater detail we then applied isotopomer spectral

analysis (ISA) to determine the relative contribution of glucose to lipogenic AcCoA pools as well

as the extent of de novo lipogenesis for each fatty acid measured [24]. Consistent with the above

effects on glucose flux to citrate (Figure 2.1B), enzymatic passaging with and without ROCK

inhibitor supplementation significantly decreased the extent of glucose conversion to lipogenic

AcCoA as compared to clumped passaging (Figure 2.1E). Using both pool size (Figure 2.1D)

and fractional synthesis/turnover data obtained from ISA, we observed that enzymatic passaging

significantly decreased the synthesis rates of saturated myristic acid (C14:0), saturated palmitic

acid (C16:0), and unsaturated palmitoleic acid (C16:1) (Figure 2.1F). In nearly all cases these

effects were not rescued by addition of a ROCK inhibitor. These data therefore indicate that

enzymatic passaging lowers the ability of hESCs to utilize glucose for biosynthesis in central
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carbon metabolism and lipid synthesis.

2.4.2 Rapid quantitation of total glycan pools and synthesis in hESCs

Rapidly dividing cells have considerable biosynthetic demands for structural components

as well as bioenergetic demands for maintenance and division [25]. Glucose metabolism has been

demonstrated as an essential source of carbon and ATP generation for hESC proliferation [26,

27]. At the nexus of glucose metabolism and biosynthesis, post-translational modifications (PTM)

have also been demonstrated to be essential to maintain stem cell pluripotency and function

[28–30]. Large classes of PTMs that also involve glucose metabolism are N-linked and O-linked

glycosylation moieties [31, 32]. Indeed, N-linked glycosylation is the major structural component

of the glycocalyx that surrounds cell membranes [31]. Given the significant abundance of these

intermediates at the cell surface, we hypothesized that glycan pools and synthesis might be

significantly affected by enzymatic passaging of hESCs.

To better quantify flux through the hexosamine biosynthesis pathway we developed a

method for measuring relative glycan pool sizes and isotopic labeling from tracers in hESCs or

other cultured cell types. While enzyme-mediated dissociation is commonly used for glycomic-

platform analyses, such methods can be costly and time-consuming. Rather than conducting

whole-glycan analyses we instead collected the biomass fraction of hESC extracts and performed

acid hydrolysis to release individual glycan residues, nucleobases, sugars from nucleotides or

glycogen, and proteinogenic amino acids. Acid hydrolysis is commonly used in metabolic flux

analysis (MFA) applications, but the extent of labeling in glycans is not commonly measured

[33]. This is particularly true in MFA applied to mammalian cells [34–36]. To validate our

approach we analyzed standards for specific glycan residues and compared the mass isotopomer

distributions (MIDs) of specific fragments to those measured in cells cultured in the presence

of [U-13C6]glucose. Glucose labeling was readily incorporated into glycan pools through the

hexosamine biosynthesis pathway (Figure 2.2A). Acid hydrolysis of cellular biomass in turn
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releases proteinogenic amino acids, ribose, sugars, and aminosugars for GC/MS analysis (Figure

2.2B). However, since several glycan species are labile in the conditions used for release, in

some cases (e.g. acetylated glycan moieties) we relied on the measurement of proxy molecules

(Figure 2.2C). The MIDs of specific glycan sugars from standards and hydrolyzed hESCs are

depicted in Figure 2.2D-E and tabulated in Tables S2.1, S2.2; all of which were corrected for

natural isotope abundance using in-house algorithms and calculated fragment formulae (Table 1).

In each case the corrected MID matched that of the standards. Notably, some glycan sugars were

not present at detectable levels to include here (e.g. fucose, xylose, mannose, galactosamine),

and the relatively low abundance of mannosamine caused some deviation from unity in the

measured and corrected MID. Furthermore, labeling from [U-13C6]glucose indicated the number

of carbons present from the parent molecule (Figure 2.2F). Although free metabolites were

removed from the biomass interface prior to hydrolysis and derivatization, we conducted parallel

treatments and quantitation on the free, polar metabolites present in our extract to the quantities

in each subcellular pool. While serine, ribose, glucose, and glucosamine were 5-10-fold more

abundant in biomass compared to free metabolites (including those present as nucleotide-sugars

or phosphorylated intermediates), the abundance of galactose and mannosamine from biomass

hydrolysates was only 2-fold higher than that quantified from free metabolites (Figure S2.2A).

Therefore, this method allowed for the measurement of relative glycan residue abundance and

labeling from cellular biomass pools (Figure 2.2B). Previous methods focusing on biomass pools

have relied on targeted digestion of nucleotides, proteins, and glycans individually [37–39]. Our

method instead allows profiling of all three classes of biosynthetic intermediates simultaneously.
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Figure 2.2: Quantitation of glycan residue abundance and labeling in cellular biomass.
(A) Atom-transition map depicting flow of [U-13C6]glucose (UGlc) into ribose, galactose, and
hexosamines. Green circles depict carbon atoms and orange circles depict nitrogen atoms.
(B) Schematic of biomass hydrolysis method. Insoluble interface layer is isolated from initial
methanol/water/chloroform quench/extraction, rinsed twice with methanol, and acid hydrolyzed.
(C) Diagram of detectable metabolites after acid hydrolysis. Major macromolecules (nucleotides,
protein, glycans) are broken down into primary components (ribose/nucleobases, amino acids,
sugars/amino-sugars, respectively), which can be measured on GC/MS. (D) Corrected mass
isotopomer distribution (MID) of each metabolite standard. Corrected M+0 peak equal to unity
ensures accuracy of MIDs. (E) Corrected MID of metabolites from unlabeled cell hydrolysates.
Corrected M+0 peak deviation from unity is informative of MID accuracy and potential contam-
inating fragments in hydrolysates. (F) Corrected MID of metabolites measured in hydrolysates
from hESCs labeled using UGlc. Glucose, galactose, glucosamine, and mannosamine fragments
have four carbons labeled from glucose. Ribose has three carbons labeled from glucose. Error
bars represent SD (E-F) for three independent hydrolysates.
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2.4.3 Glycan and carbohydrate pools are significantly depleted upon enzy-

matic passaging

To test the effect of enzymatic-treatment on glycan and macromolecule abundance imme-

diately after dissociation, non-enzymatic (Versene) and enzymatic methods (TrypLE, Accutase,

and Trypsin) of increasing dissociation strength were used to dissociate cells. All enzymatic

reagents significantly altered carbohydrate abundances in biomass as compared to non-enzymatic

control treatment (Figure 2.3A and 2.3B). However, while galactose abundance was significantly

reduced with enzymatic treatment (Figure 2.3A), glucose abundance significantly increased

(Figure 2.3B). Given the presence of glucose in cells as both glycosylation intermediate [32] and

component of glycogen, the differential catabolism of glycogen presumably caused such changes.

Indeed, this result would be expected given the decreased flux through glycolysis observed in

Figure 2.1. Galactose, on the other hand, is primarily present in cells as the glycan residue

proximate to terminal sialylation [40].

Similar to our results quantifying galactose, the abundance of glucosamine and man-

nosamine also decreased with increasing strength of passaging reagents used (Figure 2.3C-D).

Importantly, even milder reagents like TrypLE and Accutase showed a significant reduction

in abundance of both amino sugars as compared to non-enzymatic control (Figure 2.3C-D).

As expected, intracellular serine and ribose levels were unaffected by extracellular enzymatic

digestion (Figure 2.3E-F). These results suggest that enzymatic passaging significantly affects

biomass composition directly after dissociation.

2.4.4 Biosynthetic fluxes to nucleotides and glycans are similar in cultured

hESCs

Since the total pools of specific glycans as well as the flux to various fatty acids in biomass

were significantly altered after enzymatic passaging, we then hypothesized that fluxes to these
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Figure 2.3: Enzymatic passaging alters glycan abundance of hESCs. (A-F) Relative abun-
dance of biomass-derived galactose (A), glucose (B), glucosamine (C), mannosamine (D),
serine (E), and ribose (F) immediately after passaging. All data is reported relative to Versene.
Decreases in hexose (galactose) and hexosamine (mannosamine and glucosamine) abundances
suggest glycans are impacted by enzymatic passaging. This change in abundance is not ob-
served in protein-derived amino acids (serine) or nucleotide/cofactor-derived ribose. Error bars
represent SD (A-F) for three replicates. *, P value between 0.01 and 0.05; **, P value between
0.001 and 0.01; ***, P value <0.001 by Student’s two-tailed t test.
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and other (e.g. nucleotides, protein) biomass pools of hESCs cells would be affected in a similar

manner. We again employed stable isotope tracing with [U-13C6]glucose and GC/MS analysis to

quantify labeling of hydrolyzed hESC biomass, focusing on components that are representative

of protein (serine), nucleotide (ribose), and hexosamine synthesis (Figure 2.2A-C). Cells treated

with Accutase and ROCK inhibitor exhibited a slight decrease in labeling of proteinogenic serine

(Figure 2.4A), although this measurement is impacted by changes in serine synthesis and uptake

from the culture medium. Ribose labeling indicated that enzymatic passaging also decreased the

extent of ribose labeling with or without ROCK inhibitor (Figure 2.4A).

Surprisingly, upon examining labeling from glucose in glycan moieties we observed

minimal effects when comparing non-enzymatic to enzymatic passaging (Figure 2.4B). While

a slight decrease in labeling of biomass-derived glucose was noted upon Accutase treatment,

this result was likely due to the increased pool size maintained in enzyme treated cells after

passaging (Figure 2.3B). Since routine passaging using enzymatic reagents is an extremely

common and frequent insult experienced by hESCs cultivated in vitro, we calculated the flux to

each biomass compartments using pool size and labeling information. Glucose and serine were

not included in these calculations to avoid convoluting effects of glycogen turnover and serine

uptake. While molar fluxes associated with galactose, glucosamine, and mannosamine synthesis

were significantly lower than that observed for ribose in hESCs (Figure 2.4C), flux to glycans in

aggregate were similar to that observed for nucleotides (Figure 2.4D). These results highlight

the significance of glucose flux to galactose and through the hexosamine biosynthesis pathway

(Figure 2.4D). Notably, the flux of glucose to glycans was unaffected by enzymatic digestion

(Figure 2.4C) due to the rapid recovery of pool sizes after the initial 4 hours of growth (Figure

S2.2B). This finding is perhaps not surprising due to long term selection experienced by hESCs

in standard culture. On the other hand, these calculations demonstrate how high the flux to glycan

moieties is in standard culture conditions. Although nucleotides are routinely considered a large

biosynthetic pool, our measurements indicate that flux to glycans is approximately the same as
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that of ribose, which is a component of RNA and various cofactors (e.g. ATP, NAD+) (Figure

2.4D).

Taking these results together, although abundance of glycan moieties is significantly

altered after enzymatic digestion, the flux through these pathways is high enough to recover

from these cleavage events. However, the contribution of glucose to fatty acids, proteinogenic

amino acids, and nucleotides remains diminished, suggesting that such passaging methods impact

metabolism for at least several hours after hESC subculture.

2.5 Discussion

We have demonstrated that the use of enzymatic reagents of hESCs has an immediate and

significant impact on metabolic activity after passaging. Through the use of 13C MFA we have

demonstrated that glucose flux through glycolysis and the TCA cycle as well as lipid biosynthesis

are decreased after splitting cells using enzyme-based passaging methods. Using a method that

can rapidly probe the abundance and labeling of glycans in hydrolyzed biomass, we observed that

enzymatic passaging significantly impacts the abundance of glycan moieties in hESCs.

2.5.1 Potential pitfalls in advanced hESC culture methods

For the past decade efforts in stem cell bioprocess engineering have focused on the

development of well-defined but less laborious methods of cell expansion. While there is a clear

need to streamline processes and assimilate current good manufacturing practices (cGMPs) [41],

these advances come at the expense of compromising the stem cell niche. Widely used stem cells

lines (H1, H9, etc.) were isolated in fully undefined conditions derived from mESC engineering

from the early 1980s [1, 42, 43]. Here we demonstrate that the transition to more "modern"

passaging methods has direct consequences on cell function and behavior.

68



Versene
Accutase
Accutase 
w/ Y-27632

Seri
ne

Ribo
se

0
1
2
3
4
7
8
9

10
11

%
La

be
le

d 
fro

m
[U

-13
C

6] 
gl

uc
os

e

Gala
cto

se

Gluc
os

e

Gluc
os

am
ine

Man
no

sa
mine

0

10

20

30

%
La

be
le

d 
fro

m
[U

-13
C

6] 
gl

uc
os

e

Versene
Accutase
Accutase 
w/ Y-27632

Versene
Accutase
Accutase 
w/ Y-27632

**
***

*

*

A B

C

Ribo
se

Glyc
an

s
0.00

0.01

0.02

0.03

0.04

0.05

Bi
os

yn
th

et
ic 
flu

x
(m

m
ol

/g
D

W
-h

r)

Versene
Accutase
Accutase 
w/ Y-27632

D

Ribo
se

Gala
cto

se

Gluc
os

am
ine

Man
no

sa
mine

0.00

0.01

0.02

0.03

0.04

0.05

Bi
os

yn
th

et
ic 
flu

x
(m

m
ol

/g
D

W
-h

r)

Figure 2.4: Biosynthetic fluxes to glycans and nucleotides are similar in cultured hESCs.
(A) Percentage of labeled serine and ribose in cells cultured for 4 hours after passaging in
the presence of [U-13C6]glucose (UGlc). (B) Percentage of labeled glycan moieties from
biomass in cells treated as in (A). (C) Quantitation of biosynthetic flux to different metabolites
calculated using MIDs and molar pool sizes. (D) Comparison of fluxes to ribose versus glycans
demonstrates similar biosynthetic needs in hESCs. Error bars represent SD (A-D) for three
replicates. *, P value between 0.01 and 0.05; **, P value between 0.001 and 0.01; ***, P value
<0.001 by Student’s two-tailed t test.
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2.5.2 Potential selective pressure of enzymatic passaging through altered

metabolism

Presumably, treatment with enzymatic reagents leads to proteolytic cleavage of various

receptors and other proteoglycans at the cell surface. In turn, the decreased receptor abundance

mitigates the responsiveness of cells to endogenous signaling factors and exogenous growth factors

in hESC media. A wide range of cell surface proteins may drive this phenotype, including solute

carriers, glucose transporters, and receptor tyrosine kinases. Indeed, the increased abundance of

glucose within enzyme-passaged cells indicates that cells may even be compromised with respect

to their ability to access glycogen pools. Energetic stress has previously been associated with

cells cultured for 24 hours under non-adherent conditions (i.e., detachment from the matrix) [44,

45], but the immediate impacts on metabolism after dissociation were not previously appreciated.

Although cells presumably recover rapidly to replenish glycan and biosynthetic intermediate pools,

even a temporary selective pressure like that observed here will have lasting and significant effects

on cell populations. Such effects may impact cells from the time of isolation (i.e., blastocyst

or primary cell isolation) throughout passaging in vitro. Indeed, any functional application that

makes use of hESCs or their derivatives requires that they accurately represent the metabolic

activity of the somatic tissues that one attempts to model. For example, the metabolic behavior of

hPSC-derived cardiomyocytes is known to significantly differ compared to adult heart cells with

respect to their capacity for fatty acid oxidation [46, 47]. The extent of developmental maturation

and selective pressures due to in vitro culture on such phenomena must both be considered.

2.5.3 Glycocalyx is a significant biomass pool in cultured hESCs

We also developed an analytical method for quantifying the overall abundance and isotopic

labeling of glycan residues, proteinogenic amino acids, and ribose moieties from nucleotides and

cofactors in cell cultures. This approach highlighted the profound impact of enzyme passaging
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on carbohydrate and glycan abundances in cells. While this method contrasts traditional methods

of enzyme-mediated digestion of glycans from their protein cores and direct analysis of their

structures (i.e., glycomics), the rapid nature of our methods makes it attractive for studying

general effects on hexosamine metabolism. Furthermore, analysis of glycan biomass affords

reliable quantitation of overall synthesis rates compared to measurements of sugar nucleotides.

The glycocalyx and glycosylation profile is particularly important for cell signaling and protein

function [48, 49]. Recent studies also suggest that modulation of flux through the hexosamine

biosynthesis pathway directly impacts the glycoprofile of cells [50]. Consistent with this concept,

we demonstrate that glucose flux to glycans is similar to that observed for flux to ribose, which

contributes to nucleotide synthesis and maintenance of cellular redox [51, 52]. As such, hex-

osamine biosynthesis is an underappreciated biomass sink in metabolic studies. Indeed, studies

on the metabolism of cancer cells and stem cells commonly ignore the importance of glycan

production while focusing primarily on the importance of nucleotide, lipid, and amino acid

metabolism [53–57]. Far fewer studies address or attempt to quantify or modulate flux to glycans

[17, 58].

2.5.4 Concluding thoughts

These results and other recent studies [6, 59] are beginning to illustrate how the in vitro

culture environment influences hESC phenotype. Cells are routinely subjected to periods of

starvation during incubation with passaging reagents as well as cleavage of their glycocalyx

and cell surface proteins. As cultures age, changes to gene expression and epigenetic markers

will be selected for to deal with these stresses. In this context, upregulation of flux through the

hexosamine biosynthesis pathway is to be expected. Future engineering strategies must identify

and address sources of cellular stresses at the genomic, transcriptional, signaling, and metabolic

levels in order to mitigate the deleterious effects of in vitro culture in regenerative medicine

applications.
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Chapter 3

Distinct metabolic states can support

self-renewal and lipogenesis in human

pluripotent stem cells under different

culture conditions

3.1 Abstract

Recent studies have suggested that human pluripotent stem cells (hPSCs) depend primarily

on glycolysis and only increase oxidative metabolism during differentiation. Here we demonstrate

that both glycolytic and oxidative metabolism can support hPSC growth, and the metabolic

phenotype of hPSCs is largely driven by nutrient availability. We comprehensively characterized

hPSC metabolism using 13C/2H stable isotope tracing and flux analysis to define the metabolic

pathways supporting hPSC bioenergetics and biosynthesis. Whereas glycolytic flux consistently

supported hPSC growth, chemically-defined media strongly influenced that state of mitochondrial

respiration and fatty acid metabolism. Lipid deficiency dramatically reprogramed pathways
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associated with fatty acid biosynthesis and NADPH regeneration, altering the mitochondrial

function of cells and driving flux through the oxidative pentose phosphate pathway. Lipid

supplementation mitigates this metabolic reprograming and increases oxidative metabolism.

These results demonstrate that self-renewing hPSCs can present distinct metabolic states and

highlight the importance of medium nutrients on mitochondrial function and development.

3.2 Introduction

Given their virtually unlimited expansion potential and differentiation capacity, human

pluripotent stem cells (hPSCs) offer unique opportunities in the study of human development,

biochemical screening in specific lineages, and regenerative medicine. Successful establishment of

culture conditions able to maintain human embryonic stem cells (hESCs) and induced pluripotent

stem cells (iPSCs) in the undifferentiated state represented critical steps in advancing these

technologies to practice [1, 2]. However, the large quantity of cells needed for screening and

tissue engineering applications poses a challenge that must still be addressed [3]. Initial protocols

for hPSC self-renewal mimicked the in vivo microenvironment by using feeder cell co-culture or

medium conditioned by feeder cells to support hPSC expansion [3, 4]. However, current good

manufacturing practices (cGMP) and FDA guidelines that encourage the use of xenobiotic-free

systems in clinical applications of hPSCs have driven efforts to develop chemically defined and/or

xenobiotic-free media and substrates for hPSC maintenance [5–7]. In recent years such chemically

defined formulations have supplanted undefined conditions as the gold standard for expansion

of hPSCs [8, 9]. However, the metrics for evaluation of such media have often been limited

to proliferation, pluripotency, and gene expression analyses, an established challenge which

must still be overcome [10]. Indeed, recent studies now suggest that culture and/or passaging

conditions can influence the genetic stability, metabolism, and differentiation potential of hPSCs

[11–13]. The specific metabolic features of hPSCs adapted to chemically defined media must be
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elucidated in greater detail to develop improved hPSC models and related biomedical products.

Several recent studies have identified critical metabolic pathways necessary for cellular

reprogramming and/or maintaining pluripotency, evoking a broader interest in applying hPSCs to

study nutrition, development, and metabolic disease [14]. Glycolytic flux is commonly high in

hPSC cultures, and inhibition of glucose metabolism potently limits reprogramming efficiency

[15–17]. Metabolites that serve as substrates for epigenetic markers such as acetylation and

methylation have also emerged as critical regulators of pluripotency [18–21]. Broader characteri-

zation of the hPSC metabolome has also identified key differences in mitochondrial function and

lipid metabolism between hPSCs, mESCs, and their derivatives [16, 22]. In addition, compounds

that promote mitochondrial metabolism can negatively influence cellular reprogramming [15–17],

leading to the generalized concept that oxidative mitochondrial metabolism is "antagonistic"

to the pluripotent state [23]. However, some evidence suggests that mitochondria are active in

hESCs [24]. Similar to recent developments in tumor biology [25], critical roles for mitochondria

in hPSC growth are likely to emerge.

Here we have conducted a comprehensive analysis of metabolic fluxes in hPSCs. Us-

ing an array of 13C and 2H tracers we have investigated the metabolic pathways that support

hPSC biosynthesis and growth. Surprisingly, we have observed that distinct metabolic states

marked by high mitochondrial flux and governed by nutrient availability can maintain hESC

self-renewal, challenging the notion that mitochondrial function is dispensable for stem cell func-

tion. Chemically defined medium drives hPSCs to regulate mitochondrial pathways to support

lipid biosynthesis at the expense of oxidative metabolism. Media containing lipid supplements

maintain pluripotency while augmenting respiration and mitochondrial metabolism. Taken to-

gether, these results demonstrate that nutrient availability and the microenvironment (in particular,

medium choice) profoundly impacts hPSC metabolism.
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3.3 Materials and Methods

3.3.1 Human pluripotent stem cell culture

Human embryonic stem cell lines, HUES9 and WA09 (H9), and human induced pluripo-

tent stem cell line, iPS(IMR90)-c4, were maintained on plates coated with Matrigel (Corning Life

Sciences) at 8.8 µg/cm2 and adapted to murine embryonic fibroblast-conditioned medium (MEF-

CM), Essential 8 medium (Life Technologies), and mTeSR1 medium (Stem Cell Technologies)

for at least three passages before experiments. All hPSCs were passaged every 5 days by exposure

to Accutase (Innovative Cell Technology) for 5 to 10 min at 37◦C. For metabolic flux experiments,

1X MEM non-essential amino acid solution was added into E8 media to control for amino acid

levels. Tracer MEF-CM consisted of low glucose or glutamine free MEF-CM supplemented with

either [13C]glucose or [13C]glutamine tracers, respectively. Tracer chemically defined media con-

sisted of glucose or glutamine-free E8 medium supplemented with [13C]glutamine, [13C]glucose

or [2H]glucose, or E8 medium supplemented with [13C]palmitate. All tracers were purchased

from Cambridge Isotopes. Additional details described in Supplemental Procedure.

3.3.2 Immunocytochemistry

HESCs were harvested and resuspended in 1% (v/v) paraformaldehyde and then fixed in

90% cold methanol. Cell pellets were incubated with a 1:100 dilution of human OCT-3/4 primary

mouse antibody (Santa Cruz; C-10) and a 1:1000 dilution of the secondary antibody conjugated

with Alexa Fluor 488 (Molecular Probes). The OCT4+ cells were detected by BD flow cytometry

and results were analyzed by FlowJo. For microscopy image, the adherent cells were fixed in

4% (v/v) paraformaldehyde. Cells were incubated with the 1:100 dilution of human OCT-3/4

primary mouse antibody and the 1:1000 dilution of the secondary antibody conjugated with Alexa

Fluor 488. Cells were subsequently washed and incubated with Hoechst 33342 nucleus staining

solution.

81



3.3.3 Metabolite extraction and derivatization

Polar metabolites and fatty acids were extracted using methanol/water/chloroform. Briefly,

spent media was removed, and cells were rinsed with 0.9% (w/v) saline and 250 µL of -80◦C

methanol was added to quench metabolism. 100 µL of ice-cold water containing 1 µg norvaline

internal standard was added to each well. Both solution and cells were collected via scraping.

