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Professor Boubacar Kanté, Chair  

In integrated photonics, cavity resonators play an important role. They 

are the  basis of light sources, which are one of the fundamental building 

blocks of any integrated circuit. So far, cavities are designed base on their 

size, shape, and photon lifetime, and requiring any extra features increase their 

complexity. However, cavities can present some topological behaviors with 

peculiar characteristics that can enhance their functionalities. Two of these 

topological behaviors, which are the main focus of this thesis, are Topological 
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insulators (TIs), and Bound states in the continuum (BIC). In the following 

thesis, we explored theoretically and experimentally the topological 

singularities in cavities made of periodic structures, and their applications in 

designing integrated light sources (i.e., lasers). Structures are constructed on 

a gain material of InGaAsP multiple quantum wells, which emits in the 

telecommunication wavelength range (𝜆~1.55 𝜇𝑚), and operates at room 

temperature.  

In the first part of the thesis, we study TIs and design topological cavities 

for integrated light sources using hybrid photonic crystals (PhCs) with non-

zero phase transition between them. Thus the optical wave is fully confined at 

the boundary of PhCs, and propagates in one direction. The topological 

cavities can have any arbitrary geometry while preserving high functionality. 

Furthermore, we demonstrate that topological cavities are able to be used to 

generate structured lights with very large topological charges, while they 

maintain small foot-print and no-complexity.  

The second part is dedicated to the bound states, which are the type of 

topological singularities with positive energies in the continuum region. These 

topological singularities offer many unique characteristics such as tunability 

of their position in the reciprocal space and carrying non-zero topological 

charges. Furthermore, the number of singularities can be controlled by crystal 
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symmetry. In this thesis, we present the first experimental demonstration of 

simultaneously generation and steering multiple vortex beams form an 

extended PhC cavity.  

Our results indicate the application of the topological behavior of cavities 

as an extra degree of freedom in designing integrated photonic chips with 

enhanced functionalities.  



 
 

 1   
 

Chapter 1: Overview 

1.1. Introduction 

It is over a century that field of quantum mechanics has been developed. 

In 1980s Berry pointed out a feature that had been observed before that time, 

which was related to the existence of a topological phase factor that can arise 

in certain applications of the adiabatic theorem [1]. However, this phase factor 

had been discovered by Pancharatnam back in 1956 [2], but it was generalized 

by Berry in 1984 [3]. This topological phase factor is also known as 

geometrical phase, Pancharatnam–Berry phase, Pancharatnam phase, or Berry 

phase.  

But what is this topological phase factor? Every electromagnetic wave is 

defined by an amplitude and a phase (for now, we are narrowing down to the 

electromagnetics, but it is general and can be in the other systems like electron 

particles). This (geometric) phase happens when both parameters are changed 

adiabatically and ultimately turn back to the initial state. In quantum 

mechanics, this is done by rotation or even translation of particle. Since the 

electromagnetic wave is returned to its initial state, it is expected that wave be 

similar to its starting point. However, if the parameters correspond to a loop 

instead of self-tracking cyclic vibration, then it is possible that initial and final 



 
 

 2   
 

states have different phases (Fig. 1-1). The phase difference between the two 

states is called Berry phase, and it typically indicates that there are some 

singularities in the system (normally phase singularities) that causes this jump 

in the phase.  

In the last decades, many researchers studied this phenomenon in 

different systems and using various techniques, and a wide range of problems 

have been discussed in particle physics and quantum field of theory, 

condensed matter physics, atomic and molecular physics, etc. [4]. They tried 

to address fundamental questions using these (geometrical or topological) 

singularities aiming to discover a new generation of devices useful many 

applications. Two of the interesting topological singularities are called  

  
Figure 1-1 | Illustration of the adiabatic and non-adiabatic processes. In an 

adiabatic process, a wave (or generally a particle) returns to its initial state 

after a cycle. However, in a non-adiabatic process, the final state of the wave 

is different from the initial state when returning to the starting point, and wave 

experiences an extra geometrical (or Berry) phase.  
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“Topological insulators”, and “Bound states in the continuums” that have 

attracted many attentions, which are also the main scope of the present thesis. 

1.2. Topological Insulators 

Topological insulators (TIs) are materials with non-trivial anti-

symmetric topological orders that behave as an insulator in their interior but 

conductor at their surface [5-11] (Fig. 1-2). However, having a conducting 

surface is not unique to TIs, because ordinary band insulators can also support 

conductive surface states. The important difference is that the surface states 

in TIs are symmetry protected and back-scattering is forbidden [12-16]. This 

is quite different from a material with broken time-reversal symmetry, e.g., 

magnetic materials, where the backward propagating states exist and back-

scattering can happen during different processes. Therefore, in TIs 

propagating wave is robust to any kind of disorders, making them appealing 

to explore new devices and applications based on TIs.  

This unique robust unidirectional wave propagation in topological 

systems gives us the ability to design topological components like cavity 

resonators, a fundamental piece of elements in many integrated photonic 

circuits. As a result, topological cavities can have arbitrary shapes while 

maintaining their functionalities. A brilliant idea is when implement 
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topological cavities using active materials to design topological light sources 

that can also take any arbitrary geometrical form while they emit coherent 

lights in one direction without using an optical isolator. The first part of the 

thesis will be dedicated to this topic.  

 
Figure 1-2 | Representative dispersion band of a topological insulator, 

showing Dirac dispersing surface states lying in the bulk band gap (a) with 

surface states on the bulk material (b).  

1.3. Bound States in the Continuum 

In quantum mechanics, there is an area discussing quantum states of 

particles that are placed in a potential domain as particles remain localized in 

some regions of space while they should not be [17,18]. Therefore, negative 

energy states are bounded and their potential vanish at infinity. These 

quantum states, which have discrete spectrum rather than continuous, are 

called bound states (Fig. 1-3).  
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Generally, bound states are metastable states with a net positive 

interacting energy, but there are some states with a very long decay time that 

are often considered as unstable bound states, and they are called quasi-bound 

states [18]. These types of singularities can happen in various systems such as 

single particle, random coupled particles, periodic structures, etc., but in the 

present thesis, we are specifically focusing on periodic structures.  

  
Figure 1-3 | Schematic demonstration of bound states for a structure in space. 

By exciting the mode of structure (red), if the excitation energy is in the 

continuum region, then there are some radiation in the continuum (blue). 

However, the excited mode is bounded at some singularities, and the radiation 

in the continuum is damped (orange). These states are called bound states.  

Bound states are topological singularities that carry quantized phase 

singularities, known by topological charges [19,20]. Since the energy decays 

at the far away, it implies that energy is fully confined inside the system, and 

the quality factor diverges, the characteristic that is very important in high-Q 

cavity resonators. Although structures with infinite (or extremely large) 

lifetime are well developed, the popularity of resonators based on bound states 
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is in the part that they offer at least three interesting characteristics, i.e., 1) 

multiple beam generation, 2) steering beam, and 3) structured beam.  

Generation of bound states in momentum space is highly dependent on 

the spatial symmetry of the periodic structure. It means that by controlling the 

structure symmetry, it is possible to generate multiple singularities at the same 

time. Moreover, the positions of these singularities in the momentum space 

are tunable by controlling the in-plane Floquet-Bloch waves. Since bound 

state singularities carry non-zero topological charges, thus their beam can 

have a structural behavior. All these three characteristics naturally exist at the 

same time in high-Q cavities based on bound states, which does not happen 

necessarily in other high-Q cavities.  

In the second part of the thesis, which is inspired by our previous work 

of investigation of resonances in high-permittivity sub-wavelength dielectric 

cylindrical resonators in the microwave domain [21,22], we explore all 

aspects of the bound state singularities. We study how bound states can be 

used to design extended cavity resonators in topological light sources with 

peculiar characteristics.  
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1.4. Scope of This Thesis 

The present thesis describes both the theory and the application of 

topological light sources. We study two topological singularities discussed 

above in details and use them as a primary tool for designing coherent 

integrated light sources (lasers). We demonstrate topological light sources are 

unique in their kind and applications that can address many fundamental 

questions such as compactness, flexibility in designing the shape of the cavity, 

all-electro-optical system (without mechanical components), generation of the 

tailored beams, and unidirectional emission to name but a few.  

Chapter 2 presents the theory of topological insulators using Quantum 

Hall effect, and numerically analysis of 2-dimensional photonic systems. In 

this chapter, we design topological waveguides using hybrid photonic crystals 

(PhCs) and demonstrate the robustness of the waveguides to any kind of 

disorders. Photonic crystal waveguide is made of two different PhCs that are 

designed to have different topological phase transitions one of which is 

topologically trivial while the other one is topologically non-trivial. Finally, 

we discuss topological and non-topological (or conventional) cavities and 

study how topology can be used as an extra degree of freedom to design robust 

nonreciprocal cavity resonators with smaller footprints and large isolation 

ratios.  
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In chapter 3, based on the theoretical background of chapter 2, we use 

gain material of InGaAsP multiple quantum wells (MQWs), which is a gain 

material at telecommunication wavelength range (around 𝜆~1.55 𝜇𝑚) to 

design topological light sources. Since our approach is based on the Quantum 

Hall effect, thus magnetic material of Yttrium Iron Garnet (YIG) is used to 

break time-reversal symmetry. We demonstrate various topological cavities 

with arbitrary geometries that emit (in-plane) light in one direction with a 

sufficiently large isolation ratio (>10 dB).  

In chapter 4, we use the same approach (chapter 3) to design and develop 

topological light sources that emit orbital angular momentum (OAM) beams 

with very large topological charges. OAM beams are the unbounded and 

orthogonal basis that have many applications in high capacity optical 

communications, imaging, and sensing. However, the generation of large 

topological charges is complicated. In this chapter, we design a topological 

system in a way that it emits light in the normal rather than in-plane direction. 

Then we study the possibility of the generation of OAM lights with very large 

topological charges using topological cavities in a fully planar structure. 

Finally, we demonstrate how to multiplex several of topological cavities in 

the same device, a characteristic that is useful, e.g., in high capacity optical 

communication.  
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In chapter 5, bound states in the continuums (BICs) are discussed in 

periodic structures. We theoretically study that BIC points are singularities in 

reciprocal space that carry non-zero topological charges, and their position 

can be tuned by modifying in-plane Floquet-Bloch phases. We then designed 

a periodic structure using gain material (InGaAsP MQWs) to make a light 

source that emits several vortex lights with tunable angles. All the 

aforementioned theoretically designed features, i.e., multiple beams, 

deflecting beams, and vortex characteristics are studied experimentally. 

Furthermore, topological charge conservation is also demonstrated.  

Chapter 7, after summarizing all works done in this thesis, provides an 

outlook for future works on topological light sources (specifically), and 

topological systems (in general). We discuss current topological design, and 

other possible topological platforms that can be used to address further 

remaining questions in topological systems, and how topological photonics 

can pave the way toward designing whole integrated photonic circuits.  
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Chapter 2: 2D Topological Cavity 

2.1. Introduction 

By discovering topological insulators (TIs), a new paradigm of symmetry 

breaking has been created [1-3]. It was demonstrated that there are some 

topological orders in fermionic systems. In a simple language, TIs are 

materials that are insulator on the inside but conductor on the outside and can 

transport electrons without any back-scattering at the surface of the materials 

even in the presence of obstacles. This phenomenon was shown for the first 

time in the quantum by discovering integer Quantum Hall effect [1]. In this 

effect, it was demonstrated that in 2-dimensional electron gases in presence 

of strong magnetic field it exhibits a Hall conductance as a function of the 

magnetic field at integer numbers multiple of fundamental constant 𝑒2 = ℎ, 

where 𝑒 is electron charge and ℎ is Planck constant [1,4].  

Following this discovery, many systems have been extensively studied 

and properties such as immunity to disorder have been demonstrated [5-7].  

By discovering a new physics of topological phases of matter known as 

Quantum Spin-Hall effect or Z2 TIs [8-11], the field of topological insulators 

became even more demanding and popular. Especially, now it enables to 
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study more range of systems beyond only electrons [12]. The recent 

demonstration by Raghu and Haldane of the possibility to transfer some 

topological properties from fermionic to bosonic systems such as light gives 

new degrees of freedom over the control of photons [13]. Several back-scatter 

immune waveguiding experiments have subsequently been proposed and 

demonstrated [ 41-24 ]. Discovery of the TI is motivating to explore robust 

topological systems in photonics [22-24]. In TI structures, unlike the phase 

shifters, the backward propagating mode does not exist, thus regardless of the 

size and shape of the device, light propagates only in one direction.  

In the following, we study how to formulate and analyze a topological 

system. We design a topological waveguide using photonic crystals (PhCs). 

When the waveguide mode is excited, it propagates in one way, and it is robust 

to any kind of disorder. Then using topological waveguides, we explore 

topological cavities and compare them to conventional cavity resonators. We 

show how topological properties can be used as an extra degree of freedom to 

design, e.g., optical isolators with large isolation ratios and smaller footprints, 

the characteristics that are far-reaching in integrated optical circuits by today.  
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2.2. Berry Phase, Berry connection, and Chern Number 

The Berry phase is as a phase acquired by the wave-function as the 

parameters appearing in the Hamiltonian are changing slowly in time. Berry 

phase happens in a cyclic and adiabatic evolution. Let’s assume a Hamiltonian 

𝑯(𝒓) that depends on a parameter 𝒓 that varies with time 𝑡. Also, the 𝑛’th 

eigenvalue 𝜀𝑛(𝒓) remains non-degenerate everywhere along the path and the 

variation with the time is sufficiently slow. Then if a system is initially in the 

eigenstate of |𝑛(𝒓(0))⟩, it will remain in an instantaneous eigenstate of 

|𝑛(𝒓(𝑡))⟩ up to a phase [25].  

The wave-function evolves according to the time-dependent Schrodinger 

equation: 

𝑗ℏ
𝜕

𝜕𝑡
|Ψ𝑛(𝑡)⟩  = 𝑯(𝒓)|Ψ𝑛(𝑡)⟩.   (2-1) 

Thus, the state at time 𝑡 can be written as [25]: 

|Ψ𝑛(𝑡)⟩  = 𝑒
−

𝑗

ℏ
∫ 𝑑𝑡′𝜀𝑛(𝑹(𝑡′))

𝑡

0 𝑒𝑗𝛾𝑛(𝑡)|𝑛(𝑹(𝑡))⟩, (2-2) 

where the first term is a dynamic phase factor, the second term is the 

geometrical phase factor with 𝛾𝑛 being the Berry phase. Since |Ψ𝑛(𝑡)⟩ 

satisfies the time-dependent Schrodinger equation, it can be shown that [25]: 

𝛾𝑛 = 𝑗 ∮ 𝑑𝒓⟨𝑛(𝒓)|∇𝒓|𝑛(𝒓)⟩
𝐶

,    (2-3) 
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where  

𝒜𝑛(𝒓) = 𝑗⟨𝑛(𝒓)|∇𝒓|𝑛(𝒓)⟩,    (2-4) 

is called Berry connection. Using eq. (2-4), Berry curvature can be calculated 

as: 

Ω𝑛(𝒓) = ∇𝒓 × 𝒜𝑛(𝒓).     (2-5) 

For a closed path 𝐶 that forms the boundary of a surface 𝑆 the closed-

path Berry phase can be rewritten using Stokes theorem as: 

𝛾𝑛 = ∫ 𝑑𝑺Ω𝑛(𝒓)
𝑆

,     (2-6) 

By analogy, we can derive similar relations for optical systems and for 

photons. We start with source-free Maxwell equations in linear and lossless 

media: 

𝛁 × 𝑬 = −𝑗𝜔𝜇𝑯     (2-7) 

𝛁 × 𝑯 = 𝑗𝜔𝜀𝑬     (2-8) 

𝛁 ∙ 𝐃 = 0      (2-9) 

𝛁 ∙ 𝐁 = 0       (2-10) 

In a periodic system, mode with a wave-vector of 𝒌 = 𝒌𝒙𝑥 + 𝒌𝒚𝑦̂ follow 

the Floquet-Bloch condition and are expressed as [26]: 
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𝑬𝒌(𝝆, 𝑧) = 𝑒𝑗𝒌∙𝝆𝒖𝒌(𝝆, 𝑧)    (2-11) 

where 𝝆 is ian n-plane vector (i.e., xy-plane), and 𝒖𝒌 is a periodic function in 

the in-plane direction which is also eigenmode of the wave equation in 

periodic systems.  

Therefore, Berry connection is similarly defined as: 

𝓐𝑛𝑛′ (𝑘) = 𝑗〈𝒖𝑛𝑘  |𝜵𝑘 |𝒖𝑛′𝑘 〉,    (2-12) 

where the brackets denote spatial integration over a unit-cell with the 

definition of 

〈𝒖1|𝒖2 〉 = ∫𝑑𝒓𝜀(𝒓)𝒖1
∗ ∙ 𝒖2,    (2-13) 

and Berry phase and Berry curvature are defined using eq. (2-3) and (2-5). 

