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The Role of Feedback in the Formation of Morphogen Territories
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Lawrence J. Marshb, Fred Wanc, and Qing Niec
1Dalhousie University, Department of Mathematics and Statistics
2University of California, Irvine, Department of Developmental and Cell Biology
3University of California, Irvine, Center for Mathematical and Computational Biology and Department
of Mathematics

Abstract
In this paper, we consider a mathematical model for the formation of spatial morphogen territories
of two key morphogens: Wingless (Wg) and Decapentaplegic (DPP), involved in leg development
of Drosophila. We define a gene regulatory network (GRN) that utilizes auto-activation and cross
inhibition (modeled by Hill equations) to establish and maintain stable boundaries of gene expression.
By computational analysis we find that in the presence of a general activator, neither auto-activation,
nor cross inhibition alone are sufficient to maintain stable sharp boundaries of morphogen production
in the leg disc. The minimal requirements for a self-organizing system are a coupled system of two
morphogens in-which the auto-activation and cross-inhibition have Hill coefficients strictly greater
than one. In addition, the GRN modeled here describes the regenerative responses to genetic
manipulations of positional identity in the leg disc.

Keywords
Pattern formation; Gene regulatory network; Dynamical systems; Partial differential equations

1 Introduction
A key biological question of current interest is how cells within a field acquire spatial
information. The acquisition of this positional identity is important for normal development
and growth. It is also key to understanding regeneration. The signals which specify positional
information are secreted proteins called morphogens. Abnormal signaling by these proteins
can lead to developmental abnormalities and cancer.

Reaction diffusion systems have been used to model stages of embryonic development since
the seminal works of Gierer and Meinhardt [4,5]. In these papers it is shown that long range
inhibition coupled with short range activation can lead to complex patterns of morphogen
distribution which in turn will lead to formation of localized structures. Recently, details of the
biochemical reactions which occur in developmental biology have been discovered, including
estimates of many of the key parameters. In this paper, we will examine the mechanisms
discussed in [6], namely cross-inhibition and auto-activation of the production rates of the
morphogens Wingless and Decapentaplegic. The modeling of these mechanisms will be based
as closely as possible on the known biochemical reactions and using the best available
parameter estimates.
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The Drosophila leg imaginal disc can be used to illustrate pattern formation, which is the
acquisition of positional information by cells. Drosophila has six leg imaginal discs that become
patterned during the larval stage and then undergo morphogenesis in the pupal stage to form
the six legs of the y. Each leg imaginal disc is a single layered field of cells that integrate
positional information from three morphogens, WNT/WINGLESS (WG),
DECAPENTAPLEGIC (DPP)/BMP, and HEDGEHOG (HH). Dorsal/Ventral (D/V)
positional information is specified by antagonizing inputs from the dorsally expressed
morphogen, DPP, and the ventrally expressed morphogen, WG[22,1,9,10,19,20,23,6]. The
distal tip of the leg, where the dorsal and ventral territories abut each other is specified by the
integration of Wg and Dpp signaling. Abnormal expression of these genes causes patterning
defects in flies and developmental defects and cancer in humans.

Since restricted expression of these morphogens is critical for normal patterning, the domain
of production of these proteins must be maintained as the disc grows. Here we model the GRN
that maintains the mutually exclusive DPP/BMP and WG expression domains during
development and reestablishes these territories in response to injury or genetic manipulations.
The secreted signals that form this GRN are HH which is expressed in the posterior
compartment, WG which is expressed in a ventral wedge in the anterior compartment and DPP/
BMP which is expressed in a dorsal stripe in the anterior compartment (Fig 1). Activation of
wg and dpp gene expression, i.e. the production of WG and DPP/BMP, requires HH signaling.
WG signaling inhibits ventral production of DPP[22,23,21,6,1,10], and DPP signaling inhibits
dorsal production of WG[1,9,20,23], thus setting up a dorsal DPP expressing territory and a
ventral WG expressing territory. WG and DPP have also been shown to autoactivate their own
production [2,6,30,1,8,19,11,24]. We have generated a computational model for this GRN and
used it to test the requirements for auto-activation and cross inhibition in maintaining stable
domains of expression.

