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Estimation of daily cloud-free, snow-covered areas from MODIS
based on variational interpolation

Qing Xia,1 Xiaogang Gao,1 Wei Chu,1 and Soroosh Sorooshian1

Received 22 June 2011; revised 24 July 2012; accepted 25 July 2012; published 18 September 2012.

[1] NASA’s MODIS global snow-covered area (SCA) products are one of the mission’s
major objectives that frequently contain cloud hindrances, which degrade their practical
usability. Many techniques have been developed to mitigate the problem but with no
assurance of eliminating all of the clouds. An image-processing algorithm with its kernel
based on the variational interpolation theorem is developed to automatically obtain
cloud-free dynamic SCA maps from MODIS. Two cases consisting of “accumulation”
and “melting” phases are processed and validated using observations at 121 ground-snow
sensors over the Sierra Nevada Mountains in California. The results show that the
algorithm cleared all the cloud hindrance over the period of study. In terms of accuracy,
the retrieved cloud-free snow cover for the accumulation case had an average omission
error of around 22.5% and average commission error of around 2.1%, as compared
to all available ground sensors. These high percentages of errors basically came from the
input data of Terra and Aqua, which had omission errors of 14.3% and 20.2% (and the
commission errors of �0.5%), respectively. For the melting case, when there were fewer
clouds and hence more sensors available, the errors of omission and commission between
the algorithm and direct observations from Terra and Aqua were close to each other
(5.7–5.0% for omission and 0% for commission).

Citation: Xia, Q., X. Gao, W. Chu, and S. Sorooshian (2012), Estimation of daily cloud-free, snow-covered areas from MODIS
based on variational interpolation, Water Resour. Res., 48, W09523, doi:10.1029/2011WR011072.

1. Introduction

[2] Snow cover is a critical hydrometeorological parame-
ter that plays important roles in energy and water cycles at
global and regional scales due to its high albedo, low thermal
insulation, and function of seasonal water storage and release.
Agencies such as NASA and NOAA have invested exten-
sively in satellite missions to observe ground-snow proper-
ties, including the distribution and quantity of snow-covered
areas (SCA), snow-water equivalent (SWE), albedo, grain size,
etc. Furthermore, these missions have made multiple snow
content data available through visible and infrared (VIR) sen-
sors (e.g., MODIS, AVHRR, LANDSAT, etc.) and microwave
instruments (e.g., SMMR, SSM/I, AMSR-E, etc.). However,
a large part of the snow data user community, such as the state
water agency (the California Department of Water Resources),
is still relying heavily on information from in situ measure-
ments and field surveys, basically due to the consideration
of the data reliability, accuracy, and continuity from satellite
remote sensing observations. Passive microwave (PMW) pro-
ducts of snow depth and SWE are limited primarily by their
coarse resolution, inconsistent data coverage, sensitivity to
snow properties (age, wetness, grain size, density, etc.) and

environmental factors on land surfaces (topography, land-cover
type, atmosphere condition, etc.). Compared with PMW pro-
ducts, VIR snow data (in particular, the MODIS products)
possess higher spatial (500 m in VIR versus 25–40 km in
PMW) and temporal (daily) resolutions and are subject to less
influence from snow properties and environmental factors.
The application of satellite remote sensing for measuring
snow and glacier ice properties has been subject of numerous
studies over the past several decades. König et al. [2001]
provided a comprehensive review of the progress and chal-
lenges. In recent years, numerous applications of MODIS
snow cover products have demonstrated their accuracy and
consistency against other satellite and ground observations
[Hall and Riggs, 2007], such as the tests performed in
the Columbia and Missouri river basins [Maurer et al.,
2003], Canada [Simic et al., 2004], Xinjiang, China [Wang
et al., 2009], and Austria [Parajka and Blöschl, 2006].
Moreover, progress has been made in applying MODIS snow
cover data to climate, weather, and hydrological modeling
either as initial input or for data assimilation [Liston et al.,
1999; Rodell and Houser, 2004; Andreadis and Lettenmaier,
2006]. However, in many cases, frequent cloud obscurations
over the MODIS snow cover maps (among other factors such
as sensor noise, artifacts caused by viewing geometry, angular
effects [Dozier and Painter, 2008], land surface [Dong and
Peters-Lidard, 2010], and snow properties [Parajka and
Blöschl, 2008]) were identified as a major problem hindering
the data from broad uses.
[3] Research for approaches to mitigate cloud inter-