Finally, the Chern number for the 𝑛’th band is given by [13]: 

𝐶𝑛 =
1

2𝜋
∫𝑑𝒌 ∙ 𝛁𝐤 × 𝓐𝑛(𝒌),     (2-14) 

In the dispersion band diagram, we can assign a sum of the Chern 

numbers to each full band gap by calculating the Chern number for each bulk 

mode below the band gap and adding all of them (i.e., Σ𝐶 =

∑ 𝐶𝑛𝑚𝑜𝑑𝑒𝑠 𝑏𝑒𝑙𝑜𝑤 𝑡ℎ𝑒 𝑔𝑎𝑝 ). The band gaps that have non-zero Σ𝐶 are called a 

non-trivial band gaps, while those ones that have zero Σ𝐶 are called trivial 

band gaps.  
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2.3. Topological Waveguide Design 

The first step to model a topological waveguide is to design a PhC 

waveguide with a non-zero phase transition between side walls [13]. In our 

approach, we use the Quantum Hall effect by using magnetic materials. By 

breaking time-reversal symmetry, it is possible to open a band gap in certain 

regions of the band diagram of the PhC. The band gap opened due to the 

broken time-reversal symmetry has a non-zero sum of the Chern number of 

all modes below the gap (i.e., Σ𝐶 ≠ 0), thus it is referred to as a non-trivial 

photonic band gap.  

To have a topologically non-trivial waveguide, the Chern numbers of 

side walls should be different [13], thus it is essential to design two different 

PhCs with different Chern numbers.  

Figure 2-1a represents a start-shaped unit cell of a PhC with square lattice 

that is periodic in xy-plane. Relative permittivity, 𝜀, of PhC in presence of an 

external magnetic field (EMF) is assumed to be 

𝜀 = 12.25 [
1 𝑖0.008 0

−𝑖0.008 1 0
0 0 1

],  (2-15) 

Band diagram of this structure for an in-plane mode is calculated using a 

finite element method (Fig. 2-1b). As shown, a band gap is opened around the 
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frequency of 𝑓 = 194.23 𝑇𝐻𝑧. This gap that is opened due to the broken time-

reversal symmetry has a non-zero topological phase invariant (|Σ𝐶| = 1) 

calculated using eq. (2-14). Thus it is a non-trivial band gap.  

If this non-trivial PhC is integrated with a trivial PhC or a non-trivial PhC 

but with different Chern number, it forms a topologically non-trivial edge 

waveguide in which excited edge mode propagates in one direction without 

any back-scattering. To design a trivial PhC, we use a PhC with an air hole 

unit cell and a triangular lattice made of the same material as previous PhC 

(Fig. 2-2a). In the band diagram  

 

Figure 2-1 | (a) Schematic of the star-shaped unit cell of a PhC with square 

lattice that is periodic in two directions with the p, b, and w of 1176 nm, 0.5p, 

and 0.0844p, respectively. (b) Band diagram for an in-plane mode along 

irreducible Brillouin zone of the square lattice PhC.  

of this unit cell, in presence of the same EMF, there is a large band gap 

between the first and second modes for an in-plane mode with a zero Chern 

number (Fig. 2-2b). By choosing the dimensions of this PhC properly, its band 
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gap can overlap with the band gap of the non-trivial PhC around the same 

frequency range.  

 

Figure 2-2 | (a) Schematic of the unit cell of PhC with an air hole and a 

triangular lattice. The periodicity and radius of the holes are p’=p/3, and 

r=0.35p’, respectively. (b) Band diagram for an in-plane mode along 

irreducible Brillouin zone of the triangular lattice PhC.  

By placing two semi-infinite PhCs made of these unit cells, an edge 

waveguide can be formed at the interface of them. To show one-way 

propagation, the configuration shown in Fig. 2-3a is simulated. In this 

structure, there are also sharp bends added to simultaneously study the 

robustness of the edge mode to any back-scattering. For a frequency within 

the band gap of both PhCs, edge mode of the structure is excited by a point 

source (𝑆) and propagates in one direction regardless of the sharp bends (Fig. 

2-3b). However, for a frequency that is not within the band gap of both PhCs, 

energy is not confined between them (Fig. 2-3c).  
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Figure 2-3 | (a) Schematic of an edge waveguide formed by placing non-trivial 

and trivial PhCs next to each other. Also, sharp bends are added to study the 

robustness of the edge waveguide to any back-scattering. The edge mode is 

excited by a point source (𝑆) located at the center. (b,c) Field intensity 

distribution when the edge waveguide is excited with two different 

frequencies of 𝑓 = 194.23 𝑇𝐻𝑧 (b) and 𝑓 = 191 𝑇𝐻𝑧(c). When the excitation 

frequency is within the band gap of both PhCs (b), the edge mode is confined 

between them and propagates in one direction without back-scattering. But 

the edge mode cannot be excited when the excitation frequency is out of the 

band gap of one or both PhCs (c).  

2.4. Topological vs Non-topological Cavity 

To compare the topologically trivial and non-trivial cavities, we utilize 

the two PhCs designed in session 2.3.  

Figure 2-4a shows a cavity resonator and a waveguide close to the cavity 

all made of trivial PhC. Normally, in reciprocal case wave transmissions to 

both sides of the waveguide are the same. However, when time-reversal 

symmetry is broken, the dispersion curve of forward and backward wave 

propagations are not the same, and there is a frequency shift in the 

transmission curve. The amount of this shift depends on the Faraday rotation 

coefficient, which shows the polarization leakage from one polarization to the 

other one (in-plane ⇄ out-of-plane), and it is expressed by a unit of degrees 
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per length. To increase the frequency shift, it is needed to either increase the 

strength of broken time-reversal symmetry (i.e., the amplitude of the off-

diagonal components in the permittivity tensor in eq. 2-15) or increase the 

length of the cavity. Unfortunately, the off-diagonal values cannot be 

increased arbitrarily because those are limited by the property of the material. 

Therefore, to have a large isolation ratio, the only way is to increase the length 

of the cavity to have enough frequency shift, which costs the large scale chip. 

The transmission spectrum for forward and backward propagations in the 

topologically trivial cavity is calculated and plotted in Fig. 2-4b. In this cavity,  

 

Figure 2-4 | (a) Schematic of a topologically trivial PhC cavity made of 

triangular PhC. Cavity and waveguide are formed by removing one line of air 

holes. The waveguide is excited by a point source (𝑆) and the transmitted 

power is collected at the port. For the backward propagation, the position of 

the point source and the port are changed. (b) Normalized transmitted 

intensity for forward (blue stars) and backward (red solid line) wave 

propagations. The amount of the frequency shift is negligible, and both curves 

are look like the similar.  
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the frequency shift is very small, and the isolation between forward and 

backward propagations is a negligible value of ~0.1dB. Thus it looks like that 

structure is symmetric when excited from both sides (Fig. 2-5). Isolation ratio 

can be improved few decibels by increasing the length of the cavity resonator. 

 

 

Figure 2-5 | (a,b) Normalized field intensity map inside the cavity when 

excited from both ends at the resonance frequency of 𝑓 = 185.627 𝑇𝐻𝑧. 

Since the isolation ratio for the chosen cavity size is very small, thus both field 

distributions are pretty much the same.  

Unlike the topologically trivial cavity, as discussed, in a topologically 

non-trivial cavity the backward propagation is forbidden. As a result, 

regardless of the size of the cavity, the isolation ratio is larger.  

Figure 2-6a presents a topologically non-trivial cavity made of a non-

trivial PhC inside the core of the cavity and a trivial PhC elsewhere. The size 

of the cavity is the same as for the trivial cavity. The transmission spectrum 

is calculated and plotted in Fig. 2-6b when the structure is excited by a point 

source (𝑆). Initially, when time-reversal symmetry is not broken, there is no 
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non-trivial band gap, then edge mode does not exist and cavity does not 

resonate in a given frequency range (green line in Fig. 2-6b). The field 

intensity profile of this case is shown in Fig. 2-7a. By breaking time-reversal 

symmetry, the edge mode of the cavity is excited and it resonates around the 

frequency of 𝑓 = 194.23 𝑇𝐻𝑧 (blue line in Fig. 2-6b), which results in  

 

Figure 2-6 | (a) Schematic of a topologically non-trivial PhC cavity made of a 

non-trivial PhC as a core of the cavity and a trivial PhC elsewhere. The 

waveguide is excited by a point source (𝑆) and transmitted power is collected 

at the port. For the backward propagation, the position of the point source and 

the port are changed. (b) Normalized transmitted intensity when there is no 

EMF (green line), and for forward (blue line) and backward (red line) wave 

propagations in presence of the EMF. The isolation between forward and 

backward propagations is about 16 dB for the same size of the cavity as a non-

topological cavity shown in Fig. 2-4.  

no transmission as shown in Fig. 2-7b. However, for an excitation from the 

opposite direction, the edge mode of the cavity cannot be excited due to the 

topological protection and mode is transmitted to the other side of the 
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waveguide (Fig. 2-7c). The isolation ration of about 16 dB is obtained for this 

structure. 

 

Figure 2-7 | (a-c) Normalized field intensity profile inside the cavity when it 

is excited from both ends of the waveguide with a frequency of 𝑓 =

194.23 𝑇𝐻𝑧, without EMF (a), with EMF and excited from the left side (b), 

and with EMF and excited from the right side (c). Scale bar is the same for all 

three field distributions.  

2.5. Chapter Summary 

In this chapter, we discussed how to design topological waveguide and 

topological cavity. We numerically demonstrated that topologically trivial 

edge waveguides are robust to any kind of disorders and back-scattering. The 

topological insulator can be used as a fundamental degree of freedom to 

design nonreciprocal cavities that previously use to be designed using, e.g., 

magnetic materials and based on solely breaking time-reversal symmetry. The 

theoretical results show for the same size of the cavity, while the isolation 

ratio for the topologically trivial cavity is negligible, for the topologically non-

trivial cavity can be as large as 16 dB. This is mainly because backward 

propagating waves are forbidden in non-trivial cavities. Therefore, by using 
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the topological properties of cavities we can compensate for the weak 

gyromagnetism of the magnetic materials at higher frequencies which used to 

cost having systems like optical isolators with bulky sizes. In the next 

chapters, we demonstrate how topological cavities can be used to design light 

sources from cavities with arbitrary shapes that always emit coherent lights in 

one direction.  

 

Chapter 2, in part, is a reprint of the material as it appears in B. Bahari, 

A. Ndao, F. Valini, A. E. Amili, Y. Fainman, and B. Kanté, “Experimental 

demonstration of non-reciprocal lasing in topological cavities of arbitrary 

geometries,” Science 358, 636-640 (2017). The dissertation author was the 

primary researcher and author of this paper. 
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Chapter 3: Topological Laser 

1.1. Introduction 

During the past decade, topological photonics was one of the most 

interesting topics with high attention in exploring different platforms and 

techniques [1-13]. The main goal was to employ different approaches to 

demonstrate its physics, i.e., robust one-way edge wave without back-

scattering, rather than making functional optical devices. The lack of back-

scattering in topological systems proposes a range of applications in 

integrated photonics. For example, topological cavities with novel 

characteristics can be used in laser devices to improve their efficiencies. Light 

sources (or lasers) are one of the fundamental building blocks of any optical 

circuits. These sources are designed in many different classes with various 

specifications. Large scale sources such as fiber, Nd:YAG, CO2 etc., are very 

well developed; however, still there are limitations in integrated lasers that 

need to be addressed before really using in the market. Any kind of lasers, 

regardless of their scale, face some fundamental challenges. Lasers need to be 

protected from instabilities and damages caused by back-reflected powers into 

the system. Using phase shifters or optical isolators are the most common and 

applicable techniques so far, especially for large scale lasers. However, when 
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it comes to small scales, i.e., integrated lasers, implementing these techniques 

are not straightforward simply because of the non-efficient phase shifters at 

these scales. At optical frequency ranges, lack of available materials with 

large enough nonreciprocity (or optical activity) is a fundamental challenge. 

Consequently, the size of the devices increases (toward large scale lasers), and 

their performances decrease. As discussed in the previous chapter, the 

topological properties of cavities can be used as an extra degree of freedom to 

overcome these kinds of problems. Using topological characteristic of a 

cavity, we are able to design integrated light sources that always emit in one 

direction and back reflected power cannot couple back into the source. Unlike 

phase shifters, in topological cavities, there is no state for back reflection. 

Thus the size and shape of the system also can be scaled arbitrarily without 

losing functionality. In the following, we will use the 2-dimensional design of 

topological cavities (presented in chapter 2) to demonstrate the first fully 

functional topological laser based on physics of topological insulators (TIs) 

[14]. Compared to the other topological lasers based on Quantum Spin-Hall 

effect or Z2 TIs [15-19]; the advantages of our laser systems are in parts of 

unidirectional lasing, and geometry-independent cavities, which enables 

denser packing of components useful for all-integrated optical chips.  
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3.2. Design of topological cavities 

The schematic of the proposed topological cavity platform is presented 

in Fig. 3-1. It is made of arbitrarily-shaped closed contours that constitute the 

cavity and a waveguide to which the cavity is evanescently coupled. The 

structures are made of structured InGaAsP multiple quantum wells (MQWs), 

bonded on Yttrium Iron Garnet (YIG) a gyrotropic material grown on 

Gadolinium Gallium Garnett (GGG) by molecular beam epitaxy. The YIG 

substrate is used to break time-reversal symmetry in the system under a static  

 
Figure 3-1 | Schematic of an arbitrarily-shaped and integrated topological 

cavity. The topological structure is an arbitrarily-shaped cavity formed 

between the boundaries of two photonic structures with distinct topological 

invariants. The structures are made of InGaAsP MQWs, bonded on YIG. The 

YIG substrate is used to break time-reversal symmetry in the system under a 

static EMF. The PhC enclosed by the cavity is a square lattice with a star-

shaped unit cell, and the PhC outside of the cavity is made of a triangular 

lattice with cylindrical air holes unit cell. A defect waveguide is evanescently 

coupled to the cavity, and it is created by removing a line of air holes in the 

PhC with a triangular lattice. The topological one-way edge state circulating 

around the cavity is evanescently coupled to the defect waveguide resulting 

in emission at one output of the waveguide. The direction of emission can be 

reversed by flipping the sign of the EMF.  
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external magnetic field (EMF). The cavity is defined by two different PhCs. 

The PhC enclosed by the cavity is a square lattice with a star-shaped unit cell, 

and the PhC that is outside of the cavity constitutes the rest of the system, and 

it is made of a triangular lattice with cylindrical air holes unit cell. A defect 

waveguide coupled to the cavity is created by removing a line of air holes in 

the PhC with a triangular lattice. Distinct topological invariants of the two 

PhCs will ensure the existence of robust one-way edge states at their interface, 

creating a one-way topological cavity that will couple its emission either to 

the right or the left output of the waveguide depending on the direction of the 

EMF. 

3.2.1. Band Diagram Calculation 

Band diagrams of the two PhCs are calculated using finite-element 

method.  Figure 3-2 presents the band diagram of the square lattice PhC in the 

presence of an EMF, 𝑩 = 𝐵0𝒛̂, with 𝐵0 = +100 𝑂𝑒. This magnetic field 

saturates the YIG material, maximizing the off-diagonal components of its 

dielectric permittivity tensor [20]. When there is no EMF, the band structure 

does not exhibit any gap in the frequency range of interest. Application of the 

EMF (+𝐵0) opens a narrow band gap (green shaded region in Fig. 3-2b) with 

a width of 𝛥𝜆~42 𝑝𝑚. The topological invariant associated with the 
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corresponding band gap, i.e., Chern number, is |𝛴𝐶| = 1. Thus the band gap 

is called a non-trivial band gap.  

 
Figure 3-2 | (a) Schematic of a PhC with a star-shaped unit cell and a square 

lattice. The dimensions of the unit cell are p=1084 nm (period), b=0.46p, and 

w=0.0844p. (b) Photonic band diagram of a square lattice PhC. The band 

diagram is calculated in the presence of an EMF that saturates the YIG 

material, and thus maximizes the off-diagonal component of its dielectric 

permittivity tensor. When the EMF is zero, the band structure does not exhibit 

any gap in the frequency range of interest (not shown). The application of the 

EMF (+𝐵0) opens a narrow band gap (green shaded region) with a width of 

𝛥𝜆~42 𝑝𝑚. The topological invariant associated with the corresponding band 

gap, i.e., Chern numbe, is |𝛴𝐶| = 1. Red solid lines represent the light-cone.  