In this model, the domains of production of WG and DPP have sharp boundaries. The free
morphogen can diffuse away from this domain and form a gradient of morphogen signaling.
The domain of Wg production (Wp) is a function of WG signaling (WR) and DPP/BMP
signaling (BR), where WR represents WG bound to its receptor and BR represents DPP/BMP
bound to its receptor. Similarly, the domain of DPP/BMP expression (Bp) is a function of WR
and BR. In this system, DPP/BMP acts as a dimer, which results in similar diffusivity
coefficients for WG and DPP. This differs from a Turing-Meinhardt model, which predicts
that the diffusion constants for two interacting morphogens are different, often by several orders
of magnitude [25,17,12]. The objective of the modeling is to determine the elements of a GRN
required to establish stable sharp mutually exclusive boundaries of expression of two
morphogens from an initial shallow gradient of morphogen concentration. The initial shallow
gradient is formed by processes discussed in [14,15]. Once this shallow gradient is formed, the
combination of auto-activation and cross-inhibition will cause the gradients to steepen until
two distinct territories are formed.

We now compare and contrast some of the recent mathematical models of GRNs in Drosophila.
In [13], it is shown that a single diffusible morphogen with localized production and interaction
with its receptor can lead stable spatial gradients of morphogen concentration. In [16,18] it is
shown that the presence of a competing ligand can increase the strength of the spatial
morphogen concentration gradient. In [15], a well defined production region is shown to result
in the formation of shallow spatial gradients. In [26] positive feedback acting through a cell-
surface bound BMP-binding protein can result in sharp gradients. In this paper, we will consider
two morphogens interacting with their respective receptors. Morphogen production rate will
be regulated by only auto-activation and cross-inhibition, and both the feedbacks are assumed
to be functions of bound morphogen. In the system, there are no spatially dependent parameters.
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1.1 A model and equations
The Drosophila leg initially develops as a flattened disc with dorsal DPP/BMP and ventral WG
production domains, which respectively define dorsal and ventral territories. The disc is also
divided into an anterior and posterior compartment defined by the absence or presence
respectively of engrailed expression. The center of the disc will form the distal tip of the leg
and the outer edge will form the proximal leg structures. At this stage the disc can be treated
as a 2D structure. In Figure 1, we show the geometry of a leg imaginal disc, and the domains
of gene expression/protein production of wg and dpp/bmp. To simplify the analysis, we
consider a one-dimensional system in the dorsal-ventral direction as illustrated in (Figure 1
(b)).

In this system, the following assumptions are made: (a) DPP/BMP and WG are produced in
the entire domain. (b) Both WG and DPP/BMP diffuse freely from the site of production. (c)
BMP/DPP and WG associate with their respective receptors, RB (Tkv/Punt/Sax) and RW (Fz)
to form receptor-ligand complexes with defined association and dissociation rates. (d) The
receptors and the receptor-ligand complexes do not diffuse (e) The receptor-ligand complexes
are degraded at the same rate throughout the field. (f) Receptor bound Wg (Wr) and receptor
bound DPP/BMP (Br) respectively stimulate the production (gene expression) of WG (Wp)
and DPP/BMP (Bp) (g) WG and BMP/DPP respectively inhibit the production (gene
expression) of WG (Wp) and BMP/DPP (Bp)

The bio-chemical reactions for receptor ligand interaction are as follows,

Applying the law of mass action, the number of receptors available to bind with ligand is RW
- Wr and RB - Br for WG and BMP respectively. We will model the unbound morphogens as
freely diffusing chemicals and the bound morphogens as spatially fixed. Thus the dynamics of
the model are given by the following system of differential equations.

(1a)

(1b)

(1c)

(1d)

(1e)
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(1f)

We have assumed no-flux boundary conditions for WG and DPP, because far from the
interface, the concentration of the morphogens is roughly constant. The activation function
(Act ) smoothly connects a minimum production value to a maximum and is strictly increasing,
while the inhibition function (Inh) connects a maximum production value to a minimum
production value and is strictly decreasing. These functions will be further defined later
(Section 3). Representing the feedback as the product of the activation and inhibition function
implies that the auto-activation and cross-inhibition mechanisms are linked.

