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Abstract: Non-invasive measurement of the arterial blood speed gives important health information
such as cardio output and blood supplies to vital organs. The magnitude and change in arterial
blood speed are key indicators of the health conditions and development and progression of diseases.
We demonstrated a simple technique to directly measure the blood flow speed in main arteries
based on the diffused light model. The concept is demonstrated with a phantom that uses intralipid
hydrogel to model the biological tissue and an embedded glass tube with flowing human blood to
model the blood vessel. The correlation function of the measured photocurrent was used to find the
electrical field correlation function via the Siegert relation. We have shown that the characteristic
decorrelation rate (i.e., the inverse of the decoherent time) is linearly proportional to the blood speed
and independent of the tube diameter. This striking property can be explained by an approximate
analytic solution for the diffused light equation in the regime where the convective flow is the
dominating factor for decorrelation. As a result, we have demonstrated a non-invasive method of
measuring arterial blood speed without any prior knowledge or assumption about the geometric or
mechanic properties of the blood vessels.

Keywords: blood flow; diffuse correlation spectroscopy; optical sensor

1. Introduction

Oxygenated red blood cells in the blood flow deliver essential nutrients and oxygen to
organs and limbs to maintain their homeostatic conditions and proper functions. Oximeter
detects the oxygen saturation level of red blood cells by using wavelength dependent
absorption for oxygenated and deoxygenated blood [1]. Such measurements can be done
with wearable devices such as smart watches. On the other hand, there has been no
convenient and non-invasive method to measure the amount of blood supply or blood
speed in major arteries.

Reduced blood supply is usually a sign of diseases and medical conditions. Dehy-
dration, thromboses formation, and other physiological and pathological conditions can
cause short-term or long-term changes in the blood speed at a given location of the artery.
The information helps early diagnosis and monitoring of diseases with impaired blood
flow [2–4]. Therefore, it is desirable to directly measure the traveling velocity of red blood
cells at well-defined locations such as the carotidal artery to the head, femoral artery to
the lower limb, brachial artery to the upper arm, spinal arteries to the spinal cord, renal
arteries to the kidneys, hepatic artery to the liver, and pulmonary artery to the lungs, etc.
The arterial blood speed at the well-defined positions provide direct and unambiguous
information about blood supply to the sites of health concerns.

Doppler frequency shift of ultrasonic waves offers a non-invasive measurement of the
blood flow speed at the well-defined position. However, acoustic measurements require
close physical contacts of the ultrasound transducers with the tissue to allow efficient
coupling of the acoustic wave, and gel is needed to ensure the quality and reliability of
the contact. Furthermore, the measured signal is highly dependent on the angle between
the probe and the blood flow direction. The most convenient and ergonomic direction
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is to have the transducer perpendicular to the blood vessel. However, this arrangement
will produce no Doppler shift signal, thus making the measurement less convenient in
a homecare or nursing home setting for self-administered operation [5]. In this regard,
an optical method is potentially more desirable because a light wave can enter the tissue
via free space coupling and once entering the tissue, as we will discuss later, it travels
diffusively. In addition, the optical hardware including semiconductor light sources and
detectors are more compact than acoustic transmitters and receivers.

People have used dynamic scattering of laser light by red blood cells to measure
the speed for blood vessels near the tissue surface [6,7]. Similar to the Doppler effect of
sound propagation, the frequency of the scattered light by moving particles is also shifted.
Although the operation principle seems to be straightforward, the physical model of the
“optical Doppler device” is based on a key assumption that the light is only scattered once
by a moving object (e.g., a traveling red blood cell) and the rest of the scattering is produced
by quasi static objects such as skin and fat. This assumption may be reasonable for probing
near surface tissue blood flow, but not for major arteries where around 40% of the volume
of the blood vessel with a diameter of a few millimeters is occupied by traveling red blood
cells. Under the approximation of single light scattering by moving particles, the detected
scattered light will display a frequency shift proportional to the velocity of the particle
and the amount of frequency shift can be detected using the homodyne coherent detection
technique [8]. However, the above technique cannot be applied to multiple scatterings by a
large number of moving particles. In such situations, the frequency spectrum of the light
wave is broadened, making the interpretation of signal difficult. Because of this limit, the
current technique of optical Doppler shift has been limited to measuring the blood flow in
microflow channels near the skin although the blood supply by major arteries produces
more valuable information for health and disease conditions. In addition, the laser Doppler
flowmetry can only measure relative speed [9].