One-way interfaces can be implemented using another PhC with a 

different topological invariant. As seen in Fig. 3-3, the PhC with triangular 

lattice possesses a broadband gap regardless of the amplitude of the EMF and 

in particular for the value of EMF used for the non-trivial PhC. Calculations 

indicate a zero Chern number for this gap that is thus called a trivial band gap.  
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Figure 3-3 | (a) Schematic of a PhC with cylindrical air holes unit cell and a 

triangular lattice. The periodicity, p’, and radius of holes, r, are p/3 and 0.35p’, 

respectively. (b) Photonic band diagram of the triangular lattice PhC in 

presence of the same EMF as in star-shaped PhC. A broadband gap is 

obtained, almost independent of the amplitude of the EMF. Calculations 

indicate a zero Chern number for this gap. Red solid lines represent the light-

cone.  

3.2.2. Trivial and Non-trivial Waveguides 

Dimensions of the two PhCs have been chosen to overlap their band gaps 

around the telecommunication wavelength of 𝜆~1.55 𝜇𝑚. The closed contour 

between the trivial and non-trivial photonic structures constitutes the 

topological cavity that can have arbitrary geometries while maintaining its 

resonant frequency. The dissimilar topology of the two band gaps is 

numerically verified in Fig. 3-4 using a full wave three-dimensional 

simulation. A point source, 𝑆, with a frequency in the band gap of the two 

crystals, is placed at the interface between the two PhCs. The point source 

ensures the excitation of waves in all directions. Figure 3-4a shows that the 
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energy of the source is confined at the interface and propagates to the right for 

an EMF of +𝐵0𝒛̂. By reversing the direction of the EMF (−𝐵0𝒛̂) the 

propagation to the right is forbidden, demonstrating the existence of a one-

way edge state.  

 
Figure 3-4 | Edge waveguide formed by two trivial and non-trivial PhCs. Edge 

mode is excited using a point source (𝑆) located at the interface of two PhCs, 

and with a frequency that is at the band gap. The boundary between these two 

PhCs with overlapping band gaps supports one-way edge state that propagates 

either to the right (a) or to the left (b) depending on the direction of the EMF.  

Field distributions inside the waveguide are plotted in Fig. 3-5, which 

shows that mode is predominantly in-plane with components of (𝐸𝑥,𝐸𝑦,𝐻𝑧).  

To evaluate the cavity and the coupling lengths, we first calculate the effective 

index of the edge wave propagating at the interface between the trivial and 

non-trivial PhCs, which from now we call it non-trivial waveguide. We also 

calculate the effective index of the waveguide made of a line defect in the 

triangular PhC, which we call it trivial waveguide. Figure 3-6 shows full-wave 

simulations of both waveguides. The two waveguide modes are excited by a 
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point source at a wavelength of 𝜆0 = 1531 𝑛𝑚, which is inside the band gap 

of the two PhCs. By calculating the propagation wavelengths, effective 

indices of 2.0 and 2.59 are obtained for non-trivial and trivial waveguides, 

respectively. The cavity length and the coupling length are thus chosen to be 

𝑣 × 780 𝑛𝑚, and (2𝑤 + 1) × 1300 𝑛𝑚, respectively, where 𝑣 and 𝑤 are 

integer numbers.  

Now we have an edge mode that has a dispersion curve. To calculate its 

dispersion curve, we can use a full wave simulation of a supercell consisting 

of seven trivial and six non-trivial unit cells in one direction with an open  

 
Figure 3-5 | Electric (a-c) and magnetic (d-f) fields intensity distribution inside 

the edge waveguide. Dominant field components are 𝐸𝑥, 𝐸𝑦, and 𝐻𝑧. The inset 

shows the total mode with 𝐻𝑧 distribution (color plot), and 𝐸𝑥 and 𝐸𝑦 (vector 

plot).  
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Figure 3-6 | Full wave three-dimensional simulations of non-trivial (a) and 

trivial (b) waveguides. The waveguides are excited by a point source, 𝑆, 

located at the left (star). When the excitation wavelength is within the band 

gap of the two PhCs, the excited mode is fully confined between two PhCs. 

The propagation wavelengths of 𝜆 = 780 𝑛𝑚 and 𝜆 = 600 𝑛𝑚 for the non-

trivial and the trivial waveguides are obtained, respectively.  

 

boundary at the ends, and with periodic boundary condition along the other 

direction (Fig. 3-7a). We then calculate the eigenmodes for different values of 

the normalized wave-vectors (𝑘𝑥𝑎/2𝜋) along two opposite directions from 

−0.5 to +0.5. The dispersion curve of the edge mode is plotted in Fig. 3-7b. 

Since the Chern number difference between side walls is |Δ𝐶| = 1, thus there 

is only one edge mode. Also, the sign of the slope of the edge mode is always 

the same due to the topological characteristic.  
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Figure 3-7 | (a) Full-wave simulation of a supercell consisting of seven trivial 

and six non-trivial unit cells in one direction with an open boundary at the 

ends, and periodic boundary condition along the other direction. Eigen-

frequencies of the edge mode are calculated by changing the normalized 

wave-vector from −0.5 to +0.5 at the periodic boundary. The edge mode is 

fully confined at the interface of the two PhCs. (b) Dispersion band diagram 

of the non-trivial PhC (dotted points) with an opened band gap in presence of 

an EMF of 𝐵0 = +100 𝑂𝑒 (green shaded region). The dispersion curve of the 

trivial waveguide is plotted within the band gap (red solid line). Inset figure 

shows the zoom-in plot of the band diagram around the band gap. The 

dispersion curve of the trivial waveguide is represented by the red solid line.  

3.3. Device Fabrication  

The fabrication of nanostructures requires very high precision 

lithography and etching steps in order to control the position, size, and shape 

of patterns. We use standard nanofabrication protocol composed by electron 

ebeam lithography, reactive ion etching (RIE), and uniform bonding. The flow 

chart of the fabrication consists of several sequential steps schematically 

shown in Fig. 3-8. We first start by removing the protective layer on top of 

the InGaAsP using a chemical solution of HCl: H2O (3:1) for 60 sec (step 2). 
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We then clean the InGaAsP sample using chemical baths and plasma 

procedures.  

In the third step (step 3), the Hydrogen SilsesQuioxane (HSQ) negative 

tone resist is spin-coated on InGaAsP, and the image-patterning is performed 

by electron-beam irradiation. Using RIE (H2:CH4:Ar (40:10:7) for seven 

minutes), the pattern is transferred onto the InGaAsP. Next, residual organic 

contamination and polymer buildup during RIE are removed with microwave 

oxygen (O2) plasma treatment, and the residual HSQ layer is removed by 

immersing the sample into the hydrofluoric acid for about 30 sec.  

For a successful bond, it is crucial to thoroughly clean the substrate in 

order to acquire a dust-free and chemically receptive surface for the 

subsequent bonding steps. The YIG is immersed in an acetone bath to remove 

any organic traces and then transferred to an ethanol-containing beaker. To 

bond the sample, 20 nm of an electron ebeam resist (PMMA) is spin coated 

on the YIG substrate (4000 rpm at 1000 rpm/sec) followed by a hard-bake for 

5 min at 185 °C (step 5). Subsequently, the InGaAsP is bonded on the prepared 

YIG substrate coated with PMMA.  We performed the bonding process with 

a clamp to apply uniform pressure. The sample is thus put into an oven for 

curing at 240°C for one hour under 80 kPa pressure. The curing process lasts 
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about five hours including about one hour of raising the temperature from 

room temperature to 240°C, one hour maintaining at this temperat-  

 
Figure 3-8 | Flow chart of the fabrication. Step 1: InGaAsP MQWs wafer. 

Step 2: Removal of the protective layer thin InP layer (thickness = 10 nm). 

Step 3: Spin coating HSQ resist, e-beam lithography patterning, and 

development. Step 4: Dry etch using RIE (H2:CH4:Ar (40:10:7).) to transfer 

the pattern from HSQ onto the InGaAsP. Step 5: Cleaning the YIG substrate 

and coating of PMMA on the YIG and baking at 185°C for five minutes. Step 

6: Bonding InGaAsP on the YIG and curing in the oven at 240°C for one hour, 

and pressure of 80 kPa. The curing process was about five hours including 

one hour to raise the temperature from room temperature to 240°C, one hour 

of curing at this temperature, and about three hours to cool down the sample 

to room temperature. Step 7: Removal of InP substrate using a solution of 

HCl: H2O (3:1) to selectively etch InP without affecting the rest of materials. 

The etching time is about one hour. 

ure, and about three hours cooling down the sample to room temperature (step 

6). The last step removes the InP substrate using a chemical solution of HCl: 

H2O (3:1). The whole etching process to remove the InP lasts about one hour. 

This step is also visually controllable because InGaAsP is perfectly crystalline 

and is thus flat and visually reflective, whereas InP becomes rough during 
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etching. When hydrochloric acid reaches InGaAsP, etching stops. Finally, we 

remove the sample from the solution and rinsed it with Deionized (DI) water 

(step 7).  

To demonstrate the versatility of the proposed platform, we first 

investigate a square cavity coupled to the waveguide. The total length of the 

non-trivial cavity and the coupling length between the cavity and the 

waveguide were optimized for the edge mode by choosing 𝑣 = 167 and 𝑤 =

12, which results in a cavity length of 130 𝜇𝑚 and coupling length of 

32.5 𝜇𝑚. Figure 3-9 presents a top view Scanning Electron Micrograph 

(SEM) of a fabricated device where the trivial and non-trivial PhCs together 

with the waveguide can be seen. The fabrication is uniform over the entire 

area of the device.  

 



 
 

 41   
 

 
Figure 3-9 | Top view SEM of a fabricated squared-shaped topological cavity 

where the trivial and non-trivial PhCs together with the waveguide are visible. 

End of the waveguide from both sides are tapered so that waveguide mode 

can couple out and be collected using a lensed fiber for spectrum analyzing.  

3.4. Device Characterization  

3.4.1. Field Intensity Imaging 

To experimentally characterize the device, we optically pumped it from 

the top with a pulsed laser (λpump = 1064 nm, T = 12 ns pulse at a repetition 

rate f = 275 kHz) using a micro-photoluminescence setup. The size of the 

pump beam is controlled to cover the whole area of the device. To generate 

the necessary EMF, we use a homemade electromagnetic solenoid coil that 

can generate a uniform and tunable magnetic field of 𝐵𝑀𝑎𝑥 = 150 𝑂𝑒 inside 

the solenoid. Figure 3-10 represents real space camera images of the surface 

of the devices without (𝐵0 = 0) and with (𝐵0 = +100 𝑂𝑒) EMF for a pump 
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power density of 𝜌 = 0.9 𝜇𝑊/𝜇𝑚2. An edge mode localized at the interface 

between the two PhCs is observed in the presence of the EMF (Fig. 3-10b) 

while it disappears when the EMF is turned off (Fig. 3-10a). 

 
Figure 3-10 | Real space camera images of the top of the device without (a) 

and with (b) EMF under optical pumping using a laser with a wavelength of 

λpump = 1064 nm. An edge mode localized at the interface between the two 

PhCs is observed in the presence of the EMF while it disappears when the 

EMF is turned off.  

3.4.2. Photoluminescence Measurement 

When the EMF is turned off, the non-trivial band gap closes, and the edge 

mode disappears. We pump the structure with the same power density (𝜌 =

0.9𝜇𝑊/𝜇𝑚2), and measure the photoluminescence using a lensed fiber. To 

characterize the device and demonstrate the emission of the edge mode, a 

lensed fiber is placed to one of the outputs of the waveguide. The outputs of 

the waveguides are tapered to ensure efficient coupling to the fiber. The 

coupling was aided by a piezoelectric positioning device with nanometer 

resolution. The tip of the lensed fiber is placed in front of the waveguide and 
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the other end of the fiber is directly connected to an optical spectrum analyzer. 

Fig. 3-11 shows the emission spectrum over a broad wavelength range, clearly 

revealing the absence of stimulated emission when the magnetic field is turned 

off.  

  
Figure 3-11 | Emission spectra of the square cavity when it is pumped with 

the pump power density of 𝜌 = 0.9𝜇𝑊/𝜇𝑚2 and without EMF. The emission 

power is collected using a lensed fiber. Without EMF the edge mode 

disappears and no cavity mode can be excited.  

Figure 3-12 shows the photoluminescence spectrum of the cavity shown 

in Fig. 3-9 for the forward (Fig. 3-12a) and the backward (Fig. 3-12b) biases 

of EMF for different pump powers. When the EMF is reversed, cavity couples 

the lasing power to the opposite end of the trivial waveguide and the emission 

power reduces.  
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Figure 3-12 | Photoluminescence spectrum of the square cavity when the EMF 

is (a) 𝐵0 = +100 𝑂𝑒, and (b) 𝐵0 = −100 𝑂𝑒. Lensed fiber is fixed in one end 

of the trivial waveguide, and it collects the photoluminescence power for two 

different EMFs.  

Figure 3-13a shows the evolution of the output power as a function of 

both pump power density and wavelength. By varying the pump power 

density with the EMF turned on, a threshold behavior with a clear transition 

from spontaneous emission to stimulated emission (i.e., lasing) is observed. 

Turning off the EMF results in the suppression of lasing.  

To prove that lasing is from a one-way edge mode, the direction of the 

EMF is flipped by reversing the current in the solenoid creating 𝐵 =–𝐵0𝑧̂ and 

the emitted power and its spectrum are measured. This is equivalent to 

coupling the fiber to the other end of the waveguide for a fixed direction of 

the EMF, with the advantage of avoiding discrepancies between the coupling 

efficiencies to the two ends of the waveguide, thus enabling quantitative 

comparison of the emissions.  
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Figure 3-13b presents the output emission power of the structure for two 

opposite values of the EMF (+𝐵0 and –𝐵0) and for the same pump power 

density (𝜌 = 0.9 𝜇𝑊/𝜇𝑚2) in the lasing regime. As seen, there is a large 

reduction in the photoluminescence spectrum and an isolation ratio of 9.85 dB 

is measured.  In non-topological cavities with broken time-reversal symmetry, 

the clock-wise (CW) and the counter clock-wise (CCW) modes of the cavity 

have similar characteristics, but a small wavelength shift [20]. However, in 

topological cavities, one of the modes,  

 
Figure 3-13 | (a) Evolution of the output power collected by a lensed fiber 

coupled to the output of the trivial waveguide as a function of pump power 

density and wavelength. Red dots are experimental measurements of the 

output power for different pump power densities when the EMF is turned on. 

Gray solid lines are linear fits to the data in spontaneous and stimulated 

emission regimes and clearly show a threshold behavior, i.e., lasing. No lasing 

is observed in the absence of EMF. (b) Emission power for a pump power 

density of 𝜌 = 0.9𝜇𝑊/𝜇𝑚2 for two opposite values of the EMF (+𝐵0 and 

–𝐵0), which is equivalent to collecting emission from the two outputs of the 

waveguide with the advantage of avoiding coupling discrepancies. An 

isolation ratio of 9.85 dB is experimentally observed, confirming non-

reciprocal lasing.  



 
 

 46   
 

either the CW or the CCW is forbidden depending on the direction of EMF, 

thus cannot be excited, ensuring single mode operation. This is a fundamental 

difference between topological systems, as non-topological cavities will 

exhibit two slightly detuned modes that both lay within the broad gain 

bandwidth of the semiconductor and would thus give rise to mode 

competition. 

3.5. Geometry-independent Cavities 

Topological edge modes are robust against back-scattering from 

imperfections and sharp corners. Beyond robust and passive transport, this 

implies the possibility to implement deformed cavities of arbitrary 

geometries. Figure 3-14 shows the top view SEM of an arbitrarily-shaped 

cavity with the same optical length as the square cavity. We optically pump 

the device from the top, collect and analyze the emission from the tapered 

waveguide using the lensed fiber again.  
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Figure 3-14 | Top view SEM of a fabricated topological cavity with a random 

geometry formed by the trivial and non-trivial PhCs. The optical length of the 

cavity is the same as the square cavity.  

3.5.1. Far-field Intensity Imaging 

When the EMF is turned on, real space imaging of the top of the device 

(Fig. 3-15a) provides evidence for an edge mode that is tightly confined at the 

boundary of the topologically distinct photonic structures. When EMF is 

turned off, the edge mode disappears (Fig. 3-15b).  

 
Figure 3-15 | Real space camera images of the top of the device with (a) and 

without (b) EMF under optical pumping using a laser with a wavelength of 

λpump = 1064 nm. An edge mode localized at the interface between the two 

PhCs is observed in the presence of the EMF while it disappears when the 

EMF is turned off.  



 
 

 48   
 

3.5.2. Photoluminescence Measurement 

Figure 3-16 shows the photoluminescence spectrum of the cavity shown 

in Fig. 3-14 for the forward (Fig. 3-16a) and the backward (Fig. 3-16b) biases 

of EMF for different pump powers. When the EMF is reversed, cavity couples 

the lasing power to the opposite end of the waveguide. 