1.2 Scaling
In sections §4.1 we will use asymptotic methods to construct a solution and analyze its stability.
In order to perform this analysis, we will need to know the relative orders of each of the terms
in (1). We will now scale the variables to normalize the solution and the length of the domain.
We thus set,

(2)

(3)

(4)

(5)

(6)

We now define the new paremeters as,

Since the diffusivities D ͞D and D ͞W are small and equal, we will let ϵ2 = D ͞D = D ͞W and use ϵ as
an asymptotically small parameter. With this choice, we expect the thickness of the transition
layer to be O(ϵ). The new equations may new be written as,
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(7a)

(7b)

(7c)

(7d)

(7e)

(7f)

The remainder of the paper will proceed as follows. In §2 we will consider spatially
homogeneous equilibrium solutions of (7). In §3, we consider explicit forms of the feedback
functions. In §4, we will consider a simplification which reduces the model to two uncoupled
second order differential equations. We will show that it is possible to construct a territoried
solution with a single morphogen, but such a solution will not be sufficiently robust. We will
also show that even if such a solution exists, it will be unstable. In §5 we will give some
numerical results and compare with experimental results. Finally, we will discuss the relevance
of the results for the simplified system to the full coupled systems and consider further avenues
of study.

2 Construction of Solution
We are interested in steady state solutions with two distinct regions. In one of the regions,
corresponding to the dorsal region, b will be a relatively large constant and w a smaller constant
value. In the other region, corresponding to the ventral region, w will be the large constant and
b will have a smaller constant value. These regions will be connected by a thin layer in which
both w and b concentrations will have steep gradients. As a first step in the construction of a
solution, we look at the spatially constant steady-states.

Before we can proceed, we must first provide some details for the functions Act and Inh. We
let,

In the most general case, each instance of Act(u) and Inh(u) may have distinct limits, but as
this generalization will only make the notation more cumber-some, we will not consider it here.
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We now find the values of the steady state solution in the two regions (dorsal and ventral). In
the dorsal region, the value of br will be relatively high and wr relatively low. Thus, in this
region, the terms . In these regions, the
solution is constant, so the diffusion terms will all be zero. The steady state equations in the
dorsal region are then,

(8)

(9)

(10)

(11)

The solution to the above system is given by,

(12a)

(12b)

(12c)

(12d)

We may repeat the process in the ventral region to find the ventral steady state values:

(13a)

(13b)
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(13c)

(13d)

Note, we will require  for a positive solution.

For a steady state solution connecting these two equilibria to exist, each equilibrium must itself
be stable in the absence of diffusion. Thus, we set ϵ to zero and linearize about (12) and (13).
The eigenvalues of this linearization are given by,

For the equilibria to be stable we need the real parts of the above eigenvalues to be negative.

The two restrictions  imply that all the steady states must be
stable.

3 Feedback
We now consider an explicit form for the functions Act and Inh. We require that the activation
function goes from Kmin to Kmax monotonically and the inhibition function goes from Kmax to
Kmin monotonically, where Kmax > Kmin > 0. We will characterize these functions with four
parameters. The two parameters Kmin and Kmax, have already been discussed. The two
remaining parameters will control the sharpness of the transition (from Kmax to Kmin) and the
point at which the transition occurs.

The most critical parameter value is the point at which the activation and inhibition switches
off/on. If this value is too high or low, the activation/inhibition will have no effect. We can
find an appropriate value by considering the values of br and wr. Since 0 ≤ wr, br ≤ 1, we may

set the switching value to .

A natural choice for the activation and inhibition functions are,

(14)
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(15)

Here m controls the steepness of the transition and is referred to as the Hill coefficient. u0

controls the value at which the transition occurs, for our application, we set . This form
of activation/inhibition was first considered by Archibald Hill in [7]. The basis for this form
of activation/inhibition is considering the simultaneous binding of m ligands to an enzyme to
produce a product which will either initiate or inhibit protein production. The fact that
simultaneous binding is required makes choices of m large unreasonable [29]. Using a negative
Hill coefficient for inhibition is considered in [28].

We will now consider the conditions necessary for the formation of morphogen territories with
this feed-back model. A morphogen territoried solution corresponds to a heteroclinic
connection between two equilibria of the system. To find the conditions which will allow for
such a connection, we consider a simplification. When we consider steady-state solutions, (7)
reduces to two second order differential equations which are coupled by the inhibition
functions. To simplify the system, we take the inhibition function to be a constant and thus
decouple the equations.