ferences and generate high-quality snow cover maps has
been conducted for years. By assuming that clouds vary
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faster than the underlying snow cover during a given time
period, NASA has produced the 8 day “composite maximum
snow-covered area” [Hall, 2002], which merges 8 consecu-
tive days ofMODIS snow images to expose more snow cover
areas. In addition, the National Weather Service’s National
Operational Hydrologic Remote Sensing Center (NOHRSC)
generates operational daily composite snow cover maps over
the U.S. and the Northern Hemisphere frommultiple sources,
including model results. Molotch et al. [2004] proposed
using a grid-based snowmelt model to estimate snow extents
beneath clouds. Through spectral mixture analyses, Dozier
and Painter [2004] developed the “MODIS images using
the MODIS Snow-Covered Area and Grain size (MOD-
SCAG) algorithm” to determine the fractional snow cover
and cloud cover from MODIS pixels. They further retrieved
the fractional snow cover under the remaining clouds by
cubic spline interpolation [Dozier and Painter, 2008]. Their
paper was the first to propose the idea of viewing a time-
varying snow cover as a space-time cube and filling the data
gaps in the space-time cube using the temporal (one-dimen-
sional) interpolation at each cell (instead of three-dimensional
interpolation over a snow cover proposed by this study).
Gafurov and Bárdossy [2009] summarized six steps of spatial
and temporal filters to mitigate cloud cells in MODIS snow
cover maps, such as filters based on the snow transition ele-
vation, “snow-accumulation start,” and “complete snowmelt”
days. Other such data-driven approaches include the cloud-
gap-filled (CGF) methods [Hall et al., 2010], the simple
merge of VIR and PMW products [Liang et al., 2008;
Romanov et al., 2000], and the regional snowline approach
[Parajka et al., 2010]. Another category of model-driven
methods proposed obtaining the snow cover data from SWE
generated by physical snowmodels based on snowpack energy
and mass-exchange processes [Cline and Carroll, 1999;
Barrett, 2003]. All of these approaches show their effectiveness
to mitigate cloud hindrances but provide no guarantee of pro-
ducing cloud-free SCAs with clearly delineated dynamic
boundaries. This study intends to address this lack and remove
clouds completely from MODIS snow cover maps.
[4] In this study, we developed an automatic approach based

on the Variational Interpolation (VI) technique of computer
image processing [Turk and O’Brien, 1999] for interpolating
the three-dimensional space-time cube of snow cover proposed
by Dozier and Painter [2008]. Variational algorithms have
been used in meteorological studies to interpolate irregularly
distributed and noisy observational data to a regular grid in
two-dimensional space [Steinacker et al., 2000; Steinacker and
Ratheiser, 2006]. To examine the capacity and accuracy of the
VI method, we test the results on both snow accumulating and
melting events using ground measurements at snow sensors
over the Sierra Nevada Mountains in California.

2. Methodology

[5] We first convert each MODIS snow image of
MOD10C1 and MYD10C1 to a map consisting of three types
of pixels (cells): snow, no-snow (ground), and cloud. Because
of the data used, the level 3 daily global view of snow cover
percent at 0.05� Climate Modeling Grids (CMGs) provides
fractional snow and cloud covers in each pixel. Selected
thresholds were used to make the conversion: a pixel has snow
cover fraction over 50% and is marked as snow. If the sum of
snow fraction and cloud fraction is less than 50%, it is marked

as no snow (ground); otherwise, it is marked as cloud. Clearly,
any pixel cannot be classified into the snow or no-snow cate-
gories, such as the missing data pixel, will be marked as a
“cloud” pixel then it will be processed to estimate its ground-
surface state.
[6] The approach to remove the cloud pixels from MODIS

snow images consists of two steps. In the first step, the cloud
hindrances are mitigated through filters adopted fromGafurov
and Bárdossy [2009] that include (1) merging the same day’s
MODIS snow images from Aqua and Terra, (2) short-term
temporal filtering, (3) elevation filtering, and (4) neighboring
spatial filtering. Through the first cloud-mitigation step, the
MODIS snow maps (called “Mitigated” results hereafter) will
provide more information about snow cover boundaries. In the
second step, the VI technique links the segments of snow
cover boundaries at discrete times into a continuous space-
time manifold, then at any time a cross section on the manifold
shows a snow cover map without cloud hindrances (called
“Cleared” results hereafter).
[7] In the VI processing, we take every five consecutive