 
Figure 3-16 | Photoluminescence spectrum of the square cavity when the EMF 

is (a) 𝐵0 = +100 𝑂𝑒, and (b) 𝐵0 = −100 𝑂𝑒.  

 

Unidirectional lasing with an isolation ratio of 11.3 dB is experimentally 

achieved with a pump power density of 𝜌 = 0.9 𝜇𝑊/𝜇𝑚2  (Fig. 3-17).  
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Figure 3-17 | (a) Evolution of the output power as a function of the pump 

power density (light-light curve) for the cavity with the random shape (Fig. 3-

14). The red dots represent the experimental measurements of the output 

power for different pump power densities when the EMF is turned on (𝐵0 =

+100 𝑂𝑒). Gray solid lines represent linear fits to the data in spontaneous and 

stimulated emission regimes and clearly show a threshold behavior, i.e., 

lasing. (b) Emission power for a pump power density of 𝜌 = 0.9 𝜇𝑊/𝜇𝑚2 

for two opposite values of the EMF (+𝐵0 and –𝐵0). An isolation ratio of 11.3 

dB is experimentally observed, confirming non-reciprocal lasing.  

Other cavities with deformed cavities are demonstrated and characterized 

in appendix 1.  

3.6. Chapter Summary 

In this chapter, we experimentally demonstrated non-reciprocal lasing 

from topological cavities of arbitrary geometries. The topological cavities are 

closed contours between hybrid photonic structures with distinct topological 

invariants and thus support unidirectional edge states circulating around the 

cavity. We made the topologically distinct structures from two PhCs with 

overlapping trivial and non-trivial band gaps at telecommunication 
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wavelengths. Cavities are implemented on structured InGaAsP MQWs, the 

semiconductor providing optical gain, bonded on a YIG substrate that breaks 

time-reversal symmetry in the devices. By evanescently coupling a waveguide 

to the topological cavity, stimulated emission from the one-way mode is 

coupled to a selected waveguide output with an isolation ratio as large as 11.3 

dB. These results demonstrate the flexibility of topological cavities in 

photonic integration where information can robustly flow between sectors 

characterized by their topological invariants and will enable the investigation 

of non-trivial photonic devices. Furthermore, robust unidirectional waves in 

topological cavities could be used for generation of structured lights with very 

large topological charges that is the subject of discussion in the next chapter.  

 

Chapter 3, in part, is a reprint of the material as it appears in B. Bahari, 

A. Ndao, F. Valini, A. E. Amili, Y. Fainman, and B. Kanté, “Experimental 

demonstration of non-reciprocal lasing in topological cavities of arbitrary 

geometries,” Science 358, 636-640 (2017), and B. Bahari, and B. Kanté, 

“Experimental demonstration of non-reciprocal lasing in topological cavities 

of arbitrary geometries,” United States patent (US Provisional Patent 

Application No. 62/540,809), 2017. The dissertation author was the primary 

researcher and author of this paper and patent. 
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Chapter 4: Topological OAM 

4.1. Introduction 

The idea of an extrinsic orbital angular momentum (OAM) associated 

with light was proposed by Allen et al. in 1992 [1]. He showed that light 

beams with an azimuthal phase dependence of exp(iθ) carry an associated 

angular momentum which is independent of the polarization state. In this 

phase factor,  indicates the topological charge and can carry any positive or 

negative integer values. Beams that possess orbital angular momentum, have 

found uses in many fields such as optical tweezers, image processing, 

quantum information and communications, phase contrast microscopy, spin 

speed detection, and spiral interferometry [2-9]. Helically phased beams can 

be generated with several different techniques such as using spiral phase 

plates, cylindrical lens converter, Q-Plates, planar metasurfaces, holograms, 

or spatial light modulation (SLM) [10-21]. However, most of the 

aforementioned generation techniques are challenging to implement when 

topological charges  increase. The lack of a limit to the theoretically possible 

topological charge which a beam can possess, and the inherent orthogonally 

between different angular momentum states make beams with OAM very 
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appealing in a number of fields such as high capacity quantum 

communication, and quantum entanglement [22-26]. However, historically 

practical generation of large  numbers has proven difficult. With many 

techniques limited by geometrical or manufacturing considerations such as 

spatial bandwidth (in the case of SLMs) or milling precision in the case of 

spiral phase plates. To date, there have been few attempts to generate large 

topological charges [25-27]. Among them, Fickler et al. used spiral phase 

plates with large OAM of up to =10,010 [25]. In all of these approaches, the 

devices are bulky and/or non-integrated.  

In the previous chapter, we developed topological cavities that can emit 

light in one-way, while they maintain their functionality when deforming the 

geometry of the cavity. Since the dispersion curve of the edge mode is in the 

scattered region of the band diagram (Fig. 3-2 and 3-7), thus the edge mode is 

a leaky mode, and it partially scatters out in the normal direction. Therefore, 

when we remove the trivial waveguide, the only way to emit amplified light 

is toward the normal axis, which means that laser devices switch from the in-

plane mode to the out-of-plane mode. In this chapter, we demonstrate, for the 

first time, the creation of a chip integrable beam generator utilizing an 

integrated photonic topological ring resonator. We discuss how this leaky 

unidirectional wave can help to generate structured beams with very large 
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topological charges without using any secondary component. Also, since the 

structure is planar, we are able to integrate many of these concentric 

topological ring resonators to multiplex many different large OAM beams. 

We also study the lasing dynamic of the topological rings using second-order 

correlation measurement, which gives us enough insights about the 

functionality of the devices.  

4.2. Theoretical Design of Topological Rings 

Our approach to generating beams with OAM is based on using an active 

topological ring resonator. Ring resonators are able to excite whispering 

gallery modes (WGMs) with large angular momenta, but because these modes 

are excited in pairs, i.e., clock-wise (CW) and counter clock-wise (CCW), the 

net angular momenta usually sums to zero. Therefore, it is necessary to 

suppress the rotational symmetry of the system, e.g., by breaking parity-time 

symmetry at the exceptional point [28], to create a beam with net angular 

momentum. Once a unidirectional WGM is excited, it can be out-coupled by 

a proximate scattering element such as a grating with a periodic refractive 

index close to it [29].  

Here we use a topological insulator edge waveguide (as the previous 

chapter) to excite one-way chiral edge states. In chiral edge states, the group 
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velocity is in one direction, which is as a result of topological properties of 

PhC structures with non-trivial band gaps [30-33].  

In our device, which is presented schematically in Fig. 4-1, we use two 

distinct PhCs to form a ring resonator. Similar to the topological cavities that 

we studied before, the PhC that is inside the ring is a star-shaped unit cell with 

a square lattice, and it is designed to have a topologically non-trivial band gap. 

The PhC that is outside of the ring is an air hole unit cell with a triangular 

lattice, and it is designed to have a topologically trivial band gap. Both PhCs 

are made of InGaAsP MQWs that are bonded on a magnetic material of YIG.  

When the chiral edge state is excited at the interface between the two PhCs, 

since the Chern number difference between them is non-zero (|𝛥𝐶| = 1), then 

the edge mode propagates in one direction either CW or CCW depending on 

the direction of EMF. The number of edge modes is equal to the Chern number 

difference of side walls [34]. Therefore, since the Chern number difference is 

one, only one edge mode can propagate at the interface of both PhCs, i.e., it 

is thus a single optical mode.  
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Figure 4-1 | Schematic of a topological ring formed at the interface of two 

PhCs. Both PhCs are patterned on InGaAsP MQWs, which is bonded on YIG 

grown on GGG. The PhC that is inside the ring is a star-shaped unit cell with 

a square lattice, and the PhC that is outside the ring is a triangular lattice unit 

cell with a cylindrical air hole at the center. The square lattice PhC has a non-

trivial band gap while the triangular PhC has a large trivial band gap. Thus, 

the edge mode is unidirectional due to the distinct topological phase 

transitions at both PhCs. By optically pumping the entire structure, in the 

presence of an EMF, one-way edge mode with a large WGM number is 

excited and circulates inside the ring. The edge mode is bonded in the in-plane 

due to the photonic band gaps, but it can scatter out in the out-of-plane 

direction. Thus, as it amplifies inside the ring, it partially out-couples 

generating OAM beam with very large topological charge.  

When both photonic crystal lattices are optically pumped, an edge mode 

which has a frequency within the band gap of both PhCs is excited and 

confined at the interface between the two crystals. However, since the crystals 

are not fully bounded in a direction normal to the plane of the crystal layer, 

the modes partially scatter out.  In non-topological ring resonator designs with 

fully guided WGM [28,29], they have required a grating to create enough 

scattering into propagating fields. The current design is advantageous since 
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no additional complexity is required to create a radiative source because 

WGM is naturally a leaky mode. Therefore, the generated mode index is 

exactly the azimuthal number of the WGM, or more physically the number of 

optical periods around the resonator ring. It is, therefore, possible to generate 

very large topological charges (or  numbers) in a confined space with a high 

mode purity. The topological charge can change as a function of the radius of 

the ring as shown in Fig. 4-2.  

 
Figure 4-2 | (a) Schematic of a ring-resonator of radius a. The propagating 

mode can be in-plane or out-of-plane modes. The cavity length is 𝑚𝜆 (inset), 

where 𝑚 is an integer representing the azimuthal order of the WGM and 𝜆 the 

guided wavelength in the ring. Since the cavity is leaky, the topological charge 

 is the same as WGM order 𝑚. (b) Topological charge as a function of the 

normalized radius of the ring. By increasing the radius of ring, the order of 

the WGM increases, thus topological charge increases following the relation 

of  = 2𝜋𝑎/𝜆 .  

Figure 4-3a shows the field intensity distribution of the OAM mode for  =

100. By interfering this mode with another OAM beam with opposite charge 
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(i.e.  = −100), an interference pattern with fringes appears in which the 

number of fringes is 2 (Fig. 4-3b). 

 
Figure 4-3 | (a) Field intensity profile of an OAM mode with = 100. (b) The 

interference pattern of two OAM beams with the opposite  numbers (i.e.,  

and −). The number of fringes in the interference pattern is equal to 2.  

4.3. Device Fabrication  

With the same fabrication process that was explained in detail in the 

previous chapter, the device structure is fabricated by electron beam 

lithography followed by dry etching to form both PhCs. The PhCs are 

subsequently bonded on a flat YIG substrate coated with a thin layer of 

polymethyl methacrylate. Finally, the InP substrate, on which InGaAsP is 

epitaxially grown, is removed by wet etching using hydrochloric acid. Figure 

4-4 presents a top view SEM of a fabricated device. The fabrication is uniform 

over the entire area of the device.  
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Figure 4-4 | Top view SEM of a topological ring formed by trivial and non-

trivial PhCs. The structure is fabricated on InGaAsP by electron beam 

lithography followed by dry etching and then bonded on a YIG substrate with 

a thin layer of polymethyl methacrylate. The InP substrate is subsequently 

removed by wet etching using hydrochloric acid. In the inset, both trivial and 

non-trivial PhCs are seen clearly.  

4.4. Device Characterization  

To experimentally characterize the devices, a micro-photoluminescence 

setup is used. The sample is optically pumped from the top with a pulsed laser 

(λpump = 1064 nm, T = 12 ns pulse at a repetition rate of 275 kHz). The size of 

the pump beam is controlled to cover the whole area of the device. The 

stimulated emission of the laser is collected using the same objective lens and 

directed toward a monochromator for spectrum analysis or toward IR camera 

for field intensity measurement.  
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4.4.1. Far-field and Interference Imaging 

Figure 4-5 presents the far-field intensity and interference pattern of a 

topological ring shown in Fig. 4-4. The optical length of the ring resonator is 

optimized to obtain  = 100. Figure 4-5a shows the real space camera image 

of the far-field intensity of the device for a pump power density of 𝜌 =

1.03 𝜇𝑊/𝜇𝑚2. Clearly, an edge mode localized at the interface between the 

two PhCs is observed while the center is dark. By interfering the beam with 

its opposite  number (i.e.,  

 
Figure 4-5 | (a) Real-space camera image of the emission from the topological 

ring when it is optically pumped from the top with an optical power density 

of 𝜌 = 1.03 𝜇𝑊/𝜇𝑚2 and EMF of 𝐵0 = +100 𝑂𝑒. (b) Interference pattern 

of the far-field emission with its opposite topological charge of  = −100. In 

the interference pattern, fringes appear because the beam carries orbital 

angular momentum, and the total number of fringes are 200 which means that 

topological charge is  = 100.  

 = −100), fringes appear because beam carries orbital angular momentum 

(Fig. 4-5b). The number of fringes in Fig. 4-5b is 200 as it has topological 

charge of  = 100. 
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4.4.2. Photoluminescence Measurement 

Figure 4-6 shows the photoluminescence spectrum of the optically 

pumped topological ring in the presence of EMF in three different regimes. 

The amplification and selection of a single mode at the wavelength of 𝜆 =

1575 𝑛𝑚 are observed with increasing pump power. Figure 4-6b presents the 

log-scale output power as a function of the pump power density (light-light 

curve) and shows a characteristic lasing behavior.  

 
Figure 4-6 | (a) Photoluminescence of the topological ring for three different 

pump powers as a function of the wavelength. The topological ring is optically 

pumped with a pump laser (𝜆𝑝𝑢𝑚𝑝 = 1064 𝑛𝑚) from the top, and the 

emission is collected using the same objective lens used for pumping on top 

of the ring. (b) Evolution of the output power as a function of pump power 

density. Red dots are experimental measurements of the output power for 

different pump power densities when the EMF is turned on. Three different 

highlighted areas are spontaneous emission (pink), amplified spontaneous 

emission (yellow), and stimulated emission (blue) ranges.  

4.4.3. Second Order Correlation Measuring 

To further investigate the coherent character and lasing characteristic of 

the cavity, we measured the second-order intensity correlation function of its 
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emission, 𝑔2(𝜏) =
〈𝐼(𝑡)𝐼(𝑡+𝜏)〉

〈𝐼(𝑡)〉2
 , using a Hanbury Brown-Twiss interferometer 

(see appendix 2). 〈𝐼(𝑡)〉 represents the expectation value of the intensity at 

time 𝑡. Figure 4-7 shows the zero-delay of the normalized second-order 

intensity correlation function, 𝑔2(0), and the three different regimes of 

spontaneous emission (SpE), amplified spontaneous emission (ASE), and 

stimulated emission (StE) are evidenced. We observe the suppression of the 

photon bunching peak (visible in the ASE regime) in the StE regime, i.e., 

lasing action.  

 
Figure 4-7 | Second-order intensity correlation at the zero-delay, 𝑔2(0). 

Clearly, the photon bunching peak (in the ASE regime of 𝑔2(0)) is suppressed 

in the StE regime, demonstrating lasing action of the topological ring.  

Figure 4-8 shows the experimental correlation histogram (Figs. 4-8a-e) 

and the corresponding normalized 𝑔2(𝜏) (Fig. 4-8f-j) at five different pump 

power densities. 
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Due to nanosecond pulse pumping (290 kHz repetition rate, 6 ns pulse 

width), the correlation histogram inherently consists of many pulses 

corresponding to the optical pump pulses arriving, and the device is turning 

on. The time delay between neighboring pulses in Fig. 8a-e is approximately 

3.4 𝜇𝑠, which is consistent with the 290 kHz repetition rate of the pump laser. 

According to coherence theory, a photon bunching peak near zero-delay can 

be observed in 𝑔2(𝜏) for a lasing device in the SpE and ASE regimes where 

the degree of coherence is low [35]. The width of the photon bunching peak 

is on the order of the coherence time [35], which is expected to be much 

smaller than the repetition period of the pump laser (~3.4 𝜇𝑠). Therefore, the 

photon bunching peak will emerge only on top of the zero-delay pulse, making 

it taller than the non-zero-delay pulses (Fig. 4-8b-d). In the lasing regime, such 

a photon bunching peak is suppressed since coherent emission is achieved 

[35]. This is clearly demonstrated in Fig. 4-8e.  

The photon bunching peak can be more readily observed in the 

normalized 𝑔2(𝜏), which is obtained by dividing the zero-delay pulse by the 

mean of the non-zero-delay pulses. The mean is taken here to reduce the effect 

of shot noise in the experiment. Figure 4-8f-j show examples of the 

normalized 𝑔2(𝜏) in the SpE (Fig. 4-8f), ASE (Fig. 4-8g-i) and StE (Fig. 4-

8j) regimes of our topological laser. Evidently, the photon bunching peak 
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visible in the ASE regime is suppressed in the StE regime. However, contrary 

to theoretical predictions, the photon bunching is also absent in the SpE 

regime (Fig. 4-8a,f). This experimental phenomenon is primarily due to the 

timing uncertainty of our APDs’, which is on the order of 400 ps. Since the 

coherence time in the SpE regime is much shorter than 100 ps, the averaging 

effect from the APDs renders the photon bunching peak invisible.  

