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Abstract Computational mechanics quantifies structure in a stochastic process via its causal
states, leading to the process’s minimal, optimal predictor—the e-machine. We extend
computational mechanics to communication channels coupling two processes, obtaining
an analogous optimal model—the e-transducer—of the stochastic mapping between them.
Here, we lay the foundation of a structural analysis of communication channels, treating
joint processes and processes with input. The result is a principled structural analysis of
mechanisms that support information flow between processes. It is the first in a series on
the structural information theory of memoryful channels, channel composition, and allied
conditional information measures.

Keywords Sequential machine - Communication channel - Finite-state transducer -

Statistical complexity - Causal state - Minimality - Optimal prediction - Subshift
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1 Introduction

Arguably, the distinctive character of natural and engineered systems lies in their organiza-
tion. This is in contrast to differences, say, in how random they are or in their temperature.
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Computational mechanics provides an analytical and constructive way to determine a sys-
tem’s organization [1], supplementing the well developed statistical physics view of systems
in terms of disorder—via thermodynamic entropy and free energy. The contrast begs a ques-
tion, though, how does organization arise?

As a step to an answer, we extend computational mechanics from describing individual
systems to analyze organization in transformations between systems. We build on its well
established methods to describe a calculus for detecting the emergence of structure. Indeed,
natural systems are nothing, if not the result of transformations of energy, information, or both.
There is no lack of examples: Filtering measurement time series to discover the temporal
behavior of hidden states [2]; Maxwell’s Demon translating measurement information to
control actions that rectify thermal fluctuations into work, locally defeating Thermodynamics’
Second Law [3-5]; sensory transduction in the retina that converts light intensity and spectra
into neural spike trains [6]; perception-action cycles in which an agent decides its future
behavior based on its interpretation of its environment’s state [7,8]; and, finally, firms that
transform raw materials into finished goods [9].

We refer to our objects of study as structured transformations to emphasize the particular
focus on basic questions of organization. How complex is a transformation? What and how
many resources are required to implement it? What does it add to an input in producing an
output? Randomness, structure, or both? What is thrown away? How is its own organization
reflected in that of its output?

The framework addresses these questions, both quantitatively and from first principles.
It is the first in a series. Foremost, it’s burden is to lay the groundwork necessary to answer
these questions. Sequels introduce information measures to classify the kinds of information
processing in joint input—output processes and in structured transformations. To delineate
the underlying mechanisms that produce organization, they analyze a range of examples and
describe a number of interesting, even counterintuitive, properties of structured transforma-
tions.

The questions posed are basic, so there is a wide range of applications and of historical
precedents. Due to this diversity and to avoid distracting from the development, we defer
reviewing them and related work until later, once the context has been set and the focus,
benefits, and limitations of our approach are clear.

The following analyzes communication channels and channel composition in terms of
intrinsic computation [1,10]. As such, it and the entire series, for that matter, assume famil-
iarity with stochastic processes at the level of Ref. [11], information theory at the level of
Refs. [12,13], and computational mechanics at the level of Refs. [14,15]. These serve as the
default sources for statements in our review.

We first present a brief overview and relevant notation for how computational mechanics
describes processes. We extend this to describe controlled processes—processes with input.
Several examples that illustrate the basic kinds of input—output process are then given, by
way of outlining an organizational classification scheme. At that point, we describe the
global e-machine for joint input—output processes. Using this we introduce the e-transducer,
defining its structural complexity and establishing its optimalities. We close with a thorough
analysis of the example input—output processes and compare and contrast e-transducers with
prior work.
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406 N. Barnett, J. P. Crutchfield

2 Processes and Their Presentations
2.1 Stationary, Ergodic Processes

The temporal stochastic process we consider is a one-dimensional chain ...Y_,Y_1YpY;
Y, ... of discrete random variables {Y;};cz that take values {y;};cz over a finite or countable
alphabet Y. A finite block Y;Y;41...Y;_1 of variables with ¢t € [i, j) is denoted Y;.;.
The left index is always inclusive, the right always exclusive. Let Y denote the bi-infinite
chain Y_s0:00, and let 1)_7\ denote the set of all bi-infinite sequences “y~ with alphabet Y.
117, = ...Y;_2Y,_1 is the past leading up to time ¢, not including ¢, and 7\, =Y/ Yi41...18
the future leading from it, including 7.

We can also use the time index notation above to specify the time origin of a process or
bi-infinite sequence. This is useful when we are comparing two such processes or sequences.
For example, if we wish to say that TisX delayed by three time steps, this can be written
as ?3 = JYO. To indicate the time origin in specific realized symbol values in a chain, we
place a period before the symbol occurring at t = 0: e.g., 3 = ...achb.caba ..., where
Yo = c. Finally, if the word abcd follows a sequence of random variables Y;.; we denote this
by Y;.j14 = Y;.jabcd, for example. A word occurring before a sequence of random variables
is denoted by a similar concatenation rule; e.g., ¥;_4.; = abcdY}.;.

A stochastic process is defined by its word distributions:

P(Yrirr) = PYergr = Year Dby, eyt nH

forall L € ZT andt € Z.

We will often use an equivalent definition of a stochastic process as a random variable
defined over the set of bi-infinite sequences 1)_7\ In this case, a stochastic process is defined
by an indexed set of probabilities of the form:

B(Y) =Y co),cy. o)

where o is a measurable set of bi-infinite sequences. We can obtain a process’ word probabil-
ities by selecting appropriate measurable subsets—cylinder sets—that correspond to holding
the values of a contiguous subset of random variables fixed.

In the following, we consider only stationary processes—those invariant under time trans-
lation:

P(Y;:+1) = P(¥o:.) and
P(Yy) = P(Yo),

forall t € Z and L € Z*. This property ensures that a process’s behavior has no explicit
dependence on time origin.

We will also primarily limit the discussion to ergodic stationary processes—processes
where any realization “y~ gives good empirical estimates P(Yp.1) of the process’s true word
probabilities P(Yp.;) [16]. That is, for any finite realization yo.js, the empirical estimate
f@(w) of aword w = wow; ... wp_1 of length L, converges almost surely to the true process
probability P(Yp.;, = w) as M — oo, where:

M—L
P _ Ly (yer+r)
=2 5
t=0
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and the indicator function I, (y;;+1) equals 1 when y;,+; = w, and O otherwise. This
property ensures, among other things, that any particular realization of the process reflects
the behavior of the process in general—a useful property when we do not have freedom to
re-initialize the system at will.

2.2 Examples

To illustrate key ideas in the development, we use several example processes, all with the
binary alphabet Y = {0, 1}. They are used repeatedly in the following and in the sequels.

2.2.1 Biased Coin Process
The Biased Coin Process is an independent, identically distributed (IID) process, where word
probabilities factor into a product of single-variable probabilities:
P(Yo.L) = PYQ)P(Y1) - - - P(Y1—1),

where P(Y;) = P(Yy) for all z. If n is the number of Os in yo.z , then P(yo.z) = p" (1 — p)L=",
where p = P(Yp = 0).
2.2.2 Period-2 Process
The Period-2 Process endlessly repeats the word 01, starting with either a O or a 1 with equal
probability. It is specified by the word distributions:

P(Y;:; = (...1010.1010...);;;) = 4 and

P(Y;:; = (...0101.0101...);.)) = 1,

wherei, j € Z,i < j.
2.2.3 Golden Mean Process

The Golden Mean Process generates all binary sequences, except those with consecutive 0s.
After a 1 is generated, the next O or 1 appears with equal likelihood. Its word distributions
are determined by a Markov chain with states Yy = 0 and Yy = 1 having probabilities
P(Yo =0) =1/3 and P(Yp = 1) = 2/3, respectively, and transition probabilities:

P(Y; =0]Yo =0) =0,

P(Y1 =1Yo=0) =1,

P(Y; =0|Yg=1) = 5, and 3)
P(Y) =1Yg=1) = 3.

2.2.4 Even Process

The Even Process generates all binary sequences, except that a 1 always appears in an even-
length block of 1s bordered by 0Os. After an even number of 1s are generated, the next 0 or 1
appears with equal likelihood. Notably, the Even Process cannot be represented by a Markov
chain of any finite order or, equivalently, by any finite list of conditional probabilities over
words. As we will see, though, it can be represented concisely by a finite-state hidden Markov
model. To see this, we must first introduce alternative models—here called presentations—for
a given process.

@ Springer



408 N. Barnett, J. P. Crutchfield

2.3 Optimal Presentations

We can completely, and rather prosaically, specify a stationary process by listing its set of
word probabilities, as in Eq. (1), or conditional probabilities, as in Eq. (3). As with the Even
Process, however, generally these sets are infinite and so one prefers to use finite or, at least,
more compact descriptions. Fortunately, there is a canonical presentation for any stationary
process—the e-machine of computational mechanics [10,14]—that is its unique, optimal,
unifilar generator of minimal size; which we now define.

Given a process’s word distribution, its e-machine is constructed by regarding any two
infinite pasts " and J as equivalent when they lead to the same distribution over infinite
futures—the same future morphs, of the form ]P’(? | 7). This grouping is given by the causal
equivalence relation ~:

< P

Y~y = PY|Y =5)=P(Y|Y =5). 4)

The equivalence classes of ~, partition the set 1)_7 of all allowed pasts. The classes are the
process’s causal states. The indexed set of causal states is denoted by S and has elements
o;. Note that i is not a time index, but an element of an index set with the same cardinality as
8. The associated random variable over alphabet S is denoted by S. The e-map is a function
€ 1)_7 — & that takes a given past to its corresponding causal state or, equivalently, to the
set of pasts to which it is causally equivalent:

e(y)=oa
={5": 5 ~ 5}
The e-map induces a dynamic over pasts: Appending anew symbol y; to past y, produces a
new past y, 41 = Y, y;. This, in turn, defines a stochastic process—the causal-state process—
PN
with random variable chain § = S_o0:00 = ... 5_150S] ..., where at time ¢ each S; takes
on some value s; = 0; € S. The relationship between a process’s pasts and its causal states
L PN
is summarized in Fig. 1. The map from the observed chain Y to the internal state chain S
is the causal state filter. (We return to this mapping later on.) The dynamic over causal states
is specified by an indexed set 7 of symbol-labeled transition matrices:

T ={TV)ey.
where 7O has elements:

T = B(S1 =0, Yo = ¥IS) = 00).

Yt—2 Yt—1 Yt — Yt+1
Yia Y Y1 ——— - -
€ € €

Yt—2 Yt—1 Yt Yt+1
St—1 St St+1

Fig. 1 Process lattice: the dynamic inherited by the causal states s; = o; € S from a process’s pasts via the

yt
e-map: sy = €(... yr—2Yr—1) —> S41 = €. Yr—2Yr—1)1)
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The e-map also induces a distribution 7 over causal states, with elements:
7 (i) = P(So = o)
= ]P’(e( Y) = ai).

Since the process is stationary and the e-map is time independent, 7 is also stationary. We
therefore refer to 7 as the process’s stationary distribution. Note that for ergodic processes,
the stationary distribution can be calculated directly from the transition matrices alone [17].

The tuple (Y, S, 7) consisting of the process’ alphabet, causal state set, and transition
matrix set is the process’ e-machine.