daily images as a calculation unit. Tests in the study area
showed that 5 day time series of MODIS images mostly
contain sufficient exposure of snow covers for the use of VI,
meanwhile computations on this time frame are cost efficient.
In the VI approach, the segments of snow cover boundary
visible fromMODIS at consecutive days are connected into a
continuous space-time manifold represented by a three-
dimensional implicit function with two dimensions in space
and one dimension in time. It is written as:

f ~xð Þ ¼
> 0 inside snow covers
¼ 0 at snow cover boundaries
< 0 outside snow covers

8<
: ð1Þ

[8] Here, ~x ¼ x1 x2 tð ÞT ∈ R3, x1 and x2 are the spatial
coordinates on the image projection plane, and t is the time.
Mathematically, implicit functions have the advantage of
representing complicate surfaces in high-dimensional spaces
[Osher and Fedkiw, 2003]. From the implicit function, the
shape of the snow cover boundary at any time can be obtained,
because geometrically, the cross section of the space-time
surface could be sliced at the selected time. To derive the
expression of the implicit function, a hypothesis about the
dynamical character of snow cover needs to be made.
[9] It is widely acknowledged that a natural process always

operates in its most efficient way, as proved by numerous
theories in physics, such as the principle of least action
[De Maupertuis, 1744], Gauss’ principle of least forcing
[Gauss, 1829], and the variational principle [Lanczos, 1970].
One of the most important measures for efficiency is the
energy cost. The less energy consumed in a process, the
higher the efficiency credited for it. The energy measure of a
three-dimensional and second-order differentiable surface is
expressed in the manner of “surface smoothness” as:

E ¼
Z
R3

"
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[10] In the variational theory, a natural surface should
possess the minimum energy, min(E); then, it can be
approximated as a linear combination of the radial-basis
function established at selected “constraint points” on the
surface [Duchon, 1977]:

f ~xð Þ ¼ 0 ⇒
XN
i¼1

wiR ~x �~xið Þ ¼ 0 ð3Þ

where {wi} is a set of N weights and R ~x �~xið Þf g is the
selected radial-basis function established at N constraint
points: {~xi}. Examples of R(.) are the thin plate functions,
such as R(.) = r2 log r and the multiquadratic function, R(.) =ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p
with r ¼ jj~x �~xijj: We have experimented with

both functions, and found that they made little difference in
the results of case studies. All the results shown in the paper
are generated using the thin plate functions.
[11] From equation (3), given N constraint points ~xif g on

the implicit surface, the weights can be calculated by substi-
tuting~x ¼~xi into equation (3) one by one, and the implicit
function (or the surface) is determined. Using the VI approach,
we intend to retrieve the space-time surface of snow cover
(as the implicit function) from selected constraint points on
snow cover boundary segments visible from MODIS images
on consecutive days.
[12] Figure 1a provides a schematic illustration of the

VI approach: A set of five consecutive MODIS snow images
at t1 to t5 shows that a snowpack is experiencing melting,
dividing, shrinking, and diminishing, although a portion of
the snow cover boundary (white) is blocked by clouds (cyan)
from time to time. By selecting constraint points on the vis-
ible snow cover boundaries, the VI approach will connect
these points and generate a continuous space-time (cubic)
surface (red), i.e., the implicit function, which describes the
dynamic process of the snow cover including the snow cover
boundaries beneath the clouds. In Figure 1b, the cross sec-
tions of the space-time surface at t1 to t5 show not only the
visible snow cover boundaries (solid), but also the originally
cloud-obscured boundary segments (dotted).

[13] In order to provide the VI processing with represen-
tative constraint points on the visible segments of the snow
cover boundary, we use the dominant-point detection algo-
rithm [Marji, 2003], which automatically determines a series
of dividing points along the snow cover boundary to make a
polygonal representation capture the boundary shape within
a given deviation limit. Fill the constraint points at discrete
times in equation (3), the implicit function can be solved.