4 Heteroclinic Connection: The simplified system
In this section, we will construct a heteroclinic connection for a system in which the Inh function
is a constant. This will reduce the steady state problem for (7) to a single second order ordinary
differential equation. We find levels of inhibition which will result in a heteroclinic connection
between two states. The existence of a heteroclinic orbit in the situation of a constant inhibition
field will require a specific isolated value of inhibition, and thus the heteroclinic will not be
robust. Further, we show that any such connection will be unstable.

To simplify our situation, we will consider the case Inh(x) = I where I is some constant. We
now look for steady state solutions with a heteroclinic connection. Since wr does not diffuse,
we may solve for wr in terms of w and eliminate it from the equation.

(16)

where . We plug into the steady-state equation for w to get,

(17)

where,

(18)

I will leave wr(w) as a function in the equations to simplify the analysis. We note that the
function wr(w) : ℝ+ → [0, 1) is one-to-one and onto.
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We now consider some general results for the existence of heteroclinic connections. For an
equation of the form,

(19)

to have a heteroclinic connection (a front solution) joining the values u = u− to u = u+, the
following restrictions on Q(u) must be met:

1. Q(u) must have 3 consecutive roots u−, u0, and u+ with u− < u0 < u+.

2. Q′(u−) < 0, Q′(u+) < 0 and Q′(u0) > 0.

3.

The constructed heteroclinic orbit will connect the two states u = u− and u = u+ as y → ±∞.

The system we are considering is posed on a finite domain, and is of the form so the ϵ2wyy +

Q(w; I) = 0. First we apply the coordinate change  to magnify the region about the interface.

The equation then will be of the form . If we assume that we can
satisfy the conditions necessary for the existence of a heteroclinic orbit, the constructed orbit
will fail to satisfy the boundary conditions, but only by exponentially small terms. We may
thus expect a solution to exist which is exponentially close to the constructed heteroclinic. In
§4.1 we will carefully consider the effects of the finite boundary on the stability of the
constructed solution.

Now we will examine the polynomial in the numerator of Q(w; I),

(20)

to determine the conditions which will ensure the existence of a heteroclinic orbit. For Q(w;
I) to have 3 positive roots, (20)(as a function of wr) must have 3 roots in (0, 1). This immediately
implies that m ≥ 2. This result agrees with numerical observations (see Figure 5). We will
assume now m ≥ 2. Descartes’ rule of signs implies that (20) has exactly one or three positive
real roots (counting multiplicity). If m is even, we have no negative roots and if m is odd we
will have exactly one negative root.

If we assume that we have 3 distinct roots in (0, 1), the second constraint will be satisfied due
to the sign of the highest power of wr and the fact that the denominator of Q is positive and
increasing. We will label the three roots wr−, wr0 and wr+ where wr− < wr0 < wr+. We denote
the corresponding values of w as, w−, w0 and w+.

We find necessary and sufficient condition for (20) to have 3 distinct roots in (0, 1). We will
not give this condition in an explicit form as the resulting expression is cumbersome and
provides no illumination. We let wrmax be the value at which P attains its local maximum.

(21)
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We now let Ī be the value of I for which P(wrmax(Ī)) = 0. So for all three roots to be in (0, 1),
we require that wrmax(Ī) < 1. If this condition is met then for I > Ī and I − Ī sufficiently small,
all three roots of P(wr) must lie in (0, 1).

We must satisfy one final condition to ensure the existence of the heteroclinic orbit. We need

to satisfy the integral condition . We would like to have a large range of I
values for which all three roots will be in (0, 1) as this will make it easier to solve the integral

condition. The closer wrmax is to  at I = Ī, the easier it will be to satisfy the integral condition
(this will result in a larger interval of I values for which we will have three positive roots in
(0, 1). Finding an explicit restriction on parameter values which are necessary and sufficient
for the satisfaction of this condition does not seem possible. The difficulty lies in the fact that
changing the value of I to satisfy the integral condition may cause wr+ to move past 1.

