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ABSTRACT OF THE DISSERTATION 

 

 

Neural Connectivity in Infants at Familial Risk for Autism 

 

by 
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Doctor of Philosophy in Neuroscience  
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Professor Shafali Spurling Jeste, Chair  

 

 

While autism spectrum disorder (ASD) is diagnosed based on behavioral symptoms at 3 

years of age, the infant sibling study design has enabled the detection and characterization of 

atypical neural development during the first year of life, prior to the emergence of behavioral 

symptoms. Infants who have older siblings with ASD are at increased risk for ASD, language 

delay, and other neurodevelopmental delays. As such, it is important to identify as early as 

possible if an infant is on a trajectory towards atypical development in order to help guide close 

monitoring and implement targeted behavioral interventions. The body of work in this 

dissertation contributes to the field of infant sibling research by showing that with robust 

methods, electroencephalography (EEG) can be used to detect altered functional connectivity 

during the first year of life, starting as early as 3 months of age.  Chapter 1 introduces known 

deficits in behaviors and neural connectivity in infants at risk for ASD, highlights methodological 

gaps in the field of EEG infant research, and outlines the goals of this dissertation. Chapter 2 
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addresses methodological considerations in the development of an EEG pre-processing 

pipeline, designed to maximize data quality and data retention for infant EEG. Chapters 3 

through 5 present different aspects of a comprehensive study of functional connectivity during 

language processing in infants at risk for ASD, with focus on theta (4-6 Hz) and alpha (6-12 Hz) 

spectral power and phase coherence within putative language networks. Chapter 3 describes 

differences in coherence at 3-months of age in infants who show ASD symptoms at 18-months 

of age. Chapter 4 highlights altered trajectories in coherence development over the first year of 

life in infants who later have ASD symptoms at 18-months. At the same left fronto-central 

network that differentiated risk groups at 3-months of age, reduced average coherence over the 

first year of life is maintained in infants who showed ASD symptoms at 18 months. Chapter 5 

characterizes connectivity as an endophenotype of ASD in familial risk infants using both the 3-

month cross-sectional study design and the 3-12-month longitudinal study design. Connectivity 

measures that differentiate risk groups in Chapters 3-5 also relate to language ability and ASD 

symptoms at 18-months of age. Taken together, the body of work in this dissertation support the 

hypothesis that early differences in neural connectivity lay a foundation for and precede 

behavioral signs of neurodevelopmental disabilities in infants at risk for ASD.  
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Chapter 1: Introduction  

 

1.1 Genetic basis of ASD  

 Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder defined 

behaviorally based on impairments in social communication skills and the presence of restricted 

and repetitive patterns of behavior and interests (American Psychiatric Association, 2013). ASD 

has also been coined as “developmental disconnection syndromes” (Geschwind 2007). From 

genetics studies of ASD, we know that it is a condition characterized by disrupted connectivity. 

While defined behaviorally, a third of ASD cases have a genetic etiology. Upward to 10-20% of 

ASD cases are caused by single gene mutations associated with known genetic syndromes 

(Berg & Geschwind, 2012; Abrahams & Geschwind, 2008). During prenatal brain development, 

ASD genes converge to disrupt connectivity: ranging from disrupted synaptic connections at the 

molecular and cellular levels, to disrupted cortical and subcortical networks at the circuit level 

(de la Torre-Ubieta et al., 2016; Chen et al., 2015; Ebrahimi-Fakhari & Sahin, 2015; Berkel et 

al., 2010; Durand et al., 2007; Gilman et al., 2011; Guilmatre et al., 2009). At the molecular 

level, genetic mutations associated with ASD can affect protein translation, intracellular 

signaling, and synaptic signaling (synaptic adhesion, synaptic scaffolding) (Durand et al., 2007; 

Berkel et al., 2010; Gilman et al., 2011; Ebrahimi-Fakhari & Sahin, 2015; Chen et al., 2015). At 

the cellular level, genes implicated in ASD can alter neurogenesis and differentiation, neuronal 

migration, axogenesis and dendritic growth, synaptogenesis and pruning, excitatory/inhibitory 

balance, and gliogenesis (de la Torre-Ubieta et al., 2016; Ebrahimi-Fakhari & Sahin, 2015; 

Chen et al., 2015). At the circuit level, ASD associated genetic disruptions can cause microglia 

infiltration, decreased Purkinje cell size and number, decreased neuron size, increased 

neuronal density, and alterations to cortical minicolumns and cytoarchitecture (de la Torre-

Ubieta et al., 2016; Chen et al., 2015). Taken together, these disruptions in synaptic pathways 
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can affect both small-scale synaptic connectivity and large-scale structural and functional 

connectivity of neural circuits. As such, electrophysiological (EEG) measures of functional 

neural connectivity are plausible biomarkers of risk for ASD. These connectivity measures infer 

which brain regions are functionally connected to form brain networks responsible for neural 

activities during both task performance and baseline resting state (Sporns, 2011).  

 Early disruptions in connectivity during infancy are likely to precede the atypical 

connectivity patterns generally observed in individuals with ASD (both with known and unknown 

genetic causes). As will be discussed below, given the genetic evidence of prenatal disruption in 

neural circuitry, we should be able to measure aberrant brain connectivity in the first year of life 

using methods such as EEG, prior to the onset of atypical behavioral signs. 

 

1.2 Infant sibling model   

Prospective longitudinal studies of infants with older siblings with ASD (Familial Risk 

infants: FR) have been the paradigm for the investigation of the earliest markers of ASD, as 

these infants are identified before birth (and therefore can be followed from the earliest time 

points) and are at elevated risk for developing ASD. Infants with 1 older sibling with ASD are at 

20% risk of developing ASD, while infants with multiple older siblings with ASD are at 33-50% 

risk of ASD (Ozonoff et al., 2011; Messinger et al., 2015). The infant sibling model represents 

an interplay between shared polygenic risks and environmental factors (Risch et al., 2014). 

Compared to simplex families with only 1 child with ASD, multiplex families with 2 or more 

children with ASD have lower rates of de novo genetic variants (Leppa et al., 2016). Within 

multiplex families, children with ASD have greater amount of rare copy-number variants (CNVs) 

than their unaffected siblings (Leppa et al., 2016). As a reflection of underlying polygenic risks, 

up to 70% of children with ASD within multiplex families do not inherit the same rare CNVs as 

their other siblings with ASD (Yuen et al., 2015; Leppa et al., 2016). Familial risk infants 
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constitute a heterogenous group with mixed outcomes, reflecting this wide background of 

polygenic risks. Among familial risk infants who do not develop ASD, upward to 28% have 

language delay and/or global developmental delay by 3 years of age (Messinger et al., 2013; 

Landa et al., 2012, Ozonoff et al., 2014, Charman et al., 2017). Some familial risk infants who 

do not meet criteria for ASD may still exhibit a range of subclinical ASD symptoms and 

neurodevelopmental delays, as part of the broader autism phenotype (Messinger et al., 2013; 

Landa et al., 2013; Ozonoff et al., 2014; Charman et al., 2017). Familial risk infants can be 

followed from birth - providing a valuable opportunity to study the earliest manifestation of 

atypical brain development. Due to their heightened risks, it is important to study familial risk 

infants earlier on during the first year of life to identify predictive markers of language 

impairments and social communication deficits that will help guide implementation of earlier 

behavioral interventions. Over the past two decades, the infant sibling model has been utilized 

by many researchers in the Baby Siblings Research Consortium (BSRC), the Infant Brain 

Imaging Study (IBIS) Network, and the British Autism Study of Infant Siblings (BASIS) Network 

to detect early behavioral and neural markers of ASD.  

 

1.3 Robust behavioral evidence of ASD by the 2nd year of life 

Behavioral studies of familial risk infants have identified the emergence of many atypical 

behaviors between the first and second year of life, particularly in the areas of social 

communication, restricted and repetitive behaviors, motor, and language (Jones et al., 2014; 

Zwaigenbaum et al., 2005; Landa & Garrett-Mayer, 2006, Yirmiya et al., 2006; Mitchell et al., 

2006; Landa et al., 2007; Yirmiya et al., 2007; Iverson & Wozniak, 2007; Gamliel et al., 2009; 

Paul et al., 2011; LeBarton & Iverson, 2013; Hudry et al., 2014; Lazenby et al., 2016; West et 

al., 2017). While language impairment is no longer part of the diagnostic criteria for ASD in the 

current fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (American 
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Psychiatric Association, 2013), delayed language onset or regression in language ability in 

young toddlers ASD are among the first behavioral warning signs that parents detect (Rapin & 

Dunn, 2003). Language is an affected domain among many children with ASD, with nearly a 

third of children over 5 years old remaining minimally verbal, and an additional quarter only able 

to produce words but not complete sentences (Anderson et al., 2007; Tager-Flusberg & Kasari, 

2013). As such, early markers of language delay are important to identify to help guide closer 

monitoring of at-risk children and deliver early, targeted language intervention.  

Language deficits. At 5-months of age, familial risk infants do not discriminate between 

lexical stress patterns in speech; in contrast, LR infants have increased attention to trochaic 

stress patterns, which relates to increased word comprehension at 12 months (Ference & 

Curtin, 2013). A profile of low expressive language has been documented as early as 6 months 

of age in infants who show high amount of ASD symptoms at 24 months (Paul et al., 2011). At 6 

months of age, patterns of poorly phonated cries are detectable in infants who will develop ASD 

(Sheinkopf et al., 2012). Atypical intonation patterns are observable by 12 months of age in 

infants who develop ASD (Macari et al., 2012). Between 12-18 months, toddlers who develop 

ASD start showing impairments in both words production and expressive language (Mitchell et 

al., 2006; Zwaigenbaum et al., 2005; Landa & Garrett-Mayer, 2006; Iverson et al., 2007; Estes 

et al., 2015; Lazenby et al., 2016). Deficits in receptive language are evident by 12-14 months of 

age, and include lower understanding of phrased speech (Mitchell et al., 2006; Zwaigenbaum et 

al., 2005; Landa & Garrett-Mayer, 2006; Estes et al., 2015; Lazenby et al., 2016). Between 12-

18 months, infants who develop ASD also have lower words comprehension (Mitchell et al., 

2006; Lazenby et al., 2016). Between 8-18 months of age, an atypical lack of language growth 

accompanying walk onset is observed in infants who develop ASD (West et al., 2017). Toddlers 

with ASD often have more delays in receptive than expressive language (Luyster et al., 2008; 

Ellis Weismer et al., 2010; Hudry et al., 2014; Kwok et al., 2015), which results in a decreased 
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receptive advantage. This deficit in receptive language could be caused by toddlers with ASD 

having more trouble learning words from their environment. Of note, since language ability is 

heterogeneous among children with ASD, those with robust language skills at 36 months may 

not show any language deficits at 18 months (Talbott et al., 2015). All in all, deficits in both 

receptive and expressive language can be clearly detected using standardized behavioral 

assessments by 12 months of age in infants with ASD, with earlier language delays being 

associated with more severe ASD profiles.   

Social communication deficits. Between 12-14 months of age, deficits in initiation of 

social interaction are seen in infants who develop ASD, which include: decreased showing and 

pointing, fewer gestures, lower rate of joint attention initiation, and less gaze alternation 

(Barbaro & Dissanayake, 2013; Macari et al., 2012; Talbott et al., 2015; Landa et al., 2007; 

Mitchell et al., 2006; Zwaigenbaum et al., 2005). Between 6 and 12 months of age, infants who 

develop ASD start to show decreased attention to faces as well as reduced response to their 

own names (Chawarska et al., 2013; Feldman et al., 2012; Nadig et al., 2007). Deficits in social 

attention become more pronounced by 12 months of age, when infants who develop ASD have 

less social smiling, decreased gaze to faces, fewer directed vocalization, and less attention to 

their mothers and researchers in the same room (Ozonoff et al., 2010; Luyster et al., 2009; 

Hutman et al., 2010; Wan et al., 2012). As early as 12 months of age, infants who develop ASD 

also show deficits in imitation, which is critical for social learning (Feldman et al., 2012; 

Zwaigenbaum et al., 2005; Young et al., 2011). Diminished imitation ability is also observed by 

12 months of age in familial risk infants who have developmental delay but no ASD (Young et 

al., 2011). In infants who develop ASD, impaired response to referential cues (i.e. pointing, 

gaze, verbal) are evident by 14-15 months of age (Landa et al., 2007, Rozga et al., 2011, 

Sullivan et al., 2007, Yoder et al., 2009). Between 14 and 17 months of age, infants who 

develop ASD show deficits in both shared positive affect and social referencing (Landa et al., 
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2007; Cornew et al., 2012). As seen, deficits in many aspects of social communication are 

evident by 12 months of age in infants with ASD, at the same time when language deficits start 

to emerge. Impairments in social communication can directly affect language learning, as 

infants who are less engaged in social interactions are less able to learn language from their 

caregivers.   

Restricted and repetitive behaviors. As early as 12 months of age, atypical behaviors 

during object free-play (i.e. unusual visual exploration, rolling, rotating, spinning) are evident in 

infants who develop ASD (Ozonoff et al., 2008). At 12 months of age, infants who develop ASD 

start showing repetitive behaviors during interactions with examiners (Elison et al., 2014) and 

increased restricted and repetitive behaviors across all subtypes (stereotypical, self-injurious, 

compulsive, ritual/sameness, restricted) on parent report measures (Wolff et al., 2014). Of note 

in infants with ASD, repetitive behaviors at 24 months of age correlate with both worse adaptive 

skills and lower socialization scores, concurrently (Wolff et al., 2014). At 12-18 months of age, 

infants who develop ASD have increased amounts arm waving (Loh et al., 2007). By 18 months 

of age, infants who develop ASD have decreased functional play and increased nonfunctional, 

repetitive play behaviors (Christensen et al., 2010). Overall, profiles of restricted and repetitive 

behaviors are evident in infants with ASD by 12 months of age, and preoccupation with these 

behaviors may preclude infants from developing adaptive skills for social communication with 

their caregivers.  

Motor deficits. At 6 months of age, infants who later develop ASD show evident of head 

lag when pulled to sit, limited motor control, and lower activity level (Flanagan et al., 2012; 

Bryson et al., 2007; Zwaigenbaum et al., 2005). Motor skills at 6 months of age have been 

shown to predict behavioral outcomes, including expressive language and ASD diagnosis, in 

infants at familial risk for ASD (LeBarton & Landa, 2018). Specifically, infants who develop ASD 

have poorer motor skills at 6 months of age (LeBarton & Landa, 2018). Delayed walking onset 
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has been observed at 15-16 months in children who develop ASD (Iverson et al., 2007). 

Between 12-18 months of age, children who develop ASD also show delays in fine and gross 

motor skills (Landa & Garrett-Mayer, 2006; Ozonoff et al., 2010). In summary, motor deficits 

start to emerge by 6 months of age in infants with ASD, before the emergence of many other 

behavioral symptoms. Motor skills are specifically important to language development, since 

motor functions are necessary for speech production and the ability to walk also open greater 

opportunities to learn from the environment.    

 Taken together, these studies show that robust differences in behavior are evident by 

the second year of life in children with ASD, with less certainty in the first year despite the 

hypothesis that underlying neural networks should already be altered in infancy.   

 

1.4 Motivations to study early brain development in ASD 

The wide variety of behavioral impairments in ASD are likely caused by underlying 

differences in neural network structure and function, which affect how individuals process 

environmental inputs and generate appropriate responses. Studying early brain development in 

familial risk infants enable researchers to elucidate neural markers of atypical development. 

Using neural markers to identify which infants are likely to develop ASD and neurodevelopment 

delays will have great potentials in facilitating both earlier monitoring and earlier targeted 

intervention while the brain has the greatest plasticity. From genetic studies of ASD, we know 

that the formation of brain networks is affected very early on during fetal brain development, as 

such, atypical neural connectivity patterns should be detectable during infancy, before the 

emergence of ASD symptoms.  

Thus far, studies of neural connectivity in familial risk infants have focused on structural 

and functional connectivity. Through diffusion tensor imaging, structural connectivity can be 

measured in terms of fractional anisotropy (FA) of white matter fiber tracts, which assesses the 
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diffusion of water molecules along axons. Brain regions are considered structurally connected if 

there are white matter fiber tracts connecting them. Greater structural connectivity can be 

indexed by higher FA, reflecting more robust white matter microstructure (axon diameter, 

myelination, and white matter fiber density) (Le Bihan et al., 2001). Structural connectivity is 

known to vary dynamically throughout development, as white matter tracts develop at different 

rates throughout the brain during infancy and early childhood. Compared to structural 

connectivity, functional connectivity has higher temporal resolution in revealing integration and 

segregation of brain networks. Functional connectivity can be measured using both functional 

magnetic resonance imaging (fMRI) and electroencephalography (EEG) and is calculated as the 

statistical interdependency between activities from different brain areas. There are many 

measures of functional connectivity, including phase coherence, phase locking, covariance, and 

correlation (Mohammad-Rezazadeh et al., 2016). In typical development, functional connectivity 

has been shown to increase over the first year of life as neural networks mature and become 

more specialized, organized, and adept at integrating information (Bell & Fox, 1992; Cuevas & 

Bell, 2011; Xiao et al., 2018).  

 

1.5 Neuroimaging markers of ASD in familial risk infants  

Neuroimaging studies of early brain development have identified atypical brain 

structures that relate to ASD traits. Starting at 6-months of age, structural imaging studies have 

identified atypical corpus callosum morphology in infants who go on to develop ASD. In infants 

who develop ASD, increased corpus callosum area and thickness at 6-12 months correlate with 

repetitive behaviors at 24 months (Wolff et al., 2015). Structural neuroimaging of infants with 

later ASD diagnosis have also identified abnormalities in developmental trajectories of cortical 

surface area at 6-24 months that correlate with ASD severity at 2 years (Hazlett et al., 2017). 

Hazlett et al identified an increase in cortical surface area at 6-12 months which precedes an 
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overgrowth in brain volume at 12-24 months; in which volume overgrowth correlates social 

affect impairment (Hazlett et al., 2017). Subcortical volumes at 12 months of age relate to 

language skills at 24 months, with different relationships between brain and behavior 

discriminating infants with ASD from infants with language delay. In infants who develop ASD, 

larger subcortical volumes (thalamus, amygdala, caudate nucleus) predicted greater language 

skills; whereas smaller subcortical volumes predicted more normative language profiles in 

infants who develop language delay (Swanson et al., 2017a). Hazlett et al and Swanson et al 

are complementary studies, showing how overgrowth in both total brain volumes and subcortical 

volumes are associated with ASD. In contrast, inhibition of brain overgrowth appears to be 

protective for ASD (Swanson et al., 2017a). In addition to having atypical brain structures, 

infants who develop ASD also have increased extra-axial cerebrospinal fluid (CSF) throughout 

6-24 months of age, with increased CSF being associated with worse motor ability at 6 months 

and greater ASD severity at 24-36 months (Shen et al., 2013; Shen et al., 2017). Altogether, 

these studies show that changes to brain structure are evident as early as 6 months of age and 

may be implicated in the development of core ASD symptoms.   

Neuroimaging studies of familial risk infants have also identified aberrant structural and 

functional connectivity patterns that related to core ASD traits. As early as 6-weeks of age, 

infants show altered structural lateralization of language networks that relate to receptive 

advantage at 18-months and ASD severity at 36-months (Liu et al., 2019). Compared to low risk 

controls, familial risk infants have lower FA in left superior longitudinal fasciculus (SLF) and 

higher FA in the right SLF. Across risk groups, increased left FA in dorsal language network at 

6-weeks correlate with better receptive advantage at 18-months (Liu et al., 2019). In low risk 

infants, strengthening of structural connectivity in the splenium between 6 and 24 months of life 

has also been shown to predict greater words production at 24-months (Swanson et al., 2017b). 

Compared to low risk infants, familial risk infants who develop ASD show diverging trajectory in 
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structural connectivity development, with patterns of over-connectivity in many networks at 6-

months of age that precede under-connectivity patterns observed by 24 months (Wolff et al., 

2012). Specifically, Wolff et al reported elevated FA in most white matter tracts at 6 months that 

precedes a slower developmental change in white matter microstructure and resulting in lower 

FA by 24 months amongst infants with ASD (Wolff et al., 2012). Compared to low risk toddlers 

at 24 months, familial risk toddlers have inefficient local and global neural network based on 

structural connectivity (Lewis et al., 2014). Functional neuroimaging of familial risk infants has 

characterized patterns of resting state connectivity at 6 months that relate to core ASD 

symptoms at 24 months (Emerson et al., 2017). Taken together, these neuroimaging studies 

show that altered connectivity in many brain networks are present in the first year of life and 

may predispose infants towards developing language delay or ASD.  

 

1.6 Strengths and limitations of EEG 

Compared to MRI, EEG affords both practical and scientific advantages in the study of 

early brain development. EEG signal reflect the summation of post-synaptic transmission from 

millions of cortical pyramidal neurons. In contrast to MRI, EEG has high temporal resolution 

making it preferable for studying functional connectivity. Since MRI is more sensitive to motion 

artifacts, studies in infants must be done while the child is asleep since it is impractical to expect 

young children to remain still for an extended period while awake. EEG is more feasible for use 

with infants and young children because it can tolerate some movement and can be performed 

quickly in awake children. An additional advantage of EEG is that it is scalable, and portable 

EEG systems can be used in medical clinics and in the community. EEG is developmentally and 

temporally sensitive, and there exists a wide range of normative EEG data in typical 

development, starting from infancy through early childhood. And, most relevant to this work 

described in this dissertation, EEG is scientifically valuable because it captures neural 
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processes, such as neural synchrony and connectivity, that are thought to be disrupted in 

neurodevelopmental disorders. As a tool, EEG is not without limitations. EEG signal measured 

at the scalp reflects a summation of cortical electrical activity from multiple sources that have 

been volume conducted through the skull. As such, EEG has low spatial resolution. EEG signals 

are also vulnerable to noise from both physiological and non-physiological sources, and careful 

artifact removal is needed to preserve the underlying neural signals. Similar to MRI, EEG output 

measures of interest are dependent on both processing and analytic methods.  

EEG studies of infants at risk for ASD have allowed us to examine disruptions in 

connectivity at the earliest possible developmental stage. To date, few studies have examined 

EEG connectivity in infants with elevated risk of developing ASD. While there are many 

measures of EEG functional connectivity, the measures of power and coherence have been 

most commonly examined in the ASD literature (Wang et al., 2013; Luckhardt et al., 2014; 

Schwartz et al., 2017). Power is calculated in terms of the amplitude of a signal (the amount of 

EEG activity within a frequency band) and reflects baseline synchronization of underlying neural 

oscillations (Wang et al., 2013). Coherence is the linear-correlation in relative amplitude and 

phase between signals from two electrodes, within a frequency band. While computationally 

simple, coherence provides insight into functional interactions between neural networks 

(Srinivasan et al., 2007; Lukhardt 2014 Luckhardt et al., 2014). Signals that are coherent in 

either amplitude or phase are assumed to have highly coordinated activity, or a strong functional 

connection, between underlying nodes of neurons that produced those signals (Fries, 2005; 

Srinivasan et al., 2007; Duffy & Als, 2012). However, disadvantages to coherence include its 

nonstationarity limitations, its representation of only linear relationships, and its sensitivity to 

volume conduction (Mohammad-Rezazadeh et al., 2016). 
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1.7 EEG markers of ASD in familial risk infants  

A few studies have reported differences in spontaneous EEG spectral power between 

familial risk and low risk infants at 3-12 months of age (Tierney et al., 2012; Gabard-Durnam et 

al., 2015; Levin et al., 2017). In a recent study, Levin and colleagues reported a pattern of 

reduced frontal power in familial risk infants across multiple frequency bands and described 

correlations between frontal alpha power at 3-months of age and expressive language at 12 

months (Levin et al., 2017). Lower frontal power across all frequency bands have been 

observed in 6-months old familial risk infants, in addition to altered trajectories in frontal spectral 

power across multiple frequency bands between 6-24 months (Tierney et al., 2012). Compared 

to low risk controls, familial risk infants also show opposite trajectories in the development of 

frontal alpha power asymmetry between 6 and 18 months of age (Gabard-Durnam et al., 2015). 

Overall, infants with shared familial risk for ASD have distinctive spectral power profiles across 

the first year of life, during spontaneous baseline activity, suggesting that spectral power may be 

an endophenotype of ASD.   

Using task-based paradigms in older infants, three EEG studies have characterized 

differences in functional connectivity between familial risk and low risk infants (Orekhova et al., 

2014; Righi et al., 2014; Keehn et al., 2015). In two of these studies, familial risk infants showed 

atypical coherence patterns in the gamma frequency band at 12 months while listening to 

speech sounds (Righi et al., 2014) and during face processing ( Keehn et al., 2015). Brain 

oscillations in the gamma frequency band (30-50 Hz) are involved in binding local neural 

circuitry and coordinating synchronous firing among neurons in different populations. Task 

related brain activities in the gamma band are involved in cognitive processes including 

memory, informational processing, object representation and language (Basar, 2013), and 

represents early states of sensory perception (Pantev 1991). Notably, Righi et al found that 12 

months old infants with ASD have decreased coherence between frontal and temporal-parietal 
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regions during an auditory oddball paradigm with speech sounds, compared to infants without 

ASD; and regardless of ASD outcome, familial risk infants have lower coherence than low risk 

infants (Righi et al., 2014). Keehn et al showed that 12 months old familial risk infants have 

atypical leftward lateralization of anterior-posterior gamma coherence during a face processing 

task, and this atypicality is greatest in infants who go on to receive ASD diagnosis (Keehn et al., 

2015). Orekhova et al examined a different measure of connectivity, using phase lag index, 

while 14-months old infants viewed dynamic social videos and found alpha band hyper-

connectivity in frontal and central areas in familial risk infants who go on to develop ASD 

(Orekhova et al., 2014). Of note, a recent study used the same methods by Orekhova et al in a 

new sample of infants and has failed to replicate group differences in connectivity between 

infants with and without ASD (Haartsen et al., 2019). Importantly, both Orekhova et al and 

Haartsen et al describe the same relationship between alpha phase lag index at 14-months and 

repetitive behaviors at 36-months among familial risk infants who develop ASD (Haartsen et al., 

2019; Orekhova et al., 2014). These prior works by Orekhova et al, Haartsen et al, and Levin et 

al have highlighted the importance of relating early neural markers to continuous measures of 

behavioral outcomes. Taken together, these studies have shown that atypical functional 

connectivity patterns are detectable by 12 months of age in infants at risk of ASD.  

 

1.8 Methodological gaps 

 While EEG holds a lot of scientific promise, there are still methodological gaps in EEG-

processing strategies regarding increases to both data retention and subject retention. Data loss 

from EEG data cleaning is common, which often leads to exclusion of subjects with noisy data 

from the final analyses (Table 1.1). Studies by Tierney et al, Gabard-Durnam et al, and Levin et 

al used the same minimum threshold of 10 seconds of good data from 120 seconds of 

spontaneous EEG recording as criteria to retain subjects for further analysis. With a low 
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threshold of 10 seconds of good data (good data from only 8% of recording length), 81-87% of 

subjects were retained for in the studies’ final analyses (Tierney et al., 2012; Gabard-Durnam et 

al., 2015; Levin et al., 2017). Averaged across all subjects, good data duration retention was 42-

45% in 3-months old infants, and 32-51% in 6-24 months old children (Tierney et al., 2012; 

Levin et al., 2017). Studies that required subjects to have longer durations of good data tended 

to have lower subject retention after data cleaning. For example, Keehn et al required subjects 

to have at minimum 20% good trials and had a subject retention of 61% (Keehn et al., 2015). 

Orekhova et al and Haartsen et al both retained subjects for further analyses if they had at least 

120 seconds of good data out of 351 seconds recording (34% good data), this resulted in a 

subject retention rate ranging between 52% (Orekhova 2014) and 71% (Haartsen et al., 2019). 

Since infant siblings represent a valuable and small subject pool, it is important to develop 

methodological techniques to maximize retention of subject’s data.  

  

Study Minimum threshold Data retained Subject retained 

Tierney 2012 10/120 s (8%) 39-61 s/120 s (32-51%) 122/140 (87%) 

Gabard-

Durnam 2015 

10/120 s (8%) Not reported 108/126 (86%) 

Levin 2017 10/120 s (8%) 58-73 /120 s (42-45%) 39/48 (81%) 

Orekhova 2014 120/351 s (34%) Not reported 54/103 (52%) 

Keehn 2015 10/50 trials (12 s, 20%) Not reported 95/156 (61%) 

Haartsen 2019 120/351 s (34%) Not reported 101/143 (71%) 

 

Table 1.1. Data and subject retention from a select number of prior infant EEG studies. 
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1.9 Scientific gaps  

While structural and functional connectivity in infants at risk for ASD have been well 

characterized at baseline during sleep and spontaneous activity, little is known in this cohort in 

regard to task-specific connectivity during language processing. Structural connectivity in 

language networks during early infancy has been shown to relate later language ability (Liu et 

al., 2019); and underlying differences in structural connectivity may contribute to altered 

functional connectivity in language networks. In the context of previously published studies, a 

fundamental question that remains is whether there are differences in early neural network 

connectivity during language processing that predict later ASD and language outcomes. 

 

1.10 Goals of dissertation  

This dissertation leverages data from a current longitudinal study on early biomarkers of 

ASD in familial-risk infants as part of the UCLA Autism Center for Excellence (ACE; NICHD 

2P50HD055784-08). The ongoing study is in the seventh year of data collection and utilizes eye 

tracking to study social attention, EEG to examine cognitive processes of visual and auditory 

statistical learning, and MRI to evaluate passive language processing. 

Since language is a shared affected domain among children with ASD and those with 

other delays, this dissertation is focused on studying functional connectivity during language 

processing in infancy, before the manifestation of behavioral symptoms. Research described in 

this dissertation is the first to relate EEG functional connectivity during an auditory language 

task to language outcome in familial risk infants. Identification of the earliest biomarkers of risk 

for core symptoms of ASD will lead the way for implementation of early behavioral interventions 

that may attenuate symptoms and even prevent the development of ASD (Zwaigenbaum et al., 

2015; Green et al., 2015).   
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Chapter 2 addresses methodological considerations in the development of an EEG pre-

processing pipeline with the goals of maximizing data quality and data retention for infant EEG. 

Chapters 3-5 share the same data collection and EEG processing methods, but each chapter 

characterizes different aspects of functional connectivity during language processing in infants 

at risk for ASD. Chapter 3 describes differences in connectivity at 3-months of age in infants 

who show ASD symptoms at 18-months of age. Chapter 4 highlights altered trajectories in 

connectivity development over the first year of life in infants who later have ASD symptoms at 

18-months. Both chapters 3 and 4 are separate drafts of manuscripts that are in preparation for 

publication. Chapter 5 is focused on connectivity as an endophenotype, describing differences 

between familial risk and low risk infants, using both the 3-month cross-sectional study design 

and the 3-12-month longitudinal study design. As shared secondary analyses, chapters 3-5 also 

describe the relationship between early connectivity and behavioral outcomes.   
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Chapter 2: Methodological Considerations in Pre-Processing Infant EEG 

 

2.1 Introduction to infant EEG 

 EEG is a valuable tool that is well suited to study infants. Unlike other imaging modalities 

like magnetic resonance imaging (MRI) or magnetoencephalography (MEG), EEG can tolerate 

infants’ movements during the recording. While biological artifacts such as electromyogram 

(EMG) are recorded in the raw EEG, data pre-processing is designed to remove artifacts and 

preserve underlying neural signals. EEG is scalable and portable, allowing possible integration 

of EEG to the clinics, schools, and community settings. EEG is also developmentally sensitive, 

allowing researchers to measure subtle changes in neural activation as the infant’s brain 

develop over the first year of life. In the research setting, EEG is recorded when the child is 

awake, allowing the study of many brain processes – from spontaneous activity to higher-order 

sensory and cognitive processing.  

 Infant EEG recordings are constrained by multiple factors that are inherent to the subject 

population. Fitting of the EEG net to the infant’s head must be done quickly to minimize the 

child’s discomfort which does not give the researcher ample time to adjust every single 

electrode for maximal conductivity. Research EEG recordings in infants must be kept short 

because infants usually can only tolerate a few minutes of a paradigm before becoming fussy or 

beginning to cry. Infants often move their heads, babble, or suck on a pacifier during the EEG 

recording, which can contribute high amount of EMG in the short recording. EEG recordings in 

infants are often done while the child is seated on their caregiver’s lap. Young infants may lean 

their heads back against their caregivers, which can cause electrodes to shift and induce 

artifacts across many EEG channels. Older infants may tug on the net’s straps or grab hold of 

the net’s electrodes, which can induce high amount of artifact in the recording. Data processing 
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of infant EEG must be sensitive to the high-artifact nature of the data, as well as short paradigm 

duration.  

 In this chapter, methodological considerations in pre-processing of infant EEG data are 

discussed. In the development of the Traditional Pipeline and the Revised Pipeline, we have 

taken approaches to tackle biggest issues of infant EEG: electromyogram (EMG) and volume 

conduction. Traditional methods for removing EMG and other artifacts from infant EEG have 

often resulted in significant data loss, which can contribute to substantial subject loss from the 

research study. The Revised Pipeline was developed with the main goal of reducing data loss 

from infant EEG. Since infant EEG recordings already have short data length, it is important to 

try to and preserve as much clean neural signal as possible to increase the signal:noise ratio. 

Attributes of two processing pipelines, the Traditional Pipeline and the Revised Pipeline 

(Figure 2.1), are compared when both pipelines are used in parallel to clean data files from 3-6 

months old infants. The Revised Pipeline has many advantages in terms of its reproducibility, 

processing speed, and maximal retention of clean file length – making it the ideal pipeline to be 

in the studies described in Chapters 3-5.  

 

2.2 Methods   

 With the goal of addressing issues of EMG and volume conduction in EEG processing, 

two processing pipelines were developed and used in parallel to process continuous infant EEG 

data. The Traditional Pipeline was designed using prior published protocol for processing 

continuous EEG in young children with ASD (Dickinson et al., 2018). The Revised Pipeline was 

designed to increase automation and reproducibility in the processing steps and improve output 

data quality. Both pipelines were designed with consultations from the Swartz Center for 

Computational Neuroscience and utilized the Matlab EEGLAB plugin (Delorme & Makeig, 

2004). Overview of the processing steps for the Traditional Pipeline and the Revised Pipeline 
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are illustrated in Figure 2.1. To assess strengths and weaknesses of each processing pipeline, 

both the Traditional Pipeline and the Revised Pipeline were used in parallel to clean 166 

continuous EEG files from 3-6 months old infants.  81 files were recorded from 3-months old 

infants and 85 files were recorded from 6-months old infants. The study design will be described 

in further details in Chapters 3 and 4.  

 

EEG data acquisition  

EEG was recorded for 2.5 minutes during an auditory language processing task using a 

128-channel HydroCel Geodesic Sensor Net containing Ag/AgCl electrodes and sponges with 

saline electrolyte (Electrical Geodesics Inc., Eugene, OR). To improve each child’s comfort, four 

of electrodes originally placed below and lateral to the eyes – channels 125-128 were removed 

from the net. Placement of electrodes conformed to the International 10-20 System (Jasper 

1958). Net Amps 300 amplifier and Net Station 4.5.7 software on a Mac Pro desktop were used 

to record EEG (Electrical Geodesics Inc., Eugene, OR). Data was filtered online during 

recording using an analog bandpass elliptical filter between 0.1 and 100 Hz. EEG was sampled 

at 500 Hz. Data were referenced online during recording to a vertical reference in a location 

equivalent to Cz.  

The significance of the language processing task will be later described in Chapters 3 

and 4. The focus of this current chapter is on the EEG processing pipelines, and not on the 

domain of language processing. For each EEG processing step, I will describe key 

methodological considerations, main modifications between the Traditional Pipeline and the 

Revised Pipeline, along with details from each pipeline.  

 

 

 



20 
 

Filtering  

Considerations: The choice of low pass filter must be appropriate for the EEG outcome 

measures of interest. EEGLAB Source Information Flow Toolbox (SIFT) is a useful tool for 

source-based EEG connectivity analyses (Delorme et al., 2011). For future analysis with SIFT, a 

low-pass filter with wide transition band width needs to be chosen to help lower model order 

estimations. It is also important to remove 60 Hz line noise because the presence of 60 Hz 

noise in the data will cause high model order in SIFT. Note: EEGLAB CleanLine plugin (Mullen 

2012), which used a multi-taper regression, was unable to remove all 60-Hz line noise from the 

data.  

Modifications: The two pipelines differed in cut-off frequency and roll-off bandwidth for 

the low-pass filter. The Traditional Pipeline was low-pass filtered at 90 Hz with a narrow roll-

off, while the Revised Pipeline was low-pass filtered at 50 Hz with a gentle, broad transition 

bandwidth.  

Traditional Pipeline. Data was bandpass filtered at 1-90 Hz using a finite impulse 

response (FIR) filter with narrow roll-off (0.3 Hz) and strong attenuation (gain = -60 dB). 60 Hz 

electrical line noise was present and left in the data, with the intention of analyzing data below 

50 Hz and above 70 Hz in the future.  

Revised Pipeline. Data were high-pass filtered at 1.5 Hz using Blackman window FIR 

filter, with 1 Hz transition bandwidth and filter order of 2750. Due to the presence of 60 Hz line 

noise in the EEG recording, the data were further low-pass filtered at 50 Hz using Blackman 

window FIR filter, with 20 Hz transition bandwidth and filter order of 138. This pipeline was 

designed to pre-process data for both functional and effective connectivity analyses, including 

compatibility with SIFT.  
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Figure 2.1. Two pre-processing pipelines for continuous EEG data. Figure 2.1a. Traditional 

Pipeline involves manual data cleaning before running ICA. Figure 2.1b. Revised Pipeline 

utilizes ASR for automatic data cleaning before running AMICA. Highlighted steps are key 

differences between the pipelines.  
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First-pass data cleaning  

Considerations: Manual data cleaning has traditionally been used to process infant EEG; 

this method is time consuming but gives the user complete control over every decision to retain 

or reject portions of data. Manual data cleaning is subjective and user-dependent; thus, it is 

difficult to replicate precisely between multiple researchers, or even by the same researcher at 

another point in time. Automated data cleaning methods such as artifact subspace 

reconstruction (ASR) are reproducible, efficient, and have potential for preserving longer 

durations of underlying neural signals.  

Modifications: The Traditional Pipeline used manual data cleaning, while in contrast the 

Revised Pipeline used ASR.  

 Traditional Pipeline.  Bad channel rejection: data were visually inspected and bad 

channels with drift and artifacts were manually removed. Bad duration rejection: during visual 

inspection, durations of recording were manually removed if they contain EMG or artifacts 

affecting majority of channels (Figure 2.2). At this stage, eye blinks and eye movements were 

left in the data. After manual first-pass data cleaning, files needed to have durations of at least 

37.5 seconds of good data to be retained for further processing. 
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Figure 2.2. Manual data cleaning example. Figure 2.2a. Filtered file before manual artifact 

removal. Figure 2.2b. Filtered file after manual removal of noisy channels and durations 

containing artifacts across many channels.  

  

Revised Pipeline.  Artifact subspace reconstruction (ASR) was applied to clean 

continuous data using EEGLAB plugin clean_rawdata (Mullen et al., 2015; Chang et al., 2018). 

Mathematical equation for ASR is described in Figure 2.3. The algorithm for ASR is designed to 

use the available working memory on the computer to decide block-size for: 1) calculating 

calibrated reference data, and 2) calculating moving average during the data reconstruction 

step. Since a computer’s working memory may vary each time ASR is run (depending on which 



24 
 

other processes the computer is running simultaneously), ASR default outputs will differ 

depending on the computer’s available RAM. The algorithm for ASR was designed to maximize 

processing speed (ASR will run faster if it can use more working memory), and to prevent ASR 

from requiring more working memory than what is available on the computer. For ASR’s outputs 

to be reproducible, the algorithm for ASR needs to be modified manually to run with a fixed 

random-access memory (RAM); the available RAM for the computer needs to be determined 

prior to this step. ASR computations for Chapters 2, 3, 4, 5 were performed on an MSI GS63VR 

Stealth Pro laptop, where ASR was run with fixed RAM allocation of 3200 megabytes.  

 Bad channel rejection. Channels were rejected if they were not well correlated with 

adjacent channels; specifically, channels with less than 75% correlation to their reconstruction 

based on other channels in the given time window were removed. Sliding time window of 1-

second duration was used. Channels were rejected if they had flatline signal lasting longer than 

3 seconds. A cut-off of 3 seconds was selected because phase coherence analyses require 

epoch length of at least 3 seconds. In Chapters 3-5, the Revised Pipeline was applied to pre-

process data for phase coherence analyses. 

Calibration of reference data. During the calibration step, ASR first selected the cleanest 

windows of channel data by applying infinite impulse response (IIR) spectral weighting (based 

on the inverse of a model for EEG power spectral density with 1/f trend and alpha peak at 8 Hz). 

The cleanest windows of channel data were concatenated to form the calibrated reference data. 

Principal component analysis (PCA) based on calibrated reference data was computed.  
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Figure 2.3. Mathematical model for artifact subspace reconstruction (ASR). Figure by courtesy 

of Makoto Miyakoshi.  

 

 Data rejection and interpolation. PCA was applied to each 1-second sliding window of 

raw data. Principal components (PCs) from each window of raw data are compared to PCs from 

the calibrated reference data. Data rejection and interpolation were done at the level of the PCs. 

Within each window, raw data’s PCs with variance greater than 8 standard deviation from the 

calibration data’s PCs were labeled as artifact subspace. Raw data’s PCs labeled as artifact 

subspace were rejected and removed. During the reconstruction step, the artifact subspace was 

interpolated based on the calibration data’s PCs. ASR performed data rejection and 

interpolation within 1-second sliding window throughout the entire EEG file. After interpolation 

was complete, data was back-projected from PC space into channel space.  

Window rejection. Window rejection was done after ASR data rejection and interpolation 

have been completed. Within each 1-second sliding window, if more than 25% of channels had 
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z-scores root-mean-square amplitude outside the range of -3.5 to 5.5, then that window was 

rejected. Lowering the threshold for window rejection (i.e. 5-10%) would be much more 

conservative and would cause greater data loss from increased number of windows rejected. An 

example of a file cleaned with ASR is depicted in Figure 2.4.  

 

 

Figure 2.4. ASR example. Figure 2.4a. Filtered file before ASR. Figure 2.4b. Filtered file after 

ASR.  

 

Both Traditional Pipeline and Revised Pipeline incorporated rejection of bad data 

durations. After data duration rejection, the remaining clean data segments were concatenated. 
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This type of concatenation caused discontinuities in the data and introduced high frequency 

noise (Figure 2.5). After pre-processing has been complete, further EEG analyses (spectral 

power, phase coherence …) should exclude any data epoch containing these discontinuities.   

 

Figure 2.5. Example of discontinuities in concatenated clean data, caused by removal of noisy 

durations of data.  

 

Data reduction  

Considerations: In order for Independent Component Analysis (ICA) to run well and have 

good decomposition of the data, the following relationship between recording EEG channels 

and total data points in the file must be satisfied (Onton et al., 2006): 

(𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠)2 × 30 = required data points.  

Since the number of data points in the file is dependent on the original data sampling rate and 

duration of the recording, the following parameters must be met prior to running ICA:  

(𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠)2×30

𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 (𝐻𝑧)
 = minimum duration of good data (seconds).  
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High-density 128-channels EGI nets are commonly used in to record EEG in awake infants in 

the research setting, due to ease in net application. If the data are obtained using a 128-

channels net, sampled at 500 Hz, then a file length of at least 983 seconds (16.4 minutes) is 

required for to run ICA. At a fixed sampling rate of 500 Hz: 64-channels data requires 245.8 

seconds of data (4 minutes), 32-channels data requires 61.4 seconds of data, and 25 channels 

data requires 37.5 seconds of data. These data lengths refer to the duration of good data after 

the first-pass in data cleaning has already been done, and not the duration of the raw data 

recording. ICA requires relatively clean data input for good decomposition quality. Inputting raw, 

messy data into ICA will yield a bad decomposition with few output components reflecting true 

brain activity.  

If the researcher is interested in examining infants’ neural activity specific to a task, one 

is constrained by both short data length and high number of recording channels. There are 

several common approaches to resolving the constraints of having short data length from high 

density EEG recordings: 1) performing dimension reduction with Principle Component Analysis 

(PCA) prior to running ICA; 2) selection of a smaller subset of channels from the original 

recording; 3) down-sampling the data by interpolating to a montage with fewer channels. Prior 

works in our lab examining spontaneous resting state activity in children with ASD and 

neurogenetic syndromes have used PCA to reduce the data to 24 dimensions prior to ICA 

(Frohlich et al., 2016). A recent study by Artoni et al has highlighted several drawbacks to using 

dimension reduction with PCA prior to ICA, including reductions in both independent 

components (IC) stability and fewer number of dipolar “neural” IC (Artoni et al., 2018). The 

selection of channel subsets was recommended as one of the first pre-processing steps in the 

Harvard Automated Processing Pipeline for Electroencephalography (HAPPE), to be done prior 

to bad channel rejection (Gabard-Durnam et al., 2018). There are several drawbacks to 

selecting channel subsets prior to data-cleaning which includes: 1) selecting number of 
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channels used in the subset is arbitrary without knowing how the long the clean data duration 

will be; 2) noisy channels will be included in the channel subset selection, which will further 

reduce the number of channels containing true neural signal in the down-sampled dataset.  

Considering these methodological constraints, both Traditional Pipeline and Revised 

Pipeline utilize data down-sampling after first-pass data cleaning has been completed. By 

knowing how much good data duration remains will allow the researcher to make an informed 

decision in choosing a channel montage to interpolate the data.  

Modifications: None. Both Traditional Pipeline and Revised Pipeline shared the same 

data reduction parameters.  

Traditional Pipeline: After manual removal of noisy channels and noisy durations of 

data, the remaining data from the original 128-channels montage was interpolated to 25-

channels montage based on the International 10-20 System using interp_mont plugin 

(Desjardins, 2010;  Jasper, 1958). A 25-channels montage was chosen because it requires only 

37.5 seconds of good data for reliable ICA decomposition. Prior studies in our lab have used 30-

seconds of clean data as the minimum cut-off for subject inclusion in further analyses (Frohlich 

et al., 2016; McEvoy et al., 2015).  

Revised Pipeline: After cleaning with ASR, data from the original 128-channels 

montage was interpolated to 25-channels montage based on the International 10-20 System 

using interp_mont plugin (Desjardins, 2010; Jasper, 1958). 

 

Independent component analysis  

Considerations: ICA is useful for artifact removal and is also a required prerequisite for 

later analysis with SIFT. The data points requirement for good ICA decomposition was 

previously described in the data reduction step.  ICA decomposition separates signals arising 

from neural sources as well as from artifact sources into individual ICs, allowing for inspection 
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and rejection of ICs containing artifacts. Among the different ICA algorithms, Adaptive Mixture 

Independent Component Analysis (AMICA) has been shown to outperform other ICA methods 

in scalp channels mutual information reduction and identifies the maximal number of dipolar 

brain IC (Delorme et al., 2012).  

Modifications: The two pipelines used different ICA algorithms. The Traditional Pipeline 

used extended infomax ICA, while the Revised Pipeline used AMICA.  

 Traditional Pipeline: Data decomposition using extended infomax ICA was performed 

and generated 25 independent components (ICs) per subject. Extended infomax ICA has been 

used in prior studies in the Jeste lab (Frohlich et al., 2016; Dickinson et al., 2018).  

 Revised Pipeline: 1-model Adaptive Mixture Independent Component Analysis 

(AMICA) (Palmer et al., 2006; Palmer et al., 2008) was performed and outputted 25 

independent components (IC) per subject. AMICA learns the data structure without preset 

assumptions; prior studies have utilized AMICA in processing both infant Piazza et al., 2016) 

and adult EEG data (Hsu et al., 2018).  

 

Second-pass data cleaning  

Considerations: After ICA has been run, output ICs need to be inspected visually for 

remaining artifacts such as eye blinks, saccades, BCG (ballistocardiograms), and EMG. 

EEGLAB plugin ICLabel is a useful tool to aid in manual review and rejection of non-neural IC. 

IClabel is a machine-learning algorithm, trained on thousands of crowd-labeled adult EEG 

datasets (Pion-Tonachini et al., 2017). IClabel accounts for each IC’s activity power spectrum 

and scalp topography in its classification algorithm (Pion-Tonachini et al., 2017; Pion-Tonachini 

et al., 2019). IClabel classifies each IC with percent likelihood of “Brain”, “Muscle”, “Eye”, 

“Heart”, “Line noise”, “Channel noise”, or “Other”. 
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Modifications: The Revised Pipeline utilized ICLabel, while the Traditional Pipeline did 

not use ICLabel.  

 Traditional Pipeline: Manual rejection of artifact ICs was done after careful inspection 

of each IC’s activity power spectrum, scalp topography, and “component activity scroll”. Neural 

ICs with 1/f trend in activity power spectrum, dipolar activity in the scalp topography, without 

BCG or EMG in “component activity scroll” were retained (Figure 2.6). ICs containing eye blinks 

(Figure 2.7a) or saccadic eye movement (Figure 2.7b) were identified and rejected based on 

localized frontal activity on the scalp topography and characteristic large deflections in the 

“component activity scroll”. ICs containing BCG (Figure 2.7c) were identified and rejected based 

on cardiac 1-Hz activity on “component activity scroll”, either posterior or diffuse spread of 

activity on scalp topography. ICs containing EMG (Figure 2.7d) were identified and rejected 

based on deviation from 1/f trend in the activity power spectrum, and presence of high-

frequency artifact bursts in the “component activity scroll”. ICs containing channel noise were 

also rejected; these were identified based on activity localized to one channel on the scalp 

topography (Figure 2.7d).  

 Revised Pipeline: Visual inspection of ICs was done as previously described in 

Traditional Pipeline, but with additional aid from ICLabel. Highlighted in yellow in Figure 2.6 

and Figure 2.7 are IClabel’s automatic classification of brain and artifact components. IClabel 

did not account for each IC’s “component activity scroll”. Manual visual inspection of each IC’s 

“component activity scroll” was necessary to detect infrequent EMG bursts or subtle BCG. 

Careful review of ICs was still necessary, since some neural components from infant EEG were 

classified as “Other” by IClabel.  
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Figure 2.6. Examples of independent components from neural sources.  

 

Figure 2.7. Examples of independent components containing artifacts. Figure 2.7a. Eye blink. 

Figure 2.7b. Saccadic eye movement. Figure 2.7c. BCG from cardiac activity. Figure 2.7d. 

EMG burst.   
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Epoching continuous data  

Considerations: Epoch length must be appropriate for calculating the outcome measures 

of interest. In this case, phase coherence was one of our EEG measures of interest. Phase 

coherence analysis required epochs of at minimum 3-seconds in length. Since coherence 

analysis was sensitive to data length (i.e. different file length in the same subject would yield 

different coherence outputs), the same number of epochs was selected across all subjects. The 

number of epochs was dependent on the subjects’ remaining file length after the first-pass data 

cleaning step of each pipeline. 

Modifications: In the Traditional Pipeline, epochs contained discontinuities from 

concatenation of clean data (after the first-pass data cleaning step). In the Revised Pipeline, 

any epochs with discontinuities were discarded prior to final epoch selection. The two pipelines 

differed in the total number of epochs selected across all subjects.  

Traditional Pipeline: Cleaned data were epoched into 3-second segments. The first 12 

epochs of data were selected across all subjects.  

Revised Pipeline: Cleaned data were epoched into 3-second segments. The first 29 

epochs of data were selected across all subjects.  

 

Laplacian spatial filter  

Considerations: Volume conduction is a prevalent problem in high density EEG 

recordings and can cause neighboring channels to appear falsely to have the similar 

synchronous activity. In application to scalp-based analysis of high-density EEG obtained from 

young infants, Laplacian spatial filter is preferable to average referencing because it can 

mitigate effects of volume conduction.  
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Modifications: None. Both Traditional Pipeline and Revised Pipeline utilized the same 

Laplacian spatial filter.  

Traditional Pipeline: A spherical spline Laplacian transform with head-circumference 

correction was applied to transform the cleaned data into current source density (Kayser 2006). 

Revised Pipeline: Epoched data were passed through a Laplacian spatial filter to 

correct for volume conduction effects.  

 

EEG spectral power analysis  

Spectral power analysis was performed using 3-month EEG data that was pre-

processed with either the Traditional Pipeline or the Revised Pipeline. Spectral power at 2-50 

Hz was calculated using Welch’s method in frontal and temporal-central regions of interest 

(ROIs) across the scalp, using custom scripts written in MATLAB as per prior protocol in the 

Jeste Lab (McEvoy et al., 2015). Left frontal ROI included channels F3, F7, and F9; left 

temporal-central ROI included channels T7, T9, and C3; right frontal ROI included channels F4, 

F8, and F10; right temporal-central ROI included channels T8, T10, and C4. For each 256-

sample segment, the Fast Fourier Transform (FFT) was calculated on 128-point Hamming 

windows with 50% overlap. Absolute power was calculated by summing power estimates at 

every 0.5 Hz increment within each frequency band. All power values were log base 10 

transformed. 

 

2.3 Impact of Processing Pipelines on Data Quality 

Bad channel rejection  

Traditional Pipeline: All files underwent manual removal of bad channels. In the 3-

month dataset, 12% of channels were manually removed (14 + 5). In the 6-month dataset, 14% 
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of channels were manually removed (17 + 7). Averaged across all 166 files, 86-88% channels 

were retained after manual bad channel rejection.  

Revised Pipeline: ASR performed bad channel rejection on all files. With the channel 

criterion set to 0.75 and flatline criterion set to 3, ASR automatically rejected bad channels at a 

similar rate to manual channel rejection. In the 3-month dataset, ASR rejected 12% of channels 

(15 + 8). In the 6-month dataset, ASR rejected 11% of channels (14 + 10).  

 

Bad duration removal  

Traditional Pipeline: All 166 files from the 3-6-month datasets underwent manual 

removal of data durations containing noise and artifacts. In the 3-month dataset, on average 81 

seconds were manually removed (range 3-124 seconds). In the 6-month dataset, on average 80 

seconds were manually removed (range 16-208 seconds). Averaged across all 166 files, 47-

48% of file length were retained after manual duration rejection (Table 2.1).  

Revised Pipeline: Window rejection was enabled, and any 1-second window where 

deviations occurred in more than 25% of channels, after ASR interpolation, was removed. In the 

3-month dataset, ASR performed window rejection on 7 out of 81 files. Among those 7 files: 6 

files had 1-2.34 seconds rejected; 1 file had 50 seconds rejected. In the 6-month dataset, ASR 

only performed window rejection on 6 out of 85 files. In those 6 files, only 1-1.34 seconds were 

rejected from the entire file length. Averaged across all 166 files from the 3-6-month datasets, 

ASR retained 99.5-100% file length after data cleaning (Table 2.1).  

 

IC retained  

 The two pipelines had similar number of retained ICs after ICA (Traditional Pipeline) 

and AMICA (Revised Pipeline), respectively (Table 2.1). More sophisticated techniques of 
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bootstrapping and clustering of ICs would be needed to compare the ICs’ quality (such as 

stability and dipolarity of ICs) between the two pipelines (Artoni et al., 2018; 2019).  

 

Power Spectral Density  

 Power spectral density (PSD) plots were used to qualitatively compare data output from 

the Traditional Pipeline versus the Revised Pipeline. In the 3-month dataset, data processed 

with the Revised Pipeline generally had lower power across frontal and temporal-central ROIs 

compared to data processed with the Traditional Pipeline (Figure 2.8).  

 

 

Figure 2.8. PSD plots for 3-month data processed in parallel using the Traditional Pipeline 

and the Revised Pipeline. Log power density plots at frontal and temporal-central ROIs at 3-

months (median and interquartile range). Black = Traditional Pipeline; purple = Revised 

Pipeline. 

 



37 
 

2.4 Discussion  

 The goals of this chapter were two-fold: first, I wanted to highlight methodological 

considerations in choosing each EEG pre-processing step; and secondly, I wanted to introduce 

a processing pipeline that addressed issues of data loss, EMG, and volume conduction in high-

density infant EEG data. In the prior infant EEG literature, traditional methods for removing EMG 

and other artifacts from initially short recordings have often resulted in both significant data loss 

and subject loss. Manual data cleaning is highly subjective and time consuming, making it 

difficult for data processing to be reproduced reliably between multiple researchers, even on the 

same dataset. The Revised Pipeline was developed with the goals of reducing data loss from 

infant EEG as well as establishing reproducible methods to enable possible future replication 

studies. 

After manual data cleaning, Traditional Pipeline retained 47-48% of good data 

duration. Prior EEG studies in 3-6 months old infants have reported similar retention rate for 

good data duration (Tierney et al., 2012; Levin et al., 2017).  In EEG data from 3-months old 

infants, Levin et al retained 42-45% of clean data duration (Levin et al., 2017). In EEG data from 

6-months old infants, Tierney et al retained 39-47% of clean data duration (Tierney et al., 2012). 

In contrast, Revised Pipeline retained 99.5-100% of good data duration after using ASR in its 

first-pass data cleaning step. Because ASR removed bad data portions and interpolated them at 

the component level, very little bad data remains for window rejection. One of the greatest 

strengths of ASR is its ability remove artifact without compromising the file’s length. Thus, while 

over 52-53% of data length was lost after manual cleaning using Traditional Pipeline, only 0-

0.5% of data length was lost after ASR cleaning using Revised Pipeline. In preserving data 

length, ASR also increased subject retention (Table 2.1). After manual cleaning with the 

Traditional Pipeline, 11 files were rejected because they had fewer than 37.5 seconds of clean 
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data remaining. In contrast, the usage of ASR in Revised Pipeline allowed all files to be 

retained since the clean files’ lengths were maximally preserved.  

 

 Traditional Pipeline Revised Pipeline 

 
3-month 6-month 3-month 6-month 

EEG files  81 84 81 84 

Channels 

removed 

14 + 5 (12%) 17 + 7 (14%) 15 + 8 (12%) 14 + 10 (11%) 

Channel 

retained  

110 + 5 (88%) 107 + 7 (86%) 109 + 8 (88%) 110 + 10 (89%) 

Duration 

removed  

81 + 28 s (53%) 80 + 33 s (52%) 0.8 + 6 s (0.05%) 0.08 + 0.3 s (0%) 

Duration 

retained 

71 + 28 s (47%) 73 + 28 (48%) 151 + 7 s (99.5%) 151 + 10 s (100%) 

IC 

retained  

10 + 2  

(range 4-16) 

13 + 3 

(range 7-18) 

12 + 2  

(range 7-19) 

12 + 2  

(range 4-17) 

Files 

rejected  

7 4 0 0 

File 

retained  

74 (91%) 80 (95%) 81 (100%) 84 (100%) 

 

Table 2.1. Data quality and file retention after parallel pre-processing with Traditional Pipeline 

and Revised Pipeline.  
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Overall, ASR proved to be effective in removing EMG and many artifacts from noisy 

infant EEG data while still preserving underlying neural signals and data length. Preservation of 

clean data length has many important implications: more data points allows for less drastic data 

reduction prior to ICA, which enables greater richness in the data to be retained. Data length 

retention also leads to increased subject retention, which is important in preserving statistical 

power in infant EEG studies that are constrained by small sample sizes. Compared to manually 

cleaned data, data cleaned with ASR had lower spectral power especially at higher frequency 

bands, suggesting a reduction in high frequency noise. The automation of ASR and ICLabel 

also support standardization and reproducibility in data processing between multiple 

researchers and across different research sites. The fast processing speed for ASR allows for 

efficient and quick data cleaning of large datasets with hundreds of files. One caveat is that ASR 

should only be used with continuous EEG data, since its algorithm for selecting reference 

calibration data and its 1-second sliding windows are both not compatible with stimulus-locked 

tasks.   
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Chapter 3: Functional connectivity during language processing in 3-month-olds infants 

at familial risk for ASD 

 

3.1 Introduction  

Autism spectrum disorder (ASD) is a neurodevelopmental disorder defined by 

impairments in social communication skills and the presence of restricted and repetitive patterns 

of behavior and interests (American Psychiatric Association, 2013). While ASD is often not 

diagnosed until 3-4 years of age, numerous prospective studies have characterized the 

emergence of behavioral symptoms between the first and second year of life (Jones et al., 

2014). The prospective infant-sibling study design enables infants with familial risk for ASD, 

defined by having at least one older sibling with ASD, to be studied from early infancy before 

they exhibit any overt behavioral symptoms. While 1-2% of children from the general population 

have ASD, as many as 20% of FR children meet criteria for ASD (Sumi et al., 2006a; Elsabbagh 

& Johnson, 2010; Ozonoff et al., 2011; Messinger et al., 2015). Among FR infants who do not 

develop ASD, approximately 30% have atypical development by 3 years of age, including 

language delay and global developmental delay (Messinger et al., 2013; Landa et al., 2013; 

Ozonoff et al., 2014; Charman et al., 2017). Compared to low risk (LR) infants who do not have 

an older sibling with ASD, FR infants often exhibit deficits in motor, social communication, and 

language domains between the first and second years of life (Jones et al., 2014). As early as 12 

months of age, FR infants with ASD outcomes already exhibit lower receptive and expressive 

language compared to infants who do not have ASD (Mitchell et al., 2006; Ozonoff et al., 2014). 

Given that language is a shared affected domain among many FR children with ASD and other 

neurodevelopmental delays, studying the neural networks underlying language processing in 

early infancy in these children can provide valuable insight into the exact timing and 

mechanisms underlying atypical developmental trajectories. Since nearly a third of children with 
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ASD are minimally verbal (Tager-Flusberg & Kasari, 2013), identifying early neural markers of 

ASD and language delay is important in guiding delivery of early, targeted intervention while the 

brain still has the most plasticity for language learning.  

Prior neuroimaging and electroencephalography (EEG) studies of FR infants have 

identified differences in early neural circuit development that precede behavioral ASD 

symptoms. Structural neuroimaging studies of FR infants with a later ASD diagnosis have 

identified abnormalities in developmental trajectories of cortical surface area and white matter 

pathways at 6-24 months that correlate with ASD severity at 24 months (Wolff et al., 2012; Wolff 

et al., 2015; Hazlett et al., 2017). Functional neuroimaging of FR infants has revealed patterns 

of resting state connectivity at 6 months that relate to ASD symptoms at 24 months (Emerson et 

al., 2017). Compared to MRI, EEG affords both practical and scientific advantages in the study 

of early brain development. EEG is scalable, portable, developmentally sensitive and has a 

relatively high tolerance for motion, making it an ideal modality to study infants. Unlike functional 

MRI, EEG is also a direct measure of electrophysiological brain activity, with sufficient temporal 

resolution to observe neural oscillations that change with cortical maturation (Uhlhaas et al., 

2010). Differences between FR and LR infants in spontaneous EEG spectral power have been 

observed in the first year of life (Tierney et al., 2012; Gabard-Durnam et al., 2015; Levin et al., 

2017). In a recent study, Levin and colleagues reported a pattern of reduced spontaneous 

frontal power in FR infants across multiple frequency bands, with frontal alpha power at 3 

months of age predicting expressive language at 12 months (Levin et al., 2017). Using task-

based paradigms in older infants, several EEG studies have found differences in functional 

connectivity between FR infants and LR infants at 12-14 months that related to ASD symptoms 

and diagnosis at 3 years (Orekhova et al., 2014; Righi et al., 2014; Keehn et al., 2015; Haartsen 

et al., 2019). Notably, Righi and colleagues found that 12-month-old FR infants with ASD 

showed decreased EEG coherence between frontal and temporal-parietal regions during 
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exposure to speech sounds, compared to FR infants without ASD. Regardless of ASD outcome, 

FR infants had lower functional connectivity than LR infants at 12 months of age, but not at 6 

months (Righi et al., 2014). Although language is a core early developmental domain related to 

ASD, prior infant sibling studies have not examined language processing in infants younger than 

6 months.   

In the context of the previously published studies, a fundamental question that remains 

unanswered is whether there are differences in early neural network connectivity during 

language processing that predict later ASD and language outcomes. Through an ongoing 

prospective study of early brain development in FR infants, here we use EEG to study neural 

synchrony and connectivity during language processing at 3 months of age, well before 

behavioral indices of atypical language or social communication unfold.  Language processing 

was measured as part of an auditory statistical learning (ASL) paradigm. In the application of 

ASL to word segmentation, infants use statistical associations between syllables to identify word 

boundaries implicitly. The ability to segment words from continuous speech using transitional 

probabilities (i.e., the greater co-occurrence of syllables within words than between words) has 

been documented in infants throughout the first year of life, from newborns (Flo et al., 2019) to 

older infants (Saffran et al., 1996; Aslin et al., 1998; Saffran, 2001). ASL is essential to learning 

language (Jusczyk, 2002; Thiessen & Saffran, 2003; McNealy et al., 2010). In typical 

development, speech segmentation ability at 7.5-12 months of age predicts later word 

production at two years and preschool language skills (Newman et al., 2006).  

For our primary question, we asked: Can EEG measures of neural synchrony and 

connectivity during language processing (based on spectral power and phase coherence) 

differentiate 3-month-old infants based on later ASD symptoms? As a follow-up, we explored 

whether EEG measures that differentiated groups also relate to 18-month language ability and 

ASD symptom severity. We hypothesized that the ASD-concern group would exhibit decreased 
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left-hemisphere connectivity during language processing and that atypical connectivity patterns 

found in the ASD-concern group at 3 months would relate to lower language ability and higher 

ASD symptoms at 18 months. As a scalable measure of aberrant brain development, functional 

connectivity has potential to guide early prediction and stratification of risk for language delay 

and ASD in this vulnerable population.  

 

3.2 Materials and Methods 

Participants  

Infant participants were recruited to be part of a longitudinal study on early biomarkers of 

ASD, as part of the UCLA Autism Center of Excellence (ACE; NICHD 2P50HD055784-08). FR 

was defined by having at least one older sibling with a documented ASD diagnosis. Our LR 

group included infants who did not have any siblings with ASD. Exclusion criteria for the LR 

group included: 1) first or second-degree relative with ASD or other neurodevelopmental 

disorder (based on parental report), 2) history of any neurological syndromes or major birth 

trauma, and 3) gestational age below 37 weeks. Informed consent was obtained from parents of 

participants prior to assessment under protocols approved by the UCLA Institutional Review 

Board (IRB). To be included in this study, participants had to have usable EEG data at 3 months 

of age. A total of 74 participants (40 FR, 34 LR) completed the EEG task at 3 months; two 

additional children (1 FR, 1 LR) attended the 3-month visit but did not complete this task. There 

were no sex differences between the FR (16 female, 24 male) and LR (13 female, 21 male) 

groups. There were no differences in family income between the FR and LR groups, with the 

majority of families earning above $100,000 in annual income (45% of FR group, 62% of LR 

group). The majority of enrolled families had maternal education of at least college-level (75% of 

FR group, 91% of LR group), while the LR group had more mothers who completed graduate 

school (68%) compared to the FR group (25%). 
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Behavioral Measures 

Several behavioral measures were collected at the 18-month visit. 

Developmental abilities. Developmental ability was measured with the Mullen Scales of 

Early Learning (MSEL; Mullen, 1995). The MSEL is a standardized, norm-referenced 

developmental assessment that provides an overall index of ability, the Early Learning 

Composite (M=100, SD=15), and subscale scores for Receptive Language, Expressive 

Language, Visual Reception, Fine Motor, and Gross Motor skills (M=50, SD=10). We generated 

a nonverbal score by averaging the Visual Reception and Fine Motor t-scores, and a verbal 

score based upon the average of Receptive and Expressive Language t-scores. 

Language skills. Language was assessed using the MSEL, as previously described, as 

well as using the MacArthur Communicative Development Inventory Words and Gestures 

checklist (CDI; Fenson et al., 2007). The CDI is a standardized parent-report questionnaire used 

to track a child’s emerging language and communication skills. On the CDI, parents are asked 

to select the number of words comprehended and words produce by their children from a 396-

item vocabulary checklist. 

ASD symptoms. ASD symptomatology was measured using the Autism Diagnostic 

Observation Scale Toddler Module (ADOS-T; Luyster et al., 2009). The ADOS-T grouped 

children into 3 ranges of ASD concern: Little-to-No Concern, Mild-to-Moderate Concern, and 

Moderate-to-Severe Concern. A calibrated severity score (ADOS-T CSS), ranging from 1 to 10, 

was calculated based on ADOS-T overall score (Esler et al., 2015). Based on ADOS-T CSS at 

18-month, participants were divided into ASD-concern (CSS > 4) and No-ASD-concern (CSS < 

4) groups. In this study, the ASD-concern group consisted of children whose scores on the 

ADOS-T originally placed them in Mild-to-Moderate and Moderate-to-Severe Concern groups. 

MSEL and ADOS-T data were available for 63 participants (36 FR, 27 LR; 14 ASD-concern, 49 
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No-ASD-concern); CDI data were available for 53 participants (30 FR, 23 LR; 10 ASD-concern; 

43 No-ASD-concern).  

 

EEG Stimuli 

 In this ASL paradigm, infants were passively exposed to a continuous stream of 

concatenated syllables that consisted of four different trisyllabic pseudo-words (Figure 3.1, from 

McNealy et al., 2006; McNealy et al., 2010; McNealy et al., 2011). Pseudo-words were 

constructed from a set of 12 syllables and presented in random order, such that the transitional 

probability of hearing two adjacent syllables within words was 100%, while the transitional 

probability of hearing two adjacent syllables across word boundaries was 33% (McNealy et al., 

2006). These four pseudowords (“pabiku”, “daropi”, “tibudo, “golatu”) were presented in a 

continuous speech stream without additional pauses between words. No pseudo-words were 

consecutively presented. Infants can implicitly learn the transitional probabilities between 

syllables and use these probabilities as cues to word boundaries. 

 

 

Figure 3.1. Pseudo-words presented during the auditory language processing task. 

 

EEG Data Acquisition  

EEG was recorded using a 128-channel HydroCel Geodesic Sensor Net containing 

Ag/AgCl electrodes and sponges with saline electrolyte (Electrical Geodesics Inc., Eugene, 

OR). To improve infants’ comfort, four of the electrodes originally placed below and lateral to the 

eyes (channels 125-128) were removed from the net. Placement of electrodes conformed to the 

International 10-20 System (Jasper, 1958). Net Amps 300 amplifier and Net Station 4.5.7 
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software were used to record EEG (Electrical Geodesics Inc., Eugene, OR). Data were filtered 

online during recording using an analog band-pass elliptical filter between 0.1 and 100 Hz. EEG 

was sampled at 500 Hz. Data were referenced online during recording to a vertex reference 

(channel Cz). The session was video-recorded to assist in subsequent data processing of the 

child’s movement and behavior during the session. Testing procedures were conducted as per 

previously established protocols in infants and young children with developmental disabilities 

(Webb et al., 2015). Approximately 2.5-minutes of continuous EEG was acquired for each 

participant during the presentation of the auditory stimuli, while infants sat on their parent’s lap. 

Parents were instructed to not talk to the infants during the EEG recording, to help infants 

maintain upright sitting posture, and to prevent infants from touching the EEG net. 

 

EEG Data Pre-Processing  

EEG data were exported as MATLAB (Mathworks, Natick, MA) files and processed 

offline using the EEGLAB (v14.1.1b) signal processing environment (Delorme & Makeig, 2004), 

running under MATLAB R2017a (Figure 3.2). Continuous data were extracted for the auditory 

language processing task. Data were high-pass filtered at 1.5 Hz using Blackman window finite 

impulse response (FIR) filter, with 1 Hz transition bandwidth and filter order of 2750. Due to the 

presence of 60-Hz line noise in the EEG recording, the data were further low-pass filtered at 50 

Hz using Blackman window FIR filter, with 20 Hz transition bandwidth and filter order of 138. 

Artifact subspace reconstruction (ASR) was applied to continuous data using EEGLAB 

plugin clean_rawdata (Mullen et al., 2015; Chang et al., 2018). ASR was run using fixed 

random-access memory (RAM) allocation of 3200 megabytes. Within each 1-second sliding 

window, data portions with variance greater than 8 standard deviations from the calibration data 

were rejected and interpolated. Channels were rejected if they had flatline duration longer than 

3 seconds. Channels with correlations less than 0.75 to its reconstruction based on other 
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channels in the given time window were also removed. Time windows where 25% of channels 

exceed z-scores of -3.5 to 5.5 on root-mean-square thresholding test were rejected. After 

cleaning with ASR, data from the original 128-channel montage was interpolated to a 25-

channel montage based on the International 10-20 System using interp_mont plugin 

(Desjardins, 2010; Jasper, 1958). 

Adaptive Mixture Independent Component Analysis (AMICA) (Palmer et al., 2006; 

Palmer et al., 2008) was performed and outputted 25 independent components (IC) per subject. 

The AMICA algorithm was used because it outperforms other ICA methods in scalp channels 

mutual information reduction and identifies the maximal number of dipolar brain IC (Delorme et 

al., 2012). AMICA learns the data structure without preset assumptions; prior studies have 

utilized AMICA in processing both infant (Piazza et al., 2016) and adult EEG data (Hsu et al., 

2018). ICs were visually inspected for remaining artifacts: eye blinks, saccades, BCG 

(ballistocardiograms), and electromyogram (EMG). Automatic IC classification was applied 

using EEGLAB plugin ICLabel to aid in manual review and rejection of non-neural IC. IClabel 

accounted for each IC’s activity power spectrum and scalp topography in its classification 

algorithm (Pion-Tonachini et al., 2017; Pion-Tonachini et al., 2019).  

Cleaned data were epoched into 3-second segments. Because phase coherence is 

sensitive to file length, the first 29 epochs of clean data were selected across all subjects for 

further analysis. Data were passed through a Laplacian spatial filter to account for possible 

volume conduction. Specifically, a spherical spline Laplacian transform with head-circumference 

correction was applied to transform the cleaned data into current source density (Kayser & 

Tenke, 2006).  
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Figure 3.2. Pre-processing pipeline for continuous EEG data. IC = independent component. 

 

EEG data quality  

Averaged across 74 files from all subjects, ASR rejected 12% of channels (15 + 8 

channels) and 0.01% of file length (0.8 + 5.8 seconds). The retained neural components were 

classified as “brain components” at 32-95% using IClabel. After manual removal of IC with 

artifacts, an average of 12 + 2 (range: 7-19) brain components were retained per subject. There 

was no difference in data quality between ASD-concern and No-ASD-concern groups. All 

subjects who had EEG during the language processing task were used in the final analyses 

(100% subject retention). 

 

EEG spectral power analysis  

The current study focused on spectral power and phase coherence in the theta (4-6 Hz) 

and alpha (6-12 Hz) frequency bands. Oscillations in the theta band are linked with modulatory 

increase in attention and memory. Activity in the alpha band is developmentally sensitive and 

reflects underlying thalamocortical connectivity. Binned spectral power in the theta (4-6 Hz) and 
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alpha (6-12 Hz) frequency bands was calculated using Welch’s method in frontal and temporal-

central regions of interest (ROIs) across the scalp, using custom scripts written in MATLAB as 

per prior protocol in the Jeste Lab (McEvoy et al., 2015). Left frontal ROI included channels F3, 

F7, and F9; left temporal-central ROI included channels T7, T9, and C3; right frontal ROI 

included channels F4, F8, and F10; right temporal-central ROI included channels T8, T10, and 

C4 (Figure 3.3a). For each 256-sample segment, the Fast Fourier Transform (FFT) was 

calculated on 128-point Hamming windows with 50% overlap. Absolute power was calculated by 

summing power estimates at every 0.5 Hz increment within each frequency band. Relative 

power was calculated by dividing absolute power at each frequency band by the total absolute 

power across 2-50 Hz. All power values were log base 10 transformed. 

 

EEG coherence analysis  

Connectivity was measured in the form of magnitude-square phase coherence across 

the 3-second period, in the theta (4-6 Hz) and alpha (6-12 Hz) frequency bands. Coherence is a 

measure of synchronization between two signals of the same frequency, and it quantifies the 

extent to which they share a constant oscillating frequency and phase difference. Neuronal 

sources share information by oscillating coherently (Fries, 2005). Within a frequency band, 

phase coherence is based on the correlation in phases between two electrodes’ signals. 

Coherence for all channel pairs in each frequency band was calculated using EEGLAB 

newcrossf function, with a window size of 1024 samples (Delorme & Makeig, 2004). Each 

electrode-pair coherence value was calculated by first averaging coherence values across all 

time bins within each frequency bin, and then the mean coherence values was calculated by 

averaging within each frequency bin. Coherence values from all electrode pairs was compiled 

into a 25 x 25 matrix, such that each element (i,j) in each matrix represented the averaged 
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coherence between channel i and channel j, for a given subject. Phase coherence was 

calculated between 18 electrode pairs in language networks (fronto-temporal, fronto-central). 

Left frontal: F3, F7, F9; left temporal: T7, T9; left central: C3; right frontal: F4, F8, F10; right 

temporal: T8, T10; right central: C4 (Figure 3.3b). Only intrahemispheric fronto-temporal and 

fronto-central connections within putative language networks were chosen in order to examine 

functional networks supporting language processing. 

 

 

Figure 3.3. Scalp map used in power and coherence analyses. Figure 3.3a. Frontal and 

temporal-central ROIs used in spectral power analysis. Figure 3.3b. Language network 

electrode pairs examined in phase coherence analysis. 

 

Statistical analysis  

 Descriptive analyses. Behavioral and EEG measures were plotted to check distributional 

assumptions. To follow-up on asymmetric distributions observed, normality of the data was 

more formally checked by Shapiro-Wilks tests. Prevalent deviations from normality was 

detected, which motivated our choice of nonparametric modeling methodology (via permutation 
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tests, Mann Whitney U-test and Spearman’s rank-order correlations). Nonparametric tests were 

robust to deviations from distributional assumptions for the primary and secondary analyses. 

Nonparametric Mann-Whitney U-test was used to compare language scores and ADOS-T 

scores between ASD-concern and No-ASD-concern groups. Log power density (PSD) for ASD-

concern and No-ASD-concern groups was graphed for qualitative characterization. At each 

point of the power spectrum, each group’s median and 25-75th percentile was graphed.   

Primary analyses. Nonparametric Mann-Whitney U-test was used to compare mean 

relative power at each ROI between ASD-concern and No-ASD-concern groups. Nonparametric 

permutation test was used to compare group mean in coherence values at each electrode pair 

between the ASD-concern group and the No-ASD-concern group. Within each frequency band, 

the permutation test shuffled diagnostic group membership of subjects to create new samples 

under the null hypothesis that the mean coherence between the two groups were the same at 

the 18 electrode pairs. False discovery rate (FDR) was used to correct for multiple comparisons 

for all 44 tests in the primary analysis (8 spectral power tests; 36 phase coherence tests) with 

alpha set at 0.05 (Benjamini & Hochberg, 1995). Effect size was calculated using Hedges’ g 

since the ASD-concern and No-ASD-concern groups were dissimilar in size. 

Secondary analyses. In a secondary follow-up analysis, nonparametric Spearman’s 

rank-order correlations were used to relate 3-month measures that differentiated groups to 18-

month MSEL expressive and receptive t-scores, CDI words comprehended and produced, CDI 

receptive advantage, and ADOS-T overall score. Spearman’s correlations described the 

strength of association between two ranked variables. Shapiro-Wilk test, Levene’s test, Mann-

Whitney U-test, and Spearman’s correlations were performed with the Statistical Package for 

Social Sciences (IBM SPSS Statistics, version 25). 
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3.3 Results 

Outcome groupings  

The ASD-concern group (n = 14) consisted of 12 FR and 2 LR infants. The No-ASD-

concern group (n = 49) consisted of 24 FR and 25 LR infants (Table 3.1).  Outcome groups 

were not matched in sex distribution; the ASD-concern group was predominantly male (2 

female, 12 male) while the No-ASD-concern group had an even sex distribution (21 female, 28 

male). There were no differences in family income between the ASD-concern and No-ASD-

concern groups, with the majority of families earning above $100,000 in annual income (43% of 

ASD-concern group, 55% of No-ASD-concern group). The majority of enrolled families had 

maternal education of at least college-level (72% of ASD-concern group, 86% of No-ASD-

concern group), while the No-ASD-concern group had more mothers who completed graduate 

school (49%) compared to the ASD-concern group (29%). 

 

Developmental testing  

At 18 months, FR infants had significantly lower MSEL standard scores, MSEL 

nonverbal t-scores, MSEL verbal t-scores, MSEL receptive language t-scores, and CDI words 

comprehended compared to LR infants. There was no significant difference between FR and LR 

in MSEL expressive language t-score, CDI words produced, or ADOS-T overall score and 

ADOS-T CSS. At 18-months, the ASD-concern group had significantly lower MSEL standard 

scores, MSEL nonverbal t-scores, MSEL verbal t-scores, MSEL receptive language t-scores, 

MSEL expressive language t-scores, CDI words comprehended, and CDI words produced 

compared to the No-ASD-concern group. Compared to the No-ASD-concern group, the ASD-

concern group also had higher ADOS-T overall scores and higher ADOS-T CSS. Mean MSEL 

scores and ADOS-T scores are presented in Table 3.1; mean receptive language, expressive 

language, and receptive advantage scores are presented in Table 3.2. 
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 Familial-risk (FR) Low-risk (LR) ASD-concern No-ASD-

concern 

n 36 27 14 

(12 FR/ 2 LR) 

49 

(24 FR/ 25 LR) 

Sex 13F/23M 10F/17M 2F/ 12 M 21F/ 28M 

MSEL ELC 

standard score 

89.6 + 14.5* 

(52-116) 

102.0 + 14.9* 

(56-126) 

74.6 + 10.7* 

(52-85) 

100.7 + 11.7* 

(82-126) 

MSEL nonverbal 

t-score 

45.9 + 7.5* 

(24.5-64.0) 

52.0 + 8.9* 

(25.0-66.0) 

41.0 + 9.7* 

(24.5-59.5) 

50.7 + 7.0* 

(34.0-66.0) 

MSEL verbal t-

score  

43.1 + 9.6* 

(21.0-63.5) 

49.7 + 10.3* 

(25.0-66.0) 

31.9 + 5.9* 

(21.0-40.5) 

50.0 + 7.4* 

(35.5-66.0) 

ADOS-T overall 

score 

7.4 + 5.2 

(1-18) 

5.0 + 4.3 

(0-18) 

14.3 + 2.7* 

(10-18) 

4.1 + 2.5* 

(0-9) 

ADOS-T CSS 3.2 + 1.9 

(1-7) 

2.3 + 1.4 

(1-7) 

5.6 + 1.0* 

(4-7) 

2.0 + 0.8* 

(1-3) 

 

Table 3.1. Developmental outcomes and ASD symptoms at 18 months. Abbreviations: female 

(F); male (M); calibrated severity score (CSS). Mean, standard deviation, and range scores for 

each group are displayed. * Significant group differences respectively between FR versus LR, or 

ASD-concern versus No-ASD-concern.  
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  Familial-risk 

(FR) 

Low-risk (LR) ASD-

concern 

No-ASD-

concern 

Receptive 

Language 

MSEL 

 (t-score) 

40.0 + 12.4* 

(20-63) 

50.6 + 14.7* 

(20-72) 

27.6 + 5.4* 

(20-37) 

49.4 + 12.3* 

(30-72) 

CDI (words 

comprehended) 

143.3 + 90.2* 

(21-370) 

215.1 + 116.5* 

(10-392) 

57.0 + 38.5* 

(10-150) 

201.8 + 99.8* 

(21-392) 

Expressive 

Language 

MSEL (t-score) 46.2 + 9.8 

(19-68) 

48.9 + 9.5 

(27-65) 

36.1 + 9.4* 

(19-51) 

50.6 + 7.1* 

(33-68) 

CDI (words 

produced) 

55.8 + 75.8 

(0-342) 

63.0 + 66.2 

(3-249) 

9.1 + 11.8* 

(0-37) 

70.8 + 74.2* 

(2-342) 

 

Table 3.2. Language profiles at 18 months on the MSEL and CDI. Mean, standard deviation, 

and range scores for each group are displayed. * Significant group differences respectively 

between FR versus LR, or ASD-concern versus No-ASD-concern. 

 

A range of language ability was observed in both ASD-concern and No-ASD-concern 

groups at 18-months. The ASD-concern group included 12 infants whose scores fell below the 

average range on the MSEL (verbal t-score < 40; Charman et al., 2017). While most infants in 

the No-ASD-concern group had typical language ability, 3 infants showed language delays (2 

FR, 1 LR). On the CDI, the ASD-concern group’s words production ranged from 0 to 37 words, 

whereas the No-ASD-concern group’s words production ranged from 3 to 342 words. 

 

Spectral power: ASD-concern versus No-ASD-concern 

 The ASD-concern group did not differ from the LR group in theta and alpha relative 

power at frontal and temporal-central ROIs (Mann-Whitney U-test p > 0.05) (Figure 3.4).  
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Figure 3.4. PSD plots for ASD-concern and No-ASD-concern groups. Log power density plots 

at frontal and temporal-central ROIs at 3-months (median and interquartile range). Orange = 

ASD-concern; teal = No-ASD-concern. 

 

Phase coherence: ASD-concern versus No-ASD-concern  

Theta phase coherence at left frontal-central electrode pair (F9-C3) differentiated the 

ASD-concern group from the No-ASD-concern group (Hedges’ g = 0.6, p = 0.031), where the 

No-ASD-concern group had higher coherence (Figure 3.5a). At the same frontal-central 

electrode pair (F9-C3), alpha phase coherence also differentiated the ASD-concern group from 
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the No-ASD-concern group (Hedges’ g = 0.7, p = 0.017), where the No-ASD-concern group 

similarly had higher coherence (Figure 3.5b). After FDR was applied and p-values were 

adjusted for multiple comparisons, the group differences in theta and alpha bands were not 

significant (adjusted p-values > 0.05). At the F9-C3 electrode pair for both theta and alpha 

coherence, the ASD-concern group was tightly clustered together while the No-ASD-concern 

group had a wide range in coherence values. Theta and alpha coherence at the other electrode 

pairs did not differentiate risk groups (p > 0.05). 

 

Figure 3.5. Phase coherence for ASD-concern and No-ASD-concern groups. Figure 3.5a. 

Theta phase coherence at left frontal-central connection (F9-C3) differentiated the ASD-concern 

group from the No-ASD-concern group. Figure 3.5b. Alpha phase coherence at F9-C3 

differentiated the ASD-concern group from the No-ASD-concern group. 

 

Phase coherence and behavioral outcomes:  

Across all participants and within risk groups, theta coherence at the F9-C3 electrode 

pair did not correlate with 18-month language ability or ASD symptoms (p > 0.05). Alpha 

coherence at the F9-C3 electrode pair correlated with 18-month CDI words produced, across all 

participants (r = 0.315, p = 0.022) (Figure 3.6). Across all participants and within risk groups, 
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alpha coherence at the F9-C3 electrode pair did not correlate with 18-month ASD symptoms or 

other language measures (p > 0.05). 

 

Figure 3.6. Correlations between 3-month left frontal-central alpha coherence and 18-month 

words produced (CDI). 

 

3.4 Discussion  

The present study is the first to examine spectral power and functional connectivity 

during language processing in 3-month-old infants with familial risk for ASD, with a focus on 

auditory statistical learning. While we found no significant differences based on risk group or 

outcome in EEG power, we did identify reduced connectivity in the left fronto-central area during 

language processing in infants who showed clinically significant ASD symptoms at 18 months. 

Specifically, left fronto-central phase coherence in both theta and alpha frequency bands was 

lower in the ASD-concern group compared to the No-ASD-concern group. Notably, this 

difference was driven by a subset of infants in the No-ASD-concern group who had very high 

coherence during language processing. Across risk groups, alpha coherence at 3 months 

correlated with word production at 18 months. Taken together, these findings support the 
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hypothesis that early differences in neural synchrony may lay a foundation for 

neurodevelopmental impairments in infants at risk for ASD, and these differences are able to be 

robustly quantified using EEG. 

 

Language outcomes  

Participants in our study exhibited language profiles at 18-months of age that were 

consistent with prior characterization of language deficits in infant-siblings and toddlers with 

ASD (Charman et al., 2003; Luyster et al., 2007; Luyster et al., 2008; Ellis Weismer et al., 2010; 

Mitchell et al., 2006; Ozonoff et al., 2014; Levin et al., 2017). Most children who had ASD 

symptoms at 18 months also met criteria for language delay, with deficits in both receptive and 

expressive language. Of note, a small subset of children in the No-ASD-concern group also met 

criteria for language delay at 18 months; this may reflect broader autism phenotype in familial-

risk children and specific language impairment in low-risk children (Messinger et al., 2013; 

Landa et al., 2013; Ozonoff et al., 2014; Charman et al., 2017; Tomblin et al., 1997). 

 

Auditory statistical learning  

To learn word meanings, infants must first be able to segment individual words from 

continuous speech. Infants may utilize multiple cues to aid speech segmentation, including 

language-general cues like statistical word boundaries (Saffran et al., 1996) and language-

specific cues like stress patterns and phonotactic properties (Houston et al., 2000; Houston et 

al., 2004; Mattys & Jusczyk, 2001). Auditory statistical learning has been demonstrated 

behaviorally in infants as early as 5.5 months of age (Johnson & Tyler, 2010) as well as in 

newborns through functional neuroimaging (Flo et al., 2019). In typically developing infants, 

speech segmentation ability relates to both word production at two years and preschool 

language skills (Newman et al., 2006). Infants with lower speech segmentation ability may have 
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more trouble parsing words from continuous speech, which can contribute to deficits in word 

learning and result in language impairment. Auditory statistical learning is crucial for language 

learning and remains relevant beyond infancy. In high-functioning adolescents with ASD, 

impairments in auditory statistical learning measured with functional neuroimaging are related to 

impairments in communication (Scott-Van Zeeland et al., 2010). Among adolescents with ASD 

who have a wide range of cognitive ability, auditory statistical learning assessed with event-

related potentials relates to receptive language ability (Arnett et al., 2018). 

 

Reduced coherence during language processing in infants at risk for ASD 

Our study identified unique connectivity profiles during language processing 

differentiated infants based upon emerging ASD symptoms. There may be a threshold over 

which connectivity during language processing promotes typical language development. 

Regardless of familial risk status, only infants in the No-ASD-concern group had high coherence 

values above a certain threshold. It is possible that infants who have stronger functional 

connectivity in language networks during exposure to speech streams are likely to perform 

better at word segmentation in novel contexts, and word segmentation ability in infancy lays the 

foundation for future word learning and production. Increased left-hemispheric connectivity 

during language processing may reflect different underlying neural mechanisms. Since 

coherence was calculated over the entire exposure phase of the paradigm, higher left frontal-

central connectivity may reflect increased synchronization of neural networks in response to 

speech sounds. Infants’ heightened attention to speech input may result in increased 

synchronization of left-hemispheric language networks. In typically developing infants, speech 

processing at 3 months of age is supported by activation of left temporal and left frontal cortex 

(Dehaene-Lambertz et al., 2002; Dehaene-Lambertz et al., 2006; Dehaene-Lambertz et al., 

2010; Shultz et al., 2014). As language networks become more specialized between 1-4 
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months, infants’ left temporal cortex gradually decreases response to non-speech sounds 

(Shultz et al., 2014). Increased connectivity may also reflect increased synchronization of 

language networks during ASL. Prior ASL studies have shown that some infants are more 

successful than others in segmenting words from continuous speech (Saffran et al., 1996; Aslin 

et al., 1998; Saffran, 2001; Flo et al., 2019). However, by measuring connectivity averaged 

across the exposure phase, this study did not directly test which infants were able to segment 

the speech stream during the exposure phase. Moreover, underconnectivity during language 

processing may both precede and predispose at-risk infants to later language impairment and 

ASD symptoms. Coherence values for the ASD-concern group clustered tightly together, 

suggesting that reduced coherence during language processing is a potential risk marker of 

atypical development. 

While phase coherence differentiated risk groups, spectral power did not differ between 

infants with and without ASD symptoms at 18 months. To date, our study and Levin et al are the 

only two studies that have characterized EEG spectral power in 3-months old infants at familial 

risk for ASD. Results from our language processing study are complementary to the resting 

state findings by Levin et al, as we similarly did not find a difference in spectral power between 

infant groups stratified based on ASD outcomes; likewise, 3-month power in our study did not 

relate to 18-month language outcomes (Levin et al., 2017). 

 

Methodological strengths  

Given the considerable data loss that hamper most infant EEG studies, we prioritized the 

development of a pre-processing pipeline designed to clean and retain data from EEG 

recordings that contained considerable movement artifact. Prior EEG studies of infant siblings 

retained 32-51% of data length after manual data cleaning (Tierney et al., 2012; Levin et al., 

2017; Orekhova et al., 2014; Haartsen et al., 2019). By utilizing artifact subspace reconstruction 
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to remove and interpolate noisy windows of data, we were able to retain close to 100% of data 

length for all subjects after data cleaning. We also applied a Laplacian filter to our data, which 

removed widespread volume-conducted artifact from the scalp signal. Volume conduction 

presents a fundamental problem in high density EEG recordings, with neighboring channels 

appearing to have the same synchronous activity.  

 

Limitations and future directions  

Similar to many prior EEG studies of familial-risk infants, our small sample size limits statistical 

power, and it will be critical to replicate this study in a new cohort of infants. Most prior EEG 

studies in infants at high familial risk have not been replicated [only the British Autism Study of 

Infant Siblings has attempted replication in a new cohort (Orekhova et al., 2014; Haartsen et al., 

2019)]. It remains unclear whether the discrepancies in reported findings across studies result 

from differences in data-analytic methods or rather reflect true trait differences in the sample. 

While our group difference findings in coherence did not survive correction for multiple 

comparisons, the crux of this work remain exploratory and hypothesis generating. Furthermore, 

since the present study only examined functional connectivity during the exposure phase of the 

word segmentation paradigm, during which infants were getting familiarized with nonsense 

words from a continuous speech stream, it is unclear whether increased connectivity reflected 

the infants’ ASL or the infants’ increased attention to speech stimuli. In future studies, functional 

connectivity should be examined during both the exposure phase and the test phase of an ASL 

paradigm in order to determine if increased connectivity during this task indeed provides a direct 

measure of word segmentation ability.  

The present study revealed differences in functional connectivity during language 

processing can be detected as early as 3 months of age. Future studies should investigate the 

developmental trajectory of functional connectivity during language processing throughout the 



62 
 

first year of life, as the brain undergoes dramatic structural and functional maturation during this 

period. As the structural integrity of language networks are known to support language function, 

it is likely that infants who later develop ASD and language delay will have aberrant trajectories 

in both structural and functional connectivity of language networks during the first year of life. 
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Note: Chapters 3 and 4 are separate manuscripts in preparation for publications, thus there are 

some redundancy in the background and methods sections for these chapters.  

 

Chapter 4: Longitudinal development of functional connectivity during language 

processing over the first year of life in infants at familial risk for ASD 

 

4.1 Introduction  

Autism spectrum disorder (ASD) is a common neurodevelopmental disorder affecting 1-

2% of children in the general population (CDC 2014). ASD is often diagnosed by three years of 

age based on deficits in social communication and patterns of repetitive behaviors and 

restricted interests (American Psychiatric Association, 2013). Infants who have older siblings 

with ASD (familial risk or FR) are at increased risk for developing ASD, with rates approaching 

20% (Sumi et al., 2006b; Elsabbagh & Johnson, 2010; Ozonoff et al., 2011; Messinger et al., 

2015). FR infants who develop ASD often show early behavioral symptoms of ASD between the 

first and second year of life (Jones et al., 2014). As early as 12-months of age, deficits in both 

receptive and expressive language are evident among FR infants who develop ASD (Mitchell et 

al., 2006; Ozonoff et al., 2014). Using noninvasive techniques such as magnetic response 

imaging (MRI) and electroencephalography (EEG), aberrant brain development in FR infants 

can be studied during the first year of life, before the emergence of behavioral symptoms, which 

can, in turn, guide earlier detection of risk and earlier initiation of screening and interventions.  

In recent years, many neuroimaging studies of FR infants have consistently 

characterized altered trajectories in the development of brain structures and neural network 

connections during the first year of life. In FR infants who later develop ASD, structural imaging 

studies have identified abnormalities in developmental trajectories of cortical surface area and 
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white matter pathways at 6-24 months that correlate with ASD severity at 24 months (Wolff et 

al., 2012; Wolff et al., 2015; Hazlett et al., 2017). In low-risk infants (LR) who do not have older 

siblings with ASD, the rate of splenium structural development between 6 and 24 months has 

been shown to predict greater word production at 24-months (Swanson et al., 2017b). Given 

that language is a shared affected domain among children with ASD and other 

neurodevelopmental delays, studying neural networks underlying language processing in early 

infancy can provide valuable insight into the emergence of atypical neurodevelopmental 

pathways. In a recent study, we identified a pattern of reduced functional connectivity during 

language processing, as measured by phase coherence, in 3-months old infants who later 

develop ASD symptoms by 18-months of age (Tran et al, in prep). Conversely, infants who had 

increased phase coherence in left hemispheric language networks at age 3-months showed 

greater expressive vocabulary at 18 months (Tran et al, in prep). In the context of known altered 

trajectories in structural connectivity development, it is still currently unknown how functional 

connectivity during language processing develops over the first year of life in infants at familial 

risk for ASD.  

The goals of the current study were two-fold: 1) to examine whether developmental 

trajectories in phase coherence during language processing across the first year of life can 

differentiate infants based on later ASD symptoms, and 2) to investigate if change in coherence 

over the first year of life predicts language and ASD outcomes. Infants were divided into ASD-

concern and No-ASD-concern groups based on their ASD symptom profiles at 18-months. The 

ASD-concern group was expected to maintain decreased left-hemispheric coherence over the 

first year of life. Atypical coherence trajectories found in the ASD-concern group between 3-12 

months were expected to relate to worse language ability and increased ASD symptoms at 18-

months.  
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4.2 Materials and Methods  

Participants  

Families were recruited to be part of a longitudinal study on early biomarkers of ASD in 

FR infants, as part of the UCLA Autism Center for Excellence (ACE; NICHD 2P50HD055784-

08). FR was defined by having at least one older sibling with an ASD diagnosis. Our LR group 

included infants who did not have any siblings with ASD. Exclusion criteria for LR group 

included: (1) first or second-degree relative with ASD or other neurodevelopmental disorder 

(based on parental report), (2) history of any neurological syndromes or major birth trauma, and 

(3) prematurity. Informed consent was obtained from parents of participants prior to assessment 

under protocols approved by the UCLA Institutional Review Board (IRB). 87 subjects (51 FR, 36 

LR) completed their visits at 3, 6, 9, and 12 months of age, out of which 85 subjects (50 FR, 35 

LR) completed EEG during the language task for at least one timepoint. There were no sex 

differences between FR (21 female, 29 male) and LR (13 female, 22 male) groups.  

 

Behavioral Measures 

Several behavioral measures of ASD symptoms, overall developmental level, and 

language ability were assessed at 18-months.  

Developmental abilities. Developmental ability was measured with the Mullen Scales of 

Early Learning (MSEL; Mullen, 1995). The MSEL is a standardized, norm-referenced 

developmental assessment that provides an overall index of ability, the Early Learning 

Composite (M=100, SD=15), and subscale scores for Receptive Language, Expressive 

Language, Visual Reception, Fine Motor, and Gross Motor skills (M=50, SD=10). We generated 

a nonverbal score by averaging the Visual Reception and Fine Motor t-scores, and a verbal 

score based upon the average of Receptive and Expressive Language t-scores. 

Language skills. Language was assessed using the MSEL, as previously described, as 

well as using the MacArthur Communicative Development Inventory Words and Gestures 
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checklist (CDI; Fenson et al., 2007). The CDI is a standardized parent-report questionnaire used 

to track a child’s emerging language and communication skills. On the CDI, parents are asked 

to select the number of words comprehended and words produce by their children from a 396-

item vocabulary checklist. 

ASD symptoms. ASD symptomatology was measured using the Autism Diagnostic 

Observation Scale Toddler Module (ADOS-T; Luyster et al., 2009). The ADOS-T grouped 

children into 3 ranges of ASD concern: Little-to-No Concern, Mild-to-Moderate Concern, and 

Moderate-to-Severe Concern. A calibrated severity score (ADOS-T CSS), ranging from 1 to 10, 

was calculated based on ADOS-T overall score (Esler et al., 2015). Based on ADOS-T CSS at 

18-month, participants were divided into ASD-concern (CSS > 4) and No-ASD-concern (CSS < 

4) groups. In this study, the ASD-concern group consisted of children whose scores on the 

ADOS-T originally placed them in Mild-to-Moderate and Moderate-to-Severe Concern groups. 

MSEL and ADOS-T data were available for 71 subjects (44 FR, 27 LR; 17 ASD-concern, 54 No-

ASD-concern); CDI data were available for 59 subjects (36 FR, 23 LR; 13 ASD-concern; 46 No-

ASD-concern).  

 

EEG Stimuli  

In this study, language processing was measured as part of an auditory statistical 

learning (ASL) paradigm. In the application of ASL to word segmentation, infants use statistical 

associations between syllables to identify word boundaries implicitly. The ability to segment 

words from continuous speech using statistical word boundaries has been documented in 

infants throughout the first year of life, from newborns (Flo et al., 2019) to older infants (Saffran 

et al., 1996; Saffran et al., 1999; Saffran, 2001). In typical development, speech segmentation 

ability at 7.5-12 months of age predicts later word production at two years and preschool 

language skills (Newman et al., 2006).  
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In our ASL language processing task, infants were passively exposed to a continuous 

stream of concatenated syllables that consists of four different tri-syllabic pseudo-words (Figure 

4.1, from McNealy et al., 2006). Pseudo-words were constructed from a set of 12 syllables and 

presented in random order, such that the transitional probability of hearing two adjacent 

syllables within words was 100%, while the transitional probability of hearing two adjacent 

syllables across word boundaries was 33% (McNealy et al., 2006). No pseudo-words were 

consecutively presented. 

 

Figure 4.1. Pseudo-words auditory stimuli presented during language processing task. 

 

EEG Data Acquisition  

EEG was recorded using a 128-channel HydroCel Geodesic Sensor Net containing 

Ag/AgCl electrodes and sponges with saline electrolyte (Electrical Geodesics Inc., Eugene, 

OR). To improve each infant’s comfort, four of the electrodes originally placed below and lateral 

to the eyes (channels 125-128) were removed from the net. Placement of electrodes conformed 

to the International 10-20 System (Jasper, 1958). Net Amps 300 amplifier and Net Station 4.5.7 

software were used to record EEG (Electrical Geodesics Inc., Eugene, OR). Data were filtered 

online during recording using an analog band-pass elliptical filter between 0.1 and 100 Hz. EEG 

was sampled at 500 Hz. Data were referenced online during recording to a vertical reference in 

a location equivalent to Cz. The session was recorded with video to assist in subsequent data 

processing of the child’s movement and behaviors during the session. Testing procedures were 

conducted per previously established protocols in infants and young children with 

developmental disabilities (Webb et al., 2015). Approximately 2.5-minutes of continuous EEG 

was acquired for each subject at 3-months during an auditory language processing task. During 
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the task, infants sat on their parent’s lap. Parents were instructed to not talk to the infants during 

the EEG recording, to help infants maintain upright sitting posture, and to prevent infants from 

touching the EEG net. 

 

EEG Data Pre-Processing  

EEG data were exported to a Matlab (Mathworks, Natick, MA) compatible format and 

processed offline using EEGlab (v14.1.1b) signal processing environment (Delorme & Makeig, 

2004) running under Matlab R2017a (Figure 4.2). Continuous data were extracted for the 

auditory language processing task. Data were high-pass filtered at 1.5 Hz using Blackman 

window FIR filter, with 1 Hz transition bandwidth and filter order of 2750. Due to the presence of 

60-Hz line noise in the EEG recording, the data were further low-pass filtered at 50 Hz using 

Blackman window FIR filter, with 20 Hz transition bandwidth and filter order of 138.  

Artifact subspace reconstruction (ASR) was applied to continuous data using EEGLAB 

plugin clean_rawdata (Mullen et al., 2015, Chang et al., 2018). ASR was run using fixed 

random-access memory (RAM) allocation of 3200 megabytes. Within each 1-second sliding 

window, data portions with variance greater than 8 standard deviations from the calibration data 

were rejected and interpolated. Channels were rejected if they had flatline duration longer than 

3 seconds. Channels with correlations less than 0.75 to its reconstruction based on other 

channels in the given time window were also removed. Time windows where 25% of channels 

exceed z-scores of -3.5 to 5.5 on root-mean-square thresholding test were rejected. After 

cleaning with ASR, data from the original 128-channels montage was interpolated to 25-

channels montage based on the International 10-20 System using interp_mont plugin 

(Desjardins, 2010; Jasper, 1958). 

Adaptive Mixture Independent Component Analysis (AMICA) (Palmer et al., 2006, 

Palmer et al., 2008) was performed and outputted 25 independent components (IC) per subject. 

AMICA algorithm was used because it outperforms other ICA methods in scalp channels mutual 
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information reduction and identifies the maximal number of dipolar brain IC (Delorme et al., 

2012). AMICA learns the data structure without preset assumptions; prior studies have utilized 

AMICA in processing both infant (Piazza et al., 2016) and adult EEG data (Hsu et al., 2018). IC 

were visually inspected for remaining artifacts: eye blinks, saccades, BCG (ballistocardiograms), 

and electromyogram (EMG). Automatic IC classification was applied using EEGLAB plugin 

ICLabel to aid in manual review and rejection of non-neural IC. IClabel accounted for each IC’s 

activity power spectrum and scalp topography in its classification algorithm (Pion-Tonachini et 

al., 2017, Pion-Tonachini et al., 2019).  

Cleaned data were epoched into 3-second segments. Because phase coherence is 

sensitive to file length, the first 29 epochs of clean data were selected across all subjects for 

further analysis. Data were passed through a Laplacian spatial filter to correct for possible 

volume conduction effects. Specifically, a spherical spline Laplacian transform with head-

circumference correction was applied to transform the cleaned data into current source density 

(Kayser & Tenke, 2006). 

 

Figure 4.2. Continuous EEG pre-processing for functional connectivity analysis. 
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EEG coherence analysis  

Connectivity was measured in the form of magnitude-square phase coherence across 

the 3-second period, in the theta (4-6 Hz) and alpha (6-12 Hz) frequency bands. Coherence is a 

measure of synchronization between two signals of the same frequency, and it quantifies the 

extent to which they share a constant oscillating frequency and phase difference. Neuronal 

sources share information by oscillating coherently (Fries, 2005). Coherence for all channel 

pairs in each frequency band was calculated using EEGlab newcrossf function, with a window 

size of 1024 samples (Delorme & Makeig, 2004). Each electrode-pair coherence value was 

calculated by first averaging coherence values across all time bins within each frequency bin, 

and then the mean coherence values was calculated by averaging within each frequency bin. 

Coherence values from all electrode pairs was compiled into a 25 x 25 matrix, such that in each 

element (i,j) in each matrix represented the averaged coherence between channel i and channel 

j, for a given subject. Phase coherence was calculated between 18 electrode pairs in language 

networks (frontal-temporal, frontal-central). Left frontal: F3, F7, F9; left temporal: T7, T9; left 

central: C3; right frontal: F4, F8, F10; right temporal: T8, T10; right central: C4 (Figure 4.3). Only 

intrahemispheric fronto-temporal and fronto-central connections within putative language 

networks were chosen in order to examine functional networks supporting language processing. 
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Figure 4.3. Language network electrode pairs examined in phase coherence analysis. 

 

Statistical analysis  

Descriptive analyses. Mann-Whitney U-test was used to compare 18-month language 

scores and ADOS-T scores between risk groups. Mann-Whitney U-test were performed with the 

Statistical Package for Social Sciences (IBM SPSS Statistics, version 25). 

Primary analyses. At each electrode pair, a linear mixed effect model was used to model 

coherence (Y) as a function of time (t). The analysis was conducted in two stages. In the first 

stage, longitudinal trends for each group were modeled and contrasted to assess group-

differences in coherence at each electrode. At each electrode pair and frequency band, a 

separate model was fit and a y-intercept and slope of the best fit line for each group was 

computed. The subject index (i) ranged from 1 through n, where n is the total number of 

subjects in each group. Subjects needed to have EEG data from at least one timepoint in order 

to be included in the model. Subject’s age was centered at 7.5 months so that the intercept for 
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such group represented average coherence across the first year of life. For each electrode, the 

linear mixed effects model was specified as 

 

𝑌𝑖(𝑡) =  𝛽1𝐶𝑜𝑛𝑐𝑒𝑟𝑛 + 𝛽2𝑁𝑜𝐶𝑜𝑛𝑐𝑒𝑟𝑛 +  𝛽3𝐶𝑜𝑛𝑐𝑒𝑟𝑛 ∗ 𝑡 +  𝛽4𝑁𝑜𝐶𝑜𝑛𝑐𝑒𝑟𝑛 ∗ 𝑡 +  𝛾0,𝑖 + 𝛾0,𝑖 +  𝜖𝑖(𝑡) 

 

where Concern and NoConcern were dummy variables that identified group membership, 𝛽 

were fixed effects capturing group-specific slope and intercept effects, 𝛾0,𝑖 and  𝛾0,𝑖 were 

normally distributed subject-specific slope and intercept terms, and 𝜖𝑖(𝑡) was independent 

measurement error. Wald chi-square tests were used to compare differences in fixed effects 

between groups at each electrode pair and frequency band (Fox & Weisberg, 2019). The group 

contrasts were ASD-concern versus No-ASD-concern for the intercept and slope terms given by 

𝛽1 − 𝛽2 and 𝛽3 − 𝛽4, respectively. From these contrasts, a subset of electrodes was identified in 

which slope or intercept terms varied between the two groups.   

 Secondary analyses. As part of follow-up secondary analyses, electrodes that were 

found to display overall group-differences or longitudinal group-differences were selectively 

considered to determine if subject-specific coherence trends at the identified electrodes were 

associated with cognitive outcomes. For stage two, at each electrode, subject-specific estimates 

were calculated using one of two models, agnostic to group membership. Group membership 

was omitted in this stage given that the primary concern was to associate subject-specific trends 

in coherence with cognitive outcomes. Including group-membership would introduce diagnostic 

information into the model and undercut the analytic goal of exploring connections between 

physiology and developmental outcomes. If the two groups displayed differences in longitudinal 

trends (𝛽3 − 𝛽4), then the following model was fit, 

 

𝑌𝑖(𝑡) =  𝛽0 +  𝛽1𝑡 +  𝛾0,𝑖 + 𝛾0,𝑖 +  𝜖𝑖(𝑡) 
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where 𝛽 were fixed effects capturing slope and intercept effects, 𝛾0,𝑖 and  𝛾0,𝑖 were normally 

distributed subject-specific slope and intercept terms, and 𝜖𝑖(𝑡) was independent measurement 

error. If the two groups did not display a difference in longitudinal trends but did display 

differences in overall group trends (𝛽1 − 𝛽2) (and there was a non-significant main effect for time 

for each group), then the following reduced model was fit,  

 

𝑦𝑖(𝑡) = 𝛽0 + 𝛾0,𝑖 + 𝜖𝑖(𝑡). 

 

Subject-specific slope or intercept estimates were formed by summing the appropriate subject-

specific terms with their corresponding fixed effects. Linear mixed effect modeling was 

performed using a custom script written in R (R Foundation for Statistical Computing, Vienna, 

Austria). Pearson’s correlations were used to relate each subject’s estimated slope and y-

intercept to 18-month MSEL expressive and receptive t-scores, CDI words comprehended and 

produced, and ADOS-T overall score. Pearson’s correlations were performed with SPSS.  

 

4.3 Results  

Outcome groupings  

The ASD-concern group (n = 17) consisted of 15 FR and 2 LR infants. The No-ASD-

concern group (n = 54) consisted of 29 FR and 25 LR infants.  

 

Developmental testing  

At 18-months, FR infants had significantly lower MSEL standard scores, MSEL 

nonverbal t-score, MSEL verbal t-score, MSEL receptive language t-scores, and CDI words 

comprehended compared to LR infants. Relative to LR infants, FR infants also had higher 
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ADOS-T overall scores, and higher ADOS-T CSS. There was no significant difference between 

FR and LR in MSEL expressive language t-score, CDI words produced. At 18-months, the ASD-

concern group had significantly lower MSEL standard scores, MSEL nonverbal t-scores, MSEL 

verbal t-scores, MSEL receptive language t-scores, MSEL expressive language t-scores, CDI 

words comprehended, and CDI words produced compared to the No-ASD-concern group. The 

ASD-concern group also had higher ADOS-T overall scores and ADOS-T than the No-ASD-

concern group. Mean MSEL standard scores and ADOS-T overall scores for each group are 

presented in Table 4.1; mean receptive language, expressive language, and overall verbal 

ability for the ASD-concern and No-ASD-concern groups are presented in Figure 4.4 and Table 

4.2. 

 Familial-risk 

(FR) 

Low-risk (LR) ASD-concern No-ASD-concern 

n 44 27 17 

(15 FR/ 2 LR) 

54 

(29 FR/ 25 LR) 

Sex 18F/26M 10F/17M 3F/14M 25F/ 29M 

MSEL ELC 

standard score 

89.1 + 15.2* 

(52-116) 

102.0 + 14.9* 

(56-126) 

73.8 + 10.7* 

(52-85) 

100.3 + 12.0* 

(71-126) 

MSEL nonverbal t-

score 

45.3 + 8.0* 

(22.5-64.0) 

52.0 + 8.9* 

(25.0-66.0) 

40.4 + 10.0* 

(22.5-59.5) 

50.2 + 7.1* 

(34.0-66.0) 

MSEL verbal t-

score 

43.1 + 10.5* 

(21.0-63.5) 

49.7 + 10.3* 

(25.0-66.0) 

31.6 + 5.4* 

(21.0-40.5) 

50.0 + 8.0* 

(30.0-66.0) 

ADOS-T overall 

score 

7.7 + 5.3* 

(1-20) 

5.0 + 4.3* 

(0-18) 

14.4 + 2.9* 

(10-20) 

4.2 + 2.5* 

(0-9) 

ADOS-T CSS 3.3 + 1.9* 

(1-8) 

2.3 + 1.4* 

(1-7) 

5.7 + 1.1* 

(4-8) 

2.0 + 0.8* 

(1-3) 
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Table 4.1. Developmental outcomes and ASD symptoms at 18 months. Abbreviations: female 

(F); male (M); calibrated severity score (CSS). Mean, standard deviation, and range scores for 

each group are displayed. * Significant group differences respectively between FR versus LR, or 

ASD-concern versus No-ASD-concern. 

 

  Familial-risk 

(FR) 

Low-risk (LR) ASD-

concern 

No-ASD-

concern 

Receptive 

Language 

MSEL 

 (t-score) 

40.8 + 13.6* 

(20-72) 

50.6 + 14.7* 

(20-72) 

27.8 + 4.9* 

(20-37) 

49.8 + 12.8* 

(30-72) 

CDI (words 

comprehended) 

147.1 + 98.2* 

(21-370) 

215.1 + 116.5* 

(10-392) 

78.2 + 93.6* 

(10-368) 

202.6 + 99.3* 

(21-392) 

Expressive 

Language 

MSEL (t-score) 45.4 + 10.1 

(19-68) 

48.9 + 9.5 

(27-65) 

35.4 + 8.7* 

(19-51) 

50.3 + 7.4* 

(30-68) 

CDI (words 

produced) 

51.6 + 69.9 

(0-342) 

63.0 + 66.2 

(3-249) 

7.2 + 10.9* 

(0-37) 

69.9 + 71.2* 

(2-342) 

 

Table 4.2. Language profiles at 18 months on the MSEL and CDI. Mean, standard deviation, 

and range scores for each group are displayed. * Significant group differences respectively 

between FR versus LR, or ASD-concern versus No-ASD-concern. 

 

A range of language ability was observed at 18-months in both ASD-concern and No-

ASD-concern groups (Figure 4.4). The ASD-concern group included 15 infants whose scores 

fell below average range on the MSEL (verbal t-score < 40; Charman et al., 2017) (Figure 4.4c). 
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While most infants in the No-ASD-concern group did have typical language ability, 4 infants 

showed language-delay (3 FR, 1 LR) (Figure 4.4c).  

 

 

Figure 4.4. Language profiles for ASD-concern and No-ASD-concern groups at 18 months. 

Figures 4.4a-c. MSEL receptive, expressive language, and overall verbal t-scores. Figures 

4.4d-e. CDI words comprehension, words production. 

 

EEG data quality  

Averaged across 297 files from all four timepoints, ASR rejected 9% of channels (12 + 9 

channels) and 0.002% of file length (0.34 + 3.0 seconds). After manual removal of IC with 

artifacts, on average of 12 + 2 (range: 4-19) brain components were retained per subject. There 

was no difference in data quality between ASD-concern and No-ASD-concern groups. Out of 

297 EEG files recorded, 294 files passed data quality checks after pre-processing and were 

used in the final analyses (Table 4.3). 2 files were not processed due to errors during EEG 
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acquisition (missing paradigm markers) and 1 file failed data quality check because it lacked 

dipolar brain IC (after having 64 channels removed by ASR).  

 

Timepoint 3-month 6-month 9-month 12-month 

EEG files  74 78 72 73 

Channels 

removed 

15 + 8 (12%) 14 + 10 (11%) 10 + 7 (8%) 8 + 9 (6%) 

Channel 

retained  

109 + 8 

(range 84-122) 

(range 67-98%) 

110 + 10 

(range 71-123) 

(range 57-99%) 

114 + 7 

(range 70-122) 

(range 56-98%) 

116 + 9 

(range 60-124) 

(range 48-100%) 

Duration 

removed  

0.8 + 6 s  

(0.5%) 

0.08 + 0.3 s 

(0.1%) 

0.2 + 2 s  

(0.2%) 

0.2 + 0.7  

(0.1%) 

Duration 

retained 

150 + 7 s 

(range 110-161 s); 

(range 69-100%) 

151 + 10 s 

(range 98-162) 

(range 99-100%) 

153 + 8 s 

(range 104-163) 

(range 91-100%) 

151 + 11 s 

(range 91-162) 

(range 98-100%) 

IC 

retained  

12 + 2 

(range 7-19) 

12 + 2 

(range 4-17) 

11 + 2 

(range 5-16) 

12 + 3 

(range 5-18) 

Files 

rejected  

0 1 0 2 

File 

retained  

74 77 72 71 

 

Table 4.3. EEG data quality and subject retention after pre-processing.   

 

 



78 
 

Phase coherence: ASD-concern versus No-ASD-concern  

Theta coherence slope differentiated the ASD-concern group from the No-ASD-concern 

group at left frontal-temporal F9-T9 electrode pair (p = 0.049). At the F9-T9, the ASD-concern 

group showed a decrease in coherence over time (negative slope) while the No-ASD-concern 

group showed an increase in coherence over time (positive slope) (Figure 4.5a). Theta 

coherence y-intercepts differentiated the ASD-concern group from the No-ASD-concern group 

at left frontal-central F9-C3 electrode pair (p = 0.039) and right frontal-temporal F10-T8 

electrode pair (p = 0.029). The ASD-concern group had greater average coherence over the 

first year at F10-T8 (Figure 4.5b), and lower average theta coherence over the first year at F9-

C3 (Figure 4.5c), compared to the No-ASD-concern group. Alpha coherence y-intercepts 

differentiated the ASD-concern group from the No-ASD-concern group at left frontal-central F9-

C3 electrode pair (p = 0.049). The ASD-concern group had lower average alpha coherence over 

the first year at F9-C3 (Figure 4.5d). These four slope and y-intercept findings differentiated risk 

groups without correction for multiple comparisons. Slope and y-intercepts at the other electrode 

pairs within theta and alpha bands did not differentiate ASD-concern from No-ASD-concern (p > 

0.05). 

 

Phase coherence and behavioral outcomes  

  Across risk groups: alpha coherence y-intercept at F9-C3 correlated with MSEL 

expressive language t-score (r = 0.264, p = 0.026) (Figure 4.6a) and MSEL receptive language 

t-score (r = 0.256, p = 0.012) at 18-months (Figure 4.6b). Alpha coherence y-intercept at F9-C3 

did not correlate with ASD symptoms or CDI language scores at 18-months (p > 0.05). Across 

all subjects, theta coherence slope at F9-T9, theta coherence y-intercepts at F10-T8 and F9-C3 

did not correlate with 18-month ASD symptoms or expressive and receptive language scores 

the MSEL and CDI (p > 0.05). 
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Figure 4.5. Longitudinal trends in coherence between ASD-concern and No-ASD-concern 

groups. Figure 4.5a. Theta coherence slope at F9-T9 differentiated the ASD-concern group 

from the No-ASD-concern group. Figures 4.5b-c. Theta coherence y-intercepts at F9-C3 and 

F10-T8 differentiated the ASD-concern group from the No-ASD-concern group. Figure 4.5d. 

Alpha coherence y-intercept at F9-C3 differentiated the ASD-concern group from the No-ASD-

concern group.  
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Figure 4.6. Relationships between average coherence over the first year at F9-C3 and 

language outcome at 18-month. Figure 4.6a. Average alpha coherence over the first year at F9-

C3 related to MSEL expressive language t-score. Figures 4.6b. Average alpha coherence over 

the first year at F9-C3 correlated with MSEL receptive language t-score.  

 

4.4 Discussion  

 This study is the first to examine developmental trajectories of functional connectivity 

during language processing over the first year of life in infants at familial risk for ASD. We found 

significant differences in coherence patterns over the first year of life that differentiated ASD-

concern from No-ASD-concern groups. A pattern of decreasing left fronto-temporal theta 

coherence was observed over the first year of life in infants who later showed ASD symptoms at 

18 months. Infants in the ASD-concern group also showed lower average left fronto-central 

coherence over the first year of life in both theta and alpha frequency bands. An opposite trend 

was observed in the right hemisphere, in which infants in the ASD-concern group had greater 

average right fronto-temporal coherence in the theta band over the first year of life. Across risk 

groups, average left fronto-central alpha coherence over the first year of life correlated with both 

expressive and receptive language ability at 18-months. These findings build upon our 
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previously reported work (Tran et al, in prep), showing that left fronto-central coherence is lower 

in the ASD-concern group at 3-months and continues to remain low throughout the first year of 

life.  

  

Language outcomes  

Most children in the ASD-concern group also met criteria for language delay at 18-

months, with deficits in both receptive and expressive language. The language profiles of our 

ASD-concern group were consistent with prior reports of language deficits in infant-siblings and 

toddlers with ASD (Charman et al., 2003; Luyster et al., 2007; Luyster et al., 2008; Ellis 

Weismer et al., 2010; Mitchell et al., 2006; Ozonoff et al., 2014; Levin et al., 2017). Of note, a 

small subset of children in the No-ASD-concern group also met criteria for language delay at 18 

months. Language delay profiles without ASD symptomatology may reflect broader autism 

phenotype in FR children and specific language impairment in LR children (Messinger et al., 

2013; Landa et al., 2013; Ozonoff et al., 2014; Charman et al., 2017; Tomblin et al., 1997). 

 

Auditory statistical learning  

We chose to use auditory statistical learning as our language processing task because 

this domain is essential for language learning, both during infancy and beyond. Infants can rely 

on statistical word boundaries to help them segment a stream of continuous speech into 

individual words (Saffran et al., 1996). The ability to perform auditory statistical learning has 

been documented in infants throughout the first year of life, starting in infants as young as 2-5 

days old (Flo et al., 2019). In typically developing infants, speech segmentation ability at 7.5-12 

months of age relates to both word production at two years and preschool language skills 

(Newman et al., 2006). Infants with worse speech segmentation ability may have more trouble 
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parsing words from continuous speech, which can result in reduced words-learning and cause 

eventual language impairment.   

 

Reduced coherence during language processing in infants at risk for ASD 

Our study identified unique connectivity profiles over the first year of life that stratified 

familial risk infants who are most likely to develop ASD from those who are least likely to 

develop ASD. Over the first year of life, the brain undergoes dramatic structural and functional 

maturation. Prior neuroimaging studies have shown that familial risk infants who develop ASD 

have diverging trajectories in the development of white matter tracts over the first and second 

years of life, which relate to future ASD symptoms such as repetitive behaviors (Wolff et al., 

2012; Wolff et al., 2015). Among low risk infants, increasing structural connectivity in the 

splenium over the first and second years of life relate to better language ability, specifically with 

greater words production (Swanson et al., 2017b). Since language function is dependent on the 

structural integrity of language network, it is expected that infants who later develop ASD and 

language delay should have aberrant trajectories in both structural and functional connectivity of 

language networks during the first year of life. Our longitudinal findings are consistent with this 

theory. Over the first year of life, infants who later develop ASD symptoms showed diverging 

trajectories in connectivity development as well as decreased average connectivity over the first 

year of life in left-hemispheric connections within putative language networks. From prior 

neuroimaging studies, we know that typically developing infants start out with bilateral temporal 

cortical activation in response to speech stimuli at birth that gradually shift to left-lateralized 

language networks during the first year of life (Dinstein et al., 2011). In our study, infants without 

ASD concern show the neurotypical pattern of increasing functional connectivity in left frontal-

temporal networks between 3 and 12 months in response to speech stimuli from our language 

processing task. In contrast, older infants and toddlers with ASD have been shown to have 
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atypically decreased left temporal activation in response to speech sounds (Eyler et al., 2012). 

Similarly, infants with ASD concerns in our study show an altered trajectory of decreasing 

functional connectivity in left frontal-temporal networks between 3 and 12 months of age during 

language processing. Our coherence trajectory findings are consistent with prior neuroimaging 

works and shed light on the development of atypical language networks in ASD.  

Our findings of decreased left hemispheric functional connectivity throughout the first 

year of life in infants with early concerns for ASD are consistent with prior literature documenting 

decreased left-hemisphere activation in response to language stimuli in infants and toddlers with 

ASD.  Throughout the first year of life, left-hemispheric underconnectivity during language 

processing may both precede and predispose at-risk infants to later language impairment and 

ASD symptoms. In left fronto-central networks, average coherence over the first year of life 

correlated with overall verbal ability at 18-months, which highlighted the importance of left-

lateralized language networks during language development. It is possible that infants who have 

stronger left-hemispheric functional connectivity in language networks during exposure to 

speech streams are likely to perform better at word segmentation in novel contexts, and word 

segmentation ability in infancy lay the foundation for future words learning and production.  

 

Hemispheric effect  

Opposite trends in theta coherence were observed between left-hemispheric and right-

hemispheric connections for infants who later showed ASD symptoms at 18-months. Averaged 

over the first year of life, the ASD-concern group had both increased right fronto-temporal theta 

coherence and decreased left fronto-central theta coherence compared to the No-ASD-concern 

group. A recent neuroimaging study of a subset of infants from our cohort has documented 

altered structural lateralization of language networks in familial risk infants at 6-weeks of age 

(Liu et al., 2019).  Increased theta coherence in right fronto-temporal language networks may be 
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caused by underlying increased structural connectivity of right dorsal language tracts, as 

previously described by Liu et al in familial risk infants (Liu et al., 2019). Increased functional 

connectivity in the right hemisphere during language processing during the first year of life, as 

seen in our study, may reflect the development towards altered lateralization of language 

networks in ASD. Prior neuroimaging studies have documented similar right-lateralized cortical 

activation during language processing in older infants and toddlers with ASD (Lombardo et al., 

2015; Redcay & Courchesne, 2008).  

 

Limitations and future directions  

One limitation of our current study is a small sample size. As such, it will be important to 

replicate this study in a new cohort of infants. Most prior EEG studies in familial-risk infants have 

not been replicated. To date, only one research group has attempted to replicate their infant 

EEG findings in a new cohort (Orekhova et al., 2014; Haartsen et al., 2019), and it remains 

unclear whether the heterogeneity in reported findings across studies are reflections of the 

subjects’ true traits or are due to underlying differences in analysis methods. Furthermore, since 

the present study only examined coherence during the exposure phase of the language task, it 

is unclear whether increased coherence reflected the infants’ ASL or the infants’ increased 

attention to speech stimuli. Future studies may also integrate structural and functional 

connectivity measures across neuroimaging and EEG studies in the same cohort of infants, in 

order of identify cross-modality neural markers of language processing in infancy.  

In conclusion, our study has shown that EEG can detect, and track altered functional 

connectivity patterns in language networks in familial risk infants throughout the first year of life, 

starting as young as 3 months of age. Early connectivity trajectories in language networks relate 

to both ASD symptoms profile and language ability at 18 months, suggesting that these early 
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neural markers may be useful in identifying infants who are most at risk of atypical development 

and who may benefit from early targeted behavioral intervention.  
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Chapter 5: Connectivity during language processing – an endophenotype of ASD risk 

 

5.1 Introduction  

 In the previous two chapters, we have characterized the development of atypical 

functional connectivity patterns during language processing in infants who showed symptoms of 

autism spectrum disorder (ASD) at 18 months. Now in this chapter, we are shifting gears and 

taking a step back to examine functional connectivity profiles in infants with shared familial risk 

for ASD, irrespective of their future diagnostic outcomes. Familial risk infants (FR) are an 

interesting group to study because of their heterogenous outcomes, potentially reflecting a wide 

background of polygenic risks interacting with environmental factors. FR infants are at elevated 

risk of ASD, global developmental delay, language delay and other atypical developments; 

however, nearly half of FR infants are likely to have typical development (Ozonoff et al., 2014; 

Messinger et al., 2015; Charman et al., 2017). While FR infants may inherit additive polygenic 

risks from their parents, siblings in the same family often do not inherit the same genetic 

variants. Within families with at least 2 children with ASD (multiplex families), children with ASD 

have greater amount of rare copy-number variants (CNVs) than their unaffected siblings (Leppa 

et al., 2016). However, up to 70% of multiplex children with ASD do not inherit the same rare 

CNVs as their other siblings with ASD (Yuen et al., 2015; Leppa et al., 2016). While infants from 

simplex families (with only 1 child with ASD) are at 20% risk of ASD; infants from multiplex 

families are at even greater risk of ASD, with penetrance rates approaching 33-50% (Ozonoff et 

al., 2011; Messinger et al., 2015). Studying neural development in FR infants will allow us to 

elucidate of there are distinct neural markers of genetic, familial predisposition for ASD. Given 

the heterogenous developmental outcomes amongst FR infants, neural markers identified in the 

general FR group may be associated with either a pathological process towards atypical 

development or a protective compensatory process towards typical development.  
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 Because of the heterogeneity in the FR group, prior studies have often focused on 

comparing either between FR infants with ASD to FR infants without ASD, or FR infants with 

ASD versus low risk infants without ASD. As early as 6 weeks of age, evidence of atypical 

lateralization of language networks is detectable in FR infants (Liu et al., 2019). Between 6 and 

24 months of age, FR infants have increased corpus callosum area and thickness compared to 

LR infants, in which FR infants with ASD show the greatest deviations from LR controls (Wolff et 

al., 2015). FR infants without ASD appear to have intermediate trajectories in corpus callosum 

development, in between FR with ASD and LR (Wolff et al., 2015). And while FR infants with 

ASD have increased extra-axial cerebral spinal fluid (CSF) between 6 and 24 months of age, 

there appear to be no difference in extra-axial CSF volume between LR controls and FR infants 

without ASD (Shen et al., 2017). Using EEG, Righi and colleagues have described a pattern of 

reduced coherence in in FR infants that emerged between 6 and 12 months of age while infants 

listened to speech tones as part of auditory oddball paradigm (Righi et al., 2014). Differences 

between FR and LR infants were detected at 12 months and not at 6 months, suggesting of 

different underlying trajectories in network development during late infancy (Righi et al., 2014). 

To date, no prior study has investigated differences in functional connectivity between FR and 

LR infants during language processing between 3 and 12 months of age.   

This chapter aims to answer two primary questions: 1) Can spectral power and phase 

coherence measured during language processing differentiate 3-month-old infants based on 

familial risk for ASD, and 2) do the patterns of coherence change over the first year of life 

distinguish FR from LR infants? We hypothesized that functional connectivity in language 

networks should be able to differentiate FR from LR infants both at 3-month of age and 

throughout the first year of life.  
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5.2 Methods  

Participants  

FR and LR infants were recruited to be part of a longitudinal study on early biomarkers 

of ASD, as part of the UCLA Autism Center of Excellence (ACE; NICHD 2P50HD055784-08). 

FR infants came from a mix of simplex and multiplex families. Simplex families had only 1 child 

with ASD, while multiplex families had at least 2 children with known ASD diagnosis. The study 

inclusion criteria were the same as previously described in Chapters 3 and 4. A total of 85 

participants (50 FR, 35 LR) completed EEG during the language task for at least one timepoint, 

out of which 74 participants (40 FR, 34 LR) completed the EEG task at 3 months. Among the 

FR infants, 8 came from multiplex families. There were no sex differences between FR (21 

female, 29 male) and LR (13 female, 22 male) groups. 

 

Behavioral Measures 

ASD symptoms, overall developmental level, and language ability were assessed at 18-

months to characterize behavioral profiles of the participants. Behavioral measures using the 

Mullen Scales of Early Learning (MSEL), the MacArthur Communicative Development Inventory 

(CDI), and the Autism Diagnostic Observation Scale Toddler Module (ADOS-T) were the same 

as previously described in Chapters 3 and 4.  

 

EEG Stimuli and Data Acquisition 

 Approximately 2.5 minutes of continuous EEG was recorded using 128-channel EGI net 

while each infant listened to a stream of concatenated syllables forming pseudowords. The 

auditory statistical learning paradigm and EEG acquisition parameters were the same as 

previously described in Chapters 3 and 4.  
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EEG Data Pre-Processing    

 Continuous EEG data was processed using EEGlab (v14.1.1b), following prior protocol 

described in Chapters 3 and 4. The processing pipeline utilized artifact subspace reconstruction 

(ASR), down-sampling to 25 channels, 1-model Adaptive Mixture Independent Component 

Analysis (AMICA), ICLabel, and Laplacian spatial filter.  

 

EEG Data Quality  

Averaged across all 294 files from all four timepoints, ASR rejected 9% of channels (12 

+ 8 channels) and 0.002% of file length (0.34 + 3.0 seconds). After manual removal of IC with 

artifacts, on average of 12 + 2 (range: 4-19) brain components were retained per subject. There 

was no difference in data quality between FR and LR groups. All subjects who had EEG during 

the language processing task were used in the final analyses. Data quality and data retention at 

each timepoint were previously described in detail in Chapter 4.  

 

EEG Power and Coherence Analyses  

 Relative power and phase coherence in the theta (4-6 Hz) and alpha (6-12 Hz) 

frequency bands were calculated using protocols previously described in Chapter 3. Spectral 

power analyses focused on frontal and central-temporal regions of interest (Figure 5.1a). Phase 

coherence analyses focused on 18 electrode pairs from putative language network (Figure 

5.1b).  
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Figure 5.1. Scalp map used in power and coherence analyses. Figure 5.1a. Frontal and 

temporal-central ROIs used in spectral power analysis. Figure 5.1b. Language network 

electrode pairs examined in phase coherence analysis. 

 

Statistical Analysis 

 These exploratory analyses were not corrected for multiple comparisons.  

 

5.2.1 Cross-sectional study  

Methods for risk-group comparisons were the same as previously described in Chapter 

3. Comparison groups were FR versus LR, instead of ASD-concern versus No-ASD-concern. 

Analyses were focused on identifying group differences in spectral power and phase coherence 

at 3-months of age. Group differences in spectral power were assessed using the Mann-

Whitney U-test. Group differences in phase coherence were assessed using permutation test.  
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5.2.2 Longitudinal study  

 Methods for risk-group comparisons were the same as previously described in Chapter 

4. Comparison groups were FR versus LR, instead of ASD-concern versus No-ASD-concern. 

Analyses were focused on identifying group differences in coherence change over the first year 

of life, assessed in terms of fixed effects (slope and y-intercept) from linear mixed effect models.   

 

5.3 Results  

Developmental testing  

At 18-months, FR infants had significantly lower MSEL standard scores, MSEL 

nonverbal t-score, MSEL verbal t-score, MSEL receptive language t-scores, CDI words 

comprehended, and receptive advantage compared to LR infants. Relative to LR infants, FR 

infants also had higher ADOS-T overall scores and higher ADOS-T CSS. There was no 

significant difference between FR and LR in MSEL expressive language t-score or CDI words 

produced. Mean receptive language, expressive language, overall verbal ability, and receptive 

advantage scores for FR and LR groups are presented in Figure 5.2.  

A range of language ability was observed at 18-months among FR and LR groups 

(Figure 5.2). The FR group consisted of 16 children who met criteria for language-delay on the 

MSEL (verbal t-score less than 40; Charman et al., 2017). Overall 36% of FR children met 

criteria for language-delay, among which 13 belonged in the ASD-concern group and 3 

belonged in the No-ASD-concern group. The LR group consisted of 3 children who met criteria 

for language-delay on the MSEL. Overall 11% of LR children met criteria for language-delay, 

among which 2 belonged in the ASD-concern group and 1 belonged in the No-ASD-concern 

group.  
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Figure 5.2. Language profiles at 18 months on the MSEL and CDI. Receptive advantage was 

calculated as the difference between CDI words comprehended and words produced. Mean 

scores and standard deviation for FR and LR groups are displayed. 

 

5.3.1 Cross-sectional study  

Spectral power at 3-month: Familial-risk versus Low-risk  

 The FR group did not differ from the LR group in theta and alpha relative power at frontal 

and temporal-central ROIs (Mann-Whitney U-test p > 0.05) (Figure 5.3).  
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Figure 5.3. PSD plots for FR and LR groups. Log power density plots at frontal and temporal-

central ROIs at 3-months (median and interquartile range). Red = Familial-risk (FR); blue = Low-

risk (LR).  

 

Phase coherence at 3-month: Familial-risk versus Low-risk  

 Theta phase coherence at right frontal-central electrode pair F10-C4 differentiated FR 

from LR (p=0.042), where LR had higher coherence (Figure 5.4a). Alpha phase coherence at 

left frontal-temporal electrode pair F7-T9 differentiated FR from LR (p=0.021) where LR had 

lower coherence (Figure 5.4b). After FDR was applied and p-values were adjusted for 36 
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comparisons (2 frequency bands x 18 electrode pairs), the group differences in theta and alpha 

bands were not significant (adjusted p-values > 0.05). 

 

 

Figure 5.4. Phase coherence for FR and LR groups. Figure 5.4a. Theta phase coherence at 

right frontal-central connection (F10-C4) differentiated FR from LR. Figure 5.4b. Alpha phase 

coherence at left frontal-temporal connection (F7-T9) differentiated FR from LR. 

 

5.3.2 Longitudinal study  

Phase coherence at 3-12 months: Familial-risk versus Low-risk  

 Theta coherence slope differentiated FR from LR at right frontal-central F8-C4 electrode 

pair (p = 0.047). At F8-C4, FR had a slope of 0 while LR had a positive slope (Figure 5.5a). 

Theta coherence y-intercept differentiated FR from LR at right frontal-central F10-T10 electrode 

pair (p = 0.021). FR had greater average theta coherence over the first year at F10-T10, 

compared to LR (Figure 5.5b). Alpha coherence slope differentiated FR from LR at right frontal-

central F10-C4 (p = 0.032). At F10-C4, FR had a positive slope while LR had a negative slope 

(Figure 5.5c).  
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Figure 5.5. Longitudinal trends in coherence between FR and LR. Figure 5.5a. Theta 

coherence slope at F8-C4 differentiated FR from LR. Figures 5.5b. Theta coherence y-

intercepts at F10-T10 differentiated FR from LR. Figure 5.5c. Alpha coherence slope at F10-C4 

differentiated FR from LR.   

 

5.4 Discussion  

 At 3 months of age, relative power in the theta and alpha bands did not differentiate 

infants at familial risk for ASD from those without familial risk. In contrast, phase coherence at 3 

months of age did differentiate infants based on familial risk. Specifically, right fronto-central 
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theta coherence was lower in FR infants; while left fronto-temporal alpha coherence was higher 

in FR infants. Over the first year of life, FR and LR infants differed in right fronto-central 

coherence trajectories. In terms of right fronto-central theta coherence, LR infants had an 

increasing trajectory over the first year while coherence for FR infants remained stable and 

unchanged. Opposite trajectories were observed for right fronto-central alpha coherence: FR 

infants had increasing coherence while LR infants had decreasing coherence over the first year. 

Infants in the FR group also showed increased right fronto-temporal coherence over the first 

year of life in the theta band. Taken together, the functional connectivity networks that 

differentiated FR from LR were different from networks that differentiated ASD-concern from No-

ASD-concern groups in Chapters 3 and 4.   

 

Behavioral outcomes  

Among FR children, over 36% met criteria for language-delay while 34% had elevated 

ASD symptoms at 18-months, with many children having both language-delay and high ASD 

symptoms. The rate of ASD-concern in our study was higher than the rate of ASD diagnosis in 

prior infant sibling studies, which could be due to our cohort being enriched in infants from 

multiplex families. In our study, 50% of multiplex infants developed ASD symptoms by 18-

months of age – this rate is consistent with previously described ASD prevalence rates in 

multiplex families (Ozonoff et al., 2011;  Messinger et al., 2015). Multiplex infants who have 

multiple siblings with ASD are known to have two-fold increased risk of developing ASD 

compared to simplex infants who only have one older sibling with ASD (Ozonoff et al., 2011). 

Among LR children, 11% met criteria for language-delay and 7% had elevated ASD symptoms 

at 18-months, with similar overlap in children with both language-delay and ASD symptoms. The 

rate of ASD-concern in our LR cohort was higher than the prevalence of ASD in the general 

population, and this could be due to our study’s small sample size and inclusion of first-born 
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infants in the LR group. As a group, FR infants had lower receptive language and reduced 

receptive advantage compared to LR infants. Among FR infants who did not have ASD 

symptoms at 18-months, approximately 11% had language-delay – this rate is consistent with 

prior characterizations of the broader autism phenotype (Messinger et al., 2013; Landa et al., 

2013; Ozonoff et al., 2014).  

 

Functional connectivity during language processing as an endophenotype of ASD  

 Our study identified unique connectivity profiles during language processing that 

stratified infants based on familial risk and may serve as an endophenotype of ASD. During 

early infancy in infants as young as 3-months, FR infants had patterns of right hemisphere 

underconnectivity and left hemisphere overconnectivity that were suggestive of hemispheric 

differences during language processing. We have previously shown that reduced alpha 

coherence the left hemisphere at 3-months of age is associated with early ASD symptoms at 

18-months (Chapter 3). It is possible that the increased left hemispheric alpha coherence at 3-

months of age in the FR group maybe driven by a compensatory mechanism that is protective 

against ASD. The majority of FR infants with high alpha coherence at 3-months do not have 

ASD symptoms at 18-months; this supports our prior hypothesis that there may be a threshold 

over which left-hemispheric connectivity during language processing promotes typical 

development.  

Over the first year of life, developmental trends in connectivity at different connections 

within right-hemisphere language networks also differentiated infants based on familial risk. FR 

and LR infants differed in coherence trajectories across multiple fronto-central connections in 

the right-hemisphere over the first year of life, showing that altered trajectories in functional 

connectivity during language processing are related to familial risk for ASD. Averaged over the 

first year of life, FR infants also had higher theta coherence over right fronto-temporal 
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connections which may be compensatory for the initial lower theta coherence observed at 3-

months in right fronto-central connections. We have previously shown that increased fronto-

temporal theta coherence in the right hemisphere over the first year of life is associated with 

early ASD symptoms at 18-months (Chapter 4). Our longitudinal results from the present study 

are complementary with our previously described findings from Chapter 4, showing that 

increased right hemispheric fronto-temporal theta coherence during the first year of life both 

characterizes familial ASD risk and serves as a marker of atypical neurodevelopment 

associated with ASD. Our findings are also consistent with previously described patterns of 

altered lateralization and increased structural connectivity in right-hemispheric dorsal language 

tracts among 6-weeks old FR infants (Liu et al., 2019). It is possible that FR infants who have 

increased functional connectivity in the right hemisphere may have underlying structural 

overconnectivity of right-hemispheric language tracts. Increased functional connectivity in the 

right hemisphere during our language processing task may reflect altered lateralization of 

language networks in ASD. Prior neuroimaging studies have documented similar right-

lateralized cortical activation during language processing in infants and toddlers with ASD 

(Lombardo et al., 2015; Redcay & Courchesne, 2008). Since the brain undergoes dramatic 

structural and functional maturation during the first year of life, our findings highlight the 

importance of both early cross-sectional and longitudinal characterizations of infant brain 

development.  

While phase coherence differentiated risk groups, spectral power at 3-months of age did 

not differentiate infants based on familial risk. Results from our language processing study are 

complementary to findings by Levin et al on Laplacian filtered resting state dataset. During 

resting state EEG, Levin et al describes patterns frontal power in FR infants from data 

processed using four parallel pipelines (average referenced, Laplacian referenced, binned 

versus unbinned power) and highlighted the sensitivity of EEG data to pre-processing and 
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analyses techniques (Levin et al., 2017). Levin et al identifies differences in power between FR 

and LR infants using averaged referenced data but not with Laplacian filtered data. Similar to 

Levin et al’s Laplacian filtered data findings, we did not find a difference in spectral power 

between infants stratified based on familial risk (Levin et al., 2017). 

 

Limitations and future directions  

 One limitation of this study is the basis of all analyses on familial risk, while we know 

from prior studies that FR infants are a heterogenous group with many developmental 

outcomes. At 18-months, our FR group have a range of behavioral outcomes ranging from 

typical development to having language delay and high amount of ASD symptoms. Thus, the 

connectivity patterns we described for the FR group during the first year of life may be reflecting 

multiple divergent pathways towards both typical and atypical outcomes. In future studies, it will 

be important to further divide the FR group based on outcomes: FR infants with typical 

development, FR infants with ASD, and FR infants with other atypical development (including 

language delay). Comparing connectivity between FR subgroups will allow us to further 

characterize divergent developmental pathways among infants with similar genetic background.  
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Chapter 6: Summary and Conclusions 

6.1 Summary  

In Chapter 2, methodological considerations in the development of an EEG pre-

processing pipeline were addressed in detail, with the goals of maximizing data quality and data 

retention for infant EEG.  Attributes of two processing pipelines were compared when both 

pipelines were used in parallel to clean data files from 3-6 months old infants. The two pipelines 

differed in filtering parameters, mode for first-pass data cleaning (manual versus automatic 

artifact subspace reconstruction), type of independent component analysis used (extended 

infomax ICA versus adaptive mixture ICA), and mode for second-pass data cleaning (manual 

review of ICs versus use of automatic IC classification). The incorporation of automatic ASR and 

IC classification drastically reduced pre-processing time and established objective standards for 

reproducibility by multiple researchers. Manual data cleaning was labor intensive and inherently 

subjective, making it impossible to be reproducible between different researchers. Manual data 

cleaning resulted in over 50% data length loss, while cleaning with ASR allowed close to 100% 

of data length to be preserved. ASR proved to be effective in removing artifacts from noisy 

infant EEG data while still preserving underlying neural signals and data length. Preservation of 

clean data length has many important implications: more data points allows for less drastic data 

reduction prior to ICA, which enables greater richness in the data to be retained. Data length 

retention also leads to increased subject retention, which is important in preserving statistical 

power in infant EEG studies that are constrained by small sample sizes. Overall, the processing 

pipeline using ASR, AMICA, and automatic IC classification was shown to be superior due to its 

reproducibility, fast processing speed, and maximal retention of clean file length – making it the 

ideal pre-processing pipeline for infant EEG data with high number of artifacts and short 

recording lengths.  
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In Chapter 3, spectral power and phase coherence during language processing was 

examined in 3-months old infants at familial risk for ASD. Fronto-central and fronto-temporal 

areas of putative language networks were selected for power and coherence calculations. 

Power in theta and alpha bands did not differentiate risk groups at 3-months and did not relate 

to language and ASD symptoms at 18-months. Reduced coherence in left fronto-central 

networks in both theta and alpha bands was found in infants who later showed ASD symptoms 

at 18-months. Notably, this difference was driven by a subset of infants without ASD concerns, 

who had very high coherence during language processing. Left fronto-central alpha coherence 

at 3-months correlated with greater words production at 18-months. Coherence at 3-months 

was able to differentiate risk groups categorically and related to continuous measure of 

language outcome. There may be a threshold over which coherence during language 

processing promotes typical language development. As such, coherence measured during 

language processing can be used to identify infants who are most likely to have typical outcome 

(preserved language ability and little ASD symptoms).  

Cross-sectional findings from Chapter 3 were examined further using a longitudinal 

study design in Chapter 4. In Chapter 4, developmental trajectories in phase coherence during 

language processing was examined throughout the first year of life in infants at familial risk for 

ASD. At the same left fronto-central network that differentiated risk groups at 3-months of age, 

reduced average coherence over the first year of life was maintained in infants who showed 

ASD symptoms at 18 months. At this left fronto-central network, average theta and alpha 

coherence over the first year correlated with greater receptive language, expressive language, 

and overall verbal ability at 18 months. There was also a hemispheric effect for theta coherence. 

Within fronto-temporal networks, infants with ASD symptoms at 18 months had decreased theta 

coherence trajectory in the left hemisphere, and greater average theta coherence over the first 

year of life in the right hemisphere. Our longitudinal findings capture the development of both 
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typical and atypical lateralization of language network during the first year of life. Infants without 

ASD concern show evident of neurotypical leftward lateralization of language networks, with 

increased functional connectivity in left frontal-temporal networks between 3 and 12 months in 

response to speech stimuli. In contrast, infants with ASD concerns show atypical lateralization 

of language networks, including both decreased functional connectivity in left frontal-

temporal/central networks between 3 and 12 months of age, and increased connectivity in right 

frontal-temporal networks.  

In Chapter 5, connectivity differences between familial-risk and low-risk infants were 

examined using both cross-sectional and longitudinal study designs in order to elucidate if 

connectivity may serve as an endophenotype of ASD risk. Fronto-central and fronto-temporal 

areas of putative language networks were selected for power and coherence calculations at 3 

months; longitudinal trajectories in coherence development over the first year of life were also 

examined within these language networks. At 3-months of age, power in theta and alpha bands 

did not differentiate groups based on familial risk. Familial-risk infants had greater left fronto-

temporal alpha coherence at 3-months, which may be a compensatory mechanism driven by 

familial-risk infants without ASD concerns. Over the first year of life, familial-risk infants and low-

risk infants differed in right fronto-central coherence trajectories in both theta and alpha bands. 

Familial-risk infants also have increased right fronto-temporal coherence, averaged across the 

first year of life, which may be reflective of the atypical rightward lateralized language network 

associated with ASD. Our study identified unique connectivity profiles during language 

processing that stratified infants based on familial risk and may serve as an endophenotype of 

ASD risk. By 18 months, over a third of familial-risk infants in our study have either language 

delay or ASD symptoms, while the remaining familial-risk children appear to be typically 

developing. The familial-risk group is inherently heterogenous, and whether an infant in this 

group develops typically or atypically reflects complex interactions between the child’s polygenic 
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risk and external environmental factors. Heterogeneity between cross-sectional and longitudinal 

coherence findings may reflect different sets of neural processes underlying typical and atypical 

development in our cohort.  

 

6.2 Limitations and Future Directions  

The studies described in this dissertation have some shared limitations. Analyses 

described were focused on scalp-based measures of spectral power and phase coherence, 

measures that have been traditionally examined in the field of EEG ASD research. Phase 

coherence is sensitive to volume conduction, which may falsely inflate the measured phase 

correlations between neighboring electrodes. To mitigate effects from volume conduction, we 

have utilized a Laplacian spatial filter. However, Laplacian filter may also remove some 

underlying neural activity with distributive patterns and current flow from tangential neural 

sources. Future studies should incorporate source-based measures of EEG connectivity, 

aligned to each subject’s own structural MRI, in order to improve spatial resolution and bypass 

the volume conduction limitation of scalp-based measures.  

Across the studies described in chapters 3-5, functional connectivity was examined 

during the exposure phase of the language processing task, when infants were getting 

familiarized with nonsense words from a continuous speech stream. It is unclear whether 

increased connectivity reflected the infants’ increased attention to speech stimuli (sensory 

processing) or the infants’ auditory statistical learning (cognitive processing). Distinguishing 

sensory processing from cognitive processing is important in targeting neural networks 

important to language processing and learning. In future studies, functional connectivity should 

be examined during both the exposure phase and the test phase of the ASL paradigm in order 

to determine if increased connectivity during this task is cognitive measure of word 

segmentation ability. 
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Despite 6 years of EEG data collection at UCLA, the final cohort of infants included in 

chapters 3-5 was still relatively small. A small sample size constrains analyses based on ASD 

outcomes, since only 20% of familial-risk infants are expected to develop ASD. While my 

studies were anchored in 18-month measures of ASD symptoms and not clinical ASD 

diagnosis, only 17 out of 85 infants had ASD concerns by 18 months. It will be critical to 

replicate findings from chapters 3-5 with a new cohort of infants. In order to have a large sample 

size, EEG data would need to be collected across multiple infant sibling research sites. 

Currently the British Autism Study of Infant Siblings (BASIS) is the only multi-site network that 

have shared EEG data. Robust structural and functional neuroimaging findings have come from 

the Infant Brain Imaging Study (IBIS); however, the IBIS network currently lacks EEG data 

collection. Most prior EEG studies in familial-risk infants have not been replicated (only BASIS 

has attempted replication in a new cohort) and it remains unclear whether the heterogeneity in 

reported findings across studies result from differences in analysis methods or due to true trait 

differences in the subject sample. In future studies, the pre-processing pipeline described in 

chapters 2-5 will be ideal for use in processing large amount of infant EEG data collected across 

multiple research sites.  

 

6.3 Concluding Remarks  

Taken together, the body of work in this dissertation support the hypothesis that early 

differences in neural synchrony may lay a foundation for neurodevelopmental impairments in 

infants at risk for ASD, and these differences are able to be robustly quantified using EEG. 

During language processing, infants at risk of ASD showed altered trajectories in language 

network connectivity over the first year of life – with detectable differences emerging as early as 

3 months of age. By studying infants longitudinally, we were able to trace the development of 

typical leftward lateralization of language networks in infants without ASD concerns, and 
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atypical rightward lateralization of language networks in infants who develop ASD symptoms. It 

is possible that infants who have stronger left-hemispheric functional connectivity in language 

networks during exposure to speech streams are likely to perform better at word segmentation 

in novel contexts. As an early developmental domain, word segmentation is critical for words 

learning in infancy and lays the foundation for language processing and social communication.  

As early as 3 months of age, we were able to identify EEG neural markers predictive of 

both future language outcomes and ASD symptom profiles. This work has huge potential for 

translational application to the clinic settings. From EEG measured during early infancy, we are 

able to identify infants who are likely to have atypical outcomes and would need closer 

monitoring throughout the first year of life. Having early neural predictors of atypical 

development during the prodromal period, before infants show any behavioral symptoms, can 

help guide the delivery of earlier, targeted behavioral intervention while the infants’ brains still 

have the greatest plasticity.  
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