3. Case Study

3.1. Study Area

[14] Two snow cases that occurred over California
(Figure 2) are used to demonstrate and evaluate the devel-
oped technique. The study area covers about 423,970 km2,
with elevation ranging from�86 m to 4,421 m. In the winter,
the Sierra Mountain range slows down the movement of
moist air from the west as the air ascends and drops snowfall
on the higher elevations (above about 1500 m), mostly on the
windward side (western slopes) and the rest on the leeward
side. In the spring, the increasing solar radiation and warm
westerly winds increase the rate of the melting process and
the relatively rapid shrinking of the snow cover extent.
Figure 2 also shows the locations of 121 snow sensors in
California. Records at the snow sensors are used as ground
truth to validate the snow cover pixels retrieved fromMODIS
images. Also in Figure 2, snow sensors operated by different
agencies are marked in different colors. California DWR
manages most of the sensors, and the rest is maintained by
agencies, including the National Park Service, the Natural
Resources Conservation Service, the Sacramento Municipal
Utility District, the U.S. Army Corps of Engineers, and the
U.S. Bureau of Reclamation.

3.2. MODIS Data

[15] The daily snow cover images used in this study
are merged from the MODIS products of MOD10C1 and
MYD10C1 sensed from the Terra (EOSAM-1 at 10:30 A.M.)
and Aqua (EOS PM-1 at 1:00–3:00 P.M.) satellites,

Figure 1. (a) Synthetic visualization example of snow boundary interpolation over a 5 day period using
an implicit function. White areas represent snow cover, and cyan areas denote cloud hindrance. Given
incomplete boundaries over the 5 days, the complete snow cover boundaries are obtained for all days
by determining the appropriate implicit function by the cross sections. (b) Results from VI, where solid
lines represent the observed snow cover boundaries, and dotted lines represent the retrieved snow cover
boundaries that were masked by the clouds.
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respectively. The MOD10C1 and MYD10C1 data have
the same content and format but different visiting times.
The data are level 3 global views of snow cover percent at
0.05� Climate Modeling Grids (CMG) [Hall, 2002]. MODIS
snow cells are first identified using the Normalized Differ-
ence Snow Index (NDSI) at daily and 500 m pixel scales:
NDSI = (b4 � b6)/(b4 + b6) [Hall, 2002]; then, they are
assembled and binned into the 0.05�CMG cells as fractional
snow cover. Because the band 6 (�1.640 mm) detectors of
the MODIS instrument onboard Aqua are nonfunctional, band
7 (�2.130 mm) detectors are used in NDSI calculations
instead. In a similar way, a MODIS cloud scheme is applied to
determine the fractional cloud cover for each 0.05� CMG cell.
[16] As described above, in this study, the first step is to

preprocess the MODIS data and mitigate cloud hindrances
using filters. Two thresholds are applied to transform the
fractional snow and cloud covers at each MYD10C1 and
MOD10C1 pixel into one of the three statues: snow, no snow,
and cloud. Then, the MYD10C1 and MOD10C1 images on
the same day are merged to reduce cloud hindrances. Although
there are studies pointing out that snow cover could change
within the daily scale [Parajka and Blöschl, 2006], at the
resolution of 0.05�, it is most likely that, during this short time
period, the clouds may have moved, while the extent of snow
covers remains practically the same. Therefore, it is plausible
that some of the snow-covered cells in the AM view, but
cloud covered in the PM view (or vice versa), will be identi-
fied as snow cells on that day. Further, cloud cells which are
snow covered on both the previous and following days will
also be recognized as snow covered. Algorithms for image
filtering, filling, and smoothing [Gafurov and Bárdossy, 2009]
are applied to enable the snow-covered areas to produce real-
istic sizes, connected interiors, and relatively smooth bound-
aries. Through the first step, the cloud-mitigated MODIS daily
data consist of snow, cloud, and (no-snow) ground pixels at
0.05� CMG (i.e., the Mitigated results), which are ready to be
processed by the VI technique to clear clouds completely.
[17] To verify the reliability of input data in our study region,

we first compared MOD10C1 and MYD10C1 to snow sensor
records (see Figure 2 for locations) for 6 years from 1 October
2004 to 30 September 2010, using three indicators, namely the