Cell lysates were transferred to fresh sample tubes and 250 µL of -20◦C chloroform containing 1

µg heptadecanoate (internal standard for fatty acids) and 1 µg coprostan-3-ol (internal standard

for cholesterol) was added. After vortexing and centrifugation, the top aqueous layer (polar

metabolites) and bottom organic layer (lipids) were collected and dried under airflow. All reagents

were purchased from Sigma-Aldrich.

Derivatization of polar metabolites was performed using the Gerstel MultiPurpose Sampler

(MPS 2XL). Dried polar metabolites were dissolved in 20 µL of 2% (w/v) methoxyamine

hydrochloride (MP Biomedicals) in pyridine and held at 37◦C for 60 minutes. Subsequent

conversion to their tert-butyldimethylsilyl (tBDMS) derivatives was accomplished by adding 30

µL N-methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide + 1% tert-butyldimethylchlorosilane

(Regis Technologies) and incubating at 37◦C for 30 minutes. Fatty acid methyl esters (FAMEs)

were generated by dissolving dried fatty acids in 0.5 mL 2% (v/v) methanolic sulfuric acid

(Sigma-Aldrich) and incubating at 50◦C for 2 hours. FAMEs were subsequently extracted in 1 mL

hexane with 0.1 mL saturated sodium chloride. FAME samples subsequently were aliquoted to

two tubes for direct analysis or cholesterol derivatization. One dried FAME extract was converted

to cholesterol trimethylsilyl (TMS) derivatives by adding 30 µL N-Methyl-N-(trimethylsilyl)

trifluoroacetamide (Regis Technologies) and incubating at 37◦C for 30 minutes.
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3.3.4 Gas chromatography/mass spectrometry analysis

Gas chromatography/mass spectrometry (GC/MS) analysis was performed using an

Agilent 7890A with a 30 m DB-35MS capillary column (Agilent Technologies) connected to

an Agilent 5975C MS. GC/MS was operated under electron impact (EI) ionization at 70 eV. In

splitless mode, 1 µL sample was injected at 270◦C, using helium as the carrier gas at a flow

rate of 1 mL/min. For analysis of organic and amino acid derivatives, the GC oven temperature

was held at 100◦C for 2 minutes, increased to 255◦C at 3.5◦C/min, then ramped to 320◦C at

15◦C/min for a total run time of approximately 50 minutes. For measurement of FAMEs, the

GC oven temperature was held at 100◦C for 3 minutes, then to 205◦C at 25◦C/min, further

increased to 230◦C at 5◦C/min and ramped up to 300◦C at 25◦C/min for a total run time of

approximately 15 minutes. For measurement of cholesterol, the GC oven temperature was held at

150◦C for 1 minute, then to 260◦C at 20◦C/min, then held for 3 minutes, and further increased

to 280◦C at 10◦C/min and held for 15 minutes, finally ramped up to 325◦C for a total run time

of approximately 30 minutes. The MS source and quadrupole were held at 230◦C and 150◦C,

respectively, and the detector was operated in scanning mode, recording ion abundance in the

range of 100-650 m/z.

3.3.5 Metabolite quantification and isotopomer spectral analysis

For quantification of metabolites and mass isotopomer distributions, selected ion fragments

were integrated and corrected for natural isotope abundance using an in-house, MATLAB-

based algorithm and metabolite fragments listed in Supplemental Table. Total abundances

were normalized by counts of internal standard control. Isotopomer spectral analysis (ISA)

for quantitation of [1,2-13C]glucose and [U-13C6]glucose contribution to lipogenic AcCoA and

[3-2H]glucose contribution to lipogenic NADPH were calculated as previously described [26, 27].

Specifically, the relative enrichment of the lipogenic AcCoA and NADPH pools from a given
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tracer and the percentage of newly synthesized fatty acids were estimated from a best-fit model

using the INCA MFA software package [28]. The 95% confidence intervals for both parameters

were determined by evaluating the sensitivity of the sum of squared residuals between measured

and simulated palmitate mass isotopomer distributions to small flux variations [29].

3.3.6 Mole percent enrichment measurement

Mole percent enrichment (MPE) of isotopes was calculated as the percent of all atoms

within the metabolite pool that are labeled:

∑
n
i=1 Mi · i

n

where n is the number of carbon atoms in the metabolite and Mi is the relative abundance of the

ith mass isotopomer.

3.3.7 Extracellular flux and oxidative pentose phosphate pathway flux

measurements

Per protein extracellular fluxes, including glucose/glutamine uptake and lactate/glutamate

secretion, were calculated by subtracting final spent medium from initial medium substrate

concentrations measured using a Young Springs Instrument 2950 and normalized by the integral

dry weights of hPSCs over 24 hours [26]. Quantification of oxidative pentose phosphate pathway

(PPP) flux was determined by extracellular glucose uptake flux times the ratio of M+1
(M+1)+(M+2)

pyruvate or lactate derived from [1,2-13C]glucose.
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3.3.8 Cell dry weight measurements

HPSCs were harvested and counted at 90% confluence. Cell pellets were dried by ambient

air at 50◦C for three days. Total weights of cell pellets were then measured and weight per million

cells was calculated.

3.3.9 ATP-linked oxygen consumption rate measurements

Respiration was measured in viable hPSCs using a Seahorse XF96 Analyzer. HPSCs

were assayed in fresh culture media. ATP-linked oxygen consumption rate (OCR) was calculated

as the oxygen consumption rate sensitive to 2 mg/mL oligomycin in each culture condition

and normalized by cell abundance. Each culture condition sample had at least four biological

replicates analyzed. Cell abundance was indicated by the total fluorescence after stained with

Hoechst 33342 [30].

3.3.10 Gene expression analysis

Total mRNA was isolated from 75% confluent hPSCs using RNA isolation kit (RNeasy

Mini Kit; Qiagen). Isolated RNA was reverse transcribed using cDNA synthesis kit (iScipt

Reverse Transcription Supermix; Bio-Rad). Real-time PCR (RT-PCR) was performed using

SYBR green reagent (iTaq Universeal SYBR Green Supermix; Bio-Rad). Relative expression

was determined using Livak (∆∆CT) method with GAPDH as housekeeping gene. Primers used

were taken from Primerbank [31] and tabulated in Supplemental Table. All commercial kits were

used per the manufacturer’s protocol.

3.3.11 Statistical analyses

All results shown as averages of triplicates (at least) presented as mean ± SEM. P values

were calculated using a Student’s two-tailed t test; *, P value between 0.01 and 0.05; **, P

85



value between 0.001 and 0.01; ***, P value <0.001. All errors associated with ISA were 95%

confidence intervals determined via confidence interval analysis.

3.4 Results

3.4.1 Medium choice influences hESC metabolic states

To define the critical metabolic features of self-renewing hPSC we quantified intracellular

metabolite abundances, nutrient uptake, and byproduct secretion in undifferentiated HUES 9 and

H9 cells. As researchers employ a variety of validated media formulations to maintain hPSCs

[1, 9], we compared the metabolic state of hESCs in murine embryonic fibroblast conditioned

medium (MEF-CM) or more chemically defined, commercially available media such as Essential

8 (E8). We employed this strategy to deconvolute media-specific metabolic pathway functions

from cellular pluripotency. HESCs were maintained in each media formulation for at least

three passages. Consistent with previous observations establishing during the establishment of

these media [1, 9], hESCs in all conditions exhibited robust expression of Oct4 (Figure 3.1A-

B). Notably, we observed a more compact, flattened colony morphology of hESCs cultured

in chemically defined media and a larger non-nuclear area of hESCs cultured in MEF-CM,

suggesting a difference in the quantity of cytosolic biomass between both pluripotent cells (Figure

3.1B). We also noted striking differences in the dry cell weight of hESCs adapted to chemically

defined media, which was nearly 50% lower than that observed in MEF-CM cells (Figure 3.1C

and S3.2A).
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Figure 3.1: Distinct metabolic states exist in hESCs adapted to MEF-CM versus chemi-
cally defined media. HUES 9 and H9 hESCs were cultured in either MEF-CM or chemically
defined media for at least three passages. (A) Percentage of OCT4+ hESCs. OCT4 in green, IgG
control in gray. (B) Representative HUES 9 hESC colonies. Scale bar represents 100 µm. Inset
shows increased distance between nuclei in MEF-CM cells. (C) Dry cell weight per million
HUES 9 hESCs. (D) Relative intracellular metabolite abundance of HUES 9 hESCs normalized
by cell number and MEF-CM sample. Metabolite abbreviations described in Supplemental Text.
(E) Glucose uptake and lactate secretion fluxes of HUES 9 hESC. (F) Glutamine uptake and
glutamate secretion fluxes of HUES 9 hESCs. (A, C-F) All results shown as mean ± SEM.
(C-F) P values were calculated using a Student’s two-tailed t test relative to MEF-CM condition;
*, P value between 0.01 and 0.05; **, P value between 0.001 and 0.01; ***, P value <0.001.
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To gain more insights into pathway-specific differences across these conditions we next

quantified the abundance of intracellular organic and amino acids in each hESC population. In

chemically defined media we observed consistent increases in the per cell abundance of pyruvate,

lactate, and most tricarboxylic acid (TCA) intermediates (Figure 3.1D and S3.2B), despite the

smaller cell size (Figure 3.1C and S3.2A). A major exception to these trends was citrate, which

was present at significantly lower levels in E8 media. Consistent with these differences, glycolytic

flux in E8 was significantly higher on a per protein basis (Figure 3.1E). Additionally, glutamine

consumption was markedly elevated in chemically defined media, and net glutamine anaplerosis

(i.e., glutamine uptake minus glutamate secretion or entry of glutamine carbon into the TCA

cycle) was increased 4 fold (Figure 3.1F). These results suggest that different hPSC media drive

metabolic reprogramming of hESCs independent of pluripotency.

3.4.2 Media-dependent reprogramming of amino acid and

NADPH metabolism

The inherent redundancy of metabolic networks allows for multiple pathways and sub-

strates to support cellular bioenergetics and biosynthesis. Indeed, the differences observed in

the above metabolic characterizations suggests that intermediary metabolic fluxes are altered in

hESCs cultured in MEF-CM versus chemically defined media. To investigate these changes in

greater detail we cultured HUES 9 and H9 cells in the presence of [13C]glucose, [2H]glucose,

or [13C]glutamine tracers and quantified isotopic labeling to probe central carbon metabolism

(see Figure S4.1 for atom transition maps). With the exception of serine, the contribution of

glucose carbon to glycolytic and TCA intermediates was not dramatically impacted by media

choice (Figure 3.2A and S3.3). On the other hand, flux of glucose through the oxidative pentose

phosphate pathway (PPP) was increased 3-fold in E8 media as compared to MEF-CM (Figure

3.2B). To better quantify how oxidative PPP flux contributes to NADPH regeneration we quanti-

fied label transfer from [3-2H]glucose to palmitate and performed isotopomer spectral analysis
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(ISA) [27]. In E8 medium the oxidative PPP accounted for 52±2% and 67±1% of cytosolic

NADPH pool H9 and HUES 9 hESCs, respectively (Figure 3.2C). As the oxidative PPP is often

upregulated in highly proliferative cells, such as tumors, to support nucleotide and fatty acid

synthesis [32], we also performed the same tests in multiple established stable cancer cell lines.

We found the contribution of PPP flux to NADPH production to be significantly higher in hPSCs

than that observed in all cancer cell lines tested (Figure 3.2C, Supplemental Procedure), even

when growing cancer cells in E8 media rather than DMEM + FBS (Figure S3.2C).

90



Figure 3.2: Media choice influences glucose, glutamine, and NADPH metabolism. (A)
Mole percent enrichment (MPE) from [1,2-13C]glucose in HUES 9 hESCs throughout inter-
mediary metabolism. (B) Absolute flux through the oxidative PPP in HUES 9 hESCs. (C)
Contribution of oxidative PPP to lipogenic NADPH as determined by ISA in hESCs and cancer
cells. (D) MPE from [U-13C5]glutamine in HUES 9 hESCs throughout intermediary metabolism.
(E) MPE of TCA intermediates from [1-13C]glutamine (normalized by MPE of aKG) in HUES
9 hESCs. (F) Relative abundance of 2HG in HUES 9 hESCs normalized by cell number and
MEF-CM sample. (A-B, D-F) All results shown as mean ± SEM. P values were calculated
using a Student’s two-tailed t test relative to MEF-CM condition; *, P value between 0.01 and
0.05; **, P value between 0.001 and 0.01; ***, P value <0.001. (C) Results shown as mean and
95% CI. *, Significance indicated by non-overlapping 95% confidence intervals.
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Glutamine is another important substrate that fuels mitochondrial metabolism in prolifer-

ating cells [33, 34]. When culturing HUES 9 or H9 hESCs in the presence of [U-13C5]glutamine

we observed significant changes in the overall contribution and labeling patterns of various TCA

intermediates and amino acids in MEF-CM versus E8 media (Figure 3.2D, S3.2D, and S3.4).

These data indicated that glutaminolysis was highly active in hESCs cultured on all media to

support TCA cycle anaplerosis but significantly higher in defined media (Figure 3.2D, S3.2D, and

S3.4). Notably, cells became cytostatic upon glutamine withdrawal (data not shown), in contrast

to murine ESCs which can proliferate in the absence of available glutamine [35]. Increased

M+3 labeling of citrate, malate, fumarate, and aspartate suggested that reductive carboxylation

and ATP-citrate lyase activity (in the case of citrate) were both elevated in cells cultured in E8

(Figure S3.4). We confirmed that glutamine-mediated reductive carboxylation flux was increased

in chemically defined culture media by tracing the contribution of [1-13C]glutamine to various

intermediates (Figure 3.2E). This NADPH-dependent pathway can fuel lipid biosynthesis via

citrate and is particularly active under conditions of oxidative stress or hypoxia inducible factor

(HIF) stabilization [36–39]. In addition, we observed elevated levels of 2HG in cells grown

in chemically defined medium (Figure 3.2F). We confirmed this metabolite as the (R)-2HG

enantiomer via chiral chromatography (Figure S3.2E, supplemental methods), suggesting this

2HG was produced by IDH1. However, levels present in all conditions were significantly lower

than that required for modulation of aKG-dependent dioxygenase activity [40, 41]. These results

suggest that the TCA cycle, the central hub of mitochondrial oxidative energy generation, resides

in distinct states within hESCs depending on the nutritional environment of cells.
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Figure 3.3: HESCs adapted to chemically defined media upregulate lipid biosynthesis. (A)
Relative fatty acid abundance in cells adapted to MEF-CM, E8, and mTeSR1 normalized by
MEF-CM sample. Left and right panel are HUES 9 and H9 hESCs respectively. (B) Percentage
of newly synthesized palmitate and cholesterol after 24 hours. Left and right panel are HUES 9
and H9 hESCs respectively. (C) Schematic diagram of [U-13C16]palmitate metabolism. Open
circles depict 12C and filled circles depict 13C atoms. Metabolite abbreviations described in
Supplemental Text. (D) Percentage of M+16 fatty acids in HUES 9 hESCs cultured in E8+ BSA-
bound [U-13C16]palmitate and 1 mM carnitine (E) Mass isotopomer distribution of palmitate
and stearate in HUES 9 hESCs cultured in E8 with BSA-bound [U-13C16]palmitate and 1 mM
carnitine. (F) Expression of genes encoding various metabolic enzymes in HUES 9 hESCs
adapted to E8 relative to cells in MEF-CM. (A, D-F) All results shown as mean Âś SEM. (A,
F) P values were calculated using a Student’s two-tailed t test relative to MEF-CM condition;
*, P value between 0.01 and 0.05; **, P value between 0.001 and 0.01; ***, P value <0.001.
(B) Results shown as mean and 95% CI. *, Significance indicated by non-overlapping 95%
confidence intervals.
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3.4.3 Chemically defined medium dramatically increases lipogenesis

The increased reductive carboxylation and 2HG production noted above provides some

mechanistic insight into why oxidative PPP flux is elevated in defined media. However, in addition

to the changes in intermediary metabolism, we observed significant decreases in per cell fatty

acid abundances in HUES 9 and H9 hESCs maintained in more defined media such as E8 and

mTeSR1 versus MEF-CM (Figure 3.3A), consistent with our observation of decreased dry cell

weight of hESCs in the latter (Figure 3.1C and S3.2A). We next employed [U-13C6]glucose and

ISA to quantify de novo lipogenesis in hESCs cultured in the same media panel. This analysis

highlighted drastic changes in the extent that hESCs synthesized fatty acids and cholesterol in

different media. Whereas hESCs exhibited minimal lipogenesis in MEF-CM over 24 hours,

HUES 9 and H9 cells synthesized 50-80% of their palmitate and cholesterol in E8 or mTESR1

over the same time period (Figure 3.3B). Notably, the contribution of glucose to lipogenic AcCoA

pools did not change appreciably in different media, consistent with glucose labeling of citrate

under each condition (Figure S3.5A-B). These results demonstrate that hESCs exhibit marked

differences in lipid biosynthesis when cultured in different media.

Both MEF-CM and mTeSR1 formulations contain exogenous lipid supplements (Albu-

MAX and Chemically Defined Lipid Concentrate, respectively) that may support hPSC growth,

though our results indicate the levels present in mTeSR1 are insufficient. To further dissect how

exogenous lipids are used and metabolized in chemically defined media we supplemented E8

with albumin-bound [U-13C16]palmitate (U-Palm E8) as the sole source of fatty acids (Figure

3.3C). After 24 hours we quantified fatty acid and TCA intermediate labeling in hESCs. No

appreciable isotope enrichment was detected in citrate or other TCA metabolites (data not shown),

indicating β -oxidation is not employed by self-renewing hESCs to generate AcCoA. However,

M+16 labeling of C16:0 palmitate and C18:0 stearate was observed, suggesting exogenous fatty

acids are readily utilized and elongated in hESCs cultured in chemically defined medium (Figure

3.3D-E).
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The metabolic changes outlined above center around pathways associated with de novo

lipogenesis, NADPH regeneration, and glutaminolysis. To better understand how cells coordinate

the observed changes in metabolic flux we quantified the expression of various enzymes catalyzing

these reactions. Consistent with this metabolic shift toward lipid biosynthesis and NADPH

production, we observed significant increases in the expression of ACACA, ACLY, FAS, SCD,

G6PD, and GLS2 (Figure 3.3F). Importantly, all of these genes (with the exception of GLS2)

are targets of the sterol response element binding proteins (SREBPs), providing evidence that

cells sense lipid deficiency and respond transcriptionally through the established SREBP pathway

[42]. Recent studies have implicated GLS2 specifically in both antioxidant function and necessary

for differentiation [43–45]. These results indicate that nutritional availability influences both

metabolic fluxes and gene expression in hESCs.

3.4.4 Lipid supplementation mitigates hESC metabolic reprogramming

Our results demonstrate that hESCs in different medium compositions can self-renew

in distinct metabolic states, exemplified by drastic changes in NADPH, lipid, and amino acid

metabolism. More specifically, these differences suggest that insufficient lipid availability in

media, including mTeSR1 and E8, drive media-induced metabolic reprogramming that influences

metabolic rates (as indicated above) and potentially cellular epigenetics [18]. To determine

whether lipids produced by irradiated murine embryonic fibroblasts (MEFs) drove these changes

we conditioned media in the presence of [U-13C6]glucose. While glucose was readily metabolized

by MEFs to citrate (Figure S3.5C), no appreciable accumulation of labeled lipids was observed

after conditioning (Figure S3.5D). This finding suggests that lipids present in basal medium may

support hESC growth.

The predominant lipid source in basal hESC medium is AlbuMAX within the Knockout

Serum Replacer (KSR) supplement. This reagent contains albumin, fatty acids, cholesterol,

and other lipids, and in some background media it can improve hESC growth [46]. To deter-
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Figure 3.4: Lipid supplementation mitigates media-induced metabolic flux alterations.
HPSCs were cultured in either E8 or E8 with 1.6% (w/v) AlbuMAX for at least three passages.
(A) Relative metabolite abundance of HUES 9 hESCs normalized by cell number and E8 sample.
(B) Absolute oxidative PPP fluxes in hPSCs. (C) Contribution of oxidative PPP to lipogenic
NADPH as determined by ISA in HUES 9 and H9 cells. (D) Percentage of newly synthesized
palmitate after 24 hours. (E) Percentage of newly synthesized cholesterol after 24 hours. (A-B)
All results shown as mean ± SEM. P values were calculated using a Student’s two-tailed t
test relative to E8; *, P value between 0.01 and 0.05; **, P value between 0.001 and 0.01;
***, P value <0.001. (C-E) Results shown as mean and 95% CI. *, Significance indicated by
non-overlapping 95% confidence intervals.
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mine whether lipid supplementation in chemically defined media can mitigate the metabolic

reprogramming described above we added AlbuMAX to E8 at a final concentration of 1.6%

(E8+AlbuMAX), equivalent to that present in MEF-CM. Short-term addition of AlbuMAX did

not affect OCT4 expression, though more extensive studies are required to demonstrate its ability

to support long-term hPSC expansion in specific media backgrounds (Figure S3.5E). Notably,

AlbuMAX supplementation to E8 rescued some of the changes in intracellular metabolite lev-

els that we observed in defined medium. Specifically, glycolytic (Pyr, Lac) and various TCA

intermediates (Suc, Fum, Mal) decreased significantly, while levels of the lipogenic metabolite

citrate and aKG were increased (Figure 3.4A). Only a marginal impact on glucose uptake and

lactate secretion was observed (Figure S3.5F), presumably due to the importance of glycolysis

for pluripotency [15–17] and the need for continued NEAA biosynthesis (e.g. serine, glycine),

which were not supplemented further. However, net glutamine anaplerosis decreased in HUES 9

cells after addition of AlbuMAX as noted by the increased glutamate secretion observed (Figure

S3.5G).

Additionally, we quantified relevant flux changes in cells cultured in lipid-supplemented

E8 versus basal E8 media. Oxidative PPP flux was significantly decreased in HUES 9 and H9

cells under these conditions (Figure 3.4B). Furthermore, the contribution of PPP flux to lipogenic

NADPH was also decreased in these cells (Figure 3.4C). Less robust changes may have occurred

in PPP flux in IMR90-iPSC cultures since they were maintained for an extended number of

passages in lipid-deficient media prior to supplementation (Figure 3.4B). On the other hand,

fatty acid (palmitate) and cholesterol synthesis were significantly decreased in all hPSCs upon

AlbuMAX addition (Figure 3.4D-E).

Lipid supplementation also influenced the general phenotype of hPSCs. Lipid supplemen-

tation significantly decreased the transcription of most enzymes involved in de novo lipogenesis

that were previously observed to be upregulated in chemically defined media, with consistent

results obtained in HUES 9 and H9 hESCs as well as an IMR90-derived iPSC line (Figure
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3.5A-C). Additionally, per cell dry weight increased significantly in E8+AlbuMAX HUES 9, H9,

and IMR90-iPSC cultures (Figure 3.5D). In our hands HUES 9 cell growth was not affected by

growth in E8+AlbuMAX when additional BSA was included in the formulation; however, some

growth suppression was observed in H9 and IMR90-iPS hPSCs (data not shown), indicating

additional optimization of lipid supplement-background media combinations may be needed. To

more functionally characterize mitochondria under these conditions we conducted respirome-

try analysis. Basal, ATP-linked oxygen consumption was significantly lower in HUES 9 cells

cultured in E8 compared to those maintained in MEF-CM (Figure 3.5E and S3.6A). Consistent

with the rescue experiments above, supplementation of AlbuMAX to E8 significantly increased

respiration of HUES 9, H9, and IMR90-iPSCs (Figure 3.5F and S3.6A-C). Taken together, these

data indicate that lipid deficiency of chemically defined media induced a profound reliance on

biosynthetic fluxes, owing to the need for structural lipids in proliferating hESCs. In turn, this

metabolic reprogramming influences the respiratory state, gene expression profile, and mitochon-

drial function of hPSCs. These data strongly contrast the concept of mitochondrial inactivity

as a key requirement for pluripotency-associated metabolic reprogramming and illustrate the

confounding effects of nutrient-availability in hPSC metabolic studies.