The e-machine is a process’s unique, maximally predictive, minimal-size unifilar presen-
tation [10,18,19]. In other words, the causal states are as predictive as any rival partition R
of the pasts Y. In particular, any given causal state o; is as predictive as any of its pasts
5 € € (o). Measuring predictive ability via the mutual information between states and
future observations, this translates to the statement that:

1[So; Yol = 1[ Yo; Yol
> I[Ro; 70],

where Ry € R. Moreover, among all equally predictive (prescient rival) partitions R of the
past, the causal states minimize the state Shannon entropy: H[S] = H[x] < H[I/Q\]. Due to the
e-machine’s minimality, the statistical complexity C,, = H[S] = H[7 ] measures the amount
of historical information a process stores.

A process’s e-machine presentation has several additional properties that prove useful.
First, the causal states form a Markov chain. This means that the e-machine is a type of

hidden Markov model. Second, the causal states are unifilar:
H[St+1 |Y;, S:] = 0.

That is, the current state and symbol uniquely determine the next state. This is necessary
for an observer to maintain its knowledge of a process’s current causal state while scanning
a sequence of symbols. Third, unlike general (that is, nonunifilar) hidden Markov models,
one can calculate a process’s key informational properties directly from its e-machine. For
example, a process’s entropy rate h, can be written in terms of the causal states:

h,, = H[Yp|So].

And, using the methods of Refs. [14,20], a process’s past-future mutual information—the
excess entropy E—is given by its forward S and reverse S~ causal states:

E=1[Y.7] §))
=1[S";S].

Generally, the excess entropy is only a lower bound on the information that must be stored
in order to predict a process: E < C,,. This difference is captured by the process’s crypticity
x=C,—E.

Since they are conditioned on semi-infinite pasts, the causal states defined above corre-
spond to recurrent states in a process’s complete e-machine presentation. They capture a
process’s time-asymptotic behavior. An e-machine also has transient causal states that arise
when conditioning on finite-length pasts, as well as a unique start state, which can be either
transient or recurrent. When the underlying process is ergodic, they can be derived from the
recurrent causal states using the mixed-state method of Ref. [14]. In general, they can be
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410 N. Barnett, J. P. Crutchfield

obtained from a modified causal equivalence relation, extended to include finite pasts. We
omit them, unless otherwise noted, from our development.

The preceding introduced what is known as the history specification of an e-machine: From
a stationary, ergodic process, one derives its e-machine by applying equivalence relation Eq.
(4). There is also the complementary generator specification: As a generator, rather than using
equivalence classes over a process’s histories, the e-machine is defined as a strongly connected
hidden Markov model whose transitions are unifilar and whose states are probabilistically
distinct. Such an e-machine generates a unique, ergodic, stationary process, and is the same
e-machine that we would obtain by applying the causal equivalence relation to said generated
process [21]. The following uses both history and generator e-machines; which will be clear
in context.

2.4 Example Process e-Machines

The cardinality of a process’s causal state set S need not be finite or even countable; see, e.g.,
Figs. 7, 8, 10, and 17 in Ref. [22]. For simplicity in the following, though, we restrict our
study to processes with a finite or countably infinite number of causal states. This allows us to
depict a process graphically, showing its e-machine as an edge-labeled directed graph. Nodes
in the graph are causal states and edges, transitions between them. A transition from state o;
to state o; while emitting symbol y is represented as an edge connecting the corresponding
nodes that is labeled y : p. (Anticipating our needs later on, this differs slightly from prior
notation.) Here, p = T(y ) is the state transition probability and y is the symbol emitted on the
transition. Figure 2 dlsplays e-machine state-transition diagrams for the example processes.

Since the Biased Coin Process’s current output is independent of the past, all pasts are
causally equivalent. This leads to a single causal state A, occupied with probability 1. (See
Fig. 2a.) Therefore, the Biased Coin Process has a statistical complexity of C,, = 0 bits.
It’s excess entropy E also vanishes. This example illustrates the general property that IID
processes lack causal structure. They can be quite random; the example here has an entropy
rate of 4, = H(2/3) ~ 0.918 bits per step, where H(p) is the binary entropy function.

Fig. 2 e-machines for the

example processes. Transitions /—\
labeled y : p, where p = Tl.(jy) is 0: 1/3 ( v
the state transition probability 1: 2/ 3

and y is the symbol emitted on . .
the transition (a) Biased Coin (b) Period-2 Process.

Process.

0:1/2

— A
~———
1:1

(¢) Golden Mean Process.

1 CO_O

1:1
(d) Even Process.
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In contrast, the Period-2 Process has two causal states, call them A and B, that correspond
to pasts that end in either a 1 or a 0, respectively. (See Fig. 2b.) Since the states are occupied
with equal probability, the Period-2 Process has C;, = 1 bit of stored information. In this
case, E = C,. Itis perfectly predictable, with h;, = 0 bits per step.

The two causal states of the Golden Mean Process also correspond to pasts ending with
either a O or 1, but for it the state transition structure ensures that no consecutive Os are
generated. (See Fig. 2c.) Causal state A is occupied with P(A) = 2/3 and state B with
P(B) = 1/3, giving C;, = H(2/3) ~ 0.918 bits. Note that the excess entropy is substantially
less—E ~ 0.2516 bits—indicating that the process is cryptic. We therefore must store
additional state information above and beyond E in order to predict the process [20]. Its
entropy rate is 1, = H(2/3) ~ 0.918 bits per step.

As mentioned already, the Even Process cannot be represented by a finite Markov chain.
It can be represented by a finite hidden Markov model, however. In particular, its e-machine
provides the most compact presentation—a two-state hidden Markov model. Causal state
A corresponds to pasts that end with an even block of 1s, and state B corresponds to pasts
that end with an odd block of 1s. (See Fig. 2d.) Since the probability distribution over states
is the same as that of the Golden Mean Process, the Even process has C;, ~ 0.918 bits
of statistical complexity and &, ~ 0.918 bits per step. In contrast, the excess entropy and
statistical complexity are equal: E = C,. The Even Process is not cryptic.

3 Input—Output Processes and Channels

Up to this point, we focused on a stochastic process and a particular canonical presentation
of a mechanism—the e-machine—that can generate it. We now turn to our main topic,
generalizing the e-machine presentation of a given process to a presentation of a controlled
process—that is, to input—output (I/O) processes. I/O processes are related to probabilistic
extensions of Moore’s sequential machines [23,24], probabilistic extensions of codes from
symbolic dynamics [25], and, perhaps more naturally, to Shannon’s communication channels
[26]. And so, we refer to them simply as channels. There are important differences from how
channels are developed in standard treatments [12], though. The principal difference is that
we consider channels with memory, while the latter in its elementary treatment, at least,
typically considers memoryless channels or channels with restricted forms of memory !. In
addition, with an eye to applications, the framework here is adapted to reconstruct channels
from observations of an input—output process. (A topic to which we return at the end.) Finally,
the development places a unique emphasis on detecting and analyzing structure inherent in
1/0 processes. Our development parallels that for e-machines; see Ref. [1, and citations
therein].

To begin, we define I/O processes. To make these concrete, we provide several example
channels, leveraging the example processes and their e-machines already described. The
examples naturally lead to the desired extension—the e-transducer. The development then
turns to the main properties of e-transducers.

Loosely speaking, a channel defines a coupling between stochastic processes. It can be
memoryful, probabilistic, and even anticipate the future. In other words, the channel’s current
output symbol may depend probabilistically upon its past, current, and future input and
output symbols. As such, we will be led to generalize the memoryless and anticipation-free
communication channels primarily studied in elementary information theory [12].

1 Though see Ref. [72, Ch.7] and for early efforts Refs. [73] and [74]
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412 N. Barnett, J. P. Crutchfield

Definition 1 A channel Y | X with input alphabet X and output alphabet Y is a collection

L
of stochastic processes over alphabet ), where each such process Y | X" corresponds to a
L
bi-infinite input sequence in X :

TIX =V 1% e (6)

That is, each fixed realization X~ = ...x_|xox; ... over input alphabet X is mapped to a
stochastic process ?|1x_\ = 1?| ...X_1X0X] ...over alphabet Y.

If we are given a process X —an input process—then a channel maps this distribution
over sequences to a joint process (X, Y), which can be marginalized to obtain a process
Y —the output process. We can characterize a channel by an indexed set P of conditional
word probabilities:

IP;(Yt:t+L|lf‘)
= {P(Yt:t+L = yr:H—L} X=7%

PR

}yt:t+L eyl xveX

Equivalently, we can represent a channel as a distribution over bi-infinite sequences (output)
conditioned on a particular bi-infinite sequence (input). In other words, a channel can be
characterized by an indexed set:

=
h<

B
I

[P(TeoT=5)] _ .
oCY,TeX

Given an input process’ distribution ]P’(IY\) and a channel’s distribution IP’(IY\DC_\) for all

inputs %", we obtain the output process’ distribution as follows:

= /P(?W)P(?)d?,

where the first integrand shows the appearance of the intermediate joint process fﬁ
Let’s say a few words about definitional choices made up to this point. As defined, the
channels we consider are total (defined for every possible input sequence). One could extend
the definition to allow for partial channels (defined only for a subset of possible sequences),
but we do not consider such channels in what follows. This is the primary reason for defining a
channel’s domain in terms of bi-infinite sequences rather than say, collections of finite words.
Such channels would not necessarily be total. Also, requiring that channels be defined for
every finite input word is restrictive, as even the simplest channels may not have well defined
behavior for say, a single symbol input word. We could instead define channels over a subset
of all finite input words and explicitly add in the restriction that the channel be total, but this
is still more restrictive than the ? definition above. Consider, for example, the channel that
outputs all 1s if its input sequence contains at least one 1 and outputs all Os otherwise. Such
a channel is undefined for any finite input word that consists of all Os, but is well defined for
any bi-infinite binary sequence. It is also true that any total channel defined over finite input
words can be trivially defined over bi-infinite sequences by appending an arbitrary infinite
past and future to each finite word (without changing the channel’s output behavior).
Stationarity is as useful a property for channels as it is for processes.
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Definition 2 A channel is stationary if and only if its probability distributions are invariant
under time translation:

P(Yrs+11 %) = P(Yo.| %0) and
P(Y;|%) = P( Yol o),
forallt € Z, L € Z*, and every input sequence X .

An immediate consequence is that stationary channels map stationary input processes to
stationary output processes:

Proposition 1 (Stationarity Preservation) When a stationary channel is applied to a station-
ary input process, the resulting output process is also stationary.

Proof One calculates directly:

P(Y,) = / PCY ) S)P(R)d T

= / P( Yol %0)P(%)d %o

=P( 7o),

where the second equality follows from stationarity of both input process and channel, once
we note that . ..dx,_jdx,dx;41... = ...dx_;dxodx; ..., since under shifted indexing the
relationships between x; and infinitesimals dx; are preserved and the latter themselves do
not change. O

We also primarily restrict our discussion to ergodic channels [27].

Definition 3 An ergodic channel is a channel that maps any ergodic input process X toan
ergodic joint process (X, Y).

Another important channel property is that of causality.
Definition 4 A causal channel is anticipation-free:
P(Yriqrl X ) =PYratr] Xigp).

That is, the channel has well defined behavior on semi-infinite input pasts and is completely
characterized by that behavior.

Channel causality is a reasonable assumption when a system has no access to future
inputs. However, as a note of caution in applying the following to analyze, say, large-scale
systems with many components, the choice of observables may lead to input—output processes
that violate causality. For example, treating spatial configurations of one-dimensional spin
systems or cellular automata as if they were time series—a somewhat common strategy—
violates causality. In the following, though, we assume channel stationarity and causality,
unless stated otherwise.