Omission Error (OE), Commission Error (CE), and Overall
Accuracy (HIT). According to Dozier and Painter [2004], OE
is defined as the percent of all sensors in the cloud-free study
region that reports having snow while the corresponding pixels
show snow free in the MODIS observation. CE is defined as
the percent of all available sensors that reports snow free but the
corresponding pixels shows snow covered in MODIS data. As
shown in Table 1, the overall accuracy rate (HIT) equals 100%
subtracted by CE and OE.
[18] The results show high consistency in MODIS data

uncertainty: the overall accuracy of MOD10C1 (Terra) is
about 82.9%, with 16.5% OE and 0.6% CE; the overall
accuracy of MYD10C1 (Aqua) is 83.1%, with 16.5%OE and
0.4% CE. Furthermore, the 6 year averaged cloud-cover
percentage over California was 30.4% from Terra and 31.4%
from Aqua. Clearly, OE is the major error for both the Terra
and Aqua data. This issue will be discussed in section 4. We
selected two 5 day events with much severer cloud hin-
drances than the average over the study area to test the cloud-
removing algorithm.

3.3. Events

[19] The selected test events include: (1) a snow accumu-
lation event from 24 to 28 March 2007 (Figure 3), and (2) a
snowmelt event from 13 to 17 March 2009 (Figure 4). In
Figures 3 and 4, white indicates snow covers, black represents
clouds, gray denotes no-snow ground, and POC and POS
indicate the percentages of clouds and snow covers in the area
of California, respectively. In both events, the snow covers to
be retrieved during the three middle days (25–27 March 2007
in Figure 3 and 14–16 March 2009 in Figure 4) were severely
blocked by clouds: POC was in the range of 49.2–73.9%

Figure 2. (left) Map of California and the Sierra Nevada Mountains. (right) Snow sensors in California
and their operator agencies.

Table 1. Decision Table for Omission Error, Commission Error,
and Overall Accuracya

Snow No Snow

Snow HIT OE
No snow CE HIT

aAbbreviations are as follows: OE, omission error; CE, commission
error; HIT, overall accuracy.
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(POS: 0.5–2.2%) from 25 to 27 March 2007 (Figure 3) and in
the range of 54.8–38.7% (POS: 0.5–2.2%) from 14 to 16March
2009 (Figure 4) in comparison with the 2004–2010 averaged
value of POC at the range of 30.4–31.4%.

4. Results and Discussions

[20] Figure 5 shows the Mitigated (filtered) and Cleared
(VI-processed) results for the accumulating case. The upper
row shows the Mitigated results. In comparison with the
MODIS images provided in Figure 3, significant amounts of

snow cover are filtered out of the clouds in the middle three
days, as well as in the first and last days. This step adds
information about the snow cover boundary and makes it
possible for the VI technique to further clear all of the clouds
from the snow covers. The cloud-free snow cover images are
shown in Figure 5, bottom. The Cleared results display a
dynamic process of snow accumulation.
[21] The results for the snowmelt case for 13 to 17 March

2009 are shown in Figure 6. The Cleared results of snow
covers (lower row) indicate a slow shrinking process of the
snowpack in the study region through the decreasing value of

Figure 3. Images of MOD10C1 (top, Terra) and MYD10C1 (bottom, Aqua) from 24 to 28 March 2007
showing a snow-accumulating process (white for snow, black for cloud, and gray for background. POC
and POS denote the percentages of clouds and snow covers in the area of California.

Figure 4. Same as Figure 3, except for a snow melting process from 13 to 17 March 2009. POC and
POS denote the percentages of clouds and snow covers in the area of California.
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POS from 13.2% to 11.4%. Without the Cleared results, such
subtle changes will not be detected. Naturally, a question will
be asked: How accurate and effective are the filtering and
VI techniques? To answer this question, we determined how
many snow sensors become visible after applying the tech-
niques and how much error remains in the results.
[22] The results of the two study events are evaluated

using snow records collected at 121 snow sensors distributed
in the study region (Figure 2). We count the number of
snow sensors visible in the four data sets: (1) original Terra

data, (2) original Aqua data, (3) Mitigated (filtered) results,
and (4) Cleared (VI-processed) results. Figures 7–8 and
attached tables provide two types of information: (a) the top
bars (values are read from the scale on the right side) repre-
sent the number of snow sensors covered by cloud-free snow
pixels in each data set (the more snow sensors that are
exposed, the better the data set is), and (b) the bottom bars
(values are read from the scale on the left side) demonstrate
the error rates (OE and CE) corresponding to the individual
data sets. The overall accuracy (1.0 - OE - CE) could be

Figure 5. (top) Mitigated and (bottom) cleared results of snow cover images from 24 to 28 March 2007.
POC and POS denote the percentages of clouds and snow covers in the area of California.