3.5 Discussion

The prevailing view of hPSC metabolism is highly reminiscent of tumor cell metabolism

in that aerobic glycolysis is thought to be favored over oxidative mitochondrial metabolism

[23, 47–49]. These findings are supported by metabolic studies predominantly conducted in

chemically defined media and/or the impact of metabolic inhibitors on reprogramming efficiency

in fast-growing cultures [15–17]. In other studies using MEF-CM as the primary maintenance

condition metabolic analysis was limited to respirometry with little focus on pathways involved

in biosynthesis [50, 51]. Our results demonstrate that distinct metabolic states can support
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Figure 3.5: Lipid supplementation mitigates media-induced metabolic enzyme expression
and mitochondrial state alterations. (A-C) Expression of genes encoding various metabolic
enzymes in hPSCs adapted to E8+AlbuMAX relative to cells in E8. (A) HUES 9; (B) H9; (C)
IMR90-iPS. (D) Dry cell weight per million hPSCs (E) Relative ATP-linked OCR of HUES 9
hESCs in MEF-CM and E8, normalized by MEF-CM sample. (F) Relative ATP-linked OCR of
hPSCs cells in E8 and E8+AlbuMAX, normalized by E8 sample. All results shown as mean ±
SEM. P values were calculated using a Student’s two-tailed t test relative to E8 condition; *, P
value between 0.01 and 0.05; **, P value between 0.001 and 0.01; ***, P value <0.001.
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self-renewing hESCs when cultured in different nutrient conditions (Figure 3.6). In cancer

biology recent studies have shed light on the importance of mitochondria for tumor cell growth

and survival as well as the potential efficacy of mitochondrial inhibitors as therapies [25, 52].

Although glycolysis similarly supports hESC growth in all conditions, our data suggests that

oxidative mitochondrial metabolism is highly active in hESCs when lipids are present and

sustained by glutamine anaplerosis. Amino acid availability also presumably affected serine,

glycine, asparagine, and proline metabolism in our system, as each of these metabolites was

differentially labeled in MEF-CM chemically defined media.

While numerous studies have demonstrated that pluripotency and proliferation are robustly

maintained in both MEF-CM and chemically defined media alternatives [8, 9], our MFA experi-

ments indicate that hPSCs are capable of adapting metabolism to different nutrient conditions

while maintaining their self-renewal capacity. In particular, medium lipid deficiency influences

the metabolic state of hESCs such that they strongly upregulate pathways involved in lipid

biosynthesis and NADPH regeneration (i.e., the oxidative PPP). This metabolic state may render

cells more susceptible to oxidative stresses. For example, high NADPH consumption fueling

lipid synthesis in cancer cells can increase their susceptibility to metabolic or environmental

stresses [53] . Additionally, G6PD deficiency is a relatively common inborn error of metabolism

(IEM) in the human population [54]. As such, mutations in G6PD may affect the efficiency of

iPSC reprogramming in some populations or potentially impact the genetic stability and redox

sensitivity of hPSCs cultured in chemically defined or more specifically lipid-free media.

HPSC applications in disease-modeling, drug screening, and regenerative medicine all

require the robust production of differentiated lineages that correctly recapitulate the metabolic

functions of somatic tissue. Organogenesis is a complex, multistep process that requires significant

energy, biomass, and signaling cues; metabolism plays an essential role in all aspects of these

processes. Subjecting hPSCs to selective pressures in vitro such as medium lipid deficiency

may limit their ability to accurately represent normal tissue function in subsequent applications
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without giving rise to "harmful" genetic alterations [55]. Furthermore, culture and passaging

conditions as well as time can influence the genetic and epigenetic stability of hPSCs [11, 56]

or metabolic rates after subculture [12]. Our MFA results provide potential mechanisms that

may be exploited to alleviate some of the stresses associated with long-term in vitro expansion.

Specifically, addition of particular lipids may enhance or better control hPSC expansion and

differentiation. As such, pluripotency analysis (e.g. teratoma formation) and proliferation alone

may not be suitable metrics for the evaluation of hPSC culture media and intracellular metabolic

fluxes should also be considered. MFA is an ideal and underutilized tool for such applications.

Numerous studies have recently implicated metabolites or culture conditions in regulating

cellular epigenetics and differentiation propensity of pluripotent stem cells. Metabolites that

impact methylation [19, 20, 35] and acetylation [18] can influence differentiation but likely

play more critical roles in cellular bioenergetics and biosynthesis. Indeed, it is unclear how

global changes in the abundance of SAM or AcCoA can impact the specific epigenetic state of

pluripotency genes. Other studies have recently identified key differences in the predisposition

of cells to differentiate to neural or hematopoietic lineages when culturing or priming cells in

MEF-CM versus more nutrient-limited media such as E8 or mTeSR1 [13, 57]. Finally, the

mitochondrial state and lipid profile of cells changes significantly during the course of mESC and

hESC differentiation [22]. Our results therefore demonstrate the importance of considering the

broader nutritional environment and intracellular metabolic state of hPSCs when characterizing

metabolic regulation in stem cells and designing hPSC media.
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Figure 3.6: Nutrient availability reprograms intermediary metabolism in hPSCs. Culture
of hPSCs in chemically defined media (CDM) reprograms glucose, glutamine, lipid, and NADPH
metabolism. Lipid deficiency induces the upregulation of oxidative PPP flux for NADPH
synthesis, de novo lipogenesis, and reductive carboxylation while diverting carbon from the
TCA cycle and decreasing mitochondrial respiration (ATP-linked activity of mitochondrial
electron transport chain, ETC). Amino acid deficiencies influence glutaminolysis, synthesis
of proline, asparagine, and serine, which are upregulated in hPSCs cultured in defined media.
Metabolic genes described in italics. Metabolite abbreviations described in Supplemental Text.
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Chapter 4

Lipid availability influences the metabolic

maturation of hPSC-derived

cardiomyocytes

4.1 Introduction

The promise of stem-cell derived cardiomyocytes (CMs) has been driven by a critical need

for durable cell sources for tissue engineering or toxicity screening applications [1–4]. With the

limited regenerative capacity of the adult heart, research efforts have focused on the development

of protocols that allow for relatively homogeneous cardiac differentiation. Recent protocols now

allow purities approaching >90% without the use of growth factors in partially- or fully-defined

conditions [5, 6]. However these protocols generate functionally immature cardiomyocytes which

lack the proper electrical connectivity, force generation, and metabolic phenotype to properly

mimic their in vivo counterparts [7, 8]. Preclinical models of CM transplantation have shown

potential increased arrhythmia risk and demonstrated the need for functional maturation [9,

10]. Recapitulation of native mitochondrial function and bioenergetics will be essential to drive

112



maturation.

While simple aging of cells has generated some success [11], this is impractical for

bioprocess scale up and quantities needed eventually in vivo after myocardial infarction (i.e.

delivery of up to 109 cells) [2, 12]. Efforts to speed up functional maturation of CMs in vitro have

focused on physical cues [13], electrical stimulation [14, 15], and physical microenvironment

[16–18] but metabolic manipulation through media provides a promising potential avenue [19].

The bioenergetic demands of the developing and adult heart require a dramatic upregula-

tion of ATP production, which is a marked by a transition from a highly glycolytic pluripotent

stem cell to a somatic cell relying primarily on oxidative phosphorylation [20]. Recent work

has demonstrated that this mitochondrial shift is necessary for proper CM development [21].

Moreover, the increase in mitochondrial activity is marked by the catabolism a diverse set of

carbon sources in the adult heart that drives proper CM function in the fasted and fed states (e.g.

fatty acids, ketone bodies, branched-chain amino acids) [22, 23]. As with other measures of

CM function, the metabolism of hPSC-derived CMs is fetal-like with heavy reliance on glycol-

ysis and glucose oxidation and presents a roadblock for their utility [24, 25]. However recent

work has definitively demonstrated that activating mitochondrial function through galactose

supplementation induces a more mature CM metabolism (i.e. fatty acid oxidation) and better

function in hPSC-derived CMs [26]. However, the role of mitochondrial substrate switching

during CM differentiation and the role of fatty acid biosynthesis/oxidation during maturation

remains unknown.

We hypothesized that by examining CM metabolism during differentiation we could

identify key pathways that modulate CM function. Indeed, we found that immature hPSC-

derived CMs suppress glutaminolysis as compared to hPSCs themselves. However, these cells

fail to activate fatty acid oxidation (FAO) during differentiation. Day-by-day tracing revealed

an activation of enzyme expression and mitochondrial catabolism of key substrates during

differentiation, suggesting a correct differentiation program and some other obstacle to proper
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CM function. Examination of lipid metabolism gene expression revealed aberrant fatty acid

oxidation and synthesis pathway expression, leading us to hypothesize that lack of fatty acid

supplementation in gold-standard differentiation medias forces CMs to synthesize structural

lipids instead of oxidizing them for fuel. Supplementation of complex fatty acid mixtures

improves mitochondrial function and substrate oxidation. Together this suggests that nutritional

microenvironments must be considered when designing maintenance conditions as improper

reprogramming of the metabolic network can prevent other physiologic functions.

4.2 Materials and Methods

4.2.1 Human pluripotent stem cell (hPSC) culture

Human embryonic stem cell line WA09 (H9) and induced pluripotent stem cell line

iPS(IMR90iPS)-c4 were supplied by WiCell Research Institute. HPSCs were routinely maintained

in mTeSR1 media (Stem Cell Technologies) on growth factor-reduced Matrigel (Corning Life

Sciences) at 8.8 µg/cm2 and passaged every 4 days using ReLeSR (Stem Cell Technologies). All

hPSCs experiments were conducted with cells ranging from 40 and 70 passages. For metabolic

tracing experiment, hPSCs were adapted to chemically defined media TeSR-E8 media (Stem Cell

Technologies) for at least one passage, and all hPSCs were detached and plated by exposure to

Accutase (Innovative Cell Technology).

4.2.2 Cardiomyocyte differentiation

All hPSCs were cultured for at least five passages post thaw before beginning differentia-

tion. HPSCs were differentiated by the adapted chemically defined cardiomyocyte generation

protocol [6]. Briefly, hPSCs were dissociated using a 0.5 mM EDTA (Life Technologies) in PBS

without CaCl2 or MgCl2 (Corning Life Sciences) for 7 minutes at room temperature. HPSCs
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were plated at 3.0x105 cells per well in mTeSR1 or TeSR-E8 media (Stem Cell Technologies)

supplemented with 2 µM Thiazovivin (Selleck Chemicals) for the first 24 hours after passage.

HPSCs were fed for 3-5 days until they reached >90% confluence. To initiate differentiate,

cells were washed with PBS 1X and the culture medium was changed to CDM3, consisting of

RPMI 1640 medium (Life Technologies), 500 µg/mL O. sativa-derived recombinant human

albumin (A0237, Sigma-Aldrich), and 213 µg/mL L-ascorbic acid 2-phosphate (49752, Sigma-

Aldrich), with 6 µM CHIR 99021 (Selleck Chemicals) for 48 hours. Media was then changed

to CDM3 with 2 µM Wnt Inhibitor C59 (Selleck Chemicals) for 48 hours. Cells were then

dissociated with TrypLE Express (Life Technologies) and plated onto Matrigel coated plates

in CDM3 supplemented with 200 nM Thiazovivin at a density of 1x106 cells per well. After

cardiomyocyte beating was observed (on day 7 to 8), Glucose free CDM3 medium with 10 mM

sodium DL-lactate (Sigma-Aldrich), were used for further in vitro cardiomyocyte purification (2

to 4 days). Cardiomyocytes were then maintained in CDM3 with media changes every 48 hours.

For hPSCs-derived CMs cultured with nutrient lipid supplement, CDM3 containing AlbuMAX

(1.6% w/v; Life Technologies) were added in after day 8. Media was completely replaced every

48 hours thereafter.

4.2.3 13C metabolic tracing

For tracer experiments, culture medium was removed, cells were rinsed with PBS, and

tracer media was added to wells. Tracer media consisted of glutamine, glucose, amino acid

free RPMI1640 (US Biologics) supplemented with proper levels of 12C amino acids, organic

acids, and carbohydrates not being traced. If a more replete condition was being tested (i.e.

additional nutrients added to basal media), 12C metabolites were added to other tracer arms to

ensure equivalent nutrient state (i.e. add 12C lactate to a 13C glucose trace). The following tracers

were used: [U-13C5]glutamine (Cambridge Isotope Laboratory), [U-13C6]glucose (Cambridge

Isotope Laboratory), [3-13C]pyruvate (2mM; Cambridge Isotope Laboratory), [3-13C]lactate
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(2mM; Cambridge Isotope Laboratory), [U-13C6]leucine (Cambridge Isotope Laboratory), [U-

13C4]β -hydroxybutyrate (2mM; Sigma), [U-13C8]octanoate, or [U-13C16]palmitate (Cambridge

Isotope Laboratory). [U-13C]palmitate was first non-covalently conjugated to ultra fatty acid

free BSA (Roche) as previously described [27]. BSA conjugated [U-13C16]palmitate was added

to each culture medium along with additional L-carnitine at 50 µM (5% v/v) and 0.5 mM,

respectively.

4.2.4 Metabolite extraction and derivatization

Cellular metabolites and fatty acids were extracted using methanol/water/chloroform.

Briefly, spent media was removed, and cells were rinsed with 0.9% (w/v) saline and 500 µL of

-80ÂřC MeOH was added to quench metabolism. 200 ÎijL of ice-cold water containing 5 µg/mL

norvaline (internal standard for organic acids and amino acids) was added to each well. Both

solution and cells were collected via scraping. Cell lysates were transferred to fresh Eppendorf

tube and 500 ÎijL of -20ÂřC CHCl3 containing 2 µg/mL D31-palmitic acid (internal standard

for fatty acids) was added. After vortexing and centrifugation, the top aqueous layer and bottom

organic layer were collected and dried.

Derivatization of aqueous metabolites was performed using the Gerstel MultiPurpose Sam-

pler (MPS 2XL). Dried aqueous metabolites were dissolved in 20 µL of 2% (w/v) methoxyamine

hydrochloride (MP Biomedicals) in pyridine and held at 37◦C for 60 minutes. Subsequent

conversion to their tert-butyldimethylsilyl derivatives was accomplished by adding 30 µL N-

methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide + 1% tert-butyldimethylchlorosilane (Regis

Technologies) and incubating at 37◦C for 30 minutes. Fatty acid methyl esters (FAMEs) were

generated by dissolving dried fatty acids in 0.5 mL 2% (v/v) methanolic sulfuric acid (Sigma-

Aldrich) and incubating at 50◦C for 2 hours. FAMEs were subsequently extracted in 1 mL hexane

with 0.1 mL saturated NaCl. Cholesterol was derivatized from dried FAME fraction by first dis-

solving in 20 µL pyridine and then adding 30 µL N-methyl-N-trimethylsilyl-trifluoroacetamide
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(Macherey-Nagel) at 37◦C for 30 minutes.

4.2.5 GC/MS analysis

Gas chromatography/mass spectrometry (GC/MS) analysis was performed using an

Agilent 7890A with a 30 m DB-35MS capillary column (Agilent Technologies) connected to

an Agilent 5975C MS. GC/MS was operated under electron impact (EI) ionization at 70 eV.

One microliter sample was injected in splitless mode at 270◦C, using helium as the carrier gas

at a flow rate of 1 ml/min. For analysis of organic and amino acid derivatives, the GC oven

temperature was held at 100◦C for 2 minutes, increased to 255◦C at 3.5◦C/min, then ramped

to 320◦C at 15◦C/min for a total run time of approximately 50 minutes. For measurement of

FAMEs, the GC oven temperature was held at 100◦C for 3 minutes, then to 205◦C at 25◦C/min,

further increased to 230◦C at 5◦C/min and ramped up to 300◦C at 25◦C/min for a total run time

of approximately 15 minutes. For measurement of cholesterol, the GC oven temperature was held

at 150◦C for 1 minute, then to 260◦C at 20◦C/min, then held for 3 minutes, and further increased

to 280◦C at 10◦C/min and held for 15 minutes, finally ramped up to 325◦C for a total run time

of approximately 30 minutes. The MS source and quadrupole were held at 230◦C and 150◦C,

respectively, and the detector was operated in scanning mode, recording ion abundance in the

range of 100 - 650 m/z.

4.2.6 Mole percent enrichment calculation

Mole percent enrichment (MPE) of isotopes was calculated as the percent of all atoms

within the metabolite pool that are labeled:

∑
n
i=1 Mi · i

n
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where n is the number of carbon atoms in the metabolite and Mi is the relative abundance of the

ith mass isotopomer. Citrate MPE derived from different nutrient tracers represent the flux of

labeled nutrients into cellular central carbon metabolism.

4.2.7 Isotopomer spectral analysis (ISA)

For quantification of metabolites and mass isotopomer distributions, selected ion fragments

were integrated and corrected for natural isotope abundance using MATLAB-based algorithm

and metabolite fragments listed in Table 4.1. Total abundances were normalized by counts of

internal standard control. Isotopomer spectral analysis (ISA) for quantitation of 13C contribution

to lipogenic AcCoA was calculated as previously described [27]. Specifically, the relative

enrichment of the lipogenic AcCoA pools from a given tracer and the percentage of newly

synthesized fatty acids were estimated from a best-fit model using the INCA MFA software

package [28]. The 95% confidence intervals for both parameters were determined by evaluating

the sensitivity of the sum of squared residuals between measured and simulated palmitate mass

isotopomer distributions to small flux variations [29].

4.2.8 Oxygen Consumption Measurement

Respiration was measured in viable hPSC-derived cardiomyocytes using a Seahorse XF96

Analyzer. HPSC-derived cardiomyocytes were assayed in fresh culture media. ATP-linked

respiration was calculated as the oxygen consumption rate sensitive to 2 mg/mL oligomycin in

each culture condition and normalized by cell abundance. Each culture condition sample had at

least four biological replicates analyzed. Cell abundance was indicated by the total fluorescence

after stained with Hoechst 33342 [30].
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Table 4.1: Metabolite fragments used for GC/MS analysis.

Metabolite m/z Fragments for integration

α-Ketoglutarate 346 C14H28O5NSi2
Alanine 260 C11H26O2NSi2
Aspartate 418 C18H40O4NSi3
Lactate 261 C11H25O3Si2

233 C10H25O2Si2
Citrate 459 C20H39O6Si3
Fumarate 287 C12H23O4Si2
Glutamate 432 C19H42O4NSi3
Glutamine 431 C19H43O3N2Si3
Glycine 246 C10H24O2NSi2
Malate 419 C18H39O5Si3
Norvaline 288 C13H30O2NSi2
Proline 330 C16H36O2NSi2
Pyruvate 174 C6H12O3NSi
Serine 390 C17H40O3NSi3
Succinate 289 C12H25O4Si2
Myristate 242 C15H30O2
Palmitate 270 C17H34O2
Stearate 298 C19H38O2
Oleate 296 C19H36O2
Cholesterol 458 C33H54OSi
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4.2.9 Gene expression analysis

Total mRNA was isolated from cells using MirVana kit for RNA extraction per the

manufacturer’s protocol. Isolated RNA was reverse transcribed using Qiagen kit for cDNA

synthesis per the manufacturer’s protocol. Real-time PCR (RT-PCR) was performed using SYBR

green reagent (iTaq Universeal SYBR Green Supermix) per the manufacturer’s protocol. Relative

expression was determined using Livak (∆∆CT) method with GAPDH as housekeeping gene.

Primers used are tabulated in Table 4.2 and were taken from Harvard Primer bank [31].

Table 4.2: RT-PCR primers.

Gene Forward Primer Reverse Primer

ACACA TCACACCTGAAGACCTTAAAGCC AGCCCACACTGCTTGTACTG
ACADM GGAAGCAGATACCCCAGGAAT AGCTCCGTCACCAATTAAAACAT
ACADVL TCAGAGCATCGGTTTCAAAGG AGGGCTCGGTTAGACAGAAAG
ACLY ATCGGTTCAAGTATGCTCGGG GACCAAGTTTTCCACGACGTT
ACSL1 CTTATGGGCTTCGGAGCTTTT CAAGTAGTGCGGATCTTCGTG
BCAT1 AGCCCTGCTCTTTGTACTCTT CCAGGCTCTTACATACTTGGGA
BCAT2 GCTCAACATGGACCGGATG CCGCACATAGAGGCTGGTG
BCKDHA CCAATGCCAACAGGGTCGT CCGCGATACTGCTCAGAGG
BCKDHB GATTTGGAATCGGAATTGCGG CAGAGCGATAGCGATACTTGG
CD36 CTTTGGCTTAATGAGACTGGGAC GCAACAAACATCACCACACCA
CPT1B CCTGCTACATGGCAACTGCTA AGAGGTGCCCAATGATGGGA
FAS ACAGCGGGGAATGGGTACT GACTGGTACAACGAGCGGAT
G6PD CGAGGCCGTCACCAAGAAC GTAGTGGTCGATGCGGTAGA
GLS AGGGTCTGTTACCTAGCTTGG ACGTTCGCAATCCTGTAGATTT
GLS2 GGCCATGTGGATCGCATCTT ACAGGTCTGGGTTTGACTTGG
LDHA TTGACCTACGTGGCTTGGAAG GGTAACGGAATCGGGCTGAAT
LDHB CCTCAGATCGTCAAGTACAGTCC ATCACGCGGTGTTTGGGTAAT
LPL TCATTCCCGGAGTAGCAGAGT GGCCACAAGTTTTGGCACC
PDK4 GGAGCATTTCTCGCGCTACA ACAGGCAATTCTTGTCGCAAA
PPM1K ATAACCGCATTGATGAGCCAA CGCACCCCACATTTTCCAAG
SCD GCCCCTCTACTTGGAAGACGA AAGTGATCCCATACAGGGCTC
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4.2.10 Immunocytochemistry

HPSCs were harvested and resuspended in 1% (v/v) paraformaldehyde and then fixed in

90% cold methanol. Cell pellets were incubated with a 1:200 dilution of human cTnT primary

mouse antibody (ThermoFisher) overnight at 4◦C. The solution was removed, cell pellets washed

with PBS, and incubated with a 1:1000 dilution of the secondary antibody conjugated with

Alexa Fluor 488 at room temperature for 30 minutes. The cTnT+ cells were detected by BD

flow cytometer. For microscopy adherent cells were fixed in 4% (v/v) paraformaldehyde. Cells

were incubated with a 1:200 dilution of human cTnT primary mouse antibody for 1 hour at

room temperature. The solution was removed, cells were incubated with a 1:1000 dilution of

the secondary antibody conjugated with Alexa Fluor 488 at room temperature for 20 minutes.

Cells were subsequently washed and incubated with DAPI nucleus staining solution at room

temperature for 15 minutes. Images at 20X were captured with a Zeiss fluorescent microscope.

4.2.11 Statistical analyses

All results shown as averages of triplicates presented as mean ± SEM unless otherwise

noted. P values were calculated using a Student’s two-tailed t test; *, P value between 0.01

and 0.05; **, P value between 0.001 and 0.01; ***, P value <0.001. All errors associated with

ISA were 95% confidence intervals determined via confidence interval analysis. *, statistically

significance indicated as non-overlapping confidence.

4.3 Results

4.3.1 Cardiac differentiation increases glucose oxidation of hPSCs

We used an established protocol to differentiate hPSCs of human embryonic stem cell

H9 and human induced pluripotent stem cell IMR90iPSC into cardiac troponin T (cTNT+)
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cardiomyocytes. hPSC cardiomyocytes were differentiated and maintained in chemically defined

CDM3 medium (RPMI1640 containing 500 µg/mL O. sativa-derived recombinant human albumin

(rHA) and 213 µg/mL L-ascorbic acid 2-phosphate) and either CHIR99021 or WntC59 to

modulate Wnt/β -catenin signaling to promote cardiac lineage specific differentiation. To obtain

high purity cardiomyocyte cultures glucose was replaced with lactate for one week to select

for cardiac cells. We achieved high efficiency cardiomyocyte differentiation, with over 80%

cTNT+ cells after 21 days of differentiation (Figure 4.1A), which increased further upon lactate

selection (Figure 4.1B). As proper metabolic function is critical for in vitro development of hPSC-

derived cardiomyocytes, we subsequently investigated the metabolic features of cardiomyocytes

continually cultured in serum free CDM3 media.

We recently applied 13C/2H metabolic tracing to demonstrate that hPSCs primarily fuel

TCA metabolism using glutamine rather than glucose, as the latter is shunted toward lipid

biosynthetic pathways under most hPSC culture conditions [32]. Here we similarly quantified how

[13C]glucose contributed to TCA intermediates in hPSCs versus hPSC-derived cardiomyocytes.