It is worth noting that causality is often not a severe restriction. Specifically, the following
results extend to channels with finite anticipation—channels whose current output depends
upon N future inputs. When both the input process and channel are stationary, one delays
the appearance of the channel output by N time indices. This does not change the output
process, but converts finite anticipation to finite channel memory and delayed output. In this
way, it is possible to apply the analysis to follow to channels with anticipation directly, but
the optimality theorems established must be modified slightly.
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414 N. Barnett, J. P. Crutchfield

4 Example Channels and Their Classification

To motivate our main results, consider several example stationary causal channels with binary
input and output. Figure 3 illustrates the mapping from input words {xo.;, = xox1...x7_1}
to output words {yo.;, = yoy1 ... yr—1} for the example channels. The wordmaps there treat
each input—output pair (xo.z, yo:2) as a point p = (py, py) in the unit square, where the input
(output) word forms the binary expansion of py = 0.xox1 ---xz—1 (py = 0.yoy1 -+ - yL—1)-
Since the channels are defined for all inputs, the plots show every input word.

We organize the examples around a classification scheme paralleling that used in signal
processing to highlight memory and the nature of feedback [28].

We describe channel behavior using recurrence relations of the form:

Yo ~r(X:, Yi, X)),

where r(-) is either a logical function, in simple cases, or a distribution. Note that the next
output Y; depends only on the past—the channels are causal.

In general, such a recurrence relation only captures the channel’s present behavior. For-
tunately, a causal channel’s future behavior is summarized by its present behavior:

]P)(Ylit+L|(X7 Y)z’ Xt:H—L)

=P (X, V), Xeoe Pt |(X, V) X Ye) - o - P L1 (X V) Xors Yerpr 1)
(a) ’— ’—

=PI, Yy Xeap P11 (X, Y1 Xepragn) - - Pogr—11(X, Yoy, Xig—1)
(b) P DA P
=PI, Y, XOPX 411X, Vgt Xer1) - P11 Vgp—1s Xegr—1)

C P T, XOP, (KT, Xo) - POITR T, X))
=P(Y,|(X, 7). X)*,

where in (a) we merge individual variables into pasts to obtain new pasts, in (b) we remove
input variables that have no effect due to causality, and (c) follows from stationarity.

4.1 Memorylessness

The Memoryless Binary Channel’s (MBC’s) current output depends only on its current input;
the analog of an IID process in that its behavior at time # is independent of that at other times.
The MBC includes as special cases the Binary Symmetric Channel (BSC) and the Z Channel
[12]. We can summarize the MBC’s behavior with a simplified recurrence relation of the
form Y; ~ r (X;) and its conditional probabilities factor as follows:

P(Yrrrrl X ) =P XOPX 41| Xe41) -+ - P(Yer—11 X4 1-1).

The first three wordmaps of Fig. 3 illustrate the behavior of memoryless channels. We
see that the Identity Channel (Fig. 3a) always maps a word to itself. Whereas, the All-is-Fair
Channel (Fig. 3b) maps each input word uniformly to every output word. We immediately
see that deterministic channels have wordmaps with a single filled pixel per plot column.

The Z Channel wordmap is shown in Fig. 3c. It transmits all Os with no noise, but adds
noise to all 1s transmitted. The wordmap shows the maximal noise case, where all 1s are
replaced with the output of a fair coin. We see that even memoryless channels have nontrivial
word mappings. In this case, the latter forms a self-similar Sierpinski right triangle [29] in
the unit square.
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4.2 Finite Feedforward

Now, consider channels whose behavior depends only on a finite input history. Their behavior
on input is analogous to those of order-R Markov chains. They can also be thought of as
stochastic, anticipation-free sliding block codes [25] with finite memory or as generalized
finite impulse response filters [28]. These channels’ behavior can be summarized with a
recurrence relation of the form Y; ~ r(X;—p .1, X;), where M is a finite input history length
such that M > 0.

The Delay Channel simply stores its input at time ¢t — 1 and outputs it at time ¢. Its
wordmap is shown in Fig. 3d. Those familiar with one-dimensional iterated maps of the
interval will recognize the word mapping as the shift map, capturing the fact that delayed
output corresponds to a binary shift applied to the input word. Note that when viewed as a
function on the space of processes, the Delay Channel acts as the identity.

The Feedforward NOR Channel’s output at time ¢ results from performing a logical NOR
() on its inputs at times ¢ and ¢ — 1:

Ve =Xi—1 Xt

The wordmap for the Feedforward NOR Channel is shown in Fig. 3e. There, we see that
although the channel is deterministic, the wordmap’s self-similarity makes it difficult to see
that the mapping is a function—that there is, in fact, a single output word for each input.

The additional complexity of the remaining examples does not lead to new types of
apparent graphical structure beyond that seen in the existing wordmaps. So, wordmaps will
be omitted for now. With additional theory developed, we return to illustrate these channels,
but using a more advanced form of wordmap.

4.3 Infinite Feedforward

Generally, channels depend on infinitely long input histories. This behavior is analogous
to the long-range dependence seen in typical hidden Markov models [30,31] or in strictly
sofic subshifts [25]. Channels with dependence upon infinitely long input histories alone can
also be interpreted as generalized infinite impulse response filters [28]. Thel_behavior of such
channels can be summarized by a recurrence relation of the form Y; ~ r (X;, X;).

The Odd NOT Channel stores the parity (even or odd) of the number of ones observed in
its input since the last zero observed; much like the Even Process. If the parity is currently
even, it behaves as the Identity Channel. If the parity is odd, it outputs the bitwise NOT (bit
flip) of its input. Since the channel’s behavior depends on the parity of its input, it cannot be
characterized by finite input histories alone.

A channel can depend, however, on past outputs as well as inputs. Such feedback can
allow one to replace the infinite-history recurrence relation with one that includes only a
finite history of inputs and outputs. Consider again the Odd NOT Channel described above.
Note that its behavior is determined entirely by the current input value, as well as the parity
of the number of ones observed on input. In fact, the parity at time ¢ can be summarized by
the input and output at time r — 1. If x;,_1 = 0, the parity will always be even. If x;_1 = 1,
and y;—1 = 0 we know that the parity was odd, since the bit was flipped, but since a 1 was
just observed on input, the parity is now even. Finally, if x,—1 = 1 and y;—; = 1, we know
that the parity was previously even, and the newly observed 1 makes the current parity odd.
Summarizing, we have that:

(x, y);—1 = (0,0) < Even input history parity,

(x,y)i—1 = (0, 1) & Even input history parity,
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(x, y)i—1 = (1, 0) < Even input history parity, and
(x, ¥)¢—1 = (1, 1) & Odd input history parity. @)

By allowing feedback, we can therefore summarize the behavior of the Odd NOT Channel

with a recurrence relation that depends only upon finite history (of length M = 1): Y; ~ r
(Xi—1, Yi—1, Xop).

An interesting observation is that the Odd NOT channel maps the Even Process to a
bit-flipped Golden Mean Process. However, a single process-to-process mapping does not
uniquely define a channel. There are an infinite number of channels, in fact, that map the
Even Process to the bit-flipped Golden Mean Process.

4.4 Finite Feedback

As seen in the previous section, allowing for even a finite amount of output feedback can can
lead to substantial simplifications in the description of a channel. Let’s consider channels
that depend on a finite output history on their own terms.

The most trivial case would be channels that depend solely on output histories, with
no dependence on inputs. Since there is effectively no input, these channels reduce to the
output-only stochastic processes (generators) discussed earlier. Consider, for example, the
All is Golden Channel that outputs the Golden Mean Process, regardless of what input it
receives.

A less trivial example is the Feedback NOR Channel, similar to the Feedforward NOR
Channel, except the output at time ¢ is the logical NOR of its current input and previous
output:

Ve =Xt 4 -1

This channel’s behavior is clear in this feedback form. It might be desirable, however, to find
a purely feedforward presentation for the channel. The recurrence relation for the Feedback
NOR Channel can be solved recursively to give a feedforward presentation that is defined
for almost every input history. We recurse in the following way:

Ye=2xt 4 yi-1
=xr 4 (=1 4 yr—2)
= X J, (xt_l \L (xl‘—z \L yt—3))

’

and so on, until reaching sufficiently far into the input past that a 1 is observed. When this
happens, the recursion terminates as the output of the NOR function is always O when either
argument is 1. We can therefore construct a purely feedforward recurrence relation, but
the input histories can be arbitrarily long—corresponding to arbitrarily long input histories
consisting entirely of Os. The resulting feedforward recurrence relation is defined for all
histories, except for the infinite history of all Os.

Note that such ill-defined behavior for certain infinite histories is typical in systems that
have infinite memory lengths and is not a problem specific to channels. One can be careful
to explicitly define behavior for such cases, but this is beyond the scope of our current work,
and these pathological histories typically occur with zero probability.
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In contrast, consider replacing the logical NOR in the Feedback NOR Channel with an
exclusive OR (XOR or @), thus giving the Feedback XOR Channel:

Vi =Xt D Yr—1. 3)

In this case, solving for a pure-feedforward relation fails since the output of a logical XOR
is never determined by a single argument. This channel illustrates the fact that a presentation
which includes feedback cannot always be reduced to a pure-feedforward presentation.

4.5 Infinite Feedback

Just as we can define channels whose behavior depends upon infinite input histories, we
can define channels whose behavior depends upon infinite output histories. In fact, we have
already studied a channel that can be represented this way. Consider a channel that stores
the parity (even or odd) of the number of ones observed in its output since the last zero
observed. If this parity is currently even, it behaves as the Identity Channel. If the parity is
odd, it outputs the bitwise NOT (bit flip) of its input. This appears to be very similar to the
0Odd NOT Channel defined above, but with a dependence on infinite output histories and the
present input, rather than infinite input histories. In fact, this is simply a different presentation
of the Odd NOT Channel.

It suffices to show that the feedback presentation of the Odd NOT Channel can be reduced
to the same finite history presentation as with its feedforward presentation. Proceeding as
before, we observe that if y,_; = 0, the output parity is always even. If x;,_; = 0 and
yi—1 = 1, the previous parity was odd (the bit was flipped), but the 1 observed on output
makes the output parity even. Finally, if x,_; = 1 and y;_; = 1, the output parity was
even, and the 1 observed makes the output parity odd. Summarizing, we obtained the same
presentation as the feedforward presentation specified by Eq. (7).

4.6 Infinite Feedforward-Feedback

We just examined an example channel whose presentation depends upon infinite histories
when only feedforward or feedback is allowed, but only a finite history when both feedfor-
ward and feedback are allowed. The following example shows that finding a finite history
presentation is not always possible. Channels of this form are perhaps the most natural channel
generalization of infinite Markov order (strictly sofic) processes.

The Odd Random Channel stores the parity of its input history just as the Odd NOT
Channel does, and it again behaves as the identity when the parity is currently even. When
the parity is odd, the channel outputs a 0 or 1 with equal probability. Like the Odd NOT
Channel, this has an infinite feedback presentation that stores the channel’s output history
parity. The channel does not have any finite history presentation, however. If one attempts to
construct a finite presentation via the recursion unrolling procedure used for the Odd NOT
Channel, it is simple to obtain the following relationships:

(x,¥)i—1 = (0, 0) < Even input history parity,
(x,¥);—1 = (0, 1) & Even input history parity, and
(x, ¥)i—1 = (1,0) < Even input history parity.
The problem arises from the fact that when x;—; = 1 and y,_; = 1, the input history

parity is uncertain. The channel could have been operating as the identity (even parity) or
giving random output (odd parity). Looking at progressively longer histories can resolve
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this uncertainty, but only once a 0 has been observed (on either input, output, or both). This
ambiguity requires that we specify arbitrarily long joint histories to determine the behavior of
the channel in general. It is therefore not possible to construct any finite-history presentation
of the Odd Random Channel.