Figure 6. Same as Figure 5, except for a snowmelt event from 13 to 17 March 2009. POC and POS
denote the percentages of clouds and snow covers in the area of California.

XIA ET AL.: ESTIMATE OF CLOUD-FREE SNOW-COVERED AREAS FROM MODIS W09523W09523

6 of 9



inferred from the distance from the top of error bars to the
upper limit of y axis.
[23] In Figure 7 (the accumulation event from 24 to 28

March 2007), the top bars show that MODIS data, either from
Terra (the first bar on the left) or Aqua (the second bar),
contain the least amount of snow sensors in their defined
snow pixels compared with the “Mitigated” (the third bar)
and “Cleared” (the fourth bar) results. The Mitigated results
cover more sensors, and the Cleared results include all of the
working sensors. The snow sensor data show that, from time
to time, certain sensors do not maintain consistent data and

need to be excluded for the use of validation. For example, on
27 March 2007, the Terra snow pixels covered 13 sensors on
the ground, while the Aqua snow pixels only had three; the
visible sensor number increased to 40 in the Mitigated results
and to 105 in the Cleared results. In fact, the Cleared results
can cover all 121 sensors in the region, but 16 of them have
no records in the time period.
[24] The bottom bars shown in Figure 7 represent the

OE and CE values calculated for the four data sets based on
the snow sensor records, respectively. In all cases, OE is the
major part of the total error, and the ratio of OE to CE is

Figure 7. Results comparing observed and retrieved snow covers with the ground observations for the
accumulating case from 24 to 28 March 2007. (top) Number of effective snow sensors that are not hin-
dered by clouds. (bottom) Errors of omission (solid) and errors of commission (patterned). From left to
right, each group: MODIS observation on Terra, MODIS observation on Aqua, cloud-mitigated snow
cover image, and cloud-cleared snow cover image.

Figure 8. Results comparing observed and retrieved snow covers with the ground observations for the
melting case from 13 to 17 March 2009. (top) Number of effective snow sensors that are not hindered
by clouds. (bottom) Errors of omission (solid) and errors of commission (patterned). From left to right,
each group: MODIS observation on Terra, MODIS observation on Aqua, cloud-mitigated snow cover
image, and cloud-cleared snow cover image.
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approximately 10:1 according to the data given in Table 2.
This indicates a general underestimation for the number of
snow pixels. We suspect that the MODIS fractional snow
cover based on the Normalized Difference Snow Index
(NDSI) might underestimate snow covers in vegetated
mountain slopes. Studies [Hall and Riggs, 2002; Klein and
Barnett, 2003; Vikhamar and Solberg, 2003] have shown
that NDSI requires significant adjustments for applying areas
with complex land surfaces and land covers, such as the study
area in the Sierra Nevada Mountains.
[25] From Figure 7, we also notice that the OE values

for the Mitigated results and the Cleared results, as well as
the averaged OE of Terra and Aqua, have small differences:
the largest difference occurred when the Mitigated results
had the maximum OE value of 0.317 on 26 March 2007,
the corresponding OE of the Cleared results was 0.257,
and the mean OE of Terra and Aqua was 0.273. This illus-
trates the effectiveness of the VI-technique in recovering a
large amount of snow cover under clouds without signifi-
cantly increasing (sometimes decreasing) the error in the
results.
[26] For the snowmelt event from 13 to 17 March 2009,

the technique works better in the event than the above one:
the maximum value of OE reduces to 0.071 and the minimum
value is 0.034 (see Figure 8 and the corresponding Table 3).
The basic reason for the substantial improvements is that the
original Terra and Aqua data possess better quality in this
event. Recalling that both selected events had much higher
severity of cloud hindrance than the problem shown in the
6 year average, we believe that the developed technique has
the capability of producing long-term, high-quality, cloud-
free snow cover data to upgrade the usability of MODIS
snow products (MOD10C1 and MYD10C1).