Upon terminal differentiation to the cardiac lineage we observed a significant increase in glucose

oxidation within mitochondria (Figure 4.1C). Therefore, while glutamine-mediated anaplerosis

is important for maintaining hPSCs in the undifferentiated state, differentiated cardiomyocytes

exhibit increased mitochondrial glucose metabolism. However, the dependence on glucose

oxidation to generate citrate (above 50%) also suggested that hPSC-cardiomyocytes differentiated

using this approach are metabolically immature, since human adult cardiomyocytes only exhibit

limited glucose contribution to TCA substrates [24, 33].

4.3.2 Nutrient consumption of hPSC-derived cardiomyocytes

Cardiac tissue is metabolically active and requires efficient nutrient consumption to meet

the significant bioenergetic demands of beating cardiomyocytes (with full ATP turnover occurring

over 6 times per minute) [34]. Mature cardiac cells are able to produce energy from multiple
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Figure 4.1: hPSC-derived cardiomyocytes primarily oxidize glucose. (A) cTNT+ flow
cytometry of D21 differentiating CMs. (B) Immunofluorescent images of lactate-selected
CMs. (C) Central carbon metabolite enrichment from [U-13C6]glucose in undifferentiated and
differentiated H9 (left) and IMR90-iPS (right) cells.
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substrates, including fatty acids, glucose, lactate, pyruvate, ketone bodies and branched chain

amino acids [35, 36]. As such, hPSC-derived cardiomyocyte should exhibit activation of these

specific pathways upon differentiation. Importantly, the nutritional microenvironment in vivo

is vastly different than that of in vitro culture conditions used for hPSC-derived cardiomyocyte

differentiation, which could limit the metabolic maturation of these cells [37]. Notably, consistent

with reports from ex vivo rat hearts, hPSC-cardiomyocytes in CDM3 media utilized glucose

rather than glutamine to generate TCA intermediates (Figure 4.2A) [38].

We next evaluated whether these derivatives would efficiently consume other substrates

that commonly fuel cardiac metabolism by tracing individual cultures with 13C-labeled glucose,

pyruvate, lactate, glutamine, leucine, β -hydroxybutyrate and palmitate tracers. We formulated

CDM3 media with these nutrients to measure [13C]nutrient fluxes into citrate and observed

significant incorporation from most nutrients (Figure 4.2B). Notably, β -hydroxybutyrate was

significant and supplanted a significant quantify of glucose flux into the TCA cycle. However, the

efficiency of fatty acid oxidation was relatively low, as [13C]palmitate contributed minimally to

citrate in these cultures (Figure 4.2B). Since lipid oxidation is a feature of mature cardiomyocytes

[39], our results suggested that hPSC-derived cardiomyocytes may genetically activate metabolic

enzymes, but the further energetic activation of the metabolic pathways may be restricted.

4.3.3 Metabolic activation during hPSC cardiac differentiation

To further investigate how metabolic pathway flux and transcription changed during

hPSC-derived cardiomyocyte differentiation we quantified substrate contributions to citrate and

pathway-specific gene expression during the first 12 days of hPSC cardiac differentiation. Specif-

ically, cells were maintained in CDM3 media and cells were traced with designated substrates for

24 hours prior to collection of samples for transcriptional and metabolomics analyses at designed

time points (Figure 4.3). As expected in our more replete culture condition, we observed a signifi-

cant decrease of glucose and glutamine consumption over time (Figure 4.3A-B). On the other
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Figure 4.2: hPSC-derived cardiomyocytes are metabolically immature. (A) Central carbon
metabolite enrichment from [U-13C6]glucose and [U-13C5]glutamine in H9-derived (left) and
IMR90-iPS-derived (right) CMs. (B) Citrate mole percent enrichment from various 13C tracers
in complex media; H9-derived (top) and IMR90-iPS-derived (bottom) CMs.
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hand, differentiating hPSCs significantly increased oxidation of leucine and β -hydroxybutyrate

throughout the cardiac differentiation program (Figure 4.3C-D). Consistent with the observed

changes in substrate oxidation to citrate, the gene expression results showed similar trends for spe-

cific enzyme isoforms. We found expression of glycolytic enzyme LDHs significantly decreased

but not the pentose phosphate pathway enzyme G6PD (Figure 4.3E). Although the expression

level of both LDH isozymes was slightly decreased, the heart isoform LDHB exhibited higher

levels than LDHA (Figure 4.3E). The glutamine consumption gene GLSs showed an isoform

specific change, GLS gene expression increased but GLS2 significantly dropped to extremely low

level (Figure 4.3F). Importantly, our recent study comparing hPSC adapted to different nutrient

conditions found GLS2 specifically upregulated in hPSCs maintained in chemically defined media

[32]. In contrast to glutamine metabolism, branched chain amino acid (BCAA) consumption

showed an increased trend as leucine contribution to citrate was increased over time. Expression

of enzymes involved in BCAA catabolism were upregulated with increases in mitochondrial

isoform BCAT2 but not cytosolic isoform BCAT1 observed (Figure 4.3G). In addition, the mito-

chondrial phosphatase PPM1K, which promotes branched chain keto acid dehydrogenase complex

(BCKDHC) activity through dephosphorylation, was also significantly upregulated (Figure 4.3G).

Furthermore, the significant increase in β -hydroxybutyrate consumption indicated that ketone

body metabolism was highly upregulated during cardiogenesis (Figure 4.3D). Comparing to the

decrease of glucose oxidation (Figure 4.3A), these results suggested the lower efficiency of cells

to produce acetyl-coenzyme A (AcCoA) via pyruvate dehydrogenase (PDH). Importantly, PDK4,

which negatively regulates PDHC through phosphorylation, was highly upregulated (Figure 4.3H).

All these results indicated that hPSCs during cardiac lineage specific differentiation exhibited

upregulation of multiple metabolic pathway enzyme gene expressions, but the in fact metabolic

contribution relied on the present of specific nutrients such as ketone bodies.
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Figure 4.3: Day-by-day tracing reveals metabolic pathway activation and suppression
during cardiac differentiation. Citrate mole percent enrichment from (A) [U-13C6]glucose, (B)
[U-13C5]glutamine, (C) [U-13C6]leucine, and (D) [U-13C4]β -hydroxybutryrate during cardiac
differentiation. Tracer added at specified day and metabolites extracted after 24 hours. (E-H)
Metabolic gene expression during cardiac differentiation.
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4.3.4 Changes in lipid metabolism during hPSC cardiac differentiation

We previously described high rates of de novo lipogenesis in hPSCs cultured in defined

media, and hPSC cardiac differentiation is commonly performed in similarly defined culture

media [32]. We therefore hypothesized that lipid metabolism might change significantly during

cardiogenesis. We first quantified the extent of fatty acid synthesis during differentiation. We

observed a dramatic decrease in de novo fatty acid synthesis as cells committed to the cardiac

lineage (Figure 4.4A). Consistent with this observation, we also found significant less contribution

of the glucose-derived AcCoA into lipid synthesis when the ketone body, β -hydroxybutyrate, is

added (Figure 4.4B). This indicates differentiating hPSCs may more efficiently oxidize ketone

bodies for de novo fatty acid synthesis, consistent with trends observed in citrate MPE (Figure

4.3A-D).

Since nutrient lipids were very limited in serum free media, hPSC highly relied on de novo

lipid synthesis for growth and survival (Figure 4.4C), the suppression of de novo lipid synthesis,

especially for unsaturated fatty acid oleate, would negatively affect the growth and development

of cardiac differentiating hPSCs [40]. Although limited lipids were present in CDM3 media,

the gene expression of enzymes involved in lipid consumption were significantly upregulated

in cardiac differentiating hPSCs (Figure 4.4D). We found cardiac specific isoform CPT1B (the

rate-limit enzyme of long-chain fatty acid β -oxidation pathway), ACADVL (the first step enzyme

in β -oxidation), and ACADM (enzyme in medium fatty acid oxidation) were all significantly

upregulated. At the same time, expression of the fatty acid transporter CD36 was and ACSL1,

which plays important role in lipid biosynthesis and degradation, also increased. In contrast,

genes encoding lipogenic enzymes did not change appreciably, including FASN, ACLY, ACACA

and SCD.

These results suggested that hPSC-cardiomyocytes differentiate in lipid-deficient con-

ditions and are unable to adequately synthesize or oxidize lipids necessary for maturation or

energy generation consistent with developmental studies [41]. As such, cells genetically activated
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Figure 4.4: De novo lipogenesis is suppressed during cardiac differentiation. (A) Percent
newly synthesized fatty acid in 24 hours during cardiac differentiation. (B) Contribution of [U-
13C6]glucose to lipogenic AcCoA during cardiac differentiation. (C) Percent newly synthesized
palmitate and cholesterol in 24 hours in hPSCs. (D-G) Fatty acid synthesis and β -oxidation
gene expression during cardiac differentiation.
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lipid oxidation without sufficient nutrient lipid supplement from either de novo synthesis or

extracellular uptake. Consequently, the development of hPSC-derived cardiomyocyte, especially

maturation process might be artificially suppressed in serum-free CDM3 media.

4.3.5 Immature metabolic features of hPSC-derived cardiomyocytes cul-

tured in lipid insufficient environment

To test the above hypothesis, we supplied nutrient lipid mixture AlbuMAX into hP-

SCs cardiac differentiating culture on day 10 of differentiation and subsequently compared the

metabolic phenotypes of hPSC-derived cardiomyocytes with or without lipid addition on day 28

of differentiation. AlbuMAX is a lipid-rich bovine serum albumin compromising of a complex

mixture of mostly free fatty acids [42]. We quantified the fatty acid concentrations in AlbuMAX

and commonly used cell culture albumins, BSA and rHA, to determine what fatty acids were

being supplied to CMs (Table 4.3). AlbuMAX supplementation provides an exogenous source of

saturated, monounsaturated, and polyunsaturated fatty acids relative to albumin alone.

Table 4.3: Fatty acid concentrations in commonly used albumin media supplements. Data
presented as mean ± SD of technical triplicates (pmol/mg albumin).

Albumax BSA rHA

Myristate (C14:0) 570 ± 40 1 ± 2 0 ± 0
Pentadecanoate (C15:0) 200 ± 30 0.65 ± 0.03 0.7 ± 0.9
Palmitate (C16:0) 6200 ± 600 240 ± 30 120 ± 30
Palmitoleate (C16:1n7) 64 ± 8 0 ± 0 0 ± 0
Heptadecanoate (C17:0) 360 ± 40 9.9 ± 0.8 0.6 ± 0.7
Stearate (C18:0) 6500 ± 700 240 ± 30 38 ± 19
Oleate (C18:1n9) 650 ± 80 6.1 ± 0.4 5.3 ± 1.2

Importantly, lipid supplementation did not impact cardiomyocyte purity after differentia-

tion (Figure 4.5A). We also observed a moderate increase of energetic oxidative phosphorylation

(Figure 4.5B). As lipid accumulation and mitochondrial maturation are typical signs of cardiomy-

ocyte development, our results demonstrated that nutrient lipids are a crucial factor to regulate
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cardiomyocyte growth and promote further metabolic maturation. These results also indicated that

serum free chemically defined media similar to CDM3 would be not suitable culture condition to

long-term maintain and promote functional maturation of hPSC-derived cardiomyocytes in vitro.

Figure 4.5: Lipid supplementation activates mitochondrial activity. (A) cTnT+ flow cytom-
etry of CMs cultured with and without lipids. (B) Relative ATP-linked oxygen consumption for
CMs cultured with and without lipids.

4.3.6 Nutrient lipids improve metabolic maturation of hPSC-derived car-

diomyocytes

To further explore the metabolic impacts of lipid supplementation in cardiomyocyte

cultures, we performed metabolic functional test of lipid oxidation in day 28 hPSC-derived

cardiomyocytes with or without nutrient lipid supplement. We first measured the fatty acid

abundance of hPSC-derived cardiomyocytes. Nutrient lipid supplement significantly enhanced

cellular fatty acid levels, including both saturated and unsaturated fatty acids (Figure 4.6A).

These observation were consisted with the observation of nutrient lipid contributing into hPSC-

derived cardiomyocyte biomass and subcellular structure formation (Figure 4.5D). In addition,

the increased saturated fatty acids also suggested the enhanced nutrient lipid uptake to fuel

fatty acid oxidation, which met with the lipid metabolic enzyme gene expression found in the

time-dependent metabolic pathway activation analysis (Figure 4.4D). Therefore, we applied

13C-labeled glucose, glutamine, leucine, and palmitate tracers to these cultures and measured
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[13C]nutrient fluxes into citrate. We found the nutrient lipid supplement specifically decreased the

glucose oxidation and enhanced fatty acid oxidation dramatically (Figure 4.6B). Furthermore, we

also used [1-13C]octanoate and showed short chain fatty acid oxidation also increased in the hPSC-

derived cardiomyocytes cultured with nutrient lipids (Figure 4.6C). All these results suggested

that nutrient lipids improve general activation of cellular fatty acid metabolism, including both

biomass synthesis and energetic oxidation.

4.4 Discussion

Taken together, our study for first time comprehensively investigated the metabolic features

of hPSC-derived cardiomyocytes during differentiation and maturation in vitro. We demonstrated

that hPSC-derived cardiomyocytes are metabolically immature but possess the ability to oxidize

some expected substrates (i.e. ketone bodies but not fatty acids). Examination of the metabolic

state during differentiation revealed the correct phenotype of functional substrate oxidation and

required enzyme expression. However, while we observed expected downregulation of de novo

lipogenesis and upregulation of FAO enzyme expression, maintenance of DNL enzyme expression

suggested a critical need for lipid synthesis. Exogenous supplementation of fatty acids and lipids

improved cardiac mitochondrial activity and importantly FAO.

The pursuit of chemically-defined media for hPSC maintenance and differentiation inad-

vertently motivated the development of minimal medias. And while these conditions can support

the generation of proper marker expression and some desired phenotypes, the lack of exogenous

supplementation requires biosynthetic flux activation uncharacteristic of a somatic cell. Hallmarks

of a maturing CM include rapid hypertrophy after birth, acquisition of sarcoplasmic reticulum for

proper calcium handling, and maturation of mitochondrial networks, which all require increased

membrane abundance and structural lipid biogenesis [43]. However, as CMs differentiate and

mature, increased CPT1B expression requires decreased DNL to prevent malonyl-CoA-mediated
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Figure 4.6: Lipid supplementation increases intracellular fatty acid availability and β -
oxidation. (A) Relative intracellular fatty acid abundance per cell in H9 (left) and IMR90-iPS
(right) CMs cultured with and without lipids. (B) Citrate mole percent enrichment from specific
13C tracer in H9 (left) and IMR90-iPS (right) CMs. β -oxidation of fatty acids is increased when
CMs are cultured with lipids. (C) Citrate mole percent enrichment from [1-13C]octanoate in
CMs cultured with and without lipids.
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suppression of FAO [44, 45]. This is exemplified in the heart by the dramatic decrease in ACC

and increase in MCD activity during post-natal development [43, 46]. Therefore FAO and DNL

are antagonistic processes in the maturing heart and CMs are reliant on exogenous fat sources in

vivo. Additionally CDM3 utilized in this study lacks essential ω-3 and ω-6 fatty acids needed for

proper lipid composition and cardiac function [47, 48]. These essential fatty acids are needed for

cardiolipin production, important for proper mitochondrial biogenesis/fusion, and could prevent

increased oxidative metabolism [49]. Again demonstrating that CMs cannot properly mature in

vitro given nutrients supplied by gold standard media conditions.

Our approach of providing exogenous nutrients through complex, animal-derived sup-

plements provides one potential avenue to address these issues. Other works have successfully

used more replete conditions in CM differentiation through defined cocktail addition [5, 50].

Cellular physiology must guide the development of new nutrient conditions that promote desired

cell performance. Metabolic flux analysis has long been used to identify industrially-relevant

cellular bottlenecks [51] and now is being applied to understand alterations in hPSCs [32, 52]

and cancer [37]. Metabolic requirements of non-traditional substrates to support cellular growth

is an emerging concept [53, 54] and has already been used to improve cellular differentiation

[55]. For example immature hPSC-derived CMs showed a preference for oxidation of βHB when

supplied in our culture conditions, consistent with the pathophysiology of the heart, and should

be explored as potential maturation agent [56, 57]. Indeed galactose and fatty acid supplemen-

tation has already been utilized to functional mature CMs and demonstrates the utility of these

approaches [26]. These results demonstrate that environmental nutrient conditions can drive in

vitro maturation of hPSC-derived cardiomyocytes and proper metabolic phenotypes are necessary

for development.
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Chapter 5

Combinatorial CRISPR-Cas9 metabolic

screens reveal critical redox control points

dependent on the KEAP1-NRF2 regulatory

axis

5.1 Abstract

The metabolic pathways fueling tumor growth have been well characterized, but the

specific impact of transforming events on network topology and enzyme essentiality remains

poorly understood. To this end, we performed combinatorial CRISPR-Cas9 screens on a set of 51

carbohydrate metabolism genes that represent glycolysis and the pentose phosphate pathway. This

high-throughput methodology enabled systems-level interrogation of metabolic gene dispensabil-

ity, interactions, and compensation across multiple cell types. The metabolic impact of specific

combinatorial knockouts were validated using 13C and 2H isotope tracing, and, these assays

together revealed key nodes controlling redox homeostasis along the KEAP1-NRF2 signaling axis.
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Specifically, targeting KEAP1 in combination with oxidative PPP enzymes mitigated the delete-

rious effects of these knockouts on growth rates. These results demonstrate how our integrated

framework, combining genetic, transcriptomic, and flux measurements, can improve elucidation

of metabolic network alterations, and guide precision targeting of metabolic vulnerabilities based

on tumor genetics.

5.2 Introduction

Cancer cells are characterized by unchecked cellular proliferation and the ability to move

into distant cellular niches, requiring a rewiring of metabolism to increase biosynthesis and

maintain redox homeostasis. This reprogramming of cellular metabolism is now considered an

essential hallmark of tumorigenesis [1]. Since the metabolic network is highly redundant at the

isozyme and pathway-levels, reprogramming is an emergent behavior of the network and manifests

itself in non-obvious ways. For instance, a unique metabolic feature of tumor cells is a reliance

on aerobic glycolysis to satisfy biosynthetic and ATP demands [2]. This metabolic rewiring is

coordinated, in part, by the selective expression of distinct isozymes, which may benefit the cell

by offering different kinetics or modes of regulation [3–5]. However, isozyme switching is not

solely a consequence of genomic instability and instead can be a coordinated step in tumorigenesis

that facilitates cancer cell growth and survival [6, 7]. Therefore, understanding which isozymes

and pathway branch points are important and how they interact with and compensate for one

another is necessary to effectively target metabolism in cancer cells.

In this regard, the advent of CRISPR screening technology now provides a rapid, high-

throughput means to functionally characterize large gene sets [8, 9]. This analysis has led to

greater annotation of essential genes in human cancers and context-dependent dispensability

[10, 11]. Correspondingly, single-gene knockout (SKO) CRISPR screens have been able to

identify important genes in redox homeostasis and oxidative phosphorylation in conjunction
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with metabolic perturbations [12, 13]. However, in the context of mammalian metabolism the

SKO CRISPR approach comes with limitations, as redundancies and plasticity of the metabolic

network may allow the system to remodel around a SKO, thereby confounding analyses of

impact on cellular fitness. To overcome this challenge, our group and others recently developed

combinatorial gene knockout screening approaches which may provide a more suitable platform

to study gene dispensability and also systematically map their interactions [14–18].

Utilizing this combinatorial CRISPR genetic screening format, coupled with interrogation

of metabolic fluxes, we systematically studied the dispensability and interactions within a set

of genes encoding enzymes involved in carbohydrate metabolism, including glycolysis and the

pentose phosphate pathway. We illustrated functional relationships between dominant and minor

isozymes in various families and discovered multiple genetic interactions within and across

glucose catabolic pathways. Aldolase and enzymes in the oxidative pentose phosphate pathway

(oxPPP) emerged as critical drivers of fitness in two cancer cell lines, HeLa and A549. Distinctions

in this dependence are influenced by the KEAP1-NRF2 signaling axis, which coordinates the

cellular antioxidant pathway in response to redox stress. We found loss or mutation of KEAP1

E3-ubiquitin ligase upregulates NRF2-mediated transcription of genes involved in glutathione

synthesis and NADPH regeneration, making the oxPPP less important for NADPH production

and less critical for cell growth in these contexts. Thus, mutation status of the KEAP1-NRF2

regulatory axis should be considered when designing therapeutic strategies that target redox

pathways in cancer cells.

5.3 Materials and Methods

5.3.1 Cell lines and culture conditions

HEK293T, A549, HeLa-AAVS-Cas9-Hygro, A549-AAVS-Cas9-Hygro cells were grown

in DMEM supplemented with 10% FBS, 2 mM L-glutamine, 100 units/mL of penicillin, 100
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µg/mL of streptomycin, and 0.25 µg/mL of Amphotericin B. HeLa-AAVS-Cas9-Hygro and

A549-AAVS-Cas9-Hygro cells were purchased from GeneCopoeia.

5.3.2 Dual-gRNA library design and cloning

A set of 51 genes, encompassing glycolysis, gluconeogenesis, pentose phosphate pathway,

and glucose entry into the TCA cycle were selected for this study. Three unique 20-bp sgRNAs

were designed for each target gene and three scrambled, non-targeting sequence absent from

the genome were used as control. The dual sgRNA construct library comprised all pairwise

gRNA combinations between either two genes or a gene and a scramble, resulting in 11,475

double-gene-knockout constructs and 459 single-gene-knockout constructs. The dual-gRNA

library was generated as previously described (Figure S5.1A) [17]. Briefly, the oligonucleotides

with dual-gRNA spacers were synthesized by CustomArray Inc., amplified and assembled into

the LentiGuide-Puro vector (Addgene 52963). Independent bacterial clones obtained in step

I library were counted to ensure 50ÃŮ library coverage. Subsequently, the step I library was

digested by BsmBI and an insert contained a gRNA scaffold and a mouse U6 promoter were

cloned in the middle of two spacers. Again, 50x library coverage was ensured.

5.3.3 Lentivirus production

One 15cm dish of HEK293T cells at 60% confluent were transfected with 3 µg PMD2.G,

12 µg of lenti-gag/pol/PCMVR8.2, and 9 µg of lentiviral vector (library or single constructs)

using 36 µ l of Lipofectamine 2000. Medium containing viral particles were harvested 48 hrs and

72 hrs after transfection, then concentrated with Centricon Plus-20 100,000 NMWL centrifugal

ultrafilters, divided into aliquots and frozen at âĹŠ80◦C.
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5.3.4 CRISPR/Cas9 dual-gRNA screening

CRISPR Cas9 nuclease stable expressing HeLa and A549 cells were obtained from

GeneCopoeia and grown in DMEM medium with 10% FBS and Antibiotic-Antimycotic. Hy-

gromycin B was added at the concentrations of 200 µg/ml or 100 µg/ml for HeLa and A549

cells, respectively. For each screen, cells were seeded in three 15cm dishes at a density of 1x107

per ml and transduced with the lentiviral dual gRNA library at a low MOI of 0.1-0.3. Puromycin

was added at 48 h after transduction at a concentration of 5 µg/ml. Then the cells were cultured

and passaged for every 3-4 days while 1x107 cells were sampled at days 3, 14, 21 and 28 and

stored at -80◦C until extraction of genomic DNA. Two biological replicates of the screens were

performed for each cell line.

5.3.5 Quantification of dual gRNAs abundance

Genomic DNA of the cells were purified using Qiagen DNeasy Blood and Tissue Kits. To

amplify the dual gRNAs from each sample, we used 20 µg of genomic DNA as template across

ten 50 µL PCR reactions with Kapa Hifi polymerase. By testing the amplification efficiency, we

used 22 - 24 cycles at an annealing temperature of 55 ◦C with the following primers:

Forward: ACACTCTTTCCCTACACGACGCTCTTCCGATCTTATATATCTTGTGGAA-

AGGACGAAACACCG;

Reverse: GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCCTTATTTTAACTTGC-

TATTTCTAGCTCTA.