4.7 Irreducible Feedforward-Feedback

As a final example, consider a channel that has a finite presentation when both feedforward
and feedback are allowed, but has no pure-feedforward or pure-feedback presentation. The
Period-2 Identity NOT Channel alternates between the identity and bit flipped identity at
each time step. This channel’s present behavior is completely determined by whether the
previous input and output bits, x,—1 and y;_1, match. When the bits match, the channel was
in its “identity” state and is therefore now in its “NOT” state. The opposite is clearly true
when the bits do not match. The channel therefore has a recurrence relation of the form
Yy ~r(Xe-1, Y1, Xo).

Since the behavior does not depend on the particular values of the input or output, but
whether or not they match, there is no way to construct a pure-feedforward or pure-feedback
presentation of the channel. This channel therefore illustrates the notion of irreducible output
(or input) memory—dependence upon past output (input) that cannot be eliminated even by
including dependence upon infinite past outputs (inputs).

4.8 Causal Channel Markov Order Hierarchy

It turns out that the set of examples above outlines a classification scheme for causal chan-
nels in terms of their Markov orders [32] that we now make explicit. Just as Markov order
plays a key role in understanding the organization of processes, it is similarly helpful for
channels. Channel Markov orders are the history lengths required to completely specify a
causal channel’s behavior, given certain constraints on knowledge of other histories.

Definition 5

L. The pure feedforward Markov order Ry is the
smallest M such that Y; ~ r (X;—p, Xy); 1.0,
P (Y |(X 1)y, X0) = P (V| Xi-as Xo).

2. The pure feedback Markov order Ry, is the
smallest M such that Y; ~ r (Y;_p, Xy); €.,
P (Y |CXY), X0) = P (Vi Yoy, Xo).

3. The channel Markov order R is the smallest M
such that Y; ~ r (X;—prt, Yi—pme, Xi)s 1€,
P (YK V) X0) = P (V| Xo s Yoo Xo).

4. The irreducible feedforward Markov order r Rig is
the smallest M such that Y; ~ r (X,— —M:ts Y, X)) ie,
P (Y|, Vs, X0) = PVl Xi—atas ¥ 1, Xo).

5. The irreducible feedback Marlk_ov order Rpp, is the
smallest M such that Y; ~ rL(Xt, Yi—m, Xp)sie.,
P (VI X0) =P (VI X1, Yo, X0).

For example, we showed that the Odd NOT Channel’s presentation requires an infinite
history when only feedforward or feedback is allowed. And so, it has Ryt = Rpp = 00.
However, it only requires finite history when both are allowed: R = 1. If we have full
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knowledge of the output past, we still need one symbol of input history in order to characterize
the channel, so Rjg = 1. Similarly, we have Rim, = 1.

Note that the irreducible feedforward Markov order Rjg will only be nonzero if the pure
feedback order Ry, is undefined. Similarly, the irreducible feedback Markov order R;gp, will
only be nonzero when the pure feedforward order Ry is undefined. In words, if a channel
has irreducible feedback (feedforward), the channel has no pure feedforward (feedback)
presentation. Moreover, the channel Markov order R bounds the pure Markov orders from
below and the smallest of the two irreducible Markov orders bounds the channel Markov
order from below:

min(Rir, Rifp) < R < min(Rpfr, Rpf)-

In a sequel, we address input and output memory using information-theoretic quanti-
ties. There, we characterize different amounts of input and output memory and how they
relate, whereas here in discussing Markov orders we considered /engths of input and output
sequences. We also focused on causal channels, which allowed us to restrict our discussion to
present behavior and memory lengths. In the case of anticipatory channels, we must explicitly
consider future behavior, as well as anticipation lengths. However, this is best left to another
venue, so that we do not deviate too far from the path to our goal.

4.9 Causal-State Channels

There is a natural and quite useful channel embedded in any e-machine presentation of a
stationary process—the causal-state channel—that identifies structure embedded in a process
via the e-machine’s causal states.

Consider a process and its e-machine M. Previously, we described M as a generator of the
process. An e-machine, however, is also a recognizer of its process’s sequences. Briefly, M
reads a sequence and follows the series of transitions determined by the symbols it encounters.
The output of the causal-state channel is then the sequence of causal states. The operation of
this channel is what we call causal-state filtering. Notably, the induced mapping is a function
due to the e-machine’s unifilarity.

In this way, the channel filters observed sequences, returning step-by-step associated causal
states. Given an e-machine, the causal-state filter has the same topology as the e-machine,
but input symbols match the e-machine transition symbols and output symbols are the state
to which the transition goes.

The recursion relation for causal-state filtering is:

Sy ~r(Xi—1, 8-1) .

As just noted, r(-) is a (nonprobabilistic) function, determined by the e-map:

S =e(Xp)
=e(X—1, Xi1)
=€e(Xi—1, Si—1).

Thus, the pure feedback order is Rpm = 1, as is the channel Markov order R = 1. The
pure feedforward order Ryff, however, is the original process’s Markov order. For methods
to determine the latter see Ref. [32].

In this way, an e-machine can be used to detect the hidden structures captured by the
causal states. For example, causal-state filtering has been used to great effect in detecting
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emergent domains, particles, and particle interactions in spatially extended dynamical sys-
tems [33], single-molecule conformational states [34], and polycrystalline and fault structures
in complex materials [35].

5 Global e-Machine

Before introducing channel presentations, we first frame the question in the global setting
of the e-machine of joint (input—output) processes. This, then, grounds the e-transducer in
terms of an e-machine.

Given a stationary process X andachannel 7 | X with output process 17\, form a joint
random variable Z; = (X, Y); over input—output symbol pairs with alphabet Z = X x Y.
For example, if X = {a, b} and Y = {c, d}, then X x Y = {ac, ad, bc, bd}.

Definition 6 The process “Z over Z defines the channel’s /0 process.
Definition 7 A stationary channel’s global e-machine is the e-machine of its I/O process.

In this setting, the next section asks for a particular decomposition of the global e-machine,
when one has selected a portion of Z; as “input” and another as “output”. The input process
X isthen described by the marginal distribution of the joint process that projects onto “input”
sequences. The same also holds for the output process Y . In this way, the following results
not only provide an analysis for specified input and output processes, but also an analysis
of possible input-to-output mappings embedded in any process or its e-machine. Leveraging
this observation and anticipating the sequels, we also note here that the global e-machine also
provides the proper setting for posing questions about information storage and flow within
any given process.

6 e-Transducer

Computational mechanics’ fundamental assumption—only prediction matters—applies as
well to channels as to processes. In the case of channels, though, we wish to predict the
channel’s future output given the channel’s past inputs and outputs and the channel’s future
input. This leads to a new causal equivalence relation ~ over joint pasts 7" = (ry):

(ry) ~e (ry)/ —
P(Y |X.(X,7) = (x,y) )
=p(Y|X. X 1) =G »).
g)mp&Eq. (4) applied to the I/O process. The equivalence classes of ~ partition the set
Z =(X,Y)ofall input—outpug&ts. These classes are the channel’s causal states, denoted

S. The e-map is a function € : (X, Y) — S that maps each joint past to its corresponding
channel causal state or, equivalently, to the set of joint pasts to which it is causally equivalent:

6(()6', y)) =0; = {(xay)/ : (xay) ~e ()C, )’)/}

The dynamic over causal states is again inherited from the implicit dynamic over joint
pasts via the e-map, resulting from appending the joint symbol z; = (x, y);, as shown in
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(T, y)t—2 (%, 9)1—1 (Ty)e . (T, y)e1
e () (@,9), : (@, Y) 1 S
(@,9)1—2 (z,y)e-1 (z,y)t (T, y)e+1
S¢—1 St St4+1

Fig. 4 e-Transducer dynamic induced by the causal states s; = o; € S from a channel’s joint pasts via the

(x,y)
emap: s = €. (8, )28, V)—1) —t sy = €Cenn (6 ¥)—2 (X, )1 (%, )1)

Fig. 4. Since state transitions now depend upon the current input symbol, we specify the
dynamic by an indexed set of conditional-symbol transition matrices:

7= {10m) ,
xeX,yey

where 7™ has elements:
1" = B(S1 = 0. Yo = yIS = 01, Xo = ).

While the causal states for a stationary process have a unique stationary distribution,
each stationary input to a channel can drive its causal states into a different stationary state
distribution. The e-map from joint histories to the channel’s causal states can also be seen
as a function that maps a distribution over joint histories to a distribution over the channel’s
causal states. Since each input history specifies a particular distribution over output histories
(via the channel’s conditional word probabilities), it follows that a distribution over input
histories also specifies a distribution over output histories. When this input history distribution
is specified via a particular input process, we obtain a unique distribution over causal states
via its €(-) function. We write this input-dependent state distribution wx as:

wx (i) =Px(So = 0;)
=Px(e((X,7) = @),

where the subscript X indicates that the input process has a specific, known distribution. The
distribution over joint histories is stationary by assumption here and, since the e-map is time
independent, x is stationary. We therefore refer to wx as the (input-dependent) stationary
distribution.

When both the input process and channel are stationary and ergodic, we can calculate this
stationary distribution from the input and channel’s causal-state transition matrices using a
generalization of the algorithm found in Ref. [17]. We save an in-depth discussion of this
algorithm for a sequel.

Definition 8 The tuple (X, Y, S, T)—consisting of the channel’s input and output alpha-
bets, causal states, and conditional-symbol transition probabilities, respectively—is the
channel’s e-transducer.

Note that in the causal equivalence relation for channels, we condition on the input future
7(\, as a channel is defined by its output behavior given input. Requiring causal equivalence
for the output future alone (or the joint future for that matter) requires knowledge of a
particular input process as well. In particular, if we do have knowledge of the input process
we can extend the standard causal equivalence relation to an equivalence relation involving
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ylx:p

/_\

Fig. 5 Generic transition from e-transducer causal state o; to state o; while accepting input symbol x and
(ylx)

emitting symbol y with probability p = Tij

joint pasts and joint future morphs, giving us the global (joint) e-machine of the preceding
section.

As with e-machines, it is useful to consider channels whose e-transducers have a finite
(or countable) number of causal states. This restriction again allows us to represent an
e-transducer as a labeled-directed graph. Since transitions between causal states now depend
on inputs as well as outputs, we represent a transition from state o; to state o'; while accepting
input symbol x and emitting symbol y as a directed edge from node o; to node o; with edge

label y|x : p, where p = TI;V W) is the edge transition probability. This is illustrated in Fig. 5.

7 Structural Complexity

To monitor the degree of structuredness in an e-transducer, we use the Shannon information
captured by its causal states, paralleling the definition of e-machine statistical complexity.
The stationary distribution over e-transducer states allows one to define an e-transducer’s
input-dependent statistical complexity:

Cx = H[myx].

(Note that X replaces the previously subscripted measure p in e-machine statistical com-
plexity to specify the now-relevant measure.) While quantifying structural complexity, Cx’s
dependence on input requires a new interpretation. Some processes drive a transducer into
simple, compressible behavior, while others will lead to complex behavior. Figure 6 illustrates
this.

