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ABSTRACT OF THE DISSERTATION

Agent Heterogeneity and the Real Exchange Rate

by

Julian A Batista

Doctor of Philosophy in Economics

University of California, Los Angeles, 2023

Professor Pierre-Olivier Weill, Co-Chair

Professor William R. Zame, Co-Chair

While the impact of agent heterogeneity has long been recognized in the Economic

literature, the link between agent heterogeneity and international asset pricing is

yet to be fully understood. In this dissertation I use an overlapping generations

framework to study the impact that agent heterogeneity in risk aversion has on the

real exchange rate determination.

Chapter 1 presents and develops the theoretical model used to study the implications

of agent heterogeneity in risk aversion on the real exchange rate. I introduce a two-

country model that features heterogeneous risk aversion profiles for agents, both

within and between countries. Furthermore, it is shown that the model can explain

the Cyclicality puzzle documented in Backus and Smith (1993), which highlights the

empirical disconnect between the exchange rate and relative consumption growth.

This chapter also presents the numerical outcome of the model.

ii



Chapter 2 explains the quantitative methodology used to code and find the numerical

solution of the model presented in chapter 1. The model does not admit a closed

form solution and thus the presented outcome relies on the application of Monte

Carlo Methods, the Feynman-Kac Theorem and the Piccard Iteration Theorem.

Finally, Chapter 3 presents recent empirical evidence on the Cyclicality puzzle be-

tween the US and 4 OECD countries: UK, France, Germany and Italy.
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CHAPTER 1

Agent Heterogeneity and the Real Exchange Rate

This paper studies the implications of risk-aversion heterogeneity for the real ex-

change rate determination. We propose a two-country model that features heteroge-

neous risk aversion profiles for agents, both within and between countries. We show

that the model can explain the Cyclicality puzzle documented in Backus and Smith

(1993), which highlights the empirical disconnect between the exchange rate and rel-

ative consumption growth. The key mechanism is a combination of home bias and

heterogeneity in risk aversion. Real exchange rate changes, which reflect stochastic

discount factor (SDF) heterogeneity across countries, are driven both by differences

in risk aversion adjusted consumption growth rates and by differences in consump-

tion weighted average risk aversion growth rates. The introduction of risk aversion

heterogeneity, both between and within countries, generates a new risk sharing dy-

namic across agents and countries compared to a homogeneous representative agent

framework: The less risk averse country will be leveraged in equilibrium, providing

insurance to the most risk averse country. Thus, a negative aggregate endowment

level shock affecting both countries alike, generates a consumption redistribution

from the less risk averse country to the most risk averse country and from the less

risk averse agent to the most risk averse agents, generating an asymmetric redis-

tribution of national consumption share across countries and therefore significant
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differences in consumption weighted average risk aversion changes across countries.

1.1 Introduction

The Cyclicality puzzle established in Backus and Smith (1993) arises because the

international risk-sharing condition that relative consumption change across coun-

tries should be strongly positively correlated with the real exchange rate growth is

significantly violated in the data. This paper departs from the standard homoge-

neous representative agent assumption and studies the implications of heterogeneity

in risk aversion on the real exchange rate determination and its role in explaining

the Cyclicality puzzle. Under this new setup, the real exchange rate change can be

decomposed in a relative risk aversion adjusted country consumption growth com-

ponent and a relative consumption weighted average country risk aversion change

component. If there are significant differences in the agents’ risk aversion, both be-

tween and within countries, the latter becomes the main driver of the real exchange

rate changes. In this case, the model features a significant degree of cross-country

insurance but a very asymmetric degree of intra-country insurance.

I propose a two-country, two-goods, two-agents per country model expanding

Panageas (2020) framework. The agents have standard CRRA with home-bias pref-

erences but heterogeneous risk aversion, both within and between countries. Agents

in each country are endowed with a stream of a single differentiated perishable good.

There are no frictions, neither in the international trade of goods or in the financial

markets. This implies that the two countries are able to achieve optimal international

risk sharing.

The key attribute of the model is the interaction between home bias and hetero-
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geneity in risk aversion, both between and within countries. The full explanation of

the puzzle in an heterogeneous agent model includes the three elements.

In the absence of home bias, the real exchange has no volatility and thus the model

cannot reproduce the Cyclicality correlation. On the other hand, the introduction of

risk aversion heterogeneity deeply impacts the risk sharing dynamic across agents.

The less risk averse agents will be leveraged in equilibrium providing insurance to the

more risk averse agents. This conclusion is also extended to the aggregate country

level: the less risk averse country provides insurance to the most risk averse country.

Thus, positive endowment shocks temporarily decrease the consumption share of the

more risk averse agents and countries, while negative endowment shocks temporarily

increase the consumption share of the more risk averse agents and countries.

This mechanism explains the Cyclicality exchange rate disconnect results. Real

exchange rate changes, which reflect stochastic discount factor (SDF) heterogene-

ity across countries, are driven by differences in country consumption growth rates

adjusted by risk aversion as well as by cross-country differences in consumption

weighted average risk aversion growth rates. Thus, in this model, the unconditional

correlation between real exchange changes and consumption growth rate differentials

can be low or even negative. To achieve this, there should be a significant degree of

cross country insurance and, at the same time, significant differences in intra-country

insurance across countries.

A negative aggregate endowment level shock that affects both countries alike, will

generate an appreciation of the real exchange rate, defined as the quotient between

the SDF of the foreign country (most risk averse) to the SDF of the domestic country

(less risk averse). This appreciation is a result of the interaction of both components,
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the relative risk aversion adjusted country consumption growth and the relative con-

sumption weighted average risk aversion change. Under a setup where there is a

significant degree of risk aversion heterogeneity, the less risk averse agent (located in

the domestic country), will transfer resources to the most risk averse agents, located

both at home and abroad. As a result, the consumption of the domestic country

will experience a sharper fall compared to the consumption of the foreign country.

The appreciation of the real exchange rate is thus driven by the difference in risk

aversion changes across countries. The insured country will experience little intra-

country consumption reallocation as both of its agents are insured in equilibrium. On

the other hand, the domestic country will experience a high degree of intra-country

consumption reallocation, as one of the agents is being insured by the other agent.

The model is analytically tractable: the equilibrium dynamics can be fully char-

acterized by a system of four second order stochastic partial differential equations

(SPDE) that are solved numerically, relying on the Feynman–Kac theorem and on

Picard’s fixed point theorem. The model is calibrated to match the empirical moment

for the correlation between the real exchange rate and relative country consumption

growth between the US and UK for the years 1990 and 2020.

My paper contributes to two strands of literature. On the one hand, this work

expands the extensive literature on the asset pricing implications of investor het-

erogeneity and portfolio constraints: Dumas (1989); Wang (1996); Chan and Ko-

gan (2002); Longstaff and Wang (2012); Gârleanu and Panageas (2015); Santos and

Veronesi (2010); Panageas (2020); Kargar (2021) study economies with heteroge-

neous agents featuring different preference assumptions. In particular, I expand the

one economy model developed in Panageas (2020) to a two economies model and

study the implications for the determination of the real exchange rate.
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Also, this paper contributes to the proposed solutions to the Cyclicality puzzle.

Colacito and Croce (2013) feature recursive preferences, exogenous output subject to

short-run and long-run shocks, and international trade. In their model, the Cyclical-

ity puzzle is addressed due to the effect of long-run news, which generates a negative

correlation between real exchange rate changes and consumption growth rate differ-

entials, partly offsetting the positive correlation generated by short-run news.

Bai and Ŕıos-Rull (2015) develop a standard two-country, two-good economy

with frictions in the goods market. Good market frictions make demand shocks work

like productivity shocks. When exerting effort, households contribute to measured

productivity by extracting more output out of the economy. As a result, total factor

productivity responds positively to increases in expenditures. In this model, an

increase in domestic demand leads to a rise in domestic consumption and consumer

prices. The real exchange rate, of home consumption in terms of foreign consumption

thus appreciates.

Stathopoulos (2017) proposes a two-country external habit formation model that

features time-varying heterogeneity in conditional risk aversion across countries, en-

dogenously arising from the interaction between external habit formation and pref-

erence home bias. In this model, the disconnect between the real exchange growth

and the relative country consumption growth is a consequence of the interaction be-

tween home biased preferences and relative risk aversion of countries featuring habit

formation preferences.

Lustig et al. (2019) consider an extreme case of incomplete markets, where the

domestic (foreign) agents, when investing abroad, can only trade in the foreign (do-

mestic) risk-free rates. They find that even in this extreme departure from complete
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spanning has limits: it can help match quantitatively the volatility of exchange rates

in the data and the currency risk premium, but it has no impact on exchange rate

cyclicality.

I contribute to this second strand of literature by building a transparent and

straightforward model capable of explaining a complex phenomenon: the key mech-

anism relies just on home bias and heterogeneity in risk aversion, both between and

within countries.

In Section 1.2 I provide a description of the model. Section 1.3 describes the

proposed solution. Section 1.4 describes the data and the calibration. Section 1.5

presents the results. Section 1.6 concludes.

1.2 Model

1.2.1 Countries and Agents

The global economy is composed of two countries: the domestic country and the

foreign country. Each country is populated by two type of agents, A and B in the

domestic country and A∗ and B∗ in the foreign country. For a specific country, type

A agents are always less risk averse than type B agents. Agents of the same type

(i.e. A and A∗) but from different countries do not necessarily have the same risk

aversion.

1.2.2 Endowments and Overlapping Generations Framework

The agents of each country are endowed with long-lived assets that are referred

to as ”trees” from their own country. The country trees from the domestic country

6



produce domestic good X as dividends, whereas the country tree from the foreign

economy produces foreign good Y as dividends. To ensure stationarity, the model

assumes the arrival of new agents who are endowed with new trees.

A mass of π agents is born per unit of time. At the same time, existing agents

face a constant hazard rate of death π. According to the law of large numbers,at

time t the surviving population of agents who were born at time s ≤ t is πe−π(t−s).

The total world population is constant and normalized to
∫ t

−∞ πe−(t−s)ds = 1. The

proportion of agents of type i ∈ {A,B,A∗, B∗} is denoted by µi.

At time t, newly born agents from the domestic country are equally endowed with

shares to a domestic tree (good X) born at time t, while newly born agents from

the foreign country are equally endowed with shares to a foreign tree (good Y ) born

at time t. If s ≤ t denotes the birthtime of a tree, its time t dividends are given by

Dt,s = δe−δ(t−s)Dt, where D ∈ {X, Y } , δ ∈ (0, 1) represents the depreciation rate of

the country trees and Dt is the aggregate country dividend or aggregate endowment

of the respective country good. Thus, the total endowment of each economy is∫ t

−∞Dt,sds =
(∫ t

−∞ δe−δ(t−s)ds
)
×Dt = Dt.

Since agents have no bequest motives, we assume that they enter contracts that

require them to surrender their wealth upon death in exchange for an income stream

of πdt while alive. The (competitive) insurance company offering this contract breaks

even as it collects a fraction π of aggregate wealth from the dying agents and dis-

tributes it as an income stream to the surviving agents.