 
Figure 4-8 | Intensity correlation histograms (a-e), and the corresponding 

normalized 𝑔2(𝜏) (f-j) in the SpE, ASE and StE regimes. The photon 

bunching peaks emerge in the ASE regime (b-d, g-i) signifying that stimulated 

emission begins to dominate in our topological laser as it transitions into the 

StE regime. At the highest pump power density (e,j), the photon bunching 

peak is suppressed due to lasing. In the SpE regime (a,f); however, the photon 

bunching peak is absent because the coherence time is too short to be resolved 

by the APDs.  

4.4.4. Full Wave Half Maximum Measuring 

Furthermore, the full width at half maximum (FWHM) of the zero-delay 

𝑔2(𝜏)  pulse shrinks in the SpE regime, reaches a minimum in the ASE 
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regime, and broadens in the StE regime (Fig. 4-9). Such variations in the 

𝑔2(𝜏) pulse width is related to a nonlinear effect called delay threshold 

phenomenon or dynamical hysteresis, which occurs in a laser only when the 

peak intensity of a pump pulse is larger than the threshold intensity [36]. The 

distinct 𝑔2(𝜏) width behaviors in the SpE and StE regimes signify that the 

suppression of the photon bunching peak (Fig. 4-7) at high pump intensity 

indeed originates from lasing instead of SpE. It is worth noting that the unity 

𝑔2(0) in the SpE regime is due to the limited time resolution of the detection 

system as explained before [36].  

Figure 4-7 was acquired by extracting the zero-delay value, i.e., 𝑔2(0), 

of the normalized 𝑔2(𝜏) in a wide range of pump powers. By 𝑔2(0)~1  in 

both the SpE and StE regimes, confirms that our device indeed reached the 

lasing regime for two reasons. Firstly, the output power of our device 

continued to increase even at the highest pump intensities. Hence, it’s 

impossible that the device reverses back to the SpE regime due to, for 

example, degradation as that should lead to a significant decline in the output 

power. Furthermore, we examined the FWHM of the 𝑔2(𝜏) pulses as a 

function of the pump power (Fig. 4-9). In a previous study [36], it was 

demonstrated that when a laser is optically pumped with nanosecond pulses, 

its 𝑔2(𝜏) pulse FWHM shrinks in the SpE regime, reaches a minimum in the 
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ASE regime and broadens in the StE regime. Such variations in the 𝑔2(𝜏) 

pulse width is related to a nonlinear effect called the delay threshold 

phenomenon (DTP) or dynamical hysteresis (DH), which occurs in a laser 

only when the peak intensity of a pump pulse is larger than the threshold 

intensity [36,37]. Therefore, an indirect observation of DTP via the 𝑔2(𝜏) 

pulse width unambiguously shows lasing. The measured 𝑔2(𝜏) pulse FWHM 

of our topological laser is shown in Fig. 4-9. The trends of the FWHM in the 

SpE, ASE and StE regimes are fully consistent with previous work [36]. We 

further measured the 𝑔2(𝜏) pulse FWHM of our pump laser at different pump 

powers to ensure that the shrinkage and broadening effects are not due to 

anomalies of the pump laser. Figure 4-9 clearly shows that the 𝑔2(𝜏) pulse 

FWHM of the pump laser stays constant at all pump powers while that of the 

topological laser varies significantly. Consequently, the notable variation in 

the 𝑔2(𝜏) pulse width results solely from the emission characteristics of our 

topological laser.   
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Figure 4-9 | The pulse FWHM of the topological device is plotted along with 

that of the pump laser. Evidently, the 𝑔2(𝜏) width of the pump laser stays 

nearly constant while that of the topological laser varies significantly. 

Therefore, the device width variations are due solely to the distinctive 

emission statistics in the SpE, ASE and StE regimes of the topological laser, 

and are not correlated with the operation of the pump laser. 

4.5. Multiplexing Multiple Topological Rings 

By putting alternatively trivial and non-trivial PhCs in a concentric 

coaxial pattern as depicted in Fig. 4-10, we are able to generate different 

momentum states and multiplex the beams together as desired. Each 

concentric ring is operating at the same optical frequency (i.e. within the band 

gap of both PhCs), and has the same optical path length but with different 

topological charges (shown in Fig. 4-2b), which results in different sized 

cavities.  
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Figure 4-10 | Schematic of a topological multiplexer formed by placing three 

different topological rings in which trivial and non-trivial PhCs change 

alternatively in a concentric coaxial pattern. By pumping the whole structure, 

all the rings are excited with the same wavelength but with different 

topological charges realized by the radius of the ring, 𝑎 = 𝜆, where  and 𝜆 

are topological charge and the optical wavelength of the ring, respectively.  

By using the topological ring depicted in Fig. 4-1, we can integrate many 

concentric ring resonators to multiplex many different large OAM beams. 

Figure 4-11a-c shows the SEM images of three different planar rings designed 

for topological charges of 100, 156, and 276, for example. By combining these 

three rings we can multiplex all of them in one planar multi-ring structure 

(Fig. 4-11d).  
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Figure 4-11 | Top view SEM images of three different topological rings 

designed for topological charges of 100, 156, and 276. In two rings shown in 

(a) and (c) the PhC inside the ring is a non-trivial PhC and the PhC outside of 

the ring is a trivial PhC. The structure shown in (b) is complementary of (a) 

and (c), i.e., PhC that is enclosed by the ring is a trivial PhC and elsewhere is 

a non-trivial PhC. (d) By merging all structures in (a-c) while they are 

concentric, we can multiplex three rings in the same planar platform. 

Figure 4-12 show the far-field image of the topological rings, and clearly, 

all the OAM beams indicated in Fig. 4-12a-c are multiplexed in Fig. 4-12d 

without cross-talking with each other.  
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Figure 4-12 | (a-c) Real-space camera images of the rings when they optically 

pumped with an optical pump power density of 𝜌 = 1.03 𝜇𝑊/𝜇𝑚2. All three 

rings (a-c) are lasing and present clear ring-shape patterns (a-c) that are 

multiplexed (d) when three rings are merged concentrically.  

 

Figure 4-13 and 4-14 present similar interference patterns that are 

measured for each ring shown in Fig. 4-12.  
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Figure 4-13 | Field intensity profile of the beam when it interferes with an 

OAM beam with the opposite  number (−). The total number of the fringes 

are 200 (a), 312 (b), and 552 (c).  

 

Figure 4-14 | Field intensity profile of the beam when it interferes with an 

OAM beam with the opposite  number (−). All three rings in Fig. 4-13 are 

multiplexed with the same number of fringes.  

4.6. Chapter Summary 

In conclusion, we experimentally demonstrated a photonic topological 

ring resonator that is able to generate beams with arbitrarily large OAM. The 

ring is formed by using two PhCs with distinct topological phase invariants, 

supporting a unidirectional chiral edge state in the ring. PhCs are made of 
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InGaAsP MQWs bonded on a YIG substrate that breaks time-reversal 

symmetry. By optically pumping the entire structure, stimulated emission 

from one-way edge mode is excited and amplified. Unlike conventional ring 

resonators that they need an additional grating to scatter out the WGM, in this 

topological ring the WGM partially out-couples as circulating inside the ring. 

Therefore, the OAM number is the same as WGM number, which is a very 

large value. We also integrated many of these planar topological rings with 

various topological charges when they have same center to multiplex different 

large OAM beams.  

Our experimental results offer new all integrated and planar OAM light 

sources that are able to generate very large OAM beams useful for optical 

communications, and quantum mechanics. Furthermore, the planar geometry 

and small size of the device lend themselves to on-the-chip integration, 

multiplexing, and waveguiding applications.  

 

Chapter 4, in part, is a reprint of the material as it appears in B. Bahari, 

L. Hsu, S. H. Pan, D. Preece, A. Ndao, A. El Amili, Y. Fainman, and B. Kanté, 

“Topological lasers generating and multiplexing topological light,” 

arXiv:1904.11873 (2019), and B. Bahari, and B. Kanté, “Topological 

integration of unbounded orbital angular momentum laser,” United States 
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patent (Under process), 2018. The dissertation author was the primary 

researcher and author of this paper and patent. 
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Chapter 5: Bound States in the 

Continuum 

5.1. Introduction 

Cavity resonators are primarily used for generating single frequency 

beams with high intensities. These resonators conventionally consist of two 

mirrors to provide multiple reflections of beams. By controlling specific 

parameters such as optical path of beams and reflectivity of mirrors, wave 

with a specific frequency will be trapped, and experiences a very large quality 

factor defined as [1] 

𝑄 = 𝜔 ×
𝑠𝑡𝑜𝑟𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐𝑎𝑣𝑖𝑡𝑦

𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑒𝑑 𝑝𝑜𝑤𝑒𝑟 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐𝑎𝑣𝑖𝑡𝑦
 

where 𝜔 is angular frequency. There are very different kinds of cavity 

resonators with different functionalities rather than only using two mirrors. 

Cavities play a fundamental role in nanophotonics. One key parameter in 

a cavity is the quality factor, which shows the lifetime of a photon inside the 

cavity. In many applications, especially in laser, a cavity with a large quality 

factor is desirable. Photonic crystal cavities can present a large quality factor 

[2], which makes them an interesting platform for photonic systems. 
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Generally, PhCs can be classified based on the number of periodicity 

directions (i.e., 1D, 2D or 3D), and thickness of the non-periodic directions 

(i.e., finite or infinite).  

 
Figure 5-1 | schematic of 1D, 2D, and 3D PhCs (picture courtesy from 

reference [3]). 

By assuming that there is no material loss, if the non-periodic directions 

have an infinite thickness, then eigenmodes of the PhC is purely real [3]. This 

means the quality factor of the modes which also is defined as, 𝑄 = −2 ×

𝑅𝑒{𝑓}/𝐼𝑚{𝑓}, where 𝑓 is complex eigenfrequency, is infinite. This happens 

simply because there is no scattering loss in the system. However, if non-

periodic directions have finite thicknesses, then scattering loss can exist due 

to the diffractions [1]. In this case, in the band diagram there are two different 

regions that are separated by some lines called first diffraction limits (see Fig. 

5-2). As shown in Fig. 5-2, in the gray area which also called light cone, the 

eigenmodes are purely real because these modes are below the first diffraction 

limit, and experience no diffraction and scattering loss. Therefore, the quality 
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factor of these modes is infinite, and we call those modes as “guided modes”. 

However, modes that are above this light cone (i.e., in the scattered or 

continuum region) have complex eigenmodes, which means that quality factor 

is a finite value. This is because these modes experience some sort of 

diffractions and scatter out of the system. Therefore, there are scattering 

losses. These modes are called “resonant or leaky modes”.  

 
Figure 5-2 | (a) schematic of PhC slab with different configurations of either 

rod-base or hole-base, and different lattices of either square or triangular 

lattices (picture courtesy from ref. [3]). (b) Band diagram of a representative 

PhC slab. The white area is separated from the gray area using first diffraction 

limits indicating light cone. Modes sitting below the first diffraction limits are 

guided modes with real frequency and infinite quality factor, but mode beyond 

these limits are resonant modes with complex frequency and finite quality 

factors (picture courtesy from ref. [4]).  

In 1929, von Neumann and Wigner demonstrated that the single-particle 

Schrodinger equation could have some embedded eigenvalues in the 

continuum of positive energy states, called bound states in continuum (BIC). 
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They showed the origin of these bound states using amplitude modulation of 

a free particle wave function [5]. Therefore, based on their demonstration, the 

potential was bounded and could be vanished at infinity. It was shown that 

destructive interference is the origin of this phenomena, and predicted in 

photonic systems [6], and experimentally demonstrated in the passive system 

[7] with applications in nanophotonic laser [8]. However, BIC singularities 

possess other peculiar features rather than only diverging quality factor due to 

the full confinement inside the structure.  

In this chapter, we study the topological characteristics of BIC 

singularities and demonstrate theoretically and experimentally that BICs carry 

non-zero topological charges. This feature is the origin of tailored beam 

generation. Also, the position of the BIC singularities in reciprocal space is 

tunable under some specific conditions, which enables to change the beam 

direction in the real space. This is a unique characteristic that proposes the 

origin of a new type of non-mechanical beam steering technique that is quite 

different from conventional phase array systems studied by far [9-14]. 

Furthermore, in BIC devices it is possible to generate multiple beams at the 

same time thanks to the crystal symmetry of periodic structures. Combination 

of all these characteristics in a single-platform device enhances the 
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functionality of the light source, and can find many applications in optical 

communications, optical tweezers, sensors, and optical microscopy.  

5.2. Theoretical Design of Extended PhC Cavity  

Bound states in the continuums are singular points in the reciprocal space 

(or Brillouin zone) with a zero far-field intensity and a phase singularity. 

According to homotopy theory, for a singular point in a vector domain, there 

is a certain amount of vector winding for any closed path enclosed that 

singular point [15]. This amount indicates the strength of the singularity, and 

also called “topological charge”. Brillouin zone is a vector domain and a far-

field polarization can be assigned to each point inside this domain. BIC points 

are singularities within this domain that are center of polarization vortices 

with non-zero topological charges calculated by [16]: 

𝑞 =
1

2𝜋
∮ 𝛻𝑘 𝜙(𝑘) ∙ 𝑑𝑘
𝐶

,     (5-1) 

where 𝜙(𝑘) = 𝑎𝑟𝑔 [𝑐𝑥 (𝑘) + 𝑖𝑐𝑦 (𝑘)], and 𝑐𝑥 (𝑐𝑦) is 𝑥(𝑦) component of the 

averaged field, < 𝑢𝑘 >, and 𝑢𝑘 is defined as the periodic part of the Floquet-

Bloch modes, 𝐸(𝑟, 𝑘) = 𝑒𝑖𝑘.𝑟  𝑢𝑘 (𝑟) with 𝑢𝑘 (𝑟 + 𝑝) = 𝑢𝑘  (𝑟), where 𝑝 is 

periodicity.  

At the BIC singularity, the far-field is zero due to the destructive 

interference of the resonant modes from different unit cells that have the same 
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amplitude but different Floquet-Bloch phases. By detuning the effective 

refractive index of unit cells uniformly, the momentum whose destructive 

interference happens will change. This is a fundamental key that is used for 

tuning the direction of emission beam as it will be discussed in the following.  

An important question left is about polarization state at BIC point. As 

mentioned, at BIC points the far-field amplitude tends to be zero, thus 

theoretically it is meaningless to define a polarization state for these points. 

However, it can be shown for points so closed to a BIC singularity. This is 

especially can be done in an active system (laser), because when the system 

is pumped, eventually, a mode with the largest quality factor (i.e. BIC mode) 

that experiences larger effective mode gain starts to amplify and lase. 

Therefore, the far-field profile and polarization state can be evaluated.  

Figure 5-3 presents a PhC slab made of InGaAsP MQWs that is bonded 

on a glass substrate using a resist of polymethyl methacrylate (PMMA).  
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Figure 5-3 | schematic of the PhC slab made of InGaAsP MQWs bonded on a 

glass substrate using a PMMA resist. PhC has a square lattice with a 

periodicity of 𝑝, and radius of holes 𝑟.  

5.2.1. Band Diagram Calculation 

Dispersion band diagram and quality factor of this structure are plotted 

in Fig. 5-4. In these plots, modes of the PhC are calculated using finite element 

method. There are three modes in the gain bandwidth of the InGaAsP. Mode 

1 is a single mode while modes 2 and 3 are degenerated modes. By changing 

the radius of holes uniformly over the whole structure, all three modes shift 

spectrally. The quality factor of mode 1 is theoretically infinite at the center 

of the Brillouin zone (Γ point) and independent of the radius of holes as mode 

1 is symmetry protected and we call it Γ-locked mode. This type of mode, 

which usually referred to as band-edge mode, necessarily emits normal to the 

surface [9]. Modes 2 and 3, which are resonant modes, can only have infinite 

quality factors if all radiation channels destructively interfere to form singular 

states at reciprocal space points.  
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Figure 5-4 | Band diagram (a) and quality factor (b) of the square lattice PhC 

with a periodicity of 𝑝 = 950 𝑛𝑚, and radius of holes 𝑟 = 200 𝑛𝑚. Band 

diagram is calculated along the irreducible Brillouin zone. Blue mode is a 

single mode with a large quality factor always at Γ point (Γ-locked), while the 

other two modes are degenerated modes with a large quality factor that can 

move away from the Γ point.  

5.2.2. Vortex Behavior of BIC Singularities 

Although the far-field polarization does not exist right at these singular 

points, but it can be defined for points very close to the singularities. For 

example, let’s consider mode 3 (green mode in Fig. 5-4b). As shown in the 

Brillouin zone (Fig. 5-5a) for every point close to the BIC singularity, there is 

a linear polarization but at different directions. The polarization at BIC point 

should be defined in a way that polarization continuity maintains by moving 

at different directions. This means that there is a polarization collapse right at 

BIC points, and this polarization (at a very close point to BIC) is a 

superposition of all neighboring polarizations. As it is demonstrated in Fig. 5-
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5b, the far-field polarization is linear for a point away from BIC point. 