Input dependence can be removed by following the standard definition of channel capac-
ity [12], giving a single number characterizing an e-transducer. We take the supremum of
the statistical complexity over input processes. This gives an upper bound on e-transducer
complexity—the channel complexity:

C, =supCy,
X

where the maximizing input measure p is implicitly defined. Note that not all transducers
can be driven to a uniform distribution over states. Thus, recalling that uniform distribu-
tions maximize Shannon entropy, in general CTL < Cp = log, |S|—the topological state
complexity.

8 Reproducing a Channel
To establish that the e-transducer is an exact presentation of the causal channel it models, we

must show that it reproduces the channel’s conditional word probabilities. We first establish
some needed notation.
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Recall that the e-map takes a distribution over joint histories to a distribution over the
e-transducer’s causal states and that a particular input history defines a distribution over a
channel’s output history. It follows that a particular input history defines a distribution over
joint histories and, therefore, also defines a distribution over an e-transducer’s causal states
via the e-map. We call this distribution t:

(i) = Px(So = 0;| X0 = %)
= Py (¢((X, 7o) = 01| X0 = ¥).

Note that while the e-map takes a particular joint history to a unique state, the distribution
over states induced by a particular input history need not be concentrated on a single state.

When the input process is known and stationary, the e-transducer’s stationary distribution
mx can be determined. This provides a starting distribution for the e-transducer, which is
updated by the e-transducer’s symbol transition matrices as each input symbol is observed
and each output symbol is generated. We can therefore calculate the final state distribution
P(Sy = om|xo-L, So ~ mx) that results from starting states in distribution 7y and observing
finite input word xq.7.:

P(SL = omlxo:L, So ~ 7x)
_ Z Z nX(j)]}E}’OWO)]wJF],ZI\M) o T]SL’L—HXL—I)'
Yo i jkel
We then obtain t from the e-transducer by shifting this distribution by L and taking the
limit as L — oo:
(i) =Px(So = 0i| Xo = 7)

= lim P(So = oj|x_r:0, S ~ 7x).
L—o0

We can now establish that the e-transducer is an exact presentation of the causal channel
that it models.

Proposition 2 (Presentation) A causal channel’s e—trlzglsducer exactly (and only) reproduces
the channel’s conditional word probabilities P(Yo.1 | X1.).

Proof Recall thata causal channel’s output words do not depend on any inputs occurring after
the output word. Therefore, the e-transducer must reproduce all of a channel’s conditional
word probabilities of the form P(yo.7| ¥7). As discussed above, an input history induces a
distribution t over the e-transducer’s causal states. So, we calculate the word probabilities
directly via repeated application of the e-transducer’s symbol transition matrices:

]P(yO:Lr-x—L) — Z .L,(l')TiEyOVO)Tj(]i’HXI) “.TlgL—l‘xL—l). (10)
i ji ke lm
O
In fact, we can transduce a finite input word even when the channel’s behavior depends

upon arbitrarily long input histories. By simply starting the e-transducer in its stationary
distribution x, we have:

POorbon) = > ax@OTOTHI g b,
i,j,k, - l,m
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In either case, we can multiply these conditional word probabilities by the input’s word
probabilities to obtain joint word probabilities:

P((x, y)o:) = P(yo:.L|x0:L)P(x0:L)-
Summing over input words then gives output word probabilities:
P(yor) = D P((x.y)oL).
xo;LEXL

We can also start the e-transducer with other, arbitrary state distributions when certain
initial behavior is desired or if the current internal configuration of the e-transducer is known.
This can be very useful in practice, but the resulting generated behavior is no longer guaran-
teed to be stationary or to match the original channel’s behavior. One use of arbitrary state
distributions is real-time transduction of symbols, where a state distribution v is repeatedly
updated each time-step after a single input symbol x; is transduced to an output symbol y;:

P(Sr+1 = 07| (6, V)i, S ~v) = Zv(i)Tii.y"x’).
iJ

9 Optimality

We now establish that the e-transducer is a channel’s unique, maximally predictive, mini-
mal statistical complexity unifilar presentation. Other properties, analogous to those of the
e-machine, are also developed. Several proofs parallel those in Refs. [18,19], but are extended
from e-machines to the e-transducer. For this initial development, we also adopt a caveat
from there concerning the use of infinite pasts and futures. For example, the semi-infinite
pasts’ entropy H[ Y ] is typically infinite. And so, to properly use such quantities, one first
introduces finite-length chains (e.g., H[Yo.1 ]) and at the end of an argument one takes infinite-
length limits, as appropriate. Here, as previously, we do not include these extra steps, unless
there is subtlety that requires attention using finite-length chains.

Proposition 3 (Causal States Proxy the Past) When conditioned on causal states, the future
output given input is independent of past input and past output:

IFD(7\0|7(\0, X.V)o. So) = ]P’(7\0|7\0, So)-

Proof By construction, the causal states have the same future morphs as their corresponding
pasts:

P(Y 0| X0, (X, VDo) = B(Y 0| X0, o).
Since the causal states are a function of the past—Sy = € ((X, Y)y)—we also have that:
P(Y 0| X0, (X. D). So) = P(Y 0| X 0. (X, V).
Combining these two equalities gives the result. O

In other words, when predicting a channel’s future behavior from its past behavior, it
suffices to use the causal states instead.
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Proposition 4 (Causal Shielding) Past output 1)70 and future output 76 given future input 7(\0
are independent given the current causal state Sy:

B( o[ Xo. $0) = B(T| Xo. $0)(To| Xo. S0)-
Proof We directly calculate:
IP’(Y(\)|7(\(), S()) = P(%|Yg, S())P(YMY(), 17, So)
= P(%‘Y@, SO)P(?[”YO, SQ).
Where the second equality follows from applying Prop. 3 to the second factor. O

In the following, depending on use, we refer to either of the previous propositions as
causal shielding.

Proposition 5 (Joint Unifilarity) The current causal state So and current input—output sym-
bol pair (X, Y)o uniquely determine the next causal state. In this case:

H[S$11(X, Y)o, Sol = 0.

Proof If two pasts are causally equivalent, then either (i) appending a new symbol pair (x, y)
to both pasts results in two new pasts that are also causally equivalent or (ii) such a symbol
pair is never observed when in Sp. We must show that the two new pasts have the same future
morph:

G~ 6 = P(M|X, &0, b)) =B(T X0, 5,3 (@, b)),

where we have a € X and b € Y and (ry)(a, b) = (X a, yb), and the futures 7\1 and
7(\1 denote those immediately following the associated conditioning pasts (ry)(a, b) and
(ry)’ (a, b), respectively. Or, we must show that the input—output pair (x, y) is forbidden.

First, let m ~e m’ . Since causal equivalence applies for any joint future, it applies
to the particular future beginning with symbol pair (a, b):

P(bTi]a Xy, (%3) = P(bVi[a X, (5,)).
Factoring:
BT ) = B(Fi[Yo = b, JF(ro =] -
gives:
P(Ti|Yo = b, aXi, (%, )P(Yo = bla X1, &, 1)
= ]P’(T/”YO =b,aX;, (x, W )P(Yo = b|a7\1, x. ).

The second factors on both sides are equal by causal equivalence. So, there are two cases:
These factors either vanish or they do not. If they are positive, then we have:

P(T/}}Yo =b,aX;, (x, ) = P(?l}Yo =b,aX;, (x, y)).

Rewriting the conditional variables with the symbol pair (a, b) attached to the joint past then
gives the first part of the result:

P(V| X1, &, (@, b)) = B(T | X1, (5,3 (a, b)).
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In the other case, when the factors vanish, we have:
P(Yo = blaX;, (¥, »)) = P(Yo = blaX), (x,»)) = 0.
This implies that:

P(Yo = b|Xo = a, (x,y)) = P(Yo = b|Xo = a, (x,))
=0.
In other words, Yy = b is never observed following either past, given Xo = a. Thatis, (a, b)

is forbidden.
It then follows that:

H[S11S0, (X, Y)ol =0,
which is equivalent to joint unifilarity when there is a finite number of causal states. O

Unifilarity guarantees that once we know the process is in a particular causal state—we are
“synchronized” [32]—we do not lose synchronization over time. This is an important property
when using causal states to simulate or predict a system’s behavior. Using presentations that
are nonunifilar, typically it is necessary to keep track of a distribution over states.

Unifilarity is also a useful property to have when attempting to infer an e-transducer from
data. Inference of nonunifilar transducers can be challenging, partly due to the existence
of multiple possible state paths given a particular start state. Unifilar transducers avoid this
problem, effectively reducing the difficulty to that of inferring a Markov chain from data [36].
Finally, unifilarity plays a key role, as a sequel shows, in calculating channel information
quantities.

The next theorem shows that e-transducers are input-dependent hidden Markov models.

Proposition 6 (Markovity) A channel’s causal states satisfy the conditional Markov prop-
erty:
P(Si|Xi—1, §) = P(Si | Xi—1, Si—1).

Proof Since the causal-state transitions are unifilar, there is a well defined set of output
symbols Z C Y that causes a transition from state o to state o;. We therefore have:

P(St = Uk’thl, Si—1 = o0}, S,,l)
=P(Y—1 € Z|X,-1, S-1 = 0, Si—1).
Causal shielding applies to finite futures as well as infinite. This, combined with the obser-

vation ihat S;_1 is purely a function of the past, allows us to use S;_ to causally shield Y;_
from S;_1, giving:

P(Y,—1 € Z‘Xr—l, Si—1 =0}, Si—1)
=PY,-1 € Z|X;-1, -1 = 0})
=P(S; = ox|X;—1, Si—1 = 0j).
The final equality is again possible due to unifilarity. O
The following theorem shows that the causal states store as much information as possible

(from the past) about a channel’s future behavior—a desirable property for any predictive
model.
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Definition 9 The prescience of a set R of rival states—equivalence classes of an alternative
partition of pasts—reflects how well the rival states predict a channel’s future behavior.
Quantitatively, this is monitored by the amount of information they share with future output,
given future input:

1[R;Y|X],
where R is the associated rival-state random variable.

Note that it is sometimes simpler to prove statements about conditional entropy than it
is for mutual information. Due to this, we will transform statements about prescience into
statements about uncertainty in prediction in several proofs that follow. Specifically, we will
make use of the identity:

I[Ro; T/(\)|7(\0] = Lli_>mool [Ro: YO:L|7\O]

Jim (H [Yo:L | Xo] — H [Yo..| Xo. Ro]) ;

—_
where H [Yo...| Xo, Ro] is the finite-future prediction uncertainty. Note that the infinite-future

prediction uncertainty H [ Y0| Xo, Ro] typically will be infinite, but rewriting the prescience
in terms of the limit of finite-future prediction uncertainty allows us to continue to work with
finite quantities.

Theorem 1 (Maximal Prescience) Among all rival partitions R of joint pasts, the causal
states have maximal prescience and they are as prescient as pasts:

1[s; Y |X]=1[X,7); T|X]
>1[R; Y |X].

Proof We will prove the equivalent statement that the causal states minimize finite-future
prediction uncertainty for futures of any length L and have the same finite-future prediction
uncertainty as pasts; i.e., that for all L:

H [Yo..| Xo. So] = H[Yo: | Xo. (X, 7))
= H [YOZL‘T(\O’ R0]5

Like the causal states, rival states—equivalence classes of an alternative partition R of
pasts—are a function of the past:

R = (X, 1)).
By the Data Processing Inequality [12], we have:
H [Yo.1 | Xo. (X, ¥)o] < H[Yo.£| Xo. Ro]-

The causal states share future morphs with their corresponding pasts. By simple marginal-
ization, the same is true for finite-future morphs:

P(YO:L|X\O: So) = P(YO:L|7(\O, XY)) = H [YO:L|Y07 So]=H [YO:L|7(\0, (X 7))

[m}
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Note that the causal equivalence relation can also be applied directly to a channel that
anticipates its future inputs, but the resulting e-transducer has outputs that depend not only
upon the current state and input symbol, but some set of future input symbols. If the set s finite,
then one uses the previous construction that transforms finite anticipation into additional
transducer memory (statistical complexity). In this case, the causal states still capture all of
the information from the past needed for prediction. That is, they have maximal prescience.
Any additional future input dependence, though, must be encoded in the machine’s transitions.