To measure the blood flow speed in major arteries, we extend the technique of optical
scattering method by taking into account the effect of multiple scattering by red blood
cells. Instead of measuring the Doppler shift in the optical frequency, we measure the
decorrelation time of the reflected light. The decorrelation time and spectral broadening
can be easily related by the Wiener–Khinchin Theorem, we find that the key information
can be better extracted and understood in the time domain. The key results of our work are
the following: (a) we have shown experimentally and theoretically that one can measure
the arterial blood flow velocity using a simple optical setup comprised of a single semicon-
ductor laser and a single detector, both coupled to a multimode fiber bundle, and (b) we
discovered that for main arteries where the diffused light model applies, the decorrelation
time is inversely proportional to the RBC speed and we can measure its value without any
prior knowledge about the anatomy and tissue mechanic properties of the artery.

Once entering the tissue, light has a very short scattering mean free path and the light
becomes diffusive [10]. Modeling of light propagation in this regime led to the development
of the oximeter back in 1970s [10] and many researchers have utilized the diffused light to
construct images through highly diffusive biological media, such as reconstructed breast
cancer images [11]. The standard configuration for diffused light correlation spectroscopy
includes a point source and a point detector, and the measured correlation function depends
on the relative position between the source and the detector [12–14]. The method of
diffused light correlation spectroscopy has been used in blood perfusion measurement [15],
including brain circulations [16–18]. The setup uses a single-mode fiber coupled detector
to allow single-mode transmission of two orthogonal light polarizations [19]. The single
spatial mode yields the best signal-to-noise ratio since it detects one speckle. However,
this setup produces very low light intensity and requires a single photon detector (e.g., a
single-photon avalanche detector (SPAD) or a photomultiplier tube (PMT)), making the
setup quite sophisticated and subject to interference and stray light.

To make the system robust and easy to operate, in this paper we use multimode fiber
and a regular photodetector to detect temporal fluctuations of the light intensity. In the



Sensors 2022, 22, 897 3 of 14

following, we first present our experimental setup and measurement results, and then
describe the physical model to show how the measured results can be used to find the
red blood cell velocity. We will show that in a simple and robust setup that is relatively
insensitive to the optical alignment between the fiber bundle and the tissue, where we
can reliably measure the absolute value of the traveling speed of red blood cells in a
blood vessel that has a millimeter diameter embedded in a layer of tissue. The results
offer a promising solution for non-invasive measurement of the blood supply into organs
and limbs.

2. Experimental Setup

The experimental setup and measured results are first presented here, followed by the
theoretical analysis in the later sections.

2.1. Tissue Phantom Fabrication

We used intralipid as the scattering agent to mimic the tissue by making its optical
properties of tissue to make the scattering coefficient µs and anisotropy factor g similar
to the the values of real tissue. Because of its similar optical properties to the bilipid
membrane of cells, intralipid is commonly used to simulate tissue scattering [20–22]. In
addition, the absorption coefficient of intralipid is low and its refractive index is close to
that of soft tissue [23]. The tissue phantom is created using intralipid (Sigma-Aldrich 20%)
in gelatin gel. One percent concentration of intralipid was chosen to achieve a scattering
coefficient of around 10 cm−1 at 784 nm [20]. The phantom was initially prepared at 90 ◦C,
and then poured into a mold where a glass tube was pre-inserted at a depth of 5 mm
from the phantom surface (measured from the center of the tube). The liquid phantom
was immediately placed into a freezer at −18 ◦C for 30 min for rapid solidification to
prevent sedimentation of intralipid to achieve a uniform scattering property. Then the
sample was placed in a refrigerator at 6 ◦C for 30 min to further solidify. The subsequent
experiment was usually completed within 30 min after the phantom fabrication to prevent
evaporation induced dehydration of the phantom, which could reduce the surface height.
Glass tubes of three different inner diameters were used to mimic the arteries. Tygon tubing
was connected to both ends of the glass tube, with one end connected to a 10 mL syringe
mounted on a syringe pump and the other end connected to a reservoir (See Figure 1).