The amplicons were pooled and purified with Agencourt AMPure XP bead at a double

selection of 0.55x and then 0.8x. The samples were quantified with Qubit dsDNA High Sensitivity

Kit. To attach Illumina sequencing adaptors and indexes, we used 50 ng of purified step I PCR

product as template across four 50-µL PCR reactions with Kapa Hifi polymerase using primers of

Next Multiplex Oligos for Illumina (New England Biosciences). 7 or 8 PCR cycles were carried
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out at an annealing temperature of 72 ◦C. The PCR product were purified twice with Agencourt

AMPure XP bead at 0.8x ratio, quantified, pooled and sequenced on an Illumina HiSeq rapid-run

mode for 75 cycles paired-end runs.

5.3.6 Computation of single and double gene knockout fitness and genetic

interaction scores

Analysis was performed with a previously reported software pipeline constructed from

Python, R and Jupyter Notebooks (https://github.com/ucsd-ccbb/mali-dual-crispr-pipeline). The

following details are adapted from our published paper [17]. Briefly, the two gRNA sequences

were extracted and trimmed to 19bp from 3’ end, and then aligned to the known library sequences

with one mismatch allowed. We determined a minimum threshold for read counts based on the

histograms and masked out pairwise gRNA constructs that have read counts below the threshold.

The read counts were used for analysis of fitness and genetic interaction scores as follows:

1. Estimation of fitness of each pairwise gRNA construct. The logarithmic transformation of

the frequency of each pairwise gRNA construct in the population is:

xc = log2
Nc

∑c Nc

where Nc is the number of cells in the population expressing construct c. We assume that

each cell subpopulation grows exponentially:

Nc(t) = Nc(0)x2( fc+ f0)t

where t is a given time point; fc is the fitness of construct c; f0 is the absolute fitness of
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reference cells which don’t express any constructs. Combining these two equations, we get:

xc(t) = ac + fct− log2 ∑
c

2ac+ fct

where ac ≡ xc(0) as the initial condition and ∑c 2xc = 1 in the whole population. Fitting to

this equation from experimental data of frequencies Xc(t), we minimize the sum of squares:

E(ac, fc) = ∑
c

∑
t
[Xc(t)− xc(t)]2

Here E is invariant under the substitution fc→ fc + δ , where δ is an arbitrary constant,

which can be fixed by setting the mean non-targeting gRNA fitness to zero. To resolve this,

one should find the minimum of the function:

Eλ ≡ E−λ (∑
c

2ac−1)

where λ is the Lagrange multiplier. This solution equals:

∂Eλ

∂ac
=

∂Eλ

∂ fc
=

∂Eλ

∂λ
= 0

When the number of constructs is large, ∑c 1 >> 1, the approximation solution is:

fc =
Cov(Xc, t)

Var(t)
+δ

and

ac = Xc− fct− log2 ∑
c

2Xc− fct

where the bars indicate means over time points. The ac values do not depend on the choice

of δ .
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2. Estimation of single gRNA fitness and gRNA-gRNA interactions. For each construct contain-

ing gRNAs g and g′, we define:

fc = fg + fg′+πgg′

where πgg′ is the gRNA-gRNA interaction scores. fc is calculated from step (1). fg values

are found by robust fitting of this equation. The gRNA-level πgg′ scores are the residuals of

the robust fit.

3. Computation of gene level fitness based on weighted average of gRNA fitness. We ranked

the three gRNAs targeting to the same gene as r(g)ε0,1,2 in ascending order of | fg |. The

gene-level fitness values are calculated as the weighted means of gRNA fitness values with

weights given by the squares of gRNA ranks, r2(g). The gene-level interaction scores are

calculated as the weighted means of gRNA-gRNA interaction scores with weights given by

the products of gRNA ranks, r(g)r(g′).

4. Correction by replicates. As we performed biological replicates for each experiment, we

combine replicates for more power rather than looking for two fc separately. We fit a single

optimal fc from all data points excludes those below the threshold, with the assumption that

fc does not change across experiments while the initial conditions ac may be different. The

raw P value associate to each fc is:

tc =
fc

SE( fc)

where SE( fc) is the standard error of fc:

SE( fc) =

√
∑t [Xc(t)− xc(t)]2√
(nc−2)∑t(t2− t2)

The raw P values then are transformed into posterior probabilities, PPc, according to the
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theory of Storey. To scale the genetic interaction scores for comparison across different

experiments, we calculated a genetic interaction z score by dividing the πgg′ of each two

genes by s.d. =
√

n−2SE( fc) of genetic interaction pairs in a given experiment. We

consider an interaction to be a meaningful candidate if it has an absolute z score above 3.

5. Calculation of false discovery rates by numerical Bayesian ensemble of experiments. We

assign a fitness value to each construct c on the basis of change in fitness relative to the

standard deviation of repeated measurements. The assigned value is either 0 with probability

(1−PPc), or a random number within f c± s.d. We perform 1000 permutations and reported

gene level fg and πgg′ for each permutation. The false discovery rate (FDR) of genetic

interactions (π) is calculated as the odds ratio between the observed and permuted results in

the null model, which is obtained by mean-centering of the marginal distribution of every

πgg′ .

5.3.7 Single-gRNA construct cloning

The LentiGuide-Puro vector were linearized using restriction enzyme BsmBI at 55◦C

for 3 hours. For each individual gRNA, two oligonucleotides containing the spacer sequences

were synthesized as listed in Supplemental Table S1 in [19]. The two oligos were annealed and

extended to make a double stranded DNA fragment using Kapa Hifi polymerase. The fragment

was purified and subjected to Gibson assembly (New England Biolabs) with the linearized

LentiGuide-Puro vector.

5.3.8 Competitive cell growth assay

We developed a competitive cell growth assay to assess the effect of gene perturbations

by mixing control tdTomato+ cells with tdTomato- cells expressing a gRNA of interest (Figure

5.3A) and sampling relative growth rates through time by flow cytometry. Cas9-expressing cells

151



were transduced with EF1A- tdTomato-T2A-puromycin lentivirus and cultured under puromycin

selection for stable expression of tdTomato. To measure the negative impact of a gRNA introduced

gene perturbation on the cellular proliferation rate, the Cas9-expressing cells were cultured in 12-

well-plate and transduced with gRNA lentivirus at a high MOI (>5) . The day after transduction,

the Cas9-expressing cells were resuspended, counted, mixed with tdTomato+ Cas9-expressing

cells, and re-seed into 12-well-plate. The cells were sampled every 3 or 4 days to score the

tdTomato+/tdTomato- ratio by longitudinal flow cytometric analysis. By assuming the exponential

growth of the cells, from time t1 to t2, the growth of cells (tdTomato+ or gRNA expressing) in the

mixture population fits to the equation:

NC(t2) = Nc(t1)x2( f0+∆ fc)(t2−t1)

where Nc is the cell number of the certain cell subtype, f0 is the absolute fitness of reference

cells which in this case is the tdTomato+ cells, and ∆ fc is fitness measurements of the certain

cell subtype. For a certain gRNA (or a pair of gRNA), the ∆ fgRNA is able to be calculated easily

according to the equation without measuring the absolutely fitness of reference cells f0:

NgRNA(t2)
N0(t2)

=
Nc(t1)x2( f0+∆ fgRNA)(t2−t1)

N0(t1)x2( f0)(t2−t1)

Although the percentage of tdTomato+ cells in the mixtures with the cells expressing non-targeting

control gRNAs was stable over time, we normalize the fitness of gRNA of interest to non-targeting

control gRNAs for side by side comparisons. The cell viability of a gRNA of interest (non-log

transformed fitness) relative to non-targeting controls showed in Figure 5.3 is as follows:

FgRNA =
2(∆ fgRNA)(t2−t1)

2(∆ fgNTC)(t2−t1)
x100%
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The expected cell viability of a pair of gRNAs calculated according to:

FgRNA1,gRNA2 = FgRNA1xFgRNA2

In addition, f0 is able to be measured by counting of the absolute cell number over time base

on the equation (1). Then the effects of a gene perturbation (eg. PGD) relative to non-targeting

controls (NTC) in a certain cell subtype (eg. KEAP1 mutations) are calculable as follows:

RPGD,KEAP1 =
( f0 +∆ fPGD,KEAP1)− ( f0 +∆ fNTC,KEAP1)

f0 +∆ fPGD,KEAP1

5.3.9 RNA sequencing data analysis

RNA sequencing data were obtained from the ENCODE project (GSE30567, sample

GSM765402 and GSM758564 for HeLa and A549 cell lines respectively). The results were

expressed as the average value of reads per kilobase of transcript per million mapped reads

(RPKM) across two biological replicates. The average RPKM values were log2 transformed for

Pearson correlation analysis.

5.3.10 Stable isotope tracing

For isotopic labeling experiments, cells were cultured in glucose- and glutamine-free

media (Gibco) supplemented with 10% dialyzed FBS, 100 U/mL penicillin/streptomycin, 4mM

glutamine (Sigma), and 20 mM of either [3-2H]glucose (98%, Cambridge Isotope Laboratories),

[U-13C6]glucose (99%, Cambridge Isotope Laboratories), or [1,2-13C]glucose (99%, Cambridge

Isotope Laboratories).

Cells were rinsed with PBS before addition of tracing media. For glycolytic measurements,

basal media was changed 1hr before addition of tracer media and extracted at indicated time

intervals. For measurement of shunting through oxPPP, cells were traced for 4hrs. For estimation
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of PGD contribution to cytosolic NADPH, cells were traced for 48hrs.

5.3.11 Metabolite Extraction and GC-MS Analysis

Cells were rinsed with 0.9% (w/v) saline and 250 µL of -80◦C MeOH was added to

quench metabolic reactions. 100 µL of ice-cold water supplemented with 10 µg/mL norvaline

was then added to each well and cells were collected by scraping. The lysate was moved to a

fresh 1.5 mL eppendorf tube and 250 µL of -20 ◦C chloroform supplemented with 4 µg/mL

D31 palmitate was added. After vortexing and centrifugation, the top aqueous layer and bottom

organic layer were collected and dried under airflow.

Derivatization of aqueous metabolites was performed using the Gerstel MultiPurpose

Sampler (MPS 2XL). Methoxime-tBDMS derivatives were formed by addition of 15 µL 2%

(w/v) methoxylamine hydrochloride (MP Biomedicals) in pyridine and incubated at 45◦C for

60 minutes. Samples were then silylated by addition of 15 µL of N-tert-butyldimethylsily-N-

methyltrifluoroacetamide (MTBSTFA) with 1% tert-butyldimethylchlorosilane (tBDMS) (Regis

Technologies) and incubated at 45◦C for 30 minutes. Aqueous metabolites were analyzed by

GC-MS using a DB-35MS column (30 m x 0.25 mm i.d. x 0.25 µm, Agilent J&W Scientific,

Santa Clara, CA) in an Agilent 7890B gas chromatograph (GC) interfaced with a 5977C mass

spectrometer (MS). Electron impact ionization was performed with the MS scanning over the

range of 100-650 m/z for polar metabolites. For separation of aqueous metabolites the GC oven

was held at 100◦C for 1 min after injection, increased to 255◦C at 3.5◦C/min, and finally increased

to 320◦C at 15◦C/min and held for 3 min.

Dried organic fraction was saponified and esterified to form fatty acid methyl esters

(FAMEs) by addition of 500 µL of 2% (w/v) H2SO4 in MeOH and incubated at 50◦C for 120

minutes. FAMEs were then extracted by addition of saturated NaCl and hexane before collection

and drying of the inorganic layer. Derivatized fatty acids were analyzed by GC-MS using a select

FAME column (100 m x 0.25 mm i.d. x 0.25 µm; Agilent J&W Scientific) as above, with the
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MS scanning over the range 120-400 m/z. For separation the GC oven was held at 80◦C for 1

min after injection, increased to 160◦C at 20◦C/min, increased to 198◦C at 1◦C/min, and finally

increased to 250◦C at 5◦C/min and held for 15 min.

5.3.12 Metabolite integration and isotopomer spectral analysis (ISA)

Mass isotopomer distributions and total abundances were determined by integration of

mass fragments (Supplemental Table S1 in [19]) and correcting for natural abundances using

MATLAB-based algorithm. Glycolytic flux was estimated by normalizing pyruvate, lactate,

or alanine abundance by the sum of intracellular branched-chain amino acids abundance and

M+3 label. Oxidative PPP shunting was estimated by M+1
(M+1)+(M+2) labeling on pyruvate from

[1,2-13C]glucose [20]. Isotopomer spectral analysis (ISA) was performed to estimate contribution

of oxPPP to cytosolic NADPH as previously described [21]. ISA compares experimental labeling

of fatty acids to simulated labeling using a reaction network where C16:0 is condensation of 14

NADPHs. Parameters for contribution of PGD to lipogenic NADPH (D value) and percentage of

newly synthesized fatty acid (g(t) value) and their 95% confidence intervals are then calculated

using best-fit model from INCA MFA software [22].

5.3.13 Immunoblotting

Cultured cells were washed with cold PBS and harvested on ice with mPER (Pierce

Biotechnology) with freshly added 1x HALT inhibitor (Thermo Fisher Scientific). Protein

concentration was determined by BCA assay and equal amounts of protein were resolved on

SDS-PAGE gel and transferred to nitrocellulose membrane. Membrane was blocked with 5%

milk in TBST (Tris-buffered saline with 0.1% Tween 20) for 2-3hrs and incubated overnight at

4◦C with primary antibody: anti-Vinculin (Abcam), anti-G6PD (Cell Signaling Technologies),

anti-PGD (Santa Cruz Biotechnology), anti-KEAP1 (Proteintech), anti-HA (Abcam), or anti-Nrf2
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(Cell Signaling Technology). Blots were then incubated with secondary antibody for 1hr at room

temp, Anti-Rabbit HRP-conjugate (Cell Signaling Technology) or Anti-Mouse HRP-conjugate

(Cell Signaling Technology). Finally blots were incubated with ECL substrate (BioRad) and

imaged.

5.3.14 RT-PCR

Total mRNA was isolated from cells using RNA isolation kit (RNeasy Mini Kit; Qiagen).

Isolated RNA was reverse transcribed using cDNA synthesis kit (High-capacity cDNA Reverse

Transcription Kit; Thermo Fisher Scientific). Real-time PCR was performed using SYBR green

reagent (iTaq Universeal SYBR Green Supermix; Bio-Rad). Relative expression was determined

using Livak (∆∆CT) method with RPL27 and RPLP0 as housekeeping genes. Primers used were

taken from Primerbank [23] and tabulated in Supplemental Table S1 in [19]. All commercial kits

were used per the manufacturer’s protocol.

5.3.15 Glutathione measurement

Intracellular glutathione was measure using Glutathione Assay Kit (Sigma) per manu-

facturer’s protocol. Ten centimeter dishes of cells were assayed in quintuplicate and cells were

counted in parallel for normalization.

5.3.16 Statistical analyses

Unless indicated, all results shown as mean ± SEM of biological triplicates. P values

were calculated using a Student’s two-tailed t test; *, P value between 0.01 and 0.05; **, P value

between 0.001 and 0.01; ***, P value <0.001
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5.4 Results

5.4.1 Combinatorial CRISPR-Cas9 screening to probe metabolic networks

To systematically study the dispensability and interactions of genes underlying carbohy-

drate metabolism, we applied a combinatorial CRISPR screening approach [17] to interrogate

singly and in combination a set of 51 genes, encompassing glycolysis, gluconeogenesis, pentose

phosphate pathway, and glucose entry into the TCA cycle (Figure 5.1A). We generated 3 sgRNAs

per gene such that 9 unique constructs were present for every gene-pair, resulting in a dual-sgRNA

library consisting of 459 elements targeting genes individually, as well as 11,475 unique elements

targeting two different genes simultaneously (Table S1 in [19]). The dual-sgRNA constructs were

synthesized from oligonucleotide arrays, cloned into a lentiviral vector, and then transduced into

HeLa or A549 cells stably expressing Cas9 (Figure 5.1B, S5.1A-B). Through sampling of sgRNA

frequencies at days 3, 14, 21, and 28 (Figure S5.1C-D), both robust gene-level fitness values

(fg) and also interaction scores (πgg) were computed. Finally, impact of SKOs and dual-gene

knockouts (DKOs) on cellular growth and metabolic fluxes were validated in a targeted fashion.
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Figure 5.1: Experimental design. (A) Schematic pathway diagram of carbohydrate
metabolism, and list of 51 targeted enzymes. (B) Schematic overview of the combinato-
rial CRISPR-Cas9 screening approach. A dual-gRNA library in which each element targets
either gene-gene pairs or gene-scramble pairs, to assay dual and single gene perturbations, was
constructed from array-based oligonucleotide pools. Competitive growth based screens were
performed, and the relative abundance of dual-gRNAs were sampled over multiple time points.
The fitness and genetic interactions were computed via a numerical Bayes model and key hits
were validated using both competitive cell growth assays and measurement of metabolic fluxes.
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5.4.2 Mapping metabolic gene dependencies in glucose catabolism

Upon analyzing fitness scores for individual gene knockouts across the metabolic network

(Table S2 in [19]), we noted that for most (but not all) isozyme families, a dominant gene

showed the greatest indispensability (Figure 5.2A and S5.2A). Consistent with the notion of

a "cancer-specific" isozyme [24], HK2, ALDOA, PGK1, and PFKL all showed a fitness defect

greater than two-fold higher as compared to other isozymes. However not all families exemplified

this dynamic, with ENO1/ENO3 and the lactate dehydrogenase (LDH) family showing similar

dispensability across gene members (Figure 5.2A and S5.2A). The general dispensability of

SKOs within the LDH family is notable given the critical role of glycolysis in the maintenance

of cancer cell homeostasis and concomitant need to regenerate cytosolic NAD+ when relying

on glycolytic flux [25]. Importantly nodes central to the regeneration of reducing equivalents

(NADH and NADPH) - GAPDH, G6PD, and PGD - were found to be critical for cellular growth

(Figure 5.2A and S5.2A).

We hypothesized that gene expression could explain why certain genes were less dispens-

able and why certain families did not display a dominant member. Indeed, lower fitness score

may be associated with higher gene expression (R = -0.461, p-value = 6.7e-04 and R = -0.429,

p-value = 1.7e-03, for HeLa and A549 cells respectively). These expression-driven differences

also partially explained dynamics within isozyme families. For instance, ALDOA had a much

lower fitness score and higher gene expression as compared to ALDOB and ALDOC (Figure 5.2B).

ENO1 and ENO3 both displayed negative fitness scores and both were more highly expressed

than ENO2 (Figure 5.2B-C). However, the dispensable isozyme families LDH and PDH (key

for maintenance of glycolytic flux and oxidation of pyruvate respectively) were also found to

be highly expressed in both cell types (Figure 5.2B-C). With each family having more than two

member enzymes, this result demonstrates that vital functions of cell metabolism can be carried

out by multiple genes and show surprising resiliency through isozyme compensation or network

behavior.
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Figure 5.2: Combinatorial CRISPR screens reveal metabolic network dependencies. (A)
SKO fitness scores for HeLa cells, plotted as fg (day-1), with a more negative score representing
a loss in fitness with SKO. Plotted as mean ± SD. (B) Multi-isoform family member fitness
scores and gene expression for HeLa (top) and A549 (bottom) cells. (C) Relative comparison of
SKO fitness scores (fg) across both cells. (D) Relative comparison of genetic interaction scores
(πgg) across both cell lines. (E) Combined genetic interaction map of both cell lines. Green solid
line represents interactions observed in both cell lines. Red and blue lines represent significant
genetic interactions in A549 and HeLa cells respectively.
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To this end, SKO knockouts correlated well (R = 0.718, p-value = 3.1e-09) across both

cell lines (Figure 5.2C). This correlation extended to expression of all enzymes (R = 0.938,

p-value < 2.2e-16). Furthermore, HeLa fitness scores correlated well with previously published

HeLa screening data (R = 0.664, p-value = 1.435e-07) [10]. However, these results exemplify the

challenge in understanding metabolic topology through screening individual genes: few metabolic

genes are essential, and essential elements are typically conserved across all cell types.

We subsequently hypothesized that gene interactions could provide information on

metabolic network topology and cell-specific adaptations in these pathways. Indeed, a no-

table number of gene pairs were found to significantly interact (Figure 5.2D-E, Table S3 in [19]).

Specifically, after filtering for genes with RPKM<0.15, we observed 35 interactions (z-score <

-3) in the combined HeLa and A549 interaction network (Figure S5.2B and Table S4 in [19]), of

which 10 ( 30%) have been previously reported as protein-protein interactions [26]. Five gene

pair interactions were shared across both cell types.

Notably, the conserved interaction of ENO1/ENO3 demonstrates the possible compensa-

tion observed in SKO results (Figure 5.2A). Previous results have demonstrated that passenger

deletion of ENO1 in glioblastoma (GBM) cell lines increases their dependence on ENO2 and

generates a GBM synthetic lethality [27]. As ENO2 is only expressed in neural tissues, our results

suggest that ENO1 and ENO3 may compensate for one another in these cell lines. Additionally,

redox-associated genes, GAPDH and PGD, had many interacting partners, consistent with their

negative SKO fitness scores and metabolic functions (Figure 5.2E). As NAD(P)H is required for

both bioenergetics and biosynthetic reactions, alteration of cofactor balance or regeneration fluxes

could have large impacts on distal reactions within the network.
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5.4.3 Validation of significant SKO and DKO results on cellular fitness

and metabolic fluxes

Next, to functionally validate the screening results, competition assays and metabolic

flux measurements were conducted in the presence of SKO and DKO pairs. Competition assays

were performed by mixing control tdTomato+ cells expressing an empty vector, with tdTomato-

cells expressing a gRNA of interest (Figure 5.3A), and relative growth rates were assayed by

quantifying the ratio of +/- cells in the mixture via flow cytometry (Figure 5.3B). Dominant

family member isozyme fitness was observed in the ALDO family (Figure 5.3C), and significant

gene interactions over additive SKO effects were observed in multiple gene pairs (Figure 5.3D-

E). Correspondingly, perturbations in glycolytic flux were observed through dynamic labeling

of metabolites (i.e. pyruvate, lactate, alanine) from 13C-labeled glucose ([U-13C6]glucose)

(Figure 5.3F). Notably, DKO of ENO1 and ENO3 significantly decreased flux through glycolysis

compared to control and SKOs (Figure 5.3G, S5.3A-B) and also displayed significantly lower

fitness (Figure 5.3H). Finally, we applied specific 13C and 2H tracers to quantify how the oxPPP

contributed to NADPH regeneration (Figure 5.3I) [20, 21]. SKO knockout of oxPPP enzymes

was indeed observed to lower flux (Figure 5.3J-K) and fitness (Figure 5.3L and S5.3C) through

this pathway.
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Figure 5.3: Screening results validated through targeted fitness and metabolic flux mea-
surements. (A) Schematic of cell competition assay used to validate growth. A Cas9-expressing
cell is transduced with a sgRNA lentivirus of interest (tdTomato-) and mixed with a control
Cas9-expressing cell transduced with a tdTomato lentivirus (tdTomato+). The cells are grown
together and the percentage of control (tdTomato+) cells is used to assess relative fitness of SKO.
(B) Non-targeting control (top) is stable for duration of experiment and shows no fitness changes.
SKO of ALDOA (bottom) shows decreased fitness over time as control cells take over population.
(C) SKO competition assay of ALDO isozyme family. ALDOA shows greatest loss of fitness. (D)
Growth validation of PFKM/PGD genetic interaction. DKO (green) shows significantly greater
decrease in fitness over additive SKO effect (black). (E) Growth validation of ALDOA/GAPDH
interaction. (F) Atom transition map depicting glycolysis. Fully labeled ([U-13C6]glucose) leads
to fully labeled pyruvate, lactate, and alanine. (G) Metabolic validation of DKO interaction
in ENO1/ENO3. DKO significantly lowered flux through glycolysis over control or SKOs. †
indicates statistical significance (p<0.05) for all conditions as compared to DKO (H) Growth
validation of ENO1/ENO3 interaction. (I) Atom transition map depicting oxPPP tracing. [3-
2H]glucose labels cytosolic NADPH through oxPPP. Labeling on glycolytic intermediates from
[1,2-13C]glucose is changed by shunting of glucose through oxPPP. (J) Metabolic validation
of PGD SKO at day 4. oxPPP contributes less NADPH with PGD knockout. Plotted as mean
± 95% CI. * indicates statistical significance by non-overlapping confidence intervals. (K)
Metabolic validation of G6PD SKO at day 7. Less glucose is shunted through oxPPP with G6PD
knockout. (L) SKO competition assay of oxPPP enzymes. All experiments were performed in
HeLa cells. (C-E, G-H, K-L) Data plotted as mean ± SEM.
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5.4.4 Comparison of metabolic liabilities across cell lines reveals key role

of KEAP1-NRF2

We next focused on differences in the screens of these two cell lines to explore how

oncogenic status contributes to metabolic reprogramming. By conducting screens in A549 and

HeLa cells and comparing fitness results, we could also gain insights into the impact of SKO

results in combination with endogenous mutations. Notably, screening results suggested and we

validated that SKO of oxPPP genes (i.e., G6PD and PGD) impacted the growth and survival of

HeLa cells more dramatically than A549 cells (Figure 5.4A, S5.4A, and S5.3C) with observed

editing rates in each cell line 95% (Figure S5.3D). Intriguingly, the expression of G6PD and

PGD in these cell lines showed the opposite trend, with A549 cells expressing these genes

at significantly higher levels but having a lower dependence on them to maintain growth and

viability (Figure 5.4A and S5.4A). As the oxPPP is critical for maintaining redox homeostasis (i.e.