Definition 10 A prescient rival is an indexed set R of states (with elements p; and random
variable R) that is as predictive as any past:

) —

I[R;Y|X]=1[(X,7); 7 |X].

Lemma 1 (Refinement) The partition of a prescient rival Risa refinement (almost every-
where) of the causal-state partition of the joint input—output pasts.

Proof Since the causal states’ future morphs include every possible future morph of a channel,
we can always express a prescient rival’s future morph as a (convex) combination of the causal
states’ future morphs. This allows us to rewrite the entropy over a prescient rival (finite-length)
future morph as:

H [Y02L|7\s ﬁ\k] =H [P(YO:L|?7 ﬁ\k)]

—H ZP(YOZLW\,GJ')P(UH@) . (an
J

Since entropy is convex, we also have:

H ZP(YO:LW,@)P(GAM zZP(ajmk)H[Yo;Lw,aj]. (12)
J J

Therefore:

H [Yo.|Xo. Ro] = ZP(ﬁk) H [Yo. | Xo. 7t
k
> > PG Y P 170 H[Yo.L| Xo. 0]
k J

= ZP(ajv i) H [YO:L|Y07 oj]
ik

= 3 Pl H[You [T 0]
J

= H Yo | Xo. S0] -

where the inequality follows from Eqs. (11) and (12). Since the rival states R are prescient,
we know that equality must be attained in this inequality for each L. Equality is only possible
when P(o;|pr) = 1 for exactly one value of j and vanishes for every other j. That is, if
a rival state is prescient, it is contained entirely within a single causal state, aside from a
set of measure zero. Thus, the partition of the prescient rival states is a refinement of the
causal-state partition almost everywhere. O
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Theorem 2 (Minimality) For any given input process X, causal states have the minimal
conditional statistical complexity among all prescient rival partitions R:

Cx($) < Cx(R).

Proof Since a prescient rival partition is a refinement almost everywhere, there exists a
function f defined almost everywhere that maps each rival state to the causal state that
(almost everywhere) contains it:

fi) =oj.

Then, we have:

Hyx [R] = Hx [f(R)]

= Hyx[S].
O
Corollary 1 Causal states minimize the channel complexity CTL
Proof Immediate from the preceding theorem. O

In words, we established the fact that the causal states store all of the information contained
in the past that is necessary for predicting a channel’s future behavior and as little of the
remaining information “overhead” contained in the past as possible. Given an input process,
e-transducer causal states maximize I[T/\; S |7(\] while minimizing I[(TY); S].

The final optimality theorem shows that any states which have these properties are in fact
the causal states.

Theorem 3 (Uniqueness) The e-transducer is the unique prescient, minimal partition of

pasts. If Cx (ﬁ) = Cx(S) for every input process X , then the corresponding states Rand S
are isomorphic to one another almost everywhere. And, their equivalence relations ~, and
~¢ are the same almost everywhere.

Proof Again, the Refinement Lemma (Lemma 1) says that § = f (I/Q almost everywhere.
It therefore follows that Hy [S ’ﬂ = 0. Moreover, by assumption Hy[S] = Hy [iﬂ Com-
bining these with the symmetry of mutual information gives:

Ix [S; ﬂ =Iyx [I/Q\, S]
Hx[S] ~ Hy [$|R] = Hy [R] ~ Hy [R]s]
Hx[S]— 0= Hx[S] — Hy [R]S]
Hy [R|S] = 0.

The latter holds if and only if there is a function g such that R= g(S) almost everywhere.
By construction g is the inverse f~! of f almost everywhere. We have that f o 5 = ¢ and

floe=n.
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Finally, the two equivalence relations ~, and ~, are the same almost everywhere:
&) ~e
= e((x, y)) = e((ry)’)
=floe ((x—y)/)
= n((x, y)) = n(fry)’)
— (ry) ~n (Ty)/,

|

d

= f! oe((x,y)

|

and

3~y )

X, y)) = n(m’)

ev) = on( W)

— (&)~ ()
= () ~e ()

|

~

=

= fong

B

|

[m}

e-Transducer uniqueness means that Cy is the conditional complexity of a channel and,
therefore, justifies calling C,, the channel complexity.

10 Global e-Machine Versus e-Transducer

Given a particular joint process or its global e-machine, it is possible (provided that the input
process satisfies certain requirements) to construct the e-transducer that maps input X to
PN , . PEVEN P
output Y , such that (X,Y) = (X, f( X)), where f is the transducer and f( X ) desig-
nates the output of the transducer, given input process X. Sequels address the relationship
between a joint process’ global e-machine and corresponding e-transducer at both the process
(channel) level and at the automata (e-machine and e-transducer) level. There, we provide
algorithms for “conditionalizing” a joint process or e-machine to obtain the corresponding
channel or e-transducer, as well as algorithms for obtaining input or output marginals, apply-
ing an e-transducer to an input e-machine, composing multiple e-transducers, and inverting

an invertible e-transducer.

Note that the ability to construct an e-transducer from a joint process can be useful when
attempting to infer an e-transducer from data, as such data will typically come from a system
driven by some particular (possibly controllable) input; i.e., the data is a sample of a joint
process.

11 History e-Transducer Versus Generator e-Transducer
The preceding focused on the history specification of an e-transducer, where a machine is

obtained by partitioning a channel’s histories (joint pasts). We can also consider the generator
specification, where we instead start with a machine that produces a stationary, ergodic
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channel. Taking this perspective, an e-transducer is an input-dependent, strongly connected,
aperiodic hidden Markov model with unifilar transitions and probabilistically distinct states.
The history and generator specifications of an e-transducer are likely equivalent—as they are
with e-machines [21]—but we leave such a proof to future work.

12 Examples Revisited

With the e-transducer defined, we can revisit the example channels examined above. We
display channel structure via its e-transducer’s state transition diagram, as well as a wordmap
that now colors each joint history based on its corresponding causal state. Input and output
history projections are also shown. Histories that are not mapped to a single causal state are
colored black. Recall that causal states partition joint histories, so input or output histories
alone need not correspond to a unique causal state. We will discuss Markov orders for these
channels, but we leave it to the reader to construct an exhaustive list of Markov orders for
each channel.

Since the Identity (Fig. 7), All is Fair (Fig. 8), and Z (Fig. 9) Channels are memoryless,
their behavior does not depend on the past. As aresult, there is a single causal state containing
every past and so their wordmaps are monochromatic. Since they have a single causal state,
Cx=C,=0.

In contrast, the Delay Channel (Fig. 10) has two causal states and so two colors corre-
sponding to pasts in which the input ends on a O (left half of the wordmap) or a 1 (right
half of the wordmap). This partitioning into halves is a characteristic of channels with a
pure feedforward Markov order Ry = 1. We also see that the output words are colored
black, illustrating the fact that the output tells us nothing about the current causal state. The
channel’s pure feedforward Markov order of 1 can be seen in the channel’s e-transducer

Fig. 7 Identity Channel: 0‘0. 1
e-Transducer and causal-state 11 1 (

colored wordmap. See text for

explanation 1
ke]
—_
o
2
-
=}
o
=
3
)
0
|
0 1
input word
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Fig. 8 All-Is-Fair Channel:

e e 0[0:1/2, 1|O:1/2C°
€-lransducer and causal-state . .
colored wordmap 0[1:1/2, 1]1:1/2
1‘ .
0
0 1
input word

Fig. 9 Z Channel: e-Transducer 0|0 -1
and causal-state colored O|1 . 1/27 1|1 . 1/2 (
wordmap

output word

output word

input word

state-transition diagram by observing that all transitions on input symbol O lead to state A
and all transitions on input symbol 1 lead to state B. Since the Delay Channel is undefined for
outputs alone (Rpf is undefined), it is the first example channel with a nontrivial irreducible
feedforward order: Riif = 1. The causal states of the Delay Channel simply store a single
bit of input, their entropy therefore matches the length-1 block entropy of the input process:
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Fig. 10 Delay Channel: 0[1:1
e-Transducer and causal-state —
colored wordmap 0/0:1 ( ) 1 [1:1
~———
1/0:1
1
7
© /
o
: /
= ¢
=]
o
=
=]
3 /
ri
)
)
?ln’
/
x“f
/
/
|lI.’
0 5
]
0 1
input word

Cx = H[Xy]. Maximizing the latter over input process gives us Ci,l = 1, attained with Fair
Coin Process input.

The Feedforward NOR Channel (Fig. 11) also stores the previous input symbol and,
therefore, partitions input histories the same way (Rptr = 1). We see in the wordmap that
there is again an ambiguity of causal state given output histories alone and there is, therefore,
no pure feedback presentation for the channel. Specifically, we see that the ambiguity arises
for histories where the output ends on two Os (lower quarter of the wordmap). This can be
verified in the channel’s e-transducer by observing that a 1 on output always leads to state
A, but a 0 on output only leads to a unique state if it is followed by a 1 on output. A single
symbol of input is always needed to guarantee well defined behavior (Rj = 1). Since the
Feedforward NOR Channel’s causal states store the same information as the Delay Channel,
we can again drive the channel with the Fair Coin Process to attain C;, = 1 bit.

The wordmap for the Odd NOT Channel (Fig. 12) has projected input (and output) par-
titions with structure at all scales. This is the signature of states that depend upon infinite
histories—one must provide an arbitrarily long binary expansion to specify the location of
the causal state boundaries and, therefore, the causal states themselves. If we observe both
inputs and outputs, we only need to specify in which quadrant a joint history lies in order to
determine its causal state. That is, the Odd NOT Channel is sofic on both input and output
alone (infinite pure feedforward and pure feedback Markov orders, Ry and Rpiy,, respec-
tively), but Markovian when both input and output are considered (finite Markov order R).
We also see that the causal states store the same information (parity) about input histories as
they do output histories, by observing the symmetry along the diagonal. Since the Period-2
Process generates sequences that always alternate between even and odd parity, we can drive
the channel with this process to induce a uniform distribution over its causal states. Therefore,
we have CTL = 1 bit, again.
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Fig. 11 Feedforward NOR 0|1 1
Channel: e-Transducer and

causal-state colored wordmap 1/0:1 < ° Q ) 0/1:1

0/0:1
1
°
O N
; 1}
= SRR
o %
Ei .
3 .
0 L)
0 1
input word
Fig. 12 Odd NOT Channel: 1 | 1:1

e-Transducer and causal-state

— A
colored wordmap 0[0:1(

1/0:1
0]1:1
1
°
o
2
5
o
5
o
0
S w1
0 1
input word
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Fig. 13 All-Is-Golden Channel: 0|1 -1 /2
e-Transducer and causal-state

0[0:1/2
colored wordmap 1|0,1 /2 —

1/0:1

1|1:1

output word

——

]
0 1

input word

We see that the All-Is-Golden Channel (Fig. 13) has a pure feedback Markov order of
Ry = 1. Since it ignores its input, however, input histories tell us nothing about in which
causal state the channel is. We also see that the wordmap is horizontally symmetric due to
this lack of input dependence. Since the state transitions depend only on output, the state
distribution and, therefore, the statistical complexity are independent of input. In particular,
the channel’s statistical complexity is that of the Golden Mean Process (GMP): Cx = C,, =
C,,(GMP) ~ 0.918 bits.