Figure 1. Experimental Setup. The laser light illuminates the tissue phantom surface at a 45-degree
angle and the scattered diffused light is collected through the reflection probe fiber bundle which is
coupled to a photoreceiver. The glass tube that emulates a blood vessel is embedded in the tissue
phantom 5 mm below the surface.

2.2. Blood Preparation

12 mL of human whole blood collected on the same day of the experiment was
purchased from the San Diego Blood Bank. EDTA was added to the blood sample to
prevent coagulation.
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2.3. Optical and Electronics Setup

We used an off-the-shelf multicore reflection fiber bundle probe (Model:RP21 from
Thorlabs) that consists of one center core surrounded by 6 peripheral cores to couple the
input and reflected light. The center core was used to deliver the laser light to the blood
vessel and the 6 peripheral cores that are merged into a single output were coupled to the
photodetector (see Figure 1). The fiber bundle was mounted about 45 degrees relative to
the surface of the tissue phantom to prevent specular refection from the tissue surface. The
fiber bundle was coarsely aligned to the position of the glass tube in the tissue phantom.
The laser used in the experiment was an off-the-shelf fiber coupled laser diode at 785 nm,
biased slightly above its threshold current to produce an output of 5 mW. The output of the
detection fiber was coupled to a silicon APD with an integrated transimpedance amplifier
(Thorlabs APD410A) to achieve a transimpedance gain of 500 kV/A at 10 MHz bandwidth.
The APD multiplication gain was set to be the lowest (M ∼ 10). The output signal from the
APD photoreceiver entered a data acquisition board (Advantech PCI-E 1840) at a sampling
rate of 20 Msps, yielding a Nyquist bandwidth of 10 MHz. The total data acquisition time
for the measurement was 25 s. We treated each 5 ms duration as one recording section,
so 25 s of measurement produced 5000 sections for analysis and noise cancellation. In all
the data presented next, we used the average data over 25 s for the mean and over 1 s
to determine the variations shown in error bars. We tested blood flows with three tube
inner diameters: 0.93 mm, 1.14 mm, and 1.68 mm. The tube diameters were measured by a
digital microscope to assure high accuracy. For each tube diameter, we flow the blood at
different speeds.

2.4. Experimental Results

We have used the setup in Figure 1 to measure the photocurrent correlation defined
as 〈i(t)i(t+τ)〉

〈i(t)〉2 where i(t) is the photocurrent at time“t” and 〈〉 is the ensemble average. τ

is the time delay between the instantaneous photocurrents, and is the variable for the
correlation function.

One important relation is to convert the photocurrent correlation into the normalized
electrical field correlation function g1 represented by Equation (1):

g1(τ) =
〈E(t)E∗(t + τ)〉
〈E(t)E∗(t)〉 (1)

Using the Siegert Relation [24], we can obtain a relation between the magnitude of
g1(τ) and the photocurrent correlation as shown in Equation (2):

〈i(t)i(t + τ)〉
〈i(t)〉2 = 1 +

1
N
|g1(τ)|2 +

eδ(t)
〈i(t)〉 (2)

where i(t) is the measured photocurrent, N is the number of spatial modes coupled into
the detection fiber bundle and collected by the detector, δ(t) is a delta function, and e is
the electron charge. The last term in Equation (2) represents the shot noise. For a 25 s
measurement that can be divided into 5000 5 ms sections, the ensemble average is the
average of these 5000 sections. With the 5000 ensemble averaging, we achieved a decent
signal-to-noise ratio and a reasonable data acquisition time. It has been shown that there is
significant SNR improvements in detection of phantom optical property and tissue blood
oxygenation by using multimode fibers [25].