However, as we move toward the BIC point, the far-field polarization  

 
Figure 5-5 | (a) Polarization map of the PhC within the Brillouin zone at 

different momentum pairs (𝑘𝑥, 𝑘𝑦). At each point, polarization is linear but 

with different orientations. As moving toward BIC singularities (indicated by 

red dots), the size of the vectors (polarization amplitudes) decrease due to the 

vanishing far-field. Around the BIC singularity, there is a polarization rotation 

(vortex) due to the non-zero topological charge. Since there is one time vector 

winding, thus the topological charge is one. (b) Quality factor of mode 3 along 

irreducible Brillouin zone with a BIC singularity along Γ𝑋. For points away 

from BIC the far-field polarization is linear, but as moving toward BIC 

singularity, the far-field polarization tends to be become vortex shape.  

gradually changes to be vortex shape following the similar pattern of the 

vortex in Fig. 5-5a. The topological charge or winding number of this vortex 

can be calculated using eq. (5-1). 
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5.2.3. Robustness of BIC Singularities 

These BIC singular states are robust vortex centers carrying non-zero 

topological charges (see Appendix 3), and a continuous change of effective 

refractive index (or physical parameters of a system) continuously tunes the 

destructive interference condition away from the Γ point, resulting in steering 

of mode 2 along ΓM and mode 3 along ΓX (see Fig. 5-6). Perturbing such 

modes, for example by varying the radius of holes of an array (static steering) 

or by using phase-changed materials (dynamic steering), is a method to deflect 

emission beams without using additional components, such as phase arrays 

[10-12], liquid crystals [13], acoustooptics [14], or breaking the symmetry of 

the system to generate an artificial band-edge mode [9]. In this system, all 

holes have the same size in an array, and the required phase shift to steer the 

light is naturally provided by the phase-offset between Floquet-Bloch 

harmonics of the periodic structure (see Appendix 4). It is worth noting that 

the broken 𝜎𝑧  symmetry and the finite size of the realized samples limit the 

quality factor of modes 2 and 3 to very large but not infinite values, forming 

quasi-bound states in continuum [17].  
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Figure 5-6 | Quality factor of modes 1-3 as a function of the radius of holes in 

reciprocal space (k-space). The quality factors of modes 1, 2 and 3 are singular 

in k-space, at a point for mode 1 (Γ-locked), and along lines for mode 2 

(steering along ΓM) and mode 3 (steering along ΓX). Modes 2 and 3 can thus 

continuously steer as a function of the radius of holes. The quality factor of 

mode 1 is singular for all radii of holes because mode 1 is symmetry-protected 

while mode 2 and 3 become singular for holes radii smaller than 𝑅~250 𝑛𝑚. 

Blue dots correspond to steering prediction based on effective mode 

calculation (see Appendix 5).  

5.3. Device Fabrication and Characterization  

The sample is made of structured InGaAsP MQWs epitaxially grown on 

an InP substrate. The structure is fabricated by electron beam lithography 

followed by dry etching to form holes and thus constitutes a PhC. The PhC is 

subsequently bonded on a flat glass substrate coated with a thin layer of 

PMMA. During the bonding process, PMMA infiltrates holes of the PhC. 

Finally, the InP substrate is removed by wet etching using hydrochloric acid.  

Figure 5-7 shows a top SEM view of a device, illustrating the uniformity of 
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the holes in the structure. Several devices with a range of radius of holes were 

fabricated.  

 
Figure 5-7 | (a) Microscope image of the fabricated PhC arrays. The sample 

contains different 200×200 arrays with the radii between 180 − 350 𝑛𝑚. The 

big pad (shiny surface) with all the arrays, is InGaAsP. Some InP residues are 

visible on the left side of the InGaAsP pad, but not on the arrays. (b) Dark 

field microscope image showing the zoom-in image of one of the arrays. (c-

e) SEM image of the different arrays with different radii, 180 nm (c), 250 nm 

(d), and 350 nm (e). 

5.4. Device Characterization  

5.4.1. Photoluminescence Measurement 

The measurements are performed using a micro-photoluminescence 

setup in which the reciprocal space is obtained by Fourier transforming the 

image plane (see Appendix 5). The devices are optically pumped with a pulsed 
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laser (𝜆𝑝𝑢𝑚𝑝 = 1064 𝑛𝑚, 𝑇 = 12 𝑛𝑠 pulse at a repetition rate 𝑓 = 275 𝑘𝐻𝑧). 

The evolution of the output power as a function of the pump power (light-light 

curve) for a representative sample confirms the threshold behavior and a clear 

transition from spontaneous emission to lasing (Fig. 5-8).  

 
Figure 5-8 | (a) The emission power evolution as a function of the pump power 

in a broader wavelength range for a sample with a periodicity of p = 950 𝑛𝑚, 

and radius of holes 𝑟 = 280 𝑛𝑚. By increasing the pump power, eventually, 

one mode starts to lase with reduced line-width. (b) Output power as a 

function of the average pump power (light-light curve) around the lasing 

wavelength. The red dots are experimental measurements of the output power 

for different pump powers. The blue solid lines are linear fits to the data in 

spontaneous and stimulated emission regimes and clearly show a threshold 

behavior, i.e. lasing.  

5.4.2. Band Diagram Characterization 

The band diagram of the device is experimentally measured by pumping 

the device with a high-energy laser and collecting the photoluminescence at 

different angles around the wavelength of 1.6 𝜇𝑚. Figure 5-9 presents the 

band diagram measurement result (color plot) that is compared with 
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simulation (dotted points are from Fig. 5-4b), and there is a good agreement 

between theory and experiment.  

 
Figure 5-9 | Experimental (color plot) and theoretical (blue dots) band 

diagrams measured/calculated along the ΓX and the ΓM directions. The 

experimental band diagram is measured by pumping the structure with a high-

energy laser and collecting the photoluminescence at different angles, and it 

is compared with theoretical calculations shown in Fig. 5-4a. A good 

agreement is observed between the theoretical band diagram and experiments.  

5.4.3. Steering behavior 

Figure 5-10 presents reciprocal space images of the emission of four 

samples with decreasing radii. The center of the image represents the center 

of the Brillouin zone i.e., 𝑘𝑥 = 𝑘𝑦 = 0 (Γ point). For 𝑅 = 250 𝑛𝑚, the PhC 

supports only the Γ-locked mode. Figure 5-10a confirms normal emission 

from this sample. As the radius is decreased below 𝑅 = 250 𝑛𝑚, the steering 

of four lasing beams along ΓX is observed.  They correspond mode 3, which 

has a large quality factor along ΓX, and the four beams stem from the four-
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fold symmetry of the crystal (invariance under 90° rotation). The number of 

beams can be controlled by the symmetry of the crystal as well as by boundary 

conditions (see Appendix 6). The steering angle further increases by 

decreasing the radius as seen in Fig. 5-10b-d. The emission angles are 

extracted from the reciprocal space images and the numerical aperture of the 

collecting objective.  

 
Figure 5-10 | Experimental k-space images of the emission from lasers with 

different radii. The distance of the bright spots to the center represents the in-

plane wave-vector or equivalently the angle, and it increases as the radius of 

holes is decreased from 𝑟 = 250 𝑛𝑚 (a), to 𝑟 = 240 𝑛𝑚 (b), 𝑟 = 225 𝑛𝑚 (c), 

and 𝑟 = 190 𝑛𝑚 (d), clearly demonstrating the lasing angles of 𝜃 = 0°, 𝜃 =

1.7°, 𝜃 = 8°, and 𝜃 = 11.1°, respectively. The maximum observable angle in 

k-space imaging is given by the numerical aperture (NA) of the objective lens 

(NA = 0.4). The four-fold symmetry of the structure implies that any 

singularity is invariant under 90° rotation and this is confirmed by the four 

observed bright spots. 

Blue dots in Fig. 3 represent the experimental emission angles, and as 

can be seen, lasing occurs in directions of predicted high quality factors. The 
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operating mode is selected by its spatial overlap with the optical gain and 

switches from mode 1 to mode 3 for 𝑅~250 𝑛𝑚 (see Appendix 5).  

5.4.4. Polarization Vortex 

Singular states resulting from full destructive interference carry a 

quantized topological charge (order of singularity) that can be controlled by 

the topology of the structure and mathematically refer to modes with singular 

far-field phase whose order can be identified by the far-field polarization 

twisting around the singular point in reciprocal space [15] or real space [18]. 

Figures 5-11a-f represent the experimental (a-c) and theoretical (d-f) far-fields 

of devices emitting at different angles. In these figures, all other three 

emission beams are filtered by using the knife-edge technique [19]. For 𝑅 =

180 𝑛𝑚 and 𝑅 = 225 𝑛𝑚, mode 3 (ΓX-beaming), emits at an angle with a 

tilted doughnut-shaped pattern confirming off-normal emission. For 𝑅 =

250 𝑛𝑚, only mode 1 (Γ-locked), emits with a doughnut-shaped far-field. To 

experimentally demonstrate the vortex nature of these emissions, we used a 

half-wave plate in combination with a linear polarizer in the path of the laser 

emission. Therefore, we observed a two-lobe intensity pattern (Fig. 5-11g-i), 

which refers to one time polarization winding (i.e., the topological charge of 

1). By rotating the linear polarizer, the two-lobe pattern also rotates.  
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Figure 5-11 | Far-field radiation pattern measurements (a-c) and 

corresponding simulations (d-f) of the vortex lasers for three different radii, 

𝑟 = 180 𝑛𝑚 (a,d), 𝑟 = 225 𝑛𝑚 (b,e), and 𝑟 = 250 𝑛𝑚 (c,f). By reducing the 

radius of holes, the far-field beam, which is doughnut-shaped, starts to beam. 

(g-i) Far-field intensity patterns of the emission beams after passing through 

a linear polarizer when the angle of the polarizer is (g) 0°, (h) 30°, and (i) 90°. 
Two-lobe pattern is due to the polarization twisting with the topological 

charge of 1. 

5.4.5. Topological Charge Conservation 

Singularities are always created in pairs due to charge conservation [15]. 

This is evident in Fig. 5-6 where a high quality factor mode that steers along 

ΓM is predicted. However, this mode was not observed so far as it experiences 

less effective gain than the ΓX-steering mode (see appendix 5). Since the 

existence of this mode is guaranteed by topology, it should be possible to 

observe lasing and steering along ΓM if the pump power is increased.  
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Figures 5-12 present the evolution of the reciprocal space image as a function 

of the pump power for samples supporting all three singular modes. For 𝑅 =

 190 𝑛𝑚, Fig. 5-12a clearly shows lasing along ΓX. As the pump power is 

increased, four additional spots appear along ΓM (Fig. 5-12b-c). Similarly, for 

𝑅 = 225 𝑛𝑚, additional spots appear (at a smaller angle) as the pump power 

is increased (Fig. 5-12d-f). These results demonstrate steering along ΓM. 

Normally at even higher pump powers lasing could be observed from mode 1 

as well, but in our experiments, the threshold pump power of this mode was 

above the damage threshold of the InGaAsP MQWs. For the device to be a 

single mode laser with an independent steering angle, it would need to be 

operated below the threshold of mode 2. 
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Figure 5-12 | Reciprocal space images of the vortex laser when the only mode 

lasing is the one beaming along ΓX (mode 3) (a,d). This mode has a 

topological charge of +1, and, topology guarantees the existence of another 

mode with the opposite charge in the system, as charges are created in pairs. 

As the power is increased, it reaches the threshold of the mode beaming along 

ΓM (mode 2) that also starts to lase (b,e) as evident from the four additional 

bright spots (four-fold symmetry) in k-space appearing at 45 to the previous 

lasing spots. Increasing the pump power further, increases the emission power 

of the lasing modes, making them brighter (c,f). In our system, the threshold 

of the mode steering along ΓM (mode 2) is larger than the threshold of the 

mode beaming along ΓX (mode 3). For pump powers smaller than the 

threshold of mode 2, the mode beaming along ΓX is the only mode lasing in 

the device. The relative threshold of the modes is governed by their effective 

gain that depends not only on the modes distribution in the device but also the 

gain spectrum of the MQWs. For 𝑟 = 190 𝑛𝑚, the emission angle of mode 2 

is 13.5 and the emission angle of mode 3 is 11.1. For 𝑟 = 225 𝑛𝑚, the 

emission angle of modes 2 and 3 is 8, demonstrating beaming, both along ΓX 

and ΓM.  

5.4.6. Wavelength Scaling 

The modes can be further identified by their wavelength scaling.  In Fig. 

5-13, the continuous lines represent the theoretical prediction of the 
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wavelength of each mode with large quality factor as a function of the radius 

of holes. Dots represent  

 
Figure 5-13 | Lasing wavelength as a function of the radius of holes from 180 

nm to 350 nm. Each point corresponds to a device with a specific radius. Error 

bars indicate the standard deviation of radii measured from fabricated devices. 

Solid lines represent the wavelength of the singularities (resonances with large 

quality factor shown in Fig. 5-6) of mode 1 (blue), mode 2 (red), and mode 3 

(green) for different radii of the holes. The good agreement between theory 

and experiment constitutes an additional identification of the modes. 

measured wavelengths of emissions from the lasers and a good agreement 

with theory is observed. 

5.5. Chapter Summary 

In this chapter, we demonstrated topological light sources that generate 

and steer multiple coherent vortex beams. The devices are PhC arrays of holes 

made in InGaAsP MQWs that is bonded on a glass substrate using photoresist 
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of PMMA. All lasers operate at BIC singularities where destructive 

interference occurs between radiative channels of the PhC, and the required 

phase shift to steer the light is naturally provided by the phase offset between 

Floquet-Bloch harmonics of the periodic structure. By tuning the radius of 

holes continuously, the position of the BIC point moves along a line in 

direction of the crystal symmetry, which means that emission beams steer. For 

this, no additional mechanical component or breaking symmetry of the crystal 

is needed. BIC singularities carry non-zero topological charges. Thus beams 

are vortex beams with polarization windings that are proportional to the 

topological charge number. We also demonstrated that topological charges are 

created in pairs. Dynamic steering of the current device can be implemented 

using phase changed materials, which changes the refractive index 

continuously for a given radius of holes. The proposed scalable and steerable 

vortex light source paves the way to explore the new generation of light 

sources useful for optical tweezers with more flexibilities due to the non-

mechanical platform and generation of tailored beams. Moreover, it can find 

applications in multiple other areas such as biological sensing, microscopy, 

astronomy, and high-capacity communications.  
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Chapter 5, in part, is a reprint of the material as it appears in B. Bahari, 

F. Vallini, T. Lepetit, R. Tellez-Limon, J. Park, A. Kodigala , Y. Fainman, 

and B. Kanté, “Integrated and steerable vortex lasers using bound states in 

continuum,” arXiv:1707.00181 (2017), and B. Bahari, and B. Kanté, 

“Photonic generation and steering of coherent vortex beams,” United States 

patent (US Provisional Patent Application No. 62/506,765), 2016. The 

dissertation author was the primary researcher and author of this paper and 

patent. 
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Chapter 6: Summary and Outlook 

In this thesis, we have studied, both theoretically and experimentally, a 

new type of light sources (lasers) based on topological singularities of, 1) 

Topological insulators (TIs), and 2) Bound states in the continuum (BIC). 

These topological behaviors are ubiquitous and, in every structure, ranging 

from a single particle to random and periodic systems. We studied the 

topological characteristics in periodic structures to design a new type of cavity 

resonators called topological cavities. Unlike conventional lasers that are 

based on semiconductor and cavity resonators to confine light with a large 

quality factor; topological cavities not also confine the light, but also 

manipulate the emission characteristics in different ways while gives the 

possibility of denser packaging.  

The thesis started with topological insulators. We theoretically 

investigated topological structures using Quantum Hall effect, and 

numerically analyzed two-dimensional photonic systems. We designed 

topological waveguides using hybrid photonic crystals, and demonstrated that 

they are robust to any kind of disorders. Then, topological and non-topological 

(or conventional) cavities are studied and it was demonstrated that how 
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topology can be used as an extra degree of freedom to design robust non-

reciprocal cavity resonators with smaller footprints and large isolation ratios.  

Then we designed three-dimensional topological cavities using hybrid 

PhCs in an active platform for making integrated topological lasers. In our 

design, we used gain material of InGaAsP multiple quantum wells, which is 

a gain material at telecommunication wavelength range. We also used 

magnetic material of Yttrium Iron Garnet (YIG) to break time-reversal 

symmetry. Various topological cavities with arbitrary geometries are 

demonstrated. All cavities emit (in-plane) light in one direction with a 

sufficiently large isolation ratio (>10 dB).  