The wordmap for the Feedback NOR Channel (Fig. 14) clearly shows that it has infinite
pure feedforward Markov order Ry, but finite Markov R and pure feedback Markov Rpgy,
orders. Contrast this with the wordmap for the Feedback XOR Channel (Fig. 15) clearly
showing that the causal state, and so the channel’s behavior, cannot be determined by input
alone. Observe that the Feedback NOR Channel is in state A with probability 1 when a 1
is observed on input and oscillates between states A and B if the channel is driven with a
period-2 cycle of Os and 1s from that point on. We can therefore induce a uniform distribution
over causal states by driving the channel with the Period-2 Process. We can also induce a
uniform distribution over the Feedback XOR Channel’s causal states by driving the channel
with the Fair Coin Process, which causes all state transitions to occur with equal probability.
In both cases, C;, = 1 bit.

The Odd Random Channel (Fig. 16) has infinite pure feedforward and pure feedback
Markov orders (Rpff = Rpfpy = 00), but unlike the Odd NOT channel, the Markov order R
is infinite. In the Odd NOT channel, we saw structure at all scales in the input and output
projections of the wordmap, but a partitioning into quadrants in the complete wordmap. Now,
we see that there is no such simple partition in the complete wordmap, and there is structure at
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Fig. 14 Feedback NOR
Channel: e-Transducer and

A
causal-state colored wordmap 0[1:1(

output word

input word

Fig. 15 Feedback XOR

Channel: e-Transducer and —
causal-state colored wordmap 0/0:1 ( 1/0:1

output word

input word
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Fig. 16 Odd Random Channel:
e-Transducer and causal-state

—
colored wordmap 0/0:1 (

0/0:1/2, 1]0:1/2
0/1:1/2, 1]1:1/2

output word

input word

Fig. 17 Period-2 Identity NOT 1|0; 1
Channel: e-Transducer and 0| 1:1
causal-state colored wordmap :
— A
~———
0/0:1
11:1

output word

]
0 1
input word
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all scales in the coloring of histories. In other words, one must specify arbitrarily long pairs of
binary expansions (input and output) in order to identify a causal state. Specifically, knowing
that a past ended in (x, y); = (1, 1) does not uniquely determine a causal state. This can be
seen as multiple colors appearing in the upper-right quadrant of the wordmap. If, however,
we know that the previous pair was (0, 0), (0, 1), or (1, 0), we see that the history maps to
causal state B; corresponding to the upper-left, lower-left, and lower-right subquadrants of
the upper-right quadrant, respectively. Similarly, if the previous pair was (1, 1), we are left
with an ambiguity in state; corresponding to the upper-right subquadrant of the upper-right
quadrant. Therefore, we require an arbitrarily long past to determine the channel’s causal
state in general. Since the causal states store the same parity as the Odd NOT channel, we
can again drive the channel with the Period-2 Process to induce a uniform distribution, giving
us C,, = 1 bit.

The Period-2 Identity NOT Channel (Fig. 17) has a Markov order of R = 1, but we clearly
see that neither input nor output alone determines the channel’s causal state (Rigf = Rip, = 1).
Since the states have a uniform distribution regardless of input, we have Cx = CTL = 1 bit.

13 Infinite-State e-Transducers: The Simple Nonunifilar Channel

The example channels were chosen to have a finite number of causal states (typically two),
largely to keep the analysis of their structure accessible. We can see that even with a few states,
e-transducers capture a great deal of behavioral richness. Nonetheless, many channels have
an infinite number of causal states. Consider, for example, the Simple Nonunifilar Channel.
This channel’s behavior is captured simply by the finite-state presentation shown in Fig. 18.

Fig. 18 Simple Nonunifilar 0‘0. 1/2
Channel: Nonunifilar transducer '
sentation and st 11:1/2
presentation and state colored
wordmap 0[0:1/2 — A 0/0:1/2
11:1/2 ~— _— 11:1/2
1/0:1/2
0]1:1/2
1
°
o
2
5
o
5
o
0
]
0 1
input word
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When in state A, the channel behaves as the identity and has an equal probability of staying
in state A or transitioning to state B. When in state B, the channel will either behave as the
identity and transition back to state B or behave as the bit flipped identity and transition to
state A, each with equal probability.

Observe that the transducer shown is nonunifilar and is, therefore, not the e-transducer
for the channel. For example, the joint symbol (0, 0) can cause state A to transition to either
itself or state B. This nonunifilarity manifests in the wordmap as large blocks of black points.
These indicate joint histories that lead to a mixture of transducer states. This illustrates the fact
that an observer cannot typically retain synchronization to a particular state of a nonunifilar
transducer—a problem not present when using unifilar transducers.

It is possible to construct the e-transducer for the Simple Nonunifilar Channel, but doing
so results in a transducer with a countably infinite set of states. This minimal, unifilar
e-transducer can be seen in Fig. 19. Since any channel with a finite Markov order (and
finite alphabet) will have a finite number of causal states, a channel with an infinite num-
ber of causal states will have infinite Markov order. This is also evident in the causal-state
wordmap for the Simple Nonunifilar Channel, as one needs infinite resolution (in general) to
determine to which causal state a joint past leads. In fact, even if we know either the infinite
input or output past, we still need to know the full output or input past, respectively, in order
to characterize the channel’s behavior. This is therefore the first example we have seen with
Riff = Ripp = 00.

Observe that while the Simple Nonunifilar Channel’s output clearly depends upon its input,
its state-to-state transitions do not. Its statistical complexity is therefore independent of the
input process chosen. In fact, the causal states and transitions between them are identical to the
Simple Nonunifilar Source [22]. The statistical complexity is therefore equal to the statistical
complexity of the Simple Nonunifilar source: Cx = C,, ~ 2.71 bits. Even though there are
an infinite number of states, the B; states are occupied with probability that decreases quickly
with i, thus allowing for a finite Shannon state entropy. Note that if one were to use Fig. 18’s
nonunifilar presentation for the Simple Nonunifilar Channel, the statistical complexity would
be underestimated as Cx = CTL =1 bit.

14 Discussion

Previously, we described computational mechanics in the setting of either generating or
controlling processes [15]. As noted there, generation and control are complementary. Here,
we developed computational mechanics in a way that merges both control (the input process)
and generation (the output process), extending the e-machine to the e-transducer. With this
laid out, we describe how the e-transducer overlaps and differs from alternatives to modeling
input—output processes. We then turn to discuss applications, which incidentally elucidate
our original motivations, and suggest future directions.

14.1 Related Work: Modeling

Following the signposts of earlier approaches to modeling complex, nonlinear dynamical
systems [2,37], we are ultimately concerned with reconstructing a transducer when given a
general channel or given a joint process, either analytically or via statistical inference. And
so, when discussing related efforts, we distinguish between those whose goal is to extract a
model, which we review now, and those that analyze types of transductions, which we review
next. After this, we turn to applications.
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Fig. 19 Simple Nonunifilar 0/0:1.00
Channel: e-Transducer and 1/1:1.00
causal-state colored wordmap
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For statistical estimation we note that the recently introduced Bayesian Structural Infer-
ence (BSI) [36] allows one to estimate the posterior probability that e-machines generate a
given, even relatively short, data series. BSI’s generality allows it to be readily adapted to
infer e-transducers from samples of an input—output process. This turns on either developing
an enumeration of e-transducers which parallels that developed for e-machines in Ref. [38] or
on developing a list of candidate e-transducers for a given circumstance. And, these are also
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readily accomplished. A sequel provides the implementations. Previously, inferring causal
states, and so causal-state filters, had also been addressed; see, for example, Refs. [36,39,40].

Optimal transducers were originally introduced as structure-based filters to define hierar-
chical e-machine reconstruction [22,41] in terms of causal-state filtering, to detect emergent
spatiotemporal patterns [42—45], and to explore the origins of evolutionary selection pressure
[46] and the evolution of language structure [47]. These causal-state transducers were first
formalized in Ref. [48] and several of those results are reproduced in Ref. [49]. Appendix
shows that the definition there, which makes additional assumptions compared to that here,
are equivalent. The more-general development is more elegant, in that it establishes unifi-
larity, for example, rather than assume such a powerful property. Likely, in addition, the
generality will allow e-transducers to be more widely used.

Throwing the net wider—beyond these, most directly related, prior efforts—there have
been many approaches to modeling input—output mappings. We will use the fact that most
do not focus on quantitatively analyzing the mapping’s intrinsic structure to limit the scope
of our comments. We mention a few and then only briefly. Hopefully the list, nonetheless,
suggests directions for future work in these areas.

Today, many fall under the rubric of learning, though they are rather more accurately
described as statistical parameter estimation within a fixed model class. Probably, the most
widely used and developed methods to model general input—output mappings are found in
artificial neural networks [50,51] and in the more modern approaches that employ kernel
methods [52], statistical physics [53], and information theory [54,55]. Often these methods
require IID-drawn samples and so do not directly concern mappings from one temporal
process to another. Unlike e-transducers, they are also typically limited to model classes—
e.g., feedforward and directed acyclic graph structures—that do not allow internal feedback
or dynamics.

That said, neural networks that are recurrent are universal approximators of dynamical
systems and, per force, are channels with feedback and feedforward memory [56]. They are
well known to be hard to train and, in any case, rarely quantitatively analyzed for the structures
they capture when successfully trained. In the mathematical statistics of time series, for com-
parison, AutoRegressive-Moving-Average model with eXogenous inputs model (ARMAX
models) are channels with feedback and feedforward memory, but they are linear—current
output is a linear combination of past inputs and outputs. The nonlinear generalization is the
Nonlinear AutoRegressive eXogenous model (NARX), which is a very general memoryful
causal channel. At some future time, likely using e-transducers extended to continuous vari-
ables as recently done for e-machines in Ref. [57], we will understand better the kinds of
structure these channels can represent.

14.2 Related Work: Classification

Beyond developing a theoretical framework for structured transformations, one that is suf-
ficiently constructive to be of use in statistical inference, there are issues that concern how
they give a new view, if any, of the organization of the space of structured processes itself.
Specifically, computational mechanics up to this point focused on processes and devel-
oped e-machines to describe them as stochastic sets. e-machines are, most simply stated,
compact representations of distributions over sequences. With the e-transducers introduced
here, computational mechanics now has formalized stochastic mappings of these stochastic
sets. And, to get to the point, with sets and mappings one finally has a framework capable of
addressing the recoding equivalence notion and the geometry of the space of processes pro-
posed in Ref. [58]. A key component of this will be a measure of distance between processes
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that uses a structural measure from the minimal optimal mapping (e-transducer) between
them. This would offer a constructive, in the sense we use the word, approach to the view of
process space originally introduced by Shannon [13,59,60].

This then leads to the historically prior question of structurally classifying processes—
paralleling schemes developed in computation theory [24]. Indeed, our development is much
closer to input—output processes from the earliest days of dynamical systems and automata
theory—which were concerned with exploring the range of behaviors of mechanical systems
and the then-new digital computers.