The magnitude of electrical field correlation g1 under different flow speeds of blood is
shown in semi-log plots in Figures 2a, 3a and 4a, where each figure shows measurements
performed with a different tube diameter. The x-axis of each plot is the logarithmic of
τ in the correlation function. From these plots we made two interesting observations:
(a) At relatively low blood flow speed, the curve shows a characteristic of logistic function;
(b) at high blood speed, the curve behaves like a superposition of two logistic functions.
These characteristics become more apparent if we take the derivative of g1 with ln(τ),
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showing that ln(TF) occurs at the inflection point where the magnitude of slope reaches
the maximum.

We will discuss the physics of such characteristics in a later section. By examining
the interesting features of the measured electrical field correlation g1, we can extract the
ln(TF). In the low blood speed regime where the|g1| plot shows two superimposed logistic
functions, we chose the inflection point in the regime of smaller ln(τ) values. We will
elucidate the reasons for such a choice in the next section. Essentially, each of the two
superimposed logistic functions represents a corresponding regime of light scattering
mechanisms. Figures 2b, 3b and 4b show the plot of 1/TF versus the blood flow velocity
with different tube diameters. Amazingly, we obtain a simple linear relation between 1/TF
and the blood speed. More interestingly, we have found that the 1/TF versus speed curve
is independent of the tube diameter. As shown in Figure 5, the three curves of 1/TF versus
speed measured from different tube diameters completely overlap and can be represented
by one simple relation independent of the tube diameter. This result suggests that our
measurement setup can potentially measure the blood speed in different artery sizes
without having to know the exact dimension of the blood vessel diameter. This discovery is
very important in practical applications because it shows that from the g1(τ) curve, which
can be obtained from the correlation of the photocurrent, we can obtain the speed of the
blood directly for different arteries at a given position without any prior knowledge of the
anatomy of the blood vessel. The discovery of this important relation requires a sound
physical foundation, to rule out the possibility of being simply coincidental. The physical
model and mathematical analysis will be discussed next.

10
-6

10
-5

10
-4

10
-3

Correlation Time,  (s)

0.4

0.6

0.8

1

g
1

(a)

0.8 cm/s

1.5 cm/s

2.3 cm/s

3.0 cm/s

3.8 cm/s

4.5 cm/s

5.3 cm/s

6.0 cm/s

6.8 cm/s

0 1 2 3 4 5 6 7

Blood Flow Speed, cm/s

0

2

4

1
/T

F
 (

1
/s

)

10
5 (b)

Experiment

Linear Fit

Figure 2. (a) Measured E-field correlation function (g1) versus flow speed of whole blood for a tube
diameter of 1.68 mm. (b) By taking the inverse of the correlation time at the first inflection point in
(a), marked using ‘X’, the decorrelation rate (1/TF) is plotted versus the flow speed. The scattered
data set with error bars represents the 95% confidence interval over 25 measurements, each for a
duration of 1 s. The dashed line is a linear fit of the measured data.
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Figure 3. (a) Measured E-field correlation function (g1) versus flow speed of whole blood for a tube
diameter of 1.14 mm. (b) By taking the inverse of the correlation time at the first inflection point in
(a), marked using ‘*’, the decorrelation rate (1/TF) is plotted versus the flow speed. The scattered
data set with error bars represents the 95% confidence interval over 25 measurements, each for a
duration of 1 s. The dashed line is a linear fit of the measured data.
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Figure 4. (a) Measured E-field correlation function (g1) versus flow speed of whole blood for a tube
diameter of 0.93 mm. (b) By taking the inverse of the correlation time at the first inflection point in
(a), marked using ‘M’, the decorrelation rate (1/TF) is plotted versus the flow speed. The scattered
data set with error bars represents the 95% confidence interval over 25 measurements, each for a
duration of 1 s. The dashed line is a linear fit of the measured data.
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Figure 5. Combined decorrelation rate (1/TF) versus blood flow speed plot for different tube ID. The
scattered data set with the error bar represents the 95% confidence interval over 25 measurements,
each for a duration of 1 s. The line plots are linear fits of the measured data. The fact that plots for
different tube IDs collapse into one single line demonstrates the existence of a simple relation between
the decorrelation rate and the blood speed, and the relation is independent of the tube diameter.