The edge mode inside the topological cavities is leaky mode, which 

means that as it propagates inside the cavity, partially scatters out of it without 

using any secondary component such as gratings. We used this feature and 

removed the trivial waveguide in the previous design so that light can only 

emit in the normal direction. Therefore, unidirectional whispering gallery 

mode (WGM) emits outside generating orbital angular momentum (OAM) 

beam. The OAM beam carries a very large topological charge , same as 

WGM order 𝑚, i.e.,  = 𝑚. We also demonstrated that it is possible to 

multiplex multiple of these topological cavities concentrically in a planar form 
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while each ring has different topological charge specified by the radius of ring. 

None of the multiplexed beam cross talk.  

The second topological light source that we investigated is based on BIC 

singularities. We theoretically studied that BIC points are singularities in 

reciprocal space, and they have some unique topological characteristics. We 

demonstrated that BIC singularities are robust vortex centers (with non-zero 

topological charges) in the reciprocal space whose position can be tuned 

continuously. As a result, when it is designed in an active platform, we can 

make a topological light source that emits several vortex lights with tunable 

angles. Unlike conventional phase arrays that work based on controlling every 

single element in a system, in BIC lasers the required phase off-set between 

every unit cell of the PhC is provided by in-plane Floquet-Bloch waves. 

Therefore, by controlling the effective mode index of the PhC uniformly 

(either statically or dynamically) with a single knob, the emission beam can 

steer. Our experimental demonstration is useful for many applications, 

especially in the optical communications, fully non-mechanical LIDARs and 

optical tweezers.  

Following to this thesis, there are few directions that worth to be explored 

in the future. Demonstration of the topological laser is very sensitive to 

fabrication and characterization process due to the small gyromagnetism of 
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the YIG material. Therefore, it has a quite challenging bonding process. 

Topological lasers are robust to any kind of in-plane disorder due to the full 

band gap in this direction. However, it is not robust to any vertical disorders. 

Any deviation in the normal direction such as non-uniform bonding, a wavy 

surface, or defect can remove the non-trivial band gap. As a result, it affects 

the functionality of the topological laser. To solve this problem, one possible 

solution is to enhance the gyromagnetism using magneto-optical 

metamaterials instead of YIG, because using this technique, the magnetization 

can enhance at least two orders of magnitudes.  

Other interesting topological lasers are based on Quantum Spin-Hall 

effect. This kind of lasers require no magnetic material, and it is possible to 

open a larger band gap using this technique. As a result, they require fewer 

fabrication challenges and material losses. Thus the output power also can be 

enhanced to get high power lasers.  

Regarding BIC lasers, one of its main advantages is steering beams using 

only one degree of freedom, i.e., detuning the effective refractive index of 

entire PhC uniformly. Thus using phase changed materials with a wide range 

of refractive index tenability can help to make dynamic steering. Furthermore, 

the lasers can be implemented electrically-pumped, which is more interesting 

in terms of practical applications, especially for LIDARs. 
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Appendix 1 

A1.1. Other Arbitrary Geometry Cavities 

Figure A1-1 shows the SEM images of the two different cavities with 

different random geometries.  

 
Figure A1-1 | (a,b) Top view SEM of a fabricated topological cavity with 

random geometry formed by the trivial and non-trivial PhCs. The optical 

length of the cavities is the same as the square cavity. 

A1.2. Field Intensity Imaging 

Figure A1-2 represents real space camera images of the surface of two 

different cavities shown in Fig. a1-1. As shown, when cavities are pumped in 

the presence of an EMF, edge modes are excited around the cavities nicely 

following the deformed edges of cavities. 
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Figure A1-2 | IR camera image of two different cavities with arbitrary shapes 

shown in Fig. A1-1a (a), and Fig. A1-1b (b). Pumping cavities in the presence 

of an EMF leads to the excitation of edge modes around the cavities that nicely 

follows the contours of the deformed cavities.  

A1.3. Photoluminescence Measurement 

The emission spectrum for forward and backward biases of the EMF, and 

the isolation ratio for each of cavities (shown in Fig. A1-1) are presented in 

Fig. A1-3 and A1-4.  
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Figure A1-3 | Emission spectra of the cavity shown in Fig. A1-1a with an 

EMF of 𝐵0 = +100 𝑂𝑒 (a), and 𝐵0 = −100 𝑂𝑒 (b). (c) Evolution of the 

output power as a function of the pump power density. The red dots represent 

the experimental measurements of the output power for different pump power 

densities when the EMF is turned on (𝐵0 = +100 𝑂𝑒). Gray solid lines 

represent linear fits to the data in spontaneous and stimulated emission 

regimes and clearly show a threshold behavior, i.e., lasing. (d) The isolation 

ratio between two ends of the waveguide is 10.83 dB.   
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Figure A1-4 | Emission spectra of the cavity shown in Fig. 3-18b with an EMF 

of 𝐵0 = +100 𝑂𝑒 (a), and 𝐵0 = −100 𝑂𝑒 (b). (c) Evolution of the output 

power as a function of the pump power density. The red dots represent the 

experimental measurements of the output power for different pump power 

densities when the EMF is turned on (𝐵0 = +100 𝑂𝑒). Gray solid lines 

represent linear fits to the data in spontaneous and stimulated emission 

regimes and clearly show a threshold behavior, i.e., lasing. (d) The isolation 

ratio between two ends of the waveguide is 11.7 dB. 
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Appendix 2 

A2.1. Second Order Correlation Measurement 

To characterize our topological lasers, we measured the second-order 

intensity correlation function, 𝑔2(𝜏) =
〈𝐼(𝑡)𝐼(𝑡+𝜏)〉

〈𝐼(𝑡)〉2
, with a Hanbury Brown-

Twiss (HBT) interferometer. Here, 〈𝐼(𝑡)〉 represents the expectation value of 

the intensity at time 𝑡. Figure 4-9 in chapter 4 shows the experimental 

correlation histogram (Figs. 4-9a-e) and the corresponding normalized 𝑔2(𝜏) 

(Fig. 4-9f-j) at five different pump power densities. 

Due to nanosecond pulse pumping (290 kHz repetition rate, 6 ns pulse 

width), the correlation histogram inherently consists of many pulses 

corresponding to the optical pump pulses arriving, and the device is turning 

on. The time delay between neighboring pulses in Fig. 4-9a-e is approximately 

3.4 𝜇𝑠, which is consistent with the 290 kHz repetition rate of the pump laser. 

According to coherence theory, a photon bunching peak near zero-delay can 

be observed in 𝑔2(𝜏) for a lasing device in the SpE and ASE regimes where 

the degree of coherence is low [1]. The width of the photon bunching peak is 

on the order of the coherence time [1], which is expected to be much smaller 

than the repetition period of the pump laser (~3.1 μs). Therefore, the photon 
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bunching peak will emerge only on top of the zero-delay pulse, making it taller 

than the non-zero-delay pulses (Fig. 4-9b-d). In the lasing regime, such a 

photon bunching peak is suppressed since coherent emission is achieved [1]. 

This is clearly demonstrated in Fig. 4-9e.  

The photon bunching peak can be more readily observed in the 

normalized 𝑔2(𝜏), which is obtained by dividing the zero-delay pulse by the 

mean of the non-zero-delay pulses. The mean is taken here to reduce the effect 

of shot noise in the experiment. Figure 4-9f-j show examples of the 

normalized 𝑔2(𝜏) in the SpE (Fig. 4-9f), ASE (Fig. 4-9g-i) and StE (Fig. 4-

9j) regimes of our topological laser. Evidently, the photon bunching peak 

visible in the ASE regime is suppressed in the StE regime. However, contrary 

to theoretical predictions, the photon bunching is also absent in the SpE 

regime (Fig. 4-9a,f). This experimental phenomenon is primarily due to the 

timing uncertainty of our APDs’, which is on the order of 400 ps. Since the 

coherence time in the SpE regime is much shorter than 100 ps, the averaging 

effect from the APDs renders the photon bunching peak invisible.   

Figure 4-8 in chapter 4 was acquired by extracting the zero-delay value, 

i.e., 𝑔2(0), of the normalized 𝑔2(𝜏) in a wide range of pump powers. By 

𝑔2(0)~1  in both the SpE and StE regimes, confirms that our device indeed 

reached the lasing regime for two reasons. Firstly, the output power of our 
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device continued to increase even at the highest pump intensities. Hence, it’s 

impossible that the device reverses back to the SpE regime due to, for 

example, degradation as that should lead to a significant decline in the output 

power.  
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Appendix 3 

A3.1. Vortex Behavior of BIC Singularities 

To analyze the structure, we used a finite-element simulation tool 

(COMSOL Multiphysics) to perform eigenmode calculations. Simulations are 

performed on a unit cell with periodic boundary conditions, and for every 

momentum (𝑘𝑥,𝑘𝑦) in the 1st Brillouin zone, the complex eigen-frequencies 

are computed. Figure A3-1 shows the quality factor map in the 1st Brillouin 

zone for all three modes shown in the chapter 5. Mode 1 has a large quality 

factor at the center of the 1st Brillouin zone (𝛤 point), while modes 2 and 3 

have large quality factors along 𝛤𝑀 and 𝛤𝑋 directions, respectively.  

 
Figure A3-1 | Quality factor map in the Brillouin zone for modes 1 (a), 2 (b), 

and 3 (c). For the simulation, we used a unit cell with periodic boundary 

conditions in the xy-plane, and perfectly matched layers (PML) in the normal 

direction. The substrate is glass, while the cladding is air. PMMA used for 

bonding the InGaAsP onto glass and it infiltrates into the holes. 
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Far-field amplitudes and polarizations were extracted from simulations. 

To calculate the topological charge associated to a singular point, we use the 

far-field information to calculate the polarization rotation on any arbitrarily 

closed loop, which encloses the singular point in the Brillouin zone. The 

topological charge is calculated using eq. (5-3). The topological charges of -

1, -1, and +1 were obtained for modes 1, 2, and 3, respectively.  

From near-fields, the far-field was calculated by using near-to-far field 

transformation. Since we pumped uniformly a large area (more than 50×50), 

we repeated the unit cell field profile in a large area to emulate the experiment. 

It is important to note that the Floquet-Bloch phase, 𝑒𝑖𝑘.𝑟, should be accounted 

for when repeating the unit cell field profile. Above 𝑅 = 250 𝑛𝑚, the laser is 

operating on mode 1, while below this radius it operates on mode 3. Figure 

A3-2 shows the far-field pattern of the laser in which mode 1 is emitting 

normal to the surface and is doughnut-shaped (Fig. A3-2a), while mode 3 is 

emitting at an angle, and is tilted doughnut-shaped (Fig. A3-2b). 

 



 
 

 115   
 

 
Figure A3-2 | Far-field patterns of the (a) mode 1, and (b) mode 3. To calculate 

the far-field profile, we extracted the near-field information from each 

eigenmode, and repeated it in a large area by taking into account of the 

Floquet-Bloch phase. Then by using near-to-far field transformation, the far-

field patterns were calculated. 



 
 

 116   
 

Appendix 4 

A4.1. Rigorous Coupled Wave Analysis (RCWA) 

To show the origin of BIC singularities due to the destructive interference 

of different Floquet-Bloch waves, we employ rigorous coupled wave analysis 

(RCWA) method [1]. Using RCWA, we can calculate all Floquet-Bloch 

waves and their relevant out-coupling coefficients inside the PhC slab.  

The starting point is with Maxwell’s equations: 

𝛻 × 𝐸 =  −𝑗𝜔𝜇 𝐻̃,        (A4-1) 

𝛻 × 𝐻̃   =  𝑗𝜔𝜖𝐸,         (A4-2) 

where  𝐻̃ = −𝑗 √
𝜇0

𝜖0
 𝐻 is the normalized magnetic field. For a periodic 

structure along xy-plane, the material parameter can be express with the 

Fourier expansion 

𝜖𝑟(𝑥, 𝑦) = ∑ ∑ 𝑎𝑚,𝑛𝑒
𝑗(

𝑚2𝜋

Λx
𝑥+

𝑛2𝜋

Λy
𝑦)∞

𝑛=−∞
∞
𝑚=−∞ ,   (A4-3) 

𝜇𝑟(𝑥, 𝑦) = ∑ ∑ 𝑏𝑚,𝑛𝑒
𝑗(

𝑚2𝜋

Λx
𝑥+

𝑛2𝜋

Λy
𝑦)∞

𝑛=−∞
∞
𝑚=−∞ ,   (A4-4) 

where 𝛬𝑥 and 𝛬𝑦 are periodicity along 𝑥 and 𝑦 directions respectively. 𝑎𝑚,𝑛 

and 𝑏𝑚,𝑛 are the Fourier coefficients as
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𝑎𝑚,𝑛  =
1

ΛxΛy
∫ ∫ 𝜖𝑟(𝑥, 𝑦)

Λy

2

−
Λy

2

Λx
2

−
Λx
2

𝑒
−𝑗(

𝑚2𝜋

Λx
𝑥+

𝑛2𝜋

Λy
𝑦)

𝑑𝑥𝑑𝑦,  (A4-5)  

𝑏𝑚,𝑛 =
1

ΛxΛy
∫ ∫ 𝜇𝑟(𝑥, 𝑦)

Λy

2

−
Λy

2

Λx
2

−
Λx
2

𝑒
−𝑗(

𝑚2𝜋

Λx
𝑥+

𝑛2𝜋

Λy
𝑦)

𝑑𝑥𝑑𝑦.  (A4-6) 

The Fourier expansion of the fields are 

𝑈𝑞  (𝑥, 𝑦, 𝑧) = ∑ ∑ 𝑆𝑞(𝑚, 𝑛, 𝑧)𝑒−𝑗(𝑘𝑥(𝑚)𝑥+𝑘𝑦(𝑛)𝑦)∞
𝑛=−∞

∞
𝑚=−∞ , (A4-7)  

where 𝑈 = (𝐸,𝐻), 𝑞 = (𝑥, 𝑦, 𝑧), 𝑆 = 𝑓 for electric field (𝑈 = 𝐸) and 𝑆 = 𝑔 

for magnetic field (𝑈 = 𝐻), and the transverse components of the wave-vector 

are 

𝑘𝑥 (𝑚) = 𝑘𝑥,𝑖𝑛𝑐 +
𝑚2𝜋

Λx
 ,       (A4-8) 

𝑘𝑦 (𝑛) = 𝑘𝑦,𝑖𝑛𝑐 +
𝑛2𝜋

Λy
 .       (A4-9) 

We need longitudinal component of the wave-vector for: 1) calculating 

diffraction efficiencies, and 2) calculating the eigenmodes of homogeneous 

layer analytically. Thus 

𝑘𝑧 (𝑚, 𝑛) = √𝜖𝑟𝜇𝑟𝑘0
2 + 𝑘𝑥

2(𝑚) + 𝑘𝑦
2(𝑛).    (A4-10) 

By substituting eq. (A54-10) into eq. (A4-1), (A4-2) and after some 

manipulation we find  
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−𝑗𝑘̃𝑦(𝑛)𝑔𝑧(𝑚, 𝑛, 𝑧̃) −
𝑑𝑔𝑦(𝑚,𝑛,𝑧)

𝑑𝑧
=  

∑ ∑ 𝑎𝑚−𝑞,𝑛−𝑟
∞
𝑟=−∞

∞
𝑞=−∞ 𝑓𝑥(𝑞, 𝑟, 𝑧̃),     (A4-11) 

 

𝑑𝑔𝑥(𝑚,𝑛,𝑧)

𝑑𝑧
+ 𝑗𝑘̃𝑥(𝑚)𝑔𝑧(𝑚, 𝑛, 𝑧̃) =  

∑ ∑ 𝑎𝑚−𝑞,𝑛−𝑟
∞
𝑟=−∞

∞
𝑞=−∞ 𝑓𝑦(𝑞, 𝑟, 𝑧̃),     (A4-12)  

 

−𝑗𝑘̃𝑥(𝑚)𝑔𝑦(𝑚, 𝑛, 𝑧̃) + 𝑗𝑘̃𝑦(𝑚)𝑔𝑥(𝑚, 𝑛, 𝑧̃) =

∑ ∑ 𝑎𝑚−𝑞,𝑛−𝑟
∞
𝑟=−∞

∞
𝑞=−∞ 𝑓𝑧(𝑞, 𝑟, 𝑧̃),    (A4-13)  

 

−𝑗𝑘̃𝑦(𝑛)𝑓𝑧(𝑚, 𝑛, 𝑧̃) −
𝑑𝑓𝑦(𝑚,𝑛,𝑧)

𝑑𝑧
=  

∑ ∑ 𝑏𝑚−𝑞,𝑛−𝑟
∞
𝑟=−∞

∞
𝑞=−∞ 𝑔𝑥(𝑞, 𝑟, 𝑧̃),     (A4-14)  

 

𝑑𝑓𝑥(𝑚,𝑛,𝑧)