The aggregate endowment for the domestic good X follows a geometric Brownian

motion with mean µ and volatility σX :

7



d logXt = µXdt+ σXdB
(1)
t ,

where dB
(1)
t is a Brownian increment. We will refer to this Brownian increment as

the aggregate endowment level shock.

To ensure stationarity in the ratio of the good endowments, the law of motion for

the aggregate endowment for the foreign country Y is derived from a Wright-Fisher1

process. We define the ratio of the aggregate endowment of the goods as ωt =
Yt

Xt
,

ωt ∈ [ω, ω]. The increment in ωt is given by:

dωt = S ×
(
ωM − ωt

)
dt+ σω

√
(ωt − ω) (ω − ωt)dB

(2)
t ,

where dB
(2)
t is a Brownian with instantaneous correlation ρXY with dB

(1)
t , ωM is the

mean reverting value for ω, S is the speed of convergence, σω is a volatility parameter

fot the Wright-Fisher process and ω and ω are the lower and upper bound for the

endowment ratio ω respectively. We will refer to dB
(2)
t as the aggregate endowment

ratio shock.

We can find the law of motion for the aggregate endowment of the foreign good Y

through Ito’s lemma.The endowment of the foreign good follows a geometric Brow-

nian motion:

1See Karlin and Taylor (1981)
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d log Yt =

[
S

(
ωM − ωt

)
ωt

+ µX +
ρXY σXσω

√
(ωt − ω) (ω − ωt)

ωt

]
dt

+ σXdB
(1)
t + σω

√
(ωt − ω) (ω − ωt)

ωt

dB
(2)
t .

Hence, the growth rate of Y is affected by the endowment level shock, dB
(1)
t , in

the same magnitude as the aggregate endowment of good X. On the other hand,

we can appreciate that the rate of growth of the aggregate endowment of good Y is

affected by the the endowment ratio shock dB
(2)
t , while the aggregate endowment of

good X is not.

Both, financial and goods markets are complete and frictionless. Agents can trade

goods and a complete set of Arrow-Debreu securities in a costless way with every

living agent.

1.2.3 Preferences

We will describe the problem for a domestic agent. The problem for a foreign

agent is symmetric. A domestic agent i ∈ {A,B} born in t maximizes its life-time

constant relative risk aversion (CRRA) utility:

Et

∫ ∞

t

e−(ρ+π)(u−t)U (Xu, Yu) du = Et

∫ ∞

t

e−(ρ+π)(u−t) C
1−γi

u,t

1− γi
du, (1.1)

where γi > 0 and ρ > 0 denote, respectively, the risk aversion and the discount factor

of agent i ∈ {A,B}; X and Y are the quantity of the domestic and the quantity

of the foreign good that the agent consumes; C is the country consumption basket

9



defined as

C ≡ XαY 1−α,

where α ∈ [0, 1] denotes relative preference for good X. The country consumption

basket is characterized by a Cobb-Douglas aggregator, so the elasticity of substitu-

tions between the goods is equal to 1. An agent’s relative preferences are assumed

homogeneous within a country and characterized by Home Bias. So, α > 1/2.

1.2.4 Optimization

The complete market assumption leads to a straightforward objective for the

agent to solve. A domestic agent i ∈ {A,B} born at time u, maximizes the in-

tertemporal utility function subject to the intertemporal budget constraint:

Et

∫ ∞

t

e−π(u−t)

[
HX

u

HX
t

X i
u,t +

HY
u

HX
t

Y i
u,t

]
du =

1

π (µA + µB)
PX
t,t , (1.2)

where HD
u is the discount factor for good D ∈ {X, Y } in period u. 1

π(µA+µB)
PX
t,t is the

domestic country cohort member value of the shares of the domestic good X trees

born at time t. PX
t,t is denominated in units of good X in period t. π

(
µA + µB

)
the

amount of new agents that are born at time t in the domestic country, who will get

an equal amount of the shares of the newly born domestic trees.

10



We can write the Lagrangian:

max
Xi

u,t,Y
i
u,t

Et

{∫ ∞

t

e−π(u−t)

[
e−ρ(u−t)

[(
X i

u,t

)α (
Y i
u,t

)1−α
]1−γi

1− γi

− λi
t

(
HX

u

HX
t

X i
u,t +

HY
u

HX
t

Y i
u,t

)]
du

}
+λi

t

1

π (µA + µB)
PX
t,t . (1.3)

This results in the first order conditions:

e−ρ(u−t)αC−γi

u,t

X i
u,t

= λi
t

HX
u

HX
t

, (1.4)

e−ρ(u−t) (1− α)C−γi

u,t

Y i
u,t

= λi
t

HY
u

HX
t

. (1.5)

These equations show the standard result that marginal utility must be propor-

tional to the stochastic discount factors as well as the fact that marginal utility is

increasing in risk aversion.

If we take together equations (1.4) and (1.5) and we evaluate them at time t, we

get that: (
Ci

u,t

Ci
t,t

)
= e

− ρ

γi
(u−t)

[(
HX

u

HX
t

)α(
HY

u

HY
t

)(1−α)
]− 1

γi

. (1.6)

Equation (6) shows that all consumers of type i that belong to the cohort born at

time u experience the same growth in their consumption of the country consumption

basket between times t and u. This is a reflection of the complete market assumption,

which allows perfect risk sharing within a cohort.
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1.2.5 The Real Exchange Rate

The price of each consumption basket is defined as the minimum expenditure

required to buy a unit of the basket and is derived by minimizing the corresponding

expenditure function. Then the price of the domestic consumption basket is given

by:

Mt =

(
QX

t

α

)α(
QY

t

1− α

)1−α

,

where Q X
t is defined as the price for good X at time t, while QY

t is the price of good

Y at time t.

We define the real exchange rate as the ratio of the price of the foreign consump-

tion basket to the price of the domestic consumption basket.

Et =
M∗

t

Mt

=
αα

(α∗)α
∗
(1− α)1−α

(1− α∗)1−α∗

(
QY

t

QX
t

)α−α∗

.

The price of the two consumption baskets may be different because they have

a different composition. In particular, when α ̸= α∗ the real exchange rate is time

varying and purchasing power parity fails. In that case, the real exchange rate

volatility is increasing in the volatility of the terms of trade.

1.2.5.1 Real Exchange Rate Decomposition and the Cyclicality Puzzle

We can also consider an alternative decomposition of the real exchange rate,

which will be useful for the discussion of the Cyclicality Puzzle. We can rewrite the

real exchange rate as:

12



Et =

e−ρi
∗t

λi∗
t (Ci∗

t )
γi

∗

e−ρit

λi
t(Ci

t)
γi

=

e−ρi
∗t

λi∗
u

(
Ci∗
t

C∗
t
C∗

t

)γi
∗

e−ρit

λi
t

(
Ci
t

Ct
Ct

)γi

,

where Ci
t is the amount of the domestic consumption basket consumed by agent

i ∈ {A,B} at time t, Ct is the total amount of the domestic consumption basket

consumed by both domestic agents, Ci∗
t is the amount of the foreign consumption

basket consumed by agent i∗ ∈ {A∗, B∗} is the total amount of the foreign consump-

tion basket consumed by both foreign agents, λi
t is the marginal utility of newly born

agents in t for agent i and λi∗
t is the marginal utility of newly born agents in t for

agent i∗.

We can decompose the growth rate of the real exchange rate Et in the following

way:

dEt

Et

=

(
γidCt

Ct

− γi∗ dC
∗
t

C∗
t

)
+

γi
d
Ci

t

Ct

Ci
t

Ct

− γi∗
d
Ci∗

t

C∗
t

Ci∗
t

C∗
t

+ o(dt).

We can see that the change in the real exchange rate can be explained not only

by the relative risk aversion country consumption good growth but also by the cross

country differences in within country consumption reallocation.

Let’s take for example i = B and i∗ = B∗. Under my baseline calibration we

have that γB∗
> γB > γA∗

> γA, thus the domestic country is the less risk averse

country. A negative endowment level shock that decrease the level of the endowment

of both goods alike will result in a temporarily reallocation of consumption from the

less risk averse agent, A to the more risk averse agents A∗, B and B∗. This will

generate 2 effects. On the one hand, consumption of the domestic country will fall

13



at a higher pace than the consumption of the foreign country, as the former provides

insurance to the latter. On the other hand, there will be a significant reallocation

of consumption within the domestic country, as agent A provides insurance to agent

B, but a mild reallocation of consumption in the foreign country, as both agent are

insured in equilibrium by agent A. If the latter phenomenon prevails over the former

one, then the real exchange rate will experience an appreciation while the relative

consumption growth, dlogC − dlogC∗, will have a negative sign, reproducing the

empirical disconnect between these variables.

1.3 Model Solution

To solve the model, we need to determine how prices, SDFs and consumption pro-

cesses for all agents depend on the historical paths of the aggregate shocks dB
(1)
t and

dB
(2)
t . The equilibrium can be characterized in a recursive form where all equilibrium

objects are a function of four endogenous state variables.

The computation of the equilibrium requires solving four second order partial

stochastic differential equations (PSDE). But the system of non-linear stochastic

partial differential equations does not admit a closed-form solution, and thus the

model is solved using numerical techniques based on monte carlo simulations, the

Feynman-Kac theorem and the Picard fixed point theorem.

1.3.1 Endogenous state variables

All the variables in the model at time t are determined by four state variables. The

state variables consist of three consumption shares (out of eight) and the aggregate

14



endowment ratio ωt. The remaining consumption shares are determined through

Pareto conditions and market clearing conditions. In this case, we chose as state

variables the consumption shares of good X for agents A and A∗ (xA and xA∗
) and

the consumption share of good Y for agent A (yA). These variables can be defined,

respectively, in the following way:

xA
t ≡ µA

∫ t
−∞ πe−π(t−s)XA

t,sds

Xt
,

xA∗
t ≡ µA∗

∫ t
−∞ πe−π(t−s)XA∗

t,s ds

Xt
,

yAt ≡ µA

∫ t
−∞ πe−π(t−s)Y A

t,sds

Yt
.

So, we will restrict our attention to a Markovian equilibrium that is defined below,

in the state space
(
ω, xA, xA∗

, yA
)
∈ [ω, ω]× (0, 1)× (0, 1)× (0, 1) where all processes

are functions of
(
ω, xA

t , x
A∗
t , yAt

)
only.

Propositions 1, 2, and 3 characterize the dynamics of the state variables
(
xA, xA∗)

,

as well as the dynamics of the remaining consumption shares that were not chosen

as state variables2.

Proposition 1. The dynamics of the SDFs for country goods X and Y are given

by:
dHX

t

HX
t

= −rXt dt− κ
X,(1)
t dB

(1)
t − κ

X,(2)
t dB

(2)
t ,

dHY
t

HY
t

= −rYt dt− κ
Y,(1)
t dB

(1)
t − κ

Y,(2)
t dB

(2)
t ,

(1.7)

where rDt is the real interest rate denominated in good D ∈ {X, Y } and κ
D,(j)
t is the

market price of risk j ∈ {1, 2} in terms of good D ∈ {X, Y }.