3. Physical Models
3.1. Diffused Light Equation for Moving Scatters

In order to understand the underlining physics of the relation between the inverse
of characteristic decorrelation time, 1/TF, and the flow speed of the blood, we describe
the physical model and mathematical formulation for our experiment in this section. We
will outline the key steps and, through approximations, produce an analytical relation
between the blood speed and the decorrelation time. The detailed numerical results for
more general analyses without approximations will be presented in a separate paper.

People usually take two approaches to model light propagation in a strongly scattered
biological medium. In one approach, we start with the wave equation and introduce the
scattering and absorption characteristics along the optical path. Despite its rigor in the math-
ematical formulation, to make the result useful, approximations have to be made to make
the problem solvable. Twersky’s theory and Dyson’s equation fall into this category [10].
In another approach, we can formulate the problem in a transport equation that deals with
photon energy transport. These two methods eventually give rise to the same result. In
this paper we take the second approach because of its relative simplicity.

The governing equation is a radiative transfer equation (RTE) in the following form:

dI(~r, ŝ)
ds

= −ρ σt I(~r, ŝ) + ρσs

∫
4π

p(ŝ, ŝ′)I(~r, ŝ′) dΩ′ + S(~r, ŝ) (3)

in which I is the light specific intensity with a unit Wm−2sr−1, ρ is the particle concentra-
tion, σs is the scattering cross section, σt is the total scattering cross section which is the
summation of scattering cross section and absorption cross section. p(ŝ, ŝ′) is the normal-
ized differential scattering cross section which is sometimes called the phase function and it
is unitless, and S(~r, ŝ) is the source intensity which has a unit of Wm−3sr−1. Figure 6 illus-
trates the orientations and coordinates for an infinitesimal scattering volume. Equation (3)
contains 5 coordinates: x, y, z, θ, φ where x, y, z define the position vector~r of the light
intensity, and θ, φ represent the beam’s propagation direction. The unit vectors ŝ′ and ŝ
represent the direction of the incident light and the propagation direction after scattering.
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Figure 6. Illustration of the elementary scattering volume for Equation (3).

Solving Equation (3) would produce the full solution for the light scattering problem
for any scatter concentration. However, Equation (3) is very complicated to solve. For-
tunately, in most biological samples, the scatter density is so high that photons quickly
lose the memory of their path histories after multiple scatterings and it can be justified to
assume the light intensity depends on its position (x, y, z) with a slight flux flow in the
direction of propagation (θ, φ). This would lead to a simplification of the problem, and the
average intensity could be described by the diffusion equation which is only dependent on
the position (x, y, z). Mathematically, it means that we can expand the light intensity in
spherical harmonics by keeping the zero-order and first-order term.

I(~r, ŝ) ' 1
4π

U(~r) +
3

4π
~F(~r) · ŝ (4)

where the first term is the average intensity and the second term is the small photon flux
in the direction of propagation. Applying the diffusion approximation to the RTE, we
can obtain a steady state diffusion Equation (5) to model light propagation in a diffusive
medium when the scatters are not moving. As light needs to be scattered multiple times
to become diffusive, an important requirement for the diffusion approximation is that the
cross section for light scattering is much stronger than the cross section for light absorption.
A problem would arise when dealing with light intensity close to the boundary since the
light is highly directional at the boundary, violating the diffusive condition. Different
boundary conditions have been explored to resolve this problem, including adoption
of an extended boundary condition which uses Taylor expansion to convert the Robin
boundary condition into a Dirichlet type boundary condition to simplify the solution for
Equation (5) [26].