NAPDH regeneration) [28], mutations within control points of redox metabolism could drive this

differential sensitivity and further extend the interactions of metabolic genes to known oncogenes

or tumor suppressors.

In this regard, A549 NSCLC cells harbor a loss of function mutation in KEAP1 while this

regulatory axis is functional in HeLa cells. Loss of function mutation of KEAP1 is observed in

20-50% of non-small-cell lung cancers (NSCLCs) [29]. KEAP1 is a redox-sensitive E3 ubiquitin

ligase that targets oxidized NRF2, the master transcriptional regulator of the cellular antioxidant

response [30–32] and previous work has demonstrated an ability of NRF2 to alter metabolic fluxes

[33–35]. Consequently, we hypothesized that the mutational status of this pathway potentially

influenced oxPPP sensitivity.

Knockout of KEAP1 in HeLa cells significantly increased NRF2 levels and expression

of oxPPP enzymes G6PD and PGD (Figure S5.3E and S5.4B) consistent with the increased

expression levels observed in A549 cells (KEAP1-deficient) relative to HeLa cells (KEAP1
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WT) (Figure S5.5A, bottom left). We next determined how oxPPP flux contributed to cytosolic

NADPH pools using [3-2H]glucose in KEAP1 KO cells [21]. For all sgRNAs we observed a

significant decrease in labeling (Figure 5.4C), which indicates higher pathway flux and loss

of label via glutathione-mediated H-D exchange [36]. This enhanced glutathione buffering

capacity is consistent with the greater dispensability of oxPPP enzymes observed in A549 cells as

compared to HeLa cells (Figure 5.4A).

We next hypothesized that KEAP1 mutational status could directly alter sensitivity to

SKO of oxPPP enzymes and quantified the impact of such SKOs on the fitness and metabolism of

an isogenic panel of A549 cells. Ectopic expression of wild type (WT) KEAP1 decreased NRF2

stabilization as compared to constitutively active C273S mutant KEAP1 [37] (Figure S5.4B).

Interestingly, overexpression of either mutant or WT KEAP1 increased NRF2 levels as compared

to parental cells (Figure S5.4B). Re-expression of WT KEAP1 in A549 cells increased cell

sensitivity to PGD knockout as compared to C273S KEAP1 mutant cells (Figure 5.4D and S5.4C),

highlighting the role of KEAP1 in regulating oxPPP enzyme expression and flux. Consistent with

these fitness results and the above metabolic measurements, WT KEAP1 expression increased the

contribution of PGD to cytosolic NADPH regeneration (Figure 5.4E) and decreased expression of

oxPPP enzymes (Figure 5.4F).

Finally, we hypothesized that KEAP1 remodels redox metabolism due to its canonical

role in the cellular antioxidant response. Indeed, expression of WT KEAP1 was found to

both decrease expression of NADPH-regenerating enzymes and those involved in glutathione

(GSH) synthesis (Figure 5.4G). Consistent with decreased expression of GSH synthesis enzymes,

intracellular glutathione levels were decreased by 45% upon expression of WT KEAP1 (Figure

5.4H). Presumably, the decreased buffering capacity by GSH and lower expression of other

NADPH regenerating contributes to the increased dependence on oxPPP flux observed in cells

expressing WT KEAP1. A model therefore emerges from our screening results, whereby KEAP1

mutational status alters the relative importance of the oxPPP by modulating expression of the
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redox network to drive GSH synthesis and regeneration (Figure 5.4I).
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Figure 5.4: KEAP1 mutational status alters redox metabolism and impact of oxPPP gene
knockouts on cellular fitness. (A) Plot of cell-specific fitness scores for expressed genes.
Positive scores are SKOs that are essential in A549s and negative scores are SKOs more essential
in HeLa cells. The cell-specific essentiality scores respond to the z-score transformed residuals
of linear regression of HeLa and A549 SKO fitness, shown in Figure S5.4A. (B) Immunoblot of
KEAP1 SKO in HeLa cells. (C) Contribution of oxPPP to cytosolic NADPH with KEAP1 SKO
in HeLa cells. Plotted as mean ± 95% CI. * indicates statistical significance by non-overlapping
confidence intervals. (D) Relative PGD SKO effect in A549s with KEAP1 mutant panel. (E)
Contribution of oxPPP to cytosolic NADPH in A549s with KEAP1 mutant panel. Plotted as
mean ± 95% CI. * indicates statistical significance by non-overlapping confidence intervals. (F)
Immunoblot of A549s with KEAP1 mutant panel. (G) Normalized relative gene expression of
A549s with KEAP1 mutant panel. (H) Glutathione measurement in A549 with KEAP1 mutant
panel (n=5). (I) Schematic of how KEAP1 mutational status alters relative metabolism and
oxPPP dispensability. (D, G, H) Data plotted as mean ± SEM.
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5.5 Discussion

While it is clear that cancer cells rely on aerobic glycolysis to maintain biosynthetic fluxes

and ATP demands [38], how the underlying metabolic network topology changes in response

to specific oncogenic events is not fully clear. In this study, we comprehensively interrogated

metabolic gene dispensability, interaction, and compensation through a combinatorial CRISPR-

Cas9 screening approach. Key nodes within glycolysis were found to significantly interact with

one another (e.g. ALDOA and PGD) in an emergent network behavior. Many of these interactions

were conserved across cells of different origin, implying such enzyme interaction pairs harbor

some function that warrant future interrogation.

Other interactions were demonstrative of metabolic compensation within isozyme families

(e.g. ENO1 and ENO3) and consistent with previously described mechanisms of metabolic

synthetic lethality [27, 39]. These observed network features present a new opportunity through

combinatorial (pairwise) screening to understand if/how cells can adapt around loss of a metabolic

enzyme. Knowing if a solid tumor of interest is pharmacologically vulnerable to a metabolic

inhibitor a priori will allow for future precision medicine applications.

In fact, by comparing relative SKO scores across cell types, we were able to elucidate a

paradoxical resistance to targeting the oxPPP along the KEAP1-NRF2 axis. Even though cells

potently upregulated expression of oxPPP enzymes upon loss of KEAP1, cells were less vulnerable

to KO of enzymes in this metabolic pathway. In this case, alternate NADPH regeneration

pathways and increased antioxidant buffering by GSH pools provides compensation and survival

benefits to cells. Our NAPDH tracing data demonstrated that cells lacking functional KEAP1

exhibit higher oxPPP flux, as evidenced by reduced labeling due to increased H-D exchange

through glutathione-related pathways [36]. Indeed, elevated oxPPP enzyme levels and increased

glutathione pools would specifically increase exchange flux, resulting in the observed decrease in

labeling downstream of [3-2H]glucose. The integration of such functional measurements with
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genetic screening and transcriptional results provides better context to interpret the observed

metabolic reprogramming downstream of KEAP1-NRF2.

Our results suggest that KEAP1 mutational status must be considered when targeting

the oxPPP therapeutically. In fact, recent work has implicated KEAP1 mutational status as a

driver of metabolic reprograming and potential targeting of glutaminase in pre-clinical models of

lung adenocarcinoma [40]. Consistent with our findings, KEAP1 mutation increases intracellular

glutathione levels and need for cysteine, causing an increased need for glutamine anaplerosis

to support glutamate/cysteine antiporter flux (SLC7A11) [40, 41]. Other recent work has also

implicated KEAP1 mutational status as a driver of chemotherapeutic resistance in preclinical

models of lung cancer and further demonstrates the need for new paradigms connecting oncogenic

mutations to cancer cell survival [42].

Moving forward, it will be important to perform such screens across a larger number of

cell types to elucidate a more comprehensive picture of metabolic network reprogramming. The

high throughput methodology presented here increases the feasibility of such studies. We note

also that comparing the absolute fitness values in screens across cell lines can be confounded

by various factors. These include differences in relative cell growth and expression of CRISPR

effectors among others, and thus devising new strategies for normalization will be valuable

to improve the utility of future screening data sets. We also note the critical importance of

sgRNA efficacy, and anticipate that continued improvements in sgRNA design [43–45] will be

critical to improving consistency and signal-to-noise in the assays. Finally, layering in data from

complementary perturbation strategies such as CRISPR activation/inhibition and small molecule

inhibition should enable charting of more comprehensive networks underlying cellular function

and transformation.

Discovery of the unique metabolic features in transformed cells has spurred much interest

in exploiting metabolic vulnerabilities for drug discovery [46]. In fact, metabolic inhibitors have

been developed as single agent therapeutics and combination therapeutics for many different
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cancer types [47]. However, these agents have found varying success in the clinic due an inability

to determine proper cancer types in preclinical development. While cancer cells share common

hallmarks of metabolic reprogramming, cell-of-origin and tumorigenic drivers uniquely influence

the direction and extent of metabolic reprogramming. The new paradigm of incorporating

combinatorial CRISPR screening, transcriptomic information, and metabolic flux measurements

presented here will provide a new platform to address this limitation. By interrogating metabolism

at the network-level, new therapeutic targets may be identified, and clinicians may become better

equipped at identifying the most responsive patient populations.
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Chapter 6

Oncogenic R132 IDH1 mutations limit

NADPH for de novo lipogenesis through

(D)2-hydroxyglutarate production in

fibrosarcoma cells

6.1 Abstract

Neomorphic mutations in NADP-dependent isocitrate dehydrogenases (IDH1 and IDH2)

contribute to tumorigenesis in several cancers. While significant research has focused on the epi-

genetic phenotypes associated with (D)2-hydroxyglutarate (D2HG) accumulation, the metabolic

consequences of these mutations may also provide therapeutic opportunities. Here we apply

flux-based approaches to genetically-engineered sarcoma cell lines with an endogenous IDH1

mutation to examine the metabolic impacts of increased D2HG production and altered IDH flux

as a function of IDH1 mutation or expression. We demonstrate that R132 IDH1 mutations alter

glutamine metabolism to support D2HG production and secretion, which consumes NADPH
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at rates similar to that required for de novo lipogenesis. In turn, IDH1 R132C+/- cells exhibit

increased dependence on exogenous lipid sources for growth, as removal of medium lipids slows

cellular growth more dramatically in IDH1 mutant cells compared to those expressing wild-type

or enzymatically inactive alleles. NADPH regeneration may be limiting for lipogenesis and

potentially redox homeostasis in IDH1 mutant tumors, highlighting critical links between cellular

biosynthesis and redox metabolism.

6.2 Introduction

Mutations in isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) drive tumorigenesis in

acute myeloid leukemias, gliomas, sarcomas, and other tumors [1–4]. These gain-of-function

mutations modify the activity of IDH1 and IDH2 such that the major reaction catalyzed is the

NADPH-mediated reduction of a-ketoglutarate (aKG) to (D)2-hydroxyglutarate (D2HG) [5, 6].

In addition, mutant IDH1 and IDH2 exhibit decreased activity for the wild-type (WT) reaction,

which reversibly interconverts isocitrate and NADP+ with aKG, CO2, and NADPH [6]. Therefore,

cells harboring such IDH mutations exhibit metabolic reprogramming to compensate for these

changes in enzyme activity.

Under hypoxic conditions, IDH1 mutant cells exhibit increased oxidative TCA flux,

respiration, and decreased growth [7]. While IDH1 mutant cells do not increase reductive

carboxylation in hypoxia to the same extent as cells expressing only WT IDH1, mitochondrial

metabolism and redox pathways are re-wired to support the growth of mutant IDH1 cells in culture

and in vivo [8, 9]. More generally, IDH1 mutant cells exhibit various defects in mitochondrial

metabolism which may be therapeutically exploited by targeting NAMPT, BCL2, or other targets

[10–13]. These results demonstrate that IDH1 mutant cells exhibit similar metabolism to cells

expressing WT IDH1 under basal conditions but altered metabolic states under conditions of

bioenergetic or redox stress.
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IDH1 is not thought to be a major source of NADPH in mammals [14]. IDH1-/- mice

exhibit phenotypes only in select tissues or in response to specific stresses (i.e. nutrient depriva-

tion) [15]. In culture, overall IDH-mediated exchange flux is high, and the reverse reaction can

support lipogenesis or compartment-specific redox maintenance in cancer cells under conditions

of metabolic stress [16–18]. The oxidative pentose phosphate pathway (oxPPP) is classically

thought to be the primary pathway through which NADPH is regenerated in the cytosol [19].

Recent studies using 2H tracing support this concept, where the oxidative PPP exhibits the high-

est contribution to cytosolic NADPH regeneration supporting biosynthesis [20, 21]. Cell lines

engineered to express mutant IDH1 enzymes exhibit increased oxPPP flux and differential lipid

synthesis [22], highlighting the importance of this pathway. On the other hand, knockout of

oxPPP enzymes is particularly deleterious for cancer cell growth [23].

To better understand how mutations in IDH1 impact NADPH metabolism we applied 13C

and 2H metabolic flux analysis to an isogenic panel of fibrosarcoma cell lines that endogenously

express IDH1+/R132C or were engineered to express a WT, R132C mutant, or enzymatically dead

IDH1 enzyme after knocking out the original mutant allele [24]. These cell lines recapitulate

changes in anchorage-independent growth driven by mutant IDH1 [24] as well as the metabolic

defects documented to occur under hypoxia. 2HG production and secretion were a major sink

of NADPH in IDH1+/R132C cells, though cells could sufficiently compensate by upregulating

oxidative PPP flux. However, in lipid-deficient conditions D2HG production and secretion

presented a metabolic liability that negatively impacted de novo lipogenic flux and in vitro cell

growth. These results demonstrate that IDH1 R132 mutations may be considered a significant

redox liability in tumors, rendering them susceptible to metabolic stress.
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6.3 Materials and Methods

6.3.1 Cell culture and stable isotope tracing

HT1080 and HCT116 cells were grown in DMEM supplemented with 10% FBS and

100 U/mL penicillin/streptomycin. HT1080 parental cells were obtained from ATCC. HCT116

parental and IDH1 knock-in clones (+/R132C; 2H1 and 2A9) were obtained from Horizon

Discovery. Cells were maintained in humidified incubator at 5% CO2. For hypoxia experiments,

cells were maintained in humidified glove box (Coy) at 5% CO2 and 1% O2.

For delipidated cell growth experiments, cells were plated in basal DMEM media. Cells

were then allowed to adhere for 4 hours and then media was exchanged to delipidated media.

Final cell counts were obtained after 48 hours.

For isotopic labeling experiments, cells were plated in basal growth experiments and then

rinsed with PBS before addition of tracing media. Cells were cultured in glucose- and glutamine-

free media (Gibco) supplemented with 10% dialyzed FBS, 100 U/mL penicillin/streptomycin,

4mM glutamine, and 25mM glucose. For glutamine tracing, cells were supplied 12C glucose

(Sigma) and [U-13C5]glutamine (99%, Cambridge Isotope Laboratories). For glucose tracing,

cells were supplied 12C glutamine (Sigma) and either [3-2H]glucose (99%, Cambridge Isotope

Laboratories), [4-2H]glucose (99%, Omicron Biochemicals), [U-13C6]glucose (99%, Cambridge

Isotope Laboratories), or [1,2-13C]glucose (99%, Cambridge Isotope Laboratories). For delip-

idated tracing experiments, media was prepared in same way except using 10% dialyzed and

delipidated FBS.

6.3.2 Delipidation of FBS

Normal or dialyzed FBS (Gibco) was delipidated by first stirring 20 mg/mL fumed silica

(Sigma) for 3 hrs in ambient conditions. FBS slurry was then clarified by repeated centrifugation

at 2000 g for 20 min. Supernatant was then sterile filtered (0.2 m), aliquoted, and stored for at
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-20◦C for future use.

6.3.3 Metabolite Extraction and GC-MS Analysis

Cells were rinsed with 0.9% (w/v) saline and 250 µL of -80◦C MeOH was added to

quench metabolic reactions. 100 µL of ice-cold water supplemented with 10 µg/mL norvaline

was then added to each well and cells were collected by scraping. The lysate was moved to a fresh

1.5 mL sample tube and 250 µL of -20◦C chloroform supplemented with 4 µg/mL D31 palmitate

was added. After vortexing and centrifugation, the top aqueous layer and bottom organic layer

were collected and dried under airflow.

Derivatization of aqueous metabolites was performed using the Gerstel MultiPurpose

Sampler (MPS 2XL). Methoxime- derivatives were formed by addition of 15 µL 2% (w/v)

methoxylamine hydrochloride (MP Biomedicals) in pyridine and incubated at 45◦C for 60

minutes. Samples were then silylated by addition of 15 µL of N-tert-butyldimethylsily-N-

methyltrifluoroacetamide (MTBSTFA) with 1% tert-butyldimethylchlorosilane (tBDMS) (Regis

Technologies) and incubated at 45◦C for 30 minutes. Aqueous metabolites were analyzed by

GC-MS using a DB-35MS column (30 m x 0.25 mm i.d. x 0.25 µm, Agilent J&W Scientific,

Santa Clara, CA) installed in an Agilent 7890B gas chromatograph (GC) interfaced with a 5977C

mass spectrometer (MS). For separation of aqueous metabolites, the GC oven was held at 100◦C

for 1 min after injection, increased to 255◦C at 3.5◦C/min, and finally increased to 320◦C at

15◦C/min and held for 3 min. Electron impact ionization was performed with the MS scanning

over the range of 100-650 m/z.

Dried organic fraction was saponified and esterified to form fatty acid methyl esters

(FAMEs) by addition of 500 µL of 2% (w/v) H2SO4 in MeOH and incubated at 50◦C for 120

minutes. FAMEs were then extracted by addition of saturated NaCl and hexane before collection

and drying of the inorganic layer. Derivatized fatty acids were analyzed by GC-MS using a select

FAME column (100 m x 0.25 mm i.d. x 0.25 µm; Agilent J&W Scientific) installed in an Agilent
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7890A gas chromatograph (GC) interfaced with a 5975C mass spectrometer (MS). For separation

the GC oven was held at 80◦C for 1 min after injection, increased to 160◦C at 20◦C/min, increased

to 198◦C at 1◦C/min, and finally increased to 250◦C at 5◦C/min and held for 15 min. Electron

impact ionization was performed with the MS scanning over the range of 120-400 m/z.

6.3.4 Metabolite integration and isotopomer spectral analysis (ISA)

Isotopologue distributions and total abundances were determined by integration of mass

fragments (Table S6.1) and correcting for natural abundances using in-house MATLAB-based

algorithm.

Isotopomer spectral analysis (ISA) was performed to estimate contribution of oxPPP to

cytosolic NADPH as previously described [25]. ISA compares experimental labeling of palmitate

after 72 hr trace with [3-2H]glucose to simulated labeling using a reaction network where C16:0 is

condensation of 14 NADPHs. Parameters for contribution of PGD to lipogenic NADPH (D value)

and percentage of newly synthesized fatty acid (g(t) value) and their 95% confidence intervals are

then calculated using best-fit model from INCA MFA software [26]. Contribution of oxPPP was

then estimated by doubling D value to account for stoichiometry of the oxPPP pathway.

Estimation of contribution of glucose and glutamine to lipogenic AcCoA was conducted

as similar method to oxPPP contribution. Experimental fatty acid labeling from [U-13C6]glucose

or [U-13C5]glutamine after 72 hr trace was compared to simulated labeling using a reaction

network where C16:0 is condensation of 8 AcCoA. ISA data plotted as mean ± 95% CI. *

indicates statistical significance by non-overlapping confidence intervals.

6.3.5 Measurement of extracellular and intracellular fluxes

Initial and final concentrations of extracellular glucose, lactate, glutamine, and glutamate

were determined by Yellow Springs Analyzer 2950 instrument. In parallel, cells were plated for
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initial and final cell counts. Plated cells were pre-adapted to delipidated DMEM media for 24 hrs

before experiment.

The extracellular fluxes were described by the following differential equations:

dX
dt

= µX

dNi

dt
= qiX

dNgln

dt
= qiX− kNgln

where, X is concentration of cells, µ is cellular growth (hr-1), N is extracellular moles of metabolite

i present, qi is cell-specific consumption rate of metabolite i (mol/cell-hr), and k is first-order

degradation rate of glutamine in cell culture (hr-1). k was set to 0.0045 hr-1 as determined in

literature [27].

Solution of ODEs yielded the following equations which we used to find extracellular

fluxes:

X = X0eµt

qi =
µ(Ni−Ni,0)

( 1
µ+k)(X−X0e−kt)

qgln =
Ngln−Ngln,0e−kt

( 1
µ+k)(X−X0e−kt)

where subscript 0 signifies initial concentration.

For oxPPP measurement, glucose uptake measurement was coupled to ratio of M1
(M1+M2)

lactate label from [1,2-13C]glucose tracer.
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6.3.6 NADPH consumption

For fatty acid synthesis, consumption was defined as NADPH flux required to support

biosynthesis of myristate (C14:0), palmitate (C16:0), stearate (C18:0), and oleate (C18:1) as these

are predominantly synthesized species [14]. Cells were traced with [U-13C6]glucose for 24 hrs

and extracted for intracellular metabolites. In parallel, initial and final cell counts were taken.

Per cell molar abundance of fatty acid species was determined by GC/MS. Percentage newly

synthesized fatty acid determined by ISA with reaction network where C14:0 is condensation of

7 AcCoA, C16:0 is condensation of 8 AcCoA, C18:0 is condensation of 9 AcCoA, and C18:1

is condensation of 9 AcCoA. Molar fatty acid synthesis flux was then calculated by dividing

molar newly synthesized fatty acids by integral viable cell density over experimental time period.

NADPH flux was then calculated by stoichiometric requirement of 12 NADPH per myristate, 14

NADPH per palmitate, 16 NADPH per stearate, and 17 NADPH per oleate.

For 2HG production fluxes, consumption was defined as NADPH flux required to support

2HG efflux and maintenance of intracellular abundance. Initial and final concentrations of

extracellular 2HG were determined by GCMS analysis and use of external standard curves.

Per cell molar abundance of 2HG was determined by GCMS at final time point. Efflux was

then calculated similarly as above and dilutive flux was calculated by dividing intracellular

concentration by specific growth rate. NADPH flux was then calculated by stoichiometric

requirement of one NADPH per 2HG.

6.3.7 RT-PCR

Total mRNA was isolated from cells using RNA isolation kit (RNeasy Mini Kit; QIAGEN).

Isolated RNA was reverse transcribed using cDNA synthesis kit (High-capacity cDNA Reverse

Transcription Kit; Thermo Fisher Scientific). Real-time PCR was performed using SYBR green

reagent (iTaq Universal SYBR Green Supermix; Bio-Rad). Relative expression was determined
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using Livak (∆∆CT) method with GAPDH as housekeeping gene. Primers used were taken

from Primerbank [28] and tabulated in Table S6.2. All commercial kits were used per the

manufacturer’s protocol.

6.3.8 Quantification and Statistical Analysis

Unless indicated, all results shown as mean ± SEM of biological triplicates. P values

were calculated using a Student’s two-tailed t test; *, P value between 0.01 and 0.05; **, P value

between 0.001 and 0.01; ***, P value <0.001. Unless indicated, all normalization and statistical

tests compared to WT cells.