𝑑
+ 𝑗𝑘̃𝑥(𝑚)𝑓𝑧(𝑚, 𝑛, 𝑧̃) =  

∑ ∑ 𝑏𝑚−𝑞,𝑛−𝑟
∞
𝑟=−∞

∞
𝑞=−∞ 𝑔𝑦(𝑞, 𝑟, 𝑧̃),     (A4-15)  

 

−𝑗𝑘̃𝑥(𝑚)𝑓𝑦(𝑚, 𝑛, 𝑧̃) + 𝑗𝑘̃𝑦(𝑚)𝑓𝑥(𝑚, 𝑛, 𝑧̃) =

∑ ∑ 𝑏𝑚−𝑞,𝑛−𝑟
∞
𝑟=−∞

∞
𝑞=−∞ 𝑔𝑧(𝑞, 𝑟, 𝑧̃),     (A4-16)  

where 𝑘̃𝑥 =
𝑘𝑥

𝑘0
 , 𝑘̃𝑦 =

𝑘𝑦

𝑘0
 , 𝑘̃𝑧 =

𝑘𝑧

𝑘0
 , 𝑧̃ = 𝑘0𝑧.  
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Starting with the first equation: 

−𝑗𝑲̃𝑦𝒈𝑧 −
𝑑

𝑑𝑧
𝒈𝑦 = ⟦𝜖𝑟⟧𝒇𝑥,      (A4-17)  

where 

𝑲̃𝑦 = [

𝑘̃𝑦(1,1) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑘̃𝑦(𝑀,𝑁)

],     (A4-18)  

𝒈𝑧 = [
𝑔𝑧(1,1)

⋮
𝑔𝑧(𝑀,𝑁)

],        (A4-19)  

𝒈𝑦 = [

𝑔𝑦(1,1)

⋮
𝑔𝑦(𝑀,𝑁)

],        (A4-20)  

𝒇𝑥 = [
𝑓𝑥(1,1)

⋮
𝑓𝑥(𝑀,𝑁)

].        (A4-21)  

Same procedure is for the other equations 

−𝑗𝑲̃𝑦𝒈𝑧 −
𝑑

𝑑𝑧
𝒈𝑦 = ⟦𝜖𝑟⟧𝒇𝑥,      (A4-22)  

𝑑

𝑑𝑧
𝒈𝑥 + 𝑗𝑲̃𝑥𝒈𝑧 = ⟦𝜖𝑟⟧𝒇𝑦,      (A4-23)  

𝑲̃𝑥𝒈𝑦 − 𝑲̃𝑦𝒈𝑥 = 𝑗⟦𝜖𝑟⟧𝒇𝑧,      (A4-24)  

 −𝑗𝑲̃𝑦𝒇𝑧 −
𝑑

𝑑𝑧
𝒇𝑦 = ⟦𝜇𝑟⟧𝒈𝑥,      (A4-25)  
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𝑑

𝑑𝑧
𝒇𝑥 + 𝑗𝑲̃𝑥𝒇𝑧 = ⟦𝜇𝑟⟧𝒈𝑦,      (A4-26)  

𝑲̃𝑥𝒇𝑦 − 𝑲̃𝑦𝒇𝑥 = 𝑗⟦𝜇𝑟⟧𝒈𝑧.      (A4-27)  

By eliminating longitudinal components, 𝒇𝑧 and 𝒈𝑧 

𝑲̃𝑦⟦𝜇𝑟⟧
−1(𝑲̃𝑥𝒇𝑦 − 𝑲̃𝑦𝒇𝑥) −

𝑑

𝑑𝑧
𝒈𝑦 = ⟦𝜖𝑟⟧𝒇𝑥,  (A4-28)  

𝑑

𝑑𝑧
𝒈𝑥 + 𝑲̃𝑥⟦𝜇𝑟⟧

−1(𝑲̃𝑥𝒇𝑦 − 𝑲̃𝑦𝒇𝑥) = ⟦𝜖𝑟⟧𝒇𝑦,  (A4-29)  

𝑲̃𝑦⟦𝜖𝑟⟧
−1(𝑲̃𝑥𝒈𝑦 − 𝑲̃𝑦𝒈𝑥) −

𝑑

𝑑𝑧
𝒇𝑦 = ⟦𝜇𝑟⟧𝒈𝑥,  (A4-30)  

𝑑

𝑑𝑧
𝒇𝑥 + 𝑲̃𝑥⟦𝜖𝑟⟧

−1(𝑲̃𝑥𝒈𝑦 − 𝑲̃𝑦𝒈𝑥) = ⟦𝜇𝑟⟧𝒈𝑦.  (A4-31)  

By manipulating these equations and writing in a matrix format  

𝑑

𝑑𝑧
[
𝑔𝑥

𝑔𝑦
] = 𝑸 [

𝑓𝑥
𝑓𝑦

],       (A4-32)  

𝑑

𝑑𝑧
[
𝑓𝑥
𝑓𝑦

] = 𝑷 [
𝑔𝑥

𝑔𝑦
],        (A4-33)  

where 

𝑸 = [
𝑲̃𝑥⟦𝜇𝑟⟧

−1𝑲̃𝑦 ⟦𝜖𝑟⟧ − 𝑲̃𝑥⟦𝜇𝑟⟧
−1𝑲̃𝑥

𝑲̃𝑦⟦𝜇𝑟⟧
−1𝑲̃𝑦 − ⟦𝜖𝑟⟧ −𝑲̃𝑦⟦𝜇𝑟⟧

−1𝑲̃𝑥

], (A4-34)  

𝑷 = [
𝑲̃𝑥⟦𝜖𝑟⟧

−1𝑲̃𝑦 ⟦𝜇𝑟⟧ − 𝑲̃𝑥⟦𝜖𝑟⟧
−1𝑲̃𝑥

𝑲̃𝑦⟦𝜖𝑟⟧
−1𝑲̃𝑦 − ⟦𝜇𝑟⟧ −𝑲̃𝑦⟦𝜖𝑟⟧

−1𝑲̃𝑥

], (A4-35)  

We can solve eq. (A4-32), (A4-33) as 
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𝑑2

𝑑𝑧2 [
𝑓𝑥
𝑓𝑦

] = 𝑷𝑸 [
𝑓𝑥
𝑓𝑦

],      (A4-36)  

𝑑2

𝑑𝑧2 [
𝑓𝑥
𝑓𝑦

] − 𝛀2 [
𝑓𝑥
𝑓𝑦

] = 0,      (A4-37)  

where 𝛀2 = 𝑷𝑸. 

The solution of this equation is as 

[
𝑓𝑥(𝑧̃)
𝑓𝑦(𝑧̃)

] = 𝑒−𝛀𝑧𝒔+(0) + 𝑒𝛀𝑧𝒔−(0) ,     (A4-38)  

where 𝒔+(0) and 𝒔−(0) are trivial values for this differential equation, and ± 

are indicating forward (+) and backward (−) propagations, and  

𝑒𝛀𝑧 = 𝑾𝑒𝝀𝑧̃𝑾−1,       (A4-39) 

where 𝑊 and 𝜆 are Eigen-vector matrix and diagonal Eigen-value matrix 

calculated from 𝜴2 matrix and  

𝑒𝝀𝑧̃ =

[
 
 
 
 𝑒

√𝜆1
2𝑧

⋯ 0
⋮ ⋱ ⋮

0 ⋯ 𝑒
√𝜆𝑁

2 𝑧]
 
 
 
 

.     (A4-40)  

Thus  

[
𝑓𝑥(𝑧̃)
𝑓𝑦(𝑧̃)

] = 𝑾𝑒−𝝀𝑧̃𝒄+ + 𝑾𝑒𝛌𝑧𝒄−,     (A4-41)  

where  
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𝒄+ = 𝑾−1𝒔+(0),       (A4-42)  

𝒄− = 𝑾−1𝒔−(0).       (A4-43)  

Similarly  

[
𝑔𝑥(𝑧̃)
𝑔𝑦(𝑧̃)

] = −𝑽𝑒−𝝀𝑧𝒄+ + 𝑽𝑒𝛌𝑧𝒄−,    (A4-44)  

where 𝑽 = 𝑸𝑾𝝀−1. 

Combining two equations of (A4-41) and (A4-44) we have 

[

𝑓𝑥
𝑓𝑦
𝑔𝑥

𝑔𝑦

] = [
𝑊 𝑊
−𝑉 𝑉

] [𝑒
−𝜆𝑧 0
0 𝑒𝜆𝑧

] [𝑐
+

𝑐−],     (A4-45)  

By solving these equations, the amplitudes of different Floquet-Bloch 

waves (i.e., Fourier coefficients) are calculated. Figure A4-1 shows the quality 

factor for three modes along the irreducible Brillouin zone edges. When 

solving RCWA for modes exactly at BIC singularities, each pair of 

coefficients have the same amplitude but opposite phases, which results in 

destructive interference at the far-field.  
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Figure A4-1 | (a) Dispersion band diagram and (b) quality factor of the PhC 

when the periodicity and radius of holes are 950 nm, and 200 nm, respectively. 

For mode 1 (blue mode) right at BIC point (i.e., at Γ point), the Fourier 

coefficients are asymmetric (Fig. A4-2). It means that different Floquet-Bloch 

waves destructively interfere at the far-field resulting in a zero far-field 

intensity.  

 
Figure A4-2 | Fourier coefficients of the mode 1 at Γ point. Amplitudes and 

phases of the dominant Floquet-Bloch waves are listed in the table. Clearly, 

each pair of the waves have the same amplitude but with π out-of-phase, 

resulting in destructive interference at the far-field.  

Similarly for mode 3 (green mode), if we calculate Fourier coefficients 

for BIC point along Γ𝑋 direction, we find asymmetric coefficients (Fig. A4-

3), but for a point away from BIC point the coefficients are not asymmetric 
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(Fig. A4-4). Therefore, at BIC point Floquet-Bloch waves destructively 

interfere at far-field, but away from BIC point, far-field is not zero.  

 
Figure A4-3 | Fourier coefficients of the mode 3 at BIC singularity along ΓX 

direction. Amplitudes and phases of the dominant Floquet-Bloch waves are 

listed in the table. Clearly, each pair of the waves have the same amplitude 

but with π out-of-phase, resulting in destructive interference at the far-field.  

 

 
Figure A4-4 | Fourier coefficients of the mode 3 at a non-BIC point along ΓX 

direction. Amplitudes and phases of the dominant Floquet-Bloch waves are 

listed in the table. By choosing any of these sets, destructive interference does 

not happen, which means that far-field is not zero. 

Reference 

1. Moharam, M. G.  GaylordZhen, T. K. Rigorous coupled-wave analysis 

of planar-grating diffraction. J. Opt. Soc. Am. 71, 811-818 (1981). 
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Appendix 5 

A5.1. Experiment Setup 

Figure A5-1 shows the schematic of the set-up used to characterize our 

samples. We use a high-energy laser source with a wavelength of 1064 nm as 

a pump beam to induce population inversion in the InGaAsP. By using an 

attenuator and a power detector, the power of the pump laser illuminating the 

sample is finely controlled. Also, the spot width of the pump laser, which 

initially is 3 mm2, is reduced and collimated using two lenses (lenses 1 and 2) 

before reaching the objective lens. We use an objective lens with a numerical 

aperture and magnification of 0.4 and ×20, respectively, to pump the sample 

and collect the emission simultaneously. The emitted power from the sample, 

which is in the wavelength range of 1400-1700 nm, is directed to the 

monochromator (CVI Digikrom DK480) in conjunction with a cooled InGaAs 

detector in lock-in detection configuration. In the same set-up, by using a 

removable mirror in the path of the emission beam, we can direct the light to 

an infrared camera for real space or reciprocal space imaging by putting the 

camera in the real plane or Fourier plane, respectively.
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Figure A5-1 | Schematic of the set-up used for measurements. The incident 

pump power on the samples is finely controlled using a photodetector, and the 

emission from the samples is directed to a monochromator for 

photoluminescence measurements. Real space and reciprocal space imaging 

are performed by directing the emission toward the camera. The configuration 

shown in the figure is for real space imaging. 

A5.2. Effective Mode Gain 

For larger radii (𝑅 > 250 𝑛𝑚), mode 1 is the only one with a large 

quality factor. However, for radii below 𝑅 = 250 𝑛𝑚, modes 2 and 3 also 

have large quality factors and gain competition then takes place. In the gain 

spectrum, mode 3 experiences more gain because it has a shorter wavelength 

compared to the other two modes, and mode 1 experiences less gain because 

it has a longer wavelength (Fig. A5-2a). Additionally, the field intensity 

confinement inside the gain material for mode 3 is larger than mode 1 and 2 

(Fig. A5-2b), which ultimately results in a larger effective gain for mode 3 
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(Fig. A5-2c). Therefore, mode 3 lases with a smaller threshold power 

compared to the other modes. By increasing the pump power, mode 2 also 

starts lasing. However, the threshold power of mode 1 is comparable to the 

damage threshold of the gain material for small radii.  

 
Figure A5-2 | (a) Gain spectrum measurement of the unpatterned InGaAsP, 

bonded on a glass substrate using PMMA, as a function of pump power. (b) 

Calculated integrated intensity of modes 1-3 inside the volume of the gain 

material (InGaAsP) in a unit cell. (c) Multiplication of the gain and the 

intensity of the field inside the gain material to evaluate the effective gain for 

modes 1-3. Mode 3 has larger effective gain than the other modes in a radius 

range of 170-200 nm, where all three modes have large quality factors. 

A5.3. Far-field Patterns 

Figure A5-3 shows far-field measurements for arrays with different radii. 

To measure the far-field pattern, we place the movable mirror, shown in Fig. 

A5-1, to direct the emission beam toward the camera. The measured far-field 

patterns agree with simulations shown in Fig. A3-2. By using a half-wave 

plate and a linear polarizer in the path of the emission beam, we observe a 

two-lobed intensity pattern that rotates by rotating the polarizer.  
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Figure A5-3 | Far-field measurements of two different arrays with radii of (a) 

250 nm, and (b) 225 nm. To measure the far-field patterns, we put the movable 

mirror in the emission path to direct the beam to the camera. For the array 

with a radius of 250 nm (shown), the insertion of a half-wave plate and a linear 

polarizer in the emission path of the lasers with an angle of (c) 0°, (d) 30°, (e) 

90°, and (f) −45° results in the observation of two-lobe shaped patterns 

coming from doughnut-shaped mode. The arrows in the inset show the 

direction of the polarizer. 
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Appendix 6 

A6.1. Controlling the Number of beams using 

Boundaries 

The fabricated arrays are quite large arrays with dimensions of 200×200 

unit cells. The four-fold symmetry, i.e., invariance under 90 rotation implies 

that any singular state in reciprocal space must have the same symmetry. 

Consequently, four beams in the emission are observed (Fig. 5-10). However, 

by controlling, for example, the in-plane feedback between the Floquet-Bloch 

waves in certain directions we can actually control the number of beams. For 

instance, by choosing crystals with different symmetries/dimensionalities, 

e.g., 1D crystal, which is invariant under 180 rotation (two-fold symmetry), 

two beams instead of four beams should be observed. Another possible 

method, which we used here, is to control the in-plane feedback by bringing 

certain boundaries closer. We fabricated several arrays with different sizes of 

unit cells in x and y directions, 10×200, 15×200, and 25×200. The in-plane 

feedback along the short direction is drastically reduced, almost suppressed, 

while it remains the same in the long direction.  

It is worth noticing that emitted beams do not destructively interfere with 

each other to cancel the vortex because the four beams lasing along the four 
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equivalent ΓX directions carry the same topological charges but in four 

different directions. They are only canceled when the radius is close to the 

𝑅~250 𝑛𝑚, and mode 2 (lasing along ΓM), which has the opposite 

topological charge, becomes degenerate with mode 3. 

Figure A6-1 shows SEM images of arrays with different sizes.  

 
Figure A6-1 | SEM image of arrays with dimensions of (a) 10×200, (b) 

15×200, and (c) 25×200.  

 

We performed reciprocal space imaging (Fig. A6-2), which reveals that 

for 10×200, and 15×200 arrays there are only two beams rather than four 

beams along ΓX. However, arrays of 25×200 are large enough to induce 

sufficient in-plane feedback along both directions of periodicity to enable 

lasing. 

 



 
 

 131   
 

 
Figure A6-2 | Reciprocal space measurement for finite arrays with dimensions 

of (a) 10×200, (b) 15×200, and (c) 25×200. The measurement was done by 

placing the camera in the Fourier plane. The imaging angle is limited by the 

numerical aperture (NA) of the objective lens (NA=0.4). For the arrays of 

10×200 (a) and 15×200 (b) there are two beams along ΓX directions, but for 

the array of 25×200 (c) there are four beams along four equivalent ΓX 

directions. The two beams along the vertical axis are brighter than the other 

two along the horizontal axis. By increasing the size of the array (>25 unit 

cells), all the four spots tend to become the same.  