[D∇2 − µa]U(~r) = −S(~r) (5)

where D = 1/3µ′s is the photon diffusivity with a unit of meter and µ′s is the reduced
scattering coefficient. µa is the absorption coefficient with a unit m−1. S(~r) is the source
(unit of Wm−3) that depends only on the location but not on the propagation direction,
different from S(~r, ŝ) in Equation (3). When the scatters exhibit motions, the scattered
intensity would include time as a parameter. For statistical optics, it is natural to use a field
correlation function to capture this dynamic process. Here, we are still talking about the
steady state response of the system so that the time dependence can be represented as a
parameter in the differential equation.

We start with the case of a single scattering event by a moving object. The normalized
single scattering function can be written as:

gs
1(τ) =

〈E(t)E∗(t + τ)〉
〈E(t)E∗(t)〉 = exp

(
− 1

6
q2〈∆r2

i (τ)〉
)

(6)

where gs
1 is the single scattering normalized correlation function, E is the scalar electrical

field of light, q is the photon momentum transfer by each scattering, 〈∆r2
i (τ)〉 is the RMS

displacement of the scatters in a duration of τ. The above equation describes the electrical
field correlation function due to single scattering. This single scattering function can be
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incorporated into the radiative transfer equation, yielding the so-called correlation transfer
equation which is the dynamic counter part of the static radiative transfer equation [27]:

dG1(~r, ŝ, τ)

ds
= −ρσtG1(~r, ŝ, τ) + ρσs

∫
4π

p(ŝ, ŝ′) gs
1(ŝ, ŝ′, τ)G1(~r, ŝ, τ) dΩ′ + S(~r, ŝ) (7)

Similarly, the diffusion approximation can also be applied to obtain the correlation dif-
fusion equation which is again the counterpart of the static diffusion equation described pre-
viously. Equation (8) is the correlation diffusion equation. The diffusion equation can then
be solved with appropriate boundary conditions to be compared with experimental results.

[D∇2 − µa −
1
3

µ′sk2
0〈∆r2(τ)〉]G1(~r, τ) = −S(~r) (8)

where n is the refactive index of scattering media, k0 is the wave vector in vacuum, µ′s is the
reduced scattering coefficient which is the scattering coefficient modified due to scattering
anisotropy. For isotropic scattering, the scattering coefficient would be the same reduced
scattering coefficient.

3.2. Analytic Relation between Decorrelation Time and RBC Flow Speed

We assume a plane wave illumination at the surface. Despite the simplification, the
approximation can yield a satisfactory result in good agreement with the experiment. To
simplify the practical application, we adopted an experimental design where a single
detector covers an area defined by the numerical aperture of 6 hexagonally arranged
multimode fiber surrounding the light source (see Figure 1). Assuming the blood vessel is
cylindrically symmetric, we used a 2D model, as shown in Figure 7.

We can reduce Equation (8) into the following diffusion equation,

[∇2 + k2]G1(~r, τ) = −S(~r)
D

(9)

in which
k = jW(τ) (10)

Since the scattering parameters are different inside and outside the blood vessel, two
sets of parameters are used. The parameters inside the blood vessel are represented using
subscript 1, i.e., k1 = jW1(τ). The parameters outside the blood vessel are represented
using subscript 0, i.e., k0 = jW0(τ).

W1 =

√
1

Din
[µin

a +
1
3

µsk2
λ〈∆r2(τ)〉] (11)

W0 =

√
µout

a
Dout

(12)

To solve Equation (9), we need to first find the mean squared displacement 〈∆r2(τ)〉.
The mean square displacement for RBCs includes Brownian, shear induced diffusion, and
convective motion. We can represent the position variation of RBCs over a given time
interval as [28]:

〈∆r2(τ)〉 = 6Dατ + V̄2τ2 (13)

where the first term in Equation (13) is caused by Brownian and shear induced diffusions
and the second term by convection. For RBCs, the diffusion by Brownian motions is much
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smaller than the shear induced diffusion [29]. The flow of RBCs inside arteries can be
modeled by a laminar flow and the diffusion coefficient can be represented as [30]

Dα = αs

∣∣∣∣∂vRBC
∂r

∣∣∣∣ = 4
3

αs
Vmax

a
(14)

αs is a parameter describing the interaction strength among blood cells due to shear
and its value has been measured experimentally [31–37]. The radial dependent shear rate
is usually replaced by its average value as multiple scattering will lead to an ensemble
averaging across all radial locations. For tissue blood perfusion, the slow flow speed and
small blood vessel diameter make the diffusive motion the dominant effect compared to
the convective motion [38,39]. The situation is reversed, however, for main arteries and our
phantom model where the vessel inner diameter is of millimeter size and the blood flow
speed is several centimeters per second [40]. In such cases, the convective motion becomes
the dominant effect. Hence, in our analysis, we have ignored the diffusion contribution
and included only the convective flow contribution in Equation (13).

We can then write the general solution of the correlation function in Equation (9)
as follows,

G1(~r, τ) = Gin
1 (~r, τ) + Gsc

1 (~r, τ) (15)

The first term is the inhomogeneous solution and the second term is the homogeneous
solution for Equation (9) in the absence of the source. The diffusion equation under a given
boundary condition can be solved in polar coordinates and the method of separation of
variables. For an approximate analytic solution, we kept only the zeroth-order term since
all higher-order terms are insignificant compared with the zeroth order term. A continuity
boundary condition is applied at the cylinder interface between the blood vessel and the
surrounding tissue. The air–tissue surface is ignored for simplicity in the solution. After
solving the differential equation with some approximations based on the numerical value
of actual tissue and blood cell scattering properties, the normalized correlation function g1
can be written in the form of Equation (16). The detailed derivation can be found in the
supplementary materials.

g1(r, a, θ, τ) =
1− g1(r, a, θ, ∞)

1 + τ
TF

+ g1(r, a, θ, ∞) (16)

1
TF
≈ Vnk0

√
µ
′in
s

3µin
a

(17)

where V is the flow velocity of blood, n is the refractive index of blood, k0 is the wavevector
of 784 nm light in vacuum, µ

′in
s is the reduced scattering coefficient of blood (m−1), and µin

a is
the absorption coefficient of blood (m−1). If we define TF as the characteristic decorrelation
time, and 1/TF as the characteristic decorrelation rate, we obtain the key relation that
the characteristic decorrelation rate is only a function of flow speed and blood optical
parameters, as shown in Equation (17). In Equation (16), g1(r, a, θ, ∞) is the asymptotic
value of g1 when τ approaches infinity, and its value is a function of detector position and
blood vessel diameter. In a separate study that solves Equation (9) numerically, we have
validated the approximations that led to the analytic solution for g1 in Equation (16) and,
most importantly, the linear relation between 1/TF and the blood flow velocity.

From the approximated relation in Equation (17), we find that the characteristic
decorrelation rate is proportional to the flow speed. The proportional constant has a
square root dependence on the ratio between the scattering coefficient and the absorption
coefficient. This is intuitive since scattering events cause dephasing, and light absorption
would terminate the scattering process.
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Tissue

!
"

#

Blood 
vessel

Figure 7. Geometry used for theoretical calculation. The circle represents the cross section of blood
vessel with parameters: Din, W1, k1, µin

a , µ
′ in
s ; The area outside the circle represents the static scattering

media, i.e., tissue with parameters Dout, W0, k0, µout
a , µ

′out
s . We adopt cylindrical coordinates and

define the center of the vessel as the origin.

4. Discussion

The measured characteristic decorrelation rate (1/TF) is obtained by calculating the
first inflection point of the curves in Figures 2–4. The behavior of the curves at a longer
time is more complicated, and can be explained by other slower decorrelation processes
than convection, such as shear induced diffusion, thus yielding two superimposed logistic
functions, as shown in Figures 2–4. To use the model described in the previous section,
we need to focus on the short time behavior driven by convection. Figure 8 shows the
calculated and measured characteristic decorrelation rate under different flow speeds and
tube diameters. An excellent agreement between theory and experiment was achieved, con-
firming that in the regime where convective flow is the dominating factor for decorrelation,
the characteristic decorrelation rate is proportional to the blood speed and independent of
the vessel diameter.

0 2 4 6 8 10 12 14
Blood Flow Speed, cm/s

0

1

2

3

4

5

6

7

8

9

10

1/
T F (1

/s
)

105

Experiment, ID = 1.68mm
Experiment, ID = 1.14mm
Experiment, ID= 0.93mm
Theory

Figure 8. Comparison between theoretical calculations (from Equation (17) and experimentally
measured decorrelation rates under different blood flow speeds and tube diameters. The scattered
data set with the error bar represents the 95% confidence interval over 25 measurements. Each mea-
surement took 1 s. The following parameters are used in the calculations: n = 1.36, µ

′ in
s = 1600 m−1

and µin
a = 1000 m−1 for deoxygenated blood [41–44].

5. Conclusions

In this work, we demonstrated a simple technique to directly measure the blood flow
speed in main arteries based on the diffused light model. The device uses a single fiber
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bundle, a diode laser, and a photoreceiver. The concept is demonstrated with a phantom
that uses intralipid hydrogel to model the biological tissue and an embedded glass tube
with flowing human blood to model the blood vessel. The correlation function of the
measured photocurrent was used to find the electrical field correlation function via the
Siegert Relation. Interestingly, the measured electric field correlation function g1(τ) and
ln(TF) shows a relation similar to the logistic function, allowing us to define the ln(τ),
occurring at the first inflection point of g1(τ). Surprisingly, the value 1/TF, which we call
characteristic decorrelation rate, is found to be linearly proportional to the blood speed
and is independent of the diameter of the tube diameter over the size and speed ranges for
major arteries. This striking property can be explained by an approximate analytic solution
for the diffused light equation in the regime where the convective flow would dominate
the decorrelation. This discovery is highly significant because, for the first time, we can use
a simple device to directly measure the blood speed in major arteries without any prior
knowledge or assumption about the geometry or mechanical properties of the blood vessels.
A non-invasive method of measuring arterial blood speed produces important information
about health conditions. Although the device and setup can be further optimized (e.g.,
adding different light wavelengths, different depth of vessel in tissue phantom) and the
physical model can be expanded to acquire more information from the measurements, the
work has paved its way to a new promising modality for measurements of blood supplies
to vital organs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s22030897/s1.
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15. Boas, D.A.; Sakadžić, S.; Selb, J.J.; Farzam, P.; Franceschini, M.A.; Carp, S.A. Establishing the diffuse correlation spectroscopy
signal relationship with blood flow. Neurophotonics 2016, 3, 031412. [CrossRef] [PubMed]

16. Durduran, T.; Yodh, A.G. Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement.
Neuroimage 2014, 85, 51–63. [CrossRef] [PubMed]

17. Torricelli, A.; Contini, D.; Dalla Mora, A.; Pifferi, A.; Re, R.; Zucchelli, L.; Caffini, M.; Farina, A.; Spinelli, L. Neurophotonics:
Non-invasive optical techniques for monitoring brain functions. Funct. Neurol. 2014, 29, 223. [CrossRef] [PubMed]

18. Verdecchia, K.; Diop, M.; Morrison, L.B.; Lee, T.Y.; Lawrence, K.S. Assessment of the best flow model to characterize diffuse
correlation spectroscopy data acquired directly on the brain. Biomed. Opt. Express 2015, 6, 4288–4301. [CrossRef]
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