Proposition 2. The law of motion for the consumption share of domestic good X

2The dynamics for the state variable yA can be found in the Appendix
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for agent i ∈ {A,B,A∗, B∗} is given by3:

dxi
t = µxi

t dt+ σ
xi,(1)
t dB

(1)
t + σ

xi,(2)
t dB

(2)
t

1. where the drift of the law of motion of xi is given by:

µxi

t =

[
1−(1−αi)(1−γi)

γi rXt +
(1−αi)(1−γi)

γi rYt +−µX̃ − ρi
γi − π + Ωxi

t

]
xi
t + πµi

Xi
t,t

Xt
,

where rX is the real interest rate of a local good X denominated bond and rY is

the real interest rate of a foreign good Y denominated bond and Ωxi

t is a term

that captures second order elements4.

2. The diffusions of the law of motion of xi are given by:

σ
xi,(1)
t =

[
1−(1−αi)(1−γi)

γi κ
X,(1)
t +

(1−αi)(1−γi)
γi κ

Y,(1)
t − σX

t

]
xi
t,

σ
xi,(2)
t =

[
1−(1−αi)(1−γi)

γi κ
X,(2)
t +

(1−αi)(1−γi)
γi κ

Y,(2)
t

]
xi
t,

where κ
D,(j)
t represent the market price of risk for risk j ∈ {(1), (2)} (where (1)

refers to the endowment level risk and (2) refers to the endowment ratio risk)

denominated in good D ∈ {X, Y }.

The following proposition provides the boundary conditions that the state vari-

ables diffusions satisfy and ensure the survival of every type of agent in the long

run.

Proposition 3. The boundary conditions for the consumption shares of the domestic

good X are given by:5

3The law of motion for the consumption share of the foreign good is derived in the Appendix

4An expression for this term can be found in the Appendix.

5The proof of boundary conditions can be found in the Appendix
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1. lim
xi
t→0

σ
xi,(j)
t = lim

yit→0
σ
xi,(j)
t = lim

xi
t→1

σ
xi,(j)
t = lim

yit→1
σ
xi,(j)
t = 0,

2. lim
xi
t→0

µxi

t = lim
yAt →0

µxi

t = πµi
Xi

t,t

Xt
> 0,

3. lim
xi
t→1

µxi

t = lim
yAt →1

µxi

t = −π
∑

l ̸=i µl
Xl

t,t

Xt
< 0,

where i, l ∈ {A,A∗, B,B∗} and j ∈ {1, 2}.

These boundary conditions ensure the survival of

1.3.2 Completing the Construction of the Equilibrium

The determination of the law of motion for the consumption shares of good

X requires the calculation of
Xi

t,t

Xt
, which can be obtained from the agents’ budget

constraint at time t6. The budget constraint for local agents at time t requires that:

Et

∫ ∞

t

e−π(u−t)

[(
HX

u

HX
t

)
X i

u,t +

(
HY

u

HX
t

)
Y i
u,t

]
du =

1

π (µA + µB)
PX
t,t =

=
1

π (µA + µB)
Et

∫ ∞

t

e−δ(u−t)

(
HX

u

HX
t

)
Xu,tdu.

The budget constraint for foreign agents at time t requires that:

Et

∫ ∞

t

e−π(u−t)

[(
HX

u

HX
t

)
X i

u,t +

(
HY

u

HX
t

)
Y i
u,t

]
du =

1

π (µA∗ + µB∗)
P Y
t,t =

=
1

π (µA∗ + µB∗)
Et

∫ ∞

t

e−δ(u−t)

(
HY

u

HX
t

)
Yu,tdu.

So, using some algebra we can rewrite the terms that appear in the drift of the law

6The conditions for the determination of the law of motion for the consumption shares of good
Y are shown in the Appendix
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of motion of the the consumption shares of good X,
XA

t,t

Xt
and

XA∗
t,t

Xt
, in the following

way:

XA
t,t

Xt
= δ

π(µA+µB)

pXt
gA,X
t

,

XA∗
t,t

Xt
= δ

π( µA∗+µB∗ )

(
HY

t

HX
t

)
ωt

pYt
gA

∗,X
t

,

where pDt is the price dividend ratio for good D ∈ {X, Y } and gi,Xt is the wealth to

consumption of good X ratio for agent i.

1.3.3 Markovian equilirbium

We derive a Markov equilibrium in state variables ωA, xA, xA∗
and yA. All the

equilibrium objects (consumption shares and prices) can be written as functions of

these three states variables.

Definition 1. A Markov equilibrium in state variables ωA, xA, xA∗
and yA is the set

of dividend price ratios pXt
(
ωA, xA, xA∗

, yA
)
and pYt

(
ωA, xA, xA∗

, yA
)
, wealth to con-

sumption of good X ratios gA,X
t

(
ωA, xA, xA∗

, yA
)
and gA

∗,X
t

(
ωA, xA, xA∗

, yA
)
, real in-

terest rates rXt
(
ωA, xA, xA∗

, yA
)
and rYt

(
ωA, xA, xA∗

, yA
)
, stochastic discount factors

HX
t

(
ωA, xA, xA∗

, yA
)
and HY

t

(
ωA, xA, xA∗

, yA
)
, policy functions X i

t

(
ωA, xA, xA∗

, yA
)

and Y i
t

(
ωA, xA, xA∗

, yA
)
for i ∈ {A,B,A∗, B∗} and law of motion for endogenous

state variables µxA

t

(
ωA, xA, xA∗

, yA
)
, µxA∗

t

(
ωA, xA, xA∗

, yA
)
, µyA

t

(
xA, xA∗

, yA
)
,

σ
xA,(1)
t

(
ωA, xA, xA∗

, yA
)
, σ

xA∗
,(1)

t

(
ωA, xA, xA∗

, yA
)
, σ

yA,(1)
t

(
ωA, xA, xA∗

, yA
)
and

σ
xA,(2)
t

(
ωA, xA, xA∗

, yA
)
, σ

xA∗
,(2)

t

(
ωA, xA, xA∗

, yA
)
, σ

yA,(2)
t

(
ωA, xA, xA∗

, yA
)
such that:

i) X i
t

(
ωA, xA, xA∗

, yA
)
and Y i

t

(
ωA, xA, xA∗

, yA
)
for i ∈ {A,B,A∗, B∗} solve the

consumer problem.
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ii) Markets clear:

∑
i∈{A,B,A∗,B∗}

xi
t =

∑
i∈{A,B,A∗,B∗}

yit = 1.

1.3.4 Numerical Solution

Although the model does not have a closed form solution, it is analytically

tractable. Its dynamics can be fully characterized by a system of second order

stochastic partial differential equations that are solved numerically appealing to the

Feynman-Kac Theorem, the Picard Fixed point theorem7 and Monte Carlo simula-

tions. The computation of the equilibrium requires solving the law of motion for the

state variables, whose drifts depend on pXt , p
Y
t , g

A,X
t and gA

∗,X
t .

1.4 Data and Calibration

1.4.1 Data

Data for consumption, gross domestic product (GDP), inflation and exchange

rate for the United States is retrieved from the Federal Reserve Bank of St. Louis

Database. Data for consumption, GDP and inflation for the United Kingdom is

retrieved from the Office of National Statistics from the United Kingdom.

All data are seasonally adjusted; any time series not initially adjusted under-

goes seasonal adjustment using the U.S. Census Bureau’s X12 seasonal adjustment

method.

7See Alfuraidan and Ansari (2016)
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Table 1.1: Calibrated Parameters

Parameters Symbol Value
Panel A: Agent parameters
Risk aversion of type A agents γA 1.5
Risk aversion of type B agents γB 8
Risk aversion of type A∗ agents γA∗

3.5
Risk aversion of type B∗ agents γB∗

10
Discount factor ρ 0.001
Domestic preference for the domestic good α 0.9
Foreign preference for the domestic good α∗ 0.1
Population size of agent A µA 0.01
Population size of agent B µA 0.49
Population size of agent A∗ µA∗ 0.01
Population size of agent B∗ µB∗ 0.49
Death-born rate π 0.008
Panel B: Endowment parameters
Endowment of the domestic good growth mean µX 0.023
Endowment of the domestic good growth volatility σX 0.017
Speed of convergence S 0.77
Ratio of endowment of goods growth volatility σω 0.14
Mean reverting ratio value ωM 1
Correlation between brownian motions ρXY 0.26

1.4.2 Calibration

The paramaters chosen to calibrate the model are listed in Table 1.1. As the

model is set in continuous time, said parameters are annual values rather than quarter

values.

The drift and the diffusion of the aggregate endowment level process are chosen

to match the 2 pertinent moments of the US annual GDP growth for the 1990-2020

period. µX is set to 0.023 and σX is set to be equal to 0.017.

The parameters for the Wright-Fisher aggregate endowment ratio process are
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chosen to match the pertinent models for the process characterizing the relationship

between the nominal GDP for the US and the nominal GDP for the UK for the

1990-2020 period. The speed of convergence matches the empirical autocorrelation

of 0.75. The mean reverting value for the endowment ratio ωM is normalized to 1

to avoid any size effects on the results. The upper and lower bounds for the ratio

are normalized to ω = 0.5 and ω = 2. Under this normalization the value for σω

consistent with the empirical data is 0.15. The empirical value correlation between

the Brownian increments is found to be 0.26.

The subjective discount rate ρ is set to be equal to 0.001 for every agent while

the death/birth ratio π is set to match the US mortality rate, 0.008. The agents

effective discount rate is equal to ρ+ π = 0.009.

The home bias parameters are set to be equal to α = 1− α∗ = 0.9.

The risk aversion parameters are set to allow for significant differences in risk

aversion across countries: γA = 1.5, γA∗
= 3.5, γB = 9, γB∗

= 11.

1.5 Results

1.5.1 Moments

I simulate fifty different random paths of the economy, each one starting from a

different initial set of consumption shares. These initial consumption shares satisfy

both market clearing and Pareto conditions. Each path has 7,000 years. The first

1,000 years are dropped to allow the simulations to converge to their stationary

distribution. Each 6,000 year path is divided in two hundreds 30-year windows that

are counted as one observation. Each 30-year windows has 120 quarter observations.

21



T
ab

le
1.
2:

R
es
u
lt
s

H
et
er
og
en
eo
u
s

H
om

og
en
eo
u
s

A
ge
n
ts

A
ge
n
ts

O
u
tc
om

e
M
o
d
el

M
o
d
el

D
at
a

P
an

el
A
:
E
x
ch
an

ge
ra
te

an
d
C
y
cl
ic
al
it
y

C
or
r(
d
lo
gE

,d
lo
gC

−
d
lo
gC

∗ )
−
0.
25
22

0.
99
95

−
0.
24
56

[−
0.
25
40
,−

0.
25
03
]

[0
.9
99
5,
0.
99
95
]

C
or
r(
d
lo
gE

,γ
B
d
lo
gC

−
γ
B

∗
d
lo
gC

∗ )
0.
02
73

[0
.0
25
2,
0.
02
94
]

C
or
r(
d
lo
gE

,γ
B
d
lo
g
C

B C
−

γ
B

∗
d
lo
g
C

B
∗

C
∗
)

0.
74
40

[0
.7
43
1,
0.
74
49
]

S
D
(d
lo
gE

)
0.
09
58

0.
14
02

0.
08
95

[0
.0
95
5,
0.
09
61
]

[0
.1
39
7,
0.
14
07
]

[0
.1
14
8,
0.
11
57
]

S
D
(d

lo
g
E
)

S
D
(d

lo
g
X
)

5.
63
53

8.
24
71

5.
26
47

[5
.6
17
6,
5.
65
29
]

[8
.2
17
6,
8.
27
64
]

P
an

el
B
:
C
on

su
m
p
ti
on

S
D
(d
lo
gC

)
0.
02
38

0.
03
19

0.
01
62

[0
.0
23
7,
0.
02
38
]

[0
.0
31
8,
0.
03
20
]

S
D
(d
lo
gC

∗ )
0.
01
50
3

0.
06
71

0.
02
2

[0
.0
15
2,
0.
01
54
]

[0
.0
66
9,
0.
06
73
]

N
ot
e:

A
ll
co
n
fi
d
en
ce

in
te
rv
al
s
ar
e
ca
lc
u
la
te
d
at

a
95
%

co
n
fi
d
en
ce

le
ve
l.