5. Conclusions

[27] The global MODIS snow cover products, MOD10C1
and MYD10C1, are among the most popular data produced
by NASA’s EOS program and are available for free use.
However, cloud obscurations, which affect many uses, still
exist in the products. This study introduced an automatic
algorithm based on the Variational Interpolation (VI)

theorem for the purpose of removal of all of the cloud con-
taminations and retrieval of cloud-free snow cover maps. In
the process, the snow cover evolutions displayed in a
sequence of MODIS daily images (the 5 day time series are
used in this study) were treated as a space-time cube with
faults caused by cloud obscurations and other data errors.
The VI technique recovered the virtual space-time cube
based on spatial and temporal continuity of snow cover
evolutions; therefore, all of the cloud-obscured snow cover
boundaries were explored, and cloud-free snow cover maps
were obtained.
[28] The capacity and accuracy of the VI approach in the

study area of California were examined using 121 ground-
snow sensors, including 32 SNOTEL (SNOpack TELemetry)
sites. Two conclusions could be made from comparing the
number of effective snow sensors and the errors among
observed MODIS images, cloud-mitigated images and cloud-
cleared images. First, the cloud-mitigated results increased the
exposure of snow on the ground, and the cloud-cleared images
further increased the exposed area of snow. Thus, all of the
snow sensors can be seen without hindrance from clouds. In
the accumulating case, the MODIS observations on Terra and
Aqua had approximately 45 and 48 cloud-free sensors,
respectively, and that number increased to 71 after mitigation
and 105 after clearance. In the melting case, the MODIS
observations on Terra and Aqua had approximately 62 and 58
cloud-free sensors, respectively, and that number increased to
79 after mitigation and 99 after clearance. The second con-
clusion is that both the cloud-mitigated results and the cloud-
cleared results maintained the errors in a level close to those of
the observed snow cover data. In the melting case, the average
errors of omission and commission for Terra data were 14.3%
and 0.5%, respectively; for the Aqua data, the average errors
were 20.2% and 0.5%, respectively; for Mitigated data, the
average errors were 21.9% and 0.8%, respectively; and for
Cleared data, the average errors were 22.5% and 2.1%,
respectively. In the accumulating case, the average errors of
omission and commission for Terra data were 5.7% and 0%,
respectively; for the Aqua data, the average errors were 5.0%
and 0%, respectively; for theMitigated data, the average errors
were 4.4% and 0%, respectively; and for Cleared data, the
average errors were 5.7% and 0%, respectively.

Table 2. Number of Effective Sensors, Commission Errors, and Omission Errors Corresponding to Figure 7 for the Accumulating Casea

24 March 2007 25 March 2007 26 March 2007 27 March 2007 28 March 2007

T A M C T A M C T A M C T A M C T A M C

NS 62 75 103 105 29 34 65 105 19 25 41 105 13 3 40 105 104 102 104 105
CE 0.016 0.013 0.029 0.029 0 0 0 0.029 0 0 0 0.029 0 0 0 0.010 0.010 0.010 0.010 0.010
OE 0.290 0.387 0.301 0.314 0.241 0.118 0.277 0.286 0.105 0.440 0.317 0.257 0 0 0.125 0.181 0.077 0.069 0.077 0.086

aAbbreviations are as follows: NS, number of effective sensors; CE, commission errors; OE, omission errors.

Table 3. Number of Effective Sensors, Commission Errors, and Omission Errors Corresponding to Figure 8 for the Melting Casea

13 March 2009 14 March 2009 15 March 2009 16 March 2009 17 March 2009

T A M C T A M C T A M C T A M C T A M C

NS 99 97 99 99 59 65 88 99 50 51 61 99 31 24 56 99 71 54 91 99
CE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
OE 0.051 0.093 0.040 0.041 0.068 0 0.034 0.051 0.040 0.039 0.049 0..071 0.097 0.083 0.054 0.071 0.028 0.037 0.044 0.051

aAbbreviations are as follows: NS, number of effective sensors; CE, commission errors; OE, omission errors.
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[29] The future development of the method involves pro-
cessing data with higher resolution, longer period, and wider
area. An important step to achieve these goals is to improve
the computation efficiency of the current algorithm, e.g.,
through the fast multipole algorithm [Greengard and
Rokhlin, 1987; Beatson and Newsam, 1992] which decrea-
ses the complexity of the thin plate function evaluation while
preserving reasonable accuracy.
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