We demonstrate that it is quite simple to find a value of I which satisfies the integral condition
and for which the three roots of (20) are in (0, 1). We will use the same rate and diffusion
constants before but with m = 2, but we can pick Kmax and Kmin. To check the integral condition,

we make the change of variables . Then the integral condition is,

(22)

Using numerical integration is sufficient to determine if there are values of I for which the
above integral is negative and values for which it is positive. We set Kmin = 0.001 and Kmax =
0.051 1 . Using I = 0.01, we have the following zeros of P(wr),

(23)

and

(24)

For I = 0.0097 we get the three zeros of P(wr) to be,

(25)

and

(26)

1Although it appears that  and thus there shouldn't even be two positive homogeneous solutions, this is not really the case

here. The value we need to consider in the inequalities are not 
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Hence there must be a value of I for which the integral condition is satisfied exactly and
maintains the root condition. We can solve for the heteroclinic orbit implicitly. We can write
(17) as a first order system,

(27)

(28)

This system is Hamiltonian with Hamiltonian function . With this
choice of Hamiltonian function, the heteroclinic orbit is given by H(w, u) = 0. Thus,

(29)

We can solve this equation implicitly to find the following implicit expression for the
heteroclinic orbit:

(30)

The ± determines which heteroclinic we find with the plus sign corresponding to a connection
from w− to w+. We can solve this integral numerically to get the profile for the heteroclinic
orbit (see Figure 3).

The existence of this solution requires a specific value of I. This implies that the front will be
structurally unstable. Any small change in inhibition will mean that the connecting steady-state
solution will cease to exist.

4.1 Stability of Heteroclinic
We now examine the stability of the heteroclinic orbit constructed in the previous section. We
constructed the heteroclinic orbit on an unbounded domain. However, it will fail to satisfy the
boundary conditions on any finite domain by exponentially small terms. We can expect a
solution to exist on a bounded domain that is exponentially close to the constructed heteroclinic.
To study the stability of this orbit, we will construct an eigenvalue problem by linearizing about
the constructed solution. We will show the operator associated with the linearization will have
an exponentially small eigenvalue. This eigenvalue is related to the translation invariance of
the interface when the problem is posed on an unbounded domain. We estimate the eigenvalue
in the limit ϵ → 0 and show it is positive, but exponentially small. So although the orbit is
unstable, it can persist for an extremely long time.

First we list some asymptotic estimates for the behaviour of the heteroclinic solution. We

assume we have a heteroclinic connection given by . Then we have that,

(31)
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where

(32)

(33)

Now we construct the associated eigenvalue problem by linearizing about the heteroclinic orbit.

(34)

and substitute (34) into (17) to get the following eigenvalue problem

(35)

(36)

If we differentiate (17) with respect to y we find . So the operator L posed on an
unbounded domain has a eigenvalue λ = 0 with eigenfunction . Since wH is a monotonic
function connecting the two equilibria,  must be of one sign. Thus it must be the principal
eigenvalue. Since  fails to satisfy the boundary conditions of (35) by only exponentially,
small terms we expect there to be an exponentially small eigenvalue with eigenfunction ϕ0
exponentially close to . We must determine the sign of the perturbed eigenvalue in order to
determine the stability of the heteroclinic orbit.

We now construct this eigenfunction using boundary layer correction terms. In the interior of
the domain we expect the eigenfunction to be very close to , the correction terms should be
localized to the area near the boundaries. We thus write,

(37)

We define boundary layer coordinates η− = ϵ−1(y + 1) and η+ = ϵ−1(1 − y).

The boundary layer correction term will then satisfy,

(38)

(39)
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(40)

(41)

The solution to (38) are given by,

(42)

Now we can start to estimate the small eigenvalue. First we define the dot product as

. We then have the identity

(43)

We apply this identity to the function  and ϕ0 to get

(44)

Since  in the interior of the domain, we have the following asymptotic
estimate,

(45)

Near x = ±1, we have that . Using all our asymptotic
estimates we find that,

(46)

As can be seen from (46), the principle eigenvalue is positive and thus the heteroclinic orbit is
unstable. However the eigenvalue is exponentially small and we can thus expect that a
heteroclinic solution may persist for long times.