22



To explore the quantitative effects of intra and inter country heterogeneity, I also

perform one additional simulation exercise: I simulate two economies inhabited by

only one type of agent each. Both agents have the same risk aversion and are thus

homogeneous.

Table 1.2 presents the key simulated moments as well as the corresponding empiri-

cal moments for the United States and the United Kingdom for the period 1990-2020.

Panel A presents the moments related to the Cyclicality puzzle and its compo-

nents. In the first row of the panel, we can appreciate the extent to which each

version of the model is able to account for the Cyclicality puzzle. The heterogeneous

agent model is able to reproduce the empirical value for the correlation between the

real exchange rate and the relative consumption growth rates almost perfectly. On

the other hand, the homogeneous agent model is not able to explain this puzzles and

features a nearly perfect correlation between the relevant variables.

Rows two and three of Panel A show that the main driver of the explanation of

the puzzle in the heterogeneous agent model is the relative change in risk aversion

component, that has a strong and positive correlation with the real exchange rate.

The relative risk aversion adjusted country consumption growth component is weakly

and negatively correlated with the real exchange rate.

Panel B shows the main moments for country consumption. The standard de-

viation for country consumption in the heterogeneous agents model is close to the

empirical counterpart. On the other hand, the standard deviation for country con-

sumption in the homogeneous agents model is significantly larger than the empirical

benchmark.
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1.5.1.1 Negative Aggregate Endowment Level Shock

In this subsection we analyze the impact of a negative aggregate endowment level

shock on the main variables of the economy, which contributes to the clarification

of the mechanism behind the disconnect between the real exchange rate change and

relative country consumption growth. The aggregate endowment level shock can be

seen in Figure 1.1. This negative shock generates a temporary fall in the rate of

growth the endowment of both goods.

Figure 1.1: Endowment growth rate

In figure 1.2 we can appreciate the nature of the negative correlation between the

real exchange rate change and relative country consumption growth. In Panel A,

we can observe that the negative aggregate endowment level shock results in a jump

in the growth rate of the real exchange rate while, at the same time, it generates

a fall in the relative country consumption growth. The reason for this is that the

consumption of the local country, the less risk averse country, is falling at a larger
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pace than the consumption of the foreign country, the most risk averse country. In

equilibrium the domestic country provides insurance the foreign country.

In Panel B we decompose dlogE into γBdlogC − γB∗
dlogC∗ and γBdlogCB

C
−

γB∗
dlogCB∗

C∗ . We can observe that the behavior of dlogE is driven mainly by the

changes in the relative risk aversion of the countries given by γBdlogCB

C
−γB∗

dlogCB∗

C∗ :

a significant degree of consumption redistribution is taking place inside the domestic

country, while there is no significant consumption redistribution within the foreign

country.

Figure 1.2: Cyclicality decomposition
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A negative aggregate endowment level shock temporarily decreases the consump-

tion of the domestic country as a share of the total available domestic consumption

basket. On the other hand, the shock temporarily increases the consumption of the

foreign country as a share of the total available foreign consumption basket. The

less risk averse domestic country absorbs the negative shock and provides insurance

to the more risk averse foreign country. This is portrayed in figure 1.3.

Figure 1.3: Country consumption of domestic and foreign consumption basket as a
share of all the available domestic and foreign consumption goods

Figure 1.4 shows the change in the consumption weighted average risk aversion of
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each country after the negative aggregate endowment level shock. Although there is

an increment in risk aversion for both countries, the jump is larger for the domestic

country, facing a larger within country consumption redistribution.

Figure 1.4: Country consumption weighted risk aversion

The reason behind the asymmetric change in risk aversion across countries shown

in Figure 4 is explained in Figure 1.5. Here, we can see that although there is a

consumption reallocation towards the less risk averse agents in both countries, the

redistribution is stronger in the domestic country.
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Figure 1.5: Consumption share of the less risk averse agents in each country’s
consumption

1.5.2 Impulse Response Functions

1.5.2.1 Positive Ratio Shock

In this section we analyze the impact of a positive aggregate endowment ratio

shock on the main variables of the Economy. Although this shock is not symmetric

as the aggregate endowment level shock, the economy behaves in a similar way under

the chosen parametrization.

The positive endowment ratio shock can be appreciated on the value of ωt =
Yt

Xt

in Figure 1.6. A positive aggregate endowment ratio shock increases temporary the
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value of ωt.

Figure 1.6: Endowent Ratio Shock

In figure 1.7 we can appreciate the the nature of the negative correlation between

the real exchange rate change and relative country consumption growth. In Panel

A, we can observe that the positive aggregate endowment ratio shock results in a

fall in the growth rate of the real exchange rate while, at the same time, it generates

a jump in the relative country consumption growth.The reason for this is that the

consumption of the local country, the less risk averse country, is increasing at a larger

pace than the consumption of the foreign country, the most risk averse country.

In Panel B we decompose dlogE into γBdlogC − γB∗
dlogC∗ and γBdlogCB

C
−

γB∗
dlogCB∗

C∗ . We can observe that the behavior of dlogE is driven mainly by the
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changes in the relative risk aversion of the countries given by γBdlogCB

C
−γB∗

dlogCB∗

C∗ :

a significant degree of consumption redistribution is taking place inside the domestic

country, while there is no significant consumption redistribution within the foreign

country.

Figure 1.7: Backus-Smith Decomposition

A positive aggregate endowment ratio shock temporarily increase the consump-

tion of the domestic country as a share of the total available domestic consumption

basket. On the other hand, the shock temporarily decreases the consumption of the

foreign country as a share of the total available foreign consumption basket. This is

portrayed in figure 1.8.
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Figure 1.8: Country consumption of domestic and foreign consumption baskets as
a share of all the available domestic and foreign consumption goods

Figure 1.9 shows the change in the consumption weighted average risk aversion

of each country after the positive aggregate endowment ratio shock. Although there

is an fall in risk aversion for both countries, the change is larger for the domestic

country, facing a larger within country consumption redistribution
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Figure 1.9: Country consumption weighted risk aversion

The reason behind the asymmetric change in risk aversion across countries shown

in Figure 9 is explained in Figure 1.10. Here, we can see that although there is a

consumption reallocation towards the more risk averse agents in both countries, the

effect is stronger in the domestic country.
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Figure 1.10: Country Consumption weighted risk aversion

1.6 Conclusion

In this paper it is shown that a two-country, two-goods, two-agents per country

model that features risk aversion heterogeneity both within and between countries

is able to explain the Cyclicality puzzle established by Backus and Smith (1993).

The model proposed in this paper assumes a highly stylized environment that

exhibits frictionless international trade in goods and assets and can be further ex-
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panded to tackle other relevant international finance puzzle in future research, as the

Volatility puzzle of Brandt et al. (2006) and the Uncovered Interest Rates puzzle of

Fama (1984).
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Appendix

A.1 Model Solution

The Appendix presents the detailed solution of the model and proofs omitted in

the main body of the paper.

The endowment growth of the local country follows a geometric Brownian motion:

d logXt = µXdt+ σXdB
(1)
t .

The ratio of the endowments of the foreign to local goods ωt ∈ [ω, ω], where

ωt =
Yt

Xt
follows a Wright-Fisher process:

dωt = C
(
ωM − ωt

)
dt+ σω

√
(ωt − ω) (ω − ωt)dB

(2)
t .

Where ωM is the mean reverting value for ωt and dB
(1)
t × dB

(2)
t = ρXY × dt

We can derive the law of motion for the endowment of the foreign country Yt =

ωtXt through the application of Ito’s lemma and conclude that the endowment growth

of the foreign country follows a geometric Brownian motion:

d log Yt = µY dt+ σY,(1)dB
(1)
t + σ

Y,(2)
t dB

(1)
t .

Where:

µY
t = C (ω∗−ωt)

ωt
+ µX + corr × σX × σω ×

√
(ωt−ω)(ω−ωt)

ωt
,

35



σY,(1) = σX ,

σ
Y,(2)
t = 1

ω
σω
√

(ωt − ω) (ω − ωt),

Now, we will look into the Agent’s optimization problem. Agent i ∈ {A,B,A∗, B∗}

born at time t intertemporal budget constraint is given by:

max
Xi

u,t,Y
i
u,t

Et

{∫ ∞

t

e−π(u−t)

[
e−ρi(u−t)

[(
X i

u,t

)αi (
Y i
u,t

)1−αi
]1−γi

1− γi

− λi
t

(
HX

u

HX
t

X i
u,t +

HY
u

HX
t

Y i
u,t

)]
du

}
+λi

t

PD
t,t

π × Population
.

Where 1
π×Population

PD
t,t is the per–country j-cohort member value of the shares

of the country good D trees born at time t. Note that PD
t,t is denominated in units

of good X in period t. Also note that for the domestic agents i ∈ {A,B} we have

Population = µA + µB and D = X. For the foreign agents i ∈ {A∗, B∗} we have

Population = µA∗ + µB∗ and D = Y . The associated stochastic discount factor for

good D ∈ {X, Y } in period t is HD
t .