Briefly, e-transducers are probabilistic endomorphisms of subshifts as studied in symbolic
dynamics [25]. The (nonprobabilistic) endomorphisms there were developed to explore the
equivalence of processes via conjugacies. Notably, this area grew out of efforts in the 1920s
and 1930s by Hedlund, Morse, Thue, and others to define symbolic dynamical systems that
were more analytically tractable than continuum-state systems [61]. Their efforts played a
role in forming the logical foundations of mathematics and so eventually in the emergence of
a theory of computation via Church, Godel, Post, and Turing [62—-65]. This led eventually to
Moore’s abstractions of sequential machines and transducers [66] and to Huffman’s concept
of a minimal implementation [67] and information lossless automata [68—70]. Today, though
expositions are increasingly rare, finite-state transducers are covered by several texts on
computation theory; see, for example, Ref. [71].

Once one allows for distributions over sequences, though, then one shifts from the overtly
structural approach of symbolic dynamics and automata to Shannon’s information sources
and communication channels [26] and a strong emphasis on stochastic process theory. As
noted in the introduction, one principal difference is that here we considered channels with
memory, while the latter in its elementary treatments considers memoryless channels or
channels with very restricted forms of memory. Finite-state channels have been developed
in limited way, though; for example, see Ref. [72, Ch.7] and for very early efforts see Refs.
[73] and [74]. There are also overlaps, as we attempted to show in the selected examples,
with classifications developed in digital filter theory [75].

There are also differences in focus and questions. Whereas information theory [12,26]
studies quantities of information such as intrinsic randomness and informational correlation,
computational mechanics [1] goes an additional step and attempts to quantify the information
itself —the computational structure or memory within a system. This is achieved not by
assuming a class of model directly, but by making a simple assumption about modeling itself:
The only relevant information is that which contributes to prediction—the “difference that
makes a difference” to the future [76]. Via the causal equivalence relation, this assumption
leads directly to the unique, maximally predictive, and minimally complex model of our
measurement data—the e-machine. Another way to express this is that e-transducers give a
constructive way to explore the information theory of channels with and without memory.

14.3 Applications
Our development of e-transducers was targeted to provide the foundation for several related

problems—problems that we will address elsewhere, but will briefly describe here to empha-
size general relevance and also to suggest future directions.

14.3.1 Inference Versus Experimentation

If all data collected is produced by a measuring device, then any model formed from that
data captures both the structure of the system and sensor in combination. Is there a natural
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separation of measuring instrument from system measured? We can now pose this precisely
in terms of e-transducers: Are there optimal decompositions of a process’s e-machine into a
possibly smaller e-machine (representing the hidden process) composed with a e-transducer
(representing the measuring instrument)?

14.3.2 Information Flow Within and Between Systems

In nonlinear dynamics and in information theory there has been a long-lived interest in
how information “flows” and how such flows relate to a system’s mechanical organization;
see Refs. [77-80], to mention only a few. These employ specializations of Eq. (5)’s excess
entropy, being various forms of conditional mutual information. The transfer entropy [81] and
the earlier directional information [82,83] are two such. The main issue concerns how one
process affects another and so this is a domain in which e-transducers—as optimal models
of the structured transformations between processes—can help clarify the issues.

In particular, there has been recent criticism of the use of these as measures of information
flow and, specifically, their relation to the structural organization of the flows [84]. We can
now do better, we believe, since e-transducers give a canonical presentation with which to
describe and extract the structure of such mappings. And this, in turn, allows one to explicitly
relate how causal-state structure supports or precludes information flows. We address this
problem in a sequel [85].

14.3.3 Process Decomposition

Given a process, we can now analyze what internal components drive or are driven by other
internal components. As one example, Is a subset of the measurement alphabet the “output”
being driven by another subset that is “input”? The question hints at the solution that one
can now provide: Produce the e-transducer for each bipartite input—output partitioning of
the global e-machine alphabet, giving a set of candidate input—output models. One can then
invoke, based on a notion of first principles (such as parsimony) or prior knowledge, a way
to choose the “best” input—output, driver-drivee decomposition.

14.3.4 Perception-Action Cycles

Probably one of the most vexing contemporary theoretical and practical problems, one that
occurs quite broadly, is how to describe long-term and emergent features of dynamic learning
in which a system models its input, makes a decision based on what it has gleaned, and takes an
action that affects the environment producing the inputs. In psychology and cognitive sciences
this problem goes under the label of the perception-action cycle; in neuroscience, under
sensori-motor loop [7,8]. The problem transcends both traditional mathematical statistics and
modern machine learning, as their stance is that the data is not affected by what is learned.
And in this, it transcends the time-worn field of experiment design [86,87] and the more
recent machine learning problem of active learning [53]. Though related to computational
mechanics via Ref. [40], the recent proposal [88] for interactive learning is promising, but is
not grounded in a systematic approach to structure. It also transcends control theory, as the
latter does not address dynamically building models, but rather emphasizes how to monitor
and drive a given system into given states [89].

e-Transducers suggest a way to model the transduction of sensory input to a model and
from the model to a decision process that generates actions. Thus, the computational mechan-
ics representation of the perception-action cycle is two cross-coupled e-transducers—one’s
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output is the other’s input and vice versa. Formulating the problem in this way promises
progress in analyzing and in quantifying structures in the space of models and strategies.

Physical applications of e-transducers to analyze the information thermodynamics of
feedback control in Maxwellian Demons can be seen in Szilard’s Engine [4] and the Mandal-
Jarzynski ratchet [3,5].

15 Conclusion

Previously, computational mechanics focused on extracting and analyzing the informational
and structural properties of individual processes. The premise being that once a process’s
e-machine had been obtained, it can be studied in lieu of other more cumbersome (or even
inappropriate) process presentations. Since the e-machine is also unique and minimal for a
process, its structure and quantities were treated as being those of the underlying system that
generated the process. Strengthening this paradigm, virtually all of a process’s correlational,
information, and structural quantities can now be calculated in closed form using new methods
of e-machine spectral decomposition [90].

By way of explaining this paradigm, we opened with a review of stationary processes and
their e-machines, turning to broaden the setting to joint input—output processes and com-
munication channels. We then defined the (conditional) causal equivalence relation, which
led immediately to transducer causal states and the e-transducer. A series of theorems then
established their optimality. To illustrate the range of possible transformations we consid-
ered a systematic set of example channels that, in addition, provided an outline of a structural
classification scheme. As an aide in this, we gave a graphical way to view structured transfor-
mations via causal-state wordmaps. With the framework developed, one sees that the same
level of computational mechanics’ prior analysis of individual processes can now be brought
to bear on understanding structural transformations between processes.

The foregoing, however, is simply the first in a series on the structural analysis of mappings
between processes. The next will address the information-theoretic measures appropriate to
joint input—output processes. We then will turn to an analysis that blends the present results on
the causal architecture of structured transformations and the information-theoretic measures,
showing how the internal mechanism expressed in the e-transducer supports information
creation, loss, and manipulation during flow. From that point, the sequels will branch out to
address channel composition, decomposition, and inversion.

Given the diversity of domains in which structured transformations (and their understand-
ing) appear to play a role, there looks to be a wide range of applications. In addition to
addressing several of these applications, Sect. 14 outlined several future research directions.
The e-transducer development leads, for example, to a number of questions that can now be
precisely posed and whose answers now seem in reach: How exactly do different measuring
devices change the e-machine formed from measurements of a fixed system? What precisely
is lost in the measurement process, and how well can we model a system using a given mea-
suring device? When is it possible to see past a measuring device into a system, and how can
we optimize our choice of measuring device in practice?
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Appendix: Equivalence of Two e-Transducer Definitions

We show the equivalence of two different e-transducer definitions, that presented in the
main paper and an earlier version requiring additional assumptions. Since the e-transducer
is determined by its causal equivalence relation, we show that the respective equivalence
relations are the same. The first is defined and discussed at length above and duplicated here
for convenience.

Definition 1 The causal equivalence relation ~, for channels is defined as follows:
) ~e (7)) =
P(Y|X, X7 =&, )

A

=P(Y|X, X7 =)

The second definition is an implicit equivalence relation consisting of an explicit equiv-
alence relation, along with an additional unifilarity constraint that, of course, is quite strong
[48,49]. Here, we make both requirements explicit.

Definition 2 The single-symbol unifilar equivalence relation ~! for channels is defined as
follows:
@)~ () =
(i) P(Yo|Xo. XY = (x.)
= P(Yo| Xo, X7, = (X—y)/)
and:
(i) P(V1|X1, (X, 1) = (.3, (X, Y)o = (a, b))
=P(Y1|X1. (X, VYo = (. 3). (X. Y)o = (a. b))
forall a € X and b € Y such that:
P((X, V)0 = (@, )|, 7)) > 0
and:

P((X,Y)o = (a,b)|{x,3)) > 0.

The second requirement (ii) in the above definition requires that appending any joint symbol
to two single-symbol-equivalent pasts will also result in a pair of pasts that are single-symbol-
equivalent. This is unifiliarity. The second part of the second requirement ensures that we
are only considering possible joint symbols (a, b)—symbols that can follow (Ty) or (Ty)’
with some nonzero probability.

Proposition 7 The single-symbol unifilar equivalence relation is identical to the causal
equivalence relation.

Proof Let (x, y) and (x, y)’ be two pasts, equivalent under ~;. This provides our base case
for induction:

P(Yo| Xo. &, ) = P(Yo| X0, &, 3)). (13)
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Now, let’s assume that (x, y) and (x, y)" are equivalent for length-L — 1 future morphs:
P(YO:L‘XO:L» (x, y)) = P(YO:L‘XO:Ly (x, y)/)- (14)

We need to show that (x, y) and (x, ) are equivalent for length-L future morphs by using
the unifilarity constraint. Unifilarity requires that appending a joint symbol (a, b) to both
(Ty) and (},—y)’ results in two new pasts also equivalent to each other for length-L — 1
future morphs:

P(Yi.o41| X141, (&6, 0)(@, b)) =P(YiL41| X141, (6, 9) (@, b)). (15)

Since this must be true for any joint symbol, we replace (a, b) with (X, Y)o in Eq. (15),
giving:
P(Yirt1|X1rt1, (06 30, (X, VDo) = P(Yi41| X141, (6,3, (X, ¥)o)
= (16)
P(YiL41]| X141, (5. ), X0, Yo) = P(YiL41|X1:41. (x.)), Xo. Yo).

To arrive at our result, we need to multlply the left side of Eq. (16) by ]P’ Yo | X1:L+1, (x y),
Xo) and the right side by P(Yo|X1.141, Gy, Xo), which we can do when these quantities
are equal. Since our channel is causal, X 1.7+ has no effect on Yy when we COIIdlthD on the
infinite joint past and and present input symbol. The two quantmes P Y0|X 1:L+1> (x y), Xo)
and P(Yo|X1:141, Gy, Xo), therefore reduce to IP(Y0|(x ), Xo) and P(Y0|(x_y) Xo),
respectively. But these are equal by the single-symbol unifilar equivalence relation—the base
for induction. Multiplying each side of Eq. (16) by these two terms (in their original form)
gives:

P(Yiq1| X141, 06 ). Xo, Yo) x P(Yo| X141, (. ). Xo)
=P(Yi.L41|X1:11. (7)), Xo. Yo) x P(Yo|X1:41. (5,3, Xo)

=
P(Y1.L41. Yo|X1:041. (06, 9), Xo) = P(Yi.L41, Yo|X1:041. (x, ), Xo)
—

P(Yo.Lt1|Xo.z41. (5. 3) = P(Yot1 | XoL 41, (x.3)).

The two pasts are therefore equivalent for length-L future morphs. By induction, the two
pasts are equivalent for arbitrarily long future morphs. O
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