6.4 Results

6.4.1 Use of genetically-engineered HT1080 fibrosarcoma cell lines to dis-

sect enzymatic functions of IDH1 and mutant IDH1

D2HG production in cells harboring R132 mutations in IDH1 is dramatically increased

and has an established role in tumorigenesis. Here we interrogated redox metabolism of fi-

brosarcoma cells using a genetically-engineered panel of cell lines that recapitulate the metabolic

reprogramming associated with oncogenic IDH1 mutations. In this system, the mutant IDH1 allele

was knocked out of HT1080 fibrosarcoma cells (+/R132C) generating HT1080 heterozygous cell

line for IDH1 (+/-). Next, an isogenic IDH1 mutant panel was then re-expressed in the HT1080

IDH1 (+/-) cell line generating vector control (PB; +/-), engineered wild-type IDH1 (WT; +/+),

re-expressed IDH1 mutant (R132C; +/R132C), and catalytically-dead double mutant, (T77A;

+/ R132C-T77A) cell lines [24]. As depicted in Figure 6.1A, these cell lines exhibit distinct

reprogramming of IDH1 enzymatic activity such that PB and WT cells maintain endogenous

activity and do not readily produce D2HG, R132C mutants have reduced endogenous IDH1
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activity and produce D2HG, while T77A mutants have reduced endogenous IDH1 activity and do

not accumulate D2HG [24]. Therefore, we could interrogate the distinct metabolic consequences

of modulating WT IDH1 activity as well as neomorphic D2HG production by IDH1 R132C.

We first quantified per cell organic and amino acid abundances in each cell type, observing

R132C-specific changes in abundance of glutamine and aKG (Figure 6.1B). In addition, we

detected increased levels of non-essential amino acids (i.e. Glu, Ser, Pro, and Asp), consistent

with previously described increases in glutaminolysis in IDH1 mutant cells [7, 12]. We also

observed elevated levels of Gly3P in R132C cells, suggesting that mitochondrial and/or cytosolic

redox metabolism is perturbed in D2HG producing cells (Figure 6.1B). On the other hand,

intracellular abundance of most glycolytic metabolites, TCA metabolites, and other amino acids

were not perturbed by altered IDH1 enzymatic function (Figure 6.1B). These results are consistent

with general dispensability of IDH1 function in basal culture conditions [7].

Next, we characterized alterations in IDH flux in this isogenic fibrosarcoma cell line panel.

Under conditions of hypoxia, IDH1 and IDH2 can support de novo lipogenesis by catalyzing the

reductive carboxylation of aKG to isocitrate, which is subsequently metabolized to citrate and

acetyl-coenzyme A (AcCoA) [17]. We previously demonstrated that HCT116 cells harboring

IDH1 mutations are defective in their ability to convert glutamine carbon to citrate and AcCoA

[7]. To this end, we cultured each HT1080 cell line in the presence of uniformly-labeled 13C

glutamine ([U-13C5]glutamine) and quantified the isotopologue distribution of metabolites in

central carbon metabolism (Figure 6.1C). We observed a significant decrease in M+5 citrate

in R132C cells cultured in hypoxia compared to those expressing only functional wild-type

IDH1, indicating that R132C-expressing cells were limited in their ability to generate citrate via

reductive carboxylation (Figure 6.1D and S6.1A). We also observed a concomitant increase in

M+4 citrate in R132C cells, consistent with previously described reliance of IDH1 mutant cells on

oxidative glutaminolysis in hypoxia (Figure S6.1A-B) [7]. We also observed altered labeling of

aspartate from [U-13C5]glutamine that is consistent with decreased reductive carboxylation flux
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Figure 6.1: Metabolic characterization of isogenic IDH1-expressing HT1080 cell lines. (A)
Depiction of enzymatic activity present in each cell line. (B) Relative intracellular abundance of
glycolytic intermediates, TCA cycle metabolites, and amino acids (n=6). Normalized to PB. (C)
Atom transition map of [U-13C5]glutamine for reductive and oxidative metabolism. Glutaminase
and transamination of glutamate to aKG requires concomitant amination of keto-acids (KA) to
amino acids (AA) (e.g. Asp, Ala, Pro, Ser). Oxidative TCA flux leads to M+4 citrate. Reductive
carboxylation of aKG leads to the M+5 citrate and subsequently M+3 aspartate. (D) Percentage
of M+5 citrate from [U-13C5]glutamine in normoxia and hypoxia. (E) Percentage of M+3
aspartate from [U-13C5]glutamine in normoxia and hypoxia.
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for generating cytosolic AcCoA (Figure 6.1E and S6.1C). This isogenic panel of HT1080 cells

therefore recapitulates hallmarks of cancer cells expressing oncogenic IDH1 mutations. Notably,

WT IDH1 cells had the highest abundance of M+5 citrate and M+3 aspartate isotopologues,

while PB and T77A cells (which have only one WT IDH1 allele) had intermediate levels of these

isotopologues (Figure 6.1D-E).

6.4.2 Cytosolic NADPH contributes to D2HG production from

IDH1+/R132C cells

Basal IDH1 enzymatic function can facilitate both production and consumption of NADPH

and is decreased in IDH1 mutant cells [6, 29, 30], suggesting cellular redox may be perturbed

in these cells. To this end, we also observed elevated levels of Gly3P in R132C cells (Figure

6.1B). To investigate how redox metabolism is altered by IDH1 mutation, we cultured cells in

the presence of [4-2H]glucose and quantified enrichment on downstream metabolites (Figure

6.2A). This tracer specifically labels cytosolic NADH via GAPDH, and these deuterons are

subsequently transferred to lactate, malate, and Gly3P by downstream oxidoreductases [25]. We

observed similar labeling in all cells tested (Figure 6.2B), indicating that no gross changes in

NAD+ regeneration occurred upon perturbation of IDH1 activity.

We next examined how NADPH metabolism is altered in these cell lines, as D2HG

production by R132C IDH1 relies on the NADPH-dependent reduction of aKG. As NADPH and

NADH pools are interconnected through transhydrogenase shuttles and enzymes [31], the redox

pathways that support 2HG production are not well understood. Indeed, D2HG accumulates to

high millimolar intracellular concentrations in IDH mutant cells [5], and we observed a drastic

increase in intracellular 2HG only in R132C cells (Figure 6.2C). However, we also detected

low levels of 2HG in cell lines expressing only WT IDH1 or enzymatically-dead R132C-T77A

IDH1 and hypothesized that L2HG was endogenously produced in these cells. To investigate

the enantiomer of 2HG and source of reducing equivalents used for 2HG production in these
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Figure 6.2: Tracing NAD(P)H regeneration and 2HG production in HT1080-IDH1 cell
lines. (A) Atom transition map of [4-2H]glucose. The tracer labels cytosolic NADH through
GAPDH, leading to downstream labeling through lactate dehydrogenase (LDH), malate de-
hydrogenase (MDH), and glycerol-3-phosphate dehydrogenase (Gly3PDH). (B) Percentage
M+1 label from [4-2H]glucose is not altered by IDH1 status. (C) Relative intracellular abun-
dance of 2-hydroxyglutarate is increased in R132C cells. (D) Percentage M+1 2HG label from
[4-2H]glucose and [3-2H]glucose. (E) Depiction of L2HG and D2HG production by NAD(P)H.
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cell lines, we cultured each cell type with [4-2H]glucose or [3-2H]glucose, which label NADH

and NADPH respectively, and quantified 2HG labeling via GC-MS [25]. Results were distinct

in that [4-2H]glucose labeled approximately 10% of 2HG in PB, WT, and T77A cells while

[3-2H]glucose labeled 15% of 2HG in R132C cells (Figure 6.2D). These data suggest that

L2HG is the predominant enantiomer present in cells expressing only WT IDH1, which has

been demonstrated to be a byproduct of lactate dehydrogenase (LDH) or malate dehydrogenase

(MDH) in cancer cells (Figure 6.2E) [32, 33]. Notably, 2HG enrichment from [3-2H]glucose

was similar to the expected enrichment of cytosolic NADPH calculated from fatty acid labeling

(Figure 6.3C) [25]. L2HG enrichment was significantly lower than that observed for lactate,

malate, and Gly3P, suggesting that some 2HG is present in cells with WT IDH1. Ultimately,

these results highlight the utility of deuterium-tracing in assessing redox metabolism associated

with altered IDH1 metabolism.

6.4.3 2HG production contributes significantly to cellular

NADPH demands

We next attempted to estimate how D2HG production and other pathways contribute to

NADPH demands within cells by quantifying 2HG secretion flux. de novo lipogenesis (DNL)

has been estimated to be the largest consumer of NADPH in cultured cells [14]. We measured

DNL flux for fatty acid synthesis using [U-13C6]glucose and isotopomer spectral analysis and

compared the NADPH requirements for DNL and 2HG (Figure 6.3A). Strikingly, we found that

the NADPH demand for D2HG production was relatively similar to that required for DNL (Figure

6.3A). Importantly, most D2HG-associated NADPH consumption was from the efflux of D2HG,

consistent with significant demand of carbon associated with efflux [7].

We then asked if the consumption of NADPH by D2HG production reprogrammed the

redox metabolic network. The largest source of cytosolic NADPH in cells is the oxPPP [21]. To

probe any alterations in oxPPP redox function, we utilized a modeling approach to estimate the
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Figure 6.3: D2HG production and secretion increases NADPH demands in IDH1+/R132C

cells. (A) NADPH consumption fluxes by lipid synthesis and 2HG production in R132C cells.
(B) Atom transition map of [3-2H]glucose. (C) Contribution of oxPPP to cytosolic NADPH in
fibrosarcoma panel. (D) 2HG abundance in parental HT1080 cells upon treatment with 10 µM
AGI-5198. (E) Contribution of oxPPP to cytosolic NADPH in parental HT1080 cells with 10
µM AGI-5198. (F) Contribution of oxPPP to cytosolic NADPH in non-native IDH1-R132H
engineered HCT116 cells. (C,E-F) Data plotted as mean ± 95% CI. * indicates statistical
significance by non-overlapping confidence intervals.
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fraction of NADPH supplied by oxPPP (Figure 6.3B) [25]. Despite the increased R132C-specific

consumption of NAPDH by D2HG production, we found no change in the relative proportion of

NADPH supplied by the oxPPP across these cell lines (Figure 6.3C). To control for any clonal

effects associated with production of the cell line panel, we then inhibited D2HG production in

the parental HT1080 cell line using AGI-5198, a pharmacological inhibitor of mutant IDH1 [34].

We observed a 90% reduction in 2HG/aKG levels with AGI-5198 addition, implying a reduction

in NADPH consumption by D2HG production (Figure 6.3D). However, inhibition of NADPH

consumption did not alter NADPH supplied by oxPPP (Figure 6.3E). Taken together our data

indicate that D2HG production does not alter the contribution of oxPPP flux to redox homeostasis,

as cells are able to sufficiently rewire pathways to compensate for the increased NADPH demand.

Indeed, we also quantified the contribution of oxPPP flux to lipogenic NADPH using engineered

HCT116 cells with knock-in of mutant IDH1. IDH1+/R132H HCT116 cells exhibited increased

contributions of oxPPP to lipogenic NADPH pools (Figure 6.3F), highlighting the ability of cells

to reprogram redox pathways to meet the increased demands for NADPH caused by oncogenic

D2HG production.

6.4.4 De novo lipogenesis competes with D2HG production for NADPH

Our results suggest that R132C cells are able to compensate for NADPH consumed by

D2HG production under normal growth conditions. However, this metabolic defect could become

a liability in the context of altered nutrient conditions. Recent work has demonstrated the utility

in altering extracellular nutrient conditions to understand cancer-specific metabolic liabilities and

sparked an interest in engineering more physiologic media [35]. The tumor microenvironment is

generally considered to be nutrient-deficient, and tumor cells upregulate DNL to synthesize lipids

necessary for growth [36]. Indeed, lipogenesis is necessary for in vitro and in vivo tumor growth,

and limitations in this pathway renders tumor cells more susceptible to chemotherapeutics [37].

To this end, we hypothesized that removal of exogenous lipids from cell culture media could alter
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R132C-specific growth by limiting the NADPH available for DNL flux. We observed that R132C

cell growth was specifically decreased in delipidated culture conditions (Figure 6.4A). We also

confirmed that R132C cells exhibited decreased molar palmitate synthesis flux, suggesting the

observed growth defect was mediated by an inability to synthesize enough lipids (due to limited

NADPH) (Figure 6.4B).

Figure 6.4: D2HG production limits NADPH for DNL in lipid-deficient conditions. (A)
Relative cell number after 48 hrs of cell growth in delipidated conditions. (B) Normalized molar
palmitate synthesis flux. (C) Normalized desaturation index (C18:1/C18:0). (D) Extracellular
glucose uptake and lactate efflux. (E) Normalized oxPPP flux in delipidated conditions.

We then asked what specific metabolic liability could be causing DNL-defect in R132C

cells. DNL is critical biosynthetic process that requires the coordination of many enzymes
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and sufficient anabolic substrates (i.e. AcCoA and NADPH). As many possible factors could

decrease DNL, we investigated potential drivers of this observed growth defect (Figure 6.4A).

We observed no alteration in the contribution of oxPPP flux to lipogenic NADPH, indicating

that other pathways were not distinctly compensating (Figure S6.2A). 2HG has been widely

characterized as an inhibitor of aKG-dependent dioxygenase class enzymes that include important

epigenetic modifiers [38–41]. We also observed that expression of genes associated with fatty

acid synthesis was not altered in R132C cells, implying that the production of D2HG, rather than

a downstream epigenetic modification, was causing defect (Figure S6.2B). We detected a slight

increase in glucose contribution to lipogenic AcCoA, consistent with 2HG production shunting

glutamine carbon away from DNL (Figure S6.2C). We also observed a concomitant increase in

net glutamine anaplerosis in R132C cells cultured under delipidated conditions that could support

2HG production without limiting carbon for DNL (Figure S6.2D). However, these changes are

unlikely to account for the increased NADPH demand in R132C cells.

On the other hand, the desaturation index (C18:1/C18:0) quantified from total fatty acids in

each cell line was significantly decreased in R132C cells (Figure 6.4B). Production of desaturated

fatty acid species requires SCD activity, molecular oxygen, and NADPH [42, 43]. Since we

did not detect changes in SCD expression (Figure S6.2B) and molecular oxygen is not limiting

under normoxic conditions, this result suggests that NADPH was limiting R132C cells and could

explain the decreased palmitate synthesis observed in R132C cells (Figure 6.4B).

Finally, to better understand how NADPH regeneration fluxes were altered, flux through

glycolysis and the oxPPP were quantified across the cell panel. We observed increased glycolytic

fluxes in both R132C and T77A cells as compared to WT (Figure 6.4D). Increased glycolytic flux

is generally associated with altered mitochondrial state, but our data suggests that mitochondrial

pathways are maintained by reprogramming of glutamine metabolism [7]. However, increased

glucose uptake can also result in elevated oxPPP flux if branching is unchanged. We cultured

cells in the presence of [1,2-13C]glucose tracer to understand the relative shunting of glucose
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carbon through glycolysis and the oxPPP [44]. We observed no difference in relative shunting

to the oxPPP across the cell lines (Figure S6.2E). However, when combined with the increased

glucose uptake and lactate efflux detected in R132C cells, these data indicate that oxPPP flux is

significantly increased to meet the additional NADPH demands for D2HG production (Figure

6.4E). Importantly, R132C cells increase glucose uptake and oxPPP flux to a greater extent than

T77A cells, implying that oxPPP flux and NADPH production is further increased to support

D2HG production (Figure 6.4E). In turn, the cells are unable to fully compensate for these

NADPH demands and growth is reduced in lipid-deficient conditions.

6.5 Discussion

The unique nature of IDH mutant tumors has motivated a large research effort to identify

potential targets within their signaling and metabolic networks [45–48]. The dramatic accu-

mulation of 2HG in these tumors has focused much attention on the role of aKG-dependent

dioxygenases in driving tumorigenesis [49]. However, as IDH1 and IDH2 play critical roles in

TCA metabolism and redox homeostasis, a greater understanding of the metabolic reprogramming

required to support this unique liability may yield clues to additional therapeutic opportunities

[50].

Maintenance of redox homeostasis is essential for proper cell function, as pyridine

nucleotides orthogonally connect bioenergetic and biosynthetic metabolic pathways [51]. Specifi-

cally, the regeneration of NADPH is required for anabolism of lipids, DNA, and proline as well

as maintenance of reduced glutathione pools [14]. However, the role of IDH1 in the maintenance

of redox homeostasis has been underappreciated. IDH1 can functionally participate in a redox

shuttle that interconnects mitochondrial and cytosolic NAD(P)H pools [52]. Indeed, this shuttle

has been demonstrated to be critical for redox homeostasis in anchorage-independent conditions

[16]. Upregulation of IDH1 can promote the survival of pancreatic cancer cell lines under nutrient-
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limited conditions [53]. However, the largest source of NADPH in the cell is the oxPPP [14, 21,

25]. Targeting of oxPPP enzymes is particularly deleterious to growth of cancer cell lines [23, 54,

55], and coordinated therapeutic strategies that promote redox stress (e.g. nutrient modulation,

radiation) while targeting redox pathway may become attractive options in future [56].

Our work demonstrates the potential for such strategies (albeit in cell culture). We found

that D2HG production is a major sink of NADPH, but redox metabolism is reprogrammed to

support production. However, when cells are challenged by lipid-deficiency that drives cells to

upregulate DNL flux, D2HG production becomes a metabolic liability that limits growth. Similar

findings have recently been reported using engineered HCT116 cells [22]. Other pathways have

also been described to compensate for such redox defects. For example, IDH1 mutant glioma

cells maintain redox homeostasis by enhancing the mitochondrial production of proline [57].

Metabolic profiling of low grade gliomas has also correlated tumor progression with altered

redox state [58]. Our results and others highlight potential therapeutic efficacy in targeting redox

metabolism for mutant IDH tumors.
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Chapter 7

Conclusions

The works presented in this thesis highlight the complex regulation of metabolic pathways

that support redox homeostasis. Cells must maintain the proper balance of oxidized and reduced

forms of pyridine nucleotides [NAD(P)+] for biosynthetic and bioenergetic needs. However,

the pathways that supply reducing equivalents also supply critical metabolic intermediates for

other processes. Moreover, altered consumption of compartment-specific reducing equivalents or

metabolic intermediates can reprogram metabolic pathways at a network-level. These phenomena

demonstrate the critical need to understand how microenvironment and genotype affect redox-

specific cell behavior.

The first chapter, ”Reverse engineering the cancer metabolic network using flux analysis

to understand drivers of human disease,” examines the emerging field of cancer metabolism. This

work introduces the theoretical frameworks and technological advancements that have enabled

the development of metabolic flux analysis for biomedical studies. Then the work reviews the

recent developments in the field that have required this technique. Probing metabolic network

function will further elucidate phenotypes that are found in cancer subsets and hopefully generate

new therapeutic windows.

The second chapter, ”Enzymatic passaging of human embryonic stem cells alters central
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carbon metabolism and glycan abundance,” explores how routine passage methods alter the

metabolism of human pluripotent stem cells. Enzymatic passaging was found to perturb glucose

metabolism in the period immediately after passaging. Detailed tracing and mass spectrometry

revealed that high rates of hexosamine biosynthesis supports repair of the cleaved glycolayx. This

illustrates a repeated insult to stem cell cultures that could drive drift in vitro. Future work will

be to engineer better passaging conditions that can supply requisite nutrients while maintaining

proper performance for stem cell-applications.

The third chapter, ”Distinct metabolic states can support self-renewal and lipogenesis

in human pluripotent stem cells under different culture conditions,” investigates the metabolic

reprogramming of human pluripotent stem cell metabolism due to culture conditions. Chemically-

defined medias have largely supplemented more replete, feeder cell-supported conditions in stem

cell culture due to ease of use and reduced variability. However, while all commercially available

medias can maintain pluripotency, the effect on metabolism and cellular performance remained

understudied. We found that these chemically-defined conditions force cells to reside in increased

biosynthetic states to support increased de novo lipogenesis and reprogram the metabolic network.

These results demonstrate that human pluripotent stem cells can maintain pluripotency in distinct

metabolic states. Future work will be to understand how these distinct states affect stem cell

function and ability to differentiate into useful cell products.

The fourth chapter, ”Lipid availability influences the metabolic maturation of hPSC-

derived cardiomyocytes,” extends the work from Chapter 3 to stem cell-dervied cardiomyocytes.

Stem cell-derived cardiomyocytes are characterized by an immature phenotype presenting an

obstacle to their utility in drug toxicity and regenerative medicine applications. Metabolic flux

analysis revealed that stem cell-derived cardiomyocytes can oxidize some expected cardiac sub-

strates but lack the ability to activate fatty acid oxidation - demonstrating their immaturity. Tracing

throughout differentiation revealed that these cardiomyocytes acquire the correct metabolic "pro-

gram" during lineage specification but have abnormal lipid metabolism. Reminiscient of the stem
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cell work, nutrient-poor media conditions force cardiomyocytes into abnormal lipid biosynthetic

state that prevents fatty acid oxidation. By supplying complex sources of fat, cardiomyocytes can

undergo metabolic maturation while maintaining proper electrophysiology. Development of more

defined fat sources and cardiac-specific nutrient cocktails will be necessary to further this work.

The fifth chapter, ”Combinatorial CRISPR-Cas9 metabolic screens reveal critical redox

control points dependent on the KEAP1-NRF2 regulatory axis,” investigates how the oncogenic

status of a cell controls the dispensability and interaction of metabolic enzymes. Metabolic

networks are highly redundant with many genes catalyzing the same reaction and many parallel

pathways. To probe glucose metabolism in a unbiased, network-level, we utilized combinatorial

CRISPR screening technology to rapidly assess the growth defects associated with single- and

dual-gene knockouts. While gene expression mainly drove the essentiality of a gene, the oxidative

pentose phosphate genes were more highly expressed but less essential in A549 cells as compared

to HeLa cells. We hypothesized that this differential sensitivity could be driven by a mutation in

KEAP1, a key tumor suppressor that controls redox metabolism. Modulation of KEAP1 altered the

oxidative pentose phosphate pathway function and sensitivity to targeting by reprogramming the

cellular antioxidant response. These results suggest that KEAP1 tumors status must be considered

when targeting redox-associated pathways. Future work will be to utilize this platform technology

on other metabolic sets to understand how metabolic genes work together to drive cancer survival.

The sixth chapter, ”Oncogenic R132 IDH1 mutations limit NADPH for de novo li-

pogenesis through (D)2-hydroxyglutarate production in fibrosarcoma cells,” interrogates how

mutations in IDH1 alter redox metabolism and NADPH availability. These neomorphic mutations

modify the activity of isocitate dehydrogenase to favor the NADPH-dependant reduction of

alpha-ketoglutarate to 2-hydroxyglutarate, the latter reaching millimolar concentrations in the cell.

We found that NADPH consumption for 2-hydroxyglutrate synthesis approached similar levels to

that for de novo lipogenesis. Surprisingly the IDH mutant cells were generally found to tolerate

this NADPH sink by reprogramming the oxidative pentose phosphate pathway. IDH mutation
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only represented a redox liability when removing exogenous sources of fat and forcing the cell

to maximize de novo lipogenesis. These results demonstrate that IDH mutant is a considerable

redox liability in the cell only when the redox metabolic network is stressed. Future work will be

to connect these in vitro findings to preclincal models by modulating availability of fat through

dietary modulation or pharmacological inhibition of de novo lipogenesis.

Cellular metabolism is one of the highest levels of phenotypic function, dynamically

integrating microenvironmental and genetic cues. However probing these deep cellular phenotypes

require systems-level analysis and network-level integration of orthogonal data types. Taken

together these chapters demonstrate the utility in studying functional metabolic networks and

suitable methodologies (i.e. CRISPR screening and metabolic flux analysis) for this kind of

work. Understanding the key metabolic and genetic regulators of compartment-specific redox

metabolism should enable discovery of mechanistic drivers of disease and allow researchers

exploit these redox liabilities for novel treatment modalities.