The first order conditions of this optimization problem are given by:

e−ρi(u−t)αi
(
CX,i

u,t

)αi(1−γi)−1 (
CY,i

u,t

)(1−αi)(1−γi)
= λi

t

HX
u

HX
t

, (A.1)

e−ρi(u−t)
(
1− αi

) (
CX,i

u,t

)αi(1−γi) (
CY,i

u,t

)(1−αi)(1−γi)−1

= λi
t

HY
u

HX
t

. (A.2)

These equations taken together imply that the consumption growth of a consumer

36



of type i ∈ {A,B,A∗, B∗} for each good is given by:

X i
u,t

X i
t,t

= e
− ρi

γi
(u−t)

(
HX

u

HX
t

)(1−αi)(1−γi)−1

γi
(
HY

u

HY
t

)−
(1−αi)(1−γi)

γi

, (A.3)

Y i
u,t

Y i
t,t

= e
− ρi

γi
(u−t)

(
HX

u

HX
t

)−
αi(1−γi)

γi
(
HY

u

HY
t

)αi(1−γi)−1

γi

. (A.4)

In equilibrium the consumption market needs to clear at each time t. To analyze

the implications of market clearing we define the consumption shares of good X and

good Y for agent i ∈ {A,B,A∗, B∗} as:

xi
t ≡

µi

∫ t

−∞ πe−π(t−s)X i
t,sds

Xt

, (A.5)

yit ≡
µi

∫ t

−∞ πe−π(t−s)Y i
t,sds

Yt

. (A.6)

Substituting (A.3) into (A.5) leads after some re-arranging to

xi
t ≡

[ (
HX

t

)(1−αi)(1−γi)−1

γi
(
HY

t

)−(1−αi)(1−γi)
γi µiπe

(
− ρi

γi
−π

)
t

×
∫ t

−∞
e

(
π+ ρi

γi

)
s (
HX

s

) 1−(1−αi)(1−γi)
γi

(
HY

s

)(1−αi)(1−γi)
γi X i

s,sds

]
(Xt)

−1 (A.7)

Substitution (A.4) into (A.6) leads after some re-arrenging to
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yit ≡

[ (
HX

t

)−αi(1−γi)
γi

(
HY

t

)αi(1−γi)−1

γi µiπe

(
− ρi

γi
−π

)
t

×
∫ t

−∞
e

(
π+ ρi

γi

)
s (
HX

s

)αi(1−γi)
γi

(
HY

s

) 1−αi(1−γi)
γi Y i

s,sds

]
(Yt)

−1 (A.8)

To start, is useful to recall a standard result in asset pricing, namely that the

dynamics of the stochastic discount factors for goods X and Y are given by:

dHX
t

HX
t

= −rXt dt− κ
X,(1)
t dB

(1)
t − κ

X,(2)
t dB

(2)
t ,

dHY
t

HY
t

= −rYt dt− κ
Y,(1)
t dB

(1)
t − κ

Y,(2)
t dB

(2)
t .

Where rDt is the real interest rate denominated in good D ∈ {X, Y } and κ
D,(j)
t is

the market price of risk j ∈ {1, 2} in terms of good D ∈ {X, Y }.

Applying Ito’s lemma to the right hand side of (A.7), we conclude that the con-

sumption share increment of good X for agent i ∈ {A,B,A∗, B∗} is an arithmetic

Brownian motion process:

dxi
t = µxi

t dt+ σ
xi,(1)
t dB

(1)
t + σ

xi,(2)
t dB

(2)
t . (A.9)

Where:

µxi

t =

[
−(1−αi)(1−γi)

γi rYt − (1−αi)(1−γi)−1

γi rXt − ρi

γi − π − µX + Ωxi

t

]
xi
t +

Xi
t,t

Xt
πµi,

38



σ
xi,(1)
t =

[
−(1−αi)(1−γi)−1

γi κ
X,(1)
t +

(1−αi)(1−γi)
γi κ

Y,(1)
t − σX

]
xi
t,

σ
xi,(2)
t =

[
−(1−αi)(1−γi)−1

γi κ
X,(2)
t +

(1−αi)(1−γi)
γi κ

Y,(2)
t

]
xi
t,

where Ωxi

t encompasses all the second order terms:

Ωxi

t =
[1− (1− αi) (1− γi)]αi (1− γi)

2(γi)2

(
dHX

t

HX
t

)2

+
(1− αi) (1− γi) [(1− αi) (1− γi) + γi]

2(γi)2

(
dHY

t

HY
t

)2

− (1− αi) (1− γi) [(1− αi) (1− γi)− 1]

(γi)2

(
dHX

t

HX
t

)(
dHY

t

HY
t

)
+

(
dXt

Xt

)2

−
[
(1− αi) (1− γi)− 1

γi

](
dHX

t

HX
t

)(
dXt

Xt

)
+

(1− αi) (1− γi)

γi

(
dHY

t

HY
t

)(
dXt

Xt

)
.

Where(
dHX

t

HX
t

)2
=
(
κ
X,(1)
t

)2
+
(
κ
X,(2)
t

)2
+ 2ρXY κ

X,(1)
t κ

X,(2)
t ,(

dHY
t

HY
t

)2
=
(
κ
Y,(1)
t

)2
+
(
κ
Y,(2)
t

)2
+ 2ρXY κ

Y,(1)
t κ

Y,(2)
t ,(

dHX
t

HX
t

)(
dHY

t

HY
t

)
= κ

X,(1)
t κ

Y,(1)
t + κ

X,(2)
t κ

Y,(2)
t + ρXY

[
κ
X,(1)
t κ

Y,(2)
t + κ

X,(2)
t κ

Y,(1)
t

]
,(

dXt

Xt

)2
=
(
σX
)2

,(
dHX

t

HX
t

)(
dXt

Xt

)
= κ

X,(1)
t σX + ρXY κ

X,(2)
t σX ,(

dHY
t

HY
t

)(
dXt

Xt

)
= κ

Y,(1)
t σX + ρXY κ

Y,(2)
t σX .

The law of motion for the consumption shares of good Y increments for agent

i ∈ {A,B,A∗, B∗} can be obtained alike by applying Ito’s Lemma to the right hand
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side of equation (A.8):

dyit = µyi

t dt+ σ
yi,(1)
t dB

(1)
t + σ

yi,(2)
t dB

(2)
t . (A.10)

Where:

µyi

t =

[
1−αi(1−γi)

γi rYt +
αi(1−γi)

γi rXt − ρi

γi − π − µY + Ωyi

t

]
yit +

Y i
t,t

Yt
πµi,

σ
yi,(1)
t =

[
αi(1−γi)

γi κ
X,(1)
t +

1−αi(1−γi)
γi κ

Y,(1)
t − σX

]
yit,

σ
yi,(2)
t =

[
αi(1−γi)

γi κ
X,(2)
t +

1−αi(1−γi)
γi κ

Y,(2)
t − σ

Y,(2)
t

]
yit,

where Ωyi

t encompasses all the second order terms:

Ωyi

t =
[γi + αi (1− γi)]αi (1− γi)

2(γi)2

(
dHX

t

HX
t

)2

+
αi (1− γi) [αi (1− γi) + γi]

2(γi)2

(
dHY

t

HY
t

)2

+
αi (1− γi) [1− αi (1− γi)]

(γi)2

(
dHX

t

HX
t

)(
dHY

t

HY
t

)
+

(
dYt

Yt

)2

+

[
αi (1− γi)

γi

](
dHX

t

HX
t

)(
dYt

Yt

)
+

1− αi (1− γi)

γi

(
dHY

t

HY
t

)(
dYt

Yt

)
.

(
dYt

Yt

)2
=
(
σY,(1)

)2
+
(
σ
Y,(2)
t

)2
+ 2ρXY σY,(1)σ

Y,(2)
t ,(

dYt

Yt

)(
dHY

t

HY
t

)
= κ

Y,(1)
t σY,(1) + κ

Y,(2)
t σ

Y,(2)
t + ρXY

[
κ
Y (1)
t σ

Y,(2)
t + κ

Y,(2)
t σY,(1)

]
.

The expressions for rXt and rYt can be derived from the fact that
∑

i∈{A,B,A∗,B∗} µ
xi

t =

0 and
∑

i∈{A,B,A∗,B∗} µ
yi

t = 0 respectively for every t. This is derived from the appli-

cation of Ito’s Lemma to
∑

i∈{A,B,A∗,B∗} x
i
t = 1 and

∑
i∈{A,B,A∗,B∗} y

i
t = 1:
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rXt =

π

(
1−

∑
i∈{A,B,A∗,B∗}

Xi
t,t

Xt
µi

)
+

∑
i∈{A,B,A∗,B∗}

xi
t
ρi

γi + µX − Ωx
t Φ∑

i∈{A,B,A∗,B∗}
yit

αi(1−γi)−1

γi


+

π

(
1−

∑
i∈{A,B,A∗,B∗}

Y i
t,t

Yt
µi

)
+

∑
i∈{A,B,A∗,B∗}

yit
ρi

γi + µY
t − Ωy

t Φ∑
i∈{A,B,A∗,B∗}

xi
t
(1−αi)(1−γi)

γi

,



rYt =

π

(
1−

∑
i∈{A,B,A∗,B∗}

Xi
t,t

Xt
µi

)
+

∑
i∈{A,B,A∗,B∗}

xi
t
ρi

γi + µX − Ωx
t Φ∑

i∈{A,B,A∗,B∗}
yit

(1−αi)(1−γi)−1

γi


+

π

(
1−

∑
i∈{A,B,A∗,B∗}

Y i
t,t

Yt
µi

)
+

∑
i∈{A,B,A∗,B∗}

yit
ρi

γi + µY
t − Ωy

t Φ∑
i∈{A,B,A∗,B∗}

yit
αi(1−γi)

γi


where Ωx

t and Ωy
t are the weighted precautionary savings terms

Ωx
t =

∑
i∈{A,B,A∗,B∗}

xi
tΩ

xi

t ,

Ωy
t =

∑
i∈{A,B,A∗,B∗}

yitΩ
yi

t ,
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Φ =
∑

i∈{A,B,A∗,B∗}

xi
t

(1− αi) (1− γi)

γi

∑
i∈{A,B,A∗,B∗}

yit
γi

+
∑

i∈{A,B,A∗,B∗}

yit
αi (1− γi)

γi

∑
i∈{A,B,A∗,B∗}

xi
t

γi
−

∑
i∈{A,B,A∗,B∗}

yit
γi

∑
i∈{A,B,A∗,B∗}

xi
t

γi
.

The expression for κ
X,(1)
t and κ

X,(2)
t can be derived from

∑
i∈{A,B,A∗,B∗} σ

xi,(1)
t = 0

and
∑

i∈{A,B,A∗,B∗} σ
xi,(2)
t = 0 for every t. The expression for κ

Y,(1)
t and κ

Y,(2)
t can be

derived from that fact that
∑

i∈{A,B,A∗,B∗} σ
yi,(1)
t = 0 and

∑
i∈{A,B,A∗,B∗} σ

yi,(2)
t = 0 for

every t. This is derived from the application of Ito’s Lemma to
∑

i∈{A,B,A∗,B∗} x
i
t = 1

and
∑

i∈{A,B,A∗,B∗} y
i
t = 1:

κ
X,(1)
t =

σX
t

[ ∑
i∈{A,B,A∗,B∗}

yit
αi(1−γi)−1

γi +
∑

i∈{A,B,A∗,B∗}
xi
t
(1−αi)(1−γi)

γi

]
Φ

κ
X,(2)
t =

σ
Y,(2)
t

∑
i∈{A,B,A∗,B∗}

xi
t
(1−αi)(1−γi)

γi

Φ

κ
Y,(1)
t =

σX
t

[ ∑
i∈{A,B,A∗,B∗}

xi
t
(1−αi)(1−γi)−1

γi +
∑

i∈{A,B,A∗,B∗}
yit

αi(1−γi)
γi

]
Φ

κ
Y,(2)
t =

σ
Y,(2)
t

∑
i∈{A,B,A∗,B∗}

xi
t
(1−αi)(1−γi)−1

γi

Φ
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A.2 The real exchange rate

The price of each consumption basket is defined as the minimum expenditure

required to buy a unit of the basket and is derived by minimizing the corresponding

expenditure function. So, we can define the price of the domestic consumption basket

at time t:

Mt =

(
QX

t

α

)α(
QY

t

1− α

)1−α

, (A.11)

where QX
t and QY

t are the prices of goods X and Y ) of the goods in the corre-

sponding period.