In this section, we have shown that a heteroclinic solution is possible for a single morphogen
with self regulation, but the requirements for the existence make such a system unlikely to exist
in a natural setting. The restrictions on the auto inhibition function are far too severe to make
this a viable alternative. Even if these restrictions are satisfied, the heteroclinic will be unstable
and must eventually collapse.
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5 Numerical Simulations
In the previous section, we found that a steady-state solution in which the two morphogens are
confined to distinct regions in not a practical possibility with just auto-activation. We would
like to show that the formation of such solutions is possible when in addition to auto-activation,
the two morphogens mutually cross-inhibit each others production. The numerical method is
based on the method of lines with a central difference on the diffusion terms and a second-
third order adaptive Runge-Kutta time integrator.

There are four pairs of biological parameter values in the model, excluding any for the
activation and inhibition, for Wg and BMP respectively. In the numerical simulation, we use
the same rate constants and diffusivity for both Wg and BMP. The size of the tissue is xmax
0.02 cm ([3]). The diffusion coefficients for Wg and BMP are chosen to be the same: Db = 1
× 10−7 cm2 / s based on the measurement [27]; The rate constants are fw = 1 × 10−5/s, hw =
0.12/(sµM), γw = 5 × 10−4/s, and the total receptor concentration is Rd = 1µM [14] [18]. For
the initial conditions we set the concentration of bound receptor to be uniformly zero. We set
the initial concentration of free morphogen to the following linear gradient:

where w̄,ŵ,b̄ and b̂ are defined in (12) and (13).

The parameters we will vary are those dealing with activation/inhibition. Figure 4, Figure 5,
Figure 7, Figure 9 are graphs of numerical solutions to (1). In each figure we provide 20
concentration profiles equally spaced in time. Initially we set no bound morphogen and a
linearly decaying free morphogen concentration profile. The initial condition is displayed in
green, the last time step is displayed in red and intermediate steps are displayed in blue.

In this first set of numerical simulations of (1), we demonstrate the robustness of the solution
by repeating the simulation with twice the maximum production rates.

The result that we need m, n ≥ 2 is only proven for a single morphogen with no external
inhibition, however numerical results suggest that the requirement m, n ≥ 2 is also true for the
full system. Setting just one of the values to 1 results in an unstable front (see Figure 5).

In Figure 7 and Figure 9, we demonstrate simulations with one cross-inhibition and one auto-
activation disabled. In both cases the fronts are unstable and move across the domain until the
solution is spatially homogeneous.

In Figure 5, Figure 7 and Figure 9, the system has not reached a steady-state by the end of the
run. This is done in order to display the initial transient in which the gradient vanishes. In
Figure 6, Figure 8 and Figure 10 we repeated the respective simulations with much larger time-
steps to demonstrate the convergence to equilibrium.

Modeling Regeneration
Based on this model, auto-activation is insufficient to maintain mutually exclusive territories
of wg and dpp production. Stable sharp boundaries of wg and dpp expression are dependent
on both auto-activation and cross inhibition. We tested whether this GRN could describe the
phenotypes produced by genetically modifying wg and/or dpp production and/or signaling. We
will now look at the models ability to capture the behavior of various experimental mutations
observed in [6]. These mutations will be mimicked in the model by altering the value of either
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or both of Act and Inh on specified subintervals of the domain. In all cases, the experimental
results are well represented by the appropriately modified version of (1). Each graph represents
20 equally spaced time steps. The initial condition is given in green. The final state is given in
red. All intermediate states are displayed in blue. Where available, the results of the mutation
are also displayed.

A mitotic clone of dsh blocks Wg signal transduction. In the model, this can be mimicked by
absence of the WG receptor in a small region. In the region 0.013 < x < 0.018 we set wr and
wrt to 0 (Figure 11). This can also be modeled by defining WR as inactive or unable to signal
(Figure 12). In the second simulation, the wg receptors in a part of the ventral region can bind
with wg, but there is no response. The mutation is in the region 0.01 < x < 0.014 (Figure 12).
When this occurs in a clone of cells in the fly leg, it results in pattern duplications that are
predicted by the GRN modeled here. Similarly, the model predicts that production of WG at
high levels in the dorsal dpp/bmp domain also produces pattern duplications. For this
simulation (Figure 13), Wg production is fixed at a high rate independent of receptor binding
for the region 0.012 < x < 0.016. The model predicts patterning duplications that mimic those
seen in fly legs where a clone of dorsal cells is mutant for an antagonist of Wg signaling (GSK/
sgg). In these cells, Wg signaling is ectopically activated.