210



Chapter S1

Supplement to Chapter 1

S1.1 Abbreviations

BCAA - branched-chain amino acid; ETC - electron transport chain; FOCM - folate-

mediated one carbon metabolism; HIFs - hypoxia-induced factors; ISA - isotopomer spectral anal-

ysis; ODE - ordinary differential equation; oxPPP - oxidative pentose phosphate pathway; 2HG -

2-hydroxyglutarate; 3PG - 3-phosphoglycerate; 6PG - 6-phosphogluconate; AcCoA - acetyl coen-

zyme A; aKG - alpha-ketoglutarate; Asp - aspartate; CH2-THF - 5,10-methylenetetrahydrofolate;

Cit - citrate; For - formate; Fum - fumarate; G6P - glucose 6-phosphate; GAP - glyceraldehyde

3-phosphate; Glc - glucose; Glu - glutamate; Gln - glutamine; Gly - glycine; Lac - lactate; Mal

- malate; Oac - oxaloacetate; Pro - proline; Pyr - pyruvate; Ru5P - ribulose 5-phosphate; Ser -

serine; Suc - succinate;
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Chapter S2

Supplement to Chapter 2

S2.1 Abbreviations

AcCoA - Acetyl coenzyme A; GC/MS - Gas chromatography/Mass spectrometry; MID

- mass isotopomer distribution; hESC - human embryonic stem cell; ISA - isotopomer spectral

analysis; MFA - metabolic flux analysis; UGlc - [U-13C6]glucose;

Table S2.1: MIDs for unlabeled hydrosylate fragments. Avg denotes average and SD denotes
standard deviation of three independent hydrosylates.

MID Glucose Galactose Glucosamine Mannosamine Ribose Adenine Guanine
Avg SD Avg SD Avg SD Avg SD Avg SD Avg SD Avg SD

M+0 100.22 0.15 100.26 0.18 101.37 0.98 97.25 1.91 100.53 0.27 99.34 0.10 100.06 0.28
M+1 -0.15 0.16 -0.09 0.26 -0.73 0.86 1.58 2.48 -0.46 0.32 0.09 0.08 -0.40 0.09
M+2 -0.20 0.04 -0.11 0.46 -0.44 0.30 0.65 0.56 -0.16 0.23 0.04 0.06 0.14 0.14
M+3 0.04 0.04 -0.02 0.01 -0.06 0.26 1.70 2.03 0.09 0.07 0.37 0.02 0.08 0.10
M+4 0.06 0.03 0.05 0.05 -0.12 0.13 -1.26 0.56 0.07 0.04 0.06 0.01 0.16 0.13
M+5 0.02 0.01 -0.11 0.01 -0.05 0.06 -0.04 0.14 -0.06 0.03 0.05 0.01 -0.02 0.04
M+6 0.01 0.01 0.00 0.01 0.02 0.01 0.11 0.06 - - - - - -
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Figure S2.1: Polar metabolite labeling and abundances. (A) Mass isotopomer distribution
(MID) of citrate from [U-13C6]glucose (UGlc). (B) Relative abundances of lactate, alanine,
and citrate 4 hours after passaging. (C) Relative abundances of lactate, alanine, and citrate one
day after passaging (i.e., labeled from 24-28 hours after passaging). (D) Percentage of labeled
metabolites from UGlc 0-4 hours after passaging with Versene or trypsin. Error bars represent
SD (A-D) for three replicates. *, P value between 0.01 and 0.05; **, P value between 0.001 and
0.01; ***, P value <0.001 by Student’s two-tailed t test.
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Table S2.2: MIDs for labeled hydrosylate fragments. Avg denotes average and SD denotes
standard deviation of three independent hydrosylates.

MID Glucose Galactose Glucosamine Mannosamine Ribose
Avg SD Avg SD Avg SD Avg SD Avg SD

M+0 74.25 0.13 76.41 0.46 87.60 0.25 87.55 0.33 89.74 0.08
M+1 0.38 0.13 0.21 0.23 -0.07 0.28 0.44 1.34 -0.16 0.12
M+2 0.06 0.01 -0.01 0.07 0.01 0.13 -0.41 1.09 0.41 0.08
M+3 1.32 0.03 1.17 0.23 0.83 0.10 1.54 0.11 10.19 0.11
M+4 24.09 0.13 21.58 0.29 11.83 0.11 11.96 0.80 0.02 0.02
M+5 -0.11 0.03 0.01 0.15 -0.13 0.15 -0.84 0.55 0.04 0.07
M+6 0.01 0.01 0.21 0.07 0.24 0.11 -0.10 0.21 - -
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Figure S2.2: Biomass metabolite abundances. (A) Relative abundances of biomass-derived
versus free metabolites measured in hydrolyzed interface versus aqueous (polar) extracts, re-
spectively. (B) Relative abundance of biomass metabolites 4 hours after passaging. Error bars
represent SD (A-B) for three replicates. *, P value between 0.01 and 0.05; **, P value between
0.001 and 0.01; ***, P value <0.001 by Student’s two-tailed t test.
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Chapter S3

Supplement to Chapter 3

S3.1 Abbreviations

AcCoA - acetyl-CoA; ÎśKG - Îś-ketoglutarate; Ala - alanine; Asp - aspartate; Asn -

asparagine; Lac - lactate; Cit - citrate; Fum - fumarate; Glc - glucose; Glu - glutamate; Gln -

glutamine; Gly - glycine; 2HG - 2-hydroxyglutarate; Mal - malate; Oac - oxaloacetate; Olea -

oleate; Palm - palmitate; 3PG - 3-phosphoglyceric acid; Pro - proline; Pyr - pyruvate; Ru5P -

ribulose-5-phosphate; Ser - serine; Suc - succinate

S3.2 Supplemental Methods

S3.2.1 Cell culture and media

Human embryonic stem cell lines HUES9 and WA09 (H9) were provided by Prof. Shyni

Varghese (University of California, San Diego) and Prof. Sean Palecek (University of Wisconsin-

Madison), respectively. HESCs were originally maintained on a layer of irradiated CF-1 murine

embryonic fibroblasts (P3, MEFs) (MTI-GlobalStem) in DMEM/F12 medium with 20% knockout

serum replacement (KSR), 1X MEM non-essential amino acid solution (NEAA), 1 mM L-
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glutamine, 1X 2-mercaptoethanol (2-ME), and 4 ng/mL basic fibroblast growth factor recombinant

human protein (bFGF). All components were purchased from Life Technologies. Induced

pluripotent stem cell line iPS(IMR90)-c4 was also provided by Prof. Sean Palecek. IPSCs were

originally cultured in mTeSR1 medium (Stem Cell Technologies). All hPSCs experiments were

conducted with cells ranging from 30 and 70 passages.

MEF-conditioned medium was produced by culturing 1 million P3 irradiated CF-1 MEF

(MTI-GlobalStem) in 10 mL DMEM/F12 medium with 20% KSR, 1X NEAA, 1 mM L-Glutamine

and 1X 2-ME The conditioned medium was collected every 24 hours from day 2 to day 7 and

pooled. Before culturing hESC, the conditioned medium was supplemented with fresh 10 ng/mL

bFGF. All components were purchased from Life Technologies.

AlbuMAX media was made by dissolving AlbuMAX I Lipid-Rich BSA (Life Technolo-

gies; 1-1.6% w/v) and ultra-fatty acid free BSA (Roche; 1% w/v) into E8 basal media or tracer

E8 basal media. E8 supplement was then freshly added to lipid-containing basal media.

In [U-13C16]palmitate tracer experiments, [U-13C16]palmitate was first non-covalently

conjugated to ultra-fatty acid free BSA (Roche) by dissolving [U-13C16]sodium palmitate (Cam-

bridge Isotopes) to a concentration of 2.5 mM in 150 mM sodium chloride solution at 70◦C

and adding 40 mL palmitate solution into 50 mL of 0.34 mM BSA solution at 37ÂřC. A 1 mM

working BSA-conjugated [U-13C16]palmitate solution was prepared by adjusting the pH to 7.4

and diluting to a final volume of 100 mL with 150 mM sodium chloride. In experiments, 50 µM

BSA-conjugated [U-13C16] palmitate and 1 mM carnitine were added to culture medium.

Human cancer cell lines, H1299, HCT116, 143B, SW1353, H358, Hep3b, Huh7 and A549,

were maintained in DMEM supplemented with 10% fetal bovine serum (FBS). For measurement

of oxidative PPP contribution to lipogenic NADPH, tracer media consisted of either glucose

free DMEM medium with 10% dialyzed FBS or glucose free E8 medium, supplemented with

[3-2H]glucose (Cambridge Isotopes). All components were purchased from Life Technologies.

For tracer experiments, culture medium was removed, cells were rinsed with PBS, and
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tracer media were added to wells. Cells were maintained in tracer media for 24 hours before

metabolite extraction.

All cells were maintained in a humidified, 37◦C incubator at 5% CO2.

S3.2.2 Detection of 2-hydroxyglutarate isoforms

Derivatization of 2-hydroxyglutarate (2HG) with methanol/methyl chloroformate (Sigma-

Aldrich) was performed following essentially the protocol described previously [1]. The deriva-

tives were extracted by the addition of 70 µL of chloroform. To check the enantiomer separation

and to evaluate retention times, standard solutions of both R-α-hydroxyglutaric acid disodium

salt and S-α-hydroxyglutaric acid disodium salt (Sigma-Aldrich) were prepared and derivatized

in the same way.

A sample volume of 2 µL was injected into a split/splitless inlet, operating in pulsed

splitless mode at 230◦C. The injection pulse pressure was set to 15 psi until 1 minute. The gas

chromatograph was equipped with a Rt-ÎşDEXsa (length: 30 m, I.D.: 0.25 mm, film: 0.25 µm)

capillary column (Restek). The GC oven temperature was held at 70◦C for 1 minute and increased

at 4◦C/min to 150◦C. After 5 minutes, the temperature was increased at 3◦C/min to 190◦C, then

held at that temperature for 5 minutes. The total run time for each sample was about 40 minutes

[2]. The transfer line temperature was set constantly to 280◦C. Full-scan mass spectra were

acquired from m/z 70 to 500. Other conditions are same as for other metabolite detection. For

quantification, measurements of the derivatives were performed in SIM mode using the following

masses: m/z 159, m/z 175.1 (quantification ion) and m/z 202.1. The dwell time for each ion was

set to 150 ms. All GC-MS chromatograms were processed using MetaboliteDetector [3].

S3.3 Supplemental Tables and Figures
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Table S3.1: Metabolite fragments used for GC/MS analysis.

Metabolite Carbons Derivatization m/z Fragments for integration

α-Ketoglutarate 1,2,3,4,5 tBDMS 346 C14H28O5NSi2
Alanine 1,2,3 tBDMS 260 C11H26O2NSi2
Aspartate 1,2,3,4 tBDMS 418 C18H40O4NSi3
Lactate 1,2,3 tBDMS 261 C11H25O3Si2

2,3 233 C10H25O2Si2
Citrate 1,2,3,4,5,6 tBDMS 459 C20H39O6Si3
Fumarate 1,2,3,4 tBDMS 287 C12H23O4Si2
Glutamate 1,2,3,4,5 tBDMS 432 C19H42O4NSi3
Glycine 1,2 tBDMS 246 C10H24O2NSi2
2-Hydroxyglutarate 1,2,3,4,5 tBDMS 433 C19H41O5Si3
Malate 1,2,3,4 tBDMS 419 C18H39O5Si3
Norvaline 1,2,3,4,5 tBDMS 288 C13H30O2NSi2
Proline 1,2,3,4,5 tBDMS 330 C16H36O2NSi2
Pyruvate 1,2,3 tBDMS 174 C6H12O3NSi
Serine 1,2,3 tBDMS 390 C17H40O3NSi3
Succinate 1,2,3,4 tBDMS 289 C12H25O4Si2
Cholesterol 1-27 TMS 458 C30H54OSi
Coprostan-3-ol 1-27 TMS 370 C27H45
Heptadecanoate 1-17 FAME 284 C18H36O2
Oleate 1-18 FAME 296 C19H36O2
Palmitate 1-16 FAME 270 C17H34O2
Stearate 1-18 FAME 298 C19H38O2

Table S3.2: Primers used for gene expression analysis.

Gene Forward Primer Reverse Primer Primerbank ID

ACACA TCACACCTGAAGACCTTAAAGCC AGCCCACACTGCTTGTACTG 38679973c3
ACLY ATCGGTTCAAGTATGCTCGGG GACCAAGTTTTCCACGACGTT 38569422c2
FASN AAGGACCTGTCTAGGTTTGATGC TGGCTTCATAGGTGACTTCCA 41872630c1
GAPDH CTGGGCTACACTGAGCACC AAGTGGTCGTTGAGGGCAATG 378404907c3
G6PD ACCGCATCGACCACTACCT TGGGGCCGAAGATCCTGTT 108773794c2
GLS2 GGCCATGTGGATCGCATCTT ACAGGTCTGGGTTTGACTTGG 20336213c3
OCT4 CTTGAATCCCGAATGGAAAGGG CCTTCCCAAATAGAACCCCCA 4505967a3
SCD TTCCTACCTGCAAGTTCTACACC CCGAGCTTTGTAAGAGCGGT 53759150c3
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Figure S3.1: Atom transition maps of labeled glutamine species. Metabolite abbreviations
described in Supplemental Text. (A) Schematic of atom transitions in the presence of [U-
13C5]glutamine. 12C carbons depicted with open circles. 13C carbons depicted with filled
circles. Dashed lines indicate multi-step atom transitions. M+(n) indicates the number (n) of 13C
atoms incorporated into the metabolite. M+5 citrate and M+3 oxaloacetate, aspartate, fumarate,
and malate indicative of reductive glutamine flux. M+3 a-ketoglutarate and M+2 succinate,
fumurate, and malate indicative of oxidative glutaminolysis. (B) Schematic of atom transitions
in the presence of [1-13C]glutamine. Labeled carbon lost in oxidative TCA flux. M+1 labeling
indicative of reductive TCA flux.
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Figure S3.2: Metabolic alterations in hESCs adapted to MEF-CM versus chemically de-
fined media. HESCs were adapted to MEF-CM and chemically defined media for at least 3
passages. (A) Dry cell weight per million H9 hESCs. (B) Relative intracellular metabolite
abundance of H9 hESCs normalized by cell number and MEF-CM sample. (C) Percentage of
oxidative PPP contribution to lipogenic NADPH in A549 cells cultured in DMEM with 10%
FBS or E8 as determined by ISA using [3-2H]glucose. (D) Mole percent enrichment from
[U-13C5]glutamine in H9 hESCs throughout intermediary metabolism. (E) Relative percentage
of 2-HG isoforms in hESCs grown in E8. (A-B, D-E) All results shown as mean ± SEM. P
values were calculated using a Student’s two-tailed t test relative to MEF-CM condition; *,
P value between 0.01 and 0.05; **, P value between 0.001 and 0.01; ***, P value <0.001.
(C) Results shown as mean and 95% CI. *, Significance indicated by non-overlapping 95%
confidence intervals.
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Figure S3.3: Mass isotopomer distributions from [1,2-13C]glucose. HUES 9 cells were
adapted to MEF-CM and chemically defined media for at least 3 passages. Steady state mass
isotopomer distributions (labeling) of metabolites throughout central carbon metabolism in cells
cultured with a 1:1 mixture of unlabeled glucose and [1,2-13C]glucose over 24 hours. All results
shown as mean ± SEM. M+(n) indicates the number (n) of 13C atoms incorporated into the
metabolite. Metabolite abbreviations described in Supplemental Text.
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Figure S3.4: Mass isotopomer distributions from [U-13C5]glutamine. HUES 9 cells were
adapted to MEF-CM and chemically defined media for at least 3 passages. Steady state mass
isotopomer distributions (labeling) of TCA metabolites and amino acids from [U-13C5]glutamine
after 24 hours. All results shown as mean ± SEM. M+(n) indicates the number (n) of 13C atoms
incorporated into the metabolite. Metabolite abbreviations described in Supplemental Text.
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Figure S3.5: HESCs adapted to chemically defined media upregulate lipid biosynthesis.
(A) Glucose contribution to lipogenic AcCoA in HUES 9 hESCs in the presence 50% enriched
[U-13C6]glucose. (B) Mass isotopomer distribution (labeling) of citrate in HUES 9 hESCs in the
presence of 50% enriched [U-13C6]glucose over 24 hours. (C) Mass isotopomer distribution of
citrate in irradiated CF-1 MEFs in the presence of 50% enriched [U-13C6]glucose after 24 hours
of media conditioning. (D) Mass isotopomer distribution of palmitate in irradiated CF-1 MEFs
in the presence of 50% enriched [U-13C6]glucose over 24 hours. (E) Expression of OCT4 in
hPSCs adapted to E8+AlbuMAX relative to cells in E8. (F-G) Glucose uptake, lactate secretion,
glutamine uptake and glutamate secretion fluxes of hESCs adapted to E8 or E8+AlbuMAX.
Cells were adapted to E8 and E8+AlbuMAX for at least 3 passages. (A) Results shown as mean
with 95% CI. *, significance determined by non-overlapping confidence intervals. (B-G) All
results shown as mean ± SEM. P values were calculated using a Student’s two-tailed t test
relative to MEF-CM condition; *, P value between 0.01 and 0.05; **, P value between 0.001
and 0.01; ***, P value <0.001.
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Figure S3.6: Oxygen consumption traces of hPSCs in different culture conditions. (A)
Representative traces of HUES 9 hESC oxygen consumption rate (OCR). Oligomycin is added
at time T1 and rotenone/antimycin A is added at time T2. (B) Representative traces of H9 hESC
oxygen consumption rate (OCR). Oligomycin is added at time T1 and rotenone/antimycin A
is added at time T2. (C) Representative traces of IMR90-iPS hPSC oxygen consumption rate
(OCR). Oligomycin is added at time T1 and rotenone/antimycin A is added at time T2. (A-C)
All results shown as mean ± SEM.
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Chapter S5

Supplement to Chapter 5

S5.1 Supplemental Figures
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Figure S5.1: Schematic of dual-gRNA-library construction and quality control of screens.
(A) Oligonucleotides bearing two sgRNA spacers were synthesized, amplified, and cloned into
a lentiviral gRNA cloning vector. Next, a fragment containing a sgRNA scaffold and the mouse
U6 promoter was inserted between the two spacers to yield the final dual-gRNA expression
construct. A pair of primer matching sites labeled in blue were designed for enrichment of
the two spacer regions prior to deep sequencing analysis. (B) Frequency distribution of the
metabolism dual-gRNA plasmid library. (C) Principle component analysis (PCA) of the dual-
gRNA read count distributions. (D) Cumulative frequency of dual-gRNA constructs by deep
sequencing. Shift in the curves at days 14, 21, and 28 represents the depletion of dual-gRNA
constructs. Each time point was measured in duplicates.
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Figure S5.2: CRISPR screening results reveal metabolic network dependencies. (A) SKO
fitness scores for A549 cells, plotted as fg (day-1), with a more negative score representing a
decrease in fitness with SKO. Plotted as mean ± SD. (B) Gene pairs with significant genetic
interaction scores (z-score < -3) are shown. Conserved interactions cross HeLa and A549 are
indicated in blue. Previously reported interactions are indicated in red. Purple indicates the
conserved interactions which have been previously reported.
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Figure S5.3: Screening results validated through metabolic flux measurements and fitness
assays. (A, B) Metabolic validation of DKO interaction in ENO1/ENO3. DKO significantly
lowered flux through glycolysis over control or SKOs. A, measurement of labeled Lactate. B,
measurement of labeled Alanine. † indicates statistical significance (p<0.05) for all conditions
as compared to DKO. (C) SKO competition assay of oxPPP genes in HeLa (left) and A549
(right) cells. HeLa data replicated from Figure 4.3L and log transformed for comparison. (D)
Deep sequencing analysis of indels (insertions and deletions) introduced by CRISPR-Cas9 at 10
days after transduction of G6PD or PGD gRNA constructs. (E) Deep sequencing analysis of
indels introduced by CRISPR-Cas9 at two weeks after transduction of KEAP1 gRNA constructs
in HeLa cells. Ordinate shows the read counts of indels at each corresponding location. Most
cells were successfully targeted after transduction of gRNAs, while only a background level
of mutagenesis was observed in the cells transduced with non-targeting control gRNAs. These
experiments suggest high targeting efficiency in both the A549 and HeLa Cas9-stable cell lines.
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Figure S5.4: KEAP1 mutational status alters redox metabolism and impact of oxPPP gene
knockouts on cellular fitness. (A) Scatter plots (left) of SKO fitness and gene expression in
HeLa versus A549. Residual plots (right) of linear regressions showing the outliers between
HeLa and A549. oxPPP genes (G6PD and PGD) showed more essentiality in HeLa cells versus
A549, while their mRNA expression levels are lower in HeLa cells versus A549. (B) Immunoblot
of A549s with KEAP1 mutant panel. (C) Measurement of relative PGD perturbation effect in
A549 cells across KEAP1 mutant panel. Growth curve of the reference cells, which is tdtomato+
cells in this case, and its absolute fitness ( f0) was extracted by counting average cell numbers in
three independent experiments for three days. The fitness of PGD perturbation (∆ fPGD,KEAP1)
relative to non-targeting controls (NTC) in KEAP1 mutation cells were measured by competitive
assay. Finally, by incorporating also the absolute fitness of reference cells, the relative effects of
PGD perturbation (RPGD,KEAP1) in KEAP1 mutant cells was calculated.
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Chapter S6

Supplement to Chapter 6

S6.1 Supplemental Tables and Figures
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Table S6.1: Metabolite fragments.

Metabolite m/z Fragments for integration

α-Ketoglutarate 346 C14H28O5NSi2
Alanine 260 C11H26O2NSi2
Aspartate 418 C18H40O4NSi3
Lactate 261 C11H25O3Si2

233 C10H25O2Si2
Citrate 459 C20H39O6Si3
Fumarate 287 C12H23O4Si2
Glutamate 432 C19H42O4NSi3
Glutamine 431 C19H43O3N2Si3
Glycerol-3-phosphate 571 C23H56O6Si4P
Glycine 246 C10H24O2NSi2
2-Hydroxyglutarate 433 C19H41O5Si3
Malate 419 C18H39O5Si3
Norvaline 288 C13H30O2NSi2
Proline 330 C16H36O2NSi2
Pyruvate 174 C6H12O3NSi
Serine 390 C17H40O3NSi3
Succinate 289 C12H25O4Si2
Myristate 242 C15H30O2
Palmitate 270 C17H34O2
Stearate 298 C19H38O2
Oleate 296 C19H36O2

Table S6.2: RT-PCR primers.

Gene Forward Reverse Primerbank ID

G6PD ACCGCATCGACCACTACCT TGGGGCCGAAGATCCTGTT 108773794c2
PGD ATGGCCCAAGCTGACATCG AAAGCCGTGGTCATTCATGTT 40068517c1
FAS AAGGACCTGTCTAGGTTTGATGC TGGCTTCATAGGTGACTTCCA 41872630c1
SCD TTCCTACCTGCAAGTTCTACACC CCGAGCTTTGTAAGAGCGGT 53759150c3
ACACA TCACACCTGAAGACCTTAAAGCC AGCCCACACTGCTTGTACTG 38679973c3
ACLY ATCGGTTCAAGTATGCTCGGG GACCAAGTTTTCCACGACGTT 38569422c2
ELOVL6 AACGAGCAAAGTTTGAACTGAGG TCGAAGAGCACCGAATATACTGA 195539341c1
GAPDH CTGGGCTACACTGAGCACC AAGTGGTCGTTGAGGGCAATG 378404907c3
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Figure S6.1: Central carbon isotopologue distribution in mtIDH cells. (A) Isotopologue
distribution of citrate from [U-13C5]glutamine. (B) Percentage of M+4 citrate isotopologue from
[U-13C5]glutamine in normoxia and hypoxia. (C) Isotopologue distribution of aspartate from
[U-13C5]glutamine.
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Figure S6.2: Metabolic alterations induced by lipid deficiency. (A) Contribution of oxPPP
to cytosolic NADPH in fibrosarcoma panel under delipidated conditions. (B) Normalized
relative expression of DNL genes. (C) Contribution of [U-13C6]glucose and [U-13C5]glutamine
to lipogenic AcCoA. (D) Extracellular glutamine uptake and glutamate efflux. (E) Normalized
oxPPP flux calculated as described in Methods. (A, C) Data plotted as mean ± 95% CI. *
indicates statistical significance by non-overlapping confidence intervals.
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