We can also get the price for the foreign consumption basket:

M∗
t =

(
QX

t

α∗

)α∗ (
QY

t

1− α∗

)1−α∗

, (A.12)

Applying Ito’s Lemma to (A.11) we get the law of motion for the domestic pricing

kernel:
dMt

Mt

= −Rtdt−K
(1)
t dB

(1)
t −K

(2)
t dB

(2)
t ,

where

Rt = αrXt +(1− α) rYt +
1
2
α (1− α)

[(
dHX

t

HX
t

)2
+
(

dHY
t

HY
t

)2]
−α (1− α)

(
dHX

t

HX
t

)(
dHY

t

HY
t

)
,

K
(1)
t = ακ

X,(1)
t + (1− α)κ

Y,(1)
t ,

K
(2)
t = ακ

X,(2)
t + (1− α)κ

Y,(2)
t .

Applying Ito’s Lemma to (A.12) we get the law of motion for the foreign pricing

kernel:
dM∗

t

M∗
t

= −R∗
tdt−K

∗,(1)
t dB

(1)
t −K

∗,(2)
t dB

(2)
t ,
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where

R∗
t = α∗rXt +(1− α∗) rYt +α∗ (1− α∗)

{
1
2

[(
dHX

t

HX
t

)2
+
(

dHY
t

HY
t

)2]
−
(

dHX
t

HX
t

)(
dHY

t

HY
t

)}
,

K
∗,(1)
t = α∗κ

X,(1)
t + (1− α∗)κ

Y,(1)
t ,

K
∗,(2)
t = α∗κ

X,(2)
t + (1− α∗)κ

Y,(2)
t .

The real exchange rate is defined as the quotient between the price of the foreign

consumption basket to the price of the domestic consumption basket:

Et =
M∗

t

Mt

=
αα

(α∗)α
∗
(1− α)1−α

(1− α∗)1−α∗

(
QY

t

QX
t

)α−α∗

,

where QX
t and QY

t are the prices of good X and good Y in period t respectively.

Applying Ito’s Lemma we get the low of motion for the real exchange rate:

dEt

Et

= µE
t dt+ σ

E,(1)
t dB

(1)
t + σ

E,(2)
t dB

(2)
t ,

where

µE
t = Rt −R∗

t +
(

dPt

Pt

)2
−
(

dPt

Pt

)(
dP ∗

t

P ∗
t

)
,

σ
E,(1)
t = K

(1)
t −K

∗(1)
t ,

σ
E,(2)
t = K

(2)
t −K

∗(2)
t ,

(
dPt

Pt

)2
=
(
K

(1)
t

)2
+
(
K

(2)
t

)2
+ 2ρXYK

(1)
t K

(2)
t(

dPt

Pt

)(
dP ∗

t

P ∗
t

)
= K

(1)
t K

∗,(1)
t +K

(2)
t K

∗,(2)
t + ρXY

(
K

(1)
t K

∗,(2)
t +K

(2)
t K

∗,(1)
t

)
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A.3 Country Consumption

The domestic country’s consumption of the domestic consumption basket is given

by: Ct =
(
xA
t Xt

)α (
yAt Yt

)1−α
+
(
xB
t Xt

)α (
yBt Yt

)1−α
.

Applying Ito’s lemma we get the law of motion for the domestic country con-

sumption:
dCt

Ct

= µC
t dt+ σ

C,(1)
t dB

(1)
t + σ

C,(2)
t dB

(2)
t ,

where the diffusion on the aggregate endowment level shock is given by:

σ
C,(1)
t =

(
CA
t

Ct

γA +
CB
t

Ct

γB

)
Ξ
(1)
t σX ,

and the diffusion on the aggregate endowment ratio shock is given by:

σ
C,(2)
t =

(
CA
t

Ct

γA +
CB
t

Ct

γB

)
Ξ
(2)
t

√
(ωt−ω)(ω−ωt)

ωt
σω,

where

Ξ
(1)
t =

[ ∑
i∈{A,B,A∗,B∗}

xi
t

(1− αi) (1− γi)

γi

+
∑

i∈{A,B,A∗,B∗}

yit
αi (1− γi)

γi
− α

∑
i∈{A,B,A∗,B∗}

yit
γi

− (1− α)
∑

i∈{A,B,A∗,B∗}

xi
t

γi

]
Φ−1

Ξ
(2)
t =

 ∑
i∈{A,B,A∗,B∗}

xi
t

(1− αi) (1− γi)

γi
− (1− α)

∑
i∈{A,B,A∗,B∗}

xi
t

γi

Φ−1
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The foreign country’s consumption of the foreign consumption basket is given by:

C∗
t =

(
xA∗
t Xt

)α∗ (
yA

∗
t Yt

)1−α∗
+
(
xB∗
t Xt

)α∗ (
yB

∗
t Yt

)1−α∗
.

Applying Ito’s lemma we get the law of motion for the foreign country consump-

tion:
dC∗

t

C∗
t

= µC∗

t dt+ σ
C∗,(1)
t dB

(1)
t + σ

C∗,(2)
t dB

(2)
t ,

where the diffusion on the aggregate endowment level shock is given by:

σ
C∗,(1)
t =

(
CA∗
t
C∗
t

γA +
CB∗
t
C∗
t

γB

)
Ξ
∗,(1)
t σX ,

and the diffusion on the aggregate endowment ratio shock is given by:

σ
C∗,(2)
t =

(
CA∗
t
C∗
t

γA∗ +
CB∗
t
C∗
t

γB∗

)
Ξ
∗,(2)
t

√
(ωt−ω)(ω−ωt)

ωt
σω,

where

Ξ
∗,(1)
t =

[ ∑
i∈{A,B,A∗,B∗}

xi
t

(1− α) (1− γi)

γi

+
∑

i∈{A,B,A∗,B∗}

yit
α (1− γi)

γi
− α∗

∑
i∈{A,B,A∗,B∗}

yit
γi

− (1− α∗)
∑

i∈{A,B,A∗,B∗}

xi
t

γi

]
Φ−1

Ξ
(2)
t =

 ∑
i∈{A,B,A∗,B∗}

xi
t

(1− αi) (1− γi)

γi
− (1− α∗)

∑
i∈{A,B,A∗,B∗}

xi
t

γi

Φ−1
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A.4 Exchange rate decomposition

Combining the equations (A.1), (A.2) and (A.9) we can rewrite the pricing kernel

as:

Pt =

(
e−ρit (Ci

t)
(1−γi)

λi
tX

i
t

)α(
e−ρit (Ci

t)
(1−γi)

λi
tY

i
t

)1−α

=
e−ρit (Ci

t)
(1−γi)

λi
t (X

i
t)

α
(Y i

t )
1−α

=
e−ρit

λi
t (C

i
t)

γi =
e−ρit

λi
t (S

i
t × Ct)

γi ,

where Si
t is the share of agent i in its own country consumption. Then we can rewrite

the real exchange rate int he following way:

Et =

e−ρj(u−t)

λi
t(S

j,∗
t ×C∗

u,t)
γj

e−ρi(u−t)

λi
t(Si

country×Cu,t)
γi

.

If we choose type B agents for each country, the real exchange rate can be de-

composed into:

dEt

Et

=

(
γB dCt

Ct

− γB∗ dC∗
t

C∗
t

)
+

(
γB dSB

t

SB
t

− γB∗ dSB∗
t

SB∗
t

)
+

(
dλB

t

λB
t

− dλB∗
t

λB∗
t

)
.
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A.5 Completing the Construction of Equilibrium

The determination of the drift of the law of motion for the consumption shares

of good X and of good Y requires the calculation of
Xi

t,t

Xt
and

Y i
t,t

Yt
respectively, which

can be obtained from the agents’ budget constraint at time t. The budget constraint

for local agents at time t requires that:

Et

∫ ∞

t

e−π(u−t)

[(
HX

u

HX
t

)
X i

u,t +

(
HY

u

HX
t

)
Y i
u,t

]
du =

1

π (µA + µB)
PX
t,t =

=
1

π (µA + µB)
Et

∫ ∞

t

e−δ(u−t)

(
HX

u

HX
t

)
Xu,tdu.

The budget constraint for foreign agents at time t requires that:

Et

∫ ∞

t

e−π(u−t)

[(
HX

u

HX
t

)
X i

u,t +

(
HY

u

HX
t

)
Y i
u,t

]
du =

1

π (µA∗ + µB∗)
P Y
t,t =

=
1

π (µA∗ + µB∗)
Et

∫ ∞

t

e−δ(u−t)

(
HY

u

HX
t

)
Yu,tdu.

We can define the Price Dividend ratios pXt and pYt for good X and good Y

respectively:

pXt ≡ Et

∫ ∞

t

e−δ(u−t)

(
HX

u

HX
t

)(
Xu

Xt

)
du (A.13)

pYt ≡ Et

∫ ∞

t

e−δ(u−t)

(
HY

u

HY
t

)(
Yu

Yt

)
du (A.14)

Also, we can define he Wealth to Consumption of Good X ratios gX,A
t and gX,A∗

t
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for agents A and A∗ respectively:

gX,A
t ≡ Et

∫ ∞

t

e−π(u−t)

[(
HX

u

HX
t

)(
XA

u,t

XA
t,t

)
+

(
HY

u

HX
t

)(
Y A
u,t

Y A
t,t

)]
du (A.15)

gX,A∗

t ≡ Et

∫ ∞

t

e−π(u−t)

[(
HX

u

HX
t

)(
XA∗

u,t

XA∗
t,t

)
+

(
HY

u

HX
t

)(
Y A∗
u,t

Y A∗
t,t

)]
du (A.16)

So, using some algebra we can rewrite
XA

t,t

Xt
,

XA∗
t,t

Xt
and

Y A
t,t

Yt
in the following way:

XA
t,t

Xt
= δ

π(µA+µB)

pXt
gA,X
t

,

XA∗
t,t

Xt
= δ

π( µA∗+µB∗ )

(
HY

t

HX
t

)
ωt

pYt
gA

∗,X
t

,

Y A
t,t

Yt
= δ

π(µA+µB)
1−α
α

1(
HY
t

HX
t

) 1
ωt

pXt
gA,X
t

,

A.6 Stochastic Partial Differential Equations

This section derive the stochastic partial differential equations that characterize

pXt , p
Y
t , g

A,X
t and gA

∗,X
t .