6 Discussions
As we have seen from the analysis, although it is possible for a single morphogen to form a
territory solution based only on auto-regulation, such a situation is unstable and unlikely.
However, numerical simulations of two interacting morphogens show that morphogen territory
solutions are not only possible, but very robust. The only requirement is that the interaction
must be strong. If we use a Hill equation to model the interaction, we require a Hill coefficient
of at least two. Such a coefficient would be achieved by requiring two or more morphogen
molecules bound to a receptor for activation/inhibition to be turned on.

The study of the full system is still open. Since the diffusion coefficients of the two morphogens
are of the same order, it is not possible to separate (7) into two second order equations. It may
be possible to force symmetries into the system with an appropriate parameter choices, however
there is no numerical evidence that such restrictions are required.
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Fig. 1.
(a–b) leg imaginal discs with anterior to the left and dorsal up. (a) schematic picture of a leg
imaginal disc; (b) production of both bmp/dpp (green) and wg (red). The line indicates the x-
axis of the proposed model.
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Fig. 2.

Sample graphs of the functions Act and Inh with m = 4, , Kmax = 1 and Kmin = 0.

Iron et al. Page 19

Math Biosci Eng. Author manuscript; available in PMC 2009 August 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Approximation of the heteroclinic connection for (17). For this simulation, I = 0.0099805992,
m = 2, Kmax = 0.051, Kmin = 0.001. For these values, w− ~= 0.0000950097 and w+ ~
0.0075233436.
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Fig. 4.
Numerical simulation of full system with parameter values Kmin = 0.0001 m = n = 3. In both
runs the final time is t = 150000 seconds. The plots of w signal and b signal are plots of the
production rates of w and b respectively.
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Fig. 5.
A numerical simulation of system (1) with m = 1, n = 3, Kmin = 0.001 and Kmax = 0.01. The
final time step is at t = 100 seconds.
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Fig. 6.
A continuation of the simulation given in Figure 5 with a much larger time-step in order to
display the convergence to an equilibrium. The final time step is at t = 5000 seconds.
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Fig. 7.
A numerical simulation of system (1) for m = 3, n = 3 and cross-inhibition of Br on W shut off.
The values of Kmax and Kmin are adjusted to produce maximum and minimum production rates
of 0.012 and 0.0012 respectively for all terms. Final time step is at t = 300 seconds.
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Fig. 8.
A continuation of the simulation given in Figure 7 with a much larger time-step in order to
display the convergence to an equilibrium. Final time step is at t = 5000 seconds.
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Fig. 9.
A numerical simulation of system (1) for m = 3, n = 3 and auto-activation of W shut off. The
values of Kmax and Kmin are adjusted to produce maximum and minimum production rates of
0.012 and 0.0012 respectively for all terms. Final time step is at t = 300 seconds.
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Fig. 10.
A continuation of the simulation given in Figure 9 with a much larger time-step in order to
display the convergence to an equilibrium. Final time step is at t = 5000 seconds.
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Fig. 11.
In this simulation there are no Wg receptors for 0.012 < x < 0.016 . The final time step is at t
= 15000 seconds. The slight localized increase in W is due to lack of receptor to bind with. The
localized increase in B is due to the local lack of inhibition.
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Fig. 12.
Simulation of region with defective Wg receptors in the region 0.013 < x < 0.018. Since Wg
is still able to bind to its receptor there is no localized increase as seen in Figure 11. The final
time step is at t = 15000 seconds. The experimental image is from [6].
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Fig. 13.
Simulation of region with Wg production set to its maximum rate independent of receptor
binding for 0.012 < x < 0.016 causing localized increases in W and decreases in B. The final
time step is at t = 15000 seconds. The experimental image from [6].
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Table 1
Abbreviations Used

W The concentration of free Wg.

Wr The concentration of bound Wg.

B The concentration of free BMP.

Br The concentration of bound BMP.

RW The total number of Wg receptors.

RB The total number of BMP receptors.

DW The diffusivity of Wg.

DB The diffusivity of BMP.
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