From (A.13) - (A.15), we can write:

pXt e
−δtHX

t Xt +

∫ t

s

e−δuHX
u Xudu = Et

∫ ∞

s

e−δuHX
u Xudu (A.17)

pYt e
−δtHY

t Yt +

∫ t

s

e−δuHY
u Yudu = Et

∫ ∞

s

e−δuHY
u Yudu (A.18)
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gA,X
t e

(
− ρA

γA
−π

)
t (
HX

t

)(1−αA)(1−γA)−1

γA
(
HY

t

)−(1−αA)(1−γA)
γA − HY

t

HX
t

(
1− αA

)
αA

×
∫ ∞

t

e

(
− ρA

γA
−π

)
u (

HX
u

)−αA(1−γA)
γA

(
HY

u

)αA(1−γA)−1

γA
+1

du

+

∫ t

s

e

(
− ρA

γA
−π

)
u (

HX
u

)−αA(1−γA)
γA

(
HY

u

)−(1−αA)(1−γA)
γA du

= Et

∫ ∞

s

e

(
− ρA

γA
−π

)
u (

HX
u

)−αA(1−γA)
γA

(
HY

u

)−(1−αA)(1−γA)
γA du

(A.19)

gA
∗,X

t e

(
− ρA

∗

γA
∗ −π

)
t (
HX

t

)(1−αA∗
)(1−γA

∗
)−1

γA
∗ (

HY
t

)−(1−αA∗
)(1−γA

∗
)

γA
∗ − HY

t

HX
t

(
1− αA∗)
αA∗

×
∫ ∞

t

e

(
− ρA

∗

γA
∗ −π

)
u (

HX
u

)−αA∗
(1−γA

∗
)

γA
∗ (

HY
u

)αA∗
(1−γA

∗
)−1

γA
∗ +1

du

+

∫ t

s

e

(
− ρA

∗

γA
∗ −π

)
u (

HX
u

)−αA∗
(1−γA

∗
)

γA
∗ (

HY
u

)−(1−αA∗
)(1−γA

∗
)

γA
∗ du

= Et

∫ ∞

s

e

(
− ρA

∗

γA
∗ −π

)
u (

HX
u

)−αA∗
(1−γA

∗
)

γA
∗ (

HY
u

)−(1−αA∗
)(1−γA

∗
)

γA
∗ du

(A.20)

Observe that the right hand side of equations (A.17), (A.18), (A.19) and (A.20)

are conditional expectations and hence martingales. This means that the left hand

sides must be martingales as well.

To proceed, conjecture that the equilibrium is Markovian in ωt, x
A
t ,x

A∗
t and yAt .

This conjecture implies that pXt , p
Y
t , g

A,X
t and gA

∗,X
t can be written exclusively as

functions of ωt, x
A
t ,x

A∗
t and yAt as well.
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Applying Ito’s Lemma to compute the drift of the left-hand side of (A.17) and set-

ting the resulting expression to zero leads after some simplifications to the following

differential equation:

∑
i∈{ω,xA,xA∗ ,yA∗}

{
e−δtHX

t Xt

(
pX
)i ′µi

t

+
1

2

(
pX
)′′
ii
e−δtHX

t Xt

[(
σ
i,(1)
t

)2
+
(
σ
i,(2)
t

)2
+ 2ρXY σ

i,(1)
t σ

i,(2)
t

]
−Xt

(
pX
)i ′e−δt

×
[
σ
i,(1)
t κ

X,(1)
t + σ

i,(2)
t κ

X,(2)
t + ρXY

(
σ
i,(1)
t κ

X,(2)
t + σ

i,(2)
t κ

X,(1)
t

)]
+ e−δtHX

t

(
pX
)i ′ [σi,(1)

t σX + ρXY σ
i,(2)
t σX

]
+

∑
j ̸=i∈{ω,xA,xA∗ ,yA∗}

e−δtHX
t Xt

(
pX
)j,i ′′

×
[
σ
i,(1)
t σ

j,(1)
t + σ

i,(2)
t σ

j,(2)
t + 2ρXY

(
σ
i,(1)
t σ

j,(2)
t + σ

i,(2)
t σ

j,(1)
t

)]}
−
[
σXκ

X,(1)
t + ρXY σX

t κ
X,(2)
t

]
+
(
pX
)
δe−δtHX

t Xtdt

+ e−δtHX
t Xt

(
1 + µX − rXt

)
= 0

This stochastic partial differential equation characterizes the solution for pX . The

stochastic partial differential equations that characterize the solutions for pY , gA,X

and gA
∗,X can be found by applying Ito’s lemma to the left hand side of equations

(A.18), (A.19) and (A.20) respectively.
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A.7 Boundary Conditions

This section provides a proof for Proposition 3.

Proposition 3.1:

lim
xi
t→0

σ
xi,(j)
t = lim

yit→0
σ
xi,(j)
t = lim

xi
t→1

σ
xi,(j)
t = lim

yit→1
σ
xi,(j)
t = 0,

where i ∈ {A,A∗, B,B∗} and j ∈ {1, 2}.

Proof:

lim
xi
t→0

σ
xi,(1)
t =

[
−(1−αi)(1−γi)−1

γi κ
X,(1)
t +

(1−αi)(1−γi)
γi κ

Y,(1)
t − σX

t

]
× 0 = 0.

By Pareto conditions, if yit → 0 ⇒ xi
t → 0 ⇒ lim

yit→0
σ
xi,(1)
t = 0.

If xi
t → 1, then xh

t → 0 for every agent h ̸= i ⇒ σ
xh,(1)
t = 0 for every agent h ̸= i.

But
∑

i∈{A,B,A∗,B∗} σ
xi,(1)
t = 0 ⇒ lim

xi
t→1

σ
xi,(j)
t = 0.

If yit → 1 ⇒, then yht → 0 for every agent h ̸= i. Then by Pareto conditions

xh
t → 0 for every agent h ̸= i. So, xi

t → 1. Then, lim
yit→1

σ
xi,(j)
t = 0

Proposition 3.2

lim
xi
t→0

µxi

t = lim
yit→0

µxi

t = πµi X
i
t,t

Xt
> 0.

Proof:

lim
xi
t→0

µxi

t =

[
−(1−αi)(1−γi)

γi rYt − rXt
(1−αi)(1−γi)−1

γi − ρi

γi − π + Ωi,x
t

]
× 0 +

Xi
t,t

Xt
πµi =

Xi
t,t

Xt
πµi > 0.

By Pareto conditions, if yit → 0 ⇒ xi
t → 0 ⇒ lim

yit→0
µxi

t =
Xi

t,t

Xt
πµi > 0.

Proposition 3.3
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lim
xi
t→1

µxi

t = lim
yit→1

µxi

t = −π
∑

h̸=i µh
Xh

t,t

Xt
< 0.

Proof:

If xi
t → 1, then xh

t → 0 for every agent h ̸= i ⇒ µxh

t = πµh
Xh

t,t

Xt
for every agent

h ̸= i. But
∑

i∈{A,B,A∗,B∗} µ
xi

t = 0 ⇒ lim
xi
t→1

µxi

t = −π
∑

h̸=i µh
Xh

t,t

Xt
< 0.

If yit → 1 ⇒, then yht → 0 for every agent h ̸= i. Then by Pareto conditions

xh
t → 0 for every agent h ̸= i. So, xi

t → 1. ⇒ lim
yit→1

µxi

t = −π
∑

h̸=i µh
Xh

t,t

Xt
.
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CHAPTER 2

Quantitative Methodology

This chapter presents the quantitative methodology implemented to find a solution to

the model presented in Chapter 1. The model does not admit a closed form solution

so the resolution of the model relies on the application of Monte Carlo Methods, the

Feynman-Kac theorem and Piccard’s fixed-point theorem.

2.1 Introduction

The drifts of the 3 consumption shares that constitute state variables of the

model described in Chapter 1 depend on 2 wealth to consumption ratios and 2 price

dividend ratios. The solution for these variables boils down to a second order partial

stochastic differential equation (PSDE) each. Unfortunately, these PSDE do not

admit a closed form solution. In order to present an outcome to the Asset Pricing

model described in Chapter 1, the model was coded and simulated: a numerical

solution to the aforementioned PDSE was found by leveraging on the Feynman-Kac

Theorem, the Piccard Fixed Point Theorem and Monte Carlo Simulations. The

code is written in Python and is designed to be effective and efficient and to be

able to run under different initial conditions, offering insights and understanding of

the underlying processes that drive the system’s dynamics. This chapter describes
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the quantitative methodology used to obtain the outcome of the model described in

Chapter 1.

2.2 Python Libraries and Modules

2.2.1 NumPy

NumPy is a fundamental library for numerical computing in Python. It provides

support for working with large, multi-dimensional arrays and matrices, along with a

variety of mathematical functions to operate on these arrays.

Key functionalities in the code:

• Creating and manipulating arrays: The code relies on NumPy’s array function-

alities to create and manipulate the data structures used in the calculations.

• Mathematical operations: NumPy provides a wide range of mathematical func-

tions, including element-wise operations, linear algebra, and statistical func-

tions. The code uses these functions to perform calculations on the arrays.

• Random number generation: The Monte Carlo simulations require random

number generation, and NumPy’s random module is used to generate random

numbers with specific distributions.

2.2.2 Pandas

Pandas is a widely used library for data manipulation and analysis in Python.

It provides data structures like Series and DataFrame, which make it easy to work
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with structured data. Key functionalities in the code:

• Reading input data: The code uses Pandas to read input data from CSV files

and store it in DataFrame objects for easy access and manipulation.

• Creating DataFrames: During the calculations, DataFrames are used to store

intermediate results and organize the data in a structured format.

• Saving results: Once the calculations are complete, the results are saved to

CSV files using Pandas’ DataFrame.to csv() function.

2.2.3 Concurrent.futures

The concurrent.futures module provides a high-level interface for asynchronously

executing callables. It is used to parallelize the Monte Carlo simulations, taking

advantage of multi-core processing capabilities to speed up the calculations. Key

functionalities in the code:

• ProcessPoolExecutor: The code uses ProcessPoolExecutor to create a pool

of worker processes that can execute the simulations in parallel. This helps

distribute the computational workload across multiple CPU cores, resulting in

faster execution times.

• ThreadPoolExecutor: In addition to ProcessPoolExecutor, ThreadPoolExecu-

tor is used for saving results in parallel to improve the overall performance of

the code.
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2.3 Functions

In this section, I will present the utility functions1 that are used throughout the

code to carry out the calculations that will be described in the next section

• Initialization Utility Function: This function initializes the multiprocessing

pool with the necessary global variables, which allows for parallel execution of

the Simulation Utility Function.

• Simulation Utility Function: This function takes the initial sets of consumption

shares and performs the Monte Carlo simulation for the given set of parameters.

• Picard Iteration Utility Function: This function represents the implementa-

tion of the Picard fixed-point iteration method. It takes the current guess for

the 2 price dividend ratios and 2 wealth to consumption ratios, and computes

the next estimate using the Simulation Utility Function, and checks for con-

vergence. The process is repeated until the solution converges or a maximum

number of iterations is reached.

• Outcome Utility Functions: The code includes utility functions to calculate

various statistics, such as mean, correlation and standard deviation.

1A utility function in coding refers to a self-contained piece of code that performs a specific
task. It is not related to the concept of Utility Function in Economics.
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2.4 Execution Flow and Code Implementation

In this section I present the code implementation details that are essential to

solving the mathematical dynamic model using Monte Carlo simulations and iterative

methods based on the Feynman-Kac Theorem and the Picard fixed-point theorem.

There are 3 versions of the code. Although their structure is mostly the same, they

present some differences:

• The code that solves the 4 heterogeneous agents model

• The code that generates the impulse response functions for the 4 heterogeneous

model

• The code that solves the 2 homogeneous agents model that is used as bench-

mark for the standard result of perfect correlation between real exchange rate

changes and relative country consumption growth.

I will start by the describing the code that solves the 4 heterogeneous agents

model and then describe how the other 2 codes differ from this one. The code

follows a sequential execution flow, beginning with the initialization of variables and

data structures, followed by running the Monte Carlo simulations, Picard Iterations

and finally saving and plotting the results. The main steps in the execution flow for

the 4 heterogeneous agents model is the following:

1. Set up the relevant all the relevant parameters of the model in the corresponding

Jason files. These parameters are:
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• Agent parameters: risk aversion, discount factor, population share, death

born-rate and cobb-douglas preferences parameters.

• Endowment parameters: endowment level growth mean, endowment level

growth volatility, speed of convergence of the endowment ratio, endow-

ment ratio change volatility, mean reverting endowment ratio value and

correlation between the brownian motions.

• Model simulation parameters: number of years that will be simulated, size

of the relevant period, number of random generated initial sets of state

variables to be simulated, and maximum number of iterations.

2. Read input data and set up initial conditions: The code reads the input data

from Jason files sets up the initial conditions in arrays. The initial condition

includes de initial guess for the 2 price dividend ratios and the 2 wealth to con-

sumption ratios as well as the initial sets of initial values for the consumption

shares of the agents.

3. Initialize multiprocessing pool: The ProcessPoolExecutor is used to create a

multiprocessing pool, which allows for parallel execution of the Simulation

Utility Function across multiple initial set of initial consumption shares in step

5.

4. Generate random initial values for the state variables. The initial value of the

endowment ratio is set to be always equal to 1. The consumption shares must

satisfy pareto conditions and market clearing conditions.

5. Iterate through the Picard steps using the Picard Iteration Utility Function,

running Monte Carlo simulations at each step to update the system’s variables.
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(a) If this is the first iteration, take the initial guess for the 2 price dividend

ratios and 2 wealth to consumption ratios described in step 4. Else use

values calculated in the previous iterations as the initial guess, stored in

CSV files described in step 5.(d).

(b) Monte Carlo methods: Several random paths are ran per each initial set

of consumption shares using the Simulation Utility Function. For each

random path, the value of the 2 Price Dividend ratio and the 2 Wealth to

Consumption ratio are calculated.

The variables that are calculated here, which are constructed as objects

are:

• The aggregate endowment of the goods Xt and Yt.

The expressions used to calculate these variables for t ∈ [∆t, T ] are:

Xt = Xt−1exp

{(
µX − σ2

X

2

)
∆t+ σXdB

(1)
t

√
∆t

}

Yt = ωtXt

Where X0 = ω0 = Y0 = 1, T is the last period of the simulation and

∆t is the discrete period length.

• The state variables ωt, x
A
t , x

A∗
t and yAt

The expressions used to calculate these variables for t ∈ [∆t, T ] are:

ωt = ωt−1 + S
(
ωM − ωt−1

)
∆t+ σω

√
(ω − ωt−1) (ωt−1 − ω)dB

(1)
t

√
∆t

xA
t = xA

t−1 + µxA

t−1∆t+ σ
xA,(1)
t−1 dB

(1)
t

√
∆t+ σ

xA,(2)
t−1 dB

(2)
t

√
∆t
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xA∗

t = xA∗

t−1 + µxA∗

t−1∆t+ σ
xA∗

,(1)
t−1 dB

(1)
t

√
∆t+ σ

xA∗
,(2)

t−1 dB
(2)
t

√
∆t

yAt = yAt−1 + µyA

t−1∆t+ σ
yA,(1)
t−1 dB

(1)
t

√
∆t+ σ

yA,(2)
t−1 dB

(2)
t

√
∆t

• The stochastic discount factors HX
t and HY

t

The expressions used to calculate these variables for t ∈ [∆t, T ] are:

HX
t = HX

t−1exp

{(
−rXt−1 −

(κ
X,(1)
t−1 )2

2
−

(κ
X,(2)
t−1 )2

2
− ρXY κ

X,(1)
t−1 κ

X,(2)
t−1

)
∆t

−κ
X,(1)
t−1 dB

(1)
t

√
∆t− κ

X,(2)
t−1 dB

(2)
t

√
∆t

}

HY
t = HX

t

(
1− αA

)
αA

yAt Yt

xA
t Xt

Where HX
0 =1

The aforementioned variables are used to calculate quarterly discrete ver-

sion of the 2 price ratios and 2 wealth to consumption ratios:

pXt =
1

2δHX
0 X0

T∑
t=∆t

HX
t Xt

(
e−2δ×(t−∆t) − e−2δ×t

)

pYt =
1

2δHY
0 Y0

T∑
t=∆t

HY
t Yt

(
e−2δ×(t−∆t) − e−2δ×t

)

gX,A
t =

1

2πHX
0 xA

0 X0

T∑
t=∆t

(
HX

t xA
t Xt +HY

t y
A
t Yt

) (
e−2π×(t−∆t) − e−2π×t

)

gX,A∗

t =
1

2πHX
0 xA∗

0 X0

T∑
t=∆t

(
HX

t xA∗

t Xt +HY
t y

A∗

t Yt

) (
e−2π×(t−∆t) − e−2π×t

)
.
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(c) The values of each one of the 4 variables is averaged out across the random

simulations for a given set of initial consumption shares and this value is

used as the initial guess in the next Picard iteration for that same given

set of initial consumption shares.

(d) The results of the calculations for the 4 variables are saved to a CSV file.

6. Repeat step 4 until the desired level of convergence for the 2 price dividend

ratios and for the 2 wealth to consumption ratios is achieved or until the max-

imum number of iterations is reached.

7. After convergence in step 5, the code runs one last Monte Carlo simulation per

initial set of consumption shares to carry out the calculations for the output

of the model, which are stored in a dictionary. The first 1,000 years of data

are dropped to ensure that the model converges to its mean reverting values.

Data is divided in 30 years trenches to match the empirical counterpart used

in Chapter 1. In this step the code uses the Outcome Utility Functions, as

well as Numpy library functions to calculate correlations between the relevant

variables and standard deviations. The variables that are calculated here,

which are constructed as objects are:

• The aggregate endowment of the goods Xt and Yt.

• The state variables ωt, x
A
t , x

A∗
t and yAt .

• The stochastic discount factors HX
t and HY

t .

• The pricing kernels for the countries Mt and M∗
t .

• The real exchange rate Et

• Agents’ consumption CA
t , C

B
t , C

A∗
t and CB∗

t
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• Countries’ consumption Ct and C∗
t

8. Output is exported to a Jason file

This structured approach ensures that the code can efficiently solve the mathe-

matical dynamic model and provide insights into the system’s behavior under various

conditions.

The execution flow for the code that generates the impulse response functions for

the 4 heterogeneous agent model, matches the aforementioned execution flow with

the exception of step 7. In this case, in step 7, all sources of randomness are shut

down. 4 paths per initial set of consumption shares are ran for 1,000 years. After

that, a different 1 time 1 standard deviation random shock is generated in each one

of the 4 paths: one path is shocked with a positive endowment level shock, one

path is shocked with a negative endowment level shock, one path is shocked with a

positive endowment ratio shock and one path is shocked with a negative endowment

ratio shock. The paths of the variables that are relevant for the description of the

mechanism of the model are saved to CSV files.

The execution flow for the code that generates the 2 homogeneous agent model

presents some differences with respect to the code for the 4 heterogeneous agents

model. First, in step 1, the population shares for agents of type B in both countries

must be equal to 0. Second, in step 4, the initial consumption shares for agents of

type B must be set up to be equal to 0. Third, this model only has 2 state variables:

xA
t and ωt, as xA∗

t , yAt and yA
∗

t can be obtained from Pareto and market clearing

conditions given the aforementioned 2 state variables. So, we will only have to solve

the SPDEs for pXt and gX,A
t . This demands the corresponding modifications in steps

2, 4, 5 and 6.
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2.5 Conclusion

This section presented the code used to provide a numerical solution for the model

described in chapter 1. This structured approach efficiently solves the mathemat-

ical dynamic model and provide insights into the system’s behavior under various

conditions.
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CHAPTER 3

Emprical Data

This chapter documents the recent years empirical disconnect between between real

exchange rate changes and relative country consumption growth that was first doc-

umented in Backus and Smith (1993) for the US and 4 OECD countries. The model

presented in Chapter 1 was successful in reproducing this puzzle.

3.1 Introduction

This chapter presents the recent empirical evidence that gives rise to what is com-

monly known in the international asset pricing literature as the Cyclicality puzzle.

This puzzle was first documented by Backus and Smith (1993). The aforementioned

authors found a negative correlation between real exchange rate changes and relative

country consumption growth using data for eight OECD countries. The period that

they span goes from the first quarter of 1971 to the last quarter of 1990.

The startling fact that gives rise to the puzzle is that under identical constant

relative risk aversion preferences, relative country consumption growth and real ex-

change rate must be positively and perfectly correlated. This result was reproduced

in chapter 1 with the 2 identical agents model. Notwithstanding, the empirical evi-

65



dence shows a persistent mildly negative or weakly positive correlation between these

2 variables. The 4 heterogeneous agent model presented in Chapter 1 was able to

generate a theoretical mechanism that reproduced this empirical fact.

In this chapter, I span data for the Cyclicality puzzle for the US and 4 OECD

countries: UK, France, Italy and Germany for different periods between the 1st

quarter of 1975 and the 1st quarter of 2020.

3.2 Data

In Table 3.1 we can observe the values for the correlation between real exchange

rate changes and relative country consumption growth for the US with respect to

the UK, France, Germany and Italy and for different periods ranging from the first

quarter of the year 1975 to the first quarter of the year 2020.

Data for consumption inflation and exchange rate for the United States, France,

Italy and Germany is retrieved from the Federal Reserve Bank of St. Louis Database.

Data for consumption, GDP and inflation for the United Kingdom is retrieved from

the Office of National Statistics from the United Kingdom.

All data are seasonally adjusted; any time series not initially adjusted under-

goes seasonal adjustment using the U.S. Census Bureau’s X12 seasonal adjustment

method.

We can observe that the aforementioned stylized fact pointed out by Backus and

smith (1993) can be observed for different periods of time and also for different

countries.
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Table 3.1: Correlation between real exchange rate changes and relative country
consumption growth for the US and the UK, France, Germany and Italy

Backus-Smith Correlation
Period UK France Germany Italy
1975 - 2020 - - -0.0814 -
1980 - 2020 -0.1965 -0.3349 0.0231 -
1985 - 2020 -0.2469 -0.3889 0.0876 -
1990 - 2020 -0.2456 -0.1973 0.1384 -
1995 - 2020 -0.2004 -0.2074 0.2966 -0.0747
2000 - 2020 -0.1943 -0.1928 0.1384 -0.0122
2005 - 2020 -0.2111 0.0320 0.1242 -0.0118
2010 - 2020 -0.0481 0.0643 0.1967 -0.1637

3.3 Conclusion

This chapter presented recent data that gives rise to what is commonly know in

the asset pricing literature as the Cyclicality puzzle. The empirical data presented

here shows the prevalence of this puzzle both across time, and across countries for